4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code for the VdbeSorter object, used in concert with
13 ** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements
14 ** or by SELECT statements with ORDER BY clauses that cannot be satisfied
15 ** using indexes and without LIMIT clauses.
17 ** The VdbeSorter object implements a multi-threaded external merge sort
18 ** algorithm that is efficient even if the number of elements being sorted
19 ** exceeds the available memory.
21 ** Here is the (internal, non-API) interface between this module and the
22 ** rest of the SQLite system:
24 ** sqlite3VdbeSorterInit() Create a new VdbeSorter object.
26 ** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter
27 ** object. The row is a binary blob in the
28 ** OP_MakeRecord format that contains both
29 ** the ORDER BY key columns and result columns
30 ** in the case of a SELECT w/ ORDER BY, or
31 ** the complete record for an index entry
32 ** in the case of a CREATE INDEX.
34 ** sqlite3VdbeSorterRewind() Sort all content previously added.
35 ** Position the read cursor on the
36 ** first sorted element.
38 ** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted
41 ** sqlite3VdbeSorterRowkey() Return the complete binary blob for the
42 ** row currently under the read cursor.
44 ** sqlite3VdbeSorterCompare() Compare the binary blob for the row
45 ** currently under the read cursor against
46 ** another binary blob X and report if
47 ** X is strictly less than the read cursor.
48 ** Used to enforce uniqueness in a
49 ** CREATE UNIQUE INDEX statement.
51 ** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim
54 ** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This
55 ** is like Close() followed by Init() only
58 ** The interfaces above must be called in a particular order. Write() can
59 ** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and
60 ** Compare() can only occur in between Rewind() and Close()/Reset(). i.e.
63 ** for each record: Write()
71 ** Records passed to the sorter via calls to Write() are initially held
72 ** unsorted in main memory. Assuming the amount of memory used never exceeds
73 ** a threshold, when Rewind() is called the set of records is sorted using
74 ** an in-memory merge sort. In this case, no temporary files are required
75 ** and subsequent calls to Rowkey(), Next() and Compare() read records
76 ** directly from main memory.
78 ** If the amount of space used to store records in main memory exceeds the
79 ** threshold, then the set of records currently in memory are sorted and
80 ** written to a temporary file in "Packed Memory Array" (PMA) format.
81 ** A PMA created at this point is known as a "level-0 PMA". Higher levels
82 ** of PMAs may be created by merging existing PMAs together - for example
83 ** merging two or more level-0 PMAs together creates a level-1 PMA.
85 ** The threshold for the amount of main memory to use before flushing
86 ** records to a PMA is roughly the same as the limit configured for the
87 ** page-cache of the main database. Specifically, the threshold is set to
88 ** the value returned by "PRAGMA main.page_size" multipled by
89 ** that returned by "PRAGMA main.cache_size", in bytes.
91 ** If the sorter is running in single-threaded mode, then all PMAs generated
92 ** are appended to a single temporary file. Or, if the sorter is running in
93 ** multi-threaded mode then up to (N+1) temporary files may be opened, where
94 ** N is the configured number of worker threads. In this case, instead of
95 ** sorting the records and writing the PMA to a temporary file itself, the
96 ** calling thread usually launches a worker thread to do so. Except, if
97 ** there are already N worker threads running, the main thread does the work
100 ** The sorter is running in multi-threaded mode if (a) the library was built
101 ** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
102 ** than zero, and (b) worker threads have been enabled at runtime by calling
103 ** "PRAGMA threads=N" with some value of N greater than 0.
105 ** When Rewind() is called, any data remaining in memory is flushed to a
106 ** final PMA. So at this point the data is stored in some number of sorted
107 ** PMAs within temporary files on disk.
109 ** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
110 ** sorter is running in single-threaded mode, then these PMAs are merged
111 ** incrementally as keys are retreived from the sorter by the VDBE. The
112 ** MergeEngine object, described in further detail below, performs this
115 ** Or, if running in multi-threaded mode, then a background thread is
116 ** launched to merge the existing PMAs. Once the background thread has
117 ** merged T bytes of data into a single sorted PMA, the main thread
118 ** begins reading keys from that PMA while the background thread proceeds
119 ** with merging the next T bytes of data. And so on.
121 ** Parameter T is set to half the value of the memory threshold used
122 ** by Write() above to determine when to create a new PMA.
124 ** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when
125 ** Rewind() is called, then a hierarchy of incremental-merges is used.
126 ** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on
127 ** disk are merged together. Then T bytes of data from the second set, and
128 ** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT
129 ** PMAs at a time. This done is to improve locality.
131 ** If running in multi-threaded mode and there are more than
132 ** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more
133 ** than one background thread may be created. Specifically, there may be
134 ** one background thread for each temporary file on disk, and one background
135 ** thread to merge the output of each of the others to a single PMA for
136 ** the main thread to read from.
138 #include "sqliteInt.h"
142 ** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various
143 ** messages to stderr that may be helpful in understanding the performance
144 ** characteristics of the sorter in multi-threaded mode.
147 # define SQLITE_DEBUG_SORTER_THREADS 1
151 ** Hard-coded maximum amount of data to accumulate in memory before flushing
152 ** to a level 0 PMA. The purpose of this limit is to prevent various integer
153 ** overflows. 512MiB.
155 #define SQLITE_MAX_PMASZ (1<<29)
158 ** Private objects used by the sorter
160 typedef struct MergeEngine MergeEngine
; /* Merge PMAs together */
161 typedef struct PmaReader PmaReader
; /* Incrementally read one PMA */
162 typedef struct PmaWriter PmaWriter
; /* Incrementally write one PMA */
163 typedef struct SorterRecord SorterRecord
; /* A record being sorted */
164 typedef struct SortSubtask SortSubtask
; /* A sub-task in the sort process */
165 typedef struct SorterFile SorterFile
; /* Temporary file object wrapper */
166 typedef struct SorterList SorterList
; /* In-memory list of records */
167 typedef struct IncrMerger IncrMerger
; /* Read & merge multiple PMAs */
170 ** A container for a temp file handle and the current amount of data
171 ** stored in the file.
174 sqlite3_file
*pFd
; /* File handle */
175 i64 iEof
; /* Bytes of data stored in pFd */
179 ** An in-memory list of objects to be sorted.
181 ** If aMemory==0 then each object is allocated separately and the objects
182 ** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects
183 ** are stored in the aMemory[] bulk memory, one right after the other, and
184 ** are connected using SorterRecord.u.iNext.
187 SorterRecord
*pList
; /* Linked list of records */
188 u8
*aMemory
; /* If non-NULL, bulk memory to hold pList */
189 int szPMA
; /* Size of pList as PMA in bytes */
193 ** The MergeEngine object is used to combine two or more smaller PMAs into
194 ** one big PMA using a merge operation. Separate PMAs all need to be
195 ** combined into one big PMA in order to be able to step through the sorted
198 ** The aReadr[] array contains a PmaReader object for each of the PMAs being
199 ** merged. An aReadr[] object either points to a valid key or else is at EOF.
200 ** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.)
201 ** For the purposes of the paragraphs below, we assume that the array is
202 ** actually N elements in size, where N is the smallest power of 2 greater
203 ** to or equal to the number of PMAs being merged. The extra aReadr[] elements
204 ** are treated as if they are empty (always at EOF).
206 ** The aTree[] array is also N elements in size. The value of N is stored in
207 ** the MergeEngine.nTree variable.
209 ** The final (N/2) elements of aTree[] contain the results of comparing
210 ** pairs of PMA keys together. Element i contains the result of
211 ** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the
212 ** aTree element is set to the index of it.
214 ** For the purposes of this comparison, EOF is considered greater than any
215 ** other key value. If the keys are equal (only possible with two EOF
216 ** values), it doesn't matter which index is stored.
218 ** The (N/4) elements of aTree[] that precede the final (N/2) described
219 ** above contains the index of the smallest of each block of 4 PmaReaders
220 ** And so on. So that aTree[1] contains the index of the PmaReader that
221 ** currently points to the smallest key value. aTree[0] is unused.
225 ** aReadr[0] -> Banana
226 ** aReadr[1] -> Feijoa
227 ** aReadr[2] -> Elderberry
228 ** aReadr[3] -> Currant
229 ** aReadr[4] -> Grapefruit
230 ** aReadr[5] -> Apple
231 ** aReadr[6] -> Durian
234 ** aTree[] = { X, 5 0, 5 0, 3, 5, 6 }
236 ** The current element is "Apple" (the value of the key indicated by
237 ** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will
238 ** be advanced to the next key in its segment. Say the next key is
241 ** aReadr[5] -> Eggplant
243 ** The contents of aTree[] are updated first by comparing the new PmaReader
244 ** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader
245 ** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
246 ** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader
247 ** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
248 ** so the value written into element 1 of the array is 0. As follows:
250 ** aTree[] = { X, 0 0, 6 0, 3, 5, 6 }
252 ** In other words, each time we advance to the next sorter element, log2(N)
253 ** key comparison operations are required, where N is the number of segments
254 ** being merged (rounded up to the next power of 2).
257 int nTree
; /* Used size of aTree/aReadr (power of 2) */
258 SortSubtask
*pTask
; /* Used by this thread only */
259 int *aTree
; /* Current state of incremental merge */
260 PmaReader
*aReadr
; /* Array of PmaReaders to merge data from */
264 ** This object represents a single thread of control in a sort operation.
265 ** Exactly VdbeSorter.nTask instances of this object are allocated
266 ** as part of each VdbeSorter object. Instances are never allocated any
267 ** other way. VdbeSorter.nTask is set to the number of worker threads allowed
268 ** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for
269 ** single-threaded operation, there is exactly one instance of this object
270 ** and for multi-threaded operation there are two or more instances.
272 ** Essentially, this structure contains all those fields of the VdbeSorter
273 ** structure for which each thread requires a separate instance. For example,
274 ** each thread requries its own UnpackedRecord object to unpack records in
275 ** as part of comparison operations.
277 ** Before a background thread is launched, variable bDone is set to 0. Then,
278 ** right before it exits, the thread itself sets bDone to 1. This is used for
281 ** 1. When flushing the contents of memory to a level-0 PMA on disk, to
282 ** attempt to select a SortSubtask for which there is not already an
283 ** active background thread (since doing so causes the main thread
284 ** to block until it finishes).
286 ** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call
287 ** to sqlite3ThreadJoin() is likely to block. Cases that are likely to
288 ** block provoke debugging output.
290 ** In both cases, the effects of the main thread seeing (bDone==0) even
291 ** after the thread has finished are not dire. So we don't worry about
292 ** memory barriers and such here.
294 typedef int (*SorterCompare
)(SortSubtask
*,int*,const void*,int,const void*,int);
296 SQLiteThread
*pThread
; /* Background thread, if any */
297 int bDone
; /* Set if thread is finished but not joined */
298 VdbeSorter
*pSorter
; /* Sorter that owns this sub-task */
299 UnpackedRecord
*pUnpacked
; /* Space to unpack a record */
300 SorterList list
; /* List for thread to write to a PMA */
301 int nPMA
; /* Number of PMAs currently in file */
302 SorterCompare xCompare
; /* Compare function to use */
303 SorterFile file
; /* Temp file for level-0 PMAs */
304 SorterFile file2
; /* Space for other PMAs */
309 ** Main sorter structure. A single instance of this is allocated for each
310 ** sorter cursor created by the VDBE.
313 ** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(),
314 ** this variable is updated so as to be set to the size on disk of the
315 ** largest record in the sorter.
318 int mnPmaSize
; /* Minimum PMA size, in bytes */
319 int mxPmaSize
; /* Maximum PMA size, in bytes. 0==no limit */
320 int mxKeysize
; /* Largest serialized key seen so far */
321 int pgsz
; /* Main database page size */
322 PmaReader
*pReader
; /* Readr data from here after Rewind() */
323 MergeEngine
*pMerger
; /* Or here, if bUseThreads==0 */
324 sqlite3
*db
; /* Database connection */
325 KeyInfo
*pKeyInfo
; /* How to compare records */
326 UnpackedRecord
*pUnpacked
; /* Used by VdbeSorterCompare() */
327 SorterList list
; /* List of in-memory records */
328 int iMemory
; /* Offset of free space in list.aMemory */
329 int nMemory
; /* Size of list.aMemory allocation in bytes */
330 u8 bUsePMA
; /* True if one or more PMAs created */
331 u8 bUseThreads
; /* True to use background threads */
332 u8 iPrev
; /* Previous thread used to flush PMA */
333 u8 nTask
; /* Size of aTask[] array */
335 SortSubtask aTask
[1]; /* One or more subtasks */
338 #define SORTER_TYPE_INTEGER 0x01
339 #define SORTER_TYPE_TEXT 0x02
342 ** An instance of the following object is used to read records out of a
343 ** PMA, in sorted order. The next key to be read is cached in nKey/aKey.
344 ** aKey might point into aMap or into aBuffer. If neither of those locations
345 ** contain a contiguous representation of the key, then aAlloc is allocated
346 ** and the key is copied into aAlloc and aKey is made to poitn to aAlloc.
