Get read-only SHM file tests passing on Win32.
[sqlite.git] / src / analyze.c
blob495cc954accdc25a2c7efc2ff994c6eab63da9ae
1 /*
2 ** 2005-07-08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices. These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
18 ** The following system tables are or have been supported:
20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 and later and with
31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced
33 ** version of sqlite_stat3 and is only available when compiled with
34 ** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is
35 ** not possible to enable both STAT3 and STAT4 at the same time. If they
36 ** are both enabled, then STAT4 takes precedence.
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
41 ** Format of sqlite_stat1:
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column. The tbl column is the name of the table to
45 ** which the index belongs. In each such row, the stat column will be
46 ** a string consisting of a list of integers. The first integer in this
47 ** list is the number of rows in the index. (This is the same as the
48 ** number of rows in the table, except for partial indices.) The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index. The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns. The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns. For
54 ** a K-column index, there will be K+1 integers in the stat column. If
55 ** the index is unique, then the last integer will be 1.
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered". The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space. If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
62 **
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
67 ** Format of sqlite_stat2:
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information
72 ** about the distribution of keys within an index. The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs. There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index. Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
83 ** rownumber = (i*C*2 + C)/(S*2)
85 ** For i between 0 and S-1. Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
88 ** The format for sqlite_stat2 is recorded here for legacy reference. This
89 ** version of SQLite does not support sqlite_stat2. It neither reads nor
90 ** writes the sqlite_stat2 table. This version of SQLite only supports
91 ** sqlite_stat3.
93 ** Format for sqlite_stat3:
95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
96 ** sqlite_stat4 format will be described first. Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
99 ** Format for sqlite_stat4:
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
104 ** queries.
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index. If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
110 ** binary encoding of a key from the index. The nEq column is a
111 ** list of integers. The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample. The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth. nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample. The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample. The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
124 ** sample.
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
130 ** large nEq values.
132 ** Format for sqlite_stat3 redux:
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index. The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
145 #if defined(SQLITE_ENABLE_STAT4)
146 # define IsStat4 1
147 # define IsStat3 0
148 #elif defined(SQLITE_ENABLE_STAT3)
149 # define IsStat4 0
150 # define IsStat3 1
151 #else
152 # define IsStat4 0
153 # define IsStat3 0
154 # undef SQLITE_STAT4_SAMPLES
155 # define SQLITE_STAT4_SAMPLES 1
156 #endif
157 #define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */
160 ** This routine generates code that opens the sqlite_statN tables.
161 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
162 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
163 ** appropriate compile-time options are provided.
165 ** If the sqlite_statN tables do not previously exist, it is created.
167 ** Argument zWhere may be a pointer to a buffer containing a table name,
168 ** or it may be a NULL pointer. If it is not NULL, then all entries in
169 ** the sqlite_statN tables associated with the named table are deleted.
170 ** If zWhere==0, then code is generated to delete all stat table entries.
172 static void openStatTable(
173 Parse *pParse, /* Parsing context */
174 int iDb, /* The database we are looking in */
175 int iStatCur, /* Open the sqlite_stat1 table on this cursor */
176 const char *zWhere, /* Delete entries for this table or index */
177 const char *zWhereType /* Either "tbl" or "idx" */
179 static const struct {
180 const char *zName;
181 const char *zCols;
182 } aTable[] = {
183 { "sqlite_stat1", "tbl,idx,stat" },
184 #if defined(SQLITE_ENABLE_STAT4)
185 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
186 { "sqlite_stat3", 0 },
187 #elif defined(SQLITE_ENABLE_STAT3)
188 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
189 { "sqlite_stat4", 0 },
190 #else
191 { "sqlite_stat3", 0 },
192 { "sqlite_stat4", 0 },
193 #endif
195 int i;
196 sqlite3 *db = pParse->db;
197 Db *pDb;
198 Vdbe *v = sqlite3GetVdbe(pParse);
199 int aRoot[ArraySize(aTable)];
200 u8 aCreateTbl[ArraySize(aTable)];
202 if( v==0 ) return;
203 assert( sqlite3BtreeHoldsAllMutexes(db) );
204 assert( sqlite3VdbeDb(v)==db );
205 pDb = &db->aDb[iDb];
207 /* Create new statistic tables if they do not exist, or clear them
208 ** if they do already exist.
210 for(i=0; i<ArraySize(aTable); i++){
211 const char *zTab = aTable[i].zName;
212 Table *pStat;
213 if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
214 if( aTable[i].zCols ){
215 /* The sqlite_statN table does not exist. Create it. Note that a
216 ** side-effect of the CREATE TABLE statement is to leave the rootpage
217 ** of the new table in register pParse->regRoot. This is important
218 ** because the OpenWrite opcode below will be needing it. */
219 sqlite3NestedParse(pParse,
220 "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
222 aRoot[i] = pParse->regRoot;
223 aCreateTbl[i] = OPFLAG_P2ISREG;
225 }else{
226 /* The table already exists. If zWhere is not NULL, delete all entries
227 ** associated with the table zWhere. If zWhere is NULL, delete the
228 ** entire contents of the table. */
229 aRoot[i] = pStat->tnum;
230 aCreateTbl[i] = 0;
231 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
232 if( zWhere ){
233 sqlite3NestedParse(pParse,
234 "DELETE FROM %Q.%s WHERE %s=%Q",
235 pDb->zDbSName, zTab, zWhereType, zWhere
237 }else{
238 /* The sqlite_stat[134] table already exists. Delete all rows. */
239 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
244 /* Open the sqlite_stat[134] tables for writing. */
245 for(i=0; aTable[i].zCols; i++){
246 assert( i<ArraySize(aTable) );
247 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3);
248 sqlite3VdbeChangeP5(v, aCreateTbl[i]);
249 VdbeComment((v, aTable[i].zName));
254 ** Recommended number of samples for sqlite_stat4
256 #ifndef SQLITE_STAT4_SAMPLES
257 # define SQLITE_STAT4_SAMPLES 24
258 #endif
261 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
262 ** share an instance of the following structure to hold their state
263 ** information.
