Fix harmless compiler warnings.
[sqlite.git] / src / wal.c
blob19c9ea0a08089091f7995443ce0b4aef74011cf9
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file. All changes to the database are recorded by writing
21 ** frames into the WAL. Transactions commit when a frame is written that
22 ** contains a commit marker. A single WAL can and usually does record
23 ** multiple transactions. Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
27 ** A single WAL file can be used multiple times. In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones. A WAL always grows from beginning
30 ** toward the end. Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
37 ** 0: Magic number. 0x377f0682 or 0x377f0683
38 ** 4: File format version. Currently 3007000
39 ** 8: Database page size. Example: 1024
40 ** 12: Checkpoint sequence number
41 ** 16: Salt-1, random integer incremented with each checkpoint
42 ** 20: Salt-2, a different random integer changing with each ckpt
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
51 ** 0: Page number.
52 ** 4: For commit records, the size of the database image in pages
53 ** after the commit. For all other records, zero.
54 ** 8: Salt-1 (copied from the header)
55 ** 12: Salt-2 (copied from the header)
56 ** 16: Checksum-1.
57 ** 20: Checksum-2.
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
62 ** (1) The salt-1 and salt-2 values in the frame-header match
63 ** salt values in the wal-header
65 ** (2) The checksum values in the final 8 bytes of the frame-header
66 ** exactly match the checksum computed consecutively on the
67 ** WAL header and the first 8 bytes and the content of all frames
68 ** up to and including the current frame.
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum. The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
77 ** algorithm used for the checksum is as follows:
78 **
79 ** for i from 0 to n-1 step 2:
80 ** s0 += x[i] + s1;
81 ** s1 += x[i+1] + s0;
82 ** endfor
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.) The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized. This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
100 ** READER ALGORITHM
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P. If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read. If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations. New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time. This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames. If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers. To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
127 ** WAL-INDEX FORMAT
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file. Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem. All users of the database must be able to
133 ** share memory.
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added. For that
137 ** reason, the wal-index is sometimes called the "shm" file.
139 ** The wal-index is transient. After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file. In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes. Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
148 ** The purpose of the wal-index is to answer this question quickly: Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning. The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full. The expected number of collisions
193 ** prior to finding a match is 1. Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block. Let K be the 1-based index of the largest entry in
196 ** the mapping section. (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
199 ** contain a value of 0.
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
204 ** iKey = (P * 383) % HASHTABLE_NSLOT
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused. (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry. Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block. Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P. On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block. Each index block
224 ** holds over 4000 entries. So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL. This
228 ** is much faster than scanning the entire 10MB WAL.
230 ** Note that entries are added in order of increasing K. Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result. There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants. Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
247 #ifndef SQLITE_OMIT_WAL
249 #include "wal.h"
252 ** Trace output macros
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
274 #define WAL_MAX_VERSION 3007000
275 #define WALINDEX_MAX_VERSION 3007000
278 ** Index numbers for various locking bytes. WAL_NREADER is the number
279 ** of available reader locks and should be at least 3. The default
280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit. However, compatibility is encouraged so that VFSes can
284 ** interoperate. The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
291 #define WAL_WRITE_LOCK 0
292 #define WAL_ALL_BUT_WRITE 1
293 #define WAL_CKPT_LOCK 1
294 #define WAL_RECOVER_LOCK 2
295 #define WAL_READ_LOCK(I) (3+(I))
296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
306 ** The following object holds a copy of the wal-index header content.
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page. The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
318 struct WalIndexHdr {
319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
321 u32 iChange; /* Counter incremented each transaction */
322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
324 u16 szPage; /* Database page size in bytes. 1==64K */
325 u32 mxFrame; /* Index of last valid frame in the WAL */
326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr. This object stores
335 ** information used by checkpoint.
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".) The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes. So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill. The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
352 ** The aLock[] field is a set of bytes used for locking. These bytes should
353 ** never be read or written.
355 ** There is one entry in aReadMark[] for each reader lock. If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame. The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
381 ** Writers normally append new frames to the end of the WAL. However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
391 struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
398 #define READMARK_NOT_USED 0xffffffff
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
424 #define WAL_MAGIC 0x377f0682
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
431 #define walFrameOffset(iFrame, szPage) ( \
432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
439 struct Wal {
440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
443 u32 iCallback; /* Value to pass to log callback (or 0) */
444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
445 int nWiData; /* Size of array apWiData */
446 int szFirstBlock; /* Size of first block written to WAL file */
447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
448 u32 szPage; /* Database page size */
449 i16 readLock; /* Which read lock is being held. -1 for none */
450 u8 syncFlags; /* Flags to use to sync header writes */
451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
456 u8 syncHeader; /* Fsync the WAL header if true */
457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
458 WalIndexHdr hdr; /* Wal-index header for current transaction */
459 u32 minFrame; /* Ignore wal frames before this one */
460 u32 iReCksum; /* On commit, recalculate checksums from here */
461 const char *zWalName; /* Name of WAL file */
462 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
463 #ifdef SQLITE_DEBUG
464 u8 lockError; /* True if a locking error has occurred */
465 #endif
466 #ifdef SQLITE_ENABLE_SNAPSHOT
467 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
468 #endif
472 ** Candidate values for Wal.exclusiveMode.
474 #define WAL_NORMAL_MODE 0
475 #define WAL_EXCLUSIVE_MODE 1
476 #define WAL_HEAPMEMORY_MODE 2
479 ** Possible values for WAL.readOnly
481 #define WAL_RDWR 0 /* Normal read/write connection */
482 #define WAL_RDONLY 1 /* The WAL file is readonly */
483 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
486 ** Each page of the wal-index mapping contains a hash-table made up of
487 ** an array of HASHTABLE_NSLOT elements of the following type.
489 typedef u16 ht_slot;
492 ** This structure is used to implement an iterator that loops through
493 ** all frames in the WAL in database page order. Where two or more frames
494 ** correspond to the same database page, the iterator visits only the
495 ** frame most recently written to the WAL (in other words, the frame with
496 ** the largest index).
498 ** The internals of this structure are only accessed by:
500 ** walIteratorInit() - Create a new iterator,
501 ** walIteratorNext() - Step an iterator,
502 ** walIteratorFree() - Free an iterator.
504 ** This functionality is used by the checkpoint code (see walCheckpoint()).
506 struct WalIterator {
507 int iPrior; /* Last result returned from the iterator */
508 int nSegment; /* Number of entries in aSegment[] */
509 struct WalSegment {
510 int iNext; /* Next slot in aIndex[] not yet returned */
511 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
512 u32 *aPgno; /* Array of page numbers. */
513 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
514 int iZero; /* Frame number associated with aPgno[0] */
515 } aSegment[1]; /* One for every 32KB page in the wal-index */
519 ** Define the parameters of the hash tables in the wal-index file. There
520 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
521 ** wal-index.
523 ** Changing any of these constants will alter the wal-index format and
524 ** create incompatibilities.
526 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
527 #define HASHTABLE_HASH_1 383 /* Should be prime */
528 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
531 ** The block of page numbers associated with the first hash-table in a
532 ** wal-index is smaller than usual. This is so that there is a complete
533 ** hash-table on each aligned 32KB page of the wal-index.
535 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
537 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
538 #define WALINDEX_PGSZ ( \
539 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
543 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
544 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
545 ** numbered from zero.
547 ** If this call is successful, *ppPage is set to point to the wal-index
548 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
549 ** then an SQLite error code is returned and *ppPage is set to 0.
551 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
552 int rc = SQLITE_OK;
554 /* Enlarge the pWal->apWiData[] array if required */
555 if( pWal->nWiData<=iPage ){
556 int nByte = sizeof(u32*)*(iPage+1);
557 volatile u32 **apNew;
558 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
559 if( !apNew ){
560 *ppPage = 0;
561 return SQLITE_NOMEM_BKPT;
563 memset((void*)&apNew[pWal->nWiData], 0,
564 sizeof(u32*)*(iPage+1-pWal->nWiData));
565 pWal->apWiData = apNew;
566 pWal->nWiData = iPage+1;
569 /* Request a pointer to the required page from the VFS */
570 if( pWal->apWiData[iPage]==0 ){
571 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
572 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
573 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
574 }else{
575 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
576 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
578 if( rc==SQLITE_READONLY ){
579 pWal->readOnly |= WAL_SHM_RDONLY;
580 rc = SQLITE_OK;
585 *ppPage = pWal->apWiData[iPage];
586 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
587 return rc;
591 ** Return a pointer to the WalCkptInfo structure in the wal-index.
593 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
594 assert( pWal->nWiData>0 && pWal->apWiData[0] );
595 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
599 ** Return a pointer to the WalIndexHdr structure in the wal-index.
601 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
602 assert( pWal->nWiData>0 && pWal->apWiData[0] );
603 return (volatile WalIndexHdr*)pWal->apWiData[0];
607 ** The argument to this macro must be of type u32. On a little-endian
608 ** architecture, it returns the u32 value that results from interpreting
609 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
610 ** returns the value that would be produced by interpreting the 4 bytes
611 ** of the input value as a little-endian integer.
613 #define BYTESWAP32(x) ( \
614 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
615 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
619 ** Generate or extend an 8 byte checksum based on the data in
620 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
621 ** initial values of 0 and 0 if aIn==NULL).
623 ** The checksum is written back into aOut[] before returning.
625 ** nByte must be a positive multiple of 8.
627 static void walChecksumBytes(
628 int nativeCksum, /* True for native byte-order, false for non-native */
629 u8 *a, /* Content to be checksummed */
630 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
631 const u32 *aIn, /* Initial checksum value input */
632 u32 *aOut /* OUT: Final checksum value output */
634 u32 s1, s2;
635 u32 *aData = (u32 *)a;
636 u32 *aEnd = (u32 *)&a[nByte];
638 if( aIn ){
639 s1 = aIn[0];
640 s2 = aIn[1];
641 }else{
642 s1 = s2 = 0;
645 assert( nByte>=8 );
646 assert( (nByte&0x00000007)==0 );
648 if( nativeCksum ){
649 do {
650 s1 += *aData++ + s2;
651 s2 += *aData++ + s1;
652 }while( aData<aEnd );
653 }else{
654 do {
655 s1 += BYTESWAP32(aData[0]) + s2;
656 s2 += BYTESWAP32(aData[1]) + s1;
657 aData += 2;
658 }while( aData<aEnd );
661 aOut[0] = s1;
662 aOut[1] = s2;
665 static void walShmBarrier(Wal *pWal){
666 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
667 sqlite3OsShmBarrier(pWal->pDbFd);
672 ** Write the header information in pWal->hdr into the wal-index.
674 ** The checksum on pWal->hdr is updated before it is written.
676 static void walIndexWriteHdr(Wal *pWal){
677 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
678 const int nCksum = offsetof(WalIndexHdr, aCksum);
680 assert( pWal->writeLock );
681 pWal->hdr.isInit = 1;
682 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
683 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
684 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
685 walShmBarrier(pWal);
686 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
690 ** This function encodes a single frame header and writes it to a buffer
691 ** supplied by the caller. A frame-header is made up of a series of
692 ** 4-byte big-endian integers, as follows:
694 ** 0: Page number.
695 ** 4: For commit records, the size of the database image in pages
696 ** after the commit. For all other records, zero.
697 ** 8: Salt-1 (copied from the wal-header)
698 ** 12: Salt-2 (copied from the wal-header)
699 ** 16: Checksum-1.
700 ** 20: Checksum-2.
702 static void walEncodeFrame(
703 Wal *pWal, /* The write-ahead log */
704 u32 iPage, /* Database page number for frame */
705 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
706 u8 *aData, /* Pointer to page data */
707 u8 *aFrame /* OUT: Write encoded frame here */
709 int nativeCksum; /* True for native byte-order checksums */
710 u32 *aCksum = pWal->hdr.aFrameCksum;
711 assert( WAL_FRAME_HDRSIZE==24 );
712 sqlite3Put4byte(&aFrame[0], iPage);
713 sqlite3Put4byte(&aFrame[4], nTruncate);
714 if( pWal->iReCksum==0 ){
715 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
717 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
718 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
719 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
721 sqlite3Put4byte(&aFrame[16], aCksum[0]);
722 sqlite3Put4byte(&aFrame[20], aCksum[1]);
723 }else{
724 memset(&aFrame[8], 0, 16);
729 ** Check to see if the frame with header in aFrame[] and content
730 ** in aData[] is valid. If it is a valid frame, fill *piPage and
731 ** *pnTruncate and return true. Return if the frame is not valid.
