Clarify some comments describing the WAL index file. No changes to code.
[sqlite.git] / src / func.c
blob7528fa8b4d60540646cb1c426af1461bb70508f9
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite. (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #include "vdbeInt.h"
22 ** Return the collating function associated with a function.
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
25 VdbeOp *pOp;
26 assert( context->pVdbe!=0 );
27 pOp = &context->pVdbe->aOp[context->iOp-1];
28 assert( pOp->opcode==OP_CollSeq );
29 assert( pOp->p4type==P4_COLLSEQ );
30 return pOp->p4.pColl;
34 ** Indicate that the accumulator load should be skipped on this
35 ** iteration of the aggregate loop.
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
38 context->skipFlag = 1;
42 ** Implementation of the non-aggregate min() and max() functions
44 static void minmaxFunc(
45 sqlite3_context *context,
46 int argc,
47 sqlite3_value **argv
49 int i;
50 int mask; /* 0 for min() or 0xffffffff for max() */
51 int iBest;
52 CollSeq *pColl;
54 assert( argc>1 );
55 mask = sqlite3_user_data(context)==0 ? 0 : -1;
56 pColl = sqlite3GetFuncCollSeq(context);
57 assert( pColl );
58 assert( mask==-1 || mask==0 );
59 iBest = 0;
60 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
61 for(i=1; i<argc; i++){
62 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
63 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
64 testcase( mask==0 );
65 iBest = i;
68 sqlite3_result_value(context, argv[iBest]);
72 ** Return the type of the argument.
74 static void typeofFunc(
75 sqlite3_context *context,
76 int NotUsed,
77 sqlite3_value **argv
79 static const char *azType[] = { "integer", "real", "text", "blob", "null" };
80 int i = sqlite3_value_type(argv[0]) - 1;
81 UNUSED_PARAMETER(NotUsed);
82 assert( i>=0 && i<ArraySize(azType) );
83 assert( SQLITE_INTEGER==1 );
84 assert( SQLITE_FLOAT==2 );
85 assert( SQLITE_TEXT==3 );
86 assert( SQLITE_BLOB==4 );
87 assert( SQLITE_NULL==5 );
88 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
89 ** the datatype code for the initial datatype of the sqlite3_value object
90 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
91 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
92 sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
97 ** Implementation of the length() function
99 static void lengthFunc(
100 sqlite3_context *context,
101 int argc,
102 sqlite3_value **argv
104 int len;
106 assert( argc==1 );
107 UNUSED_PARAMETER(argc);
108 switch( sqlite3_value_type(argv[0]) ){
109 case SQLITE_BLOB:
110 case SQLITE_INTEGER:
111 case SQLITE_FLOAT: {
112 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
113 break;
115 case SQLITE_TEXT: {
116 const unsigned char *z = sqlite3_value_text(argv[0]);
117 if( z==0 ) return;
118 len = 0;
119 while( *z ){
120 len++;
121 SQLITE_SKIP_UTF8(z);
123 sqlite3_result_int(context, len);
124 break;
126 default: {
127 sqlite3_result_null(context);
128 break;
134 ** Implementation of the abs() function.
136 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
137 ** the numeric argument X.
139 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
140 assert( argc==1 );
141 UNUSED_PARAMETER(argc);
142 switch( sqlite3_value_type(argv[0]) ){
143 case SQLITE_INTEGER: {
144 i64 iVal = sqlite3_value_int64(argv[0]);
145 if( iVal<0 ){
146 if( iVal==SMALLEST_INT64 ){
147 /* IMP: R-31676-45509 If X is the integer -9223372036854775808
148 ** then abs(X) throws an integer overflow error since there is no
149 ** equivalent positive 64-bit two complement value. */
150 sqlite3_result_error(context, "integer overflow", -1);
151 return;
153 iVal = -iVal;
155 sqlite3_result_int64(context, iVal);
156 break;
158 case SQLITE_NULL: {
159 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
160 sqlite3_result_null(context);
161 break;
163 default: {
164 /* Because sqlite3_value_double() returns 0.0 if the argument is not
165 ** something that can be converted into a number, we have:
166 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
167 ** that cannot be converted to a numeric value.
169 double rVal = sqlite3_value_double(argv[0]);
170 if( rVal<0 ) rVal = -rVal;
171 sqlite3_result_double(context, rVal);
172 break;
178 ** Implementation of the instr() function.
180 ** instr(haystack,needle) finds the first occurrence of needle
181 ** in haystack and returns the number of previous characters plus 1,
182 ** or 0 if needle does not occur within haystack.
184 ** If both haystack and needle are BLOBs, then the result is one more than
185 ** the number of bytes in haystack prior to the first occurrence of needle,
186 ** or 0 if needle never occurs in haystack.
188 static void instrFunc(
189 sqlite3_context *context,
190 int argc,
191 sqlite3_value **argv
193 const unsigned char *zHaystack;
194 const unsigned char *zNeedle;
195 int nHaystack;
196 int nNeedle;
197 int typeHaystack, typeNeedle;
198 int N = 1;
199 int isText;
201 UNUSED_PARAMETER(argc);
202 typeHaystack = sqlite3_value_type(argv[0]);
203 typeNeedle = sqlite3_value_type(argv[1]);
204 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
205 nHaystack = sqlite3_value_bytes(argv[0]);
206 nNeedle = sqlite3_value_bytes(argv[1]);
207 if( nNeedle>0 ){
208 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
209 zHaystack = sqlite3_value_blob(argv[0]);
210 zNeedle = sqlite3_value_blob(argv[1]);
211 isText = 0;
212 }else{
213 zHaystack = sqlite3_value_text(argv[0]);
214 zNeedle = sqlite3_value_text(argv[1]);
215 isText = 1;
217 if( zNeedle==0 || (nHaystack && zHaystack==0) ) return;
218 while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
219 N++;
221 nHaystack--;
222 zHaystack++;
223 }while( isText && (zHaystack[0]&0xc0)==0x80 );
225 if( nNeedle>nHaystack ) N = 0;
227 sqlite3_result_int(context, N);
231 ** Implementation of the printf() function.
233 static void printfFunc(
234 sqlite3_context *context,
235 int argc,
236 sqlite3_value **argv
238 PrintfArguments x;
239 StrAccum str;
240 const char *zFormat;
241 int n;
242 sqlite3 *db = sqlite3_context_db_handle(context);
244 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
245 x.nArg = argc-1;
246 x.nUsed = 0;
247 x.apArg = argv+1;
248 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
249 str.printfFlags = SQLITE_PRINTF_SQLFUNC;
250 sqlite3XPrintf(&str, zFormat, &x);
251 n = str.nChar;
252 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
253 SQLITE_DYNAMIC);
258 ** Implementation of the substr() function.
260 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
261 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
262 ** of x. If x is text, then we actually count UTF-8 characters.
263 ** If x is a blob, then we count bytes.
