Update tests in returning1.test to account for [c7896e88].
[sqlite.git] / ext / rbu / sqlite3rbu.c
blobfeb7695d66ad1fe5b38ddb980ec6b02434d2a1e9
1 /*
2 ** 2014 August 30
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
14 ** OVERVIEW
16 ** The RBU extension requires that the RBU update be packaged as an
17 ** SQLite database. The tables it expects to find are described in
18 ** sqlite3rbu.h. Essentially, for each table xyz in the target database
19 ** that the user wishes to write to, a corresponding data_xyz table is
20 ** created in the RBU database and populated with one row for each row to
21 ** update, insert or delete from the target table.
22 **
23 ** The update proceeds in three stages:
24 **
25 ** 1) The database is updated. The modified database pages are written
26 ** to a *-oal file. A *-oal file is just like a *-wal file, except
27 ** that it is named "<database>-oal" instead of "<database>-wal".
28 ** Because regular SQLite clients do not look for file named
29 ** "<database>-oal", they go on using the original database in
30 ** rollback mode while the *-oal file is being generated.
31 **
32 ** During this stage RBU does not update the database by writing
33 ** directly to the target tables. Instead it creates "imposter"
34 ** tables using the SQLITE_TESTCTRL_IMPOSTER interface that it uses
35 ** to update each b-tree individually. All updates required by each
36 ** b-tree are completed before moving on to the next, and all
37 ** updates are done in sorted key order.
38 **
39 ** 2) The "<database>-oal" file is moved to the equivalent "<database>-wal"
40 ** location using a call to rename(2). Before doing this the RBU
41 ** module takes an EXCLUSIVE lock on the database file, ensuring
42 ** that there are no other active readers.
43 **
44 ** Once the EXCLUSIVE lock is released, any other database readers
45 ** detect the new *-wal file and read the database in wal mode. At
46 ** this point they see the new version of the database - including
47 ** the updates made as part of the RBU update.
48 **
49 ** 3) The new *-wal file is checkpointed. This proceeds in the same way
50 ** as a regular database checkpoint, except that a single frame is
51 ** checkpointed each time sqlite3rbu_step() is called. If the RBU
52 ** handle is closed before the entire *-wal file is checkpointed,
53 ** the checkpoint progress is saved in the RBU database and the
54 ** checkpoint can be resumed by another RBU client at some point in
55 ** the future.
57 ** POTENTIAL PROBLEMS
58 **
59 ** The rename() call might not be portable. And RBU is not currently
60 ** syncing the directory after renaming the file.
62 ** When state is saved, any commit to the *-oal file and the commit to
63 ** the RBU update database are not atomic. So if the power fails at the
64 ** wrong moment they might get out of sync. As the main database will be
65 ** committed before the RBU update database this will likely either just
66 ** pass unnoticed, or result in SQLITE_CONSTRAINT errors (due to UNIQUE
67 ** constraint violations).
69 ** If some client does modify the target database mid RBU update, or some
70 ** other error occurs, the RBU extension will keep throwing errors. It's
71 ** not really clear how to get out of this state. The system could just
72 ** by delete the RBU update database and *-oal file and have the device
73 ** download the update again and start over.
75 ** At present, for an UPDATE, both the new.* and old.* records are
76 ** collected in the rbu_xyz table. And for both UPDATEs and DELETEs all
77 ** fields are collected. This means we're probably writing a lot more
78 ** data to disk when saving the state of an ongoing update to the RBU
79 ** update database than is strictly necessary.
80 **
83 #include <assert.h>
84 #include <string.h>
85 #include <stdio.h>
87 #include "sqlite3.h"
89 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU)
90 #include "sqlite3rbu.h"
92 #if defined(_WIN32_WCE)
93 #include "windows.h"
94 #endif
96 /* Maximum number of prepared UPDATE statements held by this module */
97 #define SQLITE_RBU_UPDATE_CACHESIZE 16
99 /* Delta checksums disabled by default. Compile with -DRBU_ENABLE_DELTA_CKSUM
100 ** to enable checksum verification.
102 #ifndef RBU_ENABLE_DELTA_CKSUM
103 # define RBU_ENABLE_DELTA_CKSUM 0
104 #endif
107 ** Swap two objects of type TYPE.
109 #if !defined(SQLITE_AMALGAMATION)
110 # define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
111 #endif
114 ** Name of the URI option that causes RBU to take an exclusive lock as
115 ** part of the incremental checkpoint operation.
117 #define RBU_EXCLUSIVE_CHECKPOINT "rbu_exclusive_checkpoint"
121 ** The rbu_state table is used to save the state of a partially applied
122 ** update so that it can be resumed later. The table consists of integer
123 ** keys mapped to values as follows:
125 ** RBU_STATE_STAGE:
126 ** May be set to integer values 1, 2, 4 or 5. As follows:
127 ** 1: the *-rbu file is currently under construction.
128 ** 2: the *-rbu file has been constructed, but not yet moved
129 ** to the *-wal path.
130 ** 4: the checkpoint is underway.
131 ** 5: the rbu update has been checkpointed.
133 ** RBU_STATE_TBL:
134 ** Only valid if STAGE==1. The target database name of the table
135 ** currently being written.
137 ** RBU_STATE_IDX:
138 ** Only valid if STAGE==1. The target database name of the index
139 ** currently being written, or NULL if the main table is currently being
140 ** updated.
142 ** RBU_STATE_ROW:
143 ** Only valid if STAGE==1. Number of rows already processed for the current
144 ** table/index.
146 ** RBU_STATE_PROGRESS:
147 ** Trbul number of sqlite3rbu_step() calls made so far as part of this
148 ** rbu update.
150 ** RBU_STATE_CKPT:
151 ** Valid if STAGE==4. The 64-bit checksum associated with the wal-index
152 ** header created by recovering the *-wal file. This is used to detect
153 ** cases when another client appends frames to the *-wal file in the
154 ** middle of an incremental checkpoint (an incremental checkpoint cannot
155 ** be continued if this happens).
157 ** RBU_STATE_COOKIE:
158 ** Valid if STAGE==1. The current change-counter cookie value in the
159 ** target db file.
161 ** RBU_STATE_OALSZ:
162 ** Valid if STAGE==1. The size in bytes of the *-oal file.
164 ** RBU_STATE_DATATBL:
165 ** Only valid if STAGE==1. The RBU database name of the table
166 ** currently being read.
168 #define RBU_STATE_STAGE 1
169 #define RBU_STATE_TBL 2
170 #define RBU_STATE_IDX 3
171 #define RBU_STATE_ROW 4
172 #define RBU_STATE_PROGRESS 5
173 #define RBU_STATE_CKPT 6
174 #define RBU_STATE_COOKIE 7
175 #define RBU_STATE_OALSZ 8
176 #define RBU_STATE_PHASEONESTEP 9
177 #define RBU_STATE_DATATBL 10
179 #define RBU_STAGE_OAL 1
180 #define RBU_STAGE_MOVE 2
181 #define RBU_STAGE_CAPTURE 3
182 #define RBU_STAGE_CKPT 4
183 #define RBU_STAGE_DONE 5
186 #define RBU_CREATE_STATE \
187 "CREATE TABLE IF NOT EXISTS %s.rbu_state(k INTEGER PRIMARY KEY, v)"
189 typedef struct RbuFrame RbuFrame;
190 typedef struct RbuObjIter RbuObjIter;
191 typedef struct RbuState RbuState;
192 typedef struct RbuSpan RbuSpan;
193 typedef struct rbu_vfs rbu_vfs;
194 typedef struct rbu_file rbu_file;
195 typedef struct RbuUpdateStmt RbuUpdateStmt;
197 #if !defined(SQLITE_AMALGAMATION)
198 typedef unsigned int u32;
199 typedef unsigned short u16;
200 typedef unsigned char u8;
201 typedef sqlite3_int64 i64;
202 typedef sqlite3_uint64 u64;
203 #endif
206 ** These values must match the values defined in wal.c for the equivalent
207 ** locks. These are not magic numbers as they are part of the SQLite file
208 ** format.
210 #define WAL_LOCK_WRITE 0
211 #define WAL_LOCK_CKPT 1
212 #define WAL_LOCK_READ0 3
214 #define SQLITE_FCNTL_RBUCNT 5149216
217 ** A structure to store values read from the rbu_state table in memory.