265 typedef struct Stat4Accum Stat4Accum;
266 typedef struct Stat4Sample Stat4Sample;
267 struct Stat4Sample {
268 tRowcnt *anEq; /* sqlite_stat4.nEq */
269 tRowcnt *anDLt; /* sqlite_stat4.nDLt */
270 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
271 tRowcnt *anLt; /* sqlite_stat4.nLt */
272 union {
273 i64 iRowid; /* Rowid in main table of the key */
274 u8 *aRowid; /* Key for WITHOUT ROWID tables */
275 } u;
276 u32 nRowid; /* Sizeof aRowid[] */
277 u8 isPSample; /* True if a periodic sample */
278 int iCol; /* If !isPSample, the reason for inclusion */
279 u32 iHash; /* Tiebreaker hash */
280 #endif
282 struct Stat4Accum {
283 tRowcnt nRow; /* Number of rows in the entire table */
284 tRowcnt nPSample; /* How often to do a periodic sample */
285 int nCol; /* Number of columns in index + pk/rowid */
286 int nKeyCol; /* Number of index columns w/o the pk/rowid */
287 int mxSample; /* Maximum number of samples to accumulate */
288 Stat4Sample current; /* Current row as a Stat4Sample */
289 u32 iPrn; /* Pseudo-random number used for sampling */
290 Stat4Sample *aBest; /* Array of nCol best samples */
291 int iMin; /* Index in a[] of entry with minimum score */
292 int nSample; /* Current number of samples */
293 int nMaxEqZero; /* Max leading 0 in anEq[] for any a[] entry */
294 int iGet; /* Index of current sample accessed by stat_get() */
295 Stat4Sample *a; /* Array of mxSample Stat4Sample objects */
296 sqlite3 *db; /* Database connection, for malloc() */
299 /* Reclaim memory used by a Stat4Sample
301 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
302 static void sampleClear(sqlite3 *db, Stat4Sample *p){
303 assert( db!=0 );
304 if( p->nRowid ){
305 sqlite3DbFree(db, p->u.aRowid);
306 p->nRowid = 0;
309 #endif
311 /* Initialize the BLOB value of a ROWID
313 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
314 static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){
315 assert( db!=0 );
316 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
317 p->u.aRowid = sqlite3DbMallocRawNN(db, n);
318 if( p->u.aRowid ){
319 p->nRowid = n;
320 memcpy(p->u.aRowid, pData, n);
321 }else{
322 p->nRowid = 0;
325 #endif
327 /* Initialize the INTEGER value of a ROWID.
329 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
330 static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){
331 assert( db!=0 );
332 if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
333 p->nRowid = 0;
334 p->u.iRowid = iRowid;
336 #endif
340 ** Copy the contents of object (*pFrom) into (*pTo).
342 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
343 static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){
344 pTo->isPSample = pFrom->isPSample;
345 pTo->iCol = pFrom->iCol;
346 pTo->iHash = pFrom->iHash;
347 memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
348 memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
349 memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
350 if( pFrom->nRowid ){
351 sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
352 }else{
353 sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
356 #endif
359 ** Reclaim all memory of a Stat4Accum structure.
361 static void stat4Destructor(void *pOld){
362 Stat4Accum *p = (Stat4Accum*)pOld;
363 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
364 int i;
365 for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
366 for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
367 sampleClear(p->db, &p->current);
368 #endif
369 sqlite3DbFree(p->db, p);
373 ** Implementation of the stat_init(N,K,C) SQL function. The three parameters
374 ** are:
375 ** N: The number of columns in the index including the rowid/pk (note 1)
376 ** K: The number of columns in the index excluding the rowid/pk.
377 ** C: The number of rows in the index (note 2)
379 ** Note 1: In the special case of the covering index that implements a
380 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
381 ** total number of columns in the table.
383 ** Note 2: C is only used for STAT3 and STAT4.
385 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on
386 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
387 ** PRIMARY KEY of the table. The covering index that implements the
388 ** original WITHOUT ROWID table as N==K as a special case.
390 ** This routine allocates the Stat4Accum object in heap memory. The return
391 ** value is a pointer to the Stat4Accum object. The datatype of the
392 ** return value is BLOB, but it is really just a pointer to the Stat4Accum
393 ** object.
395 static void statInit(
396 sqlite3_context *context,
397 int argc,
398 sqlite3_value **argv
400 Stat4Accum *p;
401 int nCol; /* Number of columns in index being sampled */
402 int nKeyCol; /* Number of key columns */
403 int nColUp; /* nCol rounded up for alignment */
404 int n; /* Bytes of space to allocate */
405 sqlite3 *db; /* Database connection */
406 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
407 int mxSample = SQLITE_STAT4_SAMPLES;
408 #endif
410 /* Decode the three function arguments */
411 UNUSED_PARAMETER(argc);
412 nCol = sqlite3_value_int(argv[0]);
413 assert( nCol>0 );
414 nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
415 nKeyCol = sqlite3_value_int(argv[1]);
416 assert( nKeyCol<=nCol );
417 assert( nKeyCol>0 );
419 /* Allocate the space required for the Stat4Accum object */
420 n = sizeof(*p)
421 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */
422 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */
423 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
424 + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */
425 + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */
426 + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample)
427 #endif
429 db = sqlite3_context_db_handle(context);
430 p = sqlite3DbMallocZero(db, n);
431 if( p==0 ){
432 sqlite3_result_error_nomem(context);
433 return;
436 p->db = db;
437 p->nRow = 0;
438 p->nCol = nCol;
439 p->nKeyCol = nKeyCol;
440 p->current.anDLt = (tRowcnt*)&p[1];
441 p->current.anEq = &p->current.anDLt[nColUp];
443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
445 u8 *pSpace; /* Allocated space not yet assigned */
446 int i; /* Used to iterate through p->aSample[] */
448 p->iGet = -1;
449 p->mxSample = mxSample;
450 p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
451 p->current.anLt = &p->current.anEq[nColUp];
452 p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
454 /* Set up the Stat4Accum.a[] and aBest[] arrays */
455 p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
456 p->aBest = &p->a[mxSample];
457 pSpace = (u8*)(&p->a[mxSample+nCol]);
458 for(i=0; i<(mxSample+nCol); i++){
459 p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
460 p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
461 p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
463 assert( (pSpace - (u8*)p)==n );
465 for(i=0; i<nCol; i++){
466 p->aBest[i].iCol = i;
469 #endif
471 /* Return a pointer to the allocated object to the caller. Note that
472 ** only the pointer (the 2nd parameter) matters. The size of the object
473 ** (given by the 3rd parameter) is never used and can be any positive
474 ** value. */
475 sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor);
477 static const FuncDef statInitFuncdef = {
478 2+IsStat34, /* nArg */
479 SQLITE_UTF8, /* funcFlags */
480 0, /* pUserData */
481 0, /* pNext */
482 statInit, /* xSFunc */
483 0, /* xFinalize */
484 "stat_init", /* zName */
488 #ifdef SQLITE_ENABLE_STAT4
490 ** pNew and pOld are both candidate non-periodic samples selected for
491 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
492 ** considering only any trailing columns and the sample hash value, this
493 ** function returns true if sample pNew is to be preferred over pOld.
494 ** In other words, if we assume that the cardinalities of the selected
495 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
497 ** This function assumes that for each argument sample, the contents of
498 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
500 static int sampleIsBetterPost(
501 Stat4Accum *pAccum,
502 Stat4Sample *pNew,
503 Stat4Sample *pOld
505 int nCol = pAccum->nCol;
506 int i;
507 assert( pNew->iCol==pOld->iCol );
508 for(i=pNew->iCol+1; i<nCol; i++){
509 if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
510 if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
512 if( pNew->iHash>pOld->iHash ) return 1;
513 return 0;
515 #endif
517 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
519 ** Return true if pNew is to be preferred over pOld.