265 ** If p1 is negative, then we begin abs(p1) from the end of x[].
267 ** If p2 is negative, return the p2 characters preceding p1.
269 static void substrFunc(
270 sqlite3_context *context,
271 int argc,
272 sqlite3_value **argv
274 const unsigned char *z;
275 const unsigned char *z2;
276 int len;
277 int p0type;
278 i64 p1, p2;
279 int negP2 = 0;
281 assert( argc==3 || argc==2 );
282 if( sqlite3_value_type(argv[1])==SQLITE_NULL
283 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
285 return;
287 p0type = sqlite3_value_type(argv[0]);
288 p1 = sqlite3_value_int(argv[1]);
289 if( p0type==SQLITE_BLOB ){
290 len = sqlite3_value_bytes(argv[0]);
291 z = sqlite3_value_blob(argv[0]);
292 if( z==0 ) return;
293 assert( len==sqlite3_value_bytes(argv[0]) );
294 }else{
295 z = sqlite3_value_text(argv[0]);
296 if( z==0 ) return;
297 len = 0;
298 if( p1<0 ){
299 for(z2=z; *z2; len++){
300 SQLITE_SKIP_UTF8(z2);
304 #ifdef SQLITE_SUBSTR_COMPATIBILITY
305 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
306 ** as substr(X,1,N) - it returns the first N characters of X. This
307 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
308 ** from 2009-02-02 for compatibility of applications that exploited the
309 ** old buggy behavior. */
310 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
311 #endif
312 if( argc==3 ){
313 p2 = sqlite3_value_int(argv[2]);
314 if( p2<0 ){
315 p2 = -p2;
316 negP2 = 1;
318 }else{
319 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
321 if( p1<0 ){
322 p1 += len;
323 if( p1<0 ){
324 p2 += p1;
325 if( p2<0 ) p2 = 0;
326 p1 = 0;
328 }else if( p1>0 ){
329 p1--;
330 }else if( p2>0 ){
331 p2--;
333 if( negP2 ){
334 p1 -= p2;
335 if( p1<0 ){
336 p2 += p1;
337 p1 = 0;
340 assert( p1>=0 && p2>=0 );
341 if( p0type!=SQLITE_BLOB ){
342 while( *z && p1 ){
343 SQLITE_SKIP_UTF8(z);
344 p1--;
346 for(z2=z; *z2 && p2; p2--){
347 SQLITE_SKIP_UTF8(z2);
349 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
350 SQLITE_UTF8);
351 }else{
352 if( p1+p2>len ){
353 p2 = len-p1;
354 if( p2<0 ) p2 = 0;
356 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
361 ** Implementation of the round() function
363 #ifndef SQLITE_OMIT_FLOATING_POINT
364 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
365 int n = 0;
366 double r;
367 char *zBuf;
368 assert( argc==1 || argc==2 );
369 if( argc==2 ){
370 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
371 n = sqlite3_value_int(argv[1]);
372 if( n>30 ) n = 30;
373 if( n<0 ) n = 0;
375 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
376 r = sqlite3_value_double(argv[0]);
377 /* If Y==0 and X will fit in a 64-bit int,
378 ** handle the rounding directly,
379 ** otherwise use printf.
381 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
382 r = (double)((sqlite_int64)(r+0.5));
383 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
384 r = -(double)((sqlite_int64)((-r)+0.5));
385 }else{
386 zBuf = sqlite3_mprintf("%.*f",n,r);
387 if( zBuf==0 ){
388 sqlite3_result_error_nomem(context);
389 return;
391 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
392 sqlite3_free(zBuf);
394 sqlite3_result_double(context, r);
396 #endif
399 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
400 ** allocation fails, call sqlite3_result_error_nomem() to notify
401 ** the database handle that malloc() has failed and return NULL.
402 ** If nByte is larger than the maximum string or blob length, then
403 ** raise an SQLITE_TOOBIG exception and return NULL.
405 static void *contextMalloc(sqlite3_context *context, i64 nByte){
406 char *z;
407 sqlite3 *db = sqlite3_context_db_handle(context);
408 assert( nByte>0 );
409 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
410 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
411 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
412 sqlite3_result_error_toobig(context);
413 z = 0;
414 }else{
415 z = sqlite3Malloc(nByte);
416 if( !z ){
417 sqlite3_result_error_nomem(context);
420 return z;
424 ** Implementation of the upper() and lower() SQL functions.
426 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
427 char *z1;
428 const char *z2;
429 int i, n;
430 UNUSED_PARAMETER(argc);
431 z2 = (char*)sqlite3_value_text(argv[0]);
432 n = sqlite3_value_bytes(argv[0]);
433 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
434 assert( z2==(char*)sqlite3_value_text(argv[0]) );
435 if( z2 ){
436 z1 = contextMalloc(context, ((i64)n)+1);
437 if( z1 ){
438 for(i=0; i<n; i++){
439 z1[i] = (char)sqlite3Toupper(z2[i]);
441 sqlite3_result_text(context, z1, n, sqlite3_free);
445 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
446 char *z1;
447 const char *z2;
448 int i, n;
449 UNUSED_PARAMETER(argc);
450 z2 = (char*)sqlite3_value_text(argv[0]);
451 n = sqlite3_value_bytes(argv[0]);
452 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
453 assert( z2==(char*)sqlite3_value_text(argv[0]) );
454 if( z2 ){
455 z1 = contextMalloc(context, ((i64)n)+1);
456 if( z1 ){
457 for(i=0; i<n; i++){
458 z1[i] = sqlite3Tolower(z2[i]);
460 sqlite3_result_text(context, z1, n, sqlite3_free);
466 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
467 ** as VDBE code so that unused argument values do not have to be computed.
468 ** However, we still need some kind of function implementation for this
469 ** routines in the function table. The noopFunc macro provides this.
470 ** noopFunc will never be called so it doesn't matter what the implementation
471 ** is. We might as well use the "version()" function as a substitute.
473 #define noopFunc versionFunc /* Substitute function - never called */
476 ** Implementation of random(). Return a random integer.
478 static void randomFunc(
479 sqlite3_context *context,
480 int NotUsed,
481 sqlite3_value **NotUsed2
483 sqlite_int64 r;
484 UNUSED_PARAMETER2(NotUsed, NotUsed2);
485 sqlite3_randomness(sizeof(r), &r);
486 if( r<0 ){
487 /* We need to prevent a random number of 0x8000000000000000
488 ** (or -9223372036854775808) since when you do abs() of that
489 ** number of you get the same value back again. To do this
490 ** in a way that is testable, mask the sign bit off of negative
491 ** values, resulting in a positive value. Then take the
492 ** 2s complement of that positive value. The end result can
493 ** therefore be no less than -9223372036854775807.
495 r = -(r & LARGEST_INT64);
497 sqlite3_result_int64(context, r);
501 ** Implementation of randomblob(N). Return a random blob
502 ** that is N bytes long.