219 struct RbuState {
220 int eStage;
221 char *zTbl;
222 char *zDataTbl;
223 char *zIdx;
224 i64 iWalCksum;
225 int nRow;
226 i64 nProgress;
227 u32 iCookie;
228 i64 iOalSz;
229 i64 nPhaseOneStep;
232 struct RbuUpdateStmt {
233 char *zMask; /* Copy of update mask used with pUpdate */
234 sqlite3_stmt *pUpdate; /* Last update statement (or NULL) */
235 RbuUpdateStmt *pNext;
238 struct RbuSpan {
239 const char *zSpan;
240 int nSpan;
244 ** An iterator of this type is used to iterate through all objects in
245 ** the target database that require updating. For each such table, the
246 ** iterator visits, in order:
248 ** * the table itself,
249 ** * each index of the table (zero or more points to visit), and
250 ** * a special "cleanup table" state.
252 ** abIndexed:
253 ** If the table has no indexes on it, abIndexed is set to NULL. Otherwise,
254 ** it points to an array of flags nTblCol elements in size. The flag is
255 ** set for each column that is either a part of the PK or a part of an
256 ** index. Or clear otherwise.
258 ** If there are one or more partial indexes on the table, all fields of
259 ** this array set set to 1. This is because in that case, the module has
260 ** no way to tell which fields will be required to add and remove entries
261 ** from the partial indexes.
264 struct RbuObjIter {
265 sqlite3_stmt *pTblIter; /* Iterate through tables */
266 sqlite3_stmt *pIdxIter; /* Index iterator */
267 int nTblCol; /* Size of azTblCol[] array */
268 char **azTblCol; /* Array of unquoted target column names */
269 char **azTblType; /* Array of target column types */
270 int *aiSrcOrder; /* src table col -> target table col */
271 u8 *abTblPk; /* Array of flags, set on target PK columns */
272 u8 *abNotNull; /* Array of flags, set on NOT NULL columns */
273 u8 *abIndexed; /* Array of flags, set on indexed & PK cols */
274 int eType; /* Table type - an RBU_PK_XXX value */
276 /* Output variables. zTbl==0 implies EOF. */
277 int bCleanup; /* True in "cleanup" state */
278 const char *zTbl; /* Name of target db table */
279 const char *zDataTbl; /* Name of rbu db table (or null) */
280 const char *zIdx; /* Name of target db index (or null) */
281 int iTnum; /* Root page of current object */
282 int iPkTnum; /* If eType==EXTERNAL, root of PK index */
283 int bUnique; /* Current index is unique */
284 int nIndex; /* Number of aux. indexes on table zTbl */
286 /* Statements created by rbuObjIterPrepareAll() */
287 int nCol; /* Number of columns in current object */
288 sqlite3_stmt *pSelect; /* Source data */
289 sqlite3_stmt *pInsert; /* Statement for INSERT operations */
290 sqlite3_stmt *pDelete; /* Statement for DELETE ops */
291 sqlite3_stmt *pTmpInsert; /* Insert into rbu_tmp_$zDataTbl */
292 int nIdxCol;
293 RbuSpan *aIdxCol;
294 char *zIdxSql;
296 /* Last UPDATE used (for PK b-tree updates only), or NULL. */
297 RbuUpdateStmt *pRbuUpdate;
301 ** Values for RbuObjIter.eType
303 ** 0: Table does not exist (error)
304 ** 1: Table has an implicit rowid.
305 ** 2: Table has an explicit IPK column.
306 ** 3: Table has an external PK index.
307 ** 4: Table is WITHOUT ROWID.
308 ** 5: Table is a virtual table.
310 #define RBU_PK_NOTABLE 0
311 #define RBU_PK_NONE 1
312 #define RBU_PK_IPK 2
313 #define RBU_PK_EXTERNAL 3
314 #define RBU_PK_WITHOUT_ROWID 4
315 #define RBU_PK_VTAB 5
319 ** Within the RBU_STAGE_OAL stage, each call to sqlite3rbu_step() performs
320 ** one of the following operations.
322 #define RBU_INSERT 1 /* Insert on a main table b-tree */
323 #define RBU_DELETE 2 /* Delete a row from a main table b-tree */
324 #define RBU_REPLACE 3 /* Delete and then insert a row */
325 #define RBU_IDX_DELETE 4 /* Delete a row from an aux. index b-tree */
326 #define RBU_IDX_INSERT 5 /* Insert on an aux. index b-tree */
328 #define RBU_UPDATE 6 /* Update a row in a main table b-tree */
331 ** A single step of an incremental checkpoint - frame iWalFrame of the wal
332 ** file should be copied to page iDbPage of the database file.
334 struct RbuFrame {
335 u32 iDbPage;
336 u32 iWalFrame;
340 ** RBU handle.
342 ** nPhaseOneStep:
343 ** If the RBU database contains an rbu_count table, this value is set to
344 ** a running estimate of the number of b-tree operations required to
345 ** finish populating the *-oal file. This allows the sqlite3_bp_progress()
346 ** API to calculate the permyriadage progress of populating the *-oal file
347 ** using the formula:
349 ** permyriadage = (10000 * nProgress) / nPhaseOneStep
351 ** nPhaseOneStep is initialized to the sum of:
353 ** nRow * (nIndex + 1)
355 ** for all source tables in the RBU database, where nRow is the number
356 ** of rows in the source table and nIndex the number of indexes on the
357 ** corresponding target database table.
359 ** This estimate is accurate if the RBU update consists entirely of
360 ** INSERT operations. However, it is inaccurate if:
362 ** * the RBU update contains any UPDATE operations. If the PK specified
363 ** for an UPDATE operation does not exist in the target table, then
364 ** no b-tree operations are required on index b-trees. Or if the
365 ** specified PK does exist, then (nIndex*2) such operations are
366 ** required (one delete and one insert on each index b-tree).
368 ** * the RBU update contains any DELETE operations for which the specified
369 ** PK does not exist. In this case no operations are required on index
370 ** b-trees.
372 ** * the RBU update contains REPLACE operations. These are similar to
373 ** UPDATE operations.
375 ** nPhaseOneStep is updated to account for the conditions above during the
376 ** first pass of each source table. The updated nPhaseOneStep value is
377 ** stored in the rbu_state table if the RBU update is suspended.
379 struct sqlite3rbu {
380 int eStage; /* Value of RBU_STATE_STAGE field */
381 sqlite3 *dbMain; /* target database handle */
382 sqlite3 *dbRbu; /* rbu database handle */
383 char *zTarget; /* Path to target db */
384 char *zRbu; /* Path to rbu db */
385 char *zState; /* Path to state db (or NULL if zRbu) */
386 char zStateDb[5]; /* Db name for state ("stat" or "main") */
387 int rc; /* Value returned by last rbu_step() call */
388 char *zErrmsg; /* Error message if rc!=SQLITE_OK */
389 int nStep; /* Rows processed for current object */
390 int nProgress; /* Rows processed for all objects */
391 RbuObjIter objiter; /* Iterator for skipping through tbl/idx */
392 const char *zVfsName; /* Name of automatically created rbu vfs */
393 rbu_file *pTargetFd; /* File handle open on target db */
394 int nPagePerSector; /* Pages per sector for pTargetFd */
395 i64 iOalSz;
396 i64 nPhaseOneStep;
397 void *pRenameArg;
398 int (*xRename)(void*, const char*, const char*);
400 /* The following state variables are used as part of the incremental
401 ** checkpoint stage (eStage==RBU_STAGE_CKPT). See comments surrounding
402 ** function rbuSetupCheckpoint() for details. */
403 u32 iMaxFrame; /* Largest iWalFrame value in aFrame[] */
404 u32 mLock;
405 int nFrame; /* Entries in aFrame[] array */
406 int nFrameAlloc; /* Allocated size of aFrame[] array */
407 RbuFrame *aFrame;
408 int pgsz;
409 u8 *aBuf;
410 i64 iWalCksum;
411 i64 szTemp; /* Current size of all temp files in use */
412 i64 szTempLimit; /* Total size limit for temp files */
414 /* Used in RBU vacuum mode only */
415 int nRbu; /* Number of RBU VFS in the stack */
416 rbu_file *pRbuFd; /* Fd for main db of dbRbu */
420 ** An rbu VFS is implemented using an instance of this structure.
