Fix the ".lint fkey-indexes" shell command so that it works with WITHOUT ROWID
[sqlite.git] / ext / lsm1 / lsm_file.c
blob4001aac978390589b9915ced05f8bce0872bbeb8
1 /*
2 ** 2011-08-26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 **
13 ** NORMAL DATABASE FILE FORMAT
15 ** The following database file format concepts are used by the code in
16 ** this file to read and write the database file.
18 ** Pages:
20 ** A database file is divided into pages. The first 8KB of the file consists
21 ** of two 4KB meta-pages. The meta-page size is not configurable. The
22 ** remainder of the file is made up of database pages. The default database
23 ** page size is 4KB. Database pages are aligned to page-size boundaries,
24 ** so if the database page size is larger than 8KB there is a gap between
25 ** the end of the meta pages and the start of the database pages.
27 ** Database pages are numbered based on their position in the file. Page N
28 ** begins at byte offset ((N-1)*pgsz). This means that page 1 does not
29 ** exist - since it would always overlap with the meta pages. If the
30 ** page-size is (say) 512 bytes, then the first usable page in the database
31 ** is page 33.
33 ** It is assumed that the first two meta pages and the data that follows
34 ** them are located on different disk sectors. So that if a power failure
35 ** while writing to a meta page there is no risk of damage to the other
36 ** meta page or any other part of the database file. TODO: This may need
37 ** to be revisited.
39 ** Blocks:
41 ** The database file is also divided into blocks. The default block size is
42 ** 1MB. When writing to the database file, an attempt is made to write data
43 ** in contiguous block-sized chunks.
45 ** The first and last page on each block are special in that they are 4
46 ** bytes smaller than all other pages. This is because the last four bytes
47 ** of space on the first and last pages of each block are reserved for
48 ** pointers to other blocks (i.e. a 32-bit block number).
50 ** Runs:
52 ** A run is a sequence of pages that the upper layer uses to store a
53 ** sorted array of database keys (and accompanying data - values, FC
54 ** pointers and so on). Given a page within a run, it is possible to
55 ** navigate to the next page in the run as follows:
57 ** a) if the current page is not the last in a block, the next page
58 ** in the run is located immediately after the current page, OR
60 ** b) if the current page is the last page in a block, the next page
61 ** in the run is the first page on the block identified by the
62 ** block pointer stored in the last 4 bytes of the current block.
64 ** It is possible to navigate to the previous page in a similar fashion,
65 ** using the block pointer embedded in the last 4 bytes of the first page
66 ** of each block as required.
68 ** The upper layer is responsible for identifying by page number the
69 ** first and last page of any run that it needs to navigate - there are
70 ** no "end-of-run" markers stored or identified by this layer. This is
71 ** necessary as clients reading different database snapshots may access
72 ** different subsets of a run.
74 ** THE LOG FILE
76 ** This file opens and closes the log file. But it does not contain any
77 ** logic related to the log file format. Instead, it exports the following
78 ** functions that are used by the code in lsm_log.c to read and write the
79 ** log file:
81 ** lsmFsOpenLog
82 ** lsmFsWriteLog
83 ** lsmFsSyncLog
84 ** lsmFsReadLog
85 ** lsmFsTruncateLog
86 ** lsmFsCloseAndDeleteLog
88 ** COMPRESSED DATABASE FILE FORMAT
90 ** The compressed database file format is very similar to the normal format.
91 ** The file still begins with two 4KB meta-pages (which are never compressed).
92 ** It is still divided into blocks.
94 ** The first and last four bytes of each block are reserved for 32-bit
95 ** pointer values. Similar to the way four bytes are carved from the end of
96 ** the first and last page of each block in uncompressed databases. From
97 ** the point of view of the upper layer, all pages are the same size - this
98 ** is different from the uncompressed format where the first and last pages
99 ** on each block are 4 bytes smaller than the others.
101 ** Pages are stored in variable length compressed form, as follows:
103 ** * 3-byte size field containing the size of the compressed page image
104 ** in bytes. The most significant bit of each byte of the size field
105 ** is always set. The remaining 7 bits are used to store a 21-bit
106 ** integer value (in big-endian order - the first byte in the field
107 ** contains the most significant 7 bits). Since the maximum allowed
108 ** size of a compressed page image is (2^17 - 1) bytes, there are
109 ** actually 4 unused bits in the size field.
111 ** In other words, if the size of the compressed page image is nSz,
112 ** the header can be serialized as follows:
114 ** u8 aHdr[3]
115 ** aHdr[0] = 0x80 | (u8)(nSz >> 14);
116 ** aHdr[1] = 0x80 | (u8)(nSz >> 7);
117 ** aHdr[2] = 0x80 | (u8)(nSz >> 0);
119 ** * Compressed page image.
121 ** * A second copy of the 3-byte record header.
123 ** A page number is a byte offset into the database file. So the smallest
124 ** possible page number is 8192 (immediately after the two meta-pages).
125 ** The first and root page of a segment are identified by a page number
126 ** corresponding to the byte offset of the first byte in the corresponding
127 ** page record. The last page of a segment is identified by the byte offset
128 ** of the last byte in its record.
130 ** Unlike uncompressed pages, compressed page records may span blocks.
132 ** Sometimes, in order to avoid touching sectors that contain synced data
133 ** when writing, it is necessary to insert unused space between compressed
134 ** page records. This can be done as follows:
136 ** * For less than 6 bytes of empty space, the first and last byte
137 ** of the free space contain the total number of free bytes. For
138 ** example:
140 ** Block of 4 free bytes: 0x04 0x?? 0x?? 0x04
141 ** Block of 2 free bytes: 0x02 0x02
142 ** A single free byte: 0x01
144 ** * For 6 or more bytes of empty space, a record similar to a
145 ** compressed page record is added to the segment. A padding record
146 ** is distinguished from a compressed page record by the most
147 ** significant bit of the second byte of the size field, which is
148 ** cleared instead of set.
150 #include "lsmInt.h"
152 #include <sys/types.h>
153 #include <sys/stat.h>
154 #include <fcntl.h>
157 ** File-system object. Each database connection allocates a single instance
158 ** of the following structure. It is used for all access to the database and
159 ** log files.
161 ** The database file may be accessed via two methods - using mmap() or using
162 ** read() and write() calls. In the general case both methods are used - a
163 ** prefix of the file is mapped into memory and the remainder accessed using
164 ** read() and write(). This is helpful when accessing very large files (or
165 ** files that may grow very large during the lifetime of a database
166 ** connection) on systems with 32-bit address spaces. However, it also requires
167 ** that this object manage two distinct types of Page objects simultaneously -
168 ** those that carry pointers to the mapped file and those that carry arrays
169 ** populated by read() calls.
171 ** pFree:
172 ** The head of a singly-linked list that containing currently unused Page
173 ** structures suitable for use as mmap-page handles. Connected by the
174 ** Page.pFreeNext pointers.
176 ** pMapped:
177 ** The head of a singly-linked list that contains all pages that currently
178 ** carry pointers to the mapped region. This is used if the region is
179 ** every remapped - the pointers carried by existing pages can be adjusted
180 ** to account for the remapping. Connected by the Page.pMappedNext pointers.
182 ** pWaiting:
183 ** When the upper layer wishes to append a new b-tree page to a segment,
184 ** it allocates a Page object that carries a malloc'd block of memory -
185 ** regardless of the mmap-related configuration. The page is not assigned
186 ** a page number at first. When the upper layer has finished constructing
187 ** the page contents, it calls lsmFsPagePersist() to assign a page number
188 ** to it. At this point it is likely that N pages have been written to the
189 ** segment, the (N+1)th page is still outstanding and the b-tree page is
190 ** assigned page number (N+2). To avoid writing page (N+2) before page
191 ** (N+1), the recently completed b-tree page is held in the singly linked
192 ** list headed by pWaiting until page (N+1) has been written.
194 ** Function lsmFsFlushWaiting() is responsible for eventually writing
195 ** waiting pages to disk.
197 ** apHash/nHash:
198 ** Hash table used to store all Page objects that carry malloc'd arrays,
199 ** except those b-tree pages that have not yet been assigned page numbers.
200 ** Once they have been assigned page numbers - they are added to this
201 ** hash table.
203 ** Hash table overflow chains are connected using the Page.pHashNext
204 ** pointers.
206 ** pLruFirst, pLruLast:
207 ** The first and last entries in a doubly-linked list of pages. This
208 ** list contains all pages with malloc'd data that are present in the
209 ** hash table and have a ref-count of zero.
211 struct FileSystem {
212 lsm_db *pDb; /* Database handle that owns this object */
213 lsm_env *pEnv; /* Environment pointer */
214 char *zDb; /* Database file name */
215 char *zLog; /* Database file name */
216 int nMetasize; /* Size of meta pages in bytes */
217 int nMetaRwSize; /* Read/written size of meta pages in bytes */
218 int nPagesize; /* Database page-size in bytes */
219 int nBlocksize; /* Database block-size in bytes */
221 /* r/w file descriptors for both files. */
222 LsmFile *pLsmFile; /* Used after lsm_close() to link into list */
223 lsm_file *fdDb; /* Database file */
224 lsm_file *fdLog; /* Log file */
225 int szSector; /* Database file sector size */
227 /* If this is a compressed database, a pointer to the compression methods.
228 ** For an uncompressed database, a NULL pointer. */
229 lsm_compress *pCompress;
230 u8 *aIBuffer; /* Buffer to compress to */
231 u8 *aOBuffer; /* Buffer to uncompress from */
232 int nBuffer; /* Allocated size of above buffers in bytes */
234 /* mmap() page related things */
235 i64 nMapLimit; /* Maximum bytes of file to map */
236 void *pMap; /* Current mapping of database file */
237 i64 nMap; /* Bytes mapped at pMap */
238 Page *pFree; /* Unused Page structures */
239 Page *pMapped; /* List of Page structs that point to pMap */
241 /* Page cache parameters for non-mmap() pages */
242 int nCacheMax; /* Configured cache size (in pages) */
243 int nCacheAlloc; /* Current cache size (in pages) */
244 Page *pLruFirst; /* Head of the LRU list */
245 Page *pLruLast; /* Tail of the LRU list */
246 int nHash; /* Number of hash slots in hash table */
247 Page **apHash; /* nHash Hash slots */
248 Page *pWaiting; /* b-tree pages waiting to be written */
250 /* Statistics */
251 int nOut; /* Number of outstanding pages */
252 int nWrite; /* Total number of pages written */
253 int nRead; /* Total number of pages read */
257 ** Database page handle.
259 ** pSeg:
260 ** When lsmFsSortedAppend() is called on a compressed database, the new
261 ** page is not assigned a page number or location in the database file
262 ** immediately. Instead, these are assigned by the lsmFsPagePersist() call
263 ** right before it writes the compressed page image to disk.
265 ** The lsmFsSortedAppend() function sets the pSeg pointer to point to the
266 ** segment that the new page will be a part of. It is unset by
267 ** lsmFsPagePersist() after the page is written to disk.
269 struct Page {
270 u8 *aData; /* Buffer containing page data */
271 int nData; /* Bytes of usable data at aData[] */
272 Pgno iPg; /* Page number */
273 int nRef; /* Number of outstanding references */
274 int flags; /* Combination of PAGE_XXX flags */
275 Page *pHashNext; /* Next page in hash table slot */
276 Page *pLruNext; /* Next page in LRU list */
277 Page *pLruPrev; /* Previous page in LRU list */
278 FileSystem *pFS; /* File system that owns this page */
280 /* Only used in compressed database mode: */
281 int nCompress; /* Compressed size (or 0 for uncomp. db) */
282 int nCompressPrev; /* Compressed size of prev page */
283 Segment *pSeg; /* Segment this page will be written to */
285 /* Pointers for singly linked lists */
286 Page *pWaitingNext; /* Next page in FileSystem.pWaiting list */
287 Page *pFreeNext; /* Next page in FileSystem.pFree list */
288 Page *pMappedNext; /* Next page in FileSystem.pMapped list */
292 ** Meta-data page handle. There are two meta-data pages at the start of
293 ** the database file, each FileSystem.nMetasize bytes in size.
295 struct MetaPage {
296 int iPg; /* Either 1 or 2 */
297 int bWrite; /* Write back to db file on release */
298 u8 *aData; /* Pointer to buffer */
299 FileSystem *pFS; /* FileSystem that owns this page */
303 ** Values for LsmPage.flags
305 #define PAGE_DIRTY 0x00000001 /* Set if page is dirty */
306 #define PAGE_FREE 0x00000002 /* Set if Page.aData requires lsmFree() */
307 #define PAGE_HASPREV 0x00000004 /* Set if page is first on uncomp. block */
310 ** Number of pgsz byte pages omitted from the start of block 1. The start
311 ** of block 1 contains two 4096 byte meta pages (8192 bytes in total).
313 #define BLOCK1_HDR_SIZE(pgsz) LSM_MAX(1, 8192/(pgsz))
316 ** If NDEBUG is not defined, set a breakpoint in function lsmIoerrBkpt()
317 ** to catch IO errors (any error returned by a VFS method).
