4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
41 ** Astronomical Algorithms, 2nd Edition, 1998
44 ** Richmond, Virginia (USA)
46 #include "sqliteInt.h"
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute. The substitute function itself is
56 ** defined in "os_win.c".
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm
*__cdecl
localtime(const time_t *);
64 ** A structure for holding a single date and time.
66 typedef struct DateTime DateTime
;
68 sqlite3_int64 iJD
; /* The julian day number times 86400000 */
69 int Y
, M
, D
; /* Year, month, and day */
70 int h
, m
; /* Hour and minutes */
71 int tz
; /* Timezone offset in minutes */
72 double s
; /* Seconds */
73 char validJD
; /* True (1) if iJD is valid */
74 char rawS
; /* Raw numeric value stored in s */
75 char validYMD
; /* True (1) if Y,M,D are valid */
76 char validHMS
; /* True (1) if h,m,s are valid */
77 char validTZ
; /* True (1) if tz is valid */
78 char tzSet
; /* Timezone was set explicitly */
79 char isError
; /* An overflow has occurred */
84 ** Convert zDate into one or more integers according to the conversion
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters. The meaning
89 ** of a four-character format specifiers ABCD is:
91 ** A: number of digits to convert. Always "2" or "4".
92 ** B: minimum value. Always "0" or "1".
93 ** C: maximum value, decoded as:
100 ** D: the separator character, or \000 to indicate this is the
101 ** last number to convert.
103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
108 ** The function returns the number of successful conversions.
110 static int getDigits(const char *zDate
, const char *zFormat
, ...){
111 /* The aMx[] array translates the 3rd character of each format
112 ** spec into a max size: a b c d e f */
113 static const u16 aMx
[] = { 12, 14, 24, 31, 59, 9999 };
117 va_start(ap
, zFormat
);
119 char N
= zFormat
[0] - '0';
120 char min
= zFormat
[1] - '0';
124 assert( zFormat
[2]>='a' && zFormat
[2]<='f' );
125 max
= aMx
[zFormat
[2] - 'a'];
129 if( !sqlite3Isdigit(*zDate
) ){
132 val
= val
*10 + *zDate
- '0';
135 if( val
<(int)min
|| val
>(int)max
|| (nextC
!=0 && nextC
!=*zDate
) ){
138 *va_arg(ap
,int*) = val
;
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
154 ** Or the "zulu" notation:
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0. If a parser error occurs,
162 ** A missing specifier is not considered an error.
164 static int parseTimezone(const char *zDate
, DateTime
*p
){
168 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
175 }else if( c
=='Z' || c
=='z' ){
182 if( getDigits(zDate
, "20b:20e", &nHr
, &nMn
)!=2 ){
186 p
->tz
= sgn
*(nMn
+ nHr
*60);
188 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits. The
196 ** fractional seconds FFFF can be one or more digits.
198 ** Return 1 if there is a parsing error and 0 on success.
200 static int parseHhMmSs(const char *zDate
, DateTime
*p
){
203 if( getDigits(zDate
, "20c:20e", &h
, &m
)!=2 ){
209 if( getDigits(zDate
, "20e", &s
)!=1 ){
213 if( *zDate
=='.' && sqlite3Isdigit(zDate
[1]) ){
216 while( sqlite3Isdigit(*zDate
) ){
217 ms
= ms
*10.0 + *zDate
- '0';
232 if( parseTimezone(zDate
, p
) ) return 1;
233 p
->validTZ
= (p
->tz
!=0)?1:0;
238 ** Put the DateTime object into its error state.
240 static void datetimeError(DateTime
*p
){
241 memset(p
, 0, sizeof(*p
));
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
249 ** Reference: Meeus page 61
251 static void computeJD(DateTime
*p
){
252 int Y
, M
, D
, A
, B
, X1
, X2
;
254 if( p
->validJD
) return;
260 Y
= 2000; /* If no YMD specified, assume 2000-Jan-01 */
264 if( Y
<-4713 || Y
>9999 || p
->rawS
){
274 X1
= 36525*(Y
+4716)/100;
275 X2
= 306001*(M
+1)/10000;
276 p
->iJD
= (sqlite3_int64
)((X1
+ X2
+ D
+ B
- 1524.5 ) * 86400000);
279 p
->iJD
+= p
->h
*3600000 + p
->m
*60000 + (sqlite3_int64
)(p
->s
*1000);
281 p
->iJD
-= p
->tz
*60000;
290 ** Parse dates of the form
292 ** YYYY-MM-DD HH:MM:SS.FFF
293 ** YYYY-MM-DD HH:MM:SS
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
301 static int parseYyyyMmDd(const char *zDate
, DateTime
*p
){
310 if( getDigits(zDate
, "40f-21a-21d", &Y
, &M
, &D
)!=3 ){
314 while( sqlite3Isspace(*zDate
) || 'T'==*(u8
*)zDate
){ zDate
++; }
315 if( parseHhMmSs(zDate
, p
)==0 ){
316 /* We got the time */
317 }else if( *zDate
==0 ){
334 ** Set the time to the current time reported by the VFS.