521 ** This function assumes that for each argument sample, the contents of
522 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
524 static int sampleIsBetter(
525 Stat4Accum *pAccum,
526 Stat4Sample *pNew,
527 Stat4Sample *pOld
529 tRowcnt nEqNew = pNew->anEq[pNew->iCol];
530 tRowcnt nEqOld = pOld->anEq[pOld->iCol];
532 assert( pOld->isPSample==0 && pNew->isPSample==0 );
533 assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );
535 if( (nEqNew>nEqOld) ) return 1;
536 #ifdef SQLITE_ENABLE_STAT4
537 if( nEqNew==nEqOld ){
538 if( pNew->iCol<pOld->iCol ) return 1;
539 return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
541 return 0;
542 #else
543 return (nEqNew==nEqOld && pNew->iHash>pOld->iHash);
544 #endif
548 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
549 ** remove the least desirable sample from p->a[] to make room.
551 static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){
552 Stat4Sample *pSample = 0;
553 int i;
555 assert( IsStat4 || nEqZero==0 );
557 #ifdef SQLITE_ENABLE_STAT4
558 /* Stat4Accum.nMaxEqZero is set to the maximum number of leading 0
559 ** values in the anEq[] array of any sample in Stat4Accum.a[]. In
560 ** other words, if nMaxEqZero is n, then it is guaranteed that there
561 ** are no samples with Stat4Sample.anEq[m]==0 for (m>=n). */
562 if( nEqZero>p->nMaxEqZero ){
563 p->nMaxEqZero = nEqZero;
565 if( pNew->isPSample==0 ){
566 Stat4Sample *pUpgrade = 0;
567 assert( pNew->anEq[pNew->iCol]>0 );
569 /* This sample is being added because the prefix that ends in column
570 ** iCol occurs many times in the table. However, if we have already
571 ** added a sample that shares this prefix, there is no need to add
572 ** this one. Instead, upgrade the priority of the highest priority
573 ** existing sample that shares this prefix. */
574 for(i=p->nSample-1; i>=0; i--){
575 Stat4Sample *pOld = &p->a[i];
576 if( pOld->anEq[pNew->iCol]==0 ){
577 if( pOld->isPSample ) return;
578 assert( pOld->iCol>pNew->iCol );
579 assert( sampleIsBetter(p, pNew, pOld) );
580 if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
581 pUpgrade = pOld;
585 if( pUpgrade ){
586 pUpgrade->iCol = pNew->iCol;
587 pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
588 goto find_new_min;
591 #endif
593 /* If necessary, remove sample iMin to make room for the new sample. */
594 if( p->nSample>=p->mxSample ){
595 Stat4Sample *pMin = &p->a[p->iMin];
596 tRowcnt *anEq = pMin->anEq;
597 tRowcnt *anLt = pMin->anLt;
598 tRowcnt *anDLt = pMin->anDLt;
599 sampleClear(p->db, pMin);
600 memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
601 pSample = &p->a[p->nSample-1];
602 pSample->nRowid = 0;
603 pSample->anEq = anEq;
604 pSample->anDLt = anDLt;
605 pSample->anLt = anLt;
606 p->nSample = p->mxSample-1;
609 /* The "rows less-than" for the rowid column must be greater than that
610 ** for the last sample in the p->a[] array. Otherwise, the samples would
611 ** be out of order. */
612 #ifdef SQLITE_ENABLE_STAT4
613 assert( p->nSample==0
614 || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );
615 #endif
617 /* Insert the new sample */
618 pSample = &p->a[p->nSample];
619 sampleCopy(p, pSample, pNew);
620 p->nSample++;
622 /* Zero the first nEqZero entries in the anEq[] array. */
623 memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);
625 #ifdef SQLITE_ENABLE_STAT4
626 find_new_min:
627 #endif
628 if( p->nSample>=p->mxSample ){
629 int iMin = -1;
630 for(i=0; i<p->mxSample; i++){
631 if( p->a[i].isPSample ) continue;
632 if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
633 iMin = i;
636 assert( iMin>=0 );
637 p->iMin = iMin;
640 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
643 ** Field iChng of the index being scanned has changed. So at this point
644 ** p->current contains a sample that reflects the previous row of the
645 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
646 ** correct at this point.
648 static void samplePushPrevious(Stat4Accum *p, int iChng){
649 #ifdef SQLITE_ENABLE_STAT4
650 int i;
652 /* Check if any samples from the aBest[] array should be pushed
653 ** into IndexSample.a[] at this point. */
654 for(i=(p->nCol-2); i>=iChng; i--){
655 Stat4Sample *pBest = &p->aBest[i];
656 pBest->anEq[i] = p->current.anEq[i];
657 if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
658 sampleInsert(p, pBest, i);
662 /* Check that no sample contains an anEq[] entry with an index of
663 ** p->nMaxEqZero or greater set to zero. */
664 for(i=p->nSample-1; i>=0; i--){
665 int j;
666 for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
669 /* Update the anEq[] fields of any samples already collected. */
670 if( iChng<p->nMaxEqZero ){
671 for(i=p->nSample-1; i>=0; i--){
672 int j;
673 for(j=iChng; j<p->nCol; j++){
674 if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
677 p->nMaxEqZero = iChng;
679 #endif
681 #if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4)
682 if( iChng==0 ){
683 tRowcnt nLt = p->current.anLt[0];
684 tRowcnt nEq = p->current.anEq[0];
686 /* Check if this is to be a periodic sample. If so, add it. */
687 if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){
688 p->current.isPSample = 1;
689 sampleInsert(p, &p->current, 0);
690 p->current.isPSample = 0;
691 }else
693 /* Or if it is a non-periodic sample. Add it in this case too. */
694 if( p->nSample<p->mxSample
695 || sampleIsBetter(p, &p->current, &p->a[p->iMin])
697 sampleInsert(p, &p->current, 0);
700 #endif
702 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
703 UNUSED_PARAMETER( p );
704 UNUSED_PARAMETER( iChng );
705 #endif
709 ** Implementation of the stat_push SQL function: stat_push(P,C,R)
710 ** Arguments:
712 ** P Pointer to the Stat4Accum object created by stat_init()
713 ** C Index of left-most column to differ from previous row
714 ** R Rowid for the current row. Might be a key record for
715 ** WITHOUT ROWID tables.
717 ** This SQL function always returns NULL. It's purpose it to accumulate
718 ** statistical data and/or samples in the Stat4Accum object about the
719 ** index being analyzed. The stat_get() SQL function will later be used to
720 ** extract relevant information for constructing the sqlite_statN tables.