319 #ifndef NDEBUG
320 static void lsmIoerrBkpt(void){
321 static int nErr = 0;
322 nErr++;
324 static int IOERR_WRAPPER(int rc){
325 if( rc!=LSM_OK ) lsmIoerrBkpt();
326 return rc;
328 #else
329 # define IOERR_WRAPPER(rc) (rc)
330 #endif
332 #ifdef NDEBUG
333 # define assert_lists_are_ok(x)
334 #else
335 static Page *fsPageFindInHash(FileSystem *pFS, Pgno iPg, int *piHash);
337 static void assert_lists_are_ok(FileSystem *pFS){
338 #if 0
339 Page *p;
341 assert( pFS->nMapLimit>=0 );
343 /* Check that all pages in the LRU list have nRef==0, pointers to buffers
344 ** in heap memory, and corresponding entries in the hash table. */
345 for(p=pFS->pLruFirst; p; p=p->pLruNext){
346 assert( p==pFS->pLruFirst || p->pLruPrev!=0 );
347 assert( p==pFS->pLruLast || p->pLruNext!=0 );
348 assert( p->pLruPrev==0 || p->pLruPrev->pLruNext==p );
349 assert( p->pLruNext==0 || p->pLruNext->pLruPrev==p );
350 assert( p->nRef==0 );
351 assert( p->flags & PAGE_FREE );
352 assert( p==fsPageFindInHash(pFS, p->iPg, 0) );
354 #endif
356 #endif
359 ** Wrappers around the VFS methods of the lsm_env object:
361 ** lsmEnvOpen()
362 ** lsmEnvRead()
363 ** lsmEnvWrite()
364 ** lsmEnvSync()
365 ** lsmEnvSectorSize()
366 ** lsmEnvClose()
367 ** lsmEnvTruncate()
368 ** lsmEnvUnlink()
369 ** lsmEnvRemap()
371 int lsmEnvOpen(lsm_env *pEnv, const char *zFile, int flags, lsm_file **ppNew){
372 return pEnv->xOpen(pEnv, zFile, flags, ppNew);
375 static int lsmEnvRead(
376 lsm_env *pEnv,
377 lsm_file *pFile,
378 lsm_i64 iOff,
379 void *pRead,
380 int nRead
382 return IOERR_WRAPPER( pEnv->xRead(pFile, iOff, pRead, nRead) );
385 static int lsmEnvWrite(
386 lsm_env *pEnv,
387 lsm_file *pFile,
388 lsm_i64 iOff,
389 const void *pWrite,
390 int nWrite
392 return IOERR_WRAPPER( pEnv->xWrite(pFile, iOff, (void *)pWrite, nWrite) );
395 static int lsmEnvSync(lsm_env *pEnv, lsm_file *pFile){
396 return IOERR_WRAPPER( pEnv->xSync(pFile) );
399 static int lsmEnvSectorSize(lsm_env *pEnv, lsm_file *pFile){
400 return pEnv->xSectorSize(pFile);
403 int lsmEnvClose(lsm_env *pEnv, lsm_file *pFile){
404 return IOERR_WRAPPER( pEnv->xClose(pFile) );
407 static int lsmEnvTruncate(lsm_env *pEnv, lsm_file *pFile, lsm_i64 nByte){
408 return IOERR_WRAPPER( pEnv->xTruncate(pFile, nByte) );
411 static int lsmEnvUnlink(lsm_env *pEnv, const char *zDel){
412 return IOERR_WRAPPER( pEnv->xUnlink(pEnv, zDel) );
415 static int lsmEnvRemap(
416 lsm_env *pEnv,
417 lsm_file *pFile,
418 i64 szMin,
419 void **ppMap,
420 i64 *pszMap
422 return pEnv->xRemap(pFile, szMin, ppMap, pszMap);
425 int lsmEnvLock(lsm_env *pEnv, lsm_file *pFile, int iLock, int eLock){
426 if( pFile==0 ) return LSM_OK;
427 return pEnv->xLock(pFile, iLock, eLock);
430 int lsmEnvTestLock(
431 lsm_env *pEnv,
432 lsm_file *pFile,
433 int iLock,
434 int nLock,
435 int eLock
437 return pEnv->xTestLock(pFile, iLock, nLock, eLock);
440 int lsmEnvShmMap(
441 lsm_env *pEnv,
442 lsm_file *pFile,
443 int iChunk,
444 int sz,
445 void **ppOut
447 return pEnv->xShmMap(pFile, iChunk, sz, ppOut);
450 void lsmEnvShmBarrier(lsm_env *pEnv){
451 pEnv->xShmBarrier();
454 void lsmEnvShmUnmap(lsm_env *pEnv, lsm_file *pFile, int bDel){
455 pEnv->xShmUnmap(pFile, bDel);
458 void lsmEnvSleep(lsm_env *pEnv, int nUs){
459 pEnv->xSleep(pEnv, nUs);
464 ** Write the contents of string buffer pStr into the log file, starting at
465 ** offset iOff.
467 int lsmFsWriteLog(FileSystem *pFS, i64 iOff, LsmString *pStr){
468 assert( pFS->fdLog );
469 return lsmEnvWrite(pFS->pEnv, pFS->fdLog, iOff, pStr->z, pStr->n);
473 ** fsync() the log file.
475 int lsmFsSyncLog(FileSystem *pFS){
476 assert( pFS->fdLog );
477 return lsmEnvSync(pFS->pEnv, pFS->fdLog);
481 ** Read nRead bytes of data starting at offset iOff of the log file. Append
482 ** the results to string buffer pStr.
484 int lsmFsReadLog(FileSystem *pFS, i64 iOff, int nRead, LsmString *pStr){
485 int rc; /* Return code */
486 assert( pFS->fdLog );
487 rc = lsmStringExtend(pStr, nRead);
488 if( rc==LSM_OK ){
489 rc = lsmEnvRead(pFS->pEnv, pFS->fdLog, iOff, &pStr->z[pStr->n], nRead);
490 pStr->n += nRead;
492 return rc;
496 ** Truncate the log file to nByte bytes in size.
498 int lsmFsTruncateLog(FileSystem *pFS, i64 nByte){
499 if( pFS->fdLog==0 ) return LSM_OK;
500 return lsmEnvTruncate(pFS->pEnv, pFS->fdLog, nByte);
504 ** Truncate the db file to nByte bytes in size.
506 int lsmFsTruncateDb(FileSystem *pFS, i64 nByte){
507 if( pFS->fdDb==0 ) return LSM_OK;
508 return lsmEnvTruncate(pFS->pEnv, pFS->fdDb, nByte);
512 ** Close the log file. Then delete it from the file-system. This function
513 ** is called during database shutdown only.
515 int lsmFsCloseAndDeleteLog(FileSystem *pFS){
516 char *zDel;
518 if( pFS->fdLog ){
519 lsmEnvClose(pFS->pEnv, pFS->fdLog );
520 pFS->fdLog = 0;
523 zDel = lsmMallocPrintf(pFS->pEnv, "%s-log", pFS->zDb);
524 if( zDel ){
525 lsmEnvUnlink(pFS->pEnv, zDel);
526 lsmFree(pFS->pEnv, zDel);
528 return LSM_OK;
532 ** Return true if page iReal of the database should be accessed using mmap.
533 ** False otherwise.
535 static int fsMmapPage(FileSystem *pFS, Pgno iReal){
536 return ((i64)iReal*pFS->nPagesize <= pFS->nMapLimit);
540 ** Given that there are currently nHash slots in the hash table, return
541 ** the hash key for file iFile, page iPg.
543 static int fsHashKey(int nHash, Pgno iPg){
544 return (iPg % nHash);
548 ** This is a helper function for lsmFsOpen(). It opens a single file on
549 ** disk (either the database or log file).
551 static lsm_file *fsOpenFile(
552 FileSystem *pFS, /* File system object */
553 int bReadonly, /* True to open this file read-only */
554 int bLog, /* True for log, false for db */
555 int *pRc /* IN/OUT: Error code */
557 lsm_file *pFile = 0;
558 if( *pRc==LSM_OK ){
559 int flags = (bReadonly ? LSM_OPEN_READONLY : 0);
560 const char *zPath = (bLog ? pFS->zLog : pFS->zDb);
562 *pRc = lsmEnvOpen(pFS->pEnv, zPath, flags, &pFile);
564 return pFile;
568 ** If it is not already open, this function opens the log file. It returns
569 ** LSM_OK if successful (or if the log file was already open) or an LSM
570 ** error code otherwise.
572 ** The log file must be opened before any of the following may be called:
574 ** lsmFsWriteLog
575 ** lsmFsSyncLog
576 ** lsmFsReadLog
578 int lsmFsOpenLog(lsm_db *db, int *pbOpen){
579 int rc = LSM_OK;
580 FileSystem *pFS = db->pFS;
582 if( 0==pFS->fdLog ){
583 pFS->fdLog = fsOpenFile(pFS, db->bReadonly, 1, &rc);
585 if( rc==LSM_IOERR_NOENT && db->bReadonly ){
586 rc = LSM_OK;
590 if( pbOpen ) *pbOpen = (pFS->fdLog!=0);
591 return rc;
595 ** Close the log file, if it is open.
597 void lsmFsCloseLog(lsm_db *db){
598 FileSystem *pFS = db->pFS;
599 if( pFS->fdLog ){
600 lsmEnvClose(pFS->pEnv, pFS->fdLog);
601 pFS->fdLog = 0;
606 ** Open a connection to a database stored within the file-system.
608 ** If parameter bReadonly is true, then open a read-only file-descriptor
609 ** on the database file. It is possible that bReadonly will be false even
610 ** if the user requested that pDb be opened read-only. This is because the
611 ** file-descriptor may later on be recycled by a read-write connection.
612 ** If the db file can be opened for read-write access, it always is. Parameter
613 ** bReadonly is only ever true if it has already been determined that the
614 ** db can only be opened for read-only access.
616 ** Return LSM_OK if successful or an lsm error code otherwise.
618 int lsmFsOpen(
619 lsm_db *pDb, /* Database connection to open fd for */
620 const char *zDb, /* Full path to database file */
621 int bReadonly /* True to open db file read-only */
623 FileSystem *pFS;
624 int rc = LSM_OK;
625 int nDb = strlen(zDb);
626 int nByte;
628 assert( pDb->pFS==0 );
629 assert( pDb->pWorker==0 && pDb->pClient==0 );
631 nByte = sizeof(FileSystem) + nDb+1 + nDb+4+1;
632 pFS = (FileSystem *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
633 if( pFS ){
634 LsmFile *pLsmFile;
635 pFS->zDb = (char *)&pFS[1];
636 pFS->zLog = &pFS->zDb[nDb+1];
637 pFS->nPagesize = LSM_DFLT_PAGE_SIZE;
638 pFS->nBlocksize = LSM_DFLT_BLOCK_SIZE;
639 pFS->nMetasize = LSM_META_PAGE_SIZE;
640 pFS->nMetaRwSize = LSM_META_RW_PAGE_SIZE;
641 pFS->pDb = pDb;
642 pFS->pEnv = pDb->pEnv;
644 /* Make a copy of the database and log file names. */
645 memcpy(pFS->zDb, zDb, nDb+1);
646 memcpy(pFS->zLog, zDb, nDb);
647 memcpy(&pFS->zLog[nDb], "-log", 5);
649 /* Allocate the hash-table here. At some point, it should be changed
650 ** so that it can grow dynamicly. */
651 pFS->nCacheMax = 2048*1024 / pFS->nPagesize;
652 pFS->nHash = 4096;
653 pFS->apHash = lsmMallocZeroRc(pDb->pEnv, sizeof(Page *) * pFS->nHash, &rc);
655 /* Open the database file */
656 pLsmFile = lsmDbRecycleFd(pDb);
657 if( pLsmFile ){
658 pFS->pLsmFile = pLsmFile;
659 pFS->fdDb = pLsmFile->pFile;
660 memset(pLsmFile, 0, sizeof(LsmFile));
661 }else{
662 pFS->pLsmFile = lsmMallocZeroRc(pDb->pEnv, sizeof(LsmFile), &rc);
663 if( rc==LSM_OK ){
664 pFS->fdDb = fsOpenFile(pFS, bReadonly, 0, &rc);
668 if( rc!=LSM_OK ){
669 lsmFsClose(pFS);
670 pFS = 0;
671 }else{
672 pFS->szSector = lsmEnvSectorSize(pFS->pEnv, pFS->fdDb);
676 pDb->pFS = pFS;
677 return rc;
681 ** Configure the file-system object according to the current values of
682 ** the LSM_CONFIG_MMAP and LSM_CONFIG_SET_COMPRESSION options.
684 int lsmFsConfigure(lsm_db *db){
685 FileSystem *pFS = db->pFS;
686 if( pFS ){
687 lsm_env *pEnv = pFS->pEnv;
688 Page *pPg;
690 assert( pFS->nOut==0 );
691 assert( pFS->pWaiting==0 );
692 assert( pFS->pMapped==0 );
694 /* Reset any compression/decompression buffers already allocated */
695 lsmFree(pEnv, pFS->aIBuffer);
696 lsmFree(pEnv, pFS->aOBuffer);
697 pFS->nBuffer = 0;
699 /* Unmap the file, if it is currently mapped */
700 if( pFS->pMap ){
701 lsmEnvRemap(pEnv, pFS->fdDb, -1, &pFS->pMap, &pFS->nMap);
702 pFS->nMapLimit = 0;
705 /* Free all allocated page structures */
706 pPg = pFS->pLruFirst;
707 while( pPg ){
708 Page *pNext = pPg->pLruNext;
709 assert( pPg->flags & PAGE_FREE );
710 lsmFree(pEnv, pPg->aData);
711 lsmFree(pEnv, pPg);
712 pPg = pNext;
715 pPg = pFS->pFree;
716 while( pPg ){
717 Page *pNext = pPg->pFreeNext;
718 lsmFree(pEnv, pPg);
719 pPg = pNext;
722 /* Zero pointers that point to deleted page objects */
723 pFS->nCacheAlloc = 0;
724 pFS->pLruFirst = 0;
725 pFS->pLruLast = 0;
726 pFS->pFree = 0;
727 if( pFS->apHash ){
728 memset(pFS->apHash, 0, pFS->nHash*sizeof(pFS->apHash[0]));
731 /* Configure the FileSystem object */
732 if( db->compress.xCompress ){
733 pFS->pCompress = &db->compress;
734 pFS->nMapLimit = 0;
735 }else{
736 pFS->pCompress = 0;
737 if( db->iMmap==1 ){
738 /* Unlimited */
739 pFS->nMapLimit = (i64)1 << 60;
740 }else{
741 /* iMmap is a limit in KB. Set nMapLimit to the same value in bytes. */
742 pFS->nMapLimit = (i64)db->iMmap * 1024;
747 return LSM_OK;
751 ** Close and destroy a FileSystem object.
753 void lsmFsClose(FileSystem *pFS){
754 if( pFS ){
755 Page *pPg;
756 lsm_env *pEnv = pFS->pEnv;
758 assert( pFS->nOut==0 );
759 pPg = pFS->pLruFirst;
760 while( pPg ){
761 Page *pNext = pPg->pLruNext;
762 if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData);
763 lsmFree(pEnv, pPg);
764 pPg = pNext;
767 pPg = pFS->pFree;
768 while( pPg ){
769 Page *pNext = pPg->pFreeNext;
770 if( pPg->flags & PAGE_FREE ) lsmFree(pEnv, pPg->aData);
771 lsmFree(pEnv, pPg);
772 pPg = pNext;
775 if( pFS->fdDb ) lsmEnvClose(pFS->pEnv, pFS->fdDb );
776 if( pFS->fdLog ) lsmEnvClose(pFS->pEnv, pFS->fdLog );
777 lsmFree(pEnv, pFS->pLsmFile);
778 lsmFree(pEnv, pFS->apHash);
779 lsmFree(pEnv, pFS->aIBuffer);
780 lsmFree(pEnv, pFS->aOBuffer);
781 lsmFree(pEnv, pFS);
786 ** This function is called when closing a database handle (i.e. lsm_close())
787 ** if there exist other connections to the same database within this process.
788 ** In that case the file-descriptor open on the database file is not closed
789 ** when the FileSystem object is destroyed, as this would cause any POSIX
790 ** locks held by the other connections to be silently dropped (see "man close"
791 ** for details). Instead, the file-descriptor is stored in a list by the
792 ** lsm_shared.c module until it is either closed or reused.
794 ** This function returns a pointer to an object that can be linked into
795 ** the list described above. The returned object now 'owns' the database
796 ** file descriptr, so that when the FileSystem object is destroyed, it
797 ** will not be closed.
799 ** This function may be called at most once in the life-time of a
800 ** FileSystem object. The results of any operations involving the database
801 ** file descriptor are undefined once this function has been called.
803 ** None of this is necessary on non-POSIX systems. But we do it anyway in
804 ** the name of using as similar code as possible on all platforms.
806 LsmFile *lsmFsDeferClose(FileSystem *pFS){
807 LsmFile *p = pFS->pLsmFile;
808 assert( p->pNext==0 );
809 p->pFile = pFS->fdDb;
810 pFS->fdDb = 0;
811 pFS->pLsmFile = 0;
812 return p;
816 ** Allocate a buffer and populate it with the output of the xFileid()
817 ** method of the database file handle. If successful, set *ppId to point
818 ** to the buffer and *pnId to the number of bytes in the buffer and return
819 ** LSM_OK. Otherwise, set *ppId and *pnId to zero and return an LSM
820 ** error code.