351 i64 iReadOff
; /* Current read offset */
352 i64 iEof
; /* 1 byte past EOF for this PmaReader */
353 int nAlloc
; /* Bytes of space at aAlloc */
354 int nKey
; /* Number of bytes in key */
355 sqlite3_file
*pFd
; /* File handle we are reading from */
356 u8
*aAlloc
; /* Space for aKey if aBuffer and pMap wont work */
357 u8
*aKey
; /* Pointer to current key */
358 u8
*aBuffer
; /* Current read buffer */
359 int nBuffer
; /* Size of read buffer in bytes */
360 u8
*aMap
; /* Pointer to mapping of entire file */
361 IncrMerger
*pIncr
; /* Incremental merger */
365 ** Normally, a PmaReader object iterates through an existing PMA stored
366 ** within a temp file. However, if the PmaReader.pIncr variable points to
367 ** an object of the following type, it may be used to iterate/merge through
368 ** multiple PMAs simultaneously.
370 ** There are two types of IncrMerger object - single (bUseThread==0) and
371 ** multi-threaded (bUseThread==1).
373 ** A multi-threaded IncrMerger object uses two temporary files - aFile[0]
374 ** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in
375 ** size. When the IncrMerger is initialized, it reads enough data from
376 ** pMerger to populate aFile[0]. It then sets variables within the
377 ** corresponding PmaReader object to read from that file and kicks off
378 ** a background thread to populate aFile[1] with the next mxSz bytes of
379 ** sorted record data from pMerger.
381 ** When the PmaReader reaches the end of aFile[0], it blocks until the
382 ** background thread has finished populating aFile[1]. It then exchanges
383 ** the contents of the aFile[0] and aFile[1] variables within this structure,
384 ** sets the PmaReader fields to read from the new aFile[0] and kicks off
385 ** another background thread to populate the new aFile[1]. And so on, until
386 ** the contents of pMerger are exhausted.
388 ** A single-threaded IncrMerger does not open any temporary files of its
389 ** own. Instead, it has exclusive access to mxSz bytes of space beginning
390 ** at offset iStartOff of file pTask->file2. And instead of using a
391 ** background thread to prepare data for the PmaReader, with a single
392 ** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with
393 ** keys from pMerger by the calling thread whenever the PmaReader runs out
397 SortSubtask
*pTask
; /* Task that owns this merger */
398 MergeEngine
*pMerger
; /* Merge engine thread reads data from */
399 i64 iStartOff
; /* Offset to start writing file at */
400 int mxSz
; /* Maximum bytes of data to store */
401 int bEof
; /* Set to true when merge is finished */
402 int bUseThread
; /* True to use a bg thread for this object */
403 SorterFile aFile
[2]; /* aFile[0] for reading, [1] for writing */
407 ** An instance of this object is used for writing a PMA.
409 ** The PMA is written one record at a time. Each record is of an arbitrary
410 ** size. But I/O is more efficient if it occurs in page-sized blocks where
411 ** each block is aligned on a page boundary. This object caches writes to
412 ** the PMA so that aligned, page-size blocks are written.
415 int eFWErr
; /* Non-zero if in an error state */
416 u8
*aBuffer
; /* Pointer to write buffer */
417 int nBuffer
; /* Size of write buffer in bytes */
418 int iBufStart
; /* First byte of buffer to write */
419 int iBufEnd
; /* Last byte of buffer to write */
420 i64 iWriteOff
; /* Offset of start of buffer in file */
421 sqlite3_file
*pFd
; /* File handle to write to */
425 ** This object is the header on a single record while that record is being
426 ** held in memory and prior to being written out as part of a PMA.
428 ** How the linked list is connected depends on how memory is being managed
429 ** by this module. If using a separate allocation for each in-memory record
430 ** (VdbeSorter.list.aMemory==0), then the list is always connected using the
431 ** SorterRecord.u.pNext pointers.
433 ** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0),
434 ** then while records are being accumulated the list is linked using the
435 ** SorterRecord.u.iNext offset. This is because the aMemory[] array may
436 ** be sqlite3Realloc()ed while records are being accumulated. Once the VM
437 ** has finished passing records to the sorter, or when the in-memory buffer
438 ** is full, the list is sorted. As part of the sorting process, it is
439 ** converted to use the SorterRecord.u.pNext pointers. See function
440 ** vdbeSorterSort() for details.
442 struct SorterRecord
{
443 int nVal
; /* Size of the record in bytes */
445 SorterRecord
*pNext
; /* Pointer to next record in list */
446 int iNext
; /* Offset within aMemory of next record */
448 /* The data for the record immediately follows this header */
451 /* Return a pointer to the buffer containing the record data for SorterRecord
452 ** object p. Should be used as if:
454 ** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
456 #define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))
459 /* Maximum number of PMAs that a single MergeEngine can merge */
460 #define SORTER_MAX_MERGE_COUNT 16
462 static int vdbeIncrSwap(IncrMerger
*);
463 static void vdbeIncrFree(IncrMerger
*);
466 ** Free all memory belonging to the PmaReader object passed as the
467 ** argument. All structure fields are set to zero before returning.
469 static void vdbePmaReaderClear(PmaReader
*pReadr
){
470 sqlite3_free(pReadr
->aAlloc
);
471 sqlite3_free(pReadr
->aBuffer
);
472 if( pReadr
->aMap
) sqlite3OsUnfetch(pReadr
->pFd
, 0, pReadr
->aMap
);
473 vdbeIncrFree(pReadr
->pIncr
);
474 memset(pReadr
, 0, sizeof(PmaReader
));
478 ** Read the next nByte bytes of data from the PMA p.
479 ** If successful, set *ppOut to point to a buffer containing the data
480 ** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
483 ** The buffer returned in *ppOut is only valid until the
484 ** next call to this function.
486 static int vdbePmaReadBlob(
487 PmaReader
*p
, /* PmaReader from which to take the blob */
488 int nByte
, /* Bytes of data to read */
489 u8
**ppOut
/* OUT: Pointer to buffer containing data */
491 int iBuf
; /* Offset within buffer to read from */
492 int nAvail
; /* Bytes of data available in buffer */
495 *ppOut
= &p
->aMap
[p
->iReadOff
];
496 p
->iReadOff
+= nByte
;
500 assert( p
->aBuffer
);
502 /* If there is no more data to be read from the buffer, read the next
503 ** p->nBuffer bytes of data from the file into it. Or, if there are less
504 ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */
505 iBuf
= p
->iReadOff
% p
->nBuffer
;
507 int nRead
; /* Bytes to read from disk */
508 int rc
; /* sqlite3OsRead() return code */
510 /* Determine how many bytes of data to read. */
511 if( (p
->iEof
- p
->iReadOff
) > (i64
)p
->nBuffer
){
514 nRead
= (int)(p
->iEof
- p
->iReadOff
);
518 /* Readr data from the file. Return early if an error occurs. */
519 rc
= sqlite3OsRead(p
->pFd
, p
->aBuffer
, nRead
, p
->iReadOff
);
520 assert( rc
!=SQLITE_IOERR_SHORT_READ
);
521 if( rc
!=SQLITE_OK
) return rc
;
523 nAvail
= p
->nBuffer
- iBuf
;
526 /* The requested data is available in the in-memory buffer. In this
527 ** case there is no need to make a copy of the data, just return a
528 ** pointer into the buffer to the caller. */
529 *ppOut
= &p
->aBuffer
[iBuf
];
530 p
->iReadOff
+= nByte
;
532 /* The requested data is not all available in the in-memory buffer.
533 ** In this case, allocate space at p->aAlloc[] to copy the requested
534 ** range into. Then return a copy of pointer p->aAlloc to the caller. */
535 int nRem
; /* Bytes remaining to copy */
537 /* Extend the p->aAlloc[] allocation if required. */
538 if( p
->nAlloc
<nByte
){
540 int nNew
= MAX(128, p
->nAlloc
*2);
541 while( nByte
>nNew
) nNew
= nNew
*2;
542 aNew
= sqlite3Realloc(p
->aAlloc
, nNew
);
543 if( !aNew
) return SQLITE_NOMEM_BKPT
;
548 /* Copy as much data as is available in the buffer into the start of
550 memcpy(p
->aAlloc
, &p
->aBuffer
[iBuf
], nAvail
);
551 p
->iReadOff
+= nAvail
;
552 nRem
= nByte
- nAvail
;
554 /* The following loop copies up to p->nBuffer bytes per iteration into
555 ** the p->aAlloc[] buffer. */
557 int rc
; /* vdbePmaReadBlob() return code */
558 int nCopy
; /* Number of bytes to copy */
559 u8
*aNext
; /* Pointer to buffer to copy data from */
562 if( nRem
>p
->nBuffer
) nCopy
= p
->nBuffer
;
563 rc
= vdbePmaReadBlob(p
, nCopy
, &aNext
);
564 if( rc
!=SQLITE_OK
) return rc
;
565 assert( aNext
!=p
->aAlloc
);
566 memcpy(&p
->aAlloc
[nByte
- nRem
], aNext
, nCopy
);
577 ** Read a varint from the stream of data accessed by p. Set *pnOut to
580 static int vdbePmaReadVarint(PmaReader
*p
, u64
*pnOut
){
584 p
->iReadOff
+= sqlite3GetVarint(&p
->aMap
[p
->iReadOff
], pnOut
);
586 iBuf
= p
->iReadOff
% p
->nBuffer
;
587 if( iBuf
&& (p
->nBuffer
-iBuf
)>=9 ){
588 p
->iReadOff
+= sqlite3GetVarint(&p
->aBuffer
[iBuf
], pnOut
);
593 rc
= vdbePmaReadBlob(p
, 1, &a
);
595 aVarint
[(i
++)&0xf] = a
[0];
596 }while( (a
[0]&0x80)!=0 );
597 sqlite3GetVarint(aVarint
, pnOut
);
605 ** Attempt to memory map file pFile. If successful, set *pp to point to the
606 ** new mapping and return SQLITE_OK. If the mapping is not attempted
607 ** (because the file is too large or the VFS layer is configured not to use
608 ** mmap), return SQLITE_OK and set *pp to NULL.
610 ** Or, if an error occurs, return an SQLite error code. The final value of
611 ** *pp is undefined in this case.
613 static int vdbeSorterMapFile(SortSubtask
*pTask
, SorterFile
*pFile
, u8
**pp
){
615 if( pFile
->iEof
<=(i64
)(pTask
->pSorter
->db
->nMaxSorterMmap
) ){
616 sqlite3_file
*pFd
= pFile
->pFd
;
617 if( pFd
->pMethods
->iVersion
>=3 ){
618 rc
= sqlite3OsFetch(pFd
, 0, (int)pFile
->iEof
, (void**)pp
);
619 testcase( rc
!=SQLITE_OK
);
626 ** Attach PmaReader pReadr to file pFile (if it is not already attached to
627 ** that file) and seek it to offset iOff within the file. Return SQLITE_OK
628 ** if successful, or an SQLite error code if an error occurs.
630 static int vdbePmaReaderSeek(
631 SortSubtask
*pTask
, /* Task context */
632 PmaReader
*pReadr
, /* Reader whose cursor is to be moved */
633 SorterFile
*pFile
, /* Sorter file to read from */
634 i64 iOff
/* Offset in pFile */
638 assert( pReadr
->pIncr
==0 || pReadr
->pIncr
->bEof
==0 );
640 if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ
;
642 sqlite3OsUnfetch(pReadr
->pFd
, 0, pReadr
->aMap
);
645 pReadr
->iReadOff
= iOff
;
646 pReadr
->iEof
= pFile
->iEof
;
647 pReadr
->pFd
= pFile
->pFd
;
649 rc
= vdbeSorterMapFile(pTask
, pFile
, &pReadr
->aMap
);
650 if( rc
==SQLITE_OK
&& pReadr
->aMap
==0 ){
651 int pgsz
= pTask
->pSorter
->pgsz
;
652 int iBuf
= pReadr
->iReadOff
% pgsz
;
653 if( pReadr
->aBuffer
==0 ){
654 pReadr
->aBuffer
= (u8
*)sqlite3Malloc(pgsz
);
655 if( pReadr
->aBuffer
==0 ) rc
= SQLITE_NOMEM_BKPT
;
656 pReadr
->nBuffer
= pgsz
;
658 if( rc
==SQLITE_OK
&& iBuf
){
659 int nRead
= pgsz
- iBuf
;
660 if( (pReadr
->iReadOff
+ nRead
) > pReadr
->iEof
){
661 nRead
= (int)(pReadr
->iEof
- pReadr
->iReadOff
);
664 pReadr
->pFd
, &pReadr
->aBuffer
[iBuf
], nRead
, pReadr
->iReadOff
666 testcase( rc
!=SQLITE_OK
);
674 ** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if
675 ** no error occurs, or an SQLite error code if one does.
677 static int vdbePmaReaderNext(PmaReader
*pReadr
){
678 int rc
= SQLITE_OK
; /* Return Code */
679 u64 nRec
= 0; /* Size of record in bytes */
682 if( pReadr
->iReadOff
>=pReadr
->iEof
){
683 IncrMerger
*pIncr
= pReadr
->pIncr
;
686 rc
= vdbeIncrSwap(pIncr
);
687 if( rc
==SQLITE_OK
&& pIncr
->bEof
==0 ){
688 rc
= vdbePmaReaderSeek(
689 pIncr
->pTask
, pReadr
, &pIncr
->aFile
[0], pIncr
->iStartOff
696 /* This is an EOF condition */
697 vdbePmaReaderClear(pReadr
);
698 testcase( rc
!=SQLITE_OK
);
704 rc
= vdbePmaReadVarint(pReadr
, &nRec
);
707 pReadr
->nKey
= (int)nRec
;
708 rc
= vdbePmaReadBlob(pReadr
, (int)nRec
, &pReadr
->aKey
);
709 testcase( rc
!=SQLITE_OK
);
716 ** Initialize PmaReader pReadr to scan through the PMA stored in file pFile
717 ** starting at offset iStart and ending at offset iEof-1. This function
718 ** leaves the PmaReader pointing to the first key in the PMA (or EOF if the
721 ** If the pnByte parameter is NULL, then it is assumed that the file
722 ** contains a single PMA, and that that PMA omits the initial length varint.