722 ** The R parameter is only used for STAT3 and STAT4
724 static void statPush(
725 sqlite3_context *context,
726 int argc,
727 sqlite3_value **argv
729 int i;
731 /* The three function arguments */
732 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
733 int iChng = sqlite3_value_int(argv[1]);
735 UNUSED_PARAMETER( argc );
736 UNUSED_PARAMETER( context );
737 assert( p->nCol>0 );
738 assert( iChng<p->nCol );
740 if( p->nRow==0 ){
741 /* This is the first call to this function. Do initialization. */
742 for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
743 }else{
744 /* Second and subsequent calls get processed here */
745 samplePushPrevious(p, iChng);
747 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
748 ** to the current row of the index. */
749 for(i=0; i<iChng; i++){
750 p->current.anEq[i]++;
752 for(i=iChng; i<p->nCol; i++){
753 p->current.anDLt[i]++;
754 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
755 p->current.anLt[i] += p->current.anEq[i];
756 #endif
757 p->current.anEq[i] = 1;
760 p->nRow++;
761 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
762 if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
763 sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
764 }else{
765 sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
766 sqlite3_value_blob(argv[2]));
768 p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;
769 #endif
771 #ifdef SQLITE_ENABLE_STAT4
773 tRowcnt nLt = p->current.anLt[p->nCol-1];
775 /* Check if this is to be a periodic sample. If so, add it. */
776 if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
777 p->current.isPSample = 1;
778 p->current.iCol = 0;
779 sampleInsert(p, &p->current, p->nCol-1);
780 p->current.isPSample = 0;
783 /* Update the aBest[] array. */
784 for(i=0; i<(p->nCol-1); i++){
785 p->current.iCol = i;
786 if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
787 sampleCopy(p, &p->aBest[i], &p->current);
791 #endif
793 static const FuncDef statPushFuncdef = {
794 2+IsStat34, /* nArg */
795 SQLITE_UTF8, /* funcFlags */
796 0, /* pUserData */
797 0, /* pNext */
798 statPush, /* xSFunc */
799 0, /* xFinalize */
800 "stat_push", /* zName */
804 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
805 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
806 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
807 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
808 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
811 ** Implementation of the stat_get(P,J) SQL function. This routine is
812 ** used to query statistical information that has been gathered into
813 ** the Stat4Accum object by prior calls to stat_push(). The P parameter
814 ** has type BLOB but it is really just a pointer to the Stat4Accum object.
815 ** The content to returned is determined by the parameter J
816 ** which is one of the STAT_GET_xxxx values defined above.
818 ** The stat_get(P,J) function is not available to generic SQL. It is
819 ** inserted as part of a manually constructed bytecode program. (See
820 ** the callStatGet() routine below.) It is guaranteed that the P
821 ** parameter will always be a poiner to a Stat4Accum object, never a
822 ** NULL.
824 ** If neither STAT3 nor STAT4 are enabled, then J is always
825 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
826 ** a one-parameter function, stat_get(P), that always returns the
827 ** stat1 table entry information.
829 static void statGet(
830 sqlite3_context *context,
831 int argc,
832 sqlite3_value **argv
834 Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]);
835 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
836 /* STAT3 and STAT4 have a parameter on this routine. */
837 int eCall = sqlite3_value_int(argv[1]);
838 assert( argc==2 );
839 assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ
840 || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
841 || eCall==STAT_GET_NDLT
843 if( eCall==STAT_GET_STAT1 )
844 #else
845 assert( argc==1 );
846 #endif
848 /* Return the value to store in the "stat" column of the sqlite_stat1
849 ** table for this index.
851 ** The value is a string composed of a list of integers describing
852 ** the index. The first integer in the list is the total number of
853 ** entries in the index. There is one additional integer in the list
854 ** for each indexed column. This additional integer is an estimate of
855 ** the number of rows matched by a stabbing query on the index using
856 ** a key with the corresponding number of fields. In other words,
857 ** if the index is on columns (a,b) and the sqlite_stat1 value is
858 ** "100 10 2", then SQLite estimates that:
860 ** * the index contains 100 rows,
861 ** * "WHERE a=?" matches 10 rows, and
862 ** * "WHERE a=? AND b=?" matches 2 rows.
864 ** If D is the count of distinct values and K is the total number of
865 ** rows, then each estimate is computed as:
867 ** I = (K+D-1)/D
869 char *z;
870 int i;
872 char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 );
873 if( zRet==0 ){
874 sqlite3_result_error_nomem(context);
875 return;
878 sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow);
879 z = zRet + sqlite3Strlen30(zRet);
880 for(i=0; i<p->nKeyCol; i++){
881 u64 nDistinct = p->current.anDLt[i] + 1;
882 u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
883 sqlite3_snprintf(24, z, " %llu", iVal);
884 z += sqlite3Strlen30(z);
885 assert( p->current.anEq[i] );
887 assert( z[0]=='\0' && z>zRet );
889 sqlite3_result_text(context, zRet, -1, sqlite3_free);
891 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
892 else if( eCall==STAT_GET_ROWID ){
893 if( p->iGet<0 ){
894 samplePushPrevious(p, 0);
895 p->iGet = 0;
897 if( p->iGet<p->nSample ){
898 Stat4Sample *pS = p->a + p->iGet;
899 if( pS->nRowid==0 ){
900 sqlite3_result_int64(context, pS->u.iRowid);
901 }else{
902 sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
903 SQLITE_TRANSIENT);
906 }else{
907 tRowcnt *aCnt = 0;
909 assert( p->iGet<p->nSample );
910 switch( eCall ){
911 case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break;
912 case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break;
913 default: {
914 aCnt = p->a[p->iGet].anDLt;
915 p->iGet++;
916 break;
920 if( IsStat3 ){
921 sqlite3_result_int64(context, (i64)aCnt[0]);
922 }else{
923 char *zRet = sqlite3MallocZero(p->nCol * 25);
924 if( zRet==0 ){
925 sqlite3_result_error_nomem(context);
926 }else{
927 int i;
928 char *z = zRet;
929 for(i=0; i<p->nCol; i++){
930 sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]);
931 z += sqlite3Strlen30(z);
933 assert( z[0]=='\0' && z>zRet );
934 z[-1] = '\0';
935 sqlite3_result_text(context, zRet, -1, sqlite3_free);
939 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
940 #ifndef SQLITE_DEBUG
941 UNUSED_PARAMETER( argc );
942 #endif
944 static const FuncDef statGetFuncdef = {
945 1+IsStat34, /* nArg */
946 SQLITE_UTF8, /* funcFlags */
947 0, /* pUserData */
948 0, /* pNext */
949 statGet, /* xSFunc */
950 0, /* xFinalize */
951 "stat_get", /* zName */
955 static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){
956 assert( regOut!=regStat4 && regOut!=regStat4+1 );
957 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
958 sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1);
959 #elif SQLITE_DEBUG
960 assert( iParam==STAT_GET_STAT1 );
961 #else
962 UNUSED_PARAMETER( iParam );
963 #endif
964 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4, regOut,
965 (char*)&statGetFuncdef, P4_FUNCDEF);
966 sqlite3VdbeChangeP5(v, 1 + IsStat34);
970 ** Generate code to do an analysis of all indices associated with
971 ** a single table.