733 static int walDecodeFrame(
734 Wal *pWal, /* The write-ahead log */
735 u32 *piPage, /* OUT: Database page number for frame */
736 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
737 u8 *aData, /* Pointer to page data (for checksum) */
738 u8 *aFrame /* Frame data */
740 int nativeCksum; /* True for native byte-order checksums */
741 u32 *aCksum = pWal->hdr.aFrameCksum;
742 u32 pgno; /* Page number of the frame */
743 assert( WAL_FRAME_HDRSIZE==24 );
745 /* A frame is only valid if the salt values in the frame-header
746 ** match the salt values in the wal-header.
748 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
749 return 0;
752 /* A frame is only valid if the page number is creater than zero.
754 pgno = sqlite3Get4byte(&aFrame[0]);
755 if( pgno==0 ){
756 return 0;
759 /* A frame is only valid if a checksum of the WAL header,
760 ** all prior frams, the first 16 bytes of this frame-header,
761 ** and the frame-data matches the checksum in the last 8
762 ** bytes of this frame-header.
764 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
765 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
766 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
767 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
768 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
770 /* Checksum failed. */
771 return 0;
774 /* If we reach this point, the frame is valid. Return the page number
775 ** and the new database size.
777 *piPage = pgno;
778 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
779 return 1;
783 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
785 ** Names of locks. This routine is used to provide debugging output and is not
786 ** a part of an ordinary build.
788 static const char *walLockName(int lockIdx){
789 if( lockIdx==WAL_WRITE_LOCK ){
790 return "WRITE-LOCK";
791 }else if( lockIdx==WAL_CKPT_LOCK ){
792 return "CKPT-LOCK";
793 }else if( lockIdx==WAL_RECOVER_LOCK ){
794 return "RECOVER-LOCK";
795 }else{
796 static char zName[15];
797 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
798 lockIdx-WAL_READ_LOCK(0));
799 return zName;
802 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
806 ** Set or release locks on the WAL. Locks are either shared or exclusive.
807 ** A lock cannot be moved directly between shared and exclusive - it must go
808 ** through the unlocked state first.
810 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
812 static int walLockShared(Wal *pWal, int lockIdx){
813 int rc;
814 if( pWal->exclusiveMode ) return SQLITE_OK;
815 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
816 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
817 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
818 walLockName(lockIdx), rc ? "failed" : "ok"));
819 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
820 return rc;
822 static void walUnlockShared(Wal *pWal, int lockIdx){
823 if( pWal->exclusiveMode ) return;
824 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
825 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
826 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
828 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
829 int rc;
830 if( pWal->exclusiveMode ) return SQLITE_OK;
831 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
832 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
833 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
834 walLockName(lockIdx), n, rc ? "failed" : "ok"));
835 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
836 return rc;
838 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
839 if( pWal->exclusiveMode ) return;
840 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
841 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
842 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
843 walLockName(lockIdx), n));
847 ** Compute a hash on a page number. The resulting hash value must land
848 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
849 ** the hash to the next value in the event of a collision.
851 static int walHash(u32 iPage){
852 assert( iPage>0 );
853 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
854 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
856 static int walNextHash(int iPriorHash){
857 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
861 ** Return pointers to the hash table and page number array stored on
862 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
863 ** numbered starting from 0.
865 ** Set output variable *paHash to point to the start of the hash table
866 ** in the wal-index file. Set *piZero to one less than the frame
867 ** number of the first frame indexed by this hash table. If a
868 ** slot in the hash table is set to N, it refers to frame number
869 ** (*piZero+N) in the log.
871 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
872 ** first frame indexed by the hash table, frame (*piZero+1).
874 static int walHashGet(
875 Wal *pWal, /* WAL handle */
876 int iHash, /* Find the iHash'th table */
877 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
878 volatile u32 **paPgno, /* OUT: Pointer to page number array */
879 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
881 int rc; /* Return code */
882 volatile u32 *aPgno;
884 rc = walIndexPage(pWal, iHash, &aPgno);
885 assert( rc==SQLITE_OK || iHash>0 );
887 if( rc==SQLITE_OK ){
888 u32 iZero;
889 volatile ht_slot *aHash;
891 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
892 if( iHash==0 ){
893 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
894 iZero = 0;
895 }else{
896 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
899 *paPgno = &aPgno[-1];
900 *paHash = aHash;
901 *piZero = iZero;
903 return rc;
907 ** Return the number of the wal-index page that contains the hash-table
908 ** and page-number array that contain entries corresponding to WAL frame
909 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
910 ** are numbered starting from 0.
912 static int walFramePage(u32 iFrame){
913 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
914 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
915 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
916 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
917 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
918 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
920 return iHash;
924 ** Return the page number associated with frame iFrame in this WAL.
926 static u32 walFramePgno(Wal *pWal, u32 iFrame){
927 int iHash = walFramePage(iFrame);
928 if( iHash==0 ){
929 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
931 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
935 ** Remove entries from the hash table that point to WAL slots greater
936 ** than pWal->hdr.mxFrame.
938 ** This function is called whenever pWal->hdr.mxFrame is decreased due
939 ** to a rollback or savepoint.
941 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
942 ** updated. Any later hash tables will be automatically cleared when
943 ** pWal->hdr.mxFrame advances to the point where those hash tables are
944 ** actually needed.
946 static void walCleanupHash(Wal *pWal){
947 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
948 volatile u32 *aPgno = 0; /* Page number array for hash table */
949 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
950 int iLimit = 0; /* Zero values greater than this */
951 int nByte; /* Number of bytes to zero in aPgno[] */
952 int i; /* Used to iterate through aHash[] */
954 assert( pWal->writeLock );
955 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
956 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
957 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
959 if( pWal->hdr.mxFrame==0 ) return;
961 /* Obtain pointers to the hash-table and page-number array containing
962 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
963 ** that the page said hash-table and array reside on is already mapped.
965 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
966 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
967 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
969 /* Zero all hash-table entries that correspond to frame numbers greater
970 ** than pWal->hdr.mxFrame.
972 iLimit = pWal->hdr.mxFrame - iZero;
973 assert( iLimit>0 );
974 for(i=0; i<HASHTABLE_NSLOT; i++){
975 if( aHash[i]>iLimit ){
976 aHash[i] = 0;
980 /* Zero the entries in the aPgno array that correspond to frames with
981 ** frame numbers greater than pWal->hdr.mxFrame.
983 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
984 memset((void *)&aPgno[iLimit+1], 0, nByte);
986 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
987 /* Verify that the every entry in the mapping region is still reachable
988 ** via the hash table even after the cleanup.
990 if( iLimit ){
991 int j; /* Loop counter */
992 int iKey; /* Hash key */
993 for(j=1; j<=iLimit; j++){
994 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
995 if( aHash[iKey]==j ) break;
997 assert( aHash[iKey]==j );
1000 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1005 ** Set an entry in the wal-index that will map database page number
1006 ** pPage into WAL frame iFrame.
1008 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1009 int rc; /* Return code */
1010 u32 iZero = 0; /* One less than frame number of aPgno[1] */
1011 volatile u32 *aPgno = 0; /* Page number array */
1012 volatile ht_slot *aHash = 0; /* Hash table */
1014 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1016 /* Assuming the wal-index file was successfully mapped, populate the
1017 ** page number array and hash table entry.
1019 if( rc==SQLITE_OK ){
1020 int iKey; /* Hash table key */
1021 int idx; /* Value to write to hash-table slot */
1022 int nCollide; /* Number of hash collisions */
1024 idx = iFrame - iZero;
1025 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1027 /* If this is the first entry to be added to this hash-table, zero the
1028 ** entire hash table and aPgno[] array before proceeding.
1030 if( idx==1 ){
1031 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1032 memset((void*)&aPgno[1], 0, nByte);
1035 /* If the entry in aPgno[] is already set, then the previous writer
1036 ** must have exited unexpectedly in the middle of a transaction (after
1037 ** writing one or more dirty pages to the WAL to free up memory).
1038 ** Remove the remnants of that writers uncommitted transaction from
1039 ** the hash-table before writing any new entries.
1041 if( aPgno[idx] ){
1042 walCleanupHash(pWal);
1043 assert( !aPgno[idx] );
1046 /* Write the aPgno[] array entry and the hash-table slot. */
1047 nCollide = idx;
1048 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1049 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1051 aPgno[idx] = iPage;
1052 aHash[iKey] = (ht_slot)idx;
1054 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1055 /* Verify that the number of entries in the hash table exactly equals
1056 ** the number of entries in the mapping region.
1059 int i; /* Loop counter */
1060 int nEntry = 0; /* Number of entries in the hash table */
1061 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1062 assert( nEntry==idx );
1065 /* Verify that the every entry in the mapping region is reachable
1066 ** via the hash table. This turns out to be a really, really expensive
1067 ** thing to check, so only do this occasionally - not on every
1068 ** iteration.
1070 if( (idx&0x3ff)==0 ){
1071 int i; /* Loop counter */
1072 for(i=1; i<=idx; i++){
1073 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1074 if( aHash[iKey]==i ) break;
1076 assert( aHash[iKey]==i );
1079 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1083 return rc;
1088 ** Recover the wal-index by reading the write-ahead log file.
1090 ** This routine first tries to establish an exclusive lock on the
1091 ** wal-index to prevent other threads/processes from doing anything
1092 ** with the WAL or wal-index while recovery is running. The
1093 ** WAL_RECOVER_LOCK is also held so that other threads will know
1094 ** that this thread is running recovery. If unable to establish
1095 ** the necessary locks, this routine returns SQLITE_BUSY.
1097 static int walIndexRecover(Wal *pWal){
1098 int rc; /* Return Code */
1099 i64 nSize; /* Size of log file */
1100 u32 aFrameCksum[2] = {0, 0};
1101 int iLock; /* Lock offset to lock for checkpoint */
1102 int nLock; /* Number of locks to hold */
1104 /* Obtain an exclusive lock on all byte in the locking range not already
1105 ** locked by the caller. The caller is guaranteed to have locked the
1106 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1107 ** If successful, the same bytes that are locked here are unlocked before
1108 ** this function returns.
1110 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1111 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1112 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1113 assert( pWal->writeLock );
1114 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1115 nLock = SQLITE_SHM_NLOCK - iLock;
1116 rc = walLockExclusive(pWal, iLock, nLock);
1117 if( rc ){
1118 return rc;
1120 WALTRACE(("WAL%p: recovery begin...\n", pWal));
1122 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1124 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1125 if( rc!=SQLITE_OK ){
1126 goto recovery_error;
1129 if( nSize>WAL_HDRSIZE ){
1130 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
1131 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
1132 int szFrame; /* Number of bytes in buffer aFrame[] */
1133 u8 *aData; /* Pointer to data part of aFrame buffer */
1134 int iFrame; /* Index of last frame read */
1135 i64 iOffset; /* Next offset to read from log file */
1136 int szPage; /* Page size according to the log */
1137 u32 magic; /* Magic value read from WAL header */
1138 u32 version; /* Magic value read from WAL header */
1139 int isValid; /* True if this frame is valid */
1141 /* Read in the WAL header. */
1142 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1143 if( rc!=SQLITE_OK ){
1144 goto recovery_error;
1147 /* If the database page size is not a power of two, or is greater than
1148 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1149 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1150 ** WAL file.