724 static int vdbePmaReaderInit(
725 SortSubtask
*pTask
, /* Task context */
726 SorterFile
*pFile
, /* Sorter file to read from */
727 i64 iStart
, /* Start offset in pFile */
728 PmaReader
*pReadr
, /* PmaReader to populate */
729 i64
*pnByte
/* IN/OUT: Increment this value by PMA size */
733 assert( pFile
->iEof
>iStart
);
734 assert( pReadr
->aAlloc
==0 && pReadr
->nAlloc
==0 );
735 assert( pReadr
->aBuffer
==0 );
736 assert( pReadr
->aMap
==0 );
738 rc
= vdbePmaReaderSeek(pTask
, pReadr
, pFile
, iStart
);
740 u64 nByte
= 0; /* Size of PMA in bytes */
741 rc
= vdbePmaReadVarint(pReadr
, &nByte
);
742 pReadr
->iEof
= pReadr
->iReadOff
+ nByte
;
747 rc
= vdbePmaReaderNext(pReadr
);
753 ** A version of vdbeSorterCompare() that assumes that it has already been
754 ** determined that the first field of key1 is equal to the first field of
757 static int vdbeSorterCompareTail(
758 SortSubtask
*pTask
, /* Subtask context (for pKeyInfo) */
759 int *pbKey2Cached
, /* True if pTask->pUnpacked is pKey2 */
760 const void *pKey1
, int nKey1
, /* Left side of comparison */
761 const void *pKey2
, int nKey2
/* Right side of comparison */
763 UnpackedRecord
*r2
= pTask
->pUnpacked
;
764 if( *pbKey2Cached
==0 ){
765 sqlite3VdbeRecordUnpack(pTask
->pSorter
->pKeyInfo
, nKey2
, pKey2
, r2
);
768 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, r2
, 1);
772 ** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
773 ** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences
774 ** used by the comparison. Return the result of the comparison.
776 ** If IN/OUT parameter *pbKey2Cached is true when this function is called,
777 ** it is assumed that (pTask->pUnpacked) contains the unpacked version
778 ** of key2. If it is false, (pTask->pUnpacked) is populated with the unpacked
779 ** version of key2 and *pbKey2Cached set to true before returning.
781 ** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set
784 static int vdbeSorterCompare(
785 SortSubtask
*pTask
, /* Subtask context (for pKeyInfo) */
786 int *pbKey2Cached
, /* True if pTask->pUnpacked is pKey2 */
787 const void *pKey1
, int nKey1
, /* Left side of comparison */
788 const void *pKey2
, int nKey2
/* Right side of comparison */
790 UnpackedRecord
*r2
= pTask
->pUnpacked
;
791 if( !*pbKey2Cached
){
792 sqlite3VdbeRecordUnpack(pTask
->pSorter
->pKeyInfo
, nKey2
, pKey2
, r2
);
795 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, r2
);
799 ** A specially optimized version of vdbeSorterCompare() that assumes that
800 ** the first field of each key is a TEXT value and that the collation
801 ** sequence to compare them with is BINARY.
803 static int vdbeSorterCompareText(
804 SortSubtask
*pTask
, /* Subtask context (for pKeyInfo) */
805 int *pbKey2Cached
, /* True if pTask->pUnpacked is pKey2 */
806 const void *pKey1
, int nKey1
, /* Left side of comparison */
807 const void *pKey2
, int nKey2
/* Right side of comparison */
809 const u8
* const p1
= (const u8
* const)pKey1
;
810 const u8
* const p2
= (const u8
* const)pKey2
;
811 const u8
* const v1
= &p1
[ p1
[0] ]; /* Pointer to value 1 */
812 const u8
* const v2
= &p2
[ p2
[0] ]; /* Pointer to value 2 */
818 getVarint32(&p1
[1], n1
);
819 getVarint32(&p2
[1], n2
);
820 res
= memcmp(v1
, v2
, (MIN(n1
, n2
) - 13)/2);
826 if( pTask
->pSorter
->pKeyInfo
->nKeyField
>1 ){
827 res
= vdbeSorterCompareTail(
828 pTask
, pbKey2Cached
, pKey1
, nKey1
, pKey2
, nKey2
832 if( pTask
->pSorter
->pKeyInfo
->aSortOrder
[0] ){
841 ** A specially optimized version of vdbeSorterCompare() that assumes that
842 ** the first field of each key is an INTEGER value.
844 static int vdbeSorterCompareInt(
845 SortSubtask
*pTask
, /* Subtask context (for pKeyInfo) */
846 int *pbKey2Cached
, /* True if pTask->pUnpacked is pKey2 */
847 const void *pKey1
, int nKey1
, /* Left side of comparison */
848 const void *pKey2
, int nKey2
/* Right side of comparison */
850 const u8
* const p1
= (const u8
* const)pKey1
;
851 const u8
* const p2
= (const u8
* const)pKey2
;
852 const int s1
= p1
[1]; /* Left hand serial type */
853 const int s2
= p2
[1]; /* Right hand serial type */
854 const u8
* const v1
= &p1
[ p1
[0] ]; /* Pointer to value 1 */
855 const u8
* const v2
= &p2
[ p2
[0] ]; /* Pointer to value 2 */
856 int res
; /* Return value */
858 assert( (s1
>0 && s1
<7) || s1
==8 || s1
==9 );
859 assert( (s2
>0 && s2
<7) || s2
==8 || s2
==9 );
862 /* The two values have the same sign. Compare using memcmp(). */
863 static const u8 aLen
[] = {0, 1, 2, 3, 4, 6, 8, 0, 0, 0 };
864 const u8 n
= aLen
[s1
];
868 if( (res
= v1
[i
] - v2
[i
])!=0 ){
869 if( ((v1
[0] ^ v2
[0]) & 0x80)!=0 ){
870 res
= v1
[0] & 0x80 ? -1 : +1;
875 }else if( s1
>7 && s2
>7 ){
888 if( *v1
& 0x80 ) res
= -1;
890 if( *v2
& 0x80 ) res
= +1;
895 if( pTask
->pSorter
->pKeyInfo
->nKeyField
>1 ){
896 res
= vdbeSorterCompareTail(
897 pTask
, pbKey2Cached
, pKey1
, nKey1
, pKey2
, nKey2
900 }else if( pTask
->pSorter
->pKeyInfo
->aSortOrder
[0] ){
908 ** Initialize the temporary index cursor just opened as a sorter cursor.
910 ** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nKeyField)
911 ** to determine the number of fields that should be compared from the
912 ** records being sorted. However, if the value passed as argument nField
913 ** is non-zero and the sorter is able to guarantee a stable sort, nField
914 ** is used instead. This is used when sorting records for a CREATE INDEX
915 ** statement. In this case, keys are always delivered to the sorter in
916 ** order of the primary key, which happens to be make up the final part
917 ** of the records being sorted. So if the sort is stable, there is never
918 ** any reason to compare PK fields and they can be ignored for a small
919 ** performance boost.
921 ** The sorter can guarantee a stable sort when running in single-threaded
922 ** mode, but not in multi-threaded mode.
924 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
926 int sqlite3VdbeSorterInit(
927 sqlite3
*db
, /* Database connection (for malloc()) */
928 int nField
, /* Number of key fields in each record */
929 VdbeCursor
*pCsr
/* Cursor that holds the new sorter */
931 int pgsz
; /* Page size of main database */
932 int i
; /* Used to iterate through aTask[] */
933 VdbeSorter
*pSorter
; /* The new sorter */
934 KeyInfo
*pKeyInfo
; /* Copy of pCsr->pKeyInfo with db==0 */
935 int szKeyInfo
; /* Size of pCsr->pKeyInfo in bytes */
936 int sz
; /* Size of pSorter in bytes */
938 #if SQLITE_MAX_WORKER_THREADS==0
944 /* Initialize the upper limit on the number of worker threads */
945 #if SQLITE_MAX_WORKER_THREADS>0
946 if( sqlite3TempInMemory(db
) || sqlite3GlobalConfig
.bCoreMutex
==0 ){
949 nWorker
= db
->aLimit
[SQLITE_LIMIT_WORKER_THREADS
];
953 /* Do not allow the total number of threads (main thread + all workers)
954 ** to exceed the maximum merge count */
955 #if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
956 if( nWorker
>=SORTER_MAX_MERGE_COUNT
){
957 nWorker
= SORTER_MAX_MERGE_COUNT
-1;
961 assert( pCsr
->pKeyInfo
&& pCsr
->pBtx
==0 );
962 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
963 szKeyInfo
= sizeof(KeyInfo
) + (pCsr
->pKeyInfo
->nKeyField
-1)*sizeof(CollSeq
*);
964 sz
= sizeof(VdbeSorter
) + nWorker
* sizeof(SortSubtask
);
966 pSorter
= (VdbeSorter
*)sqlite3DbMallocZero(db
, sz
+ szKeyInfo
);
967 pCsr
->uc
.pSorter
= pSorter
;
969 rc
= SQLITE_NOMEM_BKPT
;
971 pSorter
->pKeyInfo
= pKeyInfo
= (KeyInfo
*)((u8
*)pSorter
+ sz
);
972 memcpy(pKeyInfo
, pCsr
->pKeyInfo
, szKeyInfo
);
974 if( nField
&& nWorker
==0 ){
975 pKeyInfo
->nKeyField
= nField
;
977 pSorter
->pgsz
= pgsz
= sqlite3BtreeGetPageSize(db
->aDb
[0].pBt
);
978 pSorter
->nTask
= nWorker
+ 1;
979 pSorter
->iPrev
= (u8
)(nWorker
- 1);
980 pSorter
->bUseThreads
= (pSorter
->nTask
>1);
982 for(i
=0; i
<pSorter
->nTask
; i
++){
983 SortSubtask
*pTask
= &pSorter
->aTask
[i
];
984 pTask
->pSorter
= pSorter
;
987 if( !sqlite3TempInMemory(db
) ){
988 i64 mxCache
; /* Cache size in bytes*/
989 u32 szPma
= sqlite3GlobalConfig
.szPma
;
990 pSorter
->mnPmaSize
= szPma
* pgsz
;
992 mxCache
= db
->aDb
[0].pSchema
->cache_size
;
994 /* A negative cache-size value C indicates that the cache is abs(C)
996 mxCache
= mxCache
* -1024;
998 mxCache
= mxCache
* pgsz
;
1000 mxCache
= MIN(mxCache
, SQLITE_MAX_PMASZ
);
1001 pSorter
->mxPmaSize
= MAX(pSorter
->mnPmaSize
, (int)mxCache
);
1003 /* Avoid large memory allocations if the application has requested
1004 ** SQLITE_CONFIG_SMALL_MALLOC. */
1005 if( sqlite3GlobalConfig
.bSmallMalloc
==0 ){
1006 assert( pSorter
->iMemory
==0 );
1007 pSorter
->nMemory
= pgsz
;
1008 pSorter
->list
.aMemory
= (u8
*)sqlite3Malloc(pgsz
);
1009 if( !pSorter
->list
.aMemory
) rc
= SQLITE_NOMEM_BKPT
;
1013 if( pKeyInfo
->nAllField
<13
1014 && (pKeyInfo
->aColl
[0]==0 || pKeyInfo
->aColl
[0]==db
->pDfltColl
)
1016 pSorter
->typeMask
= SORTER_TYPE_INTEGER
| SORTER_TYPE_TEXT
;
1022 #undef nWorker /* Defined at the top of this function */
1025 ** Free the list of sorted records starting at pRecord.
1027 static void vdbeSorterRecordFree(sqlite3
*db
, SorterRecord
*pRecord
){
1029 SorterRecord
*pNext
;
1030 for(p
=pRecord
; p
; p
=pNext
){
1032 sqlite3DbFree(db
, p
);
1037 ** Free all resources owned by the object indicated by argument pTask. All
1038 ** fields of *pTask are zeroed before returning.