973 static void analyzeOneTable(
974 Parse *pParse, /* Parser context */
975 Table *pTab, /* Table whose indices are to be analyzed */
976 Index *pOnlyIdx, /* If not NULL, only analyze this one index */
977 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
978 int iMem, /* Available memory locations begin here */
979 int iTab /* Next available cursor */
981 sqlite3 *db = pParse->db; /* Database handle */
982 Index *pIdx; /* An index to being analyzed */
983 int iIdxCur; /* Cursor open on index being analyzed */
984 int iTabCur; /* Table cursor */
985 Vdbe *v; /* The virtual machine being built up */
986 int i; /* Loop counter */
987 int jZeroRows = -1; /* Jump from here if number of rows is zero */
988 int iDb; /* Index of database containing pTab */
989 u8 needTableCnt = 1; /* True to count the table */
990 int regNewRowid = iMem++; /* Rowid for the inserted record */
991 int regStat4 = iMem++; /* Register to hold Stat4Accum object */
992 int regChng = iMem++; /* Index of changed index field */
993 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
994 int regRowid = iMem++; /* Rowid argument passed to stat_push() */
995 #endif
996 int regTemp = iMem++; /* Temporary use register */
997 int regTabname = iMem++; /* Register containing table name */
998 int regIdxname = iMem++; /* Register containing index name */
999 int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */
1000 int regPrev = iMem; /* MUST BE LAST (see below) */
1002 pParse->nMem = MAX(pParse->nMem, iMem);
1003 v = sqlite3GetVdbe(pParse);
1004 if( v==0 || NEVER(pTab==0) ){
1005 return;
1007 if( pTab->tnum==0 ){
1008 /* Do not gather statistics on views or virtual tables */
1009 return;
1011 if( sqlite3_strlike("sqlite_%", pTab->zName, 0)==0 ){
1012 /* Do not gather statistics on system tables */
1013 return;
1015 assert( sqlite3BtreeHoldsAllMutexes(db) );
1016 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1017 assert( iDb>=0 );
1018 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1019 #ifndef SQLITE_OMIT_AUTHORIZATION
1020 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
1021 db->aDb[iDb].zDbSName ) ){
1022 return;
1024 #endif
1026 /* Establish a read-lock on the table at the shared-cache level.
1027 ** Open a read-only cursor on the table. Also allocate a cursor number
1028 ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1029 ** this time though. */
1030 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1031 iTabCur = iTab++;
1032 iIdxCur = iTab++;
1033 pParse->nTab = MAX(pParse->nTab, iTab);
1034 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
1035 sqlite3VdbeLoadString(v, regTabname, pTab->zName);
1037 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1038 int nCol; /* Number of columns in pIdx. "N" */
1039 int addrRewind; /* Address of "OP_Rewind iIdxCur" */
1040 int addrNextRow; /* Address of "next_row:" */
1041 const char *zIdxName; /* Name of the index */
1042 int nColTest; /* Number of columns to test for changes */
1044 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
1045 if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
1046 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
1047 nCol = pIdx->nKeyCol;
1048 zIdxName = pTab->zName;
1049 nColTest = nCol - 1;
1050 }else{
1051 nCol = pIdx->nColumn;
1052 zIdxName = pIdx->zName;
1053 nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
1056 /* Populate the register containing the index name. */
1057 sqlite3VdbeLoadString(v, regIdxname, zIdxName);
1058 VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));
1061 ** Pseudo-code for loop that calls stat_push():
1063 ** Rewind csr
1064 ** if eof(csr) goto end_of_scan;
1065 ** regChng = 0
1066 ** goto chng_addr_0;
1068 ** next_row:
1069 ** regChng = 0
1070 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1071 ** regChng = 1
1072 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1073 ** ...
1074 ** regChng = N
1075 ** goto chng_addr_N
1077 ** chng_addr_0:
1078 ** regPrev(0) = idx(0)
1079 ** chng_addr_1:
1080 ** regPrev(1) = idx(1)
1081 ** ...
1083 ** endDistinctTest:
1084 ** regRowid = idx(rowid)
1085 ** stat_push(P, regChng, regRowid)
1086 ** Next csr
1087 ** if !eof(csr) goto next_row;
1089 ** end_of_scan:
1092 /* Make sure there are enough memory cells allocated to accommodate
1093 ** the regPrev array and a trailing rowid (the rowid slot is required
1094 ** when building a record to insert into the sample column of
1095 ** the sqlite_stat4 table. */
1096 pParse->nMem = MAX(pParse->nMem, regPrev+nColTest);
1098 /* Open a read-only cursor on the index being analyzed. */
1099 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
1100 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
1101 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1102 VdbeComment((v, "%s", pIdx->zName));
1104 /* Invoke the stat_init() function. The arguments are:
1106 ** (1) the number of columns in the index including the rowid
1107 ** (or for a WITHOUT ROWID table, the number of PK columns),
1108 ** (2) the number of columns in the key without the rowid/pk
1109 ** (3) the number of rows in the index,
1112 ** The third argument is only used for STAT3 and STAT4
1114 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1115 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3);
1116 #endif
1117 sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1);
1118 sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2);
1119 sqlite3VdbeAddOp4(v, OP_Function0, 0, regStat4+1, regStat4,
1120 (char*)&statInitFuncdef, P4_FUNCDEF);
1121 sqlite3VdbeChangeP5(v, 2+IsStat34);
1123 /* Implementation of the following:
1125 ** Rewind csr
1126 ** if eof(csr) goto end_of_scan;
1127 ** regChng = 0
1128 ** goto next_push_0;
1131 addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
1132 VdbeCoverage(v);
1133 sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
1134 addrNextRow = sqlite3VdbeCurrentAddr(v);
1136 if( nColTest>0 ){
1137 int endDistinctTest = sqlite3VdbeMakeLabel(v);
1138 int *aGotoChng; /* Array of jump instruction addresses */
1139 aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
1140 if( aGotoChng==0 ) continue;
1143 ** next_row:
1144 ** regChng = 0
1145 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1146 ** regChng = 1
1147 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1148 ** ...
1149 ** regChng = N
1150 ** goto endDistinctTest
1152 sqlite3VdbeAddOp0(v, OP_Goto);
1153 addrNextRow = sqlite3VdbeCurrentAddr(v);
1154 if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
1155 /* For a single-column UNIQUE index, once we have found a non-NULL
1156 ** row, we know that all the rest will be distinct, so skip
1157 ** subsequent distinctness tests. */
1158 sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
1159 VdbeCoverage(v);
1161 for(i=0; i<nColTest; i++){
1162 char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
1163 sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
1164 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
1165 aGotoChng[i] =
1166 sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
1167 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1168 VdbeCoverage(v);
1170 sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
1171 sqlite3VdbeGoto(v, endDistinctTest);
1175 ** chng_addr_0:
1176 ** regPrev(0) = idx(0)
1177 ** chng_addr_1:
1178 ** regPrev(1) = idx(1)
1179 ** ...