336 ** Return the number of errors.
338 static int setDateTimeToCurrent(sqlite3_context
*context
, DateTime
*p
){
339 p
->iJD
= sqlite3StmtCurrentTime(context
);
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970. If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
354 static void setRawDateNumber(DateTime
*p
, double r
){
357 if( r
>=0.0 && r
<5373484.5 ){
358 p
->iJD
= (sqlite3_int64
)(r
*86400000.0 + 0.5);
364 ** Attempt to parse the given string into a julian day number. Return
365 ** the number of errors.
367 ** The following are acceptable forms for the input string:
369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
373 ** In the first form, the +/-HH:MM is always optional. The fractional
374 ** seconds extension (the ".FFF") is optional. The seconds portion
375 ** (":SS.FFF") is option. The year and date can be omitted as long
376 ** as there is a time string. The time string can be omitted as long
377 ** as there is a year and date.
379 static int parseDateOrTime(
380 sqlite3_context
*context
,
385 if( parseYyyyMmDd(zDate
,p
)==0 ){
387 }else if( parseHhMmSs(zDate
, p
)==0 ){
389 }else if( sqlite3StrICmp(zDate
,"now")==0 && sqlite3NotPureFunc(context
) ){
390 return setDateTimeToCurrent(context
, p
);
391 }else if( sqlite3AtoF(zDate
, &r
, sqlite3Strlen30(zDate
), SQLITE_UTF8
) ){
392 setRawDateNumber(p
, r
);
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
408 ** Return TRUE if the given julian day number is within range.
410 ** The input is the JulianDay times 86400000.
412 static int validJulianDay(sqlite3_int64 iJD
){
413 return iJD
>=0 && iJD
<=INT_464269060799999
;
417 ** Compute the Year, Month, and Day from the julian day number.
419 static void computeYMD(DateTime
*p
){
420 int Z
, A
, B
, C
, D
, E
, X1
;
421 if( p
->validYMD
) return;
426 }else if( !validJulianDay(p
->iJD
) ){
430 Z
= (int)((p
->iJD
+ 43200000)/86400000);
431 A
= (int)((Z
- 1867216.25)/36524.25);
432 A
= Z
+ 1 + A
- (A
/4);
434 C
= (int)((B
- 122.1)/365.25);
435 D
= (36525*(C
&32767))/100;
436 E
= (int)((B
-D
)/30.6001);
437 X1
= (int)(30.6001*E
);
439 p
->M
= E
<14 ? E
-1 : E
-13;
440 p
->Y
= p
->M
>2 ? C
- 4716 : C
- 4715;
446 ** Compute the Hour, Minute, and Seconds from the julian day number.
448 static void computeHMS(DateTime
*p
){
450 if( p
->validHMS
) return;
452 s
= (int)((p
->iJD
+ 43200000) % 86400000);
465 ** Compute both YMD and HMS
467 static void computeYMD_HMS(DateTime
*p
){
473 ** Clear the YMD and HMS and the TZ
475 static void clearYMD_HMS_TZ(DateTime
*p
){
481 #ifndef SQLITE_OMIT_LOCALTIME
483 ** On recent Windows platforms, the localtime_s() function is available
484 ** as part of the "Secure CRT". It is essentially equivalent to
485 ** localtime_r() available under most POSIX platforms, except that the
486 ** order of the parameters is reversed.
488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
490 ** If the user has not indicated to use localtime_r() or localtime_s()
491 ** already, check for an MSVC build environment that provides
494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
496 #undef HAVE_LOCALTIME_S
497 #define HAVE_LOCALTIME_S 1
501 ** The following routine implements the rough equivalent of localtime_r()
502 ** using whatever operating-system specific localtime facility that
503 ** is available. This routine returns 0 on success and
504 ** non-zero on any kind of error.
506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
507 ** routine will always fail.