822 int lsmFsFileid(lsm_db *pDb, void **ppId, int *pnId){
823 lsm_env *pEnv = pDb->pEnv;
824 FileSystem *pFS = pDb->pFS;
825 int rc;
826 int nId = 0;
827 void *pId;
829 rc = pEnv->xFileid(pFS->fdDb, 0, &nId);
830 pId = lsmMallocZeroRc(pEnv, nId, &rc);
831 if( rc==LSM_OK ) rc = pEnv->xFileid(pFS->fdDb, pId, &nId);
833 if( rc!=LSM_OK ){
834 lsmFree(pEnv, pId);
835 pId = 0;
836 nId = 0;
839 *ppId = pId;
840 *pnId = nId;
841 return rc;
845 ** Return the nominal page-size used by this file-system. Actual pages
846 ** may be smaller or larger than this value.
848 int lsmFsPageSize(FileSystem *pFS){
849 return pFS->nPagesize;
853 ** Return the block-size used by this file-system.
855 int lsmFsBlockSize(FileSystem *pFS){
856 return pFS->nBlocksize;
860 ** Configure the nominal page-size used by this file-system. Actual
861 ** pages may be smaller or larger than this value.
863 void lsmFsSetPageSize(FileSystem *pFS, int nPgsz){
864 pFS->nPagesize = nPgsz;
865 pFS->nCacheMax = 2048*1024 / pFS->nPagesize;
869 ** Configure the block-size used by this file-system.
871 void lsmFsSetBlockSize(FileSystem *pFS, int nBlocksize){
872 pFS->nBlocksize = nBlocksize;
876 ** Return the page number of the first page on block iBlock. Blocks are
877 ** numbered starting from 1.
879 ** For a compressed database, page numbers are byte offsets. The first
880 ** page on each block is the byte offset immediately following the 4-byte
881 ** "previous block" pointer at the start of each block.
883 static Pgno fsFirstPageOnBlock(FileSystem *pFS, int iBlock){
884 Pgno iPg;
885 if( pFS->pCompress ){
886 if( iBlock==1 ){
887 iPg = pFS->nMetasize * 2 + 4;
888 }else{
889 iPg = pFS->nBlocksize * (Pgno)(iBlock-1) + 4;
891 }else{
892 const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
893 if( iBlock==1 ){
894 iPg = 1 + ((pFS->nMetasize*2 + pFS->nPagesize - 1) / pFS->nPagesize);
895 }else{
896 iPg = 1 + (iBlock-1) * nPagePerBlock;
899 return iPg;
903 ** Return the page number of the last page on block iBlock. Blocks are
904 ** numbered starting from 1.
906 ** For a compressed database, page numbers are byte offsets. The first
907 ** page on each block is the byte offset of the byte immediately before
908 ** the 4-byte "next block" pointer at the end of each block.
910 static Pgno fsLastPageOnBlock(FileSystem *pFS, int iBlock){
911 if( pFS->pCompress ){
912 return pFS->nBlocksize * (Pgno)iBlock - 1 - 4;
913 }else{
914 const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
915 return iBlock * nPagePerBlock;
920 ** Return the block number of the block that page iPg is located on.
921 ** Blocks are numbered starting from 1.
923 static int fsPageToBlock(FileSystem *pFS, Pgno iPg){
924 if( pFS->pCompress ){
925 return (int)((iPg / pFS->nBlocksize) + 1);
926 }else{
927 return (int)(1 + ((iPg-1) / (pFS->nBlocksize / pFS->nPagesize)));
932 ** Return true if page iPg is the last page on its block.
934 ** This function is only called in non-compressed database mode.
936 static int fsIsLast(FileSystem *pFS, Pgno iPg){
937 const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
938 assert( !pFS->pCompress );
939 return ( iPg && (iPg % nPagePerBlock)==0 );
943 ** Return true if page iPg is the first page on its block.
945 ** This function is only called in non-compressed database mode.
947 static int fsIsFirst(FileSystem *pFS, Pgno iPg){
948 const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
949 assert( !pFS->pCompress );
950 return ( (iPg % nPagePerBlock)==1
951 || (iPg<nPagePerBlock && iPg==fsFirstPageOnBlock(pFS, 1))
956 ** Given a page reference, return a pointer to the buffer containing the
957 ** pages contents. If parameter pnData is not NULL, set *pnData to the size
958 ** of the buffer in bytes before returning.
960 u8 *lsmFsPageData(Page *pPage, int *pnData){
961 if( pnData ){
962 *pnData = pPage->nData;
964 return pPage->aData;
968 ** Return the page number of a page.
970 Pgno lsmFsPageNumber(Page *pPage){
971 /* assert( (pPage->flags & PAGE_DIRTY)==0 ); */
972 return pPage ? pPage->iPg : 0;
976 ** Page pPg is currently part of the LRU list belonging to pFS. Remove
977 ** it from the list. pPg->pLruNext and pPg->pLruPrev are cleared by this
978 ** operation.
980 static void fsPageRemoveFromLru(FileSystem *pFS, Page *pPg){
981 assert( pPg->pLruNext || pPg==pFS->pLruLast );
982 assert( pPg->pLruPrev || pPg==pFS->pLruFirst );
983 if( pPg->pLruNext ){
984 pPg->pLruNext->pLruPrev = pPg->pLruPrev;
985 }else{
986 pFS->pLruLast = pPg->pLruPrev;
988 if( pPg->pLruPrev ){
989 pPg->pLruPrev->pLruNext = pPg->pLruNext;
990 }else{
991 pFS->pLruFirst = pPg->pLruNext;
993 pPg->pLruPrev = 0;
994 pPg->pLruNext = 0;
998 ** Page pPg is not currently part of the LRU list belonging to pFS. Add it.
1000 static void fsPageAddToLru(FileSystem *pFS, Page *pPg){
1001 assert( pPg->pLruNext==0 && pPg->pLruPrev==0 );
1002 pPg->pLruPrev = pFS->pLruLast;
1003 if( pPg->pLruPrev ){
1004 pPg->pLruPrev->pLruNext = pPg;
1005 }else{
1006 pFS->pLruFirst = pPg;
1008 pFS->pLruLast = pPg;
1012 ** Page pPg is currently stored in the apHash/nHash hash table. Remove it.
1014 static void fsPageRemoveFromHash(FileSystem *pFS, Page *pPg){
1015 int iHash;
1016 Page **pp;
1018 iHash = fsHashKey(pFS->nHash, pPg->iPg);
1019 for(pp=&pFS->apHash[iHash]; *pp!=pPg; pp=&(*pp)->pHashNext);
1020 *pp = pPg->pHashNext;
1021 pPg->pHashNext = 0;
1025 ** Free a Page object allocated by fsPageBuffer().
1027 static void fsPageBufferFree(Page *pPg){
1028 pPg->pFS->nCacheAlloc--;
1029 lsmFree(pPg->pFS->pEnv, pPg->aData);
1030 lsmFree(pPg->pFS->pEnv, pPg);
1035 ** Purge the cache of all non-mmap pages with nRef==0.
1037 void lsmFsPurgeCache(FileSystem *pFS){
1038 Page *pPg;
1040 pPg = pFS->pLruFirst;
1041 while( pPg ){
1042 Page *pNext = pPg->pLruNext;
1043 assert( pPg->flags & PAGE_FREE );
1044 fsPageRemoveFromHash(pFS, pPg);
1045 fsPageBufferFree(pPg);
1046 pPg = pNext;
1048 pFS->pLruFirst = 0;
1049 pFS->pLruLast = 0;
1051 assert( pFS->nCacheAlloc<=pFS->nOut && pFS->nCacheAlloc>=0 );
1055 ** Search the hash-table for page iPg. If an entry is round, return a pointer
1056 ** to it. Otherwise, return NULL.
1058 ** Either way, if argument piHash is not NULL set *piHash to the hash slot
1059 ** number that page iPg would be stored in before returning.
1061 static Page *fsPageFindInHash(FileSystem *pFS, Pgno iPg, int *piHash){
1062 Page *p; /* Return value */
1063 int iHash = fsHashKey(pFS->nHash, iPg);
1065 if( piHash ) *piHash = iHash;
1066 for(p=pFS->apHash[iHash]; p; p=p->pHashNext){
1067 if( p->iPg==iPg) break;
1069 return p;
1073 ** Allocate and return a non-mmap Page object. If there are already
1074 ** nCacheMax such Page objects outstanding, try to recycle an existing
1075 ** Page instead.
1077 static int fsPageBuffer(
1078 FileSystem *pFS,
1079 Page **ppOut
1081 int rc = LSM_OK;
1082 Page *pPage = 0;
1083 if( pFS->pLruFirst==0 || pFS->nCacheAlloc<pFS->nCacheMax ){
1084 /* Allocate a new Page object */
1085 pPage = lsmMallocZero(pFS->pEnv, sizeof(Page));
1086 if( !pPage ){
1087 rc = LSM_NOMEM_BKPT;
1088 }else{
1089 pPage->aData = (u8 *)lsmMalloc(pFS->pEnv, pFS->nPagesize);
1090 if( !pPage->aData ){
1091 lsmFree(pFS->pEnv, pPage);
1092 rc = LSM_NOMEM_BKPT;
1093 pPage = 0;
1094 }else{
1095 pFS->nCacheAlloc++;
1098 }else{
1099 /* Reuse an existing Page object */
1100 u8 *aData;
1101 pPage = pFS->pLruFirst;
1102 aData = pPage->aData;
1103 fsPageRemoveFromLru(pFS, pPage);
1104 fsPageRemoveFromHash(pFS, pPage);
1106 memset(pPage, 0, sizeof(Page));
1107 pPage->aData = aData;
1110 if( pPage ){
1111 pPage->flags = PAGE_FREE;
1113 *ppOut = pPage;
1114 return rc;
1118 ** Assuming *pRc is initially LSM_OK, attempt to ensure that the
1119 ** memory-mapped region is at least iSz bytes in size. If it is not already,
1120 ** iSz bytes in size, extend it and update the pointers associated with any
1121 ** outstanding Page objects.
1123 ** If *pRc is not LSM_OK when this function is called, it is a no-op.
1124 ** Otherwise, *pRc is set to an lsm error code if an error occurs, or
1125 ** left unmodified otherwise.
1127 ** This function is never called in compressed database mode.
1129 static void fsGrowMapping(
1130 FileSystem *pFS, /* File system object */
1131 i64 iSz, /* Minimum size to extend mapping to */
1132 int *pRc /* IN/OUT: Error code */
1134 assert( pFS->pCompress==0 );
1135 assert( PAGE_HASPREV==4 );
1137 if( *pRc==LSM_OK && iSz>pFS->nMap ){
1138 int rc;
1139 u8 *aOld = pFS->pMap;
1140 rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, iSz, &pFS->pMap, &pFS->nMap);
1141 if( rc==LSM_OK && pFS->pMap!=aOld ){
1142 Page *pFix;
1143 i64 iOff = (u8 *)pFS->pMap - aOld;
1144 for(pFix=pFS->pMapped; pFix; pFix=pFix->pMappedNext){
1145 pFix->aData += iOff;
1147 lsmSortedRemap(pFS->pDb);
1149 *pRc = rc;
1154 ** If it is mapped, unmap the database file.
1156 int lsmFsUnmap(FileSystem *pFS){
1157 int rc = LSM_OK;
1158 if( pFS ){
1159 rc = lsmEnvRemap(pFS->pEnv, pFS->fdDb, -1, &pFS->pMap, &pFS->nMap);
1161 return rc;
1165 ** fsync() the database file.
1167 int lsmFsSyncDb(FileSystem *pFS, int nBlock){
1168 return lsmEnvSync(pFS->pEnv, pFS->fdDb);
1172 ** If block iBlk has been redirected according to the redirections in the
1173 ** object passed as the first argument, return the destination block to
1174 ** which it is redirected. Otherwise, return a copy of iBlk.
1176 static int fsRedirectBlock(Redirect *p, int iBlk){
1177 if( p ){
1178 int i;
1179 for(i=0; i<p->n; i++){
1180 if( iBlk==p->a[i].iFrom ) return p->a[i].iTo;
1183 assert( iBlk!=0 );
1184 return iBlk;
1188 ** If page iPg has been redirected according to the redirections in the
1189 ** object passed as the second argument, return the destination page to
1190 ** which it is redirected. Otherwise, return a copy of iPg.
1192 Pgno lsmFsRedirectPage(FileSystem *pFS, Redirect *pRedir, Pgno iPg){
1193 Pgno iReal = iPg;
1195 if( pRedir ){
1196 const int nPagePerBlock = (
1197 pFS->pCompress ? pFS->nBlocksize : (pFS->nBlocksize / pFS->nPagesize)
1199 int iBlk = fsPageToBlock(pFS, iPg);
1200 int i;
1201 for(i=0; i<pRedir->n; i++){
1202 int iFrom = pRedir->a[i].iFrom;
1203 if( iFrom>iBlk ) break;
1204 if( iFrom==iBlk ){
1205 int iTo = pRedir->a[i].iTo;
1206 iReal = iPg - (Pgno)(iFrom - iTo) * nPagePerBlock;
1207 if( iTo==1 ){
1208 iReal += (fsFirstPageOnBlock(pFS, 1)-1);
1210 break;
1215 assert( iReal!=0 );
1216 return iReal;
1219 /* Required by the circular fsBlockNext<->fsPageGet dependency. */
1220 static int fsPageGet(FileSystem *, Segment *, Pgno, int, Page **, int *);
1223 ** Parameter iBlock is a database file block. This function reads the value
1224 ** stored in the blocks "next block" pointer and stores it in *piNext.
1225 ** LSM_OK is returned if everything is successful, or an LSM error code
1226 ** otherwise.
1228 static int fsBlockNext(
1229 FileSystem *pFS, /* File-system object handle */
1230 Segment *pSeg, /* Use this segment for block redirects */
1231 int iBlock, /* Read field from this block */
1232 int *piNext /* OUT: Next block in linked list */
1234 int rc;
1235 int iRead; /* Read block from here */
1237 if( pSeg ){
1238 iRead = fsRedirectBlock(pSeg->pRedirect, iBlock);
1239 }else{
1240 iRead = iBlock;
1243 assert( pFS->nMapLimit==0 || pFS->pCompress==0 );
1244 if( pFS->pCompress ){
1245 i64 iOff; /* File offset to read data from */
1246 u8 aNext[4]; /* 4-byte pointer read from db file */
1248 iOff = (i64)iRead * pFS->nBlocksize - sizeof(aNext);
1249 rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aNext, sizeof(aNext));
1250 if( rc==LSM_OK ){
1251 *piNext = (int)lsmGetU32(aNext);
1253 }else{
1254 const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
1255 Page *pLast;
1256 rc = fsPageGet(pFS, 0, iRead*nPagePerBlock, 0, &pLast, 0);
1257 if( rc==LSM_OK ){
1258 *piNext = lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
1259 lsmFsPageRelease(pLast);
1263 if( pSeg ){
1264 *piNext = fsRedirectBlock(pSeg->pRedirect, *piNext);
1266 return rc;
1270 ** Return the page number of the last page on the same block as page iPg.