422 ** Variable pRbu is only non-NULL for automatically created RBU VFS objects.
423 ** It is NULL for RBU VFS objects created explicitly using
424 ** sqlite3rbu_create_vfs(). It is used to track the total amount of temp
425 ** space used by the RBU handle.
427 struct rbu_vfs {
428 sqlite3_vfs base; /* rbu VFS shim methods */
429 sqlite3_vfs *pRealVfs; /* Underlying VFS */
430 sqlite3_mutex *mutex; /* Mutex to protect pMain */
431 sqlite3rbu *pRbu; /* Owner RBU object */
432 rbu_file *pMain; /* List of main db files */
433 rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */
437 ** Each file opened by an rbu VFS is represented by an instance of
438 ** the following structure.
440 ** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable
441 ** "sz" is set to the current size of the database file.
443 struct rbu_file {
444 sqlite3_file base; /* sqlite3_file methods */
445 sqlite3_file *pReal; /* Underlying file handle */
446 rbu_vfs *pRbuVfs; /* Pointer to the rbu_vfs object */
447 sqlite3rbu *pRbu; /* Pointer to rbu object (rbu target only) */
448 i64 sz; /* Size of file in bytes (temp only) */
450 int openFlags; /* Flags this file was opened with */
451 u32 iCookie; /* Cookie value for main db files */
452 u8 iWriteVer; /* "write-version" value for main db files */
453 u8 bNolock; /* True to fail EXCLUSIVE locks */
455 int nShm; /* Number of entries in apShm[] array */
456 char **apShm; /* Array of mmap'd *-shm regions */
457 char *zDel; /* Delete this when closing file */
459 const char *zWal; /* Wal filename for this main db file */
460 rbu_file *pWalFd; /* Wal file descriptor for this main db */
461 rbu_file *pMainNext; /* Next MAIN_DB file */
462 rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */
466 ** True for an RBU vacuum handle, or false otherwise.
468 #define rbuIsVacuum(p) ((p)->zTarget==0)
471 /*************************************************************************
472 ** The following three functions, found below:
474 ** rbuDeltaGetInt()
475 ** rbuDeltaChecksum()
476 ** rbuDeltaApply()
478 ** are lifted from the fossil source code (http://fossil-scm.org). They
479 ** are used to implement the scalar SQL function rbu_fossil_delta().
483 ** Read bytes from *pz and convert them into a positive integer. When
484 ** finished, leave *pz pointing to the first character past the end of
485 ** the integer. The *pLen parameter holds the length of the string
486 ** in *pz and is decremented once for each character in the integer.
488 static unsigned int rbuDeltaGetInt(const char **pz, int *pLen){
489 static const signed char zValue[] = {
490 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
491 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
492 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
493 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1,
494 -1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
495 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1, -1, -1, -1, 36,
496 -1, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
497 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, -1, -1, -1, 63, -1,
499 unsigned int v = 0;
500 int c;
501 unsigned char *z = (unsigned char*)*pz;
502 unsigned char *zStart = z;
503 while( (c = zValue[0x7f&*(z++)])>=0 ){
504 v = (v<<6) + c;
506 z--;
507 *pLen -= z - zStart;
508 *pz = (char*)z;
509 return v;
512 #if RBU_ENABLE_DELTA_CKSUM
514 ** Compute a 32-bit checksum on the N-byte buffer. Return the result.
516 static unsigned int rbuDeltaChecksum(const char *zIn, size_t N){
517 const unsigned char *z = (const unsigned char *)zIn;
518 unsigned sum0 = 0;
519 unsigned sum1 = 0;
520 unsigned sum2 = 0;
521 unsigned sum3 = 0;
522 while(N >= 16){
523 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
524 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
525 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
526 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
527 z += 16;
528 N -= 16;
530 while(N >= 4){
531 sum0 += z[0];
532 sum1 += z[1];
533 sum2 += z[2];
534 sum3 += z[3];
535 z += 4;
536 N -= 4;
538 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
539 switch(N){
540 case 3: sum3 += (z[2] << 8);
541 case 2: sum3 += (z[1] << 16);
542 case 1: sum3 += (z[0] << 24);
543 default: ;
545 return sum3;
547 #endif
550 ** Apply a delta.
552 ** The output buffer should be big enough to hold the whole output
553 ** file and a NUL terminator at the end. The delta_output_size()
554 ** routine will determine this size for you.
556 ** The delta string should be null-terminated. But the delta string
557 ** may contain embedded NUL characters (if the input and output are
558 ** binary files) so we also have to pass in the length of the delta in
559 ** the lenDelta parameter.
561 ** This function returns the size of the output file in bytes (excluding
562 ** the final NUL terminator character). Except, if the delta string is
563 ** malformed or intended for use with a source file other than zSrc,
564 ** then this routine returns -1.
566 ** Refer to the delta_create() documentation above for a description
567 ** of the delta file format.
569 static int rbuDeltaApply(
570 const char *zSrc, /* The source or pattern file */
571 int lenSrc, /* Length of the source file */
572 const char *zDelta, /* Delta to apply to the pattern */
573 int lenDelta, /* Length of the delta */
574 char *zOut /* Write the output into this preallocated buffer */
576 unsigned int limit;
577 unsigned int total = 0;
578 #if RBU_ENABLE_DELTA_CKSUM
579 char *zOrigOut = zOut;
580 #endif
582 limit = rbuDeltaGetInt(&zDelta, &lenDelta);
583 if( *zDelta!='\n' ){
584 /* ERROR: size integer not terminated by "\n" */
585 return -1;
587 zDelta++; lenDelta--;
588 while( *zDelta && lenDelta>0 ){
589 unsigned int cnt, ofst;
590 cnt = rbuDeltaGetInt(&zDelta, &lenDelta);
591 switch( zDelta[0] ){
592 case '@': {
593 zDelta++; lenDelta--;
594 ofst = rbuDeltaGetInt(&zDelta, &lenDelta);
595 if( lenDelta>0 && zDelta[0]!=',' ){
596 /* ERROR: copy command not terminated by ',' */
597 return -1;
599 zDelta++; lenDelta--;
600 total += cnt;
601 if( total>limit ){
602 /* ERROR: copy exceeds output file size */
603 return -1;
605 if( (int)(ofst+cnt) > lenSrc ){
606 /* ERROR: copy extends past end of input */
607 return -1;
609 memcpy(zOut, &zSrc[ofst], cnt);
610 zOut += cnt;
611 break;
613 case ':': {
614 zDelta++; lenDelta--;
615 total += cnt;
616 if( total>limit ){
617 /* ERROR: insert command gives an output larger than predicted */
618 return -1;
620 if( (int)cnt>lenDelta ){
621 /* ERROR: insert count exceeds size of delta */
622 return -1;
624 memcpy(zOut, zDelta, cnt);
625 zOut += cnt;
626 zDelta += cnt;
627 lenDelta -= cnt;
628 break;
630 case ';': {
631 zDelta++; lenDelta--;
632 zOut[0] = 0;
633 #if RBU_ENABLE_DELTA_CKSUM
634 if( cnt!=rbuDeltaChecksum(zOrigOut, total) ){
635 /* ERROR: bad checksum */
636 return -1;
638 #endif
639 if( total!=limit ){
640 /* ERROR: generated size does not match predicted size */
641 return -1;
643 return total;
645 default: {
646 /* ERROR: unknown delta operator */
647 return -1;
651 /* ERROR: unterminated delta */
652 return -1;
655 static int rbuDeltaOutputSize(const char *zDelta, int lenDelta){
656 int size;
657 size = rbuDeltaGetInt(&zDelta, &lenDelta);
658 if( *zDelta!='\n' ){
659 /* ERROR: size integer not terminated by "\n" */
660 return -1;
662 return size;
666 ** End of code taken from fossil.
667 *************************************************************************/
670 ** Implementation of SQL scalar function rbu_fossil_delta().
672 ** This function applies a fossil delta patch to a blob. Exactly two
673 ** arguments must be passed to this function. The first is the blob to
674 ** patch and the second the patch to apply. If no error occurs, this
675 ** function returns the patched blob.