1040 static void vdbeSortSubtaskCleanup(sqlite3
*db
, SortSubtask
*pTask
){
1041 sqlite3DbFree(db
, pTask
->pUnpacked
);
1042 #if SQLITE_MAX_WORKER_THREADS>0
1043 /* pTask->list.aMemory can only be non-zero if it was handed memory
1044 ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */
1045 if( pTask
->list
.aMemory
){
1046 sqlite3_free(pTask
->list
.aMemory
);
1050 assert( pTask
->list
.aMemory
==0 );
1051 vdbeSorterRecordFree(0, pTask
->list
.pList
);
1053 if( pTask
->file
.pFd
){
1054 sqlite3OsCloseFree(pTask
->file
.pFd
);
1056 if( pTask
->file2
.pFd
){
1057 sqlite3OsCloseFree(pTask
->file2
.pFd
);
1059 memset(pTask
, 0, sizeof(SortSubtask
));
1062 #ifdef SQLITE_DEBUG_SORTER_THREADS
1063 static void vdbeSorterWorkDebug(SortSubtask
*pTask
, const char *zEvent
){
1065 int iTask
= (pTask
- pTask
->pSorter
->aTask
);
1066 sqlite3OsCurrentTimeInt64(pTask
->pSorter
->db
->pVfs
, &t
);
1067 fprintf(stderr
, "%lld:%d %s\n", t
, iTask
, zEvent
);
1069 static void vdbeSorterRewindDebug(const char *zEvent
){
1071 sqlite3OsCurrentTimeInt64(sqlite3_vfs_find(0), &t
);
1072 fprintf(stderr
, "%lld:X %s\n", t
, zEvent
);
1074 static void vdbeSorterPopulateDebug(
1079 int iTask
= (pTask
- pTask
->pSorter
->aTask
);
1080 sqlite3OsCurrentTimeInt64(pTask
->pSorter
->db
->pVfs
, &t
);
1081 fprintf(stderr
, "%lld:bg%d %s\n", t
, iTask
, zEvent
);
1083 static void vdbeSorterBlockDebug(
1090 sqlite3OsCurrentTimeInt64(pTask
->pSorter
->db
->pVfs
, &t
);
1091 fprintf(stderr
, "%lld:main %s\n", t
, zEvent
);
1095 # define vdbeSorterWorkDebug(x,y)
1096 # define vdbeSorterRewindDebug(y)
1097 # define vdbeSorterPopulateDebug(x,y)
1098 # define vdbeSorterBlockDebug(x,y,z)
1101 #if SQLITE_MAX_WORKER_THREADS>0
1103 ** Join thread pTask->thread.
1105 static int vdbeSorterJoinThread(SortSubtask
*pTask
){
1107 if( pTask
->pThread
){
1108 #ifdef SQLITE_DEBUG_SORTER_THREADS
1109 int bDone
= pTask
->bDone
;
1111 void *pRet
= SQLITE_INT_TO_PTR(SQLITE_ERROR
);
1112 vdbeSorterBlockDebug(pTask
, !bDone
, "enter");
1113 (void)sqlite3ThreadJoin(pTask
->pThread
, &pRet
);
1114 vdbeSorterBlockDebug(pTask
, !bDone
, "exit");
1115 rc
= SQLITE_PTR_TO_INT(pRet
);
1116 assert( pTask
->bDone
==1 );
1124 ** Launch a background thread to run xTask(pIn).
1126 static int vdbeSorterCreateThread(
1127 SortSubtask
*pTask
, /* Thread will use this task object */
1128 void *(*xTask
)(void*), /* Routine to run in a separate thread */
1129 void *pIn
/* Argument passed into xTask() */
1131 assert( pTask
->pThread
==0 && pTask
->bDone
==0 );
1132 return sqlite3ThreadCreate(&pTask
->pThread
, xTask
, pIn
);
1136 ** Join all outstanding threads launched by SorterWrite() to create
1139 static int vdbeSorterJoinAll(VdbeSorter
*pSorter
, int rcin
){
1143 /* This function is always called by the main user thread.
1145 ** If this function is being called after SorterRewind() has been called,
1146 ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread
1147 ** is currently attempt to join one of the other threads. To avoid a race
1148 ** condition where this thread also attempts to join the same object, join
1149 ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */
1150 for(i
=pSorter
->nTask
-1; i
>=0; i
--){
1151 SortSubtask
*pTask
= &pSorter
->aTask
[i
];
1152 int rc2
= vdbeSorterJoinThread(pTask
);
1153 if( rc
==SQLITE_OK
) rc
= rc2
;
1158 # define vdbeSorterJoinAll(x,rcin) (rcin)
1159 # define vdbeSorterJoinThread(pTask) SQLITE_OK
1163 ** Allocate a new MergeEngine object capable of handling up to
1164 ** nReader PmaReader inputs.
1166 ** nReader is automatically rounded up to the next power of two.
1167 ** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up.
1169 static MergeEngine
*vdbeMergeEngineNew(int nReader
){
1170 int N
= 2; /* Smallest power of two >= nReader */
1171 int nByte
; /* Total bytes of space to allocate */
1172 MergeEngine
*pNew
; /* Pointer to allocated object to return */
1174 assert( nReader
<=SORTER_MAX_MERGE_COUNT
);
1176 while( N
<nReader
) N
+= N
;
1177 nByte
= sizeof(MergeEngine
) + N
* (sizeof(int) + sizeof(PmaReader
));
1179 pNew
= sqlite3FaultSim(100) ? 0 : (MergeEngine
*)sqlite3MallocZero(nByte
);
1183 pNew
->aReadr
= (PmaReader
*)&pNew
[1];
1184 pNew
->aTree
= (int*)&pNew
->aReadr
[N
];
1190 ** Free the MergeEngine object passed as the only argument.
1192 static void vdbeMergeEngineFree(MergeEngine
*pMerger
){
1195 for(i
=0; i
<pMerger
->nTree
; i
++){
1196 vdbePmaReaderClear(&pMerger
->aReadr
[i
]);
1199 sqlite3_free(pMerger
);
1203 ** Free all resources associated with the IncrMerger object indicated by
1204 ** the first argument.
1206 static void vdbeIncrFree(IncrMerger
*pIncr
){
1208 #if SQLITE_MAX_WORKER_THREADS>0
1209 if( pIncr
->bUseThread
){
1210 vdbeSorterJoinThread(pIncr
->pTask
);
1211 if( pIncr
->aFile
[0].pFd
) sqlite3OsCloseFree(pIncr
->aFile
[0].pFd
);
1212 if( pIncr
->aFile
[1].pFd
) sqlite3OsCloseFree(pIncr
->aFile
[1].pFd
);
1215 vdbeMergeEngineFree(pIncr
->pMerger
);
1216 sqlite3_free(pIncr
);
1221 ** Reset a sorting cursor back to its original empty state.
1223 void sqlite3VdbeSorterReset(sqlite3
*db
, VdbeSorter
*pSorter
){
1225 (void)vdbeSorterJoinAll(pSorter
, SQLITE_OK
);
1226 assert( pSorter
->bUseThreads
|| pSorter
->pReader
==0 );
1227 #if SQLITE_MAX_WORKER_THREADS>0
1228 if( pSorter
->pReader
){
1229 vdbePmaReaderClear(pSorter
->pReader
);
1230 sqlite3DbFree(db
, pSorter
->pReader
);
1231 pSorter
->pReader
= 0;
1234 vdbeMergeEngineFree(pSorter
->pMerger
);
1235 pSorter
->pMerger
= 0;
1236 for(i
=0; i
<pSorter
->nTask
; i
++){
1237 SortSubtask
*pTask
= &pSorter
->aTask
[i
];
1238 vdbeSortSubtaskCleanup(db
, pTask
);
1239 pTask
->pSorter
= pSorter
;
1241 if( pSorter
->list
.aMemory
==0 ){
1242 vdbeSorterRecordFree(0, pSorter
->list
.pList
);
1244 pSorter
->list
.pList
= 0;
1245 pSorter
->list
.szPMA
= 0;
1246 pSorter
->bUsePMA
= 0;
1247 pSorter
->iMemory
= 0;
1248 pSorter
->mxKeysize
= 0;
1249 sqlite3DbFree(db
, pSorter
->pUnpacked
);
1250 pSorter
->pUnpacked
= 0;
1254 ** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
1256 void sqlite3VdbeSorterClose(sqlite3
*db
, VdbeCursor
*pCsr
){
1257 VdbeSorter
*pSorter
;
1258 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
1259 pSorter
= pCsr
->uc
.pSorter
;
1261 sqlite3VdbeSorterReset(db
, pSorter
);
1262 sqlite3_free(pSorter
->list
.aMemory
);
1263 sqlite3DbFree(db
, pSorter
);
1264 pCsr
->uc
.pSorter
= 0;
1268 #if SQLITE_MAX_MMAP_SIZE>0
1270 ** The first argument is a file-handle open on a temporary file. The file
1271 ** is guaranteed to be nByte bytes or smaller in size. This function
1272 ** attempts to extend the file to nByte bytes in size and to ensure that
1273 ** the VFS has memory mapped it.
1275 ** Whether or not the file does end up memory mapped of course depends on
1276 ** the specific VFS implementation.
1278 static void vdbeSorterExtendFile(sqlite3
*db
, sqlite3_file
*pFd
, i64 nByte
){
1279 if( nByte
<=(i64
)(db
->nMaxSorterMmap
) && pFd
->pMethods
->iVersion
>=3 ){
1281 int chunksize
= 4*1024;
1282 sqlite3OsFileControlHint(pFd
, SQLITE_FCNTL_CHUNK_SIZE
, &chunksize
);
1283 sqlite3OsFileControlHint(pFd
, SQLITE_FCNTL_SIZE_HINT
, &nByte
);
1284 sqlite3OsFetch(pFd
, 0, (int)nByte
, &p
);
1285 sqlite3OsUnfetch(pFd
, 0, p
);
1289 # define vdbeSorterExtendFile(x,y,z)
1293 ** Allocate space for a file-handle and open a temporary file. If successful,
1294 ** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK.
1295 ** Otherwise, set *ppFd to 0 and return an SQLite error code.
1297 static int vdbeSorterOpenTempFile(
1298 sqlite3
*db
, /* Database handle doing sort */
1299 i64 nExtend
, /* Attempt to extend file to this size */
1303 if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS
;
1304 rc
= sqlite3OsOpenMalloc(db
->pVfs
, 0, ppFd
,
1305 SQLITE_OPEN_TEMP_JOURNAL
|
1306 SQLITE_OPEN_READWRITE
| SQLITE_OPEN_CREATE
|
1307 SQLITE_OPEN_EXCLUSIVE
| SQLITE_OPEN_DELETEONCLOSE
, &rc
1309 if( rc
==SQLITE_OK
){
1310 i64 max
= SQLITE_MAX_MMAP_SIZE
;
1311 sqlite3OsFileControlHint(*ppFd
, SQLITE_FCNTL_MMAP_SIZE
, (void*)&max
);
1313 vdbeSorterExtendFile(db
, *ppFd
, nExtend
);
1320 ** If it has not already been allocated, allocate the UnpackedRecord
1321 ** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or
1322 ** if no allocation was required), or SQLITE_NOMEM otherwise.
1324 static int vdbeSortAllocUnpacked(SortSubtask
*pTask
){
1325 if( pTask
->pUnpacked
==0 ){
1326 pTask
->pUnpacked
= sqlite3VdbeAllocUnpackedRecord(pTask
->pSorter
->pKeyInfo
);
1327 if( pTask
->pUnpacked
==0 ) return SQLITE_NOMEM_BKPT
;
1328 pTask
->pUnpacked
->nField
= pTask
->pSorter
->pKeyInfo
->nKeyField
;
1329 pTask
->pUnpacked
->errCode
= 0;
1336 ** Merge the two sorted lists p1 and p2 into a single list.
1338 static SorterRecord
*vdbeSorterMerge(
1339 SortSubtask
*pTask
, /* Calling thread context */
1340 SorterRecord
*p1
, /* First list to merge */
1341 SorterRecord
*p2
/* Second list to merge */
1343 SorterRecord
*pFinal
= 0;
1344 SorterRecord
**pp
= &pFinal
;
1347 assert( p1
!=0 && p2
!=0 );
1350 res
= pTask
->xCompare(
1351 pTask
, &bCached
, SRVAL(p1
), p1
->nVal
, SRVAL(p2
), p2
->nVal
1377 ** Return the SorterCompare function to compare values collected by the
1378 ** sorter object passed as the only argument.
1380 static SorterCompare
vdbeSorterGetCompare(VdbeSorter
*p
){
1381 if( p
->typeMask
==SORTER_TYPE_INTEGER
){
1382 return vdbeSorterCompareInt
;
1383 }else if( p
->typeMask
==SORTER_TYPE_TEXT
){
1384 return vdbeSorterCompareText
;
1386 return vdbeSorterCompare
;
1390 ** Sort the linked list of records headed at pTask->pList. Return
1391 ** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if
1394 static int vdbeSorterSort(SortSubtask
*pTask
, SorterList
*pList
){
1396 SorterRecord
**aSlot
;
1400 rc
= vdbeSortAllocUnpacked(pTask
);
1401 if( rc
!=SQLITE_OK
) return rc
;
1404 pTask
->xCompare
= vdbeSorterGetCompare(pTask
->pSorter
);
1406 aSlot
= (SorterRecord
**)sqlite3MallocZero(64 * sizeof(SorterRecord
*));
1408 return SQLITE_NOMEM_BKPT
;
1412 SorterRecord
*pNext
;
1413 if( pList
->aMemory
){
1414 if( (u8
*)p
==pList
->aMemory
){
1417 assert( p
->u
.iNext
<sqlite3MallocSize(pList
->aMemory
) );
1418 pNext
= (SorterRecord
*)&pList
->aMemory
[p
->u
.iNext
];
1425 for(i
=0; aSlot
[i
]; i
++){
1426 p
= vdbeSorterMerge(pTask
, p
, aSlot
[i
]);
1434 for(i
=0; i
<64; i
++){
1435 if( aSlot
[i
]==0 ) continue;
1436 p
= p
? vdbeSorterMerge(pTask
, p
, aSlot
[i
]) : aSlot
[i
];
1440 sqlite3_free(aSlot
);
1441 assert( pTask
->pUnpacked
->errCode
==SQLITE_OK
1442 || pTask
->pUnpacked
->errCode
==SQLITE_NOMEM
1444 return pTask
->pUnpacked
->errCode
;
1448 ** Initialize a PMA-writer object.