504 static void randomBlob(
505 sqlite3_context *context,
506 int argc,
507 sqlite3_value **argv
509 int n;
510 unsigned char *p;
511 assert( argc==1 );
512 UNUSED_PARAMETER(argc);
513 n = sqlite3_value_int(argv[0]);
514 if( n<1 ){
515 n = 1;
517 p = contextMalloc(context, n);
518 if( p ){
519 sqlite3_randomness(n, p);
520 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
525 ** Implementation of the last_insert_rowid() SQL function. The return
526 ** value is the same as the sqlite3_last_insert_rowid() API function.
528 static void last_insert_rowid(
529 sqlite3_context *context,
530 int NotUsed,
531 sqlite3_value **NotUsed2
533 sqlite3 *db = sqlite3_context_db_handle(context);
534 UNUSED_PARAMETER2(NotUsed, NotUsed2);
535 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
536 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
537 ** function. */
538 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
542 ** Implementation of the changes() SQL function.
544 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
545 ** around the sqlite3_changes() C/C++ function and hence follows the same
546 ** rules for counting changes.
548 static void changes(
549 sqlite3_context *context,
550 int NotUsed,
551 sqlite3_value **NotUsed2
553 sqlite3 *db = sqlite3_context_db_handle(context);
554 UNUSED_PARAMETER2(NotUsed, NotUsed2);
555 sqlite3_result_int(context, sqlite3_changes(db));
559 ** Implementation of the total_changes() SQL function. The return value is
560 ** the same as the sqlite3_total_changes() API function.
562 static void total_changes(
563 sqlite3_context *context,
564 int NotUsed,
565 sqlite3_value **NotUsed2
567 sqlite3 *db = sqlite3_context_db_handle(context);
568 UNUSED_PARAMETER2(NotUsed, NotUsed2);
569 /* IMP: R-52756-41993 This function is a wrapper around the
570 ** sqlite3_total_changes() C/C++ interface. */
571 sqlite3_result_int(context, sqlite3_total_changes(db));
575 ** A structure defining how to do GLOB-style comparisons.
577 struct compareInfo {
578 u8 matchAll; /* "*" or "%" */
579 u8 matchOne; /* "?" or "_" */
580 u8 matchSet; /* "[" or 0 */
581 u8 noCase; /* true to ignore case differences */
585 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
586 ** character is exactly one byte in size. Also, provde the Utf8Read()
587 ** macro for fast reading of the next character in the common case where
588 ** the next character is ASCII.
590 #if defined(SQLITE_EBCDIC)
591 # define sqlite3Utf8Read(A) (*((*A)++))
592 # define Utf8Read(A) (*(A++))
593 #else
594 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
595 #endif
597 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
598 /* The correct SQL-92 behavior is for the LIKE operator to ignore
599 ** case. Thus 'a' LIKE 'A' would be true. */
600 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
601 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
602 ** is case sensitive causing 'a' LIKE 'A' to be false */
603 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
606 ** Possible error returns from patternMatch()
608 #define SQLITE_MATCH 0
609 #define SQLITE_NOMATCH 1
610 #define SQLITE_NOWILDCARDMATCH 2
613 ** Compare two UTF-8 strings for equality where the first string is
614 ** a GLOB or LIKE expression. Return values:
616 ** SQLITE_MATCH: Match
617 ** SQLITE_NOMATCH: No match
618 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
620 ** Globbing rules:
622 ** '*' Matches any sequence of zero or more characters.
624 ** '?' Matches exactly one character.
626 ** [...] Matches one character from the enclosed list of
627 ** characters.
629 ** [^...] Matches one character not in the enclosed list.
631 ** With the [...] and [^...] matching, a ']' character can be included
632 ** in the list by making it the first character after '[' or '^'. A
633 ** range of characters can be specified using '-'. Example:
634 ** "[a-z]" matches any single lower-case letter. To match a '-', make
635 ** it the last character in the list.
637 ** Like matching rules:
639 ** '%' Matches any sequence of zero or more characters
641 *** '_' Matches any one character
643 ** Ec Where E is the "esc" character and c is any other
644 ** character, including '%', '_', and esc, match exactly c.
646 ** The comments within this routine usually assume glob matching.
648 ** This routine is usually quick, but can be N**2 in the worst case.
650 static int patternCompare(
651 const u8 *zPattern, /* The glob pattern */
652 const u8 *zString, /* The string to compare against the glob */
653 const struct compareInfo *pInfo, /* Information about how to do the compare */
654 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
656 u32 c, c2; /* Next pattern and input string chars */
657 u32 matchOne = pInfo->matchOne; /* "?" or "_" */
658 u32 matchAll = pInfo->matchAll; /* "*" or "%" */
659 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
660 const u8 *zEscaped = 0; /* One past the last escaped input char */
662 while( (c = Utf8Read(zPattern))!=0 ){
663 if( c==matchAll ){ /* Match "*" */
664 /* Skip over multiple "*" characters in the pattern. If there
665 ** are also "?" characters, skip those as well, but consume a
666 ** single character of the input string for each "?" skipped */
667 while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
668 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
669 return SQLITE_NOWILDCARDMATCH;
672 if( c==0 ){
673 return SQLITE_MATCH; /* "*" at the end of the pattern matches */
674 }else if( c==matchOther ){
675 if( pInfo->matchSet==0 ){
676 c = sqlite3Utf8Read(&zPattern);
677 if( c==0 ) return SQLITE_NOWILDCARDMATCH;
678 }else{
679 /* "[...]" immediately follows the "*". We have to do a slow
680 ** recursive search in this case, but it is an unusual case. */
681 assert( matchOther<0x80 ); /* '[' is a single-byte character */
682 while( *zString ){
683 int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
684 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
685 SQLITE_SKIP_UTF8(zString);
687 return SQLITE_NOWILDCARDMATCH;
691 /* At this point variable c contains the first character of the
692 ** pattern string past the "*". Search in the input string for the
693 ** first matching character and recursively continue the match from
694 ** that point.
696 ** For a case-insensitive search, set variable cx to be the same as
697 ** c but in the other case and search the input string for either
698 ** c or cx.