677 static void rbuFossilDeltaFunc(
678 sqlite3_context *context,
679 int argc,
680 sqlite3_value **argv
682 const char *aDelta;
683 int nDelta;
684 const char *aOrig;
685 int nOrig;
687 int nOut;
688 int nOut2;
689 char *aOut;
691 assert( argc==2 );
693 nOrig = sqlite3_value_bytes(argv[0]);
694 aOrig = (const char*)sqlite3_value_blob(argv[0]);
695 nDelta = sqlite3_value_bytes(argv[1]);
696 aDelta = (const char*)sqlite3_value_blob(argv[1]);
698 /* Figure out the size of the output */
699 nOut = rbuDeltaOutputSize(aDelta, nDelta);
700 if( nOut<0 ){
701 sqlite3_result_error(context, "corrupt fossil delta", -1);
702 return;
705 aOut = sqlite3_malloc(nOut+1);
706 if( aOut==0 ){
707 sqlite3_result_error_nomem(context);
708 }else{
709 nOut2 = rbuDeltaApply(aOrig, nOrig, aDelta, nDelta, aOut);
710 if( nOut2!=nOut ){
711 sqlite3_free(aOut);
712 sqlite3_result_error(context, "corrupt fossil delta", -1);
713 }else{
714 sqlite3_result_blob(context, aOut, nOut, sqlite3_free);
721 ** Prepare the SQL statement in buffer zSql against database handle db.
722 ** If successful, set *ppStmt to point to the new statement and return
723 ** SQLITE_OK.
725 ** Otherwise, if an error does occur, set *ppStmt to NULL and return
726 ** an SQLite error code. Additionally, set output variable *pzErrmsg to
727 ** point to a buffer containing an error message. It is the responsibility
728 ** of the caller to (eventually) free this buffer using sqlite3_free().
730 static int prepareAndCollectError(
731 sqlite3 *db,
732 sqlite3_stmt **ppStmt,
733 char **pzErrmsg,
734 const char *zSql
736 int rc = sqlite3_prepare_v2(db, zSql, -1, ppStmt, 0);
737 if( rc!=SQLITE_OK ){
738 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
739 *ppStmt = 0;
741 return rc;
745 ** Reset the SQL statement passed as the first argument. Return a copy
746 ** of the value returned by sqlite3_reset().
748 ** If an error has occurred, then set *pzErrmsg to point to a buffer
749 ** containing an error message. It is the responsibility of the caller
750 ** to eventually free this buffer using sqlite3_free().
752 static int resetAndCollectError(sqlite3_stmt *pStmt, char **pzErrmsg){
753 int rc = sqlite3_reset(pStmt);
754 if( rc!=SQLITE_OK ){
755 *pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(sqlite3_db_handle(pStmt)));
757 return rc;
761 ** Unless it is NULL, argument zSql points to a buffer allocated using
762 ** sqlite3_malloc containing an SQL statement. This function prepares the SQL
763 ** statement against database db and frees the buffer. If statement
764 ** compilation is successful, *ppStmt is set to point to the new statement
765 ** handle and SQLITE_OK is returned.
767 ** Otherwise, if an error occurs, *ppStmt is set to NULL and an error code
768 ** returned. In this case, *pzErrmsg may also be set to point to an error
769 ** message. It is the responsibility of the caller to free this error message
770 ** buffer using sqlite3_free().
772 ** If argument zSql is NULL, this function assumes that an OOM has occurred.
773 ** In this case SQLITE_NOMEM is returned and *ppStmt set to NULL.
775 static int prepareFreeAndCollectError(
776 sqlite3 *db,
777 sqlite3_stmt **ppStmt,
778 char **pzErrmsg,
779 char *zSql
781 int rc;
782 assert( *pzErrmsg==0 );
783 if( zSql==0 ){
784 rc = SQLITE_NOMEM;
785 *ppStmt = 0;
786 }else{
787 rc = prepareAndCollectError(db, ppStmt, pzErrmsg, zSql);
788 sqlite3_free(zSql);
790 return rc;
794 ** Free the RbuObjIter.azTblCol[] and RbuObjIter.abTblPk[] arrays allocated
795 ** by an earlier call to rbuObjIterCacheTableInfo().
797 static void rbuObjIterFreeCols(RbuObjIter *pIter){
798 int i;
799 for(i=0; i<pIter->nTblCol; i++){
800 sqlite3_free(pIter->azTblCol[i]);
801 sqlite3_free(pIter->azTblType[i]);
803 sqlite3_free(pIter->azTblCol);
804 pIter->azTblCol = 0;
805 pIter->azTblType = 0;
806 pIter->aiSrcOrder = 0;
807 pIter->abTblPk = 0;
808 pIter->abNotNull = 0;
809 pIter->nTblCol = 0;
810 pIter->eType = 0; /* Invalid value */
814 ** Finalize all statements and free all allocations that are specific to
815 ** the current object (table/index pair).
817 static void rbuObjIterClearStatements(RbuObjIter *pIter){
818 RbuUpdateStmt *pUp;
820 sqlite3_finalize(pIter->pSelect);
821 sqlite3_finalize(pIter->pInsert);
822 sqlite3_finalize(pIter->pDelete);
823 sqlite3_finalize(pIter->pTmpInsert);
824 pUp = pIter->pRbuUpdate;
825 while( pUp ){
826 RbuUpdateStmt *pTmp = pUp->pNext;
827 sqlite3_finalize(pUp->pUpdate);
828 sqlite3_free(pUp);
829 pUp = pTmp;
831 sqlite3_free(pIter->aIdxCol);
832 sqlite3_free(pIter->zIdxSql);
834 pIter->pSelect = 0;
835 pIter->pInsert = 0;
836 pIter->pDelete = 0;
837 pIter->pRbuUpdate = 0;
838 pIter->pTmpInsert = 0;
839 pIter->nCol = 0;
840 pIter->nIdxCol = 0;
841 pIter->aIdxCol = 0;
842 pIter->zIdxSql = 0;
846 ** Clean up any resources allocated as part of the iterator object passed
847 ** as the only argument.
849 static void rbuObjIterFinalize(RbuObjIter *pIter){
850 rbuObjIterClearStatements(pIter);
851 sqlite3_finalize(pIter->pTblIter);
852 sqlite3_finalize(pIter->pIdxIter);
853 rbuObjIterFreeCols(pIter);
854 memset(pIter, 0, sizeof(RbuObjIter));
858 ** Advance the iterator to the next position.
860 ** If no error occurs, SQLITE_OK is returned and the iterator is left
861 ** pointing to the next entry. Otherwise, an error code and message is
862 ** left in the RBU handle passed as the first argument. A copy of the
863 ** error code is returned.
865 static int rbuObjIterNext(sqlite3rbu *p, RbuObjIter *pIter){
866 int rc = p->rc;
867 if( rc==SQLITE_OK ){
869 /* Free any SQLite statements used while processing the previous object */
870 rbuObjIterClearStatements(pIter);
871 if( pIter->zIdx==0 ){
872 rc = sqlite3_exec(p->dbMain,
873 "DROP TRIGGER IF EXISTS temp.rbu_insert_tr;"
874 "DROP TRIGGER IF EXISTS temp.rbu_update1_tr;"
875 "DROP TRIGGER IF EXISTS temp.rbu_update2_tr;"
876 "DROP TRIGGER IF EXISTS temp.rbu_delete_tr;"
877 , 0, 0, &p->zErrmsg
881 if( rc==SQLITE_OK ){
882 if( pIter->bCleanup ){
883 rbuObjIterFreeCols(pIter);
884 pIter->bCleanup = 0;
885 rc = sqlite3_step(pIter->pTblIter);
886 if( rc!=SQLITE_ROW ){
887 rc = resetAndCollectError(pIter->pTblIter, &p->zErrmsg);
888 pIter->zTbl = 0;
889 pIter->zDataTbl = 0;
890 }else{
891 pIter->zTbl = (const char*)sqlite3_column_text(pIter->pTblIter, 0);
892 pIter->zDataTbl = (const char*)sqlite3_column_text(pIter->pTblIter,1);
893 rc = (pIter->zDataTbl && pIter->zTbl) ? SQLITE_OK : SQLITE_NOMEM;
895 }else{
896 if( pIter->zIdx==0 ){
897 sqlite3_stmt *pIdx = pIter->pIdxIter;
898 rc = sqlite3_bind_text(pIdx, 1, pIter->zTbl, -1, SQLITE_STATIC);
900 if( rc==SQLITE_OK ){
901 rc = sqlite3_step(pIter->pIdxIter);
902 if( rc!=SQLITE_ROW ){
903 rc = resetAndCollectError(pIter->pIdxIter, &p->zErrmsg);
904 pIter->bCleanup = 1;
905 pIter->zIdx = 0;
906 }else{
907 pIter->zIdx = (const char*)sqlite3_column_text(pIter->pIdxIter, 0);
908 pIter->iTnum = sqlite3_column_int(pIter->pIdxIter, 1);
909 pIter->bUnique = sqlite3_column_int(pIter->pIdxIter, 2);
910 rc = pIter->zIdx ? SQLITE_OK : SQLITE_NOMEM;
917 if( rc!=SQLITE_OK ){
918 rbuObjIterFinalize(pIter);
919 p->rc = rc;
921 return rc;
926 ** The implementation of the rbu_target_name() SQL function. This function
927 ** accepts one or two arguments. The first argument is the name of a table -
928 ** the name of a table in the RBU database. The second, if it is present, is 1
929 ** for a view or 0 for a table.