1152 magic = sqlite3Get4byte(&aBuf[0]);
1153 szPage = sqlite3Get4byte(&aBuf[8]);
1154 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1155 || szPage&(szPage-1)
1156 || szPage>SQLITE_MAX_PAGE_SIZE
1157 || szPage<512
1159 goto finished;
1161 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1162 pWal->szPage = szPage;
1163 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1164 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1166 /* Verify that the WAL header checksum is correct */
1167 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1168 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1170 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1171 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1173 goto finished;
1176 /* Verify that the version number on the WAL format is one that
1177 ** are able to understand */
1178 version = sqlite3Get4byte(&aBuf[4]);
1179 if( version!=WAL_MAX_VERSION ){
1180 rc = SQLITE_CANTOPEN_BKPT;
1181 goto finished;
1184 /* Malloc a buffer to read frames into. */
1185 szFrame = szPage + WAL_FRAME_HDRSIZE;
1186 aFrame = (u8 *)sqlite3_malloc64(szFrame);
1187 if( !aFrame ){
1188 rc = SQLITE_NOMEM_BKPT;
1189 goto recovery_error;
1191 aData = &aFrame[WAL_FRAME_HDRSIZE];
1193 /* Read all frames from the log file. */
1194 iFrame = 0;
1195 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1196 u32 pgno; /* Database page number for frame */
1197 u32 nTruncate; /* dbsize field from frame header */
1199 /* Read and decode the next log frame. */
1200 iFrame++;
1201 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1202 if( rc!=SQLITE_OK ) break;
1203 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1204 if( !isValid ) break;
1205 rc = walIndexAppend(pWal, iFrame, pgno);
1206 if( rc!=SQLITE_OK ) break;
1208 /* If nTruncate is non-zero, this is a commit record. */
1209 if( nTruncate ){
1210 pWal->hdr.mxFrame = iFrame;
1211 pWal->hdr.nPage = nTruncate;
1212 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1213 testcase( szPage<=32768 );
1214 testcase( szPage>=65536 );
1215 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1216 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1220 sqlite3_free(aFrame);
1223 finished:
1224 if( rc==SQLITE_OK ){
1225 volatile WalCkptInfo *pInfo;
1226 int i;
1227 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1228 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1229 walIndexWriteHdr(pWal);
1231 /* Reset the checkpoint-header. This is safe because this thread is
1232 ** currently holding locks that exclude all other readers, writers and
1233 ** checkpointers.
1235 pInfo = walCkptInfo(pWal);
1236 pInfo->nBackfill = 0;
1237 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1238 pInfo->aReadMark[0] = 0;
1239 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1240 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1242 /* If more than one frame was recovered from the log file, report an
1243 ** event via sqlite3_log(). This is to help with identifying performance
1244 ** problems caused by applications routinely shutting down without
1245 ** checkpointing the log file.
1247 if( pWal->hdr.nPage ){
1248 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1249 "recovered %d frames from WAL file %s",
1250 pWal->hdr.mxFrame, pWal->zWalName
1255 recovery_error:
1256 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1257 walUnlockExclusive(pWal, iLock, nLock);
1258 return rc;
1262 ** Close an open wal-index.
1264 static void walIndexClose(Wal *pWal, int isDelete){
1265 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1266 int i;
1267 for(i=0; i<pWal->nWiData; i++){
1268 sqlite3_free((void *)pWal->apWiData[i]);
1269 pWal->apWiData[i] = 0;
1271 }else{
1272 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1277 ** Open a connection to the WAL file zWalName. The database file must
1278 ** already be opened on connection pDbFd. The buffer that zWalName points
1279 ** to must remain valid for the lifetime of the returned Wal* handle.
1281 ** A SHARED lock should be held on the database file when this function
1282 ** is called. The purpose of this SHARED lock is to prevent any other
1283 ** client from unlinking the WAL or wal-index file. If another process
1284 ** were to do this just after this client opened one of these files, the
1285 ** system would be badly broken.
1287 ** If the log file is successfully opened, SQLITE_OK is returned and
1288 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1289 ** an SQLite error code is returned and *ppWal is left unmodified.
1291 int sqlite3WalOpen(
1292 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
1293 sqlite3_file *pDbFd, /* The open database file */
1294 const char *zWalName, /* Name of the WAL file */
1295 int bNoShm, /* True to run in heap-memory mode */
1296 i64 mxWalSize, /* Truncate WAL to this size on reset */
1297 Wal **ppWal /* OUT: Allocated Wal handle */
1299 int rc; /* Return Code */
1300 Wal *pRet; /* Object to allocate and return */
1301 int flags; /* Flags passed to OsOpen() */
1303 assert( zWalName && zWalName[0] );
1304 assert( pDbFd );
1306 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1307 ** this source file. Verify that the #defines of the locking byte offsets
1308 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1309 ** For that matter, if the lock offset ever changes from its initial design
1310 ** value of 120, we need to know that so there is an assert() to check it.
1312 assert( 120==WALINDEX_LOCK_OFFSET );
1313 assert( 136==WALINDEX_HDR_SIZE );
1314 #ifdef WIN_SHM_BASE
1315 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1316 #endif
1317 #ifdef UNIX_SHM_BASE
1318 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1319 #endif
1322 /* Allocate an instance of struct Wal to return. */
1323 *ppWal = 0;
1324 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1325 if( !pRet ){
1326 return SQLITE_NOMEM_BKPT;
1329 pRet->pVfs = pVfs;
1330 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1331 pRet->pDbFd = pDbFd;
1332 pRet->readLock = -1;
1333 pRet->mxWalSize = mxWalSize;
1334 pRet->zWalName = zWalName;
1335 pRet->syncHeader = 1;
1336 pRet->padToSectorBoundary = 1;
1337 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1339 /* Open file handle on the write-ahead log file. */
1340 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1341 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1342 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1343 pRet->readOnly = WAL_RDONLY;
1346 if( rc!=SQLITE_OK ){
1347 walIndexClose(pRet, 0);
1348 sqlite3OsClose(pRet->pWalFd);
1349 sqlite3_free(pRet);
1350 }else{
1351 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1352 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1353 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1354 pRet->padToSectorBoundary = 0;
1356 *ppWal = pRet;
1357 WALTRACE(("WAL%d: opened\n", pRet));
1359 return rc;
1363 ** Change the size to which the WAL file is trucated on each reset.
1365 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1366 if( pWal ) pWal->mxWalSize = iLimit;
1370 ** Find the smallest page number out of all pages held in the WAL that
1371 ** has not been returned by any prior invocation of this method on the
1372 ** same WalIterator object. Write into *piFrame the frame index where
1373 ** that page was last written into the WAL. Write into *piPage the page
1374 ** number.
1376 ** Return 0 on success. If there are no pages in the WAL with a page
1377 ** number larger than *piPage, then return 1.
1379 static int walIteratorNext(
1380 WalIterator *p, /* Iterator */
1381 u32 *piPage, /* OUT: The page number of the next page */
1382 u32 *piFrame /* OUT: Wal frame index of next page */
1384 u32 iMin; /* Result pgno must be greater than iMin */
1385 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1386 int i; /* For looping through segments */
1388 iMin = p->iPrior;
1389 assert( iMin<0xffffffff );
1390 for(i=p->nSegment-1; i>=0; i--){
1391 struct WalSegment *pSegment = &p->aSegment[i];
1392 while( pSegment->iNext<pSegment->nEntry ){
1393 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1394 if( iPg>iMin ){
1395 if( iPg<iRet ){
1396 iRet = iPg;
1397 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1399 break;
1401 pSegment->iNext++;
1405 *piPage = p->iPrior = iRet;
1406 return (iRet==0xFFFFFFFF);
1410 ** This function merges two sorted lists into a single sorted list.
1412 ** aLeft[] and aRight[] are arrays of indices. The sort key is
1413 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1414 ** is guaranteed for all J<K:
1416 ** aContent[aLeft[J]] < aContent[aLeft[K]]
1417 ** aContent[aRight[J]] < aContent[aRight[K]]
1419 ** This routine overwrites aRight[] with a new (probably longer) sequence
1420 ** of indices such that the aRight[] contains every index that appears in
1421 ** either aLeft[] or the old aRight[] and such that the second condition
1422 ** above is still met.
1424 ** The aContent[aLeft[X]] values will be unique for all X. And the
1425 ** aContent[aRight[X]] values will be unique too. But there might be
1426 ** one or more combinations of X and Y such that
1428 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1430 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1432 static void walMerge(
1433 const u32 *aContent, /* Pages in wal - keys for the sort */
1434 ht_slot *aLeft, /* IN: Left hand input list */
1435 int nLeft, /* IN: Elements in array *paLeft */
1436 ht_slot **paRight, /* IN/OUT: Right hand input list */
1437 int *pnRight, /* IN/OUT: Elements in *paRight */
1438 ht_slot *aTmp /* Temporary buffer */
1440 int iLeft = 0; /* Current index in aLeft */
1441 int iRight = 0; /* Current index in aRight */
1442 int iOut = 0; /* Current index in output buffer */
1443 int nRight = *pnRight;
1444 ht_slot *aRight = *paRight;
1446 assert( nLeft>0 && nRight>0 );
1447 while( iRight<nRight || iLeft<nLeft ){
1448 ht_slot logpage;
1449 Pgno dbpage;
1451 if( (iLeft<nLeft)
1452 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1454 logpage = aLeft[iLeft++];
1455 }else{
1456 logpage = aRight[iRight++];
1458 dbpage = aContent[logpage];
1460 aTmp[iOut++] = logpage;
1461 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1463 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1464 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1467 *paRight = aLeft;
1468 *pnRight = iOut;
1469 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1473 ** Sort the elements in list aList using aContent[] as the sort key.
1474 ** Remove elements with duplicate keys, preferring to keep the
1475 ** larger aList[] values.
1477 ** The aList[] entries are indices into aContent[]. The values in
1478 ** aList[] are to be sorted so that for all J<K:
1480 ** aContent[aList[J]] < aContent[aList[K]]
1482 ** For any X and Y such that
1484 ** aContent[aList[X]] == aContent[aList[Y]]
1486 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1487 ** the smaller.
1489 static void walMergesort(
1490 const u32 *aContent, /* Pages in wal */
1491 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1492 ht_slot *aList, /* IN/OUT: List to sort */
1493 int *pnList /* IN/OUT: Number of elements in aList[] */
1495 struct Sublist {
1496 int nList; /* Number of elements in aList */
1497 ht_slot *aList; /* Pointer to sub-list content */
1500 const int nList = *pnList; /* Size of input list */
1501 int nMerge = 0; /* Number of elements in list aMerge */
1502 ht_slot *aMerge = 0; /* List to be merged */
1503 int iList; /* Index into input list */
1504 u32 iSub = 0; /* Index into aSub array */
1505 struct Sublist aSub[13]; /* Array of sub-lists */
1507 memset(aSub, 0, sizeof(aSub));
1508 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1509 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1511 for(iList=0; iList<nList; iList++){
1512 nMerge = 1;
1513 aMerge = &aList[iList];
1514 for(iSub=0; iList & (1<<iSub); iSub++){
1515 struct Sublist *p;
1516 assert( iSub<ArraySize(aSub) );
1517 p = &aSub[iSub];
1518 assert( p->aList && p->nList<=(1<<iSub) );
1519 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1520 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1522 aSub[iSub].aList = aMerge;
1523 aSub[iSub].nList = nMerge;
1526 for(iSub++; iSub<ArraySize(aSub); iSub++){
1527 if( nList & (1<<iSub) ){
1528 struct Sublist *p;
1529 assert( iSub<ArraySize(aSub) );
1530 p = &aSub[iSub];
1531 assert( p->nList<=(1<<iSub) );
1532 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1533 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1536 assert( aMerge==aList );
1537 *pnList = nMerge;
1539 #ifdef SQLITE_DEBUG
1541 int i;
1542 for(i=1; i<*pnList; i++){
1543 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1546 #endif
1550 ** Free an iterator allocated by walIteratorInit().
1552 static void walIteratorFree(WalIterator *p){
1553 sqlite3_free(p);
1557 ** Construct a WalInterator object that can be used to loop over all
1558 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1559 ** lock.
1561 ** On success, make *pp point to the newly allocated WalInterator object
1562 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1563 ** returns an error, the value of *pp is undefined.
1565 ** The calling routine should invoke walIteratorFree() to destroy the
1566 ** WalIterator object when it has finished with it.