1272 Pgno fsLastPageOnPagesBlock(FileSystem *pFS, Pgno iPg){
1273 return fsLastPageOnBlock(pFS, fsPageToBlock(pFS, iPg));
1277 ** Read nData bytes of data from offset iOff of the database file into
1278 ** buffer aData. If this means reading past the end of a block, follow
1279 ** the block pointer to the next block and continue reading.
1281 ** Offset iOff is an absolute offset - not subject to any block redirection.
1282 ** However any block pointer followed is. Use pSeg->pRedirect in this case.
1284 ** This function is only called in compressed database mode.
1286 static int fsReadData(
1287 FileSystem *pFS, /* File-system handle */
1288 Segment *pSeg, /* Block redirection */
1289 i64 iOff, /* Read data from this offset */
1290 u8 *aData, /* Buffer to read data into */
1291 int nData /* Number of bytes to read */
1293 i64 iEob; /* End of block */
1294 int nRead;
1295 int rc;
1297 assert( pFS->pCompress );
1299 iEob = fsLastPageOnPagesBlock(pFS, iOff) + 1;
1300 nRead = (int)LSM_MIN(iEob - iOff, nData);
1302 rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nRead);
1303 if( rc==LSM_OK && nRead!=nData ){
1304 int iBlk;
1306 rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
1307 if( rc==LSM_OK ){
1308 i64 iOff2 = fsFirstPageOnBlock(pFS, iBlk);
1309 rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff2, &aData[nRead], nData-nRead);
1313 return rc;
1317 ** Parameter iBlock is a database file block. This function reads the value
1318 ** stored in the blocks "previous block" pointer and stores it in *piPrev.
1319 ** LSM_OK is returned if everything is successful, or an LSM error code
1320 ** otherwise.
1322 static int fsBlockPrev(
1323 FileSystem *pFS, /* File-system object handle */
1324 Segment *pSeg, /* Use this segment for block redirects */
1325 int iBlock, /* Read field from this block */
1326 int *piPrev /* OUT: Previous block in linked list */
1328 int rc = LSM_OK; /* Return code */
1330 assert( pFS->nMapLimit==0 || pFS->pCompress==0 );
1331 assert( iBlock>0 );
1333 if( pFS->pCompress ){
1334 i64 iOff = fsFirstPageOnBlock(pFS, iBlock) - 4;
1335 u8 aPrev[4]; /* 4-byte pointer read from db file */
1336 rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aPrev, sizeof(aPrev));
1337 if( rc==LSM_OK ){
1338 Redirect *pRedir = (pSeg ? pSeg->pRedirect : 0);
1339 *piPrev = fsRedirectBlock(pRedir, (int)lsmGetU32(aPrev));
1341 }else{
1342 assert( 0 );
1344 return rc;
1348 ** Encode and decode routines for record size fields.
1350 static void putRecordSize(u8 *aBuf, int nByte, int bFree){
1351 aBuf[0] = (u8)(nByte >> 14) | 0x80;
1352 aBuf[1] = ((u8)(nByte >> 7) & 0x7F) | (bFree ? 0x00 : 0x80);
1353 aBuf[2] = (u8)nByte | 0x80;
1355 static int getRecordSize(u8 *aBuf, int *pbFree){
1356 int nByte;
1357 nByte = (aBuf[0] & 0x7F) << 14;
1358 nByte += (aBuf[1] & 0x7F) << 7;
1359 nByte += (aBuf[2] & 0x7F);
1360 *pbFree = !(aBuf[1] & 0x80);
1361 return nByte;
1365 ** Subtract iSub from database file offset iOff and set *piRes to the
1366 ** result. If doing so means passing the start of a block, follow the
1367 ** block pointer stored in the first 4 bytes of the block.
1369 ** Offset iOff is an absolute offset - not subject to any block redirection.
1370 ** However any block pointer followed is. Use pSeg->pRedirect in this case.
1372 ** Return LSM_OK if successful or an lsm error code if an error occurs.
1374 static int fsSubtractOffset(
1375 FileSystem *pFS,
1376 Segment *pSeg,
1377 i64 iOff,
1378 int iSub,
1379 i64 *piRes
1381 i64 iStart;
1382 int iBlk = 0;
1383 int rc;
1385 assert( pFS->pCompress );
1387 iStart = fsFirstPageOnBlock(pFS, fsPageToBlock(pFS, iOff));
1388 if( (iOff-iSub)>=iStart ){
1389 *piRes = (iOff-iSub);
1390 return LSM_OK;
1393 rc = fsBlockPrev(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
1394 *piRes = fsLastPageOnBlock(pFS, iBlk) - iSub + (iOff - iStart + 1);
1395 return rc;
1399 ** Add iAdd to database file offset iOff and set *piRes to the
1400 ** result. If doing so means passing the end of a block, follow the
1401 ** block pointer stored in the last 4 bytes of the block.
1403 ** Offset iOff is an absolute offset - not subject to any block redirection.
1404 ** However any block pointer followed is. Use pSeg->pRedirect in this case.
1406 ** Return LSM_OK if successful or an lsm error code if an error occurs.
1408 static int fsAddOffset(
1409 FileSystem *pFS,
1410 Segment *pSeg,
1411 i64 iOff,
1412 int iAdd,
1413 i64 *piRes
1415 i64 iEob;
1416 int iBlk;
1417 int rc;
1419 assert( pFS->pCompress );
1421 iEob = fsLastPageOnPagesBlock(pFS, iOff);
1422 if( (iOff+iAdd)<=iEob ){
1423 *piRes = (iOff+iAdd);
1424 return LSM_OK;
1427 rc = fsBlockNext(pFS, pSeg, fsPageToBlock(pFS, iOff), &iBlk);
1428 *piRes = fsFirstPageOnBlock(pFS, iBlk) + iAdd - (iEob - iOff + 1);
1429 return rc;
1433 ** If it is not already allocated, allocate either the FileSystem.aOBuffer (if
1434 ** bWrite is true) or the FileSystem.aIBuffer (if bWrite is false). Return
1435 ** LSM_OK if successful if the attempt to allocate memory fails.
1437 static int fsAllocateBuffer(FileSystem *pFS, int bWrite){
1438 u8 **pp; /* Pointer to either aIBuffer or aOBuffer */
1440 assert( pFS->pCompress );
1442 /* If neither buffer has been allocated, figure out how large they
1443 ** should be. Store this value in FileSystem.nBuffer. */
1444 if( pFS->nBuffer==0 ){
1445 assert( pFS->aIBuffer==0 && pFS->aOBuffer==0 );
1446 pFS->nBuffer = pFS->pCompress->xBound(pFS->pCompress->pCtx, pFS->nPagesize);
1447 if( pFS->nBuffer<(pFS->szSector+6) ){
1448 pFS->nBuffer = pFS->szSector+6;
1452 pp = (bWrite ? &pFS->aOBuffer : &pFS->aIBuffer);
1453 if( *pp==0 ){
1454 *pp = lsmMalloc(pFS->pEnv, LSM_MAX(pFS->nBuffer, pFS->nPagesize));
1455 if( *pp==0 ) return LSM_NOMEM_BKPT;
1458 return LSM_OK;
1462 ** This function is only called in compressed database mode. It reads and
1463 ** uncompresses the compressed data for page pPg from the database and
1464 ** populates the pPg->aData[] buffer and pPg->nCompress field.
1466 ** It is possible that instead of a page record, there is free space
1467 ** at offset pPg->iPgno. In this case no data is read from the file, but
1468 ** output variable *pnSpace is set to the total number of free bytes.
1470 ** LSM_OK is returned if successful, or an LSM error code otherwise.
1472 static int fsReadPagedata(
1473 FileSystem *pFS, /* File-system handle */
1474 Segment *pSeg, /* pPg is part of this segment */
1475 Page *pPg, /* Page to read and uncompress data for */
1476 int *pnSpace /* OUT: Total bytes of free space */
1478 lsm_compress *p = pFS->pCompress;
1479 i64 iOff = pPg->iPg;
1480 u8 aSz[3];
1481 int rc;
1483 assert( p && pPg->nCompress==0 );
1485 if( fsAllocateBuffer(pFS, 0) ) return LSM_NOMEM;
1487 rc = fsReadData(pFS, pSeg, iOff, aSz, sizeof(aSz));
1489 if( rc==LSM_OK ){
1490 int bFree;
1491 if( aSz[0] & 0x80 ){
1492 pPg->nCompress = (int)getRecordSize(aSz, &bFree);
1493 }else{
1494 pPg->nCompress = (int)aSz[0] - sizeof(aSz)*2;
1495 bFree = 1;
1497 if( bFree ){
1498 if( pnSpace ){
1499 *pnSpace = pPg->nCompress + sizeof(aSz)*2;
1500 }else{
1501 rc = LSM_CORRUPT_BKPT;
1503 }else{
1504 rc = fsAddOffset(pFS, pSeg, iOff, 3, &iOff);
1505 if( rc==LSM_OK ){
1506 if( pPg->nCompress>pFS->nBuffer ){
1507 rc = LSM_CORRUPT_BKPT;
1508 }else{
1509 rc = fsReadData(pFS, pSeg, iOff, pFS->aIBuffer, pPg->nCompress);
1511 if( rc==LSM_OK ){
1512 int n = pFS->nPagesize;
1513 rc = p->xUncompress(p->pCtx,
1514 (char *)pPg->aData, &n,
1515 (const char *)pFS->aIBuffer, pPg->nCompress
1517 if( rc==LSM_OK && n!=pPg->pFS->nPagesize ){
1518 rc = LSM_CORRUPT_BKPT;
1524 return rc;
1528 ** Return a handle for a database page.
1530 ** If this file-system object is accessing a compressed database it may be
1531 ** that there is no page record at database file offset iPg. Instead, there
1532 ** may be a free space record. In this case, set *ppPg to NULL and *pnSpace
1533 ** to the total number of free bytes before returning.
1535 ** If no error occurs, LSM_OK is returned. Otherwise, an lsm error code.
1537 static int fsPageGet(
1538 FileSystem *pFS, /* File-system handle */
1539 Segment *pSeg, /* Block redirection to use (or NULL) */
1540 Pgno iPg, /* Page id */
1541 int noContent, /* True to not load content from disk */
1542 Page **ppPg, /* OUT: New page handle */
1543 int *pnSpace /* OUT: Bytes of free space */
1545 Page *p;
1546 int iHash;
1547 int rc = LSM_OK;
1549 /* In most cases iReal is the same as iPg. Except, if pSeg->pRedirect is
1550 ** not NULL, and the block containing iPg has been redirected, then iReal
1551 ** is the page number after redirection. */
1552 Pgno iReal = lsmFsRedirectPage(pFS, (pSeg ? pSeg->pRedirect : 0), iPg);
1554 assert_lists_are_ok(pFS);
1555 assert( iPg>=fsFirstPageOnBlock(pFS, 1) );
1556 assert( iReal>=fsFirstPageOnBlock(pFS, 1) );
1557 *ppPg = 0;
1559 /* Search the hash-table for the page */
1560 p = fsPageFindInHash(pFS, iReal, &iHash);
1562 if( p ){
1563 assert( p->flags & PAGE_FREE );
1564 if( p->nRef==0 ) fsPageRemoveFromLru(pFS, p);
1565 }else{
1567 if( fsMmapPage(pFS, iReal) ){
1568 i64 iEnd = (i64)iReal * pFS->nPagesize;
1569 fsGrowMapping(pFS, iEnd, &rc);
1570 if( rc!=LSM_OK ) return rc;
1572 if( pFS->pFree ){
1573 p = pFS->pFree;
1574 pFS->pFree = p->pFreeNext;
1575 assert( p->nRef==0 );
1576 }else{
1577 p = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc);
1578 if( rc ) return rc;
1579 p->pFS = pFS;
1581 p->aData = &((u8 *)pFS->pMap)[pFS->nPagesize * (iReal-1)];
1582 p->iPg = iReal;
1584 /* This page now carries a pointer to the mapping. Link it in to
1585 ** the FileSystem.pMapped list. */
1586 assert( p->pMappedNext==0 );
1587 p->pMappedNext = pFS->pMapped;
1588 pFS->pMapped = p;
1590 assert( pFS->pCompress==0 );
1591 assert( (p->flags & PAGE_FREE)==0 );
1592 }else{
1593 rc = fsPageBuffer(pFS, &p);
1594 if( rc==LSM_OK ){
1595 int nSpace = 0;
1596 p->iPg = iReal;
1597 p->nRef = 0;
1598 p->pFS = pFS;
1599 assert( p->flags==0 || p->flags==PAGE_FREE );
1601 #ifdef LSM_DEBUG
1602 memset(p->aData, 0x56, pFS->nPagesize);
1603 #endif
1604 assert( p->pLruNext==0 && p->pLruPrev==0 );
1605 if( noContent==0 ){
1606 if( pFS->pCompress ){
1607 rc = fsReadPagedata(pFS, pSeg, p, &nSpace);
1608 }else{
1609 int nByte = pFS->nPagesize;
1610 i64 iOff = (i64)(iReal-1) * pFS->nPagesize;
1611 rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, p->aData, nByte);
1613 pFS->nRead++;
1616 /* If the xRead() call was successful (or not attempted), link the
1617 ** page into the page-cache hash-table. Otherwise, if it failed,
1618 ** free the buffer. */
1619 if( rc==LSM_OK && nSpace==0 ){
1620 p->pHashNext = pFS->apHash[iHash];
1621 pFS->apHash[iHash] = p;
1622 }else{
1623 fsPageBufferFree(p);
1624 p = 0;
1625 if( pnSpace ) *pnSpace = nSpace;
1630 assert( (rc==LSM_OK && (p || (pnSpace && *pnSpace)))
1631 || (rc!=LSM_OK && p==0)
1635 if( rc==LSM_OK && p ){
1636 if( pFS->pCompress==0 && (fsIsLast(pFS, iReal) || fsIsFirst(pFS, iReal)) ){
1637 p->nData = pFS->nPagesize - 4;
1638 if( fsIsFirst(pFS, iReal) && p->nRef==0 ){
1639 p->aData += 4;
1640 p->flags |= PAGE_HASPREV;
1642 }else{
1643 p->nData = pFS->nPagesize;
1645 pFS->nOut += (p->nRef==0);
1646 p->nRef++;
1648 *ppPg = p;
1649 return rc;
1653 ** Read the 64-bit checkpoint id of the checkpoint currently stored on meta
1654 ** page iMeta of the database file. If no error occurs, store the id value
1655 ** in *piVal and return LSM_OK. Otherwise, return an LSM error code and leave
1656 ** *piVal unmodified.
1658 ** If a checkpointer connection is currently updating meta-page iMeta, or an
1659 ** earlier checkpointer crashed while doing so, the value read into *piVal
1660 ** may be garbage. It is the callers responsibility to deal with this.