1450 static void vdbePmaWriterInit(
1451 sqlite3_file
*pFd
, /* File handle to write to */
1452 PmaWriter
*p
, /* Object to populate */
1453 int nBuf
, /* Buffer size */
1454 i64 iStart
/* Offset of pFd to begin writing at */
1456 memset(p
, 0, sizeof(PmaWriter
));
1457 p
->aBuffer
= (u8
*)sqlite3Malloc(nBuf
);
1459 p
->eFWErr
= SQLITE_NOMEM_BKPT
;
1461 p
->iBufEnd
= p
->iBufStart
= (iStart
% nBuf
);
1462 p
->iWriteOff
= iStart
- p
->iBufStart
;
1469 ** Write nData bytes of data to the PMA. Return SQLITE_OK
1470 ** if successful, or an SQLite error code if an error occurs.
1472 static void vdbePmaWriteBlob(PmaWriter
*p
, u8
*pData
, int nData
){
1474 while( nRem
>0 && p
->eFWErr
==0 ){
1476 if( nCopy
>(p
->nBuffer
- p
->iBufEnd
) ){
1477 nCopy
= p
->nBuffer
- p
->iBufEnd
;
1480 memcpy(&p
->aBuffer
[p
->iBufEnd
], &pData
[nData
-nRem
], nCopy
);
1481 p
->iBufEnd
+= nCopy
;
1482 if( p
->iBufEnd
==p
->nBuffer
){
1483 p
->eFWErr
= sqlite3OsWrite(p
->pFd
,
1484 &p
->aBuffer
[p
->iBufStart
], p
->iBufEnd
- p
->iBufStart
,
1485 p
->iWriteOff
+ p
->iBufStart
1487 p
->iBufStart
= p
->iBufEnd
= 0;
1488 p
->iWriteOff
+= p
->nBuffer
;
1490 assert( p
->iBufEnd
<p
->nBuffer
);
1497 ** Flush any buffered data to disk and clean up the PMA-writer object.
1498 ** The results of using the PMA-writer after this call are undefined.
1499 ** Return SQLITE_OK if flushing the buffered data succeeds or is not
1500 ** required. Otherwise, return an SQLite error code.
1502 ** Before returning, set *piEof to the offset immediately following the
1503 ** last byte written to the file.
1505 static int vdbePmaWriterFinish(PmaWriter
*p
, i64
*piEof
){
1507 if( p
->eFWErr
==0 && ALWAYS(p
->aBuffer
) && p
->iBufEnd
>p
->iBufStart
){
1508 p
->eFWErr
= sqlite3OsWrite(p
->pFd
,
1509 &p
->aBuffer
[p
->iBufStart
], p
->iBufEnd
- p
->iBufStart
,
1510 p
->iWriteOff
+ p
->iBufStart
1513 *piEof
= (p
->iWriteOff
+ p
->iBufEnd
);
1514 sqlite3_free(p
->aBuffer
);
1516 memset(p
, 0, sizeof(PmaWriter
));
1521 ** Write value iVal encoded as a varint to the PMA. Return
1522 ** SQLITE_OK if successful, or an SQLite error code if an error occurs.
1524 static void vdbePmaWriteVarint(PmaWriter
*p
, u64 iVal
){
1527 nByte
= sqlite3PutVarint(aByte
, iVal
);
1528 vdbePmaWriteBlob(p
, aByte
, nByte
);
1532 ** Write the current contents of in-memory linked-list pList to a level-0
1533 ** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if
1534 ** successful, or an SQLite error code otherwise.
1536 ** The format of a PMA is:
1538 ** * A varint. This varint contains the total number of bytes of content
1539 ** in the PMA (not including the varint itself).
1541 ** * One or more records packed end-to-end in order of ascending keys.
1542 ** Each record consists of a varint followed by a blob of data (the
1543 ** key). The varint is the number of bytes in the blob of data.
1545 static int vdbeSorterListToPMA(SortSubtask
*pTask
, SorterList
*pList
){
1546 sqlite3
*db
= pTask
->pSorter
->db
;
1547 int rc
= SQLITE_OK
; /* Return code */
1548 PmaWriter writer
; /* Object used to write to the file */
1551 /* Set iSz to the expected size of file pTask->file after writing the PMA.
1552 ** This is used by an assert() statement at the end of this function. */
1553 i64 iSz
= pList
->szPMA
+ sqlite3VarintLen(pList
->szPMA
) + pTask
->file
.iEof
;
1556 vdbeSorterWorkDebug(pTask
, "enter");
1557 memset(&writer
, 0, sizeof(PmaWriter
));
1558 assert( pList
->szPMA
>0 );
1560 /* If the first temporary PMA file has not been opened, open it now. */
1561 if( pTask
->file
.pFd
==0 ){
1562 rc
= vdbeSorterOpenTempFile(db
, 0, &pTask
->file
.pFd
);
1563 assert( rc
!=SQLITE_OK
|| pTask
->file
.pFd
);
1564 assert( pTask
->file
.iEof
==0 );
1565 assert( pTask
->nPMA
==0 );
1568 /* Try to get the file to memory map */
1569 if( rc
==SQLITE_OK
){
1570 vdbeSorterExtendFile(db
, pTask
->file
.pFd
, pTask
->file
.iEof
+pList
->szPMA
+9);
1574 if( rc
==SQLITE_OK
){
1575 rc
= vdbeSorterSort(pTask
, pList
);
1578 if( rc
==SQLITE_OK
){
1580 SorterRecord
*pNext
= 0;
1582 vdbePmaWriterInit(pTask
->file
.pFd
, &writer
, pTask
->pSorter
->pgsz
,
1585 vdbePmaWriteVarint(&writer
, pList
->szPMA
);
1586 for(p
=pList
->pList
; p
; p
=pNext
){
1588 vdbePmaWriteVarint(&writer
, p
->nVal
);
1589 vdbePmaWriteBlob(&writer
, SRVAL(p
), p
->nVal
);
1590 if( pList
->aMemory
==0 ) sqlite3_free(p
);
1593 rc
= vdbePmaWriterFinish(&writer
, &pTask
->file
.iEof
);
1596 vdbeSorterWorkDebug(pTask
, "exit");
1597 assert( rc
!=SQLITE_OK
|| pList
->pList
==0 );
1598 assert( rc
!=SQLITE_OK
|| pTask
->file
.iEof
==iSz
);
1603 ** Advance the MergeEngine to its next entry.
1604 ** Set *pbEof to true there is no next entry because
1605 ** the MergeEngine has reached the end of all its inputs.
1607 ** Return SQLITE_OK if successful or an error code if an error occurs.
1609 static int vdbeMergeEngineStep(
1610 MergeEngine
*pMerger
, /* The merge engine to advance to the next row */
1611 int *pbEof
/* Set TRUE at EOF. Set false for more content */
1614 int iPrev
= pMerger
->aTree
[1];/* Index of PmaReader to advance */
1615 SortSubtask
*pTask
= pMerger
->pTask
;
1617 /* Advance the current PmaReader */
1618 rc
= vdbePmaReaderNext(&pMerger
->aReadr
[iPrev
]);
1620 /* Update contents of aTree[] */
1621 if( rc
==SQLITE_OK
){
1622 int i
; /* Index of aTree[] to recalculate */
1623 PmaReader
*pReadr1
; /* First PmaReader to compare */
1624 PmaReader
*pReadr2
; /* Second PmaReader to compare */
1627 /* Find the first two PmaReaders to compare. The one that was just
1628 ** advanced (iPrev) and the one next to it in the array. */
1629 pReadr1
= &pMerger
->aReadr
[(iPrev
& 0xFFFE)];
1630 pReadr2
= &pMerger
->aReadr
[(iPrev
| 0x0001)];
1632 for(i
=(pMerger
->nTree
+iPrev
)/2; i
>0; i
=i
/2){
1633 /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */
1635 if( pReadr1
->pFd
==0 ){
1637 }else if( pReadr2
->pFd
==0 ){
1640 iRes
= pTask
->xCompare(pTask
, &bCached
,
1641 pReadr1
->aKey
, pReadr1
->nKey
, pReadr2
->aKey
, pReadr2
->nKey
1645 /* If pReadr1 contained the smaller value, set aTree[i] to its index.
1646 ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this
1647 ** case there is no cache of pReadr2 in pTask->pUnpacked, so set
1648 ** pKey2 to point to the record belonging to pReadr2.
1650 ** Alternatively, if pReadr2 contains the smaller of the two values,
1651 ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare()
1652 ** was actually called above, then pTask->pUnpacked now contains
1653 ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent
1654 ** vdbeSorterCompare() from decoding pReadr2 again.
1656 ** If the two values were equal, then the value from the oldest
1657 ** PMA should be considered smaller. The VdbeSorter.aReadr[] array
1658 ** is sorted from oldest to newest, so pReadr1 contains older values
1659 ** than pReadr2 iff (pReadr1<pReadr2). */
1660 if( iRes
<0 || (iRes
==0 && pReadr1
<pReadr2
) ){
1661 pMerger
->aTree
[i
] = (int)(pReadr1
- pMerger
->aReadr
);
1662 pReadr2
= &pMerger
->aReadr
[ pMerger
->aTree
[i
^ 0x0001] ];
1665 if( pReadr1
->pFd
) bCached
= 0;
1666 pMerger
->aTree
[i
] = (int)(pReadr2
- pMerger
->aReadr
);
1667 pReadr1
= &pMerger
->aReadr
[ pMerger
->aTree
[i
^ 0x0001] ];
1670 *pbEof
= (pMerger
->aReadr
[pMerger
->aTree
[1]].pFd
==0);
1673 return (rc
==SQLITE_OK
? pTask
->pUnpacked
->errCode
: rc
);
1676 #if SQLITE_MAX_WORKER_THREADS>0
1678 ** The main routine for background threads that write level-0 PMAs.
1680 static void *vdbeSorterFlushThread(void *pCtx
){
1681 SortSubtask
*pTask
= (SortSubtask
*)pCtx
;
1682 int rc
; /* Return code */
1683 assert( pTask
->bDone
==0 );
1684 rc
= vdbeSorterListToPMA(pTask
, &pTask
->list
);
1686 return SQLITE_INT_TO_PTR(rc
);
1688 #endif /* SQLITE_MAX_WORKER_THREADS>0 */
1691 ** Flush the current contents of VdbeSorter.list to a new PMA, possibly
1692 ** using a background thread.
1694 static int vdbeSorterFlushPMA(VdbeSorter
*pSorter
){
1695 #if SQLITE_MAX_WORKER_THREADS==0
1696 pSorter
->bUsePMA
= 1;
1697 return vdbeSorterListToPMA(&pSorter
->aTask
[0], &pSorter
->list
);
1701 SortSubtask
*pTask
= 0; /* Thread context used to create new PMA */
1702 int nWorker
= (pSorter
->nTask
-1);
1704 /* Set the flag to indicate that at least one PMA has been written.
1705 ** Or will be, anyhow. */
1706 pSorter
->bUsePMA
= 1;
1708 /* Select a sub-task to sort and flush the current list of in-memory
1709 ** records to disk. If the sorter is running in multi-threaded mode,
1710 ** round-robin between the first (pSorter->nTask-1) tasks. Except, if
1711 ** the background thread from a sub-tasks previous turn is still running,
1712 ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy,
1713 ** fall back to using the final sub-task. The first (pSorter->nTask-1)
1714 ** sub-tasks are prefered as they use background threads - the final
1715 ** sub-task uses the main thread. */
1716 for(i
=0; i
<nWorker
; i
++){
1717 int iTest
= (pSorter
->iPrev
+ i
+ 1) % nWorker
;
1718 pTask
= &pSorter
->aTask
[iTest
];
1720 rc
= vdbeSorterJoinThread(pTask
);
1722 if( rc
!=SQLITE_OK
|| pTask
->pThread
==0 ) break;
1725 if( rc
==SQLITE_OK
){
1727 /* Use the foreground thread for this operation */
1728 rc
= vdbeSorterListToPMA(&pSorter
->aTask
[nWorker
], &pSorter
->list
);
1730 /* Launch a background thread for this operation */
1731 u8
*aMem
= pTask
->list
.aMemory
;
1732 void *pCtx
= (void*)pTask
;
1734 assert( pTask
->pThread
==0 && pTask
->bDone
==0 );
1735 assert( pTask
->list
.pList
==0 );
1736 assert( pTask
->list
.aMemory
==0 || pSorter
->list
.aMemory
!=0 );
1738 pSorter
->iPrev
= (u8
)(pTask
- pSorter
->aTask
);
1739 pTask
->list
= pSorter
->list
;
1740 pSorter
->list
.pList
= 0;
1741 pSorter
->list
.szPMA
= 0;
1743 pSorter
->list
.aMemory
= aMem
;
1744 pSorter
->nMemory
= sqlite3MallocSize(aMem
);
1745 }else if( pSorter
->list
.aMemory
){
1746 pSorter
->list
.aMemory
= sqlite3Malloc(pSorter
->nMemory
);
1747 if( !pSorter
->list
.aMemory
) return SQLITE_NOMEM_BKPT
;
1750 rc
= vdbeSorterCreateThread(pTask
, vdbeSorterFlushThread
, pCtx
);
1755 #endif /* SQLITE_MAX_WORKER_THREADS!=0 */
1759 ** Add a record to the sorter.