1568 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1569 WalIterator *p; /* Return value */
1570 int nSegment; /* Number of segments to merge */
1571 u32 iLast; /* Last frame in log */
1572 int nByte; /* Number of bytes to allocate */
1573 int i; /* Iterator variable */
1574 ht_slot *aTmp; /* Temp space used by merge-sort */
1575 int rc = SQLITE_OK; /* Return Code */
1577 /* This routine only runs while holding the checkpoint lock. And
1578 ** it only runs if there is actually content in the log (mxFrame>0).
1580 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1581 iLast = pWal->hdr.mxFrame;
1583 /* Allocate space for the WalIterator object. */
1584 nSegment = walFramePage(iLast) + 1;
1585 nByte = sizeof(WalIterator)
1586 + (nSegment-1)*sizeof(struct WalSegment)
1587 + iLast*sizeof(ht_slot);
1588 p = (WalIterator *)sqlite3_malloc64(nByte);
1589 if( !p ){
1590 return SQLITE_NOMEM_BKPT;
1592 memset(p, 0, nByte);
1593 p->nSegment = nSegment;
1595 /* Allocate temporary space used by the merge-sort routine. This block
1596 ** of memory will be freed before this function returns.
1598 aTmp = (ht_slot *)sqlite3_malloc64(
1599 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1601 if( !aTmp ){
1602 rc = SQLITE_NOMEM_BKPT;
1605 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1606 volatile ht_slot *aHash;
1607 u32 iZero;
1608 volatile u32 *aPgno;
1610 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1611 if( rc==SQLITE_OK ){
1612 int j; /* Counter variable */
1613 int nEntry; /* Number of entries in this segment */
1614 ht_slot *aIndex; /* Sorted index for this segment */
1616 aPgno++;
1617 if( (i+1)==nSegment ){
1618 nEntry = (int)(iLast - iZero);
1619 }else{
1620 nEntry = (int)((u32*)aHash - (u32*)aPgno);
1622 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1623 iZero++;
1625 for(j=0; j<nEntry; j++){
1626 aIndex[j] = (ht_slot)j;
1628 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1629 p->aSegment[i].iZero = iZero;
1630 p->aSegment[i].nEntry = nEntry;
1631 p->aSegment[i].aIndex = aIndex;
1632 p->aSegment[i].aPgno = (u32 *)aPgno;
1635 sqlite3_free(aTmp);
1637 if( rc!=SQLITE_OK ){
1638 walIteratorFree(p);
1640 *pp = p;
1641 return rc;
1645 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1646 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1647 ** busy-handler function. Invoke it and retry the lock until either the
1648 ** lock is successfully obtained or the busy-handler returns 0.
1650 static int walBusyLock(
1651 Wal *pWal, /* WAL connection */
1652 int (*xBusy)(void*), /* Function to call when busy */
1653 void *pBusyArg, /* Context argument for xBusyHandler */
1654 int lockIdx, /* Offset of first byte to lock */
1655 int n /* Number of bytes to lock */
1657 int rc;
1658 do {
1659 rc = walLockExclusive(pWal, lockIdx, n);
1660 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1661 return rc;
1665 ** The cache of the wal-index header must be valid to call this function.
1666 ** Return the page-size in bytes used by the database.
1668 static int walPagesize(Wal *pWal){
1669 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1673 ** The following is guaranteed when this function is called:
1675 ** a) the WRITER lock is held,
1676 ** b) the entire log file has been checkpointed, and
1677 ** c) any existing readers are reading exclusively from the database
1678 ** file - there are no readers that may attempt to read a frame from
1679 ** the log file.
1681 ** This function updates the shared-memory structures so that the next
1682 ** client to write to the database (which may be this one) does so by
1683 ** writing frames into the start of the log file.
1685 ** The value of parameter salt1 is used as the aSalt[1] value in the
1686 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1687 ** one obtained from sqlite3_randomness()).
1689 static void walRestartHdr(Wal *pWal, u32 salt1){
1690 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1691 int i; /* Loop counter */
1692 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1693 pWal->nCkpt++;
1694 pWal->hdr.mxFrame = 0;
1695 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1696 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1697 walIndexWriteHdr(pWal);
1698 pInfo->nBackfill = 0;
1699 pInfo->nBackfillAttempted = 0;
1700 pInfo->aReadMark[1] = 0;
1701 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1702 assert( pInfo->aReadMark[0]==0 );
1706 ** Copy as much content as we can from the WAL back into the database file
1707 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1709 ** The amount of information copies from WAL to database might be limited
1710 ** by active readers. This routine will never overwrite a database page
1711 ** that a concurrent reader might be using.
1713 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1714 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1715 ** checkpoints are always run by a background thread or background
1716 ** process, foreground threads will never block on a lengthy fsync call.
1718 ** Fsync is called on the WAL before writing content out of the WAL and
1719 ** into the database. This ensures that if the new content is persistent
1720 ** in the WAL and can be recovered following a power-loss or hard reset.
1722 ** Fsync is also called on the database file if (and only if) the entire
1723 ** WAL content is copied into the database file. This second fsync makes
1724 ** it safe to delete the WAL since the new content will persist in the
1725 ** database file.
1727 ** This routine uses and updates the nBackfill field of the wal-index header.
1728 ** This is the only routine that will increase the value of nBackfill.
1729 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1730 ** its value.)
1732 ** The caller must be holding sufficient locks to ensure that no other
1733 ** checkpoint is running (in any other thread or process) at the same
1734 ** time.
1736 static int walCheckpoint(
1737 Wal *pWal, /* Wal connection */
1738 sqlite3 *db, /* Check for interrupts on this handle */
1739 int eMode, /* One of PASSIVE, FULL or RESTART */
1740 int (*xBusy)(void*), /* Function to call when busy */
1741 void *pBusyArg, /* Context argument for xBusyHandler */
1742 int sync_flags, /* Flags for OsSync() (or 0) */
1743 u8 *zBuf /* Temporary buffer to use */
1745 int rc = SQLITE_OK; /* Return code */
1746 int szPage; /* Database page-size */
1747 WalIterator *pIter = 0; /* Wal iterator context */
1748 u32 iDbpage = 0; /* Next database page to write */
1749 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
1750 u32 mxSafeFrame; /* Max frame that can be backfilled */
1751 u32 mxPage; /* Max database page to write */
1752 int i; /* Loop counter */
1753 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
1755 szPage = walPagesize(pWal);
1756 testcase( szPage<=32768 );
1757 testcase( szPage>=65536 );
1758 pInfo = walCkptInfo(pWal);
1759 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1761 /* Allocate the iterator */
1762 rc = walIteratorInit(pWal, &pIter);
1763 if( rc!=SQLITE_OK ){
1764 return rc;
1766 assert( pIter );
1768 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1769 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1770 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1772 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1773 ** safe to write into the database. Frames beyond mxSafeFrame might
1774 ** overwrite database pages that are in use by active readers and thus
1775 ** cannot be backfilled from the WAL.
1777 mxSafeFrame = pWal->hdr.mxFrame;
1778 mxPage = pWal->hdr.nPage;
1779 for(i=1; i<WAL_NREADER; i++){
1780 /* Thread-sanitizer reports that the following is an unsafe read,
1781 ** as some other thread may be in the process of updating the value
1782 ** of the aReadMark[] slot. The assumption here is that if that is
1783 ** happening, the other client may only be increasing the value,
1784 ** not decreasing it. So assuming either that either the "old" or
1785 ** "new" version of the value is read, and not some arbitrary value
1786 ** that would never be written by a real client, things are still
1787 ** safe. */
1788 u32 y = pInfo->aReadMark[i];
1789 if( mxSafeFrame>y ){
1790 assert( y<=pWal->hdr.mxFrame );
1791 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1792 if( rc==SQLITE_OK ){
1793 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1794 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1795 }else if( rc==SQLITE_BUSY ){
1796 mxSafeFrame = y;
1797 xBusy = 0;
1798 }else{
1799 goto walcheckpoint_out;
1804 if( pInfo->nBackfill<mxSafeFrame
1805 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1807 i64 nSize; /* Current size of database file */
1808 u32 nBackfill = pInfo->nBackfill;
1810 pInfo->nBackfillAttempted = mxSafeFrame;
1812 /* Sync the WAL to disk */
1813 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1815 /* If the database may grow as a result of this checkpoint, hint
1816 ** about the eventual size of the db file to the VFS layer.
1818 if( rc==SQLITE_OK ){
1819 i64 nReq = ((i64)mxPage * szPage);
1820 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1821 if( rc==SQLITE_OK && nSize<nReq ){
1822 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1827 /* Iterate through the contents of the WAL, copying data to the db file */
1828 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1829 i64 iOffset;
1830 assert( walFramePgno(pWal, iFrame)==iDbpage );
1831 if( db->u1.isInterrupted ){
1832 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1833 break;
1835 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1836 continue;
1838 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1839 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1840 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1841 if( rc!=SQLITE_OK ) break;
1842 iOffset = (iDbpage-1)*(i64)szPage;
1843 testcase( IS_BIG_INT(iOffset) );
1844 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1845 if( rc!=SQLITE_OK ) break;
1848 /* If work was actually accomplished... */
1849 if( rc==SQLITE_OK ){
1850 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1851 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1852 testcase( IS_BIG_INT(szDb) );
1853 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1854 if( rc==SQLITE_OK ){
1855 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1858 if( rc==SQLITE_OK ){
1859 pInfo->nBackfill = mxSafeFrame;
1863 /* Release the reader lock held while backfilling */
1864 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1867 if( rc==SQLITE_BUSY ){
1868 /* Reset the return code so as not to report a checkpoint failure
1869 ** just because there are active readers. */
1870 rc = SQLITE_OK;
1874 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1875 ** entire wal file has been copied into the database file, then block
1876 ** until all readers have finished using the wal file. This ensures that
1877 ** the next process to write to the database restarts the wal file.
1879 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1880 assert( pWal->writeLock );
1881 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1882 rc = SQLITE_BUSY;
1883 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1884 u32 salt1;
1885 sqlite3_randomness(4, &salt1);
1886 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1887 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1888 if( rc==SQLITE_OK ){
1889 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1890 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1891 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1892 ** truncates the log file to zero bytes just prior to a
1893 ** successful return.
1895 ** In theory, it might be safe to do this without updating the
1896 ** wal-index header in shared memory, as all subsequent reader or
1897 ** writer clients should see that the entire log file has been
1898 ** checkpointed and behave accordingly. This seems unsafe though,
1899 ** as it would leave the system in a state where the contents of
1900 ** the wal-index header do not match the contents of the
1901 ** file-system. To avoid this, update the wal-index header to
1902 ** indicate that the log file contains zero valid frames. */
1903 walRestartHdr(pWal, salt1);
1904 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1906 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1911 walcheckpoint_out:
1912 walIteratorFree(pIter);
1913 return rc;
1917 ** If the WAL file is currently larger than nMax bytes in size, truncate
1918 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1920 static void walLimitSize(Wal *pWal, i64 nMax){
1921 i64 sz;
1922 int rx;
1923 sqlite3BeginBenignMalloc();
1924 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1925 if( rx==SQLITE_OK && (sz > nMax ) ){
1926 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1928 sqlite3EndBenignMalloc();
1929 if( rx ){
1930 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1935 ** Close a connection to a log file.
1937 int sqlite3WalClose(
1938 Wal *pWal, /* Wal to close */
1939 sqlite3 *db, /* For interrupt flag */
1940 int sync_flags, /* Flags to pass to OsSync() (or 0) */
1941 int nBuf,
1942 u8 *zBuf /* Buffer of at least nBuf bytes */
1944 int rc = SQLITE_OK;
1945 if( pWal ){
1946 int isDelete = 0; /* True to unlink wal and wal-index files */
1948 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1949 ** ordinary, rollback-mode locking methods, this guarantees that the
1950 ** connection associated with this log file is the only connection to
1951 ** the database. In this case checkpoint the database and unlink both
1952 ** the wal and wal-index files.
1954 ** The EXCLUSIVE lock is not released before returning.