1662 int lsmFsReadSyncedId(lsm_db *db, int iMeta, i64 *piVal){
1663 FileSystem *pFS = db->pFS;
1664 int rc = LSM_OK;
1666 assert( iMeta==1 || iMeta==2 );
1667 if( pFS->nMapLimit>0 ){
1668 fsGrowMapping(pFS, iMeta*LSM_META_PAGE_SIZE, &rc);
1669 if( rc==LSM_OK ){
1670 *piVal = (i64)lsmGetU64(&((u8 *)pFS->pMap)[(iMeta-1)*LSM_META_PAGE_SIZE]);
1672 }else{
1673 MetaPage *pMeta = 0;
1674 rc = lsmFsMetaPageGet(pFS, 0, iMeta, &pMeta);
1675 if( rc==LSM_OK ){
1676 *piVal = (i64)lsmGetU64(pMeta->aData);
1677 lsmFsMetaPageRelease(pMeta);
1681 return rc;
1686 ** Return true if the first or last page of segment pRun falls between iFirst
1687 ** and iLast, inclusive, and pRun is not equal to pIgnore.
1689 static int fsRunEndsBetween(
1690 Segment *pRun,
1691 Segment *pIgnore,
1692 Pgno iFirst,
1693 Pgno iLast
1695 return (pRun!=pIgnore && (
1696 (pRun->iFirst>=iFirst && pRun->iFirst<=iLast)
1697 || (pRun->iLastPg>=iFirst && pRun->iLastPg<=iLast)
1702 ** Return true if level pLevel contains a segment other than pIgnore for
1703 ** which the first or last page is between iFirst and iLast, inclusive.
1705 static int fsLevelEndsBetween(
1706 Level *pLevel,
1707 Segment *pIgnore,
1708 Pgno iFirst,
1709 Pgno iLast
1711 int i;
1713 if( fsRunEndsBetween(&pLevel->lhs, pIgnore, iFirst, iLast) ){
1714 return 1;
1716 for(i=0; i<pLevel->nRight; i++){
1717 if( fsRunEndsBetween(&pLevel->aRhs[i], pIgnore, iFirst, iLast) ){
1718 return 1;
1722 return 0;
1726 ** Block iBlk is no longer in use by segment pIgnore. If it is not in use
1727 ** by any other segment, move it to the free block list.
1729 static int fsFreeBlock(
1730 FileSystem *pFS, /* File system object */
1731 Snapshot *pSnapshot, /* Worker snapshot */
1732 Segment *pIgnore, /* Ignore this run when searching */
1733 int iBlk /* Block number of block to free */
1735 int rc = LSM_OK; /* Return code */
1736 Pgno iFirst; /* First page on block iBlk */
1737 Pgno iLast; /* Last page on block iBlk */
1738 Level *pLevel; /* Used to iterate through levels */
1740 int iIn; /* Used to iterate through append points */
1741 int iOut = 0; /* Used to output append points */
1742 Pgno *aApp = pSnapshot->aiAppend;
1744 iFirst = fsFirstPageOnBlock(pFS, iBlk);
1745 iLast = fsLastPageOnBlock(pFS, iBlk);
1747 /* Check if any other run in the snapshot has a start or end page
1748 ** within this block. If there is such a run, return early. */
1749 for(pLevel=lsmDbSnapshotLevel(pSnapshot); pLevel; pLevel=pLevel->pNext){
1750 if( fsLevelEndsBetween(pLevel, pIgnore, iFirst, iLast) ){
1751 return LSM_OK;
1755 /* Remove any entries that lie on this block from the append-list. */
1756 for(iIn=0; iIn<LSM_APPLIST_SZ; iIn++){
1757 if( aApp[iIn]<iFirst || aApp[iIn]>iLast ){
1758 aApp[iOut++] = aApp[iIn];
1761 while( iOut<LSM_APPLIST_SZ ) aApp[iOut++] = 0;
1763 if( rc==LSM_OK ){
1764 rc = lsmBlockFree(pFS->pDb, iBlk);
1766 return rc;
1770 ** Delete or otherwise recycle the blocks currently occupied by run pDel.
1772 int lsmFsSortedDelete(
1773 FileSystem *pFS,
1774 Snapshot *pSnapshot,
1775 int bZero, /* True to zero the Segment structure */
1776 Segment *pDel
1778 if( pDel->iFirst ){
1779 int rc = LSM_OK;
1781 int iBlk;
1782 int iLastBlk;
1784 iBlk = fsPageToBlock(pFS, pDel->iFirst);
1785 iLastBlk = fsPageToBlock(pFS, pDel->iLastPg);
1787 /* Mark all blocks currently used by this sorted run as free */
1788 while( iBlk && rc==LSM_OK ){
1789 int iNext = 0;
1790 if( iBlk!=iLastBlk ){
1791 rc = fsBlockNext(pFS, pDel, iBlk, &iNext);
1792 }else if( bZero==0 && pDel->iLastPg!=fsLastPageOnBlock(pFS, iLastBlk) ){
1793 break;
1795 rc = fsFreeBlock(pFS, pSnapshot, pDel, iBlk);
1796 iBlk = iNext;
1799 if( pDel->pRedirect ){
1800 assert( pDel->pRedirect==&pSnapshot->redirect );
1801 pSnapshot->redirect.n = 0;
1804 if( bZero ) memset(pDel, 0, sizeof(Segment));
1806 return LSM_OK;
1810 ** aPgno is an array containing nPgno page numbers. Return the smallest page
1811 ** number from the array that falls on block iBlk. Or, if none of the pages
1812 ** in aPgno[] fall on block iBlk, return 0.
1814 static Pgno firstOnBlock(FileSystem *pFS, int iBlk, Pgno *aPgno, int nPgno){
1815 Pgno iRet = 0;
1816 int i;
1817 for(i=0; i<nPgno; i++){
1818 Pgno iPg = aPgno[i];
1819 if( fsPageToBlock(pFS, iPg)==iBlk && (iRet==0 || iPg<iRet) ){
1820 iRet = iPg;
1823 return iRet;
1826 #ifndef NDEBUG
1828 ** Return true if page iPg, which is a part of segment p, lies on
1829 ** a redirected block.
1831 static int fsPageRedirects(FileSystem *pFS, Segment *p, Pgno iPg){
1832 return (iPg!=0 && iPg!=lsmFsRedirectPage(pFS, p->pRedirect, iPg));
1836 ** Return true if the second argument is not NULL and any of the first
1837 ** last or root pages lie on a redirected block.
1839 static int fsSegmentRedirects(FileSystem *pFS, Segment *p){
1840 return (p && (
1841 fsPageRedirects(pFS, p, p->iFirst)
1842 || fsPageRedirects(pFS, p, p->iRoot)
1843 || fsPageRedirects(pFS, p, p->iLastPg)
1846 #endif
1849 ** Argument aPgno is an array of nPgno page numbers. All pages belong to
1850 ** the segment pRun. This function gobbles from the start of the run to the
1851 ** first page that appears in aPgno[] (i.e. so that the aPgno[] entry is
1852 ** the new first page of the run).
1854 void lsmFsGobble(
1855 lsm_db *pDb,
1856 Segment *pRun,
1857 Pgno *aPgno,
1858 int nPgno
1860 int rc = LSM_OK;
1861 FileSystem *pFS = pDb->pFS;
1862 Snapshot *pSnapshot = pDb->pWorker;
1863 int iBlk;
1865 assert( pRun->nSize>0 );
1866 assert( 0==fsSegmentRedirects(pFS, pRun) );
1867 assert( nPgno>0 && 0==fsPageRedirects(pFS, pRun, aPgno[0]) );
1869 iBlk = fsPageToBlock(pFS, pRun->iFirst);
1870 pRun->nSize += (int)(pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
1872 while( rc==LSM_OK ){
1873 int iNext = 0;
1874 Pgno iFirst = firstOnBlock(pFS, iBlk, aPgno, nPgno);
1875 if( iFirst ){
1876 pRun->iFirst = iFirst;
1877 break;
1879 rc = fsBlockNext(pFS, pRun, iBlk, &iNext);
1880 if( rc==LSM_OK ) rc = fsFreeBlock(pFS, pSnapshot, pRun, iBlk);
1881 pRun->nSize -= (int)(
1882 1 + fsLastPageOnBlock(pFS, iBlk) - fsFirstPageOnBlock(pFS, iBlk)
1884 iBlk = iNext;
1887 pRun->nSize -= (int)(pRun->iFirst - fsFirstPageOnBlock(pFS, iBlk));
1888 assert( pRun->nSize>0 );
1892 ** This function is only used in compressed database mode.
1894 ** Argument iPg is the page number (byte offset) of a page within segment
1895 ** pSeg. The page record, including all headers, is nByte bytes in size.
1896 ** Before returning, set *piNext to the page number of the next page in
1897 ** the segment, or to zero if iPg is the last.
1899 ** In other words, do:
1901 ** *piNext = iPg + nByte;
1903 ** But take block overflow and redirection into account.
1905 static int fsNextPageOffset(
1906 FileSystem *pFS, /* File system object */
1907 Segment *pSeg, /* Segment to move within */
1908 Pgno iPg, /* Offset of current page */
1909 int nByte, /* Size of current page including headers */
1910 Pgno *piNext /* OUT: Offset of next page. Or zero (EOF) */
1912 Pgno iNext;
1913 int rc;
1915 assert( pFS->pCompress );
1917 rc = fsAddOffset(pFS, pSeg, iPg, nByte-1, &iNext);
1918 if( pSeg && iNext==pSeg->iLastPg ){
1919 iNext = 0;
1920 }else if( rc==LSM_OK ){
1921 rc = fsAddOffset(pFS, pSeg, iNext, 1, &iNext);
1924 *piNext = iNext;
1925 return rc;
1929 ** This function is only used in compressed database mode.
1931 ** Argument iPg is the page number of a pagethat appears in segment pSeg.
1932 ** This function determines the page number of the previous page in the
1933 ** same run. *piPrev is set to the previous page number before returning.
1935 ** LSM_OK is returned if no error occurs. Otherwise, an lsm error code.
1936 ** If any value other than LSM_OK is returned, then the final value of
1937 ** *piPrev is undefined.
1939 static int fsGetPageBefore(
1940 FileSystem *pFS,
1941 Segment *pSeg,
1942 Pgno iPg,
1943 Pgno *piPrev
1945 u8 aSz[3];
1946 int rc;
1947 i64 iRead;
1949 assert( pFS->pCompress );
1951 rc = fsSubtractOffset(pFS, pSeg, iPg, sizeof(aSz), &iRead);
1952 if( rc==LSM_OK ) rc = fsReadData(pFS, pSeg, iRead, aSz, sizeof(aSz));
1954 if( rc==LSM_OK ){
1955 int bFree;
1956 int nSz;
1957 if( aSz[2] & 0x80 ){
1958 nSz = getRecordSize(aSz, &bFree) + sizeof(aSz)*2;
1959 }else{
1960 nSz = (int)(aSz[2] & 0x7F);
1961 bFree = 1;
1963 rc = fsSubtractOffset(pFS, pSeg, iPg, nSz, piPrev);
1966 return rc;
1970 ** The first argument to this function is a valid reference to a database
1971 ** file page that is part of a sorted run. If parameter eDir is -1, this
1972 ** function attempts to locate and load the previous page in the same run.
1973 ** Or, if eDir is +1, it attempts to find the next page in the same run.
1974 ** The results of passing an eDir value other than positive or negative one
1975 ** are undefined.
1977 ** If parameter pRun is not NULL then it must point to the run that page
1978 ** pPg belongs to. In this case, if pPg is the first or last page of the
1979 ** run, and the request is for the previous or next page, respectively,
1980 ** *ppNext is set to NULL before returning LSM_OK. If pRun is NULL, then it
1981 ** is assumed that the next or previous page, as requested, exists.
1983 ** If the previous/next page does exist and is successfully loaded, *ppNext
1984 ** is set to point to it and LSM_OK is returned. Otherwise, if an error
1985 ** occurs, *ppNext is set to NULL and and lsm error code returned.
1987 ** Page references returned by this function should be released by the
1988 ** caller using lsmFsPageRelease().
1990 int lsmFsDbPageNext(Segment *pRun, Page *pPg, int eDir, Page **ppNext){
1991 int rc = LSM_OK;
1992 FileSystem *pFS = pPg->pFS;
1993 Pgno iPg = pPg->iPg;
1995 assert( 0==fsSegmentRedirects(pFS, pRun) );
1996 if( pFS->pCompress ){
1997 int nSpace = pPg->nCompress + 2*3;
1999 do {
2000 if( eDir>0 ){
2001 rc = fsNextPageOffset(pFS, pRun, iPg, nSpace, &iPg);
2002 }else{
2003 if( iPg==pRun->iFirst ){
2004 iPg = 0;
2005 }else{
2006 rc = fsGetPageBefore(pFS, pRun, iPg, &iPg);
2010 nSpace = 0;
2011 if( iPg!=0 ){
2012 rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, &nSpace);
2013 assert( (*ppNext==0)==(rc!=LSM_OK || nSpace>0) );
2014 }else{
2015 *ppNext = 0;
2017 }while( nSpace>0 && rc==LSM_OK );
2019 }else{
2020 Redirect *pRedir = pRun ? pRun->pRedirect : 0;
2021 assert( eDir==1 || eDir==-1 );
2022 if( eDir<0 ){
2023 if( pRun && iPg==pRun->iFirst ){
2024 *ppNext = 0;
2025 return LSM_OK;
2026 }else if( fsIsFirst(pFS, iPg) ){
2027 assert( pPg->flags & PAGE_HASPREV );
2028 iPg = fsLastPageOnBlock(pFS, lsmGetU32(&pPg->aData[-4]));
2029 }else{
2030 iPg--;
2032 }else{
2033 if( pRun ){
2034 if( iPg==pRun->iLastPg ){
2035 *ppNext = 0;
2036 return LSM_OK;
2040 if( fsIsLast(pFS, iPg) ){
2041 int iBlk = fsRedirectBlock(
2042 pRedir, lsmGetU32(&pPg->aData[pFS->nPagesize-4])
2044 iPg = fsFirstPageOnBlock(pFS, iBlk);
2045 }else{
2046 iPg++;
2049 rc = fsPageGet(pFS, pRun, iPg, 0, ppNext, 0);
2052 return rc;
2056 ** This function is called when creating a new segment to determine if the
2057 ** first part of it can be written following an existing segment on an
2058 ** already allocated block. If it is possible, the page number of the first
2059 ** page to use for the new segment is returned. Otherwise zero.
2061 ** If argument pLvl is not NULL, then this function will not attempt to
2062 ** start the new segment immediately following any segment that is part
2063 ** of the right-hand-side of pLvl.
2065 static Pgno findAppendPoint(FileSystem *pFS, Level *pLvl){
2066 int i;
2067 Pgno *aiAppend = pFS->pDb->pWorker->aiAppend;
2068 Pgno iRet = 0;
2070 for(i=LSM_APPLIST_SZ-1; iRet==0 && i>=0; i--){
2071 if( (iRet = aiAppend[i]) ){
2072 if( pLvl ){
2073 int iBlk = fsPageToBlock(pFS, iRet);
2074 int j;
2075 for(j=0; iRet && j<pLvl->nRight; j++){
2076 if( fsPageToBlock(pFS, pLvl->aRhs[j].iLastPg)==iBlk ){
2077 iRet = 0;
2081 if( iRet ) aiAppend[i] = 0;
2084 return iRet;
2088 ** Append a page to the left-hand-side of pLvl. Set the ref-count to 1 and
2089 ** return a pointer to it. The page is writable until either
2090 ** lsmFsPagePersist() is called on it or the ref-count drops to zero.