700 if( c<=0x80 ){
701 char zStop[3];
702 int bMatch;
703 if( noCase ){
704 zStop[0] = sqlite3Toupper(c);
705 zStop[1] = sqlite3Tolower(c);
706 zStop[2] = 0;
707 }else{
708 zStop[0] = c;
709 zStop[1] = 0;
711 while(1){
712 zString += strcspn((const char*)zString, zStop);
713 if( zString[0]==0 ) break;
714 zString++;
715 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
716 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
718 }else{
719 int bMatch;
720 while( (c2 = Utf8Read(zString))!=0 ){
721 if( c2!=c ) continue;
722 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
723 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
726 return SQLITE_NOWILDCARDMATCH;
728 if( c==matchOther ){
729 if( pInfo->matchSet==0 ){
730 c = sqlite3Utf8Read(&zPattern);
731 if( c==0 ) return SQLITE_NOMATCH;
732 zEscaped = zPattern;
733 }else{
734 u32 prior_c = 0;
735 int seen = 0;
736 int invert = 0;
737 c = sqlite3Utf8Read(&zString);
738 if( c==0 ) return SQLITE_NOMATCH;
739 c2 = sqlite3Utf8Read(&zPattern);
740 if( c2=='^' ){
741 invert = 1;
742 c2 = sqlite3Utf8Read(&zPattern);
744 if( c2==']' ){
745 if( c==']' ) seen = 1;
746 c2 = sqlite3Utf8Read(&zPattern);
748 while( c2 && c2!=']' ){
749 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
750 c2 = sqlite3Utf8Read(&zPattern);
751 if( c>=prior_c && c<=c2 ) seen = 1;
752 prior_c = 0;
753 }else{
754 if( c==c2 ){
755 seen = 1;
757 prior_c = c2;
759 c2 = sqlite3Utf8Read(&zPattern);
761 if( c2==0 || (seen ^ invert)==0 ){
762 return SQLITE_NOMATCH;
764 continue;
767 c2 = Utf8Read(zString);
768 if( c==c2 ) continue;
769 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
770 continue;
772 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
773 return SQLITE_NOMATCH;
775 return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
779 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
780 ** non-zero if there is no match.
782 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
783 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
787 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
788 ** a miss - like strcmp().
790 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
791 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
795 ** Count the number of times that the LIKE operator (or GLOB which is
796 ** just a variation of LIKE) gets called. This is used for testing
797 ** only.
799 #ifdef SQLITE_TEST
800 int sqlite3_like_count = 0;
801 #endif
805 ** Implementation of the like() SQL function. This function implements
806 ** the build-in LIKE operator. The first argument to the function is the
807 ** pattern and the second argument is the string. So, the SQL statements:
809 ** A LIKE B
811 ** is implemented as like(B,A).
813 ** This same function (with a different compareInfo structure) computes
814 ** the GLOB operator.
816 static void likeFunc(
817 sqlite3_context *context,
818 int argc,
819 sqlite3_value **argv
821 const unsigned char *zA, *zB;
822 u32 escape;
823 int nPat;
824 sqlite3 *db = sqlite3_context_db_handle(context);
825 struct compareInfo *pInfo = sqlite3_user_data(context);
827 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
828 if( sqlite3_value_type(argv[0])==SQLITE_BLOB
829 || sqlite3_value_type(argv[1])==SQLITE_BLOB
831 #ifdef SQLITE_TEST
832 sqlite3_like_count++;
833 #endif
834 sqlite3_result_int(context, 0);
835 return;
837 #endif
838 zB = sqlite3_value_text(argv[0]);
839 zA = sqlite3_value_text(argv[1]);
841 /* Limit the length of the LIKE or GLOB pattern to avoid problems
842 ** of deep recursion and N*N behavior in patternCompare().
844 nPat = sqlite3_value_bytes(argv[0]);
845 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
846 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
847 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
848 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
849 return;
851 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
853 if( argc==3 ){
854 /* The escape character string must consist of a single UTF-8 character.
855 ** Otherwise, return an error.
857 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
858 if( zEsc==0 ) return;
859 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
860 sqlite3_result_error(context,
861 "ESCAPE expression must be a single character", -1);
862 return;
864 escape = sqlite3Utf8Read(&zEsc);
865 }else{
866 escape = pInfo->matchSet;
868 if( zA && zB ){
869 #ifdef SQLITE_TEST
870 sqlite3_like_count++;
871 #endif
872 sqlite3_result_int(context,
873 patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
878 ** Implementation of the NULLIF(x,y) function. The result is the first
879 ** argument if the arguments are different. The result is NULL if the
880 ** arguments are equal to each other.
882 static void nullifFunc(
883 sqlite3_context *context,
884 int NotUsed,
885 sqlite3_value **argv
887 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
888 UNUSED_PARAMETER(NotUsed);
889 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
890 sqlite3_result_value(context, argv[0]);
895 ** Implementation of the sqlite_version() function. The result is the version
896 ** of the SQLite library that is running.
898 static void versionFunc(
899 sqlite3_context *context,
900 int NotUsed,
901 sqlite3_value **NotUsed2
903 UNUSED_PARAMETER2(NotUsed, NotUsed2);
904 /* IMP: R-48699-48617 This function is an SQL wrapper around the
905 ** sqlite3_libversion() C-interface. */
906 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
910 ** Implementation of the sqlite_source_id() function. The result is a string
911 ** that identifies the particular version of the source code used to build
912 ** SQLite.
914 static void sourceidFunc(
915 sqlite3_context *context,
916 int NotUsed,
917 sqlite3_value **NotUsed2
919 UNUSED_PARAMETER2(NotUsed, NotUsed2);
920 /* IMP: R-24470-31136 This function is an SQL wrapper around the
921 ** sqlite3_sourceid() C interface. */
922 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
926 ** Implementation of the sqlite_log() function. This is a wrapper around
927 ** sqlite3_log(). The return value is NULL. The function exists purely for
928 ** its side-effects.
930 static void errlogFunc(
931 sqlite3_context *context,
932 int argc,
933 sqlite3_value **argv
935 UNUSED_PARAMETER(argc);
936 UNUSED_PARAMETER(context);
937 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
941 ** Implementation of the sqlite_compileoption_used() function.
942 ** The result is an integer that identifies if the compiler option
943 ** was used to build SQLite.
945 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
946 static void compileoptionusedFunc(
947 sqlite3_context *context,
948 int argc,
949 sqlite3_value **argv
951 const char *zOptName;
952 assert( argc==1 );
953 UNUSED_PARAMETER(argc);
954 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
955 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
956 ** function.
958 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
959 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
962 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
965 ** Implementation of the sqlite_compileoption_get() function.
966 ** The result is a string that identifies the compiler options
967 ** used to build SQLite.
969 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
970 static void compileoptiongetFunc(
971 sqlite3_context *context,
972 int argc,
973 sqlite3_value **argv
975 int n;
976 assert( argc==1 );
977 UNUSED_PARAMETER(argc);
978 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
979 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
981 n = sqlite3_value_int(argv[0]);
982 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
984 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
986 /* Array for converting from half-bytes (nybbles) into ASCII hex
987 ** digits. */
988 static const char hexdigits[] = {
989 '0', '1', '2', '3', '4', '5', '6', '7',
990 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
994 ** Implementation of the QUOTE() function. This function takes a single
995 ** argument. If the argument is numeric, the return value is the same as
996 ** the argument. If the argument is NULL, the return value is the string
997 ** "NULL". Otherwise, the argument is enclosed in single quotes with
998 ** single-quote escapes.