931 ** For a non-vacuum RBU handle, if the table name matches the pattern:
933 ** data[0-9]_<name>
935 ** where <name> is any sequence of 1 or more characters, <name> is returned.
936 ** Otherwise, if the only argument does not match the above pattern, an SQL
937 ** NULL is returned.
939 ** "data_t1" -> "t1"
940 ** "data0123_t2" -> "t2"
941 ** "dataAB_t3" -> NULL
943 ** For an rbu vacuum handle, a copy of the first argument is returned if
944 ** the second argument is either missing or 0 (not a view).
946 static void rbuTargetNameFunc(
947 sqlite3_context *pCtx,
948 int argc,
949 sqlite3_value **argv
951 sqlite3rbu *p = sqlite3_user_data(pCtx);
952 const char *zIn;
953 assert( argc==1 || argc==2 );
955 zIn = (const char*)sqlite3_value_text(argv[0]);
956 if( zIn ){
957 if( rbuIsVacuum(p) ){
958 assert( argc==2 || argc==1 );
959 if( argc==1 || 0==sqlite3_value_int(argv[1]) ){
960 sqlite3_result_text(pCtx, zIn, -1, SQLITE_STATIC);
962 }else{
963 if( strlen(zIn)>4 && memcmp("data", zIn, 4)==0 ){
964 int i;
965 for(i=4; zIn[i]>='0' && zIn[i]<='9'; i++);
966 if( zIn[i]=='_' && zIn[i+1] ){
967 sqlite3_result_text(pCtx, &zIn[i+1], -1, SQLITE_STATIC);
975 ** Initialize the iterator structure passed as the second argument.
977 ** If no error occurs, SQLITE_OK is returned and the iterator is left
978 ** pointing to the first entry. Otherwise, an error code and message is
979 ** left in the RBU handle passed as the first argument. A copy of the
980 ** error code is returned.
982 static int rbuObjIterFirst(sqlite3rbu *p, RbuObjIter *pIter){
983 int rc;
984 memset(pIter, 0, sizeof(RbuObjIter));
986 rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pTblIter, &p->zErrmsg,
987 sqlite3_mprintf(
988 "SELECT rbu_target_name(name, type='view') AS target, name "
989 "FROM sqlite_schema "
990 "WHERE type IN ('table', 'view') AND target IS NOT NULL "
991 " %s "
992 "ORDER BY name"
993 , rbuIsVacuum(p) ? "AND rootpage!=0 AND rootpage IS NOT NULL" : ""));
995 if( rc==SQLITE_OK ){
996 rc = prepareAndCollectError(p->dbMain, &pIter->pIdxIter, &p->zErrmsg,
997 "SELECT name, rootpage, sql IS NULL OR substr(8, 6)=='UNIQUE' "
998 " FROM main.sqlite_schema "
999 " WHERE type='index' AND tbl_name = ?"
1003 pIter->bCleanup = 1;
1004 p->rc = rc;
1005 return rbuObjIterNext(p, pIter);
1009 ** This is a wrapper around "sqlite3_mprintf(zFmt, ...)". If an OOM occurs,
1010 ** an error code is stored in the RBU handle passed as the first argument.
1012 ** If an error has already occurred (p->rc is already set to something other
1013 ** than SQLITE_OK), then this function returns NULL without modifying the
1014 ** stored error code. In this case it still calls sqlite3_free() on any
1015 ** printf() parameters associated with %z conversions.
1017 static char *rbuMPrintf(sqlite3rbu *p, const char *zFmt, ...){
1018 char *zSql = 0;
1019 va_list ap;
1020 va_start(ap, zFmt);
1021 zSql = sqlite3_vmprintf(zFmt, ap);
1022 if( p->rc==SQLITE_OK ){
1023 if( zSql==0 ) p->rc = SQLITE_NOMEM;
1024 }else{
1025 sqlite3_free(zSql);
1026 zSql = 0;
1028 va_end(ap);
1029 return zSql;
1033 ** Argument zFmt is a sqlite3_mprintf() style format string. The trailing
1034 ** arguments are the usual subsitution values. This function performs
1035 ** the printf() style substitutions and executes the result as an SQL
1036 ** statement on the RBU handles database.
1038 ** If an error occurs, an error code and error message is stored in the
1039 ** RBU handle. If an error has already occurred when this function is
1040 ** called, it is a no-op.
1042 static int rbuMPrintfExec(sqlite3rbu *p, sqlite3 *db, const char *zFmt, ...){
1043 va_list ap;
1044 char *zSql;
1045 va_start(ap, zFmt);
1046 zSql = sqlite3_vmprintf(zFmt, ap);
1047 if( p->rc==SQLITE_OK ){
1048 if( zSql==0 ){
1049 p->rc = SQLITE_NOMEM;
1050 }else{
1051 p->rc = sqlite3_exec(db, zSql, 0, 0, &p->zErrmsg);
1054 sqlite3_free(zSql);
1055 va_end(ap);
1056 return p->rc;
1060 ** Attempt to allocate and return a pointer to a zeroed block of nByte
1061 ** bytes.
1063 ** If an error (i.e. an OOM condition) occurs, return NULL and leave an
1064 ** error code in the rbu handle passed as the first argument. Or, if an
1065 ** error has already occurred when this function is called, return NULL
1066 ** immediately without attempting the allocation or modifying the stored
1067 ** error code.
1069 static void *rbuMalloc(sqlite3rbu *p, sqlite3_int64 nByte){
1070 void *pRet = 0;
1071 if( p->rc==SQLITE_OK ){
1072 assert( nByte>0 );
1073 pRet = sqlite3_malloc64(nByte);
1074 if( pRet==0 ){
1075 p->rc = SQLITE_NOMEM;
1076 }else{
1077 memset(pRet, 0, nByte);
1080 return pRet;
1085 ** Allocate and zero the pIter->azTblCol[] and abTblPk[] arrays so that
1086 ** there is room for at least nCol elements. If an OOM occurs, store an
1087 ** error code in the RBU handle passed as the first argument.
1089 static void rbuAllocateIterArrays(sqlite3rbu *p, RbuObjIter *pIter, int nCol){
1090 sqlite3_int64 nByte = (2*sizeof(char*) + sizeof(int) + 3*sizeof(u8)) * nCol;
1091 char **azNew;
1093 azNew = (char**)rbuMalloc(p, nByte);
1094 if( azNew ){
1095 pIter->azTblCol = azNew;
1096 pIter->azTblType = &azNew[nCol];
1097 pIter->aiSrcOrder = (int*)&pIter->azTblType[nCol];
1098 pIter->abTblPk = (u8*)&pIter->aiSrcOrder[nCol];
1099 pIter->abNotNull = (u8*)&pIter->abTblPk[nCol];
1100 pIter->abIndexed = (u8*)&pIter->abNotNull[nCol];
1105 ** The first argument must be a nul-terminated string. This function
1106 ** returns a copy of the string in memory obtained from sqlite3_malloc().
1107 ** It is the responsibility of the caller to eventually free this memory
1108 ** using sqlite3_free().
1110 ** If an OOM condition is encountered when attempting to allocate memory,
1111 ** output variable (*pRc) is set to SQLITE_NOMEM before returning. Otherwise,
1112 ** if the allocation succeeds, (*pRc) is left unchanged.