2092 int lsmFsSortedAppend(
2093 FileSystem *pFS,
2094 Snapshot *pSnapshot,
2095 Level *pLvl,
2096 int bDefer,
2097 Page **ppOut
2099 int rc = LSM_OK;
2100 Page *pPg = 0;
2101 Pgno iApp = 0;
2102 Pgno iNext = 0;
2103 Segment *p = &pLvl->lhs;
2104 Pgno iPrev = p->iLastPg;
2106 *ppOut = 0;
2107 assert( p->pRedirect==0 );
2109 if( pFS->pCompress || bDefer ){
2110 /* In compressed database mode the page is not assigned a page number
2111 ** or location in the database file at this point. This will be done
2112 ** by the lsmFsPagePersist() call. */
2113 rc = fsPageBuffer(pFS, &pPg);
2114 if( rc==LSM_OK ){
2115 pPg->pFS = pFS;
2116 pPg->pSeg = p;
2117 pPg->iPg = 0;
2118 pPg->flags |= PAGE_DIRTY;
2119 pPg->nData = pFS->nPagesize;
2120 assert( pPg->aData );
2121 if( pFS->pCompress==0 ) pPg->nData -= 4;
2123 pPg->nRef = 1;
2124 pFS->nOut++;
2126 }else{
2127 if( iPrev==0 ){
2128 iApp = findAppendPoint(pFS, pLvl);
2129 }else if( fsIsLast(pFS, iPrev) ){
2130 int iNext2;
2131 rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iPrev), &iNext2);
2132 if( rc!=LSM_OK ) return rc;
2133 iApp = fsFirstPageOnBlock(pFS, iNext2);
2134 }else{
2135 iApp = iPrev + 1;
2138 /* If this is the first page allocated, or if the page allocated is the
2139 ** last in the block, also allocate the next block here. */
2140 if( iApp==0 || fsIsLast(pFS, iApp) ){
2141 int iNew; /* New block number */
2143 rc = lsmBlockAllocate(pFS->pDb, 0, &iNew);
2144 if( rc!=LSM_OK ) return rc;
2145 if( iApp==0 ){
2146 iApp = fsFirstPageOnBlock(pFS, iNew);
2147 }else{
2148 iNext = fsFirstPageOnBlock(pFS, iNew);
2152 /* Grab the new page. */
2153 pPg = 0;
2154 rc = fsPageGet(pFS, 0, iApp, 1, &pPg, 0);
2155 assert( rc==LSM_OK || pPg==0 );
2157 /* If this is the first or last page of a block, fill in the pointer
2158 ** value at the end of the new page. */
2159 if( rc==LSM_OK ){
2160 p->nSize++;
2161 p->iLastPg = iApp;
2162 if( p->iFirst==0 ) p->iFirst = iApp;
2163 pPg->flags |= PAGE_DIRTY;
2165 if( fsIsLast(pFS, iApp) ){
2166 lsmPutU32(&pPg->aData[pFS->nPagesize-4], fsPageToBlock(pFS, iNext));
2167 }else if( fsIsFirst(pFS, iApp) ){
2168 lsmPutU32(&pPg->aData[-4], fsPageToBlock(pFS, iPrev));
2173 *ppOut = pPg;
2174 return rc;
2178 ** Mark the segment passed as the second argument as finished. Once a segment
2179 ** is marked as finished it is not possible to append any further pages to
2180 ** it.
2182 ** Return LSM_OK if successful or an lsm error code if an error occurs.
2184 int lsmFsSortedFinish(FileSystem *pFS, Segment *p){
2185 int rc = LSM_OK;
2186 if( p && p->iLastPg ){
2187 assert( p->pRedirect==0 );
2189 /* Check if the last page of this run happens to be the last of a block.
2190 ** If it is, then an extra block has already been allocated for this run.
2191 ** Shift this extra block back to the free-block list.
2193 ** Otherwise, add the first free page in the last block used by the run
2194 ** to the lAppend list.
2196 if( fsLastPageOnPagesBlock(pFS, p->iLastPg)!=p->iLastPg ){
2197 int i;
2198 Pgno *aiAppend = pFS->pDb->pWorker->aiAppend;
2199 for(i=0; i<LSM_APPLIST_SZ; i++){
2200 if( aiAppend[i]==0 ){
2201 aiAppend[i] = p->iLastPg+1;
2202 break;
2205 }else if( pFS->pCompress==0 ){
2206 Page *pLast;
2207 rc = fsPageGet(pFS, 0, p->iLastPg, 0, &pLast, 0);
2208 if( rc==LSM_OK ){
2209 int iBlk = (int)lsmGetU32(&pLast->aData[pFS->nPagesize-4]);
2210 lsmBlockRefree(pFS->pDb, iBlk);
2211 lsmFsPageRelease(pLast);
2213 }else{
2214 int iBlk = 0;
2215 rc = fsBlockNext(pFS, p, fsPageToBlock(pFS, p->iLastPg), &iBlk);
2216 if( rc==LSM_OK ){
2217 lsmBlockRefree(pFS->pDb, iBlk);
2221 return rc;
2225 ** Obtain a reference to page number iPg.
2227 ** Return LSM_OK if successful, or an lsm error code if an error occurs.
2229 int lsmFsDbPageGet(FileSystem *pFS, Segment *pSeg, Pgno iPg, Page **ppPg){
2230 return fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0);
2234 ** Obtain a reference to the last page in the segment passed as the
2235 ** second argument.
2237 ** Return LSM_OK if successful, or an lsm error code if an error occurs.
2239 int lsmFsDbPageLast(FileSystem *pFS, Segment *pSeg, Page **ppPg){
2240 int rc;
2241 Pgno iPg = pSeg->iLastPg;
2242 if( pFS->pCompress ){
2243 int nSpace;
2244 iPg++;
2245 do {
2246 nSpace = 0;
2247 rc = fsGetPageBefore(pFS, pSeg, iPg, &iPg);
2248 if( rc==LSM_OK ){
2249 rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, &nSpace);
2251 }while( rc==LSM_OK && nSpace>0 );
2253 }else{
2254 rc = fsPageGet(pFS, pSeg, iPg, 0, ppPg, 0);
2256 return rc;
2260 ** Return a reference to meta-page iPg. If successful, LSM_OK is returned
2261 ** and *ppPg populated with the new page reference. The reference should
2262 ** be released by the caller using lsmFsPageRelease().
2264 ** Otherwise, if an error occurs, *ppPg is set to NULL and an LSM error
2265 ** code is returned.
2267 int lsmFsMetaPageGet(
2268 FileSystem *pFS, /* File-system connection */
2269 int bWrite, /* True for write access, false for read */
2270 int iPg, /* Either 1 or 2 */
2271 MetaPage **ppPg /* OUT: Pointer to MetaPage object */
2273 int rc = LSM_OK;
2274 MetaPage *pPg;
2275 assert( iPg==1 || iPg==2 );
2277 pPg = lsmMallocZeroRc(pFS->pEnv, sizeof(Page), &rc);
2279 if( pPg ){
2280 i64 iOff = (iPg-1) * pFS->nMetasize;
2281 if( pFS->nMapLimit>0 ){
2282 fsGrowMapping(pFS, 2*pFS->nMetasize, &rc);
2283 pPg->aData = (u8 *)(pFS->pMap) + iOff;
2284 }else{
2285 pPg->aData = lsmMallocRc(pFS->pEnv, pFS->nMetasize, &rc);
2286 if( rc==LSM_OK && bWrite==0 ){
2287 rc = lsmEnvRead(
2288 pFS->pEnv, pFS->fdDb, iOff, pPg->aData, pFS->nMetaRwSize
2291 #ifndef NDEBUG
2292 /* pPg->aData causes an uninitialized access via a downstreadm write().
2293 After discussion on this list, this memory should not, for performance
2294 reasons, be memset. However, tracking down "real" misuse is more
2295 difficult with this "false" positive, so it is set when NDEBUG.
2297 else if( rc==LSM_OK ){
2298 memset( pPg->aData, 0x77, pFS->nMetasize );
2300 #endif
2303 if( rc!=LSM_OK ){
2304 if( pFS->nMapLimit==0 ) lsmFree(pFS->pEnv, pPg->aData);
2305 lsmFree(pFS->pEnv, pPg);
2306 pPg = 0;
2307 }else{
2308 pPg->iPg = iPg;
2309 pPg->bWrite = bWrite;
2310 pPg->pFS = pFS;
2314 *ppPg = pPg;
2315 return rc;
2319 ** Release a meta-page reference obtained via a call to lsmFsMetaPageGet().
2321 int lsmFsMetaPageRelease(MetaPage *pPg){
2322 int rc = LSM_OK;
2323 if( pPg ){
2324 FileSystem *pFS = pPg->pFS;
2326 if( pFS->nMapLimit==0 ){
2327 if( pPg->bWrite ){
2328 i64 iOff = (pPg->iPg==2 ? pFS->nMetasize : 0);
2329 int nWrite = pFS->nMetaRwSize;
2330 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, pPg->aData, nWrite);
2332 lsmFree(pFS->pEnv, pPg->aData);
2335 lsmFree(pFS->pEnv, pPg);
2337 return rc;
2341 ** Return a pointer to a buffer containing the data associated with the
2342 ** meta-page passed as the first argument. If parameter pnData is not NULL,
2343 ** set *pnData to the size of the meta-page in bytes before returning.
2345 u8 *lsmFsMetaPageData(MetaPage *pPg, int *pnData){
2346 if( pnData ) *pnData = pPg->pFS->nMetaRwSize;
2347 return pPg->aData;
2351 ** Return true if page is currently writable. This is used in assert()
2352 ** statements only.
2354 #ifndef NDEBUG
2355 int lsmFsPageWritable(Page *pPg){
2356 return (pPg->flags & PAGE_DIRTY) ? 1 : 0;
2358 #endif
2361 ** This is called when block iFrom is being redirected to iTo. If page
2362 ** number (*piPg) lies on block iFrom, then calculate the equivalent
2363 ** page on block iTo and set *piPg to this value before returning.
2365 static void fsMovePage(
2366 FileSystem *pFS, /* File system object */
2367 int iTo, /* Destination block */
2368 int iFrom, /* Source block */
2369 Pgno *piPg /* IN/OUT: Page number */
2371 Pgno iPg = *piPg;
2372 if( iFrom==fsPageToBlock(pFS, iPg) ){
2373 const int nPagePerBlock = (
2374 pFS->pCompress ? pFS ->nBlocksize : (pFS->nBlocksize / pFS->nPagesize)
2376 *piPg = iPg - (Pgno)(iFrom - iTo) * nPagePerBlock;
2381 ** Copy the contents of block iFrom to block iTo.
2383 ** It is safe to assume that there are no outstanding references to pages
2384 ** on block iTo. And that block iFrom is not currently being written. In
2385 ** other words, the data can be read and written directly.
2387 int lsmFsMoveBlock(FileSystem *pFS, Segment *pSeg, int iTo, int iFrom){
2388 Snapshot *p = pFS->pDb->pWorker;
2389 int rc = LSM_OK;
2390 int i;
2391 i64 nMap;
2393 i64 iFromOff = (i64)(iFrom-1) * pFS->nBlocksize;
2394 i64 iToOff = (i64)(iTo-1) * pFS->nBlocksize;
2396 assert( iTo!=1 );
2397 assert( iFrom>iTo );
2399 /* Grow the mapping as required. */
2400 nMap = LSM_MIN(pFS->nMapLimit, (i64)iFrom * pFS->nBlocksize);
2401 fsGrowMapping(pFS, nMap, &rc);
2403 if( rc==LSM_OK ){
2404 const int nPagePerBlock = (pFS->nBlocksize / pFS->nPagesize);
2405 int nSz = pFS->nPagesize;
2406 u8 *aBuf = 0;
2407 u8 *aData = 0;
2409 for(i=0; rc==LSM_OK && i<nPagePerBlock; i++){
2410 i64 iOff = iFromOff + i*nSz;
2412 /* Set aData to point to a buffer containing the from page */
2413 if( (iOff+nSz)<=pFS->nMapLimit ){
2414 u8 *aMap = (u8 *)(pFS->pMap);
2415 aData = &aMap[iOff];
2416 }else{
2417 if( aBuf==0 ){
2418 aBuf = (u8 *)lsmMallocRc(pFS->pEnv, nSz, &rc);
2419 if( aBuf==0 ) break;
2421 aData = aBuf;
2422 rc = lsmEnvRead(pFS->pEnv, pFS->fdDb, iOff, aData, nSz);
2425 /* Copy aData to the to page */
2426 if( rc==LSM_OK ){
2427 iOff = iToOff + i*nSz;
2428 if( (iOff+nSz)<=pFS->nMapLimit ){
2429 u8 *aMap = (u8 *)(pFS->pMap);
2430 memcpy(&aMap[iOff], aData, nSz);
2431 }else{
2432 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, nSz);
2436 lsmFree(pFS->pEnv, aBuf);
2437 lsmFsPurgeCache(pFS);
2440 /* Update append-point list if necessary */
2441 for(i=0; i<LSM_APPLIST_SZ; i++){
2442 fsMovePage(pFS, iTo, iFrom, &p->aiAppend[i]);
2445 /* Update the Segment structure itself */
2446 fsMovePage(pFS, iTo, iFrom, &pSeg->iFirst);
2447 fsMovePage(pFS, iTo, iFrom, &pSeg->iLastPg);
2448 fsMovePage(pFS, iTo, iFrom, &pSeg->iRoot);
2450 return rc;
2454 ** Append raw data to a segment. Return the database file offset that the
2455 ** data is written to (this may be used as the page number if the data
2456 ** being appended is a new page record).
2458 ** This function is only used in compressed database mode.