1000 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
1001 assert( argc==1 );
1002 UNUSED_PARAMETER(argc);
1003 switch( sqlite3_value_type(argv[0]) ){
1004 case SQLITE_FLOAT: {
1005 double r1, r2;
1006 char zBuf[50];
1007 r1 = sqlite3_value_double(argv[0]);
1008 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
1009 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
1010 if( r1!=r2 ){
1011 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
1013 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1014 break;
1016 case SQLITE_INTEGER: {
1017 sqlite3_result_value(context, argv[0]);
1018 break;
1020 case SQLITE_BLOB: {
1021 char *zText = 0;
1022 char const *zBlob = sqlite3_value_blob(argv[0]);
1023 int nBlob = sqlite3_value_bytes(argv[0]);
1024 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1025 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
1026 if( zText ){
1027 int i;
1028 for(i=0; i<nBlob; i++){
1029 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1030 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1032 zText[(nBlob*2)+2] = '\'';
1033 zText[(nBlob*2)+3] = '\0';
1034 zText[0] = 'X';
1035 zText[1] = '\'';
1036 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
1037 sqlite3_free(zText);
1039 break;
1041 case SQLITE_TEXT: {
1042 int i,j;
1043 u64 n;
1044 const unsigned char *zArg = sqlite3_value_text(argv[0]);
1045 char *z;
1047 if( zArg==0 ) return;
1048 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1049 z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1050 if( z ){
1051 z[0] = '\'';
1052 for(i=0, j=1; zArg[i]; i++){
1053 z[j++] = zArg[i];
1054 if( zArg[i]=='\'' ){
1055 z[j++] = '\'';
1058 z[j++] = '\'';
1059 z[j] = 0;
1060 sqlite3_result_text(context, z, j, sqlite3_free);
1062 break;
1064 default: {
1065 assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1066 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1067 break;
1073 ** The unicode() function. Return the integer unicode code-point value
1074 ** for the first character of the input string.
1076 static void unicodeFunc(
1077 sqlite3_context *context,
1078 int argc,
1079 sqlite3_value **argv
1081 const unsigned char *z = sqlite3_value_text(argv[0]);
1082 (void)argc;
1083 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1087 ** The char() function takes zero or more arguments, each of which is
1088 ** an integer. It constructs a string where each character of the string
1089 ** is the unicode character for the corresponding integer argument.
1091 static void charFunc(
1092 sqlite3_context *context,
1093 int argc,
1094 sqlite3_value **argv
1096 unsigned char *z, *zOut;
1097 int i;
1098 zOut = z = sqlite3_malloc64( argc*4+1 );
1099 if( z==0 ){
1100 sqlite3_result_error_nomem(context);
1101 return;
1103 for(i=0; i<argc; i++){
1104 sqlite3_int64 x;
1105 unsigned c;
1106 x = sqlite3_value_int64(argv[i]);
1107 if( x<0 || x>0x10ffff ) x = 0xfffd;
1108 c = (unsigned)(x & 0x1fffff);
1109 if( c<0x00080 ){
1110 *zOut++ = (u8)(c&0xFF);
1111 }else if( c<0x00800 ){
1112 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1113 *zOut++ = 0x80 + (u8)(c & 0x3F);
1114 }else if( c<0x10000 ){
1115 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1116 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1117 *zOut++ = 0x80 + (u8)(c & 0x3F);
1118 }else{
1119 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1120 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1121 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1122 *zOut++ = 0x80 + (u8)(c & 0x3F);
1125 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1129 ** The hex() function. Interpret the argument as a blob. Return
1130 ** a hexadecimal rendering as text.
1132 static void hexFunc(
1133 sqlite3_context *context,
1134 int argc,
1135 sqlite3_value **argv
1137 int i, n;
1138 const unsigned char *pBlob;
1139 char *zHex, *z;
1140 assert( argc==1 );
1141 UNUSED_PARAMETER(argc);
1142 pBlob = sqlite3_value_blob(argv[0]);
1143 n = sqlite3_value_bytes(argv[0]);
1144 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1145 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1146 if( zHex ){
1147 for(i=0; i<n; i++, pBlob++){
1148 unsigned char c = *pBlob;
1149 *(z++) = hexdigits[(c>>4)&0xf];
1150 *(z++) = hexdigits[c&0xf];
1152 *z = 0;
1153 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1158 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1160 static void zeroblobFunc(
1161 sqlite3_context *context,
1162 int argc,
1163 sqlite3_value **argv
1165 i64 n;
1166 int rc;
1167 assert( argc==1 );
1168 UNUSED_PARAMETER(argc);
1169 n = sqlite3_value_int64(argv[0]);
1170 if( n<0 ) n = 0;
1171 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1172 if( rc ){
1173 sqlite3_result_error_code(context, rc);
1178 ** The replace() function. Three arguments are all strings: call
1179 ** them A, B, and C. The result is also a string which is derived
1180 ** from A by replacing every occurrence of B with C. The match
1181 ** must be exact. Collating sequences are not used.