1181 sqlite3VdbeJumpHere(v, addrNextRow-1);
1182 for(i=0; i<nColTest; i++){
1183 sqlite3VdbeJumpHere(v, aGotoChng[i]);
1184 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
1186 sqlite3VdbeResolveLabel(v, endDistinctTest);
1187 sqlite3DbFree(db, aGotoChng);
1191 ** chng_addr_N:
1192 ** regRowid = idx(rowid) // STAT34 only
1193 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only
1194 ** Next csr
1195 ** if !eof(csr) goto next_row;
1197 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1198 assert( regRowid==(regStat4+2) );
1199 if( HasRowid(pTab) ){
1200 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
1201 }else{
1202 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1203 int j, k, regKey;
1204 regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1205 for(j=0; j<pPk->nKeyCol; j++){
1206 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1207 assert( k>=0 && k<pIdx->nColumn );
1208 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
1209 VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName));
1211 sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
1212 sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
1214 #endif
1215 assert( regChng==(regStat4+1) );
1216 sqlite3VdbeAddOp4(v, OP_Function0, 1, regStat4, regTemp,
1217 (char*)&statPushFuncdef, P4_FUNCDEF);
1218 sqlite3VdbeChangeP5(v, 2+IsStat34);
1219 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
1221 /* Add the entry to the stat1 table. */
1222 callStatGet(v, regStat4, STAT_GET_STAT1, regStat1);
1223 assert( "BBB"[0]==SQLITE_AFF_TEXT );
1224 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1225 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1226 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1227 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1229 /* Add the entries to the stat3 or stat4 table. */
1230 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1232 int regEq = regStat1;
1233 int regLt = regStat1+1;
1234 int regDLt = regStat1+2;
1235 int regSample = regStat1+3;
1236 int regCol = regStat1+4;
1237 int regSampleRowid = regCol + nCol;
1238 int addrNext;
1239 int addrIsNull;
1240 u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;
1242 pParse->nMem = MAX(pParse->nMem, regCol+nCol);
1244 addrNext = sqlite3VdbeCurrentAddr(v);
1245 callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid);
1246 addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
1247 VdbeCoverage(v);
1248 callStatGet(v, regStat4, STAT_GET_NEQ, regEq);
1249 callStatGet(v, regStat4, STAT_GET_NLT, regLt);
1250 callStatGet(v, regStat4, STAT_GET_NDLT, regDLt);
1251 sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
1252 /* We know that the regSampleRowid row exists because it was read by
1253 ** the previous loop. Thus the not-found jump of seekOp will never
1254 ** be taken */
1255 VdbeCoverageNeverTaken(v);
1256 #ifdef SQLITE_ENABLE_STAT3
1257 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, 0, regSample);
1258 #else
1259 for(i=0; i<nCol; i++){
1260 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
1262 sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
1263 #endif
1264 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
1265 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
1266 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
1267 sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
1268 sqlite3VdbeJumpHere(v, addrIsNull);
1270 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1272 /* End of analysis */
1273 sqlite3VdbeJumpHere(v, addrRewind);
1277 /* Create a single sqlite_stat1 entry containing NULL as the index
1278 ** name and the row count as the content.
1280 if( pOnlyIdx==0 && needTableCnt ){
1281 VdbeComment((v, "%s", pTab->zName));
1282 sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
1283 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
1284 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
1285 assert( "BBB"[0]==SQLITE_AFF_TEXT );
1286 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
1287 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
1288 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
1289 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1290 sqlite3VdbeJumpHere(v, jZeroRows);
1296 ** Generate code that will cause the most recent index analysis to
1297 ** be loaded into internal hash tables where is can be used.
1299 static void loadAnalysis(Parse *pParse, int iDb){
1300 Vdbe *v = sqlite3GetVdbe(pParse);
1301 if( v ){
1302 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
1307 ** Generate code that will do an analysis of an entire database
1309 static void analyzeDatabase(Parse *pParse, int iDb){
1310 sqlite3 *db = pParse->db;
1311 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
1312 HashElem *k;
1313 int iStatCur;
1314 int iMem;
1315 int iTab;
1317 sqlite3BeginWriteOperation(pParse, 0, iDb);
1318 iStatCur = pParse->nTab;
1319 pParse->nTab += 3;
1320 openStatTable(pParse, iDb, iStatCur, 0, 0);
1321 iMem = pParse->nMem+1;
1322 iTab = pParse->nTab;
1323 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1324 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
1325 Table *pTab = (Table*)sqliteHashData(k);
1326 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
1328 loadAnalysis(pParse, iDb);
1332 ** Generate code that will do an analysis of a single table in
1333 ** a database. If pOnlyIdx is not NULL then it is a single index
1334 ** in pTab that should be analyzed.
1336 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
1337 int iDb;
1338 int iStatCur;
1340 assert( pTab!=0 );
1341 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1342 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1343 sqlite3BeginWriteOperation(pParse, 0, iDb);
1344 iStatCur = pParse->nTab;
1345 pParse->nTab += 3;
1346 if( pOnlyIdx ){
1347 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
1348 }else{
1349 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
1351 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
1352 loadAnalysis(pParse, iDb);
1356 ** Generate code for the ANALYZE command. The parser calls this routine
1357 ** when it recognizes an ANALYZE command.
1359 ** ANALYZE -- 1
1360 ** ANALYZE <database> -- 2
1361 ** ANALYZE ?<database>.?<tablename> -- 3
1363 ** Form 1 causes all indices in all attached databases to be analyzed.
1364 ** Form 2 analyzes all indices the single database named.
1365 ** Form 3 analyzes all indices associated with the named table.
1367 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
1368 sqlite3 *db = pParse->db;
1369 int iDb;
1370 int i;
1371 char *z, *zDb;
1372 Table *pTab;
1373 Index *pIdx;
1374 Token *pTableName;
1375 Vdbe *v;
1377 /* Read the database schema. If an error occurs, leave an error message
1378 ** and code in pParse and return NULL. */
1379 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
1380 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1381 return;
1384 assert( pName2!=0 || pName1==0 );
1385 if( pName1==0 ){
1386 /* Form 1: Analyze everything */
1387 for(i=0; i<db->nDb; i++){
1388 if( i==1 ) continue; /* Do not analyze the TEMP database */
1389 analyzeDatabase(pParse, i);
1391 }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
1392 /* Analyze the schema named as the argument */
1393 analyzeDatabase(pParse, iDb);
1394 }else{
1395 /* Form 3: Analyze the table or index named as an argument */
1396 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
1397 if( iDb>=0 ){
1398 zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
1399 z = sqlite3NameFromToken(db, pTableName);
1400 if( z ){
1401 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
1402 analyzeTable(pParse, pIdx->pTable, pIdx);
1403 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
1404 analyzeTable(pParse, pTab, 0);
1406 sqlite3DbFree(db, z);
1410 if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
1411 sqlite3VdbeAddOp0(v, OP_Expire);
1416 ** Used to pass information from the analyzer reader through to the
1417 ** callback routine.
1419 typedef struct analysisInfo analysisInfo;
1420 struct analysisInfo {
1421 sqlite3 *db;
1422 const char *zDatabase;
1426 ** The first argument points to a nul-terminated string containing a
1427 ** list of space separated integers. Read the first nOut of these into
1428 ** the array aOut[].