2460 static Pgno fsAppendData(
2461 FileSystem *pFS, /* File-system handle */
2462 Segment *pSeg, /* Segment to append to */
2463 const u8 *aData, /* Buffer containing data to write */
2464 int nData, /* Size of buffer aData[] in bytes */
2465 int *pRc /* IN/OUT: Error code */
2467 Pgno iRet = 0;
2468 int rc = *pRc;
2469 assert( pFS->pCompress );
2470 if( rc==LSM_OK ){
2471 int nRem = 0;
2472 int nWrite = 0;
2473 Pgno iLastOnBlock;
2474 Pgno iApp = pSeg->iLastPg+1;
2476 /* If this is the first data written into the segment, find an append-point
2477 ** or allocate a new block. */
2478 if( iApp==1 ){
2479 pSeg->iFirst = iApp = findAppendPoint(pFS, 0);
2480 if( iApp==0 ){
2481 int iBlk;
2482 rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
2483 pSeg->iFirst = iApp = fsFirstPageOnBlock(pFS, iBlk);
2486 iRet = iApp;
2488 /* Write as much data as is possible at iApp (usually all of it). */
2489 iLastOnBlock = fsLastPageOnPagesBlock(pFS, iApp);
2490 if( rc==LSM_OK ){
2491 int nSpace = (int)(iLastOnBlock - iApp + 1);
2492 nWrite = LSM_MIN(nData, nSpace);
2493 nRem = nData - nWrite;
2494 assert( nWrite>=0 );
2495 if( nWrite!=0 ){
2496 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aData, nWrite);
2498 iApp += nWrite;
2501 /* If required, allocate a new block and write the rest of the data
2502 ** into it. Set the next and previous block pointers to link the new
2503 ** block to the old. */
2504 assert( nRem<=0 || (iApp-1)==iLastOnBlock );
2505 if( rc==LSM_OK && (iApp-1)==iLastOnBlock ){
2506 u8 aPtr[4]; /* Space to serialize a u32 */
2507 int iBlk; /* New block number */
2509 if( nWrite>0 ){
2510 /* Allocate a new block. */
2511 rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
2513 /* Set the "next" pointer on the old block */
2514 if( rc==LSM_OK ){
2515 assert( iApp==(fsPageToBlock(pFS, iApp)*pFS->nBlocksize)-4 );
2516 lsmPutU32(aPtr, iBlk);
2517 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, aPtr, sizeof(aPtr));
2520 /* Set the "prev" pointer on the new block */
2521 if( rc==LSM_OK ){
2522 Pgno iWrite;
2523 lsmPutU32(aPtr, fsPageToBlock(pFS, iApp));
2524 iWrite = fsFirstPageOnBlock(pFS, iBlk);
2525 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iWrite-4, aPtr, sizeof(aPtr));
2526 if( nRem>0 ) iApp = iWrite;
2528 }else{
2529 /* The next block is already allocated. */
2530 assert( nRem>0 );
2531 assert( pSeg->pRedirect==0 );
2532 rc = fsBlockNext(pFS, 0, fsPageToBlock(pFS, iApp), &iBlk);
2533 iRet = iApp = fsFirstPageOnBlock(pFS, iBlk);
2536 /* Write the remaining data into the new block */
2537 if( rc==LSM_OK && nRem>0 ){
2538 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iApp, &aData[nWrite], nRem);
2539 iApp += nRem;
2543 pSeg->iLastPg = iApp-1;
2544 *pRc = rc;
2547 return iRet;
2551 ** This function is only called in compressed database mode. It
2552 ** compresses the contents of page pPg and writes the result to the
2553 ** buffer at pFS->aOBuffer. The size of the compressed data is stored in
2554 ** pPg->nCompress.
2556 ** If buffer pFS->aOBuffer[] has not been allocated then this function
2557 ** allocates it. If this fails, LSM_NOMEM is returned. Otherwise, LSM_OK.
2559 static int fsCompressIntoBuffer(FileSystem *pFS, Page *pPg){
2560 lsm_compress *p = pFS->pCompress;
2562 if( fsAllocateBuffer(pFS, 1) ) return LSM_NOMEM;
2563 assert( pPg->nData==pFS->nPagesize );
2565 pPg->nCompress = pFS->nBuffer;
2566 return p->xCompress(p->pCtx,
2567 (char *)pFS->aOBuffer, &pPg->nCompress,
2568 (const char *)pPg->aData, pPg->nData
2573 ** Append a new page to segment pSeg. Set output variable *piNew to the
2574 ** page number of the new page before returning.
2576 ** If the new page is the last on its block, then the 'next' block that
2577 ** will be used by the segment is allocated here too. In this case output
2578 ** variable *piNext is set to the block number of the next block.
2580 ** If the new page is the first on its block but not the first in the
2581 ** entire segment, set output variable *piPrev to the block number of
2582 ** the previous block in the segment.
2584 ** LSM_OK is returned if successful, or an lsm error code otherwise. If
2585 ** any value other than LSM_OK is returned, then the final value of all
2586 ** output variables is undefined.
2588 static int fsAppendPage(
2589 FileSystem *pFS,
2590 Segment *pSeg,
2591 Pgno *piNew,
2592 int *piPrev,
2593 int *piNext
2595 Pgno iPrev = pSeg->iLastPg;
2596 int rc;
2597 assert( iPrev!=0 );
2599 *piPrev = 0;
2600 *piNext = 0;
2602 if( fsIsLast(pFS, iPrev) ){
2603 /* Grab the first page on the next block (which has already be
2604 ** allocated). In this case set *piPrev to tell the caller to set
2605 ** the "previous block" pointer in the first 4 bytes of the page.
2607 int iNext;
2608 int iBlk = fsPageToBlock(pFS, iPrev);
2609 assert( pSeg->pRedirect==0 );
2610 rc = fsBlockNext(pFS, 0, iBlk, &iNext);
2611 if( rc!=LSM_OK ) return rc;
2612 *piNew = fsFirstPageOnBlock(pFS, iNext);
2613 *piPrev = iBlk;
2614 }else{
2615 *piNew = iPrev+1;
2616 if( fsIsLast(pFS, *piNew) ){
2617 /* Allocate the next block here. */
2618 int iBlk;
2619 rc = lsmBlockAllocate(pFS->pDb, 0, &iBlk);
2620 if( rc!=LSM_OK ) return rc;
2621 *piNext = iBlk;
2625 pSeg->nSize++;
2626 pSeg->iLastPg = *piNew;
2627 return LSM_OK;
2631 ** Flush all pages in the FileSystem.pWaiting list to disk.
2633 void lsmFsFlushWaiting(FileSystem *pFS, int *pRc){
2634 int rc = *pRc;
2635 Page *pPg;
2637 pPg = pFS->pWaiting;
2638 pFS->pWaiting = 0;
2640 while( pPg ){
2641 Page *pNext = pPg->pWaitingNext;
2642 if( rc==LSM_OK ) rc = lsmFsPagePersist(pPg);
2643 assert( pPg->nRef==1 );
2644 lsmFsPageRelease(pPg);
2645 pPg = pNext;
2647 *pRc = rc;
2651 ** If there exists a hash-table entry associated with page iPg, remove it.
2653 static void fsRemoveHashEntry(FileSystem *pFS, Pgno iPg){
2654 Page *p;
2655 int iHash = fsHashKey(pFS->nHash, iPg);
2657 for(p=pFS->apHash[iHash]; p && p->iPg!=iPg; p=p->pHashNext);
2659 if( p ){
2660 assert( p->nRef==0 || (p->flags & PAGE_FREE)==0 );
2661 fsPageRemoveFromHash(pFS, p);
2662 p->iPg = 0;
2663 iHash = fsHashKey(pFS->nHash, 0);
2664 p->pHashNext = pFS->apHash[iHash];
2665 pFS->apHash[iHash] = p;
2670 ** If the page passed as an argument is dirty, update the database file
2671 ** (or mapping of the database file) with its current contents and mark
2672 ** the page as clean.
2674 ** Return LSM_OK if the operation is a success, or an LSM error code
2675 ** otherwise.
2677 int lsmFsPagePersist(Page *pPg){
2678 int rc = LSM_OK;
2679 if( pPg && (pPg->flags & PAGE_DIRTY) ){
2680 FileSystem *pFS = pPg->pFS;
2682 if( pFS->pCompress ){
2683 int iHash; /* Hash key of assigned page number */
2684 u8 aSz[3]; /* pPg->nCompress as a 24-bit big-endian */
2685 assert( pPg->pSeg && pPg->iPg==0 && pPg->nCompress==0 );
2687 /* Compress the page image. */
2688 rc = fsCompressIntoBuffer(pFS, pPg);
2690 /* Serialize the compressed size into buffer aSz[] */
2691 putRecordSize(aSz, pPg->nCompress, 0);
2693 /* Write the serialized page record into the database file. */
2694 pPg->iPg = fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
2695 fsAppendData(pFS, pPg->pSeg, pFS->aOBuffer, pPg->nCompress, &rc);
2696 fsAppendData(pFS, pPg->pSeg, aSz, sizeof(aSz), &rc);
2698 /* Now that it has a page number, insert the page into the hash table */
2699 iHash = fsHashKey(pFS->nHash, pPg->iPg);
2700 pPg->pHashNext = pFS->apHash[iHash];
2701 pFS->apHash[iHash] = pPg;
2703 pPg->pSeg->nSize += (sizeof(aSz) * 2) + pPg->nCompress;
2705 pPg->flags &= ~PAGE_DIRTY;
2706 pFS->nWrite++;
2707 }else{
2709 if( pPg->iPg==0 ){
2710 /* No page number has been assigned yet. This occurs with pages used
2711 ** in the b-tree hierarchy. They were not assigned page numbers when
2712 ** they were created as doing so would cause this call to
2713 ** lsmFsPagePersist() to write an out-of-order page. Instead a page
2714 ** number is assigned here so that the page data will be appended
2715 ** to the current segment.
2717 Page **pp;
2718 int iPrev = 0;
2719 int iNext = 0;
2720 int iHash;
2722 assert( pPg->pSeg->iFirst );
2723 assert( pPg->flags & PAGE_FREE );
2724 assert( (pPg->flags & PAGE_HASPREV)==0 );
2725 assert( pPg->nData==pFS->nPagesize-4 );
2727 rc = fsAppendPage(pFS, pPg->pSeg, &pPg->iPg, &iPrev, &iNext);
2728 if( rc!=LSM_OK ) return rc;
2730 assert( pPg->flags & PAGE_FREE );
2731 iHash = fsHashKey(pFS->nHash, pPg->iPg);
2732 fsRemoveHashEntry(pFS, pPg->iPg);
2733 pPg->pHashNext = pFS->apHash[iHash];
2734 pFS->apHash[iHash] = pPg;
2735 assert( pPg->pHashNext==0 || pPg->pHashNext->iPg!=pPg->iPg );
2737 if( iPrev ){
2738 assert( iNext==0 );
2739 memmove(&pPg->aData[4], pPg->aData, pPg->nData);
2740 lsmPutU32(pPg->aData, iPrev);
2741 pPg->flags |= PAGE_HASPREV;
2742 pPg->aData += 4;
2743 }else if( iNext ){
2744 assert( iPrev==0 );
2745 lsmPutU32(&pPg->aData[pPg->nData], iNext);
2746 }else{
2747 int nData = pPg->nData;
2748 pPg->nData += 4;
2749 lsmSortedExpandBtreePage(pPg, nData);
2752 pPg->nRef++;
2753 for(pp=&pFS->pWaiting; *pp; pp=&(*pp)->pWaitingNext);
2754 *pp = pPg;
2755 assert( pPg->pWaitingNext==0 );
2757 }else{
2758 i64 iOff; /* Offset to write within database file */
2760 iOff = (i64)pFS->nPagesize * (i64)(pPg->iPg-1);
2761 if( fsMmapPage(pFS, pPg->iPg)==0 ){
2762 u8 *aData = pPg->aData - (pPg->flags & PAGE_HASPREV);
2763 rc = lsmEnvWrite(pFS->pEnv, pFS->fdDb, iOff, aData, pFS->nPagesize);
2764 }else if( pPg->flags & PAGE_FREE ){
2765 fsGrowMapping(pFS, iOff + pFS->nPagesize, &rc);
2766 if( rc==LSM_OK ){
2767 u8 *aTo = &((u8 *)(pFS->pMap))[iOff];
2768 u8 *aFrom = pPg->aData - (pPg->flags & PAGE_HASPREV);
2769 memcpy(aTo, aFrom, pFS->nPagesize);
2770 lsmFree(pFS->pEnv, aFrom);
2771 pFS->nCacheAlloc--;
2772 pPg->aData = aTo + (pPg->flags & PAGE_HASPREV);
2773 pPg->flags &= ~PAGE_FREE;
2774 fsPageRemoveFromHash(pFS, pPg);
2775 pPg->pMappedNext = pFS->pMapped;
2776 pFS->pMapped = pPg;
2780 lsmFsFlushWaiting(pFS, &rc);
2781 pPg->flags &= ~PAGE_DIRTY;
2782 pFS->nWrite++;
2787 return rc;
2791 ** For non-compressed databases, this function is a no-op. For compressed
2792 ** databases, it adds a padding record to the segment passed as the third
2793 ** argument.
2795 ** The size of the padding records is selected so that the last byte
2796 ** written is the last byte of a disk sector. This means that if a
2797 ** snapshot is taken and checkpointed, subsequent worker processes will
2798 ** not write to any sector that contains checkpointed data.
2800 int lsmFsSortedPadding(
2801 FileSystem *pFS,
2802 Snapshot *pSnapshot,
2803 Segment *pSeg
2805 int rc = LSM_OK;
2806 if( pFS->pCompress && pSeg->iFirst ){
2807 Pgno iLast2;
2808 Pgno iLast = pSeg->iLastPg; /* Current last page of segment */
2809 int nPad; /* Bytes of padding required */
2810 u8 aSz[3];
2812 iLast2 = (1 + iLast/pFS->szSector) * pFS->szSector - 1;
2813 assert( fsPageToBlock(pFS, iLast)==fsPageToBlock(pFS, iLast2) );
2814 nPad = (int)(iLast2 - iLast);
2816 if( iLast2>fsLastPageOnPagesBlock(pFS, iLast) ){
2817 nPad -= 4;
2819 assert( nPad>=0 );
2821 if( nPad>=6 ){
2822 pSeg->nSize += nPad;
2823 nPad -= 6;
2824 putRecordSize(aSz, nPad, 1);
2825 fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
2826 memset(pFS->aOBuffer, 0, nPad);
2827 fsAppendData(pFS, pSeg, pFS->aOBuffer, nPad, &rc);
2828 fsAppendData(pFS, pSeg, aSz, sizeof(aSz), &rc);
2829 }else if( nPad>0 ){
2830 u8 aBuf[5] = {0,0,0,0,0};
2831 aBuf[0] = (u8)nPad;
2832 aBuf[nPad-1] = (u8)nPad;
2833 fsAppendData(pFS, pSeg, aBuf, nPad, &rc);
2836 assert( rc!=LSM_OK
2837 || pSeg->iLastPg==fsLastPageOnPagesBlock(pFS, pSeg->iLastPg)
2838 || ((pSeg->iLastPg + 1) % pFS->szSector)==0
2842 return rc;
2847 ** Increment the reference count on the page object passed as the first
2848 ** argument.
2850 void lsmFsPageRef(Page *pPg){
2851 if( pPg ){
2852 pPg->nRef++;
2857 ** Release a page-reference obtained using fsPageGet().
2859 int lsmFsPageRelease(Page *pPg){
2860 int rc = LSM_OK;
2861 if( pPg ){
2862 assert( pPg->nRef>0 );
2863 pPg->nRef--;
2864 if( pPg->nRef==0 ){
2865 FileSystem *pFS = pPg->pFS;
2866 rc = lsmFsPagePersist(pPg);
2867 pFS->nOut--;
2869 assert( pPg->pFS->pCompress
2870 || fsIsFirst(pPg->pFS, pPg->iPg)==0
2871 || (pPg->flags & PAGE_HASPREV)
2873 pPg->aData -= (pPg->flags & PAGE_HASPREV);
2874 pPg->flags &= ~PAGE_HASPREV;
2876 if( (pPg->flags & PAGE_FREE)==0 ){
2877 /* Removed from mapped list */
2878 Page **pp;
2879 for(pp=&pFS->pMapped; (*pp)!=pPg; pp=&(*pp)->pMappedNext);
2880 *pp = pPg->pMappedNext;
2881 pPg->pMappedNext = 0;
2883 /* Add to free list */
2884 pPg->pFreeNext = pFS->pFree;
2885 pFS->pFree = pPg;
2886 }else{
2887 fsPageAddToLru(pFS, pPg);
2892 return rc;
2896 ** Return the total number of pages read from the database file.