1761 int sqlite3VdbeSorterWrite(
1762 const VdbeCursor
*pCsr
, /* Sorter cursor */
1763 Mem
*pVal
/* Memory cell containing record */
1765 VdbeSorter
*pSorter
;
1766 int rc
= SQLITE_OK
; /* Return Code */
1767 SorterRecord
*pNew
; /* New list element */
1768 int bFlush
; /* True to flush contents of memory to PMA */
1769 int nReq
; /* Bytes of memory required */
1770 int nPMA
; /* Bytes of PMA space required */
1771 int t
; /* serial type of first record field */
1773 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
1774 pSorter
= pCsr
->uc
.pSorter
;
1775 getVarint32((const u8
*)&pVal
->z
[1], t
);
1776 if( t
>0 && t
<10 && t
!=7 ){
1777 pSorter
->typeMask
&= SORTER_TYPE_INTEGER
;
1778 }else if( t
>10 && (t
& 0x01) ){
1779 pSorter
->typeMask
&= SORTER_TYPE_TEXT
;
1781 pSorter
->typeMask
= 0;
1786 /* Figure out whether or not the current contents of memory should be
1787 ** flushed to a PMA before continuing. If so, do so.
1789 ** If using the single large allocation mode (pSorter->aMemory!=0), then
1790 ** flush the contents of memory to a new PMA if (a) at least one value is
1791 ** already in memory and (b) the new value will not fit in memory.
1793 ** Or, if using separate allocations for each record, flush the contents
1794 ** of memory to a PMA if either of the following are true:
1796 ** * The total memory allocated for the in-memory list is greater
1797 ** than (page-size * cache-size), or
1799 ** * The total memory allocated for the in-memory list is greater
1800 ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
1802 nReq
= pVal
->n
+ sizeof(SorterRecord
);
1803 nPMA
= pVal
->n
+ sqlite3VarintLen(pVal
->n
);
1804 if( pSorter
->mxPmaSize
){
1805 if( pSorter
->list
.aMemory
){
1806 bFlush
= pSorter
->iMemory
&& (pSorter
->iMemory
+nReq
) > pSorter
->mxPmaSize
;
1809 (pSorter
->list
.szPMA
> pSorter
->mxPmaSize
)
1810 || (pSorter
->list
.szPMA
> pSorter
->mnPmaSize
&& sqlite3HeapNearlyFull())
1814 rc
= vdbeSorterFlushPMA(pSorter
);
1815 pSorter
->list
.szPMA
= 0;
1816 pSorter
->iMemory
= 0;
1817 assert( rc
!=SQLITE_OK
|| pSorter
->list
.pList
==0 );
1821 pSorter
->list
.szPMA
+= nPMA
;
1822 if( nPMA
>pSorter
->mxKeysize
){
1823 pSorter
->mxKeysize
= nPMA
;
1826 if( pSorter
->list
.aMemory
){
1827 int nMin
= pSorter
->iMemory
+ nReq
;
1829 if( nMin
>pSorter
->nMemory
){
1831 int iListOff
= (u8
*)pSorter
->list
.pList
- pSorter
->list
.aMemory
;
1832 int nNew
= pSorter
->nMemory
* 2;
1833 while( nNew
< nMin
) nNew
= nNew
*2;
1834 if( nNew
> pSorter
->mxPmaSize
) nNew
= pSorter
->mxPmaSize
;
1835 if( nNew
< nMin
) nNew
= nMin
;
1837 aNew
= sqlite3Realloc(pSorter
->list
.aMemory
, nNew
);
1838 if( !aNew
) return SQLITE_NOMEM_BKPT
;
1839 pSorter
->list
.pList
= (SorterRecord
*)&aNew
[iListOff
];
1840 pSorter
->list
.aMemory
= aNew
;
1841 pSorter
->nMemory
= nNew
;
1844 pNew
= (SorterRecord
*)&pSorter
->list
.aMemory
[pSorter
->iMemory
];
1845 pSorter
->iMemory
+= ROUND8(nReq
);
1846 if( pSorter
->list
.pList
){
1847 pNew
->u
.iNext
= (int)((u8
*)(pSorter
->list
.pList
) - pSorter
->list
.aMemory
);
1850 pNew
= (SorterRecord
*)sqlite3Malloc(nReq
);
1852 return SQLITE_NOMEM_BKPT
;
1854 pNew
->u
.pNext
= pSorter
->list
.pList
;
1857 memcpy(SRVAL(pNew
), pVal
->z
, pVal
->n
);
1858 pNew
->nVal
= pVal
->n
;
1859 pSorter
->list
.pList
= pNew
;
1865 ** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format
1866 ** of the data stored in aFile[1] is the same as that used by regular PMAs,
1867 ** except that the number-of-bytes varint is omitted from the start.
1869 static int vdbeIncrPopulate(IncrMerger
*pIncr
){
1872 i64 iStart
= pIncr
->iStartOff
;
1873 SorterFile
*pOut
= &pIncr
->aFile
[1];
1874 SortSubtask
*pTask
= pIncr
->pTask
;
1875 MergeEngine
*pMerger
= pIncr
->pMerger
;
1877 assert( pIncr
->bEof
==0 );
1879 vdbeSorterPopulateDebug(pTask
, "enter");
1881 vdbePmaWriterInit(pOut
->pFd
, &writer
, pTask
->pSorter
->pgsz
, iStart
);
1882 while( rc
==SQLITE_OK
){
1884 PmaReader
*pReader
= &pMerger
->aReadr
[ pMerger
->aTree
[1] ];
1885 int nKey
= pReader
->nKey
;
1886 i64 iEof
= writer
.iWriteOff
+ writer
.iBufEnd
;
1888 /* Check if the output file is full or if the input has been exhausted.
1889 ** In either case exit the loop. */
1890 if( pReader
->pFd
==0 ) break;
1891 if( (iEof
+ nKey
+ sqlite3VarintLen(nKey
))>(iStart
+ pIncr
->mxSz
) ) break;
1893 /* Write the next key to the output. */
1894 vdbePmaWriteVarint(&writer
, nKey
);
1895 vdbePmaWriteBlob(&writer
, pReader
->aKey
, nKey
);
1896 assert( pIncr
->pMerger
->pTask
==pTask
);
1897 rc
= vdbeMergeEngineStep(pIncr
->pMerger
, &dummy
);
1900 rc2
= vdbePmaWriterFinish(&writer
, &pOut
->iEof
);
1901 if( rc
==SQLITE_OK
) rc
= rc2
;
1902 vdbeSorterPopulateDebug(pTask
, "exit");
1906 #if SQLITE_MAX_WORKER_THREADS>0
1908 ** The main routine for background threads that populate aFile[1] of
1909 ** multi-threaded IncrMerger objects.
1911 static void *vdbeIncrPopulateThread(void *pCtx
){
1912 IncrMerger
*pIncr
= (IncrMerger
*)pCtx
;
1913 void *pRet
= SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr
) );
1914 pIncr
->pTask
->bDone
= 1;
1919 ** Launch a background thread to populate aFile[1] of pIncr.
1921 static int vdbeIncrBgPopulate(IncrMerger
*pIncr
){
1922 void *p
= (void*)pIncr
;
1923 assert( pIncr
->bUseThread
);
1924 return vdbeSorterCreateThread(pIncr
->pTask
, vdbeIncrPopulateThread
, p
);
1929 ** This function is called when the PmaReader corresponding to pIncr has
1930 ** finished reading the contents of aFile[0]. Its purpose is to "refill"
1931 ** aFile[0] such that the PmaReader should start rereading it from the
1934 ** For single-threaded objects, this is accomplished by literally reading
1935 ** keys from pIncr->pMerger and repopulating aFile[0].
1937 ** For multi-threaded objects, all that is required is to wait until the
1938 ** background thread is finished (if it is not already) and then swap
1939 ** aFile[0] and aFile[1] in place. If the contents of pMerger have not
1940 ** been exhausted, this function also launches a new background thread
1941 ** to populate the new aFile[1].
1943 ** SQLITE_OK is returned on success, or an SQLite error code otherwise.
1945 static int vdbeIncrSwap(IncrMerger
*pIncr
){
1948 #if SQLITE_MAX_WORKER_THREADS>0
1949 if( pIncr
->bUseThread
){
1950 rc
= vdbeSorterJoinThread(pIncr
->pTask
);
1952 if( rc
==SQLITE_OK
){
1953 SorterFile f0
= pIncr
->aFile
[0];
1954 pIncr
->aFile
[0] = pIncr
->aFile
[1];
1955 pIncr
->aFile
[1] = f0
;
1958 if( rc
==SQLITE_OK
){
1959 if( pIncr
->aFile
[0].iEof
==pIncr
->iStartOff
){
1962 rc
= vdbeIncrBgPopulate(pIncr
);
1968 rc
= vdbeIncrPopulate(pIncr
);
1969 pIncr
->aFile
[0] = pIncr
->aFile
[1];
1970 if( pIncr
->aFile
[0].iEof
==pIncr
->iStartOff
){
1979 ** Allocate and return a new IncrMerger object to read data from pMerger.
1981 ** If an OOM condition is encountered, return NULL. In this case free the
1982 ** pMerger argument before returning.
1984 static int vdbeIncrMergerNew(
1985 SortSubtask
*pTask
, /* The thread that will be using the new IncrMerger */
1986 MergeEngine
*pMerger
, /* The MergeEngine that the IncrMerger will control */
1987 IncrMerger
**ppOut
/* Write the new IncrMerger here */
1990 IncrMerger
*pIncr
= *ppOut
= (IncrMerger
*)
1991 (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr
)));
1993 pIncr
->pMerger
= pMerger
;
1994 pIncr
->pTask
= pTask
;
1995 pIncr
->mxSz
= MAX(pTask
->pSorter
->mxKeysize
+9,pTask
->pSorter
->mxPmaSize
/2);
1996 pTask
->file2
.iEof
+= pIncr
->mxSz
;
1998 vdbeMergeEngineFree(pMerger
);
1999 rc
= SQLITE_NOMEM_BKPT
;
2004 #if SQLITE_MAX_WORKER_THREADS>0
2006 ** Set the "use-threads" flag on object pIncr.
2008 static void vdbeIncrMergerSetThreads(IncrMerger
*pIncr
){
2009 pIncr
->bUseThread
= 1;
2010 pIncr
->pTask
->file2
.iEof
-= pIncr
->mxSz
;
2012 #endif /* SQLITE_MAX_WORKER_THREADS>0 */
2017 ** Recompute pMerger->aTree[iOut] by comparing the next keys on the
2018 ** two PmaReaders that feed that entry. Neither of the PmaReaders
2019 ** are advanced. This routine merely does the comparison.
2021 static void vdbeMergeEngineCompare(
2022 MergeEngine
*pMerger
, /* Merge engine containing PmaReaders to compare */
2023 int iOut
/* Store the result in pMerger->aTree[iOut] */
2031 assert( iOut
<pMerger
->nTree
&& iOut
>0 );
2033 if( iOut
>=(pMerger
->nTree
/2) ){
2034 i1
= (iOut
- pMerger
->nTree
/2) * 2;
2037 i1
= pMerger
->aTree
[iOut
*2];
2038 i2
= pMerger
->aTree
[iOut
*2+1];
2041 p1
= &pMerger
->aReadr
[i1
];
2042 p2
= &pMerger
->aReadr
[i2
];
2046 }else if( p2
->pFd
==0 ){
2049 SortSubtask
*pTask
= pMerger
->pTask
;
2052 assert( pTask
->pUnpacked
!=0 ); /* from vdbeSortSubtaskMain() */
2053 res
= pTask
->xCompare(
2054 pTask
, &bCached
, p1
->aKey
, p1
->nKey
, p2
->aKey
, p2
->nKey
2063 pMerger
->aTree
[iOut
] = iRes
;
2067 ** Allowed values for the eMode parameter to vdbeMergeEngineInit()
2068 ** and vdbePmaReaderIncrMergeInit().
2070 ** Only INCRINIT_NORMAL is valid in single-threaded builds (when
2071 ** SQLITE_MAX_WORKER_THREADS==0). The other values are only used
2072 ** when there exists one or more separate worker threads.
2074 #define INCRINIT_NORMAL 0
2075 #define INCRINIT_TASK 1
2076 #define INCRINIT_ROOT 2
2079 ** Forward reference required as the vdbeIncrMergeInit() and
2080 ** vdbePmaReaderIncrInit() routines are called mutually recursively when
2081 ** building a merge tree.
2083 static int vdbePmaReaderIncrInit(PmaReader
*pReadr
, int eMode
);
2086 ** Initialize the MergeEngine object passed as the second argument. Once this
2087 ** function returns, the first key of merged data may be read from the
2088 ** MergeEngine object in the usual fashion.