1430 static void decodeIntArray(
1431 char *zIntArray, /* String containing int array to decode */
1432 int nOut, /* Number of slots in aOut[] */
1433 tRowcnt *aOut, /* Store integers here */
1434 LogEst *aLog, /* Or, if aOut==0, here */
1435 Index *pIndex /* Handle extra flags for this index, if not NULL */
1437 char *z = zIntArray;
1438 int c;
1439 int i;
1440 tRowcnt v;
1442 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1443 if( z==0 ) z = "";
1444 #else
1445 assert( z!=0 );
1446 #endif
1447 for(i=0; *z && i<nOut; i++){
1448 v = 0;
1449 while( (c=z[0])>='0' && c<='9' ){
1450 v = v*10 + c - '0';
1451 z++;
1453 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1454 if( aOut ) aOut[i] = v;
1455 if( aLog ) aLog[i] = sqlite3LogEst(v);
1456 #else
1457 assert( aOut==0 );
1458 UNUSED_PARAMETER(aOut);
1459 assert( aLog!=0 );
1460 aLog[i] = sqlite3LogEst(v);
1461 #endif
1462 if( *z==' ' ) z++;
1464 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
1465 assert( pIndex!=0 ); {
1466 #else
1467 if( pIndex ){
1468 #endif
1469 pIndex->bUnordered = 0;
1470 pIndex->noSkipScan = 0;
1471 while( z[0] ){
1472 if( sqlite3_strglob("unordered*", z)==0 ){
1473 pIndex->bUnordered = 1;
1474 }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
1475 pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
1476 }else if( sqlite3_strglob("noskipscan*", z)==0 ){
1477 pIndex->noSkipScan = 1;
1479 #ifdef SQLITE_ENABLE_COSTMULT
1480 else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
1481 pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
1483 #endif
1484 while( z[0]!=0 && z[0]!=' ' ) z++;
1485 while( z[0]==' ' ) z++;
1491 ** This callback is invoked once for each index when reading the
1492 ** sqlite_stat1 table.
1494 ** argv[0] = name of the table
1495 ** argv[1] = name of the index (might be NULL)
1496 ** argv[2] = results of analysis - on integer for each column
1498 ** Entries for which argv[1]==NULL simply record the number of rows in
1499 ** the table.
1501 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
1502 analysisInfo *pInfo = (analysisInfo*)pData;
1503 Index *pIndex;
1504 Table *pTable;
1505 const char *z;
1507 assert( argc==3 );
1508 UNUSED_PARAMETER2(NotUsed, argc);
1510 if( argv==0 || argv[0]==0 || argv[2]==0 ){
1511 return 0;
1513 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
1514 if( pTable==0 ){
1515 return 0;
1517 if( argv[1]==0 ){
1518 pIndex = 0;
1519 }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
1520 pIndex = sqlite3PrimaryKeyIndex(pTable);
1521 }else{
1522 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
1524 z = argv[2];
1526 if( pIndex ){
1527 tRowcnt *aiRowEst = 0;
1528 int nCol = pIndex->nKeyCol+1;
1529 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1530 /* Index.aiRowEst may already be set here if there are duplicate
1531 ** sqlite_stat1 entries for this index. In that case just clobber
1532 ** the old data with the new instead of allocating a new array. */
1533 if( pIndex->aiRowEst==0 ){
1534 pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
1535 if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
1537 aiRowEst = pIndex->aiRowEst;
1538 #endif
1539 pIndex->bUnordered = 0;
1540 decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
1541 pIndex->hasStat1 = 1;
1542 if( pIndex->pPartIdxWhere==0 ){
1543 pTable->nRowLogEst = pIndex->aiRowLogEst[0];
1544 pTable->tabFlags |= TF_HasStat1;
1546 }else{
1547 Index fakeIdx;
1548 fakeIdx.szIdxRow = pTable->szTabRow;
1549 #ifdef SQLITE_ENABLE_COSTMULT
1550 fakeIdx.pTable = pTable;
1551 #endif
1552 decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
1553 pTable->szTabRow = fakeIdx.szIdxRow;
1554 pTable->tabFlags |= TF_HasStat1;
1557 return 0;
1561 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1562 ** and its contents.
1564 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
1565 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1566 if( pIdx->aSample ){
1567 int j;
1568 for(j=0; j<pIdx->nSample; j++){
1569 IndexSample *p = &pIdx->aSample[j];
1570 sqlite3DbFree(db, p->p);
1572 sqlite3DbFree(db, pIdx->aSample);
1574 if( db && db->pnBytesFreed==0 ){
1575 pIdx->nSample = 0;
1576 pIdx->aSample = 0;
1578 #else
1579 UNUSED_PARAMETER(db);
1580 UNUSED_PARAMETER(pIdx);
1581 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1584 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1586 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1587 ** stored in pIdx->aSample[].
1589 static void initAvgEq(Index *pIdx){
1590 if( pIdx ){
1591 IndexSample *aSample = pIdx->aSample;
1592 IndexSample *pFinal = &aSample[pIdx->nSample-1];
1593 int iCol;
1594 int nCol = 1;
1595 if( pIdx->nSampleCol>1 ){
1596 /* If this is stat4 data, then calculate aAvgEq[] values for all
1597 ** sample columns except the last. The last is always set to 1, as
1598 ** once the trailing PK fields are considered all index keys are
1599 ** unique. */
1600 nCol = pIdx->nSampleCol-1;
1601 pIdx->aAvgEq[nCol] = 1;
1603 for(iCol=0; iCol<nCol; iCol++){
1604 int nSample = pIdx->nSample;
1605 int i; /* Used to iterate through samples */
1606 tRowcnt sumEq = 0; /* Sum of the nEq values */
1607 tRowcnt avgEq = 0;
1608 tRowcnt nRow; /* Number of rows in index */
1609 i64 nSum100 = 0; /* Number of terms contributing to sumEq */
1610 i64 nDist100; /* Number of distinct values in index */
1612 if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
1613 nRow = pFinal->anLt[iCol];
1614 nDist100 = (i64)100 * pFinal->anDLt[iCol];
1615 nSample--;
1616 }else{
1617 nRow = pIdx->aiRowEst[0];
1618 nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
1620 pIdx->nRowEst0 = nRow;
1622 /* Set nSum to the number of distinct (iCol+1) field prefixes that
1623 ** occur in the stat4 table for this index. Set sumEq to the sum of
1624 ** the nEq values for column iCol for the same set (adding the value
1625 ** only once where there exist duplicate prefixes). */
1626 for(i=0; i<nSample; i++){
1627 if( i==(pIdx->nSample-1)
1628 || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol]
1630 sumEq += aSample[i].anEq[iCol];
1631 nSum100 += 100;
1635 if( nDist100>nSum100 && sumEq<nRow ){
1636 avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
1638 if( avgEq==0 ) avgEq = 1;
1639 pIdx->aAvgEq[iCol] = avgEq;
1645 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table
1646 ** is supplied instead, find the PRIMARY KEY index for that table.
1648 static Index *findIndexOrPrimaryKey(
1649 sqlite3 *db,
1650 const char *zName,
1651 const char *zDb
1653 Index *pIdx = sqlite3FindIndex(db, zName, zDb);
1654 if( pIdx==0 ){
1655 Table *pTab = sqlite3FindTable(db, zName, zDb);
1656 if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
1658 return pIdx;
1662 ** Load the content from either the sqlite_stat4 or sqlite_stat3 table
1663 ** into the relevant Index.aSample[] arrays.
1665 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1666 ** data equivalent to the following (statements are different for stat3,
1667 ** see the caller of this function for details):
1669 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1670 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1672 ** where %Q is replaced with the database name before the SQL is executed.