2898 int lsmFsNRead(FileSystem *pFS){ return pFS->nRead; }
2901 ** Return the total number of pages written to the database file.
2903 int lsmFsNWrite(FileSystem *pFS){ return pFS->nWrite; }
2906 ** Return a copy of the environment pointer used by the file-system object.
2908 lsm_env *lsmFsEnv(FileSystem *pFS){
2909 return pFS->pEnv;
2913 ** Return a copy of the environment pointer used by the file-system object
2914 ** to which this page belongs.
2916 lsm_env *lsmPageEnv(Page *pPg) {
2917 return pPg->pFS->pEnv;
2921 ** Return a pointer to the file-system object associated with the Page
2922 ** passed as the only argument.
2924 FileSystem *lsmPageFS(Page *pPg){
2925 return pPg->pFS;
2929 ** Return the sector-size as reported by the log file handle.
2931 int lsmFsSectorSize(FileSystem *pFS){
2932 return pFS->szSector;
2936 ** Helper function for lsmInfoArrayStructure().
2938 static Segment *startsWith(Segment *pRun, Pgno iFirst){
2939 return (iFirst==pRun->iFirst) ? pRun : 0;
2943 ** Return the segment that starts with page iFirst, if any. If no such segment
2944 ** can be found, return NULL.
2946 static Segment *findSegment(Snapshot *pWorker, Pgno iFirst){
2947 Level *pLvl; /* Used to iterate through db levels */
2948 Segment *pSeg = 0; /* Pointer to segment to return */
2950 for(pLvl=lsmDbSnapshotLevel(pWorker); pLvl && pSeg==0; pLvl=pLvl->pNext){
2951 if( 0==(pSeg = startsWith(&pLvl->lhs, iFirst)) ){
2952 int i;
2953 for(i=0; i<pLvl->nRight; i++){
2954 if( (pSeg = startsWith(&pLvl->aRhs[i], iFirst)) ) break;
2959 return pSeg;
2963 ** This function implements the lsm_info(LSM_INFO_ARRAY_STRUCTURE) request.
2964 ** If successful, *pzOut is set to point to a nul-terminated string
2965 ** containing the array structure and LSM_OK is returned. The caller should
2966 ** eventually free the string using lsmFree().
2968 ** If an error occurs, *pzOut is set to NULL and an LSM error code returned.
2970 int lsmInfoArrayStructure(
2971 lsm_db *pDb,
2972 int bBlock, /* True for block numbers only */
2973 Pgno iFirst,
2974 char **pzOut
2976 int rc = LSM_OK;
2977 Snapshot *pWorker; /* Worker snapshot */
2978 Segment *pArray = 0; /* Array to report on */
2979 int bUnlock = 0;
2981 *pzOut = 0;
2982 if( iFirst==0 ) return LSM_ERROR;
2984 /* Obtain the worker snapshot */
2985 pWorker = pDb->pWorker;
2986 if( !pWorker ){
2987 rc = lsmBeginWork(pDb);
2988 if( rc!=LSM_OK ) return rc;
2989 pWorker = pDb->pWorker;
2990 bUnlock = 1;
2993 /* Search for the array that starts on page iFirst */
2994 pArray = findSegment(pWorker, iFirst);
2996 if( pArray==0 ){
2997 /* Could not find the requested array. This is an error. */
2998 rc = LSM_ERROR;
2999 }else{
3000 FileSystem *pFS = pDb->pFS;
3001 LsmString str;
3002 int iBlk;
3003 int iLastBlk;
3005 iBlk = fsPageToBlock(pFS, pArray->iFirst);
3006 iLastBlk = fsPageToBlock(pFS, pArray->iLastPg);
3008 lsmStringInit(&str, pDb->pEnv);
3009 if( bBlock ){
3010 lsmStringAppendf(&str, "%d", iBlk);
3011 while( iBlk!=iLastBlk ){
3012 fsBlockNext(pFS, pArray, iBlk, &iBlk);
3013 lsmStringAppendf(&str, " %d", iBlk);
3015 }else{
3016 lsmStringAppendf(&str, "%d", pArray->iFirst);
3017 while( iBlk!=iLastBlk ){
3018 lsmStringAppendf(&str, " %d", fsLastPageOnBlock(pFS, iBlk));
3019 fsBlockNext(pFS, pArray, iBlk, &iBlk);
3020 lsmStringAppendf(&str, " %d", fsFirstPageOnBlock(pFS, iBlk));
3022 lsmStringAppendf(&str, " %d", pArray->iLastPg);
3025 *pzOut = str.z;
3028 if( bUnlock ){
3029 int rcwork = LSM_BUSY;
3030 lsmFinishWork(pDb, 0, &rcwork);
3032 return rc;
3035 int lsmFsSegmentContainsPg(
3036 FileSystem *pFS,
3037 Segment *pSeg,
3038 Pgno iPg,
3039 int *pbRes
3041 Redirect *pRedir = pSeg->pRedirect;
3042 int rc = LSM_OK;
3043 int iBlk;
3044 int iLastBlk;
3045 int iPgBlock; /* Block containing page iPg */
3047 iPgBlock = fsPageToBlock(pFS, pSeg->iFirst);
3048 iBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iFirst));
3049 iLastBlk = fsRedirectBlock(pRedir, fsPageToBlock(pFS, pSeg->iLastPg));
3051 while( iBlk!=iLastBlk && iBlk!=iPgBlock && rc==LSM_OK ){
3052 rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk);
3055 *pbRes = (iBlk==iPgBlock);
3056 return rc;
3060 ** This function implements the lsm_info(LSM_INFO_ARRAY_PAGES) request.
3061 ** If successful, *pzOut is set to point to a nul-terminated string
3062 ** containing the array structure and LSM_OK is returned. The caller should
3063 ** eventually free the string using lsmFree().
3065 ** If an error occurs, *pzOut is set to NULL and an LSM error code returned.
3067 int lsmInfoArrayPages(lsm_db *pDb, Pgno iFirst, char **pzOut){
3068 int rc = LSM_OK;
3069 Snapshot *pWorker; /* Worker snapshot */
3070 Segment *pSeg = 0; /* Array to report on */
3071 int bUnlock = 0;
3073 *pzOut = 0;
3074 if( iFirst==0 ) return LSM_ERROR;
3076 /* Obtain the worker snapshot */
3077 pWorker = pDb->pWorker;
3078 if( !pWorker ){
3079 rc = lsmBeginWork(pDb);
3080 if( rc!=LSM_OK ) return rc;
3081 pWorker = pDb->pWorker;
3082 bUnlock = 1;
3085 /* Search for the array that starts on page iFirst */
3086 pSeg = findSegment(pWorker, iFirst);
3088 if( pSeg==0 ){
3089 /* Could not find the requested array. This is an error. */
3090 rc = LSM_ERROR;
3091 }else{
3092 Page *pPg = 0;
3093 FileSystem *pFS = pDb->pFS;
3094 LsmString str;
3096 lsmStringInit(&str, pDb->pEnv);
3097 rc = lsmFsDbPageGet(pFS, pSeg, iFirst, &pPg);
3098 while( rc==LSM_OK && pPg ){
3099 Page *pNext = 0;
3100 lsmStringAppendf(&str, " %lld", lsmFsPageNumber(pPg));
3101 rc = lsmFsDbPageNext(pSeg, pPg, 1, &pNext);
3102 lsmFsPageRelease(pPg);
3103 pPg = pNext;
3106 if( rc!=LSM_OK ){
3107 lsmFree(pDb->pEnv, str.z);
3108 }else{
3109 *pzOut = str.z;
3113 if( bUnlock ){
3114 int rcwork = LSM_BUSY;
3115 lsmFinishWork(pDb, 0, &rcwork);
3117 return rc;
3121 ** The following macros are used by the integrity-check code. Associated with
3122 ** each block in the database is an 8-bit bit mask (the entry in the aUsed[]
3123 ** array). As the integrity-check meanders through the database, it sets the
3124 ** following bits to indicate how each block is used.
3126 ** INTEGRITY_CHECK_FIRST_PG:
3127 ** First page of block is in use by sorted run.
3129 ** INTEGRITY_CHECK_LAST_PG:
3130 ** Last page of block is in use by sorted run.
3132 ** INTEGRITY_CHECK_USED:
3133 ** At least one page of the block is in use by a sorted run.
3135 ** INTEGRITY_CHECK_FREE:
3136 ** The free block list contains an entry corresponding to this block.
3138 #define INTEGRITY_CHECK_FIRST_PG 0x01
3139 #define INTEGRITY_CHECK_LAST_PG 0x02
3140 #define INTEGRITY_CHECK_USED 0x04
3141 #define INTEGRITY_CHECK_FREE 0x08
3144 ** Helper function for lsmFsIntegrityCheck()
3146 static void checkBlocks(
3147 FileSystem *pFS,
3148 Segment *pSeg,
3149 int bExtra, /* If true, count the "next" block if any */
3150 int nUsed,
3151 u8 *aUsed
3153 if( pSeg ){
3154 if( pSeg && pSeg->nSize>0 ){
3155 int rc;
3156 int iBlk; /* Current block (during iteration) */
3157 int iLastBlk; /* Last block of segment */
3158 int iFirstBlk; /* First block of segment */
3159 int bLastIsLastOnBlock; /* True iLast is the last on its block */
3161 assert( 0==fsSegmentRedirects(pFS, pSeg) );
3162 iBlk = iFirstBlk = fsPageToBlock(pFS, pSeg->iFirst);
3163 iLastBlk = fsPageToBlock(pFS, pSeg->iLastPg);
3165 bLastIsLastOnBlock = (fsLastPageOnBlock(pFS, iLastBlk)==pSeg->iLastPg);
3166 assert( iBlk>0 );
3168 do {
3169 /* iBlk is a part of this sorted run. */
3170 aUsed[iBlk-1] |= INTEGRITY_CHECK_USED;
3172 /* If the first page of this block is also part of the segment,
3173 ** set the flag to indicate that the first page of iBlk is in use.
3175 if( fsFirstPageOnBlock(pFS, iBlk)==pSeg->iFirst || iBlk!=iFirstBlk ){
3176 assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_FIRST_PG)==0 );
3177 aUsed[iBlk-1] |= INTEGRITY_CHECK_FIRST_PG;
3180 /* Unless the sorted run finishes before the last page on this block,
3181 ** the last page of this block is also in use. */
3182 if( iBlk!=iLastBlk || bLastIsLastOnBlock ){
3183 assert( (aUsed[iBlk-1] & INTEGRITY_CHECK_LAST_PG)==0 );
3184 aUsed[iBlk-1] |= INTEGRITY_CHECK_LAST_PG;
3187 /* Special case. The sorted run being scanned is the output run of
3188 ** a level currently undergoing an incremental merge. The sorted
3189 ** run ends on the last page of iBlk, but the next block has already
3190 ** been allocated. So mark it as in use as well. */
3191 if( iBlk==iLastBlk && bLastIsLastOnBlock && bExtra ){
3192 int iExtra = 0;
3193 rc = fsBlockNext(pFS, pSeg, iBlk, &iExtra);
3194 assert( rc==LSM_OK );
3196 assert( aUsed[iExtra-1]==0 );
3197 aUsed[iExtra-1] |= INTEGRITY_CHECK_USED;
3198 aUsed[iExtra-1] |= INTEGRITY_CHECK_FIRST_PG;
3199 aUsed[iExtra-1] |= INTEGRITY_CHECK_LAST_PG;
3202 /* Move on to the next block in the sorted run. Or set iBlk to zero
3203 ** in order to break out of the loop if this was the last block in
3204 ** the run. */
3205 if( iBlk==iLastBlk ){
3206 iBlk = 0;
3207 }else{
3208 rc = fsBlockNext(pFS, pSeg, iBlk, &iBlk);
3209 assert( rc==LSM_OK );
3211 }while( iBlk );
3216 typedef struct CheckFreelistCtx CheckFreelistCtx;
3217 struct CheckFreelistCtx {
3218 u8 *aUsed;
3219 int nBlock;
3221 static int checkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
3222 CheckFreelistCtx *p = (CheckFreelistCtx *)pCtx;
3224 assert( iBlk>=1 );
3225 assert( iBlk<=p->nBlock );
3226 assert( p->aUsed[iBlk-1]==0 );
3227 p->aUsed[iBlk-1] = INTEGRITY_CHECK_FREE;
3228 return 0;
3232 ** This function checks that all blocks in the database file are accounted
3233 ** for. For each block, exactly one of the following must be true:
3235 ** + the block is part of a sorted run, or
3236 ** + the block is on the free-block list
3238 ** This function also checks that there are no references to blocks with
3239 ** out-of-range block numbers.
3241 ** If no errors are found, non-zero is returned. If an error is found, an
3242 ** assert() fails.
3244 int lsmFsIntegrityCheck(lsm_db *pDb){
3245 CheckFreelistCtx ctx;
3246 FileSystem *pFS = pDb->pFS;
3247 int i;
3248 int rc;
3249 Freelist freelist = {0, 0, 0};
3250 u8 *aUsed;
3251 Level *pLevel;
3252 Snapshot *pWorker = pDb->pWorker;
3253 int nBlock = pWorker->nBlock;
3255 #if 0
3256 static int nCall = 0;
3257 nCall++;
3258 printf("%d calls\n", nCall);
3259 #endif
3261 aUsed = lsmMallocZero(pDb->pEnv, nBlock);
3262 if( aUsed==0 ){
3263 /* Malloc has failed. Since this function is only called within debug
3264 ** builds, this probably means the user is running an OOM injection test.
3265 ** Regardless, it will not be possible to run the integrity-check at this
3266 ** time, so assume the database is Ok and return non-zero. */
3267 return 1;
3270 for(pLevel=pWorker->pLevel; pLevel; pLevel=pLevel->pNext){
3271 int j;
3272 checkBlocks(pFS, &pLevel->lhs, (pLevel->nRight!=0), nBlock, aUsed);
3273 for(j=0; j<pLevel->nRight; j++){
3274 checkBlocks(pFS, &pLevel->aRhs[j], 0, nBlock, aUsed);
3278 /* Mark all blocks in the free-list as used */
3279 ctx.aUsed = aUsed;
3280 ctx.nBlock = nBlock;
3281 rc = lsmWalkFreelist(pDb, 0, checkFreelistCb, (void *)&ctx);
3283 if( rc==LSM_OK ){
3284 for(i=0; i<nBlock; i++) assert( aUsed[i]!=0 );
3287 lsmFree(pDb->pEnv, aUsed);
3288 lsmFree(pDb->pEnv, freelist.aEntry);
3290 return 1;
3293 #ifndef NDEBUG
3295 ** Return true if pPg happens to be the last page in segment pSeg. Or false
3296 ** otherwise. This function is only invoked as part of assert() conditions.
3298 int lsmFsDbPageIsLast(Segment *pSeg, Page *pPg){
3299 if( pPg->pFS->pCompress ){
3300 Pgno iNext = 0;
3301 int rc;
3302 rc = fsNextPageOffset(pPg->pFS, pSeg, pPg->iPg, pPg->nCompress+6, &iNext);
3303 return (rc!=LSM_OK || iNext==0);
3305 return (pPg->iPg==pSeg->iLastPg);
3307 #endif