509 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
510 ** library function localtime_r() is used to assist in the calculation of
513 static int osLocaltime(time_t *t
, struct tm
*pTm
){
515 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
517 #if SQLITE_THREADSAFE>0
518 sqlite3_mutex
*mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
);
520 sqlite3_mutex_enter(mutex
);
522 #ifndef SQLITE_UNTESTABLE
523 if( sqlite3GlobalConfig
.bLocaltimeFault
) pX
= 0;
526 sqlite3_mutex_leave(mutex
);
529 #ifndef SQLITE_UNTESTABLE
530 if( sqlite3GlobalConfig
.bLocaltimeFault
) return 1;
533 rc
= localtime_r(t
, pTm
)==0;
535 rc
= localtime_s(pTm
, t
);
536 #endif /* HAVE_LOCALTIME_R */
537 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
540 #endif /* SQLITE_OMIT_LOCALTIME */
543 #ifndef SQLITE_OMIT_LOCALTIME
545 ** Compute the difference (in milliseconds) between localtime and UTC
546 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
547 ** return this value and set *pRc to SQLITE_OK.
549 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
550 ** is undefined in this case.
552 static sqlite3_int64
localtimeOffset(
553 DateTime
*p
, /* Date at which to calculate offset */
554 sqlite3_context
*pCtx
, /* Write error here if one occurs */
555 int *pRc
/* OUT: Error code. SQLITE_OK or ERROR */
561 /* Initialize the contents of sLocal to avoid a compiler warning. */
562 memset(&sLocal
, 0, sizeof(sLocal
));
566 if( x
.Y
<1971 || x
.Y
>=2038 ){
567 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
568 ** works for years between 1970 and 2037. For dates outside this range,
569 ** SQLite attempts to map the year into an equivalent year within this
570 ** range, do the calculation, then map the year back.
579 int s
= (int)(x
.s
+ 0.5);
585 t
= (time_t)(x
.iJD
/1000 - 21086676*(i64
)10000);
586 if( osLocaltime(&t
, &sLocal
) ){
587 sqlite3_result_error(pCtx
, "local time unavailable", -1);
591 y
.Y
= sLocal
.tm_year
+ 1900;
592 y
.M
= sLocal
.tm_mon
+ 1;
593 y
.D
= sLocal
.tm_mday
;
594 y
.h
= sLocal
.tm_hour
;
605 return y
.iJD
- x
.iJD
;
607 #endif /* SQLITE_OMIT_LOCALTIME */
610 ** The following table defines various date transformations of the form
614 ** Where NNN is an arbitrary floating-point number and "days" can be one
615 ** of several units of time.
617 static const struct {
618 u8 eType
; /* Transformation type code */
619 u8 nName
; /* Length of th name */
620 char *zName
; /* Name of the transformation */
621 double rLimit
; /* Maximum NNN value for this transform */
622 double rXform
; /* Constant used for this transform */
624 { 0, 6, "second", 464269060800.0, 86400000.0/(24.0*60.0*60.0) },
625 { 0, 6, "minute", 7737817680.0, 86400000.0/(24.0*60.0) },
626 { 0, 4, "hour", 128963628.0, 86400000.0/24.0 },
627 { 0, 3, "day", 5373485.0, 86400000.0 },
628 { 1, 5, "month", 176546.0, 30.0*86400000.0 },
629 { 2, 4, "year", 14713.0, 365.0*86400000.0 },
633 ** Process a modifier to a date-time stamp. The modifiers are
651 ** Return 0 on success and 1 if there is any kind of error. If the error
652 ** is in a system call (i.e. localtime()), then an error message is written
653 ** to context pCtx. If the error is an unrecognized modifier, no error is
656 static int parseModifier(
657 sqlite3_context
*pCtx
, /* Function context */
658 const char *z
, /* The text of the modifier */
659 int n
, /* Length of zMod in bytes */
660 DateTime
*p
/* The date/time value to be modified */
664 switch(sqlite3UpperToLower
[(u8
)z
[0]] ){
665 #ifndef SQLITE_OMIT_LOCALTIME
669 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
672 if( sqlite3_stricmp(z
, "localtime")==0 && sqlite3NotPureFunc(pCtx
) ){
674 p
->iJD
+= localtimeOffset(p
, pCtx
, &rc
);
684 ** Treat the current value of p->s as the number of
685 ** seconds since 1970. Convert to a real julian day number.