1183 static void replaceFunc(
1184 sqlite3_context *context,
1185 int argc,
1186 sqlite3_value **argv
1188 const unsigned char *zStr; /* The input string A */
1189 const unsigned char *zPattern; /* The pattern string B */
1190 const unsigned char *zRep; /* The replacement string C */
1191 unsigned char *zOut; /* The output */
1192 int nStr; /* Size of zStr */
1193 int nPattern; /* Size of zPattern */
1194 int nRep; /* Size of zRep */
1195 i64 nOut; /* Maximum size of zOut */
1196 int loopLimit; /* Last zStr[] that might match zPattern[] */
1197 int i, j; /* Loop counters */
1199 assert( argc==3 );
1200 UNUSED_PARAMETER(argc);
1201 zStr = sqlite3_value_text(argv[0]);
1202 if( zStr==0 ) return;
1203 nStr = sqlite3_value_bytes(argv[0]);
1204 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
1205 zPattern = sqlite3_value_text(argv[1]);
1206 if( zPattern==0 ){
1207 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1208 || sqlite3_context_db_handle(context)->mallocFailed );
1209 return;
1211 if( zPattern[0]==0 ){
1212 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1213 sqlite3_result_value(context, argv[0]);
1214 return;
1216 nPattern = sqlite3_value_bytes(argv[1]);
1217 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
1218 zRep = sqlite3_value_text(argv[2]);
1219 if( zRep==0 ) return;
1220 nRep = sqlite3_value_bytes(argv[2]);
1221 assert( zRep==sqlite3_value_text(argv[2]) );
1222 nOut = nStr + 1;
1223 assert( nOut<SQLITE_MAX_LENGTH );
1224 zOut = contextMalloc(context, (i64)nOut);
1225 if( zOut==0 ){
1226 return;
1228 loopLimit = nStr - nPattern;
1229 for(i=j=0; i<=loopLimit; i++){
1230 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1231 zOut[j++] = zStr[i];
1232 }else{
1233 u8 *zOld;
1234 sqlite3 *db = sqlite3_context_db_handle(context);
1235 nOut += nRep - nPattern;
1236 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1237 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1238 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1239 sqlite3_result_error_toobig(context);
1240 sqlite3_free(zOut);
1241 return;
1243 zOld = zOut;
1244 zOut = sqlite3_realloc64(zOut, (int)nOut);
1245 if( zOut==0 ){
1246 sqlite3_result_error_nomem(context);
1247 sqlite3_free(zOld);
1248 return;
1250 memcpy(&zOut[j], zRep, nRep);
1251 j += nRep;
1252 i += nPattern-1;
1255 assert( j+nStr-i+1==nOut );
1256 memcpy(&zOut[j], &zStr[i], nStr-i);
1257 j += nStr - i;
1258 assert( j<=nOut );
1259 zOut[j] = 0;
1260 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1264 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1265 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1267 static void trimFunc(
1268 sqlite3_context *context,
1269 int argc,
1270 sqlite3_value **argv
1272 const unsigned char *zIn; /* Input string */
1273 const unsigned char *zCharSet; /* Set of characters to trim */
1274 int nIn; /* Number of bytes in input */
1275 int flags; /* 1: trimleft 2: trimright 3: trim */
1276 int i; /* Loop counter */
1277 unsigned char *aLen = 0; /* Length of each character in zCharSet */
1278 unsigned char **azChar = 0; /* Individual characters in zCharSet */
1279 int nChar; /* Number of characters in zCharSet */
1281 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1282 return;
1284 zIn = sqlite3_value_text(argv[0]);
1285 if( zIn==0 ) return;
1286 nIn = sqlite3_value_bytes(argv[0]);
1287 assert( zIn==sqlite3_value_text(argv[0]) );
1288 if( argc==1 ){
1289 static const unsigned char lenOne[] = { 1 };
1290 static unsigned char * const azOne[] = { (u8*)" " };
1291 nChar = 1;
1292 aLen = (u8*)lenOne;
1293 azChar = (unsigned char **)azOne;
1294 zCharSet = 0;
1295 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1296 return;
1297 }else{
1298 const unsigned char *z;
1299 for(z=zCharSet, nChar=0; *z; nChar++){
1300 SQLITE_SKIP_UTF8(z);
1302 if( nChar>0 ){
1303 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1304 if( azChar==0 ){
1305 return;
1307 aLen = (unsigned char*)&azChar[nChar];
1308 for(z=zCharSet, nChar=0; *z; nChar++){
1309 azChar[nChar] = (unsigned char *)z;
1310 SQLITE_SKIP_UTF8(z);
1311 aLen[nChar] = (u8)(z - azChar[nChar]);
1315 if( nChar>0 ){
1316 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1317 if( flags & 1 ){
1318 while( nIn>0 ){
1319 int len = 0;
1320 for(i=0; i<nChar; i++){
1321 len = aLen[i];
1322 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1324 if( i>=nChar ) break;
1325 zIn += len;
1326 nIn -= len;
1329 if( flags & 2 ){
1330 while( nIn>0 ){
1331 int len = 0;
1332 for(i=0; i<nChar; i++){
1333 len = aLen[i];
1334 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1336 if( i>=nChar ) break;
1337 nIn -= len;
1340 if( zCharSet ){
1341 sqlite3_free(azChar);
1344 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1348 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1350 ** The "unknown" function is automatically substituted in place of
1351 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
1352 ** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used.
1353 ** When the "sqlite3" command-line shell is built using this functionality,
1354 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
1355 ** involving application-defined functions to be examined in a generic
1356 ** sqlite3 shell.
1358 static void unknownFunc(
1359 sqlite3_context *context,
1360 int argc,
1361 sqlite3_value **argv
1363 /* no-op */
1365 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
1368 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1369 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1370 ** when SQLite is built.
1372 #ifdef SQLITE_SOUNDEX
1374 ** Compute the soundex encoding of a word.
1376 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1377 ** soundex encoding of the string X.
1379 static void soundexFunc(
1380 sqlite3_context *context,
1381 int argc,
1382 sqlite3_value **argv
1384 char zResult[8];
1385 const u8 *zIn;
1386 int i, j;
1387 static const unsigned char iCode[] = {
1388 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1389 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1390 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1391 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1392 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1393 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1394 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1395 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1397 assert( argc==1 );
1398 zIn = (u8*)sqlite3_value_text(argv[0]);
1399 if( zIn==0 ) zIn = (u8*)"";
1400 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1401 if( zIn[i] ){
1402 u8 prevcode = iCode[zIn[i]&0x7f];
1403 zResult[0] = sqlite3Toupper(zIn[i]);
1404 for(j=1; j<4 && zIn[i]; i++){
1405 int code = iCode[zIn[i]&0x7f];
1406 if( code>0 ){
1407 if( code!=prevcode ){
1408 prevcode = code;
1409 zResult[j++] = code + '0';
1411 }else{
1412 prevcode = 0;
1415 while( j<4 ){
1416 zResult[j++] = '0';
1418 zResult[j] = 0;
1419 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1420 }else{
1421 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1422 ** is NULL or contains no ASCII alphabetic characters. */
1423 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1426 #endif /* SQLITE_SOUNDEX */
1428 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1430 ** A function that loads a shared-library extension then returns NULL.
1432 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1433 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1434 const char *zProc;
1435 sqlite3 *db = sqlite3_context_db_handle(context);
1436 char *zErrMsg = 0;
1438 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
1439 ** flag is set. See the sqlite3_enable_load_extension() API.
1441 if( (db->flags & SQLITE_LoadExtFunc)==0 ){
1442 sqlite3_result_error(context, "not authorized", -1);
1443 return;
1446 if( argc==2 ){
1447 zProc = (const char *)sqlite3_value_text(argv[1]);
1448 }else{
1449 zProc = 0;
1451 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1452 sqlite3_result_error(context, zErrMsg, -1);
1453 sqlite3_free(zErrMsg);
1456 #endif
1460 ** An instance of the following structure holds the context of a
1461 ** sum() or avg() aggregate computation.
1463 typedef struct SumCtx SumCtx;
1464 struct SumCtx {
1465 double rSum; /* Floating point sum */
1466 i64 iSum; /* Integer sum */
1467 i64 cnt; /* Number of elements summed */
1468 u8 overflow; /* True if integer overflow seen */
1469 u8 approx; /* True if non-integer value was input to the sum */
1473 ** Routines used to compute the sum, average, and total.
1475 ** The SUM() function follows the (broken) SQL standard which means
1476 ** that it returns NULL if it sums over no inputs. TOTAL returns
1477 ** 0.0 in that case. In addition, TOTAL always returns a float where
1478 ** SUM might return an integer if it never encounters a floating point
1479 ** value. TOTAL never fails, but SUM might through an exception if
1480 ** it overflows an integer.