1114 static char *rbuStrndup(const char *zStr, int *pRc){
1115 char *zRet = 0;
1117 if( *pRc==SQLITE_OK ){
1118 if( zStr ){
1119 size_t nCopy = strlen(zStr) + 1;
1120 zRet = (char*)sqlite3_malloc64(nCopy);
1121 if( zRet ){
1122 memcpy(zRet, zStr, nCopy);
1123 }else{
1124 *pRc = SQLITE_NOMEM;
1129 return zRet;
1133 ** Finalize the statement passed as the second argument.
1135 ** If the sqlite3_finalize() call indicates that an error occurs, and the
1136 ** rbu handle error code is not already set, set the error code and error
1137 ** message accordingly.
1139 static void rbuFinalize(sqlite3rbu *p, sqlite3_stmt *pStmt){
1140 sqlite3 *db = sqlite3_db_handle(pStmt);
1141 int rc = sqlite3_finalize(pStmt);
1142 if( p->rc==SQLITE_OK && rc!=SQLITE_OK ){
1143 p->rc = rc;
1144 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
1148 /* Determine the type of a table.
1150 ** peType is of type (int*), a pointer to an output parameter of type
1151 ** (int). This call sets the output parameter as follows, depending
1152 ** on the type of the table specified by parameters dbName and zTbl.
1154 ** RBU_PK_NOTABLE: No such table.
1155 ** RBU_PK_NONE: Table has an implicit rowid.
1156 ** RBU_PK_IPK: Table has an explicit IPK column.
1157 ** RBU_PK_EXTERNAL: Table has an external PK index.
1158 ** RBU_PK_WITHOUT_ROWID: Table is WITHOUT ROWID.
1159 ** RBU_PK_VTAB: Table is a virtual table.
1161 ** Argument *piPk is also of type (int*), and also points to an output
1162 ** parameter. Unless the table has an external primary key index
1163 ** (i.e. unless *peType is set to 3), then *piPk is set to zero. Or,
1164 ** if the table does have an external primary key index, then *piPk
1165 ** is set to the root page number of the primary key index before
1166 ** returning.
1168 ** ALGORITHM:
1170 ** if( no entry exists in sqlite_schema ){
1171 ** return RBU_PK_NOTABLE
1172 ** }else if( sql for the entry starts with "CREATE VIRTUAL" ){
1173 ** return RBU_PK_VTAB
1174 ** }else if( "PRAGMA index_list()" for the table contains a "pk" index ){
1175 ** if( the index that is the pk exists in sqlite_schema ){
1176 ** *piPK = rootpage of that index.
1177 ** return RBU_PK_EXTERNAL
1178 ** }else{
1179 ** return RBU_PK_WITHOUT_ROWID
1180 ** }
1181 ** }else if( "PRAGMA table_info()" lists one or more "pk" columns ){
1182 ** return RBU_PK_IPK
1183 ** }else{
1184 ** return RBU_PK_NONE
1185 ** }
1187 static void rbuTableType(
1188 sqlite3rbu *p,
1189 const char *zTab,
1190 int *peType,
1191 int *piTnum,
1192 int *piPk
1195 ** 0) SELECT count(*) FROM sqlite_schema where name=%Q AND IsVirtual(%Q)
1196 ** 1) PRAGMA index_list = ?
1197 ** 2) SELECT count(*) FROM sqlite_schema where name=%Q
1198 ** 3) PRAGMA table_info = ?
1200 sqlite3_stmt *aStmt[4] = {0, 0, 0, 0};
1202 *peType = RBU_PK_NOTABLE;
1203 *piPk = 0;
1205 assert( p->rc==SQLITE_OK );
1206 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[0], &p->zErrmsg,
1207 sqlite3_mprintf(
1208 "SELECT "
1209 " (sql COLLATE nocase BETWEEN 'CREATE VIRTUAL' AND 'CREATE VIRTUAM'),"
1210 " rootpage"
1211 " FROM sqlite_schema"
1212 " WHERE name=%Q", zTab
1214 if( p->rc!=SQLITE_OK || sqlite3_step(aStmt[0])!=SQLITE_ROW ){
1215 /* Either an error, or no such table. */
1216 goto rbuTableType_end;
1218 if( sqlite3_column_int(aStmt[0], 0) ){
1219 *peType = RBU_PK_VTAB; /* virtual table */
1220 goto rbuTableType_end;
1222 *piTnum = sqlite3_column_int(aStmt[0], 1);
1224 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[1], &p->zErrmsg,
1225 sqlite3_mprintf("PRAGMA index_list=%Q",zTab)
1227 if( p->rc ) goto rbuTableType_end;
1228 while( sqlite3_step(aStmt[1])==SQLITE_ROW ){
1229 const u8 *zOrig = sqlite3_column_text(aStmt[1], 3);
1230 const u8 *zIdx = sqlite3_column_text(aStmt[1], 1);
1231 if( zOrig && zIdx && zOrig[0]=='p' ){
1232 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[2], &p->zErrmsg,
1233 sqlite3_mprintf(
1234 "SELECT rootpage FROM sqlite_schema WHERE name = %Q", zIdx
1236 if( p->rc==SQLITE_OK ){
1237 if( sqlite3_step(aStmt[2])==SQLITE_ROW ){
1238 *piPk = sqlite3_column_int(aStmt[2], 0);
1239 *peType = RBU_PK_EXTERNAL;
1240 }else{
1241 *peType = RBU_PK_WITHOUT_ROWID;
1244 goto rbuTableType_end;
1248 p->rc = prepareFreeAndCollectError(p->dbMain, &aStmt[3], &p->zErrmsg,
1249 sqlite3_mprintf("PRAGMA table_info=%Q",zTab)
1251 if( p->rc==SQLITE_OK ){
1252 while( sqlite3_step(aStmt[3])==SQLITE_ROW ){
1253 if( sqlite3_column_int(aStmt[3],5)>0 ){
1254 *peType = RBU_PK_IPK; /* explicit IPK column */
1255 goto rbuTableType_end;
1258 *peType = RBU_PK_NONE;
1261 rbuTableType_end: {
1262 unsigned int i;
1263 for(i=0; i<sizeof(aStmt)/sizeof(aStmt[0]); i++){
1264 rbuFinalize(p, aStmt[i]);
1270 ** This is a helper function for rbuObjIterCacheTableInfo(). It populates
1271 ** the pIter->abIndexed[] array.
1273 static void rbuObjIterCacheIndexedCols(sqlite3rbu *p, RbuObjIter *pIter){
1274 sqlite3_stmt *pList = 0;
1275 int bIndex = 0;
1277 if( p->rc==SQLITE_OK ){
1278 memcpy(pIter->abIndexed, pIter->abTblPk, sizeof(u8)*pIter->nTblCol);
1279 p->rc = prepareFreeAndCollectError(p->dbMain, &pList, &p->zErrmsg,
1280 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
1284 pIter->nIndex = 0;
1285 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pList) ){
1286 const char *zIdx = (const char*)sqlite3_column_text(pList, 1);
1287 int bPartial = sqlite3_column_int(pList, 4);
1288 sqlite3_stmt *pXInfo = 0;
1289 if( zIdx==0 ) break;
1290 if( bPartial ){
1291 memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol);
1293 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1294 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
1296 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1297 int iCid = sqlite3_column_int(pXInfo, 1);
1298 if( iCid>=0 ) pIter->abIndexed[iCid] = 1;
1299 if( iCid==-2 ){
1300 memset(pIter->abIndexed, 0x01, sizeof(u8)*pIter->nTblCol);
1303 rbuFinalize(p, pXInfo);
1304 bIndex = 1;
1305 pIter->nIndex++;
1308 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
1309 /* "PRAGMA index_list" includes the main PK b-tree */
1310 pIter->nIndex--;
1313 rbuFinalize(p, pList);
1314 if( bIndex==0 ) pIter->abIndexed = 0;
1319 ** If they are not already populated, populate the pIter->azTblCol[],
1320 ** pIter->abTblPk[], pIter->nTblCol and pIter->bRowid variables according to
1321 ** the table (not index) that the iterator currently points to.
1323 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. If
1324 ** an error does occur, an error code and error message are also left in
1325 ** the RBU handle.