687 if( sqlite3_stricmp(z
, "unixepoch")==0 && p
->rawS
){
688 r
= p
->s
*1000.0 + 210866760000000.0;
689 if( r
>=0.0 && r
<464269060800000.0 ){
691 p
->iJD
= (sqlite3_int64
)r
;
697 #ifndef SQLITE_OMIT_LOCALTIME
698 else if( sqlite3_stricmp(z
, "utc")==0 && sqlite3NotPureFunc(pCtx
) ){
702 c1
= localtimeOffset(p
, pCtx
, &rc
);
706 p
->iJD
+= c1
- localtimeOffset(p
, pCtx
, &rc
);
720 ** Move the date to the same time on the next occurrence of
721 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
722 ** date is already on the appropriate weekday, this is a no-op.
724 if( sqlite3_strnicmp(z
, "weekday ", 8)==0
725 && sqlite3AtoF(&z
[8], &r
, sqlite3Strlen30(&z
[8]), SQLITE_UTF8
)
726 && (n
=(int)r
)==r
&& n
>=0 && r
<7 ){
732 Z
= ((p
->iJD
+ 129600000)/86400000) % 7;
734 p
->iJD
+= (n
- Z
)*86400000;
744 ** Move the date backwards to the beginning of the current day,
747 if( sqlite3_strnicmp(z
, "start of ", 9)!=0 ) break;
748 if( !p
->validJD
&& !p
->validYMD
&& !p
->validHMS
) break;
757 if( sqlite3_stricmp(z
,"month")==0 ){
760 }else if( sqlite3_stricmp(z
,"year")==0 ){
764 }else if( sqlite3_stricmp(z
,"day")==0 ){
783 for(n
=1; z
[n
] && z
[n
]!=':' && !sqlite3Isspace(z
[n
]); n
++){}
784 if( !sqlite3AtoF(z
, &r
, n
, SQLITE_UTF8
) ){
789 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
790 ** specified number of hours, minutes, seconds, and fractional seconds
791 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
797 if( !sqlite3Isdigit(*z2
) ) z2
++;
798 memset(&tx
, 0, sizeof(tx
));
799 if( parseHhMmSs(z2
, &tx
) ) break;
802 day
= tx
.iJD
/86400000;
803 tx
.iJD
-= day
*86400000;
804 if( z
[0]=='-' ) tx
.iJD
= -tx
.iJD
;
812 /* If control reaches this point, it means the transformation is
813 ** one of the forms like "+NNN days". */
815 while( sqlite3Isspace(*z
) ) z
++;
816 n
= sqlite3Strlen30(z
);
817 if( n
>10 || n
<3 ) break;
818 if( sqlite3UpperToLower
[(u8
)z
[n
-1]]=='s' ) n
--;
821 rRounder
= r
<0 ? -0.5 : +0.5;
822 for(i
=0; i
<ArraySize(aXformType
); i
++){
823 if( aXformType
[i
].nName
==n
824 && sqlite3_strnicmp(aXformType
[i
].zName
, z
, n
)==0
825 && r
>-aXformType
[i
].rLimit
&& r
<aXformType
[i
].rLimit
827 switch( aXformType
[i
].eType
){
828 case 1: { /* Special processing to add months */
832 x
= p
->M
>0 ? (p
->M
-1)/12 : (p
->M
-12)/12;
839 case 2: { /* Special processing to add years */
849 p
->iJD
+= (sqlite3_int64
)(r
*aXformType
[i
].rXform
+ rRounder
);
865 ** Process time function arguments. argv[0] is a date-time stamp.
866 ** argv[1] and following are modifiers. Parse them all and write
867 ** the resulting time into the DateTime structure p. Return 0
868 ** on success and 1 if there are any errors.
870 ** If there are zero parameters (if even argv[0] is undefined)
871 ** then assume a default value of "now" for argv[0].
874 sqlite3_context
*context
,
876 sqlite3_value
**argv
,
880 const unsigned char *z
;
882 memset(p
, 0, sizeof(*p
));
884 return setDateTimeToCurrent(context
, p
);
886 if( (eType
= sqlite3_value_type(argv
[0]))==SQLITE_FLOAT
887 || eType
==SQLITE_INTEGER
){
888 setRawDateNumber(p
, sqlite3_value_double(argv
[0]));
890 z
= sqlite3_value_text(argv
[0]);
891 if( !z
|| parseDateOrTime(context
, (char*)z
, p
) ){
895 for(i
=1; i
<argc
; i
++){
896 z
= sqlite3_value_text(argv
[i
]);
897 n
= sqlite3_value_bytes(argv
[i
]);
898 if( z
==0 || parseModifier(context
, (char*)z
, n
, p
) ) return 1;
901 if( p
->isError
|| !validJulianDay(p
->iJD
) ) return 1;
907 ** The following routines implement the various date and time functions
912 ** julianday( TIMESTRING, MOD, MOD, ...)