2090 ** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge
2091 ** objects attached to the PmaReader objects that the merger reads from have
2092 ** already been populated, but that they have not yet populated aFile[0] and
2093 ** set the PmaReader objects up to read from it. In this case all that is
2094 ** required is to call vdbePmaReaderNext() on each PmaReader to point it at
2097 ** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use
2098 ** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data
2101 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2103 static int vdbeMergeEngineInit(
2104 SortSubtask
*pTask
, /* Thread that will run pMerger */
2105 MergeEngine
*pMerger
, /* MergeEngine to initialize */
2106 int eMode
/* One of the INCRINIT_XXX constants */
2108 int rc
= SQLITE_OK
; /* Return code */
2109 int i
; /* For looping over PmaReader objects */
2110 int nTree
= pMerger
->nTree
;
2112 /* eMode is always INCRINIT_NORMAL in single-threaded mode */
2113 assert( SQLITE_MAX_WORKER_THREADS
>0 || eMode
==INCRINIT_NORMAL
);
2115 /* Verify that the MergeEngine is assigned to a single thread */
2116 assert( pMerger
->pTask
==0 );
2117 pMerger
->pTask
= pTask
;
2119 for(i
=0; i
<nTree
; i
++){
2120 if( SQLITE_MAX_WORKER_THREADS
>0 && eMode
==INCRINIT_ROOT
){
2121 /* PmaReaders should be normally initialized in order, as if they are
2122 ** reading from the same temp file this makes for more linear file IO.
2123 ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is
2124 ** in use it will block the vdbePmaReaderNext() call while it uses
2125 ** the main thread to fill its buffer. So calling PmaReaderNext()
2126 ** on this PmaReader before any of the multi-threaded PmaReaders takes
2127 ** better advantage of multi-processor hardware. */
2128 rc
= vdbePmaReaderNext(&pMerger
->aReadr
[nTree
-i
-1]);
2130 rc
= vdbePmaReaderIncrInit(&pMerger
->aReadr
[i
], INCRINIT_NORMAL
);
2132 if( rc
!=SQLITE_OK
) return rc
;
2135 for(i
=pMerger
->nTree
-1; i
>0; i
--){
2136 vdbeMergeEngineCompare(pMerger
, i
);
2138 return pTask
->pUnpacked
->errCode
;
2142 ** The PmaReader passed as the first argument is guaranteed to be an
2143 ** incremental-reader (pReadr->pIncr!=0). This function serves to open
2144 ** and/or initialize the temp file related fields of the IncrMerge
2145 ** object at (pReadr->pIncr).
2147 ** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders
2148 ** in the sub-tree headed by pReadr are also initialized. Data is then
2149 ** loaded into the buffers belonging to pReadr and it is set to point to
2150 ** the first key in its range.
2152 ** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed
2153 ** to be a multi-threaded PmaReader and this function is being called in a
2154 ** background thread. In this case all PmaReaders in the sub-tree are
2155 ** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to
2156 ** pReadr is populated. However, pReadr itself is not set up to point
2157 ** to its first key. A call to vdbePmaReaderNext() is still required to do
2160 ** The reason this function does not call vdbePmaReaderNext() immediately
2161 ** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has
2162 ** to block on thread (pTask->thread) before accessing aFile[1]. But, since
2163 ** this entire function is being run by thread (pTask->thread), that will
2164 ** lead to the current background thread attempting to join itself.
2166 ** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed
2167 ** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all
2168 ** child-trees have already been initialized using IncrInit(INCRINIT_TASK).
2169 ** In this case vdbePmaReaderNext() is called on all child PmaReaders and
2170 ** the current PmaReader set to point to the first key in its range.
2172 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2174 static int vdbePmaReaderIncrMergeInit(PmaReader
*pReadr
, int eMode
){
2176 IncrMerger
*pIncr
= pReadr
->pIncr
;
2177 SortSubtask
*pTask
= pIncr
->pTask
;
2178 sqlite3
*db
= pTask
->pSorter
->db
;
2180 /* eMode is always INCRINIT_NORMAL in single-threaded mode */
2181 assert( SQLITE_MAX_WORKER_THREADS
>0 || eMode
==INCRINIT_NORMAL
);
2183 rc
= vdbeMergeEngineInit(pTask
, pIncr
->pMerger
, eMode
);
2185 /* Set up the required files for pIncr. A multi-theaded IncrMerge object
2186 ** requires two temp files to itself, whereas a single-threaded object
2187 ** only requires a region of pTask->file2. */
2188 if( rc
==SQLITE_OK
){
2189 int mxSz
= pIncr
->mxSz
;
2190 #if SQLITE_MAX_WORKER_THREADS>0
2191 if( pIncr
->bUseThread
){
2192 rc
= vdbeSorterOpenTempFile(db
, mxSz
, &pIncr
->aFile
[0].pFd
);
2193 if( rc
==SQLITE_OK
){
2194 rc
= vdbeSorterOpenTempFile(db
, mxSz
, &pIncr
->aFile
[1].pFd
);
2198 /*if( !pIncr->bUseThread )*/{
2199 if( pTask
->file2
.pFd
==0 ){
2200 assert( pTask
->file2
.iEof
>0 );
2201 rc
= vdbeSorterOpenTempFile(db
, pTask
->file2
.iEof
, &pTask
->file2
.pFd
);
2202 pTask
->file2
.iEof
= 0;
2204 if( rc
==SQLITE_OK
){
2205 pIncr
->aFile
[1].pFd
= pTask
->file2
.pFd
;
2206 pIncr
->iStartOff
= pTask
->file2
.iEof
;
2207 pTask
->file2
.iEof
+= mxSz
;
2212 #if SQLITE_MAX_WORKER_THREADS>0
2213 if( rc
==SQLITE_OK
&& pIncr
->bUseThread
){
2214 /* Use the current thread to populate aFile[1], even though this
2215 ** PmaReader is multi-threaded. If this is an INCRINIT_TASK object,
2216 ** then this function is already running in background thread
2217 ** pIncr->pTask->thread.
2219 ** If this is the INCRINIT_ROOT object, then it is running in the
2220 ** main VDBE thread. But that is Ok, as that thread cannot return
2221 ** control to the VDBE or proceed with anything useful until the
2222 ** first results are ready from this merger object anyway.
2224 assert( eMode
==INCRINIT_ROOT
|| eMode
==INCRINIT_TASK
);
2225 rc
= vdbeIncrPopulate(pIncr
);
2229 if( rc
==SQLITE_OK
&& (SQLITE_MAX_WORKER_THREADS
==0 || eMode
!=INCRINIT_TASK
) ){
2230 rc
= vdbePmaReaderNext(pReadr
);
2236 #if SQLITE_MAX_WORKER_THREADS>0
2238 ** The main routine for vdbePmaReaderIncrMergeInit() operations run in
2239 ** background threads.
2241 static void *vdbePmaReaderBgIncrInit(void *pCtx
){
2242 PmaReader
*pReader
= (PmaReader
*)pCtx
;
2243 void *pRet
= SQLITE_INT_TO_PTR(
2244 vdbePmaReaderIncrMergeInit(pReader
,INCRINIT_TASK
)
2246 pReader
->pIncr
->pTask
->bDone
= 1;
2252 ** If the PmaReader passed as the first argument is not an incremental-reader
2253 ** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it invokes
2254 ** the vdbePmaReaderIncrMergeInit() function with the parameters passed to
2255 ** this routine to initialize the incremental merge.
2257 ** If the IncrMerger object is multi-threaded (IncrMerger.bUseThread==1),
2258 ** then a background thread is launched to call vdbePmaReaderIncrMergeInit().
2259 ** Or, if the IncrMerger is single threaded, the same function is called
2260 ** using the current thread.
2262 static int vdbePmaReaderIncrInit(PmaReader
*pReadr
, int eMode
){
2263 IncrMerger
*pIncr
= pReadr
->pIncr
; /* Incremental merger */
2264 int rc
= SQLITE_OK
; /* Return code */
2266 #if SQLITE_MAX_WORKER_THREADS>0
2267 assert( pIncr
->bUseThread
==0 || eMode
==INCRINIT_TASK
);
2268 if( pIncr
->bUseThread
){
2269 void *pCtx
= (void*)pReadr
;
2270 rc
= vdbeSorterCreateThread(pIncr
->pTask
, vdbePmaReaderBgIncrInit
, pCtx
);
2274 rc
= vdbePmaReaderIncrMergeInit(pReadr
, eMode
);
2281 ** Allocate a new MergeEngine object to merge the contents of nPMA level-0
2282 ** PMAs from pTask->file. If no error occurs, set *ppOut to point to
2283 ** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut
2284 ** to NULL and return an SQLite error code.
2286 ** When this function is called, *piOffset is set to the offset of the
2287 ** first PMA to read from pTask->file. Assuming no error occurs, it is
2288 ** set to the offset immediately following the last byte of the last
2289 ** PMA before returning. If an error does occur, then the final value of
2290 ** *piOffset is undefined.
2292 static int vdbeMergeEngineLevel0(
2293 SortSubtask
*pTask
, /* Sorter task to read from */
2294 int nPMA
, /* Number of PMAs to read */
2295 i64
*piOffset
, /* IN/OUT: Readr offset in pTask->file */
2296 MergeEngine
**ppOut
/* OUT: New merge-engine */
2298 MergeEngine
*pNew
; /* Merge engine to return */
2299 i64 iOff
= *piOffset
;
2303 *ppOut
= pNew
= vdbeMergeEngineNew(nPMA
);
2304 if( pNew
==0 ) rc
= SQLITE_NOMEM_BKPT
;
2306 for(i
=0; i
<nPMA
&& rc
==SQLITE_OK
; i
++){
2308 PmaReader
*pReadr
= &pNew
->aReadr
[i
];
2309 rc
= vdbePmaReaderInit(pTask
, &pTask
->file
, iOff
, pReadr
, &nDummy
);
2310 iOff
= pReadr
->iEof
;
2313 if( rc
!=SQLITE_OK
){
2314 vdbeMergeEngineFree(pNew
);
2322 ** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of
2323 ** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes.
2327 ** nPMA<=16 -> TreeDepth() == 0
2328 ** nPMA<=256 -> TreeDepth() == 1
2329 ** nPMA<=65536 -> TreeDepth() == 2
2331 static int vdbeSorterTreeDepth(int nPMA
){
2333 i64 nDiv
= SORTER_MAX_MERGE_COUNT
;
2334 while( nDiv
< (i64
)nPMA
){
2335 nDiv
= nDiv
* SORTER_MAX_MERGE_COUNT
;
2342 ** pRoot is the root of an incremental merge-tree with depth nDepth (according
2343 ** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the
2344 ** tree, counting from zero. This function adds pLeaf to the tree.
2346 ** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error
2347 ** code is returned and pLeaf is freed.
2349 static int vdbeSorterAddToTree(
2350 SortSubtask
*pTask
, /* Task context */
2351 int nDepth
, /* Depth of tree according to TreeDepth() */
2352 int iSeq
, /* Sequence number of leaf within tree */
2353 MergeEngine
*pRoot
, /* Root of tree */
2354 MergeEngine
*pLeaf
/* Leaf to add to tree */
2359 MergeEngine
*p
= pRoot
;
2362 rc
= vdbeIncrMergerNew(pTask
, pLeaf
, &pIncr
);
2364 for(i
=1; i
<nDepth
; i
++){
2365 nDiv
= nDiv
* SORTER_MAX_MERGE_COUNT
;
2368 for(i
=1; i
<nDepth
&& rc
==SQLITE_OK
; i
++){
2369 int iIter
= (iSeq
/ nDiv
) % SORTER_MAX_MERGE_COUNT
;
2370 PmaReader
*pReadr
= &p
->aReadr
[iIter
];
2372 if( pReadr
->pIncr
==0 ){
2373 MergeEngine
*pNew
= vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT
);
2375 rc
= SQLITE_NOMEM_BKPT
;
2377 rc
= vdbeIncrMergerNew(pTask
, pNew
, &pReadr
->pIncr
);
2380 if( rc
==SQLITE_OK
){
2381 p
= pReadr
->pIncr
->pMerger
;
2382 nDiv
= nDiv
/ SORTER_MAX_MERGE_COUNT
;
2386 if( rc
==SQLITE_OK
){
2387 p
->aReadr
[iSeq
% SORTER_MAX_MERGE_COUNT
].pIncr
= pIncr
;
2389 vdbeIncrFree(pIncr
);
2395 ** This function is called as part of a SorterRewind() operation on a sorter
2396 ** that has already written two or more level-0 PMAs to one or more temp
2397 ** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that
2398 ** can be used to incrementally merge all PMAs on disk.
2400 ** If successful, SQLITE_OK is returned and *ppOut set to point to the
2401 ** MergeEngine object at the root of the tree before returning. Or, if an
2402 ** error occurs, an SQLite error code is returned and the final value
2403 ** of *ppOut is undefined.