1956 if( zBuf!=0
1957 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1959 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1960 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1962 rc = sqlite3WalCheckpoint(pWal, db,
1963 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1965 if( rc==SQLITE_OK ){
1966 int bPersist = -1;
1967 sqlite3OsFileControlHint(
1968 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1970 if( bPersist!=1 ){
1971 /* Try to delete the WAL file if the checkpoint completed and
1972 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1973 ** mode (!bPersist) */
1974 isDelete = 1;
1975 }else if( pWal->mxWalSize>=0 ){
1976 /* Try to truncate the WAL file to zero bytes if the checkpoint
1977 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1978 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1979 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1980 ** to zero bytes as truncating to the journal_size_limit might
1981 ** leave a corrupt WAL file on disk. */
1982 walLimitSize(pWal, 0);
1987 walIndexClose(pWal, isDelete);
1988 sqlite3OsClose(pWal->pWalFd);
1989 if( isDelete ){
1990 sqlite3BeginBenignMalloc();
1991 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1992 sqlite3EndBenignMalloc();
1994 WALTRACE(("WAL%p: closed\n", pWal));
1995 sqlite3_free((void *)pWal->apWiData);
1996 sqlite3_free(pWal);
1998 return rc;
2002 ** Try to read the wal-index header. Return 0 on success and 1 if
2003 ** there is a problem.
2005 ** The wal-index is in shared memory. Another thread or process might
2006 ** be writing the header at the same time this procedure is trying to
2007 ** read it, which might result in inconsistency. A dirty read is detected
2008 ** by verifying that both copies of the header are the same and also by
2009 ** a checksum on the header.
2011 ** If and only if the read is consistent and the header is different from
2012 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2013 ** and *pChanged is set to 1.
2015 ** If the checksum cannot be verified return non-zero. If the header
2016 ** is read successfully and the checksum verified, return zero.
2018 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2019 u32 aCksum[2]; /* Checksum on the header content */
2020 WalIndexHdr h1, h2; /* Two copies of the header content */
2021 WalIndexHdr volatile *aHdr; /* Header in shared memory */
2023 /* The first page of the wal-index must be mapped at this point. */
2024 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2026 /* Read the header. This might happen concurrently with a write to the
2027 ** same area of shared memory on a different CPU in a SMP,
2028 ** meaning it is possible that an inconsistent snapshot is read
2029 ** from the file. If this happens, return non-zero.
2031 ** There are two copies of the header at the beginning of the wal-index.
2032 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2033 ** Memory barriers are used to prevent the compiler or the hardware from
2034 ** reordering the reads and writes.
2036 aHdr = walIndexHdr(pWal);
2037 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2038 walShmBarrier(pWal);
2039 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2041 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2042 return 1; /* Dirty read */
2044 if( h1.isInit==0 ){
2045 return 1; /* Malformed header - probably all zeros */
2047 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2048 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2049 return 1; /* Checksum does not match */
2052 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2053 *pChanged = 1;
2054 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2055 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2056 testcase( pWal->szPage<=32768 );
2057 testcase( pWal->szPage>=65536 );
2060 /* The header was successfully read. Return zero. */
2061 return 0;
2065 ** Read the wal-index header from the wal-index and into pWal->hdr.
2066 ** If the wal-header appears to be corrupt, try to reconstruct the
2067 ** wal-index from the WAL before returning.
2069 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2070 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged
2071 ** to 0.
2073 ** If the wal-index header is successfully read, return SQLITE_OK.
2074 ** Otherwise an SQLite error code.
2076 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2077 int rc; /* Return code */
2078 int badHdr; /* True if a header read failed */
2079 volatile u32 *page0; /* Chunk of wal-index containing header */
2081 /* Ensure that page 0 of the wal-index (the page that contains the
2082 ** wal-index header) is mapped. Return early if an error occurs here.
2084 assert( pChanged );
2085 rc = walIndexPage(pWal, 0, &page0);
2086 if( rc!=SQLITE_OK ){
2087 return rc;
2089 assert( page0 || pWal->writeLock==0 );
2091 /* If the first page of the wal-index has been mapped, try to read the
2092 ** wal-index header immediately, without holding any lock. This usually
2093 ** works, but may fail if the wal-index header is corrupt or currently
2094 ** being modified by another thread or process.
2096 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2098 /* If the first attempt failed, it might have been due to a race
2099 ** with a writer. So get a WRITE lock and try again.
2101 assert( badHdr==0 || pWal->writeLock==0 );
2102 if( badHdr ){
2103 if( pWal->readOnly & WAL_SHM_RDONLY ){
2104 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2105 walUnlockShared(pWal, WAL_WRITE_LOCK);
2106 rc = SQLITE_READONLY_RECOVERY;
2108 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2109 pWal->writeLock = 1;
2110 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2111 badHdr = walIndexTryHdr(pWal, pChanged);
2112 if( badHdr ){
2113 /* If the wal-index header is still malformed even while holding
2114 ** a WRITE lock, it can only mean that the header is corrupted and
2115 ** needs to be reconstructed. So run recovery to do exactly that.
2117 rc = walIndexRecover(pWal);
2118 *pChanged = 1;
2121 pWal->writeLock = 0;
2122 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2126 /* If the header is read successfully, check the version number to make
2127 ** sure the wal-index was not constructed with some future format that
2128 ** this version of SQLite cannot understand.
2130 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2131 rc = SQLITE_CANTOPEN_BKPT;
2134 return rc;
2138 ** This is the value that walTryBeginRead returns when it needs to
2139 ** be retried.
2141 #define WAL_RETRY (-1)
2144 ** Attempt to start a read transaction. This might fail due to a race or
2145 ** other transient condition. When that happens, it returns WAL_RETRY to
2146 ** indicate to the caller that it is safe to retry immediately.
2148 ** On success return SQLITE_OK. On a permanent failure (such an
2149 ** I/O error or an SQLITE_BUSY because another process is running
2150 ** recovery) return a positive error code.
2152 ** The useWal parameter is true to force the use of the WAL and disable
2153 ** the case where the WAL is bypassed because it has been completely
2154 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2155 ** to make a copy of the wal-index header into pWal->hdr. If the
2156 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2157 ** to the caller that the local page cache is obsolete and needs to be
2158 ** flushed.) When useWal==1, the wal-index header is assumed to already
2159 ** be loaded and the pChanged parameter is unused.
2161 ** The caller must set the cnt parameter to the number of prior calls to
2162 ** this routine during the current read attempt that returned WAL_RETRY.
2163 ** This routine will start taking more aggressive measures to clear the
2164 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2165 ** number of errors will ultimately return SQLITE_PROTOCOL. The
2166 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2167 ** and is not honoring the locking protocol. There is a vanishingly small
2168 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2169 ** bad luck when there is lots of contention for the wal-index, but that
2170 ** possibility is so small that it can be safely neglected, we believe.
2172 ** On success, this routine obtains a read lock on
2173 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2174 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2175 ** that means the Wal does not hold any read lock. The reader must not
2176 ** access any database page that is modified by a WAL frame up to and
2177 ** including frame number aReadMark[pWal->readLock]. The reader will
2178 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2179 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2180 ** completely and get all content directly from the database file.
2181 ** If the useWal parameter is 1 then the WAL will never be ignored and
2182 ** this routine will always set pWal->readLock>0 on success.
2183 ** When the read transaction is completed, the caller must release the
2184 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2186 ** This routine uses the nBackfill and aReadMark[] fields of the header
2187 ** to select a particular WAL_READ_LOCK() that strives to let the
2188 ** checkpoint process do as much work as possible. This routine might
2189 ** update values of the aReadMark[] array in the header, but if it does
2190 ** so it takes care to hold an exclusive lock on the corresponding
2191 ** WAL_READ_LOCK() while changing values.
2193 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2194 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2195 u32 mxReadMark; /* Largest aReadMark[] value */
2196 int mxI; /* Index of largest aReadMark[] value */
2197 int i; /* Loop counter */
2198 int rc = SQLITE_OK; /* Return code */
2199 u32 mxFrame; /* Wal frame to lock to */
2201 assert( pWal->readLock<0 ); /* Not currently locked */
2203 /* Take steps to avoid spinning forever if there is a protocol error.
2205 ** Circumstances that cause a RETRY should only last for the briefest
2206 ** instances of time. No I/O or other system calls are done while the
2207 ** locks are held, so the locks should not be held for very long. But
2208 ** if we are unlucky, another process that is holding a lock might get
2209 ** paged out or take a page-fault that is time-consuming to resolve,
2210 ** during the few nanoseconds that it is holding the lock. In that case,
2211 ** it might take longer than normal for the lock to free.
2213 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2214 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2215 ** is more of a scheduler yield than an actual delay. But on the 10th
2216 ** an subsequent retries, the delays start becoming longer and longer,
2217 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2218 ** The total delay time before giving up is less than 10 seconds.
2220 if( cnt>5 ){
2221 int nDelay = 1; /* Pause time in microseconds */
2222 if( cnt>100 ){
2223 VVA_ONLY( pWal->lockError = 1; )
2224 return SQLITE_PROTOCOL;
2226 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2227 sqlite3OsSleep(pWal->pVfs, nDelay);
2230 if( !useWal ){
2231 rc = walIndexReadHdr(pWal, pChanged);
2232 if( rc==SQLITE_BUSY ){
2233 /* If there is not a recovery running in another thread or process
2234 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2235 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2236 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2237 ** would be technically correct. But the race is benign since with
2238 ** WAL_RETRY this routine will be called again and will probably be
2239 ** right on the second iteration.
2241 if( pWal->apWiData[0]==0 ){
2242 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2243 ** We assume this is a transient condition, so return WAL_RETRY. The
2244 ** xShmMap() implementation used by the default unix and win32 VFS
2245 ** modules may return SQLITE_BUSY due to a race condition in the
2246 ** code that determines whether or not the shared-memory region
2247 ** must be zeroed before the requested page is returned.
2249 rc = WAL_RETRY;
2250 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2251 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2252 rc = WAL_RETRY;
2253 }else if( rc==SQLITE_BUSY ){
2254 rc = SQLITE_BUSY_RECOVERY;
2257 if( rc!=SQLITE_OK ){
2258 return rc;
2262 pInfo = walCkptInfo(pWal);
2263 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2264 #ifdef SQLITE_ENABLE_SNAPSHOT
2265 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
2266 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
2267 #endif
2269 /* The WAL has been completely backfilled (or it is empty).
2270 ** and can be safely ignored.
2272 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2273 walShmBarrier(pWal);
2274 if( rc==SQLITE_OK ){
2275 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2276 /* It is not safe to allow the reader to continue here if frames
2277 ** may have been appended to the log before READ_LOCK(0) was obtained.
2278 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2279 ** which implies that the database file contains a trustworthy
2280 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2281 ** happening, this is usually correct.
2283 ** However, if frames have been appended to the log (or if the log
2284 ** is wrapped and written for that matter) before the READ_LOCK(0)
2285 ** is obtained, that is not necessarily true. A checkpointer may
2286 ** have started to backfill the appended frames but crashed before
2287 ** it finished. Leaving a corrupt image in the database file.
2289 walUnlockShared(pWal, WAL_READ_LOCK(0));
2290 return WAL_RETRY;
2292 pWal->readLock = 0;
2293 return SQLITE_OK;
2294 }else if( rc!=SQLITE_BUSY ){
2295 return rc;
2299 /* If we get this far, it means that the reader will want to use
2300 ** the WAL to get at content from recent commits. The job now is
2301 ** to select one of the aReadMark[] entries that is closest to
2302 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2304 mxReadMark = 0;
2305 mxI = 0;
2306 mxFrame = pWal->hdr.mxFrame;
2307 #ifdef SQLITE_ENABLE_SNAPSHOT
2308 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2309 mxFrame = pWal->pSnapshot->mxFrame;
2311 #endif
2312 for(i=1; i<WAL_NREADER; i++){
2313 u32 thisMark = pInfo->aReadMark[i];
2314 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2315 assert( thisMark!=READMARK_NOT_USED );
2316 mxReadMark = thisMark;
2317 mxI = i;
2320 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2321 && (mxReadMark<mxFrame || mxI==0)
2323 for(i=1; i<WAL_NREADER; i++){
2324 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2325 if( rc==SQLITE_OK ){
2326 mxReadMark = pInfo->aReadMark[i] = mxFrame;
2327 mxI = i;
2328 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2329 break;
2330 }else if( rc!=SQLITE_BUSY ){
2331 return rc;
2335 if( mxI==0 ){
2336 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2337 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
2340 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2341 if( rc ){
2342 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2344 /* Now that the read-lock has been obtained, check that neither the
2345 ** value in the aReadMark[] array or the contents of the wal-index
2346 ** header have changed.