1327 static int rbuObjIterCacheTableInfo(sqlite3rbu *p, RbuObjIter *pIter){
1328 if( pIter->azTblCol==0 ){
1329 sqlite3_stmt *pStmt = 0;
1330 int nCol = 0;
1331 int i; /* for() loop iterator variable */
1332 int bRbuRowid = 0; /* If input table has column "rbu_rowid" */
1333 int iOrder = 0;
1334 int iTnum = 0;
1336 /* Figure out the type of table this step will deal with. */
1337 assert( pIter->eType==0 );
1338 rbuTableType(p, pIter->zTbl, &pIter->eType, &iTnum, &pIter->iPkTnum);
1339 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_NOTABLE ){
1340 p->rc = SQLITE_ERROR;
1341 p->zErrmsg = sqlite3_mprintf("no such table: %s", pIter->zTbl);
1343 if( p->rc ) return p->rc;
1344 if( pIter->zIdx==0 ) pIter->iTnum = iTnum;
1346 assert( pIter->eType==RBU_PK_NONE || pIter->eType==RBU_PK_IPK
1347 || pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_WITHOUT_ROWID
1348 || pIter->eType==RBU_PK_VTAB
1351 /* Populate the azTblCol[] and nTblCol variables based on the columns
1352 ** of the input table. Ignore any input table columns that begin with
1353 ** "rbu_". */
1354 p->rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
1355 sqlite3_mprintf("SELECT * FROM '%q'", pIter->zDataTbl)
1357 if( p->rc==SQLITE_OK ){
1358 nCol = sqlite3_column_count(pStmt);
1359 rbuAllocateIterArrays(p, pIter, nCol);
1361 for(i=0; p->rc==SQLITE_OK && i<nCol; i++){
1362 const char *zName = (const char*)sqlite3_column_name(pStmt, i);
1363 if( sqlite3_strnicmp("rbu_", zName, 4) ){
1364 char *zCopy = rbuStrndup(zName, &p->rc);
1365 pIter->aiSrcOrder[pIter->nTblCol] = pIter->nTblCol;
1366 pIter->azTblCol[pIter->nTblCol++] = zCopy;
1368 else if( 0==sqlite3_stricmp("rbu_rowid", zName) ){
1369 bRbuRowid = 1;
1372 sqlite3_finalize(pStmt);
1373 pStmt = 0;
1375 if( p->rc==SQLITE_OK
1376 && rbuIsVacuum(p)==0
1377 && bRbuRowid!=(pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
1379 p->rc = SQLITE_ERROR;
1380 p->zErrmsg = sqlite3_mprintf(
1381 "table %q %s rbu_rowid column", pIter->zDataTbl,
1382 (bRbuRowid ? "may not have" : "requires")
1386 /* Check that all non-HIDDEN columns in the destination table are also
1387 ** present in the input table. Populate the abTblPk[], azTblType[] and
1388 ** aiTblOrder[] arrays at the same time. */
1389 if( p->rc==SQLITE_OK ){
1390 p->rc = prepareFreeAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
1391 sqlite3_mprintf("PRAGMA table_info(%Q)", pIter->zTbl)
1394 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
1395 const char *zName = (const char*)sqlite3_column_text(pStmt, 1);
1396 if( zName==0 ) break; /* An OOM - finalize() below returns S_NOMEM */
1397 for(i=iOrder; i<pIter->nTblCol; i++){
1398 if( 0==strcmp(zName, pIter->azTblCol[i]) ) break;
1400 if( i==pIter->nTblCol ){
1401 p->rc = SQLITE_ERROR;
1402 p->zErrmsg = sqlite3_mprintf("column missing from %q: %s",
1403 pIter->zDataTbl, zName
1405 }else{
1406 int iPk = sqlite3_column_int(pStmt, 5);
1407 int bNotNull = sqlite3_column_int(pStmt, 3);
1408 const char *zType = (const char*)sqlite3_column_text(pStmt, 2);
1410 if( i!=iOrder ){
1411 SWAP(int, pIter->aiSrcOrder[i], pIter->aiSrcOrder[iOrder]);
1412 SWAP(char*, pIter->azTblCol[i], pIter->azTblCol[iOrder]);
1415 pIter->azTblType[iOrder] = rbuStrndup(zType, &p->rc);
1416 assert( iPk>=0 );
1417 pIter->abTblPk[iOrder] = (u8)iPk;
1418 pIter->abNotNull[iOrder] = (u8)bNotNull || (iPk!=0);
1419 iOrder++;
1423 rbuFinalize(p, pStmt);
1424 rbuObjIterCacheIndexedCols(p, pIter);
1425 assert( pIter->eType!=RBU_PK_VTAB || pIter->abIndexed==0 );
1426 assert( pIter->eType!=RBU_PK_VTAB || pIter->nIndex==0 );
1429 return p->rc;
1433 ** This function constructs and returns a pointer to a nul-terminated
1434 ** string containing some SQL clause or list based on one or more of the
1435 ** column names currently stored in the pIter->azTblCol[] array.
1437 static char *rbuObjIterGetCollist(
1438 sqlite3rbu *p, /* RBU object */
1439 RbuObjIter *pIter /* Object iterator for column names */
1441 char *zList = 0;
1442 const char *zSep = "";
1443 int i;
1444 for(i=0; i<pIter->nTblCol; i++){
1445 const char *z = pIter->azTblCol[i];
1446 zList = rbuMPrintf(p, "%z%s\"%w\"", zList, zSep, z);
1447 zSep = ", ";
1449 return zList;
1453 ** Return a comma separated list of the quoted PRIMARY KEY column names,
1454 ** in order, for the current table. Before each column name, add the text
1455 ** zPre. After each column name, add the zPost text. Use zSeparator as
1456 ** the separator text (usually ", ").
1458 static char *rbuObjIterGetPkList(
1459 sqlite3rbu *p, /* RBU object */
1460 RbuObjIter *pIter, /* Object iterator for column names */
1461 const char *zPre, /* Before each quoted column name */
1462 const char *zSeparator, /* Separator to use between columns */
1463 const char *zPost /* After each quoted column name */
1465 int iPk = 1;
1466 char *zRet = 0;
1467 const char *zSep = "";
1468 while( 1 ){
1469 int i;
1470 for(i=0; i<pIter->nTblCol; i++){
1471 if( (int)pIter->abTblPk[i]==iPk ){
1472 const char *zCol = pIter->azTblCol[i];
1473 zRet = rbuMPrintf(p, "%z%s%s\"%w\"%s", zRet, zSep, zPre, zCol, zPost);
1474 zSep = zSeparator;
1475 break;
1478 if( i==pIter->nTblCol ) break;
1479 iPk++;
1481 return zRet;
1485 ** This function is called as part of restarting an RBU vacuum within
1486 ** stage 1 of the process (while the *-oal file is being built) while
1487 ** updating a table (not an index). The table may be a rowid table or
1488 ** a WITHOUT ROWID table. It queries the target database to find the
1489 ** largest key that has already been written to the target table and
1490 ** constructs a WHERE clause that can be used to extract the remaining
1491 ** rows from the source table. For a rowid table, the WHERE clause
1492 ** is of the form:
1494 ** "WHERE _rowid_ > ?"
1496 ** and for WITHOUT ROWID tables:
1498 ** "WHERE (key1, key2) > (?, ?)"
1500 ** Instead of "?" placeholders, the actual WHERE clauses created by
1501 ** this function contain literal SQL values.
1503 static char *rbuVacuumTableStart(
1504 sqlite3rbu *p, /* RBU handle */
1505 RbuObjIter *pIter, /* RBU iterator object */
1506 int bRowid, /* True for a rowid table */
1507 const char *zWrite /* Target table name prefix */
1509 sqlite3_stmt *pMax = 0;
1510 char *zRet = 0;
1511 if( bRowid ){
1512 p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg,
1513 sqlite3_mprintf(
1514 "SELECT max(_rowid_) FROM \"%s%w\"", zWrite, pIter->zTbl
1517 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
1518 sqlite3_int64 iMax = sqlite3_column_int64(pMax, 0);
1519 zRet = rbuMPrintf(p, " WHERE _rowid_ > %lld ", iMax);
1521 rbuFinalize(p, pMax);
1522 }else{
1523 char *zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", " DESC");
1524 char *zSelect = rbuObjIterGetPkList(p, pIter, "quote(", "||','||", ")");
1525 char *zList = rbuObjIterGetPkList(p, pIter, "", ", ", "");
1527 if( p->rc==SQLITE_OK ){
1528 p->rc = prepareFreeAndCollectError(p->dbMain, &pMax, &p->zErrmsg,
1529 sqlite3_mprintf(
1530 "SELECT %s FROM \"%s%w\" ORDER BY %s LIMIT 1",
1531 zSelect, zWrite, pIter->zTbl, zOrder
1534 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pMax) ){
1535 const char *zVal = (const char*)sqlite3_column_text(pMax, 0);
1536 zRet = rbuMPrintf(p, " WHERE (%s) > (%s) ", zList, zVal);
1538 rbuFinalize(p, pMax);
1541 sqlite3_free(zOrder);
1542 sqlite3_free(zSelect);
1543 sqlite3_free(zList);
1545 return zRet;
1549 ** This function is called as part of restating an RBU vacuum when the
1550 ** current operation is writing content to an index. If possible, it
1551 ** queries the target index b-tree for the largest key already written to
1552 ** it, then composes and returns an expression that can be used in a WHERE
1553 ** clause to select the remaining required rows from the source table.