1482 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1483 SumCtx *p;
1484 int type;
1485 assert( argc==1 );
1486 UNUSED_PARAMETER(argc);
1487 p = sqlite3_aggregate_context(context, sizeof(*p));
1488 type = sqlite3_value_numeric_type(argv[0]);
1489 if( p && type!=SQLITE_NULL ){
1490 p->cnt++;
1491 if( type==SQLITE_INTEGER ){
1492 i64 v = sqlite3_value_int64(argv[0]);
1493 p->rSum += v;
1494 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1495 p->overflow = 1;
1497 }else{
1498 p->rSum += sqlite3_value_double(argv[0]);
1499 p->approx = 1;
1503 static void sumFinalize(sqlite3_context *context){
1504 SumCtx *p;
1505 p = sqlite3_aggregate_context(context, 0);
1506 if( p && p->cnt>0 ){
1507 if( p->overflow ){
1508 sqlite3_result_error(context,"integer overflow",-1);
1509 }else if( p->approx ){
1510 sqlite3_result_double(context, p->rSum);
1511 }else{
1512 sqlite3_result_int64(context, p->iSum);
1516 static void avgFinalize(sqlite3_context *context){
1517 SumCtx *p;
1518 p = sqlite3_aggregate_context(context, 0);
1519 if( p && p->cnt>0 ){
1520 sqlite3_result_double(context, p->rSum/(double)p->cnt);
1523 static void totalFinalize(sqlite3_context *context){
1524 SumCtx *p;
1525 p = sqlite3_aggregate_context(context, 0);
1526 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1527 sqlite3_result_double(context, p ? p->rSum : (double)0);
1531 ** The following structure keeps track of state information for the
1532 ** count() aggregate function.
1534 typedef struct CountCtx CountCtx;
1535 struct CountCtx {
1536 i64 n;
1540 ** Routines to implement the count() aggregate function.
1542 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1543 CountCtx *p;
1544 p = sqlite3_aggregate_context(context, sizeof(*p));
1545 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1546 p->n++;
1549 #ifndef SQLITE_OMIT_DEPRECATED
1550 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1551 ** sure it still operates correctly, verify that its count agrees with our
1552 ** internal count when using count(*) and when the total count can be
1553 ** expressed as a 32-bit integer. */
1554 assert( argc==1 || p==0 || p->n>0x7fffffff
1555 || p->n==sqlite3_aggregate_count(context) );
1556 #endif
1558 static void countFinalize(sqlite3_context *context){
1559 CountCtx *p;
1560 p = sqlite3_aggregate_context(context, 0);
1561 sqlite3_result_int64(context, p ? p->n : 0);
1565 ** Routines to implement min() and max() aggregate functions.
1567 static void minmaxStep(
1568 sqlite3_context *context,
1569 int NotUsed,
1570 sqlite3_value **argv
1572 Mem *pArg = (Mem *)argv[0];
1573 Mem *pBest;
1574 UNUSED_PARAMETER(NotUsed);
1576 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1577 if( !pBest ) return;
1579 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1580 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1581 }else if( pBest->flags ){
1582 int max;
1583 int cmp;
1584 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1585 /* This step function is used for both the min() and max() aggregates,
1586 ** the only difference between the two being that the sense of the
1587 ** comparison is inverted. For the max() aggregate, the
1588 ** sqlite3_user_data() function returns (void *)-1. For min() it
1589 ** returns (void *)db, where db is the sqlite3* database pointer.
1590 ** Therefore the next statement sets variable 'max' to 1 for the max()
1591 ** aggregate, or 0 for min().
1593 max = sqlite3_user_data(context)!=0;
1594 cmp = sqlite3MemCompare(pBest, pArg, pColl);
1595 if( (max && cmp<0) || (!max && cmp>0) ){
1596 sqlite3VdbeMemCopy(pBest, pArg);
1597 }else{
1598 sqlite3SkipAccumulatorLoad(context);
1600 }else{
1601 pBest->db = sqlite3_context_db_handle(context);
1602 sqlite3VdbeMemCopy(pBest, pArg);
1605 static void minMaxFinalize(sqlite3_context *context){
1606 sqlite3_value *pRes;
1607 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1608 if( pRes ){
1609 if( pRes->flags ){
1610 sqlite3_result_value(context, pRes);
1612 sqlite3VdbeMemRelease(pRes);
1617 ** group_concat(EXPR, ?SEPARATOR?)
1619 static void groupConcatStep(
1620 sqlite3_context *context,
1621 int argc,
1622 sqlite3_value **argv
1624 const char *zVal;
1625 StrAccum *pAccum;
1626 const char *zSep;
1627 int nVal, nSep;
1628 assert( argc==1 || argc==2 );
1629 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1630 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1632 if( pAccum ){
1633 sqlite3 *db = sqlite3_context_db_handle(context);
1634 int firstTerm = pAccum->mxAlloc==0;
1635 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1636 if( !firstTerm ){
1637 if( argc==2 ){
1638 zSep = (char*)sqlite3_value_text(argv[1]);
1639 nSep = sqlite3_value_bytes(argv[1]);
1640 }else{
1641 zSep = ",";
1642 nSep = 1;
1644 if( zSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
1646 zVal = (char*)sqlite3_value_text(argv[0]);
1647 nVal = sqlite3_value_bytes(argv[0]);
1648 if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
1651 static void groupConcatFinalize(sqlite3_context *context){
1652 StrAccum *pAccum;
1653 pAccum = sqlite3_aggregate_context(context, 0);
1654 if( pAccum ){
1655 if( pAccum->accError==STRACCUM_TOOBIG ){
1656 sqlite3_result_error_toobig(context);
1657 }else if( pAccum->accError==STRACCUM_NOMEM ){
1658 sqlite3_result_error_nomem(context);
1659 }else{
1660 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1661 sqlite3_free);
1667 ** This routine does per-connection function registration. Most
1668 ** of the built-in functions above are part of the global function set.
1669 ** This routine only deals with those that are not global.
1671 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
1672 int rc = sqlite3_overload_function(db, "MATCH", 2);
1673 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1674 if( rc==SQLITE_NOMEM ){
1675 sqlite3OomFault(db);
1680 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1682 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1683 FuncDef *pDef;
1684 pDef = sqlite3FindFunction(db, zName, 2, SQLITE_UTF8, 0);
1685 if( ALWAYS(pDef) ){
1686 pDef->funcFlags |= flagVal;
1691 ** Register the built-in LIKE and GLOB functions. The caseSensitive
1692 ** parameter determines whether or not the LIKE operator is case
1693 ** sensitive. GLOB is always case sensitive.