1674 static int loadStatTbl(
1675 sqlite3 *db, /* Database handle */
1676 int bStat3, /* Assume single column records only */
1677 const char *zSql1, /* SQL statement 1 (see above) */
1678 const char *zSql2, /* SQL statement 2 (see above) */
1679 const char *zDb /* Database name (e.g. "main") */
1681 int rc; /* Result codes from subroutines */
1682 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
1683 char *zSql; /* Text of the SQL statement */
1684 Index *pPrevIdx = 0; /* Previous index in the loop */
1685 IndexSample *pSample; /* A slot in pIdx->aSample[] */
1687 assert( db->lookaside.bDisable );
1688 zSql = sqlite3MPrintf(db, zSql1, zDb);
1689 if( !zSql ){
1690 return SQLITE_NOMEM_BKPT;
1692 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1693 sqlite3DbFree(db, zSql);
1694 if( rc ) return rc;
1696 while( sqlite3_step(pStmt)==SQLITE_ROW ){
1697 int nIdxCol = 1; /* Number of columns in stat4 records */
1699 char *zIndex; /* Index name */
1700 Index *pIdx; /* Pointer to the index object */
1701 int nSample; /* Number of samples */
1702 int nByte; /* Bytes of space required */
1703 int i; /* Bytes of space required */
1704 tRowcnt *pSpace;
1706 zIndex = (char *)sqlite3_column_text(pStmt, 0);
1707 if( zIndex==0 ) continue;
1708 nSample = sqlite3_column_int(pStmt, 1);
1709 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1710 assert( pIdx==0 || bStat3 || pIdx->nSample==0 );
1711 /* Index.nSample is non-zero at this point if data has already been
1712 ** loaded from the stat4 table. In this case ignore stat3 data. */
1713 if( pIdx==0 || pIdx->nSample ) continue;
1714 if( bStat3==0 ){
1715 assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
1716 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
1717 nIdxCol = pIdx->nKeyCol;
1718 }else{
1719 nIdxCol = pIdx->nColumn;
1722 pIdx->nSampleCol = nIdxCol;
1723 nByte = sizeof(IndexSample) * nSample;
1724 nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
1725 nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */
1727 pIdx->aSample = sqlite3DbMallocZero(db, nByte);
1728 if( pIdx->aSample==0 ){
1729 sqlite3_finalize(pStmt);
1730 return SQLITE_NOMEM_BKPT;
1732 pSpace = (tRowcnt*)&pIdx->aSample[nSample];
1733 pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
1734 for(i=0; i<nSample; i++){
1735 pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
1736 pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
1737 pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
1739 assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
1741 rc = sqlite3_finalize(pStmt);
1742 if( rc ) return rc;
1744 zSql = sqlite3MPrintf(db, zSql2, zDb);
1745 if( !zSql ){
1746 return SQLITE_NOMEM_BKPT;
1748 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
1749 sqlite3DbFree(db, zSql);
1750 if( rc ) return rc;
1752 while( sqlite3_step(pStmt)==SQLITE_ROW ){
1753 char *zIndex; /* Index name */
1754 Index *pIdx; /* Pointer to the index object */
1755 int nCol = 1; /* Number of columns in index */
1757 zIndex = (char *)sqlite3_column_text(pStmt, 0);
1758 if( zIndex==0 ) continue;
1759 pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
1760 if( pIdx==0 ) continue;
1761 /* This next condition is true if data has already been loaded from
1762 ** the sqlite_stat4 table. In this case ignore stat3 data. */
1763 nCol = pIdx->nSampleCol;
1764 if( bStat3 && nCol>1 ) continue;
1765 if( pIdx!=pPrevIdx ){
1766 initAvgEq(pPrevIdx);
1767 pPrevIdx = pIdx;
1769 pSample = &pIdx->aSample[pIdx->nSample];
1770 decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
1771 decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
1772 decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);
1774 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1775 ** This is in case the sample record is corrupted. In that case, the
1776 ** sqlite3VdbeRecordCompare() may read up to two varints past the
1777 ** end of the allocated buffer before it realizes it is dealing with
1778 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1779 ** a buffer overread. */
1780 pSample->n = sqlite3_column_bytes(pStmt, 4);
1781 pSample->p = sqlite3DbMallocZero(db, pSample->n + 2);
1782 if( pSample->p==0 ){
1783 sqlite3_finalize(pStmt);
1784 return SQLITE_NOMEM_BKPT;
1786 if( pSample->n ){
1787 memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
1789 pIdx->nSample++;
1791 rc = sqlite3_finalize(pStmt);
1792 if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
1793 return rc;
1797 ** Load content from the sqlite_stat4 and sqlite_stat3 tables into
1798 ** the Index.aSample[] arrays of all indices.
1800 static int loadStat4(sqlite3 *db, const char *zDb){
1801 int rc = SQLITE_OK; /* Result codes from subroutines */
1803 assert( db->lookaside.bDisable );
1804 if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){
1805 rc = loadStatTbl(db, 0,
1806 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1807 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1812 if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){
1813 rc = loadStatTbl(db, 1,
1814 "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx",
1815 "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3",
1820 return rc;
1822 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1825 ** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The
1826 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1827 ** arrays. The contents of sqlite_stat3/4 are used to populate the
1828 ** Index.aSample[] arrays.
1830 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1831 ** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined
1832 ** during compilation and the sqlite_stat3/4 table is present, no data is
1833 ** read from it.
1835 ** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the
1836 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1837 ** returned. However, in this case, data is read from the sqlite_stat1
1838 ** table (if it is present) before returning.
1840 ** If an OOM error occurs, this function always sets db->mallocFailed.
1841 ** This means if the caller does not care about other errors, the return
1842 ** code may be ignored.
1844 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1845 analysisInfo sInfo;
1846 HashElem *i;
1847 char *zSql;
1848 int rc = SQLITE_OK;
1849 Schema *pSchema = db->aDb[iDb].pSchema;
1851 assert( iDb>=0 && iDb<db->nDb );
1852 assert( db->aDb[iDb].pBt!=0 );
1854 /* Clear any prior statistics */
1855 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1856 for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
1857 Table *pTab = sqliteHashData(i);
1858 pTab->tabFlags &= ~TF_HasStat1;
1860 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1861 Index *pIdx = sqliteHashData(i);
1862 pIdx->hasStat1 = 0;
1863 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1864 sqlite3DeleteIndexSamples(db, pIdx);
1865 pIdx->aSample = 0;
1866 #endif
1869 /* Load new statistics out of the sqlite_stat1 table */
1870 sInfo.db = db;
1871 sInfo.zDatabase = db->aDb[iDb].zDbSName;
1872 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)!=0 ){
1873 zSql = sqlite3MPrintf(db,
1874 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1875 if( zSql==0 ){
1876 rc = SQLITE_NOMEM_BKPT;
1877 }else{
1878 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1879 sqlite3DbFree(db, zSql);
1883 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1884 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1885 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1886 Index *pIdx = sqliteHashData(i);
1887 if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
1890 /* Load the statistics from the sqlite_stat4 table. */
1891 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1892 if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){
1893 db->lookaside.bDisable++;
1894 rc = loadStat4(db, sInfo.zDatabase);
1895 db->lookaside.bDisable--;
1897 for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
1898 Index *pIdx = sqliteHashData(i);
1899 sqlite3_free(pIdx->aiRowEst);
1900 pIdx->aiRowEst = 0;
1902 #endif
1904 if( rc==SQLITE_NOMEM ){
1905 sqlite3OomFault(db);
1907 return rc;
1911 #endif /* SQLITE_OMIT_ANALYZE */