914 ** Return the julian day number of the date specified in the arguments
916 static void juliandayFunc(
917 sqlite3_context
*context
,
922 if( isDate(context
, argc
, argv
, &x
)==0 ){
924 sqlite3_result_double(context
, x
.iJD
/86400000.0);
929 ** datetime( TIMESTRING, MOD, MOD, ...)
931 ** Return YYYY-MM-DD HH:MM:SS
933 static void datetimeFunc(
934 sqlite3_context
*context
,
939 if( isDate(context
, argc
, argv
, &x
)==0 ){
942 sqlite3_snprintf(sizeof(zBuf
), zBuf
, "%04d-%02d-%02d %02d:%02d:%02d",
943 x
.Y
, x
.M
, x
.D
, x
.h
, x
.m
, (int)(x
.s
));
944 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
949 ** time( TIMESTRING, MOD, MOD, ...)
953 static void timeFunc(
954 sqlite3_context
*context
,
959 if( isDate(context
, argc
, argv
, &x
)==0 ){
962 sqlite3_snprintf(sizeof(zBuf
), zBuf
, "%02d:%02d:%02d", x
.h
, x
.m
, (int)x
.s
);
963 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
968 ** date( TIMESTRING, MOD, MOD, ...)
972 static void dateFunc(
973 sqlite3_context
*context
,
978 if( isDate(context
, argc
, argv
, &x
)==0 ){
981 sqlite3_snprintf(sizeof(zBuf
), zBuf
, "%04d-%02d-%02d", x
.Y
, x
.M
, x
.D
);
982 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
987 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
989 ** Return a string described by FORMAT. Conversions as follows:
992 ** %f ** fractional seconds SS.SSS
994 ** %j day of year 000-366
995 ** %J ** julian day number
998 ** %s seconds since 1970-01-01
1000 ** %w day of week 0-6 sunday==0
1001 ** %W week of year 00-53
1002 ** %Y year 0000-9999
1005 static void strftimeFunc(
1006 sqlite3_context
*context
,
1008 sqlite3_value
**argv
1017 if( argc
==0 ) return;
1018 zFmt
= (const char*)sqlite3_value_text(argv
[0]);
1019 if( zFmt
==0 || isDate(context
, argc
-1, argv
+1, &x
) ) return;
1020 db
= sqlite3_context_db_handle(context
);
1021 for(i
=0, n
=1; zFmt
[i
]; i
++, n
++){
1023 switch( zFmt
[i
+1] ){
1049 return; /* ERROR. return a NULL */
1054 testcase( n
==sizeof(zBuf
)-1 );
1055 testcase( n
==sizeof(zBuf
) );
1056 testcase( n
==(u64
)db
->aLimit
[SQLITE_LIMIT_LENGTH
]+1 );
1057 testcase( n
==(u64
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] );
1058 if( n
<sizeof(zBuf
) ){
1060 }else if( n
>(u64
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1061 sqlite3_result_error_toobig(context
);
1064 z
= sqlite3DbMallocRawNN(db
, (int)n
);
1066 sqlite3_result_error_nomem(context
);
1072 for(i
=j
=0; zFmt
[i
]; i
++){
1078 case 'd': sqlite3_snprintf(3, &z
[j
],"%02d",x
.D
); j
+=2; break;
1081 if( s
>59.999 ) s
= 59.999;
1082 sqlite3_snprintf(7, &z
[j
],"%06.3f", s
);
1083 j
+= sqlite3Strlen30(&z
[j
]);
1086 case 'H': sqlite3_snprintf(3, &z
[j
],"%02d",x
.h
); j
+=2; break;
1087 case 'W': /* Fall thru */
1089 int nDay
; /* Number of days since 1st day of year */
1095 nDay
= (int)((x
.iJD
-y
.iJD
+43200000)/86400000);
1097 int wd
; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1098 wd
= (int)(((x
.iJD
+43200000)/86400000)%7);
1099 sqlite3_snprintf(3, &z
[j
],"%02d",(nDay
+7-wd
)/7);
1102 sqlite3_snprintf(4, &z
[j
],"%03d",nDay
+1);
1108 sqlite3_snprintf(20, &z
[j
],"%.16g",x
.iJD
/86400000.0);
1109 j
+=sqlite3Strlen30(&z
[j
]);
1112 case 'm': sqlite3_snprintf(3, &z
[j
],"%02d",x
.M
); j
+=2; break;
1113 case 'M': sqlite3_snprintf(3, &z
[j
],"%02d",x
.m
); j
+=2; break;
1115 sqlite3_snprintf(30,&z
[j
],"%lld",
1116 (i64
)(x
.iJD
/1000 - 21086676*(i64
)10000));
1117 j
+= sqlite3Strlen30(&z
[j
]);
1120 case 'S': sqlite3_snprintf(3,&z
[j
],"%02d",(int)x
.s
); j
+=2; break;
1122 z
[j
++] = (char)(((x
.iJD
+129600000)/86400000) % 7) + '0';
1126 sqlite3_snprintf(5,&z
[j
],"%04d",x
.Y
); j
+=sqlite3Strlen30(&z
[j
]);
1129 default: z
[j
++] = '%'; break;
1134 sqlite3_result_text(context
, z
, -1,
1135 z
==zBuf
? SQLITE_TRANSIENT
: SQLITE_DYNAMIC
);
1141 ** This function returns the same value as time('now').