2348 ** It is necessary to check that the wal-index header did not change
2349 ** between the time it was read and when the shared-lock was obtained
2350 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2351 ** that the log file may have been wrapped by a writer, or that frames
2352 ** that occur later in the log than pWal->hdr.mxFrame may have been
2353 ** copied into the database by a checkpointer. If either of these things
2354 ** happened, then reading the database with the current value of
2355 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2356 ** instead.
2358 ** Before checking that the live wal-index header has not changed
2359 ** since it was read, set Wal.minFrame to the first frame in the wal
2360 ** file that has not yet been checkpointed. This client will not need
2361 ** to read any frames earlier than minFrame from the wal file - they
2362 ** can be safely read directly from the database file.
2364 ** Because a ShmBarrier() call is made between taking the copy of
2365 ** nBackfill and checking that the wal-header in shared-memory still
2366 ** matches the one cached in pWal->hdr, it is guaranteed that the
2367 ** checkpointer that set nBackfill was not working with a wal-index
2368 ** header newer than that cached in pWal->hdr. If it were, that could
2369 ** cause a problem. The checkpointer could omit to checkpoint
2370 ** a version of page X that lies before pWal->minFrame (call that version
2371 ** A) on the basis that there is a newer version (version B) of the same
2372 ** page later in the wal file. But if version B happens to like past
2373 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2374 ** that it can read version A from the database file. However, since
2375 ** we can guarantee that the checkpointer that set nBackfill could not
2376 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2378 pWal->minFrame = pInfo->nBackfill+1;
2379 walShmBarrier(pWal);
2380 if( pInfo->aReadMark[mxI]!=mxReadMark
2381 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2383 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2384 return WAL_RETRY;
2385 }else{
2386 assert( mxReadMark<=pWal->hdr.mxFrame );
2387 pWal->readLock = (i16)mxI;
2389 return rc;
2392 #ifdef SQLITE_ENABLE_SNAPSHOT
2394 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2395 ** variable so that older snapshots can be accessed. To do this, loop
2396 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2397 ** comparing their content to the corresponding page with the database
2398 ** file, if any. Set nBackfillAttempted to the frame number of the
2399 ** first frame for which the wal file content matches the db file.
2401 ** This is only really safe if the file-system is such that any page
2402 ** writes made by earlier checkpointers were atomic operations, which
2403 ** is not always true. It is also possible that nBackfillAttempted
2404 ** may be left set to a value larger than expected, if a wal frame
2405 ** contains content that duplicate of an earlier version of the same
2406 ** page.
2408 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2409 ** error occurs. It is not an error if nBackfillAttempted cannot be
2410 ** decreased at all.
2412 int sqlite3WalSnapshotRecover(Wal *pWal){
2413 int rc;
2415 assert( pWal->readLock>=0 );
2416 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2417 if( rc==SQLITE_OK ){
2418 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2419 int szPage = (int)pWal->szPage;
2420 i64 szDb; /* Size of db file in bytes */
2422 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2423 if( rc==SQLITE_OK ){
2424 void *pBuf1 = sqlite3_malloc(szPage);
2425 void *pBuf2 = sqlite3_malloc(szPage);
2426 if( pBuf1==0 || pBuf2==0 ){
2427 rc = SQLITE_NOMEM;
2428 }else{
2429 u32 i = pInfo->nBackfillAttempted;
2430 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2431 volatile ht_slot *dummy;
2432 volatile u32 *aPgno; /* Array of page numbers */
2433 u32 iZero; /* Frame corresponding to aPgno[0] */
2434 u32 pgno; /* Page number in db file */
2435 i64 iDbOff; /* Offset of db file entry */
2436 i64 iWalOff; /* Offset of wal file entry */
2438 rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2439 if( rc!=SQLITE_OK ) break;
2440 pgno = aPgno[i-iZero];
2441 iDbOff = (i64)(pgno-1) * szPage;
2443 if( iDbOff+szPage<=szDb ){
2444 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2445 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2447 if( rc==SQLITE_OK ){
2448 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2451 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2452 break;
2456 pInfo->nBackfillAttempted = i-1;
2460 sqlite3_free(pBuf1);
2461 sqlite3_free(pBuf2);
2463 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2466 return rc;
2468 #endif /* SQLITE_ENABLE_SNAPSHOT */
2471 ** Begin a read transaction on the database.
2473 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2474 ** it takes a snapshot of the state of the WAL and wal-index for the current
2475 ** instant in time. The current thread will continue to use this snapshot.
2476 ** Other threads might append new content to the WAL and wal-index but
2477 ** that extra content is ignored by the current thread.
2479 ** If the database contents have changes since the previous read
2480 ** transaction, then *pChanged is set to 1 before returning. The
2481 ** Pager layer will use this to know that is cache is stale and
2482 ** needs to be flushed.
2484 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2485 int rc; /* Return code */
2486 int cnt = 0; /* Number of TryBeginRead attempts */
2488 #ifdef SQLITE_ENABLE_SNAPSHOT
2489 int bChanged = 0;
2490 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2491 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2492 bChanged = 1;
2494 #endif
2497 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2498 }while( rc==WAL_RETRY );
2499 testcase( (rc&0xff)==SQLITE_BUSY );
2500 testcase( (rc&0xff)==SQLITE_IOERR );
2501 testcase( rc==SQLITE_PROTOCOL );
2502 testcase( rc==SQLITE_OK );
2504 #ifdef SQLITE_ENABLE_SNAPSHOT
2505 if( rc==SQLITE_OK ){
2506 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2507 /* At this point the client has a lock on an aReadMark[] slot holding
2508 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2509 ** is populated with the wal-index header corresponding to the head
2510 ** of the wal file. Verify that pSnapshot is still valid before
2511 ** continuing. Reasons why pSnapshot might no longer be valid:
2513 ** (1) The WAL file has been reset since the snapshot was taken.
2514 ** In this case, the salt will have changed.
2516 ** (2) A checkpoint as been attempted that wrote frames past
2517 ** pSnapshot->mxFrame into the database file. Note that the
2518 ** checkpoint need not have completed for this to cause problems.
2520 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2522 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2523 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2525 /* It is possible that there is a checkpointer thread running
2526 ** concurrent with this code. If this is the case, it may be that the
2527 ** checkpointer has already determined that it will checkpoint
2528 ** snapshot X, where X is later in the wal file than pSnapshot, but
2529 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2530 ** its intent. To avoid the race condition this leads to, ensure that
2531 ** there is no checkpointer process by taking a shared CKPT lock
2532 ** before checking pInfo->nBackfillAttempted.
2534 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2535 ** this already?
2537 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2539 if( rc==SQLITE_OK ){
2540 /* Check that the wal file has not been wrapped. Assuming that it has
2541 ** not, also check that no checkpointer has attempted to checkpoint any
2542 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2543 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2544 ** with *pSnapshot and set *pChanged as appropriate for opening the
2545 ** snapshot. */
2546 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2547 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2549 assert( pWal->readLock>0 );
2550 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2551 *pChanged = bChanged;
2552 }else{
2553 rc = SQLITE_BUSY_SNAPSHOT;
2556 /* Release the shared CKPT lock obtained above. */
2557 walUnlockShared(pWal, WAL_CKPT_LOCK);
2561 if( rc!=SQLITE_OK ){
2562 sqlite3WalEndReadTransaction(pWal);
2566 #endif
2567 return rc;
2571 ** Finish with a read transaction. All this does is release the
2572 ** read-lock.
2574 void sqlite3WalEndReadTransaction(Wal *pWal){
2575 sqlite3WalEndWriteTransaction(pWal);
2576 if( pWal->readLock>=0 ){
2577 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2578 pWal->readLock = -1;
2583 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2584 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2585 ** to zero.
2587 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2588 ** error does occur, the final value of *piRead is undefined.
2590 int sqlite3WalFindFrame(
2591 Wal *pWal, /* WAL handle */
2592 Pgno pgno, /* Database page number to read data for */
2593 u32 *piRead /* OUT: Frame number (or zero) */
2595 u32 iRead = 0; /* If !=0, WAL frame to return data from */
2596 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
2597 int iHash; /* Used to loop through N hash tables */
2598 int iMinHash;
2600 /* This routine is only be called from within a read transaction. */
2601 assert( pWal->readLock>=0 || pWal->lockError );
2603 /* If the "last page" field of the wal-index header snapshot is 0, then
2604 ** no data will be read from the wal under any circumstances. Return early
2605 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2606 ** then the WAL is ignored by the reader so return early, as if the
2607 ** WAL were empty.
2609 if( iLast==0 || pWal->readLock==0 ){
2610 *piRead = 0;
2611 return SQLITE_OK;
2614 /* Search the hash table or tables for an entry matching page number
2615 ** pgno. Each iteration of the following for() loop searches one
2616 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2618 ** This code might run concurrently to the code in walIndexAppend()
2619 ** that adds entries to the wal-index (and possibly to this hash
2620 ** table). This means the value just read from the hash
2621 ** slot (aHash[iKey]) may have been added before or after the
2622 ** current read transaction was opened. Values added after the
2623 ** read transaction was opened may have been written incorrectly -
2624 ** i.e. these slots may contain garbage data. However, we assume
2625 ** that any slots written before the current read transaction was
2626 ** opened remain unmodified.
2628 ** For the reasons above, the if(...) condition featured in the inner
2629 ** loop of the following block is more stringent that would be required
2630 ** if we had exclusive access to the hash-table:
2632 ** (aPgno[iFrame]==pgno):
2633 ** This condition filters out normal hash-table collisions.
2635 ** (iFrame<=iLast):
2636 ** This condition filters out entries that were added to the hash
2637 ** table after the current read-transaction had started.
2639 iMinHash = walFramePage(pWal->minFrame);
2640 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
2641 volatile ht_slot *aHash; /* Pointer to hash table */
2642 volatile u32 *aPgno; /* Pointer to array of page numbers */
2643 u32 iZero; /* Frame number corresponding to aPgno[0] */
2644 int iKey; /* Hash slot index */
2645 int nCollide; /* Number of hash collisions remaining */
2646 int rc; /* Error code */
2648 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2649 if( rc!=SQLITE_OK ){
2650 return rc;
2652 nCollide = HASHTABLE_NSLOT;
2653 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2654 u32 iFrame = aHash[iKey] + iZero;
2655 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2656 assert( iFrame>iRead || CORRUPT_DB );
2657 iRead = iFrame;
2659 if( (nCollide--)==0 ){
2660 return SQLITE_CORRUPT_BKPT;
2665 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2666 /* If expensive assert() statements are available, do a linear search
2667 ** of the wal-index file content. Make sure the results agree with the
2668 ** result obtained using the hash indexes above. */
2670 u32 iRead2 = 0;
2671 u32 iTest;
2672 assert( pWal->minFrame>0 );
2673 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
2674 if( walFramePgno(pWal, iTest)==pgno ){
2675 iRead2 = iTest;
2676 break;
2679 assert( iRead==iRead2 );
2681 #endif
2683 *piRead = iRead;
2684 return SQLITE_OK;
2688 ** Read the contents of frame iRead from the wal file into buffer pOut
2689 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2690 ** error code otherwise.
2692 int sqlite3WalReadFrame(
2693 Wal *pWal, /* WAL handle */
2694 u32 iRead, /* Frame to read */
2695 int nOut, /* Size of buffer pOut in bytes */
2696 u8 *pOut /* Buffer to write page data to */
2698 int sz;
2699 i64 iOffset;
2700 sz = pWal->hdr.szPage;
2701 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2702 testcase( sz<=32768 );
2703 testcase( sz>=65536 );
2704 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2705 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2706 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2710 ** Return the size of the database in pages (or zero, if unknown).