1695 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1696 struct compareInfo *pInfo;
1697 if( caseSensitive ){
1698 pInfo = (struct compareInfo*)&likeInfoAlt;
1699 }else{
1700 pInfo = (struct compareInfo*)&likeInfoNorm;
1702 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1703 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1704 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1705 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1706 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1707 setLikeOptFlag(db, "like",
1708 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1712 ** pExpr points to an expression which implements a function. If
1713 ** it is appropriate to apply the LIKE optimization to that function
1714 ** then set aWc[0] through aWc[2] to the wildcard characters and the
1715 ** escape character and then return TRUE. If the function is not a
1716 ** LIKE-style function then return FALSE.
1718 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
1719 ** operator if c is a string literal that is exactly one byte in length.
1720 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
1721 ** no ESCAPE clause.
1723 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1724 ** the function (default for LIKE). If the function makes the distinction
1725 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1726 ** false.
1728 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1729 FuncDef *pDef;
1730 int nExpr;
1731 if( pExpr->op!=TK_FUNCTION || !pExpr->x.pList ){
1732 return 0;
1734 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1735 nExpr = pExpr->x.pList->nExpr;
1736 pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
1737 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1738 return 0;
1740 if( nExpr<3 ){
1741 aWc[3] = 0;
1742 }else{
1743 Expr *pEscape = pExpr->x.pList->a[2].pExpr;
1744 char *zEscape;
1745 if( pEscape->op!=TK_STRING ) return 0;
1746 zEscape = pEscape->u.zToken;
1747 if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
1748 aWc[3] = zEscape[0];
1751 /* The memcpy() statement assumes that the wildcard characters are
1752 ** the first three statements in the compareInfo structure. The
1753 ** asserts() that follow verify that assumption
1755 memcpy(aWc, pDef->pUserData, 3);
1756 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1757 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1758 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1759 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1760 return 1;
1764 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1765 ** to the global function hash table. This occurs at start-time (as
1766 ** a consequence of calling sqlite3_initialize()).
1768 ** After this routine runs
1770 void sqlite3RegisterBuiltinFunctions(void){
1772 ** The following array holds FuncDef structures for all of the functions
1773 ** defined in this file.
1775 ** The array cannot be constant since changes are made to the
1776 ** FuncDef.pHash elements at start-time. The elements of this array
1777 ** are read-only after initialization is complete.
1779 ** For peak efficiency, put the most frequently used function last.
1781 static FuncDef aBuiltinFunc[] = {
1782 #ifdef SQLITE_SOUNDEX
1783 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
1784 #endif
1785 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1786 VFUNCTION(load_extension, 1, 0, 0, loadExt ),
1787 VFUNCTION(load_extension, 2, 0, 0, loadExt ),
1788 #endif
1789 #if SQLITE_USER_AUTHENTICATION
1790 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
1791 #endif
1792 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1793 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
1794 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
1795 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1796 FUNCTION2(unlikely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY),
1797 FUNCTION2(likelihood, 2, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY),
1798 FUNCTION2(likely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY),
1799 #ifdef SQLITE_DEBUG
1800 FUNCTION2(affinity, 1, 0, 0, noopFunc, SQLITE_FUNC_AFFINITY),
1801 #endif
1802 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
1803 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
1804 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
1805 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
1806 FUNCTION(trim, 1, 3, 0, trimFunc ),
1807 FUNCTION(trim, 2, 3, 0, trimFunc ),
1808 FUNCTION(min, -1, 0, 1, minmaxFunc ),
1809 FUNCTION(min, 0, 0, 1, 0 ),
1810 AGGREGATE2(min, 1, 0, 1, minmaxStep, minMaxFinalize,
1811 SQLITE_FUNC_MINMAX ),
1812 FUNCTION(max, -1, 1, 1, minmaxFunc ),
1813 FUNCTION(max, 0, 1, 1, 0 ),
1814 AGGREGATE2(max, 1, 1, 1, minmaxStep, minMaxFinalize,
1815 SQLITE_FUNC_MINMAX ),
1816 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
1817 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
1818 FUNCTION(instr, 2, 0, 0, instrFunc ),
1819 FUNCTION(printf, -1, 0, 0, printfFunc ),
1820 FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
1821 FUNCTION(char, -1, 0, 0, charFunc ),
1822 FUNCTION(abs, 1, 0, 0, absFunc ),
1823 #ifndef SQLITE_OMIT_FLOATING_POINT
1824 FUNCTION(round, 1, 0, 0, roundFunc ),
1825 FUNCTION(round, 2, 0, 0, roundFunc ),
1826 #endif
1827 FUNCTION(upper, 1, 0, 0, upperFunc ),
1828 FUNCTION(lower, 1, 0, 0, lowerFunc ),
1829 FUNCTION(hex, 1, 0, 0, hexFunc ),
1830 FUNCTION2(ifnull, 2, 0, 0, noopFunc, SQLITE_FUNC_COALESCE),
1831 VFUNCTION(random, 0, 0, 0, randomFunc ),
1832 VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
1833 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
1834 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
1835 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
1836 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
1837 FUNCTION(quote, 1, 0, 0, quoteFunc ),
1838 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1839 VFUNCTION(changes, 0, 0, 0, changes ),
1840 VFUNCTION(total_changes, 0, 0, 0, total_changes ),
1841 FUNCTION(replace, 3, 0, 0, replaceFunc ),
1842 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
1843 FUNCTION(substr, 2, 0, 0, substrFunc ),
1844 FUNCTION(substr, 3, 0, 0, substrFunc ),
1845 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
1846 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
1847 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
1848 AGGREGATE2(count, 0, 0, 0, countStep, countFinalize,
1849 SQLITE_FUNC_COUNT ),
1850 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
1851 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize),
1852 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize),
1854 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1855 #ifdef SQLITE_CASE_SENSITIVE_LIKE
1856 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1857 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1858 #else
1859 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1860 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1861 #endif
1862 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1863 FUNCTION(unknown, -1, 0, 0, unknownFunc ),
1864 #endif
1865 FUNCTION(coalesce, 1, 0, 0, 0 ),
1866 FUNCTION(coalesce, 0, 0, 0, 0 ),
1867 FUNCTION2(coalesce, -1, 0, 0, noopFunc, SQLITE_FUNC_COALESCE),
1869 #ifndef SQLITE_OMIT_ALTERTABLE
1870 sqlite3AlterFunctions();
1871 #endif
1872 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
1873 sqlite3AnalyzeFunctions();
1874 #endif
1875 sqlite3RegisterDateTimeFunctions();
1876 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
1878 #if 0 /* Enable to print out how the built-in functions are hashed */
1880 int i;
1881 FuncDef *p;
1882 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1883 printf("FUNC-HASH %02d:", i);
1884 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
1885 int n = sqlite3Strlen30(p->zName);
1886 int h = p->zName[0] + n;
1887 printf(" %s(%d)", p->zName, h);
1889 printf("\n");
1892 #endif