1143 static void ctimeFunc(
1144 sqlite3_context
*context
,
1146 sqlite3_value
**NotUsed2
1148 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1149 timeFunc(context
, 0, 0);
1155 ** This function returns the same value as date('now').
1157 static void cdateFunc(
1158 sqlite3_context
*context
,
1160 sqlite3_value
**NotUsed2
1162 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1163 dateFunc(context
, 0, 0);
1167 ** current_timestamp()
1169 ** This function returns the same value as datetime('now').
1171 static void ctimestampFunc(
1172 sqlite3_context
*context
,
1174 sqlite3_value
**NotUsed2
1176 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1177 datetimeFunc(context
, 0, 0);
1179 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1181 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1183 ** If the library is compiled to omit the full-scale date and time
1184 ** handling (to get a smaller binary), the following minimal version
1185 ** of the functions current_time(), current_date() and current_timestamp()
1186 ** are included instead. This is to support column declarations that
1187 ** include "DEFAULT CURRENT_TIME" etc.
1189 ** This function uses the C-library functions time(), gmtime()
1190 ** and strftime(). The format string to pass to strftime() is supplied
1191 ** as the user-data for the function.
1193 static void currentTimeFunc(
1194 sqlite3_context
*context
,
1196 sqlite3_value
**argv
1199 char *zFormat
= (char *)sqlite3_user_data(context
);
1205 UNUSED_PARAMETER(argc
);
1206 UNUSED_PARAMETER(argv
);
1208 iT
= sqlite3StmtCurrentTime(context
);
1210 t
= iT
/1000 - 10000*(sqlite3_int64
)21086676;
1212 pTm
= gmtime_r(&t
, &sNow
);
1214 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
));
1216 if( pTm
) memcpy(&sNow
, pTm
, sizeof(sNow
));
1217 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER
));
1220 strftime(zBuf
, 20, zFormat
, &sNow
);
1221 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
1227 ** This function registered all of the above C functions as SQL
1228 ** functions. This should be the only routine in this file with
1229 ** external linkage.
1231 void sqlite3RegisterDateTimeFunctions(void){
1232 static FuncDef aDateTimeFuncs
[] = {
1233 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1234 PURE_DATE(julianday
, -1, 0, 0, juliandayFunc
),
1235 PURE_DATE(date
, -1, 0, 0, dateFunc
),
1236 PURE_DATE(time
, -1, 0, 0, timeFunc
),
1237 PURE_DATE(datetime
, -1, 0, 0, datetimeFunc
),
1238 PURE_DATE(strftime
, -1, 0, 0, strftimeFunc
),
1239 DFUNCTION(current_time
, 0, 0, 0, ctimeFunc
),
1240 DFUNCTION(current_timestamp
, 0, 0, 0, ctimestampFunc
),
1241 DFUNCTION(current_date
, 0, 0, 0, cdateFunc
),
1243 STR_FUNCTION(current_time
, 0, "%H:%M:%S", 0, currentTimeFunc
),
1244 STR_FUNCTION(current_date
, 0, "%Y-%m-%d", 0, currentTimeFunc
),
1245 STR_FUNCTION(current_timestamp
, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc
),
1248 sqlite3InsertBuiltinFuncs(aDateTimeFuncs
, ArraySize(aDateTimeFuncs
));