2712 Pgno sqlite3WalDbsize(Wal *pWal){
2713 if( pWal && ALWAYS(pWal->readLock>=0) ){
2714 return pWal->hdr.nPage;
2716 return 0;
2721 ** This function starts a write transaction on the WAL.
2723 ** A read transaction must have already been started by a prior call
2724 ** to sqlite3WalBeginReadTransaction().
2726 ** If another thread or process has written into the database since
2727 ** the read transaction was started, then it is not possible for this
2728 ** thread to write as doing so would cause a fork. So this routine
2729 ** returns SQLITE_BUSY in that case and no write transaction is started.
2731 ** There can only be a single writer active at a time.
2733 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2734 int rc;
2736 /* Cannot start a write transaction without first holding a read
2737 ** transaction. */
2738 assert( pWal->readLock>=0 );
2739 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2741 if( pWal->readOnly ){
2742 return SQLITE_READONLY;
2745 /* Only one writer allowed at a time. Get the write lock. Return
2746 ** SQLITE_BUSY if unable.
2748 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2749 if( rc ){
2750 return rc;
2752 pWal->writeLock = 1;
2754 /* If another connection has written to the database file since the
2755 ** time the read transaction on this connection was started, then
2756 ** the write is disallowed.
2758 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2759 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2760 pWal->writeLock = 0;
2761 rc = SQLITE_BUSY_SNAPSHOT;
2764 return rc;
2768 ** End a write transaction. The commit has already been done. This
2769 ** routine merely releases the lock.
2771 int sqlite3WalEndWriteTransaction(Wal *pWal){
2772 if( pWal->writeLock ){
2773 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2774 pWal->writeLock = 0;
2775 pWal->iReCksum = 0;
2776 pWal->truncateOnCommit = 0;
2778 return SQLITE_OK;
2782 ** If any data has been written (but not committed) to the log file, this
2783 ** function moves the write-pointer back to the start of the transaction.
2785 ** Additionally, the callback function is invoked for each frame written
2786 ** to the WAL since the start of the transaction. If the callback returns
2787 ** other than SQLITE_OK, it is not invoked again and the error code is
2788 ** returned to the caller.
2790 ** Otherwise, if the callback function does not return an error, this
2791 ** function returns SQLITE_OK.
2793 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2794 int rc = SQLITE_OK;
2795 if( ALWAYS(pWal->writeLock) ){
2796 Pgno iMax = pWal->hdr.mxFrame;
2797 Pgno iFrame;
2799 /* Restore the clients cache of the wal-index header to the state it
2800 ** was in before the client began writing to the database.
2802 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2804 for(iFrame=pWal->hdr.mxFrame+1;
2805 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2806 iFrame++
2808 /* This call cannot fail. Unless the page for which the page number
2809 ** is passed as the second argument is (a) in the cache and
2810 ** (b) has an outstanding reference, then xUndo is either a no-op
2811 ** (if (a) is false) or simply expels the page from the cache (if (b)
2812 ** is false).
2814 ** If the upper layer is doing a rollback, it is guaranteed that there
2815 ** are no outstanding references to any page other than page 1. And
2816 ** page 1 is never written to the log until the transaction is
2817 ** committed. As a result, the call to xUndo may not fail.
2819 assert( walFramePgno(pWal, iFrame)!=1 );
2820 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2822 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
2824 return rc;
2828 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2829 ** values. This function populates the array with values required to
2830 ** "rollback" the write position of the WAL handle back to the current
2831 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2833 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2834 assert( pWal->writeLock );
2835 aWalData[0] = pWal->hdr.mxFrame;
2836 aWalData[1] = pWal->hdr.aFrameCksum[0];
2837 aWalData[2] = pWal->hdr.aFrameCksum[1];
2838 aWalData[3] = pWal->nCkpt;
2842 ** Move the write position of the WAL back to the point identified by
2843 ** the values in the aWalData[] array. aWalData must point to an array
2844 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2845 ** by a call to WalSavepoint().
2847 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2848 int rc = SQLITE_OK;
2850 assert( pWal->writeLock );
2851 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2853 if( aWalData[3]!=pWal->nCkpt ){
2854 /* This savepoint was opened immediately after the write-transaction
2855 ** was started. Right after that, the writer decided to wrap around
2856 ** to the start of the log. Update the savepoint values to match.
2858 aWalData[0] = 0;
2859 aWalData[3] = pWal->nCkpt;
2862 if( aWalData[0]<pWal->hdr.mxFrame ){
2863 pWal->hdr.mxFrame = aWalData[0];
2864 pWal->hdr.aFrameCksum[0] = aWalData[1];
2865 pWal->hdr.aFrameCksum[1] = aWalData[2];
2866 walCleanupHash(pWal);
2869 return rc;
2873 ** This function is called just before writing a set of frames to the log
2874 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2875 ** to the current log file, it is possible to overwrite the start of the
2876 ** existing log file with the new frames (i.e. "reset" the log). If so,
2877 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2878 ** unchanged.
2880 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2881 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2882 ** if an error occurs.
2884 static int walRestartLog(Wal *pWal){
2885 int rc = SQLITE_OK;
2886 int cnt;
2888 if( pWal->readLock==0 ){
2889 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2890 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2891 if( pInfo->nBackfill>0 ){
2892 u32 salt1;
2893 sqlite3_randomness(4, &salt1);
2894 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2895 if( rc==SQLITE_OK ){
2896 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2897 ** readers are currently using the WAL), then the transactions
2898 ** frames will overwrite the start of the existing log. Update the
2899 ** wal-index header to reflect this.
2901 ** In theory it would be Ok to update the cache of the header only
2902 ** at this point. But updating the actual wal-index header is also
2903 ** safe and means there is no special case for sqlite3WalUndo()
2904 ** to handle if this transaction is rolled back. */
2905 walRestartHdr(pWal, salt1);
2906 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2907 }else if( rc!=SQLITE_BUSY ){
2908 return rc;
2911 walUnlockShared(pWal, WAL_READ_LOCK(0));
2912 pWal->readLock = -1;
2913 cnt = 0;
2915 int notUsed;
2916 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2917 }while( rc==WAL_RETRY );
2918 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2919 testcase( (rc&0xff)==SQLITE_IOERR );
2920 testcase( rc==SQLITE_PROTOCOL );
2921 testcase( rc==SQLITE_OK );
2923 return rc;
2927 ** Information about the current state of the WAL file and where
2928 ** the next fsync should occur - passed from sqlite3WalFrames() into
2929 ** walWriteToLog().
2931 typedef struct WalWriter {
2932 Wal *pWal; /* The complete WAL information */
2933 sqlite3_file *pFd; /* The WAL file to which we write */
2934 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2935 int syncFlags; /* Flags for the fsync */
2936 int szPage; /* Size of one page */
2937 } WalWriter;
2940 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
2941 ** Do a sync when crossing the p->iSyncPoint boundary.
2943 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2944 ** first write the part before iSyncPoint, then sync, then write the
2945 ** rest.
2947 static int walWriteToLog(
2948 WalWriter *p, /* WAL to write to */
2949 void *pContent, /* Content to be written */
2950 int iAmt, /* Number of bytes to write */
2951 sqlite3_int64 iOffset /* Start writing at this offset */
2953 int rc;
2954 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2955 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2956 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
2957 if( rc ) return rc;
2958 iOffset += iFirstAmt;
2959 iAmt -= iFirstAmt;
2960 pContent = (void*)(iFirstAmt + (char*)pContent);
2961 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
2962 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
2963 if( iAmt==0 || rc ) return rc;
2965 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2966 return rc;
2970 ** Write out a single frame of the WAL
2972 static int walWriteOneFrame(
2973 WalWriter *p, /* Where to write the frame */
2974 PgHdr *pPage, /* The page of the frame to be written */
2975 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2976 sqlite3_int64 iOffset /* Byte offset at which to write */
2978 int rc; /* Result code from subfunctions */
2979 void *pData; /* Data actually written */
2980 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2981 #if defined(SQLITE_HAS_CODEC)
2982 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
2983 #else
2984 pData = pPage->pData;
2985 #endif
2986 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2987 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2988 if( rc ) return rc;
2989 /* Write the page data */
2990 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
2991 return rc;
2995 ** This function is called as part of committing a transaction within which
2996 ** one or more frames have been overwritten. It updates the checksums for
2997 ** all frames written to the wal file by the current transaction starting
2998 ** with the earliest to have been overwritten.
3000 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3002 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3003 const int szPage = pWal->szPage;/* Database page size */
3004 int rc = SQLITE_OK; /* Return code */
3005 u8 *aBuf; /* Buffer to load data from wal file into */
3006 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3007 u32 iRead; /* Next frame to read from wal file */
3008 i64 iCksumOff;
3010 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3011 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3013 /* Find the checksum values to use as input for the recalculating the
3014 ** first checksum. If the first frame is frame 1 (implying that the current
3015 ** transaction restarted the wal file), these values must be read from the
3016 ** wal-file header. Otherwise, read them from the frame header of the
3017 ** previous frame. */
3018 assert( pWal->iReCksum>0 );
3019 if( pWal->iReCksum==1 ){
3020 iCksumOff = 24;
3021 }else{
3022 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3024 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3025 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3026 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3028 iRead = pWal->iReCksum;
3029 pWal->iReCksum = 0;
3030 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3031 i64 iOff = walFrameOffset(iRead, szPage);
3032 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3033 if( rc==SQLITE_OK ){
3034 u32 iPgno, nDbSize;
3035 iPgno = sqlite3Get4byte(aBuf);
3036 nDbSize = sqlite3Get4byte(&aBuf[4]);
3038 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3039 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3043 sqlite3_free(aBuf);
3044 return rc;
3048 ** Write a set of frames to the log. The caller must hold the write-lock
3049 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3051 int sqlite3WalFrames(
3052 Wal *pWal, /* Wal handle to write to */
3053 int szPage, /* Database page-size in bytes */
3054 PgHdr *pList, /* List of dirty pages to write */
3055 Pgno nTruncate, /* Database size after this commit */
3056 int isCommit, /* True if this is a commit */
3057 int sync_flags /* Flags to pass to OsSync() (or 0) */
3059 int rc; /* Used to catch return codes */
3060 u32 iFrame; /* Next frame address */
3061 PgHdr *p; /* Iterator to run through pList with. */
3062 PgHdr *pLast = 0; /* Last frame in list */
3063 int nExtra = 0; /* Number of extra copies of last page */
3064 int szFrame; /* The size of a single frame */
3065 i64 iOffset; /* Next byte to write in WAL file */
3066 WalWriter w; /* The writer */
3067 u32 iFirst = 0; /* First frame that may be overwritten */
3068 WalIndexHdr *pLive; /* Pointer to shared header */
3070 assert( pList );
3071 assert( pWal->writeLock );
3073 /* If this frame set completes a transaction, then nTruncate>0. If
3074 ** nTruncate==0 then this frame set does not complete the transaction. */
3075 assert( (isCommit!=0)==(nTruncate!=0) );
3077 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3078 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3079 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3080 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3082 #endif
3084 pLive = (WalIndexHdr*)walIndexHdr(pWal);
3085 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3086 iFirst = pLive->mxFrame+1;
3089 /* See if it is possible to write these frames into the start of the
3090 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3092 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3093 return rc;
3096 /* If this is the first frame written into the log, write the WAL
3097 ** header to the start of the WAL file. See comments at the top of
3098 ** this source file for a description of the WAL header format.