2405 static int vdbeSorterMergeTreeBuild(
2406 VdbeSorter
*pSorter
, /* The VDBE cursor that implements the sort */
2407 MergeEngine
**ppOut
/* Write the MergeEngine here */
2409 MergeEngine
*pMain
= 0;
2413 #if SQLITE_MAX_WORKER_THREADS>0
2414 /* If the sorter uses more than one task, then create the top-level
2415 ** MergeEngine here. This MergeEngine will read data from exactly
2416 ** one PmaReader per sub-task. */
2417 assert( pSorter
->bUseThreads
|| pSorter
->nTask
==1 );
2418 if( pSorter
->nTask
>1 ){
2419 pMain
= vdbeMergeEngineNew(pSorter
->nTask
);
2420 if( pMain
==0 ) rc
= SQLITE_NOMEM_BKPT
;
2424 for(iTask
=0; rc
==SQLITE_OK
&& iTask
<pSorter
->nTask
; iTask
++){
2425 SortSubtask
*pTask
= &pSorter
->aTask
[iTask
];
2426 assert( pTask
->nPMA
>0 || SQLITE_MAX_WORKER_THREADS
>0 );
2427 if( SQLITE_MAX_WORKER_THREADS
==0 || pTask
->nPMA
){
2428 MergeEngine
*pRoot
= 0; /* Root node of tree for this task */
2429 int nDepth
= vdbeSorterTreeDepth(pTask
->nPMA
);
2432 if( pTask
->nPMA
<=SORTER_MAX_MERGE_COUNT
){
2433 rc
= vdbeMergeEngineLevel0(pTask
, pTask
->nPMA
, &iReadOff
, &pRoot
);
2437 pRoot
= vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT
);
2438 if( pRoot
==0 ) rc
= SQLITE_NOMEM_BKPT
;
2439 for(i
=0; i
<pTask
->nPMA
&& rc
==SQLITE_OK
; i
+= SORTER_MAX_MERGE_COUNT
){
2440 MergeEngine
*pMerger
= 0; /* New level-0 PMA merger */
2441 int nReader
; /* Number of level-0 PMAs to merge */
2443 nReader
= MIN(pTask
->nPMA
- i
, SORTER_MAX_MERGE_COUNT
);
2444 rc
= vdbeMergeEngineLevel0(pTask
, nReader
, &iReadOff
, &pMerger
);
2445 if( rc
==SQLITE_OK
){
2446 rc
= vdbeSorterAddToTree(pTask
, nDepth
, iSeq
++, pRoot
, pMerger
);
2451 if( rc
==SQLITE_OK
){
2452 #if SQLITE_MAX_WORKER_THREADS>0
2454 rc
= vdbeIncrMergerNew(pTask
, pRoot
, &pMain
->aReadr
[iTask
].pIncr
);
2462 vdbeMergeEngineFree(pRoot
);
2467 if( rc
!=SQLITE_OK
){
2468 vdbeMergeEngineFree(pMain
);
2476 ** This function is called as part of an sqlite3VdbeSorterRewind() operation
2477 ** on a sorter that has written two or more PMAs to temporary files. It sets
2478 ** up either VdbeSorter.pMerger (for single threaded sorters) or pReader
2479 ** (for multi-threaded sorters) so that it can be used to iterate through
2480 ** all records stored in the sorter.
2482 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
2484 static int vdbeSorterSetupMerge(VdbeSorter
*pSorter
){
2485 int rc
; /* Return code */
2486 SortSubtask
*pTask0
= &pSorter
->aTask
[0];
2487 MergeEngine
*pMain
= 0;
2488 #if SQLITE_MAX_WORKER_THREADS
2489 sqlite3
*db
= pTask0
->pSorter
->db
;
2491 SorterCompare xCompare
= vdbeSorterGetCompare(pSorter
);
2492 for(i
=0; i
<pSorter
->nTask
; i
++){
2493 pSorter
->aTask
[i
].xCompare
= xCompare
;
2497 rc
= vdbeSorterMergeTreeBuild(pSorter
, &pMain
);
2498 if( rc
==SQLITE_OK
){
2499 #if SQLITE_MAX_WORKER_THREADS
2500 assert( pSorter
->bUseThreads
==0 || pSorter
->nTask
>1 );
2501 if( pSorter
->bUseThreads
){
2503 PmaReader
*pReadr
= 0;
2504 SortSubtask
*pLast
= &pSorter
->aTask
[pSorter
->nTask
-1];
2505 rc
= vdbeSortAllocUnpacked(pLast
);
2506 if( rc
==SQLITE_OK
){
2507 pReadr
= (PmaReader
*)sqlite3DbMallocZero(db
, sizeof(PmaReader
));
2508 pSorter
->pReader
= pReadr
;
2509 if( pReadr
==0 ) rc
= SQLITE_NOMEM_BKPT
;
2511 if( rc
==SQLITE_OK
){
2512 rc
= vdbeIncrMergerNew(pLast
, pMain
, &pReadr
->pIncr
);
2513 if( rc
==SQLITE_OK
){
2514 vdbeIncrMergerSetThreads(pReadr
->pIncr
);
2515 for(iTask
=0; iTask
<(pSorter
->nTask
-1); iTask
++){
2517 if( (pIncr
= pMain
->aReadr
[iTask
].pIncr
) ){
2518 vdbeIncrMergerSetThreads(pIncr
);
2519 assert( pIncr
->pTask
!=pLast
);
2522 for(iTask
=0; rc
==SQLITE_OK
&& iTask
<pSorter
->nTask
; iTask
++){
2525 ** a) The incremental merge object is configured to use the
2527 ** b) If it is using task (nTask-1), it is configured to run
2528 ** in single-threaded mode. This is important, as the
2529 ** root merge (INCRINIT_ROOT) will be using the same task
2532 PmaReader
*p
= &pMain
->aReadr
[iTask
];
2533 assert( p
->pIncr
==0 || (
2534 (p
->pIncr
->pTask
==&pSorter
->aTask
[iTask
]) /* a */
2535 && (iTask
!=pSorter
->nTask
-1 || p
->pIncr
->bUseThread
==0) /* b */
2537 rc
= vdbePmaReaderIncrInit(p
, INCRINIT_TASK
);
2542 if( rc
==SQLITE_OK
){
2543 rc
= vdbePmaReaderIncrMergeInit(pReadr
, INCRINIT_ROOT
);
2548 rc
= vdbeMergeEngineInit(pTask0
, pMain
, INCRINIT_NORMAL
);
2549 pSorter
->pMerger
= pMain
;
2554 if( rc
!=SQLITE_OK
){
2555 vdbeMergeEngineFree(pMain
);
2562 ** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
2563 ** this function is called to prepare for iterating through the records
2566 int sqlite3VdbeSorterRewind(const VdbeCursor
*pCsr
, int *pbEof
){
2567 VdbeSorter
*pSorter
;
2568 int rc
= SQLITE_OK
; /* Return code */
2570 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
2571 pSorter
= pCsr
->uc
.pSorter
;
2574 /* If no data has been written to disk, then do not do so now. Instead,
2575 ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
2576 ** from the in-memory list. */
2577 if( pSorter
->bUsePMA
==0 ){
2578 if( pSorter
->list
.pList
){
2580 rc
= vdbeSorterSort(&pSorter
->aTask
[0], &pSorter
->list
);
2587 /* Write the current in-memory list to a PMA. When the VdbeSorterWrite()
2588 ** function flushes the contents of memory to disk, it immediately always
2589 ** creates a new list consisting of a single key immediately afterwards.
2590 ** So the list is never empty at this point. */
2591 assert( pSorter
->list
.pList
);
2592 rc
= vdbeSorterFlushPMA(pSorter
);
2594 /* Join all threads */
2595 rc
= vdbeSorterJoinAll(pSorter
, rc
);
2597 vdbeSorterRewindDebug("rewind");
2599 /* Assuming no errors have occurred, set up a merger structure to
2600 ** incrementally read and merge all remaining PMAs. */
2601 assert( pSorter
->pReader
==0 );
2602 if( rc
==SQLITE_OK
){
2603 rc
= vdbeSorterSetupMerge(pSorter
);
2607 vdbeSorterRewindDebug("rewinddone");
2612 ** Advance to the next element in the sorter. Return value:
2614 ** SQLITE_OK success
2615 ** SQLITE_DONE end of data
2616 ** otherwise some kind of error.
2618 int sqlite3VdbeSorterNext(sqlite3
*db
, const VdbeCursor
*pCsr
){
2619 VdbeSorter
*pSorter
;
2620 int rc
; /* Return code */
2622 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
2623 pSorter
= pCsr
->uc
.pSorter
;
2624 assert( pSorter
->bUsePMA
|| (pSorter
->pReader
==0 && pSorter
->pMerger
==0) );
2625 if( pSorter
->bUsePMA
){
2626 assert( pSorter
->pReader
==0 || pSorter
->pMerger
==0 );
2627 assert( pSorter
->bUseThreads
==0 || pSorter
->pReader
);
2628 assert( pSorter
->bUseThreads
==1 || pSorter
->pMerger
);
2629 #if SQLITE_MAX_WORKER_THREADS>0
2630 if( pSorter
->bUseThreads
){
2631 rc
= vdbePmaReaderNext(pSorter
->pReader
);
2632 if( rc
==SQLITE_OK
&& pSorter
->pReader
->pFd
==0 ) rc
= SQLITE_DONE
;
2635 /*if( !pSorter->bUseThreads )*/ {
2637 assert( pSorter
->pMerger
!=0 );
2638 assert( pSorter
->pMerger
->pTask
==(&pSorter
->aTask
[0]) );
2639 rc
= vdbeMergeEngineStep(pSorter
->pMerger
, &res
);
2640 if( rc
==SQLITE_OK
&& res
) rc
= SQLITE_DONE
;
2643 SorterRecord
*pFree
= pSorter
->list
.pList
;
2644 pSorter
->list
.pList
= pFree
->u
.pNext
;
2646 if( pSorter
->list
.aMemory
==0 ) vdbeSorterRecordFree(db
, pFree
);
2647 rc
= pSorter
->list
.pList
? SQLITE_OK
: SQLITE_DONE
;
2653 ** Return a pointer to a buffer owned by the sorter that contains the
2656 static void *vdbeSorterRowkey(
2657 const VdbeSorter
*pSorter
, /* Sorter object */
2658 int *pnKey
/* OUT: Size of current key in bytes */
2661 if( pSorter
->bUsePMA
){
2663 #if SQLITE_MAX_WORKER_THREADS>0
2664 if( pSorter
->bUseThreads
){
2665 pReader
= pSorter
->pReader
;
2668 /*if( !pSorter->bUseThreads )*/{
2669 pReader
= &pSorter
->pMerger
->aReadr
[pSorter
->pMerger
->aTree
[1]];
2671 *pnKey
= pReader
->nKey
;
2672 pKey
= pReader
->aKey
;
2674 *pnKey
= pSorter
->list
.pList
->nVal
;
2675 pKey
= SRVAL(pSorter
->list
.pList
);
2681 ** Copy the current sorter key into the memory cell pOut.
2683 int sqlite3VdbeSorterRowkey(const VdbeCursor
*pCsr
, Mem
*pOut
){
2684 VdbeSorter
*pSorter
;
2685 void *pKey
; int nKey
; /* Sorter key to copy into pOut */
2687 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
2688 pSorter
= pCsr
->uc
.pSorter
;
2689 pKey
= vdbeSorterRowkey(pSorter
, &nKey
);
2690 if( sqlite3VdbeMemClearAndResize(pOut
, nKey
) ){
2691 return SQLITE_NOMEM_BKPT
;
2694 MemSetTypeFlag(pOut
, MEM_Blob
);
2695 memcpy(pOut
->z
, pKey
, nKey
);
2701 ** Compare the key in memory cell pVal with the key that the sorter cursor
2702 ** passed as the first argument currently points to. For the purposes of
2703 ** the comparison, ignore the rowid field at the end of each record.
2705 ** If the sorter cursor key contains any NULL values, consider it to be
2706 ** less than pVal. Even if pVal also contains NULL values.
2708 ** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
2709 ** Otherwise, set *pRes to a negative, zero or positive value if the
2710 ** key in pVal is smaller than, equal to or larger than the current sorter
2713 ** This routine forms the core of the OP_SorterCompare opcode, which in
2714 ** turn is used to verify uniqueness when constructing a UNIQUE INDEX.
2716 int sqlite3VdbeSorterCompare(
2717 const VdbeCursor
*pCsr
, /* Sorter cursor */
2718 Mem
*pVal
, /* Value to compare to current sorter key */
2719 int nKeyCol
, /* Compare this many columns */
2720 int *pRes
/* OUT: Result of comparison */
2722 VdbeSorter
*pSorter
;
2726 void *pKey
; int nKey
; /* Sorter key to compare pVal with */
2728 assert( pCsr
->eCurType
==CURTYPE_SORTER
);
2729 pSorter
= pCsr
->uc
.pSorter
;
2730 r2
= pSorter
->pUnpacked
;
2731 pKeyInfo
= pCsr
->pKeyInfo
;
2733 r2
= pSorter
->pUnpacked
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
2734 if( r2
==0 ) return SQLITE_NOMEM_BKPT
;
2735 r2
->nField
= nKeyCol
;
2737 assert( r2
->nField
==nKeyCol
);
2739 pKey
= vdbeSorterRowkey(pSorter
, &nKey
);
2740 sqlite3VdbeRecordUnpack(pKeyInfo
, nKey
, pKey
, r2
);
2741 for(i
=0; i
<nKeyCol
; i
++){
2742 if( r2
->aMem
[i
].flags
& MEM_Null
){
2748 *pRes
= sqlite3VdbeRecordCompare(pVal
->n
, pVal
->z
, r2
);