3100 iFrame = pWal->hdr.mxFrame;
3101 if( iFrame==0 ){
3102 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3103 u32 aCksum[2]; /* Checksum for wal-header */
3105 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3106 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3107 sqlite3Put4byte(&aWalHdr[8], szPage);
3108 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3109 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3110 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3111 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3112 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3113 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3115 pWal->szPage = szPage;
3116 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3117 pWal->hdr.aFrameCksum[0] = aCksum[0];
3118 pWal->hdr.aFrameCksum[1] = aCksum[1];
3119 pWal->truncateOnCommit = 1;
3121 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3122 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3123 if( rc!=SQLITE_OK ){
3124 return rc;
3127 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3128 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3129 ** an out-of-order write following a WAL restart could result in
3130 ** database corruption. See the ticket:
3132 ** https://sqlite.org/src/info/ff5be73dee
3134 if( pWal->syncHeader ){
3135 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3136 if( rc ) return rc;
3139 assert( (int)pWal->szPage==szPage );
3141 /* Setup information needed to write frames into the WAL */
3142 w.pWal = pWal;
3143 w.pFd = pWal->pWalFd;
3144 w.iSyncPoint = 0;
3145 w.syncFlags = sync_flags;
3146 w.szPage = szPage;
3147 iOffset = walFrameOffset(iFrame+1, szPage);
3148 szFrame = szPage + WAL_FRAME_HDRSIZE;
3150 /* Write all frames into the log file exactly once */
3151 for(p=pList; p; p=p->pDirty){
3152 int nDbSize; /* 0 normally. Positive == commit flag */
3154 /* Check if this page has already been written into the wal file by
3155 ** the current transaction. If so, overwrite the existing frame and
3156 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3157 ** checksums must be recomputed when the transaction is committed. */
3158 if( iFirst && (p->pDirty || isCommit==0) ){
3159 u32 iWrite = 0;
3160 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3161 assert( rc==SQLITE_OK || iWrite==0 );
3162 if( iWrite>=iFirst ){
3163 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3164 void *pData;
3165 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3166 pWal->iReCksum = iWrite;
3168 #if defined(SQLITE_HAS_CODEC)
3169 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3170 #else
3171 pData = p->pData;
3172 #endif
3173 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3174 if( rc ) return rc;
3175 p->flags &= ~PGHDR_WAL_APPEND;
3176 continue;
3180 iFrame++;
3181 assert( iOffset==walFrameOffset(iFrame, szPage) );
3182 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3183 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3184 if( rc ) return rc;
3185 pLast = p;
3186 iOffset += szFrame;
3187 p->flags |= PGHDR_WAL_APPEND;
3190 /* Recalculate checksums within the wal file if required. */
3191 if( isCommit && pWal->iReCksum ){
3192 rc = walRewriteChecksums(pWal, iFrame);
3193 if( rc ) return rc;
3196 /* If this is the end of a transaction, then we might need to pad
3197 ** the transaction and/or sync the WAL file.
3199 ** Padding and syncing only occur if this set of frames complete a
3200 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
3201 ** or synchronous==OFF, then no padding or syncing are needed.
3203 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3204 ** needed and only the sync is done. If padding is needed, then the
3205 ** final frame is repeated (with its commit mark) until the next sector
3206 ** boundary is crossed. Only the part of the WAL prior to the last
3207 ** sector boundary is synced; the part of the last frame that extends
3208 ** past the sector boundary is written after the sync.
3210 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3211 int bSync = 1;
3212 if( pWal->padToSectorBoundary ){
3213 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3214 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3215 bSync = (w.iSyncPoint==iOffset);
3216 testcase( bSync );
3217 while( iOffset<w.iSyncPoint ){
3218 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3219 if( rc ) return rc;
3220 iOffset += szFrame;
3221 nExtra++;
3224 if( bSync ){
3225 assert( rc==SQLITE_OK );
3226 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3230 /* If this frame set completes the first transaction in the WAL and
3231 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3232 ** journal size limit, if possible.
3234 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3235 i64 sz = pWal->mxWalSize;
3236 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3237 sz = walFrameOffset(iFrame+nExtra+1, szPage);
3239 walLimitSize(pWal, sz);
3240 pWal->truncateOnCommit = 0;
3243 /* Append data to the wal-index. It is not necessary to lock the
3244 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3245 ** guarantees that there are no other writers, and no data that may
3246 ** be in use by existing readers is being overwritten.
3248 iFrame = pWal->hdr.mxFrame;
3249 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3250 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3251 iFrame++;
3252 rc = walIndexAppend(pWal, iFrame, p->pgno);
3254 while( rc==SQLITE_OK && nExtra>0 ){
3255 iFrame++;
3256 nExtra--;
3257 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3260 if( rc==SQLITE_OK ){
3261 /* Update the private copy of the header. */
3262 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3263 testcase( szPage<=32768 );
3264 testcase( szPage>=65536 );
3265 pWal->hdr.mxFrame = iFrame;
3266 if( isCommit ){
3267 pWal->hdr.iChange++;
3268 pWal->hdr.nPage = nTruncate;
3270 /* If this is a commit, update the wal-index header too. */
3271 if( isCommit ){
3272 walIndexWriteHdr(pWal);
3273 pWal->iCallback = iFrame;
3277 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3278 return rc;
3282 ** This routine is called to implement sqlite3_wal_checkpoint() and
3283 ** related interfaces.
3285 ** Obtain a CHECKPOINT lock and then backfill as much information as
3286 ** we can from WAL into the database.
3288 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3289 ** callback. In this case this function runs a blocking checkpoint.
3291 int sqlite3WalCheckpoint(
3292 Wal *pWal, /* Wal connection */
3293 sqlite3 *db, /* Check this handle's interrupt flag */
3294 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
3295 int (*xBusy)(void*), /* Function to call when busy */
3296 void *pBusyArg, /* Context argument for xBusyHandler */
3297 int sync_flags, /* Flags to sync db file with (or 0) */
3298 int nBuf, /* Size of temporary buffer */
3299 u8 *zBuf, /* Temporary buffer to use */
3300 int *pnLog, /* OUT: Number of frames in WAL */
3301 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
3303 int rc; /* Return code */
3304 int isChanged = 0; /* True if a new wal-index header is loaded */
3305 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
3306 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
3308 assert( pWal->ckptLock==0 );
3309 assert( pWal->writeLock==0 );
3311 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3312 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3313 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3315 if( pWal->readOnly ) return SQLITE_READONLY;
3316 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3318 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3319 ** "checkpoint" lock on the database file. */
3320 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3321 if( rc ){
3322 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3323 ** checkpoint operation at the same time, the lock cannot be obtained and
3324 ** SQLITE_BUSY is returned.
3325 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3326 ** it will not be invoked in this case.
3328 testcase( rc==SQLITE_BUSY );
3329 testcase( xBusy!=0 );
3330 return rc;
3332 pWal->ckptLock = 1;
3334 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3335 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3336 ** file.
3338 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3339 ** immediately, and a busy-handler is configured, it is invoked and the
3340 ** writer lock retried until either the busy-handler returns 0 or the
3341 ** lock is successfully obtained.
3343 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3344 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3345 if( rc==SQLITE_OK ){
3346 pWal->writeLock = 1;
3347 }else if( rc==SQLITE_BUSY ){
3348 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3349 xBusy2 = 0;
3350 rc = SQLITE_OK;
3354 /* Read the wal-index header. */
3355 if( rc==SQLITE_OK ){
3356 rc = walIndexReadHdr(pWal, &isChanged);
3357 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3358 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3362 /* Copy data from the log to the database file. */
3363 if( rc==SQLITE_OK ){
3365 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3366 rc = SQLITE_CORRUPT_BKPT;
3367 }else{
3368 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3371 /* If no error occurred, set the output variables. */
3372 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3373 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3374 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3378 if( isChanged ){
3379 /* If a new wal-index header was loaded before the checkpoint was
3380 ** performed, then the pager-cache associated with pWal is now
3381 ** out of date. So zero the cached wal-index header to ensure that
3382 ** next time the pager opens a snapshot on this database it knows that
3383 ** the cache needs to be reset.
3385 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3388 /* Release the locks. */
3389 sqlite3WalEndWriteTransaction(pWal);
3390 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3391 pWal->ckptLock = 0;
3392 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3393 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3396 /* Return the value to pass to a sqlite3_wal_hook callback, the
3397 ** number of frames in the WAL at the point of the last commit since
3398 ** sqlite3WalCallback() was called. If no commits have occurred since
3399 ** the last call, then return 0.
3401 int sqlite3WalCallback(Wal *pWal){
3402 u32 ret = 0;
3403 if( pWal ){
3404 ret = pWal->iCallback;
3405 pWal->iCallback = 0;
3407 return (int)ret;
3411 ** This function is called to change the WAL subsystem into or out
3412 ** of locking_mode=EXCLUSIVE.
3414 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3415 ** into locking_mode=NORMAL. This means that we must acquire a lock
3416 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3417 ** or if the acquisition of the lock fails, then return 0. If the
3418 ** transition out of exclusive-mode is successful, return 1. This
3419 ** operation must occur while the pager is still holding the exclusive
3420 ** lock on the main database file.
3422 ** If op is one, then change from locking_mode=NORMAL into
3423 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3424 ** be released. Return 1 if the transition is made and 0 if the
3425 ** WAL is already in exclusive-locking mode - meaning that this
3426 ** routine is a no-op. The pager must already hold the exclusive lock
3427 ** on the main database file before invoking this operation.
3429 ** If op is negative, then do a dry-run of the op==1 case but do
3430 ** not actually change anything. The pager uses this to see if it
3431 ** should acquire the database exclusive lock prior to invoking
3432 ** the op==1 case.
3434 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3435 int rc;
3436 assert( pWal->writeLock==0 );
3437 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3439 /* pWal->readLock is usually set, but might be -1 if there was a
3440 ** prior error while attempting to acquire are read-lock. This cannot
3441 ** happen if the connection is actually in exclusive mode (as no xShmLock
3442 ** locks are taken in this case). Nor should the pager attempt to
3443 ** upgrade to exclusive-mode following such an error.
3445 assert( pWal->readLock>=0 || pWal->lockError );
3446 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3448 if( op==0 ){
3449 if( pWal->exclusiveMode ){
3450 pWal->exclusiveMode = 0;
3451 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3452 pWal->exclusiveMode = 1;
3454 rc = pWal->exclusiveMode==0;
3455 }else{
3456 /* Already in locking_mode=NORMAL */
3457 rc = 0;
3459 }else if( op>0 ){
3460 assert( pWal->exclusiveMode==0 );
3461 assert( pWal->readLock>=0 );
3462 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3463 pWal->exclusiveMode = 1;
3464 rc = 1;
3465 }else{
3466 rc = pWal->exclusiveMode==0;
3468 return rc;
3472 ** Return true if the argument is non-NULL and the WAL module is using
3473 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3474 ** WAL module is using shared-memory, return false.
3476 int sqlite3WalHeapMemory(Wal *pWal){
3477 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3480 #ifdef SQLITE_ENABLE_SNAPSHOT
3481 /* Create a snapshot object. The content of a snapshot is opaque to
3482 ** every other subsystem, so the WAL module can put whatever it needs
3483 ** in the object.
3485 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3486 int rc = SQLITE_OK;
3487 WalIndexHdr *pRet;
3488 static const u32 aZero[4] = { 0, 0, 0, 0 };
3490 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3492 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3493 *ppSnapshot = 0;
3494 return SQLITE_ERROR;
3496 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3497 if( pRet==0 ){
3498 rc = SQLITE_NOMEM_BKPT;
3499 }else{
3500 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3501 *ppSnapshot = (sqlite3_snapshot*)pRet;
3504 return rc;
3507 /* Try to open on pSnapshot when the next read-transaction starts
3509 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3510 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3514 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3515 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3517 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3518 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3519 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3521 /* aSalt[0] is a copy of the value stored in the wal file header. It
3522 ** is incremented each time the wal file is restarted. */
3523 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3524 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3525 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3526 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3527 return 0;
3529 #endif /* SQLITE_ENABLE_SNAPSHOT */
3531 #ifdef SQLITE_ENABLE_ZIPVFS
3533 ** If the argument is not NULL, it points to a Wal object that holds a
3534 ** read-lock. This function returns the database page-size if it is known,
3535 ** or zero if it is not (or if pWal is NULL).
3537 int sqlite3WalFramesize(Wal *pWal){
3538 assert( pWal==0 || pWal->readLock>=0 );
3539 return (pWal ? pWal->szPage : 0);
3541 #endif
3543 /* Return the sqlite3_file object for the WAL file
3545 sqlite3_file *sqlite3WalFile(Wal *pWal){
3546 return pWal->pWalFd;
3549 #endif /* #ifndef SQLITE_OMIT_WAL */