1554 ** It is only possible to return such an expression if:
1556 ** * The index contains no DESC columns, and
1557 ** * The last key written to the index before the operation was
1558 ** suspended does not contain any NULL values.
1560 ** The expression is of the form:
1562 ** (index-field1, index-field2, ...) > (?, ?, ...)
1564 ** except that the "?" placeholders are replaced with literal values.
1566 ** If the expression cannot be created, NULL is returned. In this case,
1567 ** the caller has to use an OFFSET clause to extract only the required
1568 ** rows from the sourct table, just as it does for an RBU update operation.
1570 static char *rbuVacuumIndexStart(
1571 sqlite3rbu *p, /* RBU handle */
1572 RbuObjIter *pIter /* RBU iterator object */
1574 char *zOrder = 0;
1575 char *zLhs = 0;
1576 char *zSelect = 0;
1577 char *zVector = 0;
1578 char *zRet = 0;
1579 int bFailed = 0;
1580 const char *zSep = "";
1581 int iCol = 0;
1582 sqlite3_stmt *pXInfo = 0;
1584 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1585 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
1587 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1588 int iCid = sqlite3_column_int(pXInfo, 1);
1589 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
1590 const char *zCol;
1591 if( sqlite3_column_int(pXInfo, 3) ){
1592 bFailed = 1;
1593 break;
1596 if( iCid<0 ){
1597 if( pIter->eType==RBU_PK_IPK ){
1598 int i;
1599 for(i=0; pIter->abTblPk[i]==0; i++);
1600 assert( i<pIter->nTblCol );
1601 zCol = pIter->azTblCol[i];
1602 }else{
1603 zCol = "_rowid_";
1605 }else{
1606 zCol = pIter->azTblCol[iCid];
1609 zLhs = rbuMPrintf(p, "%z%s \"%w\" COLLATE %Q",
1610 zLhs, zSep, zCol, zCollate
1612 zOrder = rbuMPrintf(p, "%z%s \"rbu_imp_%d%w\" COLLATE %Q DESC",
1613 zOrder, zSep, iCol, zCol, zCollate
1615 zSelect = rbuMPrintf(p, "%z%s quote(\"rbu_imp_%d%w\")",
1616 zSelect, zSep, iCol, zCol
1618 zSep = ", ";
1619 iCol++;
1621 rbuFinalize(p, pXInfo);
1622 if( bFailed ) goto index_start_out;
1624 if( p->rc==SQLITE_OK ){
1625 sqlite3_stmt *pSel = 0;
1627 p->rc = prepareFreeAndCollectError(p->dbMain, &pSel, &p->zErrmsg,
1628 sqlite3_mprintf("SELECT %s FROM \"rbu_imp_%w\" ORDER BY %s LIMIT 1",
1629 zSelect, pIter->zTbl, zOrder
1632 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pSel) ){
1633 zSep = "";
1634 for(iCol=0; iCol<pIter->nCol; iCol++){
1635 const char *zQuoted = (const char*)sqlite3_column_text(pSel, iCol);
1636 if( zQuoted==0 ){
1637 p->rc = SQLITE_NOMEM;
1638 }else if( zQuoted[0]=='N' ){
1639 bFailed = 1;
1640 break;
1642 zVector = rbuMPrintf(p, "%z%s%s", zVector, zSep, zQuoted);
1643 zSep = ", ";
1646 if( !bFailed ){
1647 zRet = rbuMPrintf(p, "(%s) > (%s)", zLhs, zVector);
1650 rbuFinalize(p, pSel);
1653 index_start_out:
1654 sqlite3_free(zOrder);
1655 sqlite3_free(zSelect);
1656 sqlite3_free(zVector);
1657 sqlite3_free(zLhs);
1658 return zRet;
1662 ** This function is used to create a SELECT list (the list of SQL
1663 ** expressions that follows a SELECT keyword) for a SELECT statement
1664 ** used to read from an data_xxx or rbu_tmp_xxx table while updating the
1665 ** index object currently indicated by the iterator object passed as the
1666 ** second argument. A "PRAGMA index_xinfo = <idxname>" statement is used
1667 ** to obtain the required information.
1669 ** If the index is of the following form:
1671 ** CREATE INDEX i1 ON t1(c, b COLLATE nocase);
1673 ** and "t1" is a table with an explicit INTEGER PRIMARY KEY column
1674 ** "ipk", the returned string is:
1676 ** "`c` COLLATE 'BINARY', `b` COLLATE 'NOCASE', `ipk` COLLATE 'BINARY'"
1678 ** As well as the returned string, three other malloc'd strings are
1679 ** returned via output parameters. As follows:
1681 ** pzImposterCols: ...
1682 ** pzImposterPk: ...
1683 ** pzWhere: ...
1685 static char *rbuObjIterGetIndexCols(
1686 sqlite3rbu *p, /* RBU object */
1687 RbuObjIter *pIter, /* Object iterator for column names */
1688 char **pzImposterCols, /* OUT: Columns for imposter table */
1689 char **pzImposterPk, /* OUT: Imposter PK clause */
1690 char **pzWhere, /* OUT: WHERE clause */
1691 int *pnBind /* OUT: Trbul number of columns */
1693 int rc = p->rc; /* Error code */
1694 int rc2; /* sqlite3_finalize() return code */
1695 char *zRet = 0; /* String to return */
1696 char *zImpCols = 0; /* String to return via *pzImposterCols */
1697 char *zImpPK = 0; /* String to return via *pzImposterPK */
1698 char *zWhere = 0; /* String to return via *pzWhere */
1699 int nBind = 0; /* Value to return via *pnBind */
1700 const char *zCom = ""; /* Set to ", " later on */
1701 const char *zAnd = ""; /* Set to " AND " later on */
1702 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = ? */
1704 if( rc==SQLITE_OK ){
1705 assert( p->zErrmsg==0 );
1706 rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
1707 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", pIter->zIdx)
1711 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
1712 int iCid = sqlite3_column_int(pXInfo, 1);
1713 int bDesc = sqlite3_column_int(pXInfo, 3);
1714 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
1715 const char *zCol = 0;
1716 const char *zType;
1718 if( iCid==-2 ){
1719 int iSeq = sqlite3_column_int(pXInfo, 0);
1720 zRet = sqlite3_mprintf("%z%s(%.*s) COLLATE %Q", zRet, zCom,
1721 pIter->aIdxCol[iSeq].nSpan, pIter->aIdxCol[iSeq].zSpan, zCollate
1723 zType = "";
1724 }else {
1725 if( iCid<0 ){
1726 /* An integer primary key. If the table has an explicit IPK, use
1727 ** its name. Otherwise, use "rbu_rowid". */
1728 if( pIter->eType==RBU_PK_IPK ){
1729 int i;
1730 for(i=0; pIter->abTblPk[i]==0; i++);
1731 assert( i<pIter->nTblCol );
1732 zCol = pIter->azTblCol[i];
1733 }else if( rbuIsVacuum(p) ){
1734 zCol = "_rowid_";
1735 }else{
1736 zCol = "rbu_rowid";
1738 zType = "INTEGER";
1739 }else{
1740 zCol = pIter->azTblCol[iCid];
1741 zType = pIter->azTblType[iCid];
1743 zRet = sqlite3_mprintf("%z%s\"%w\" COLLATE %Q", zRet, zCom,zCol,zCollate);
1746 if( pIter->bUnique==0 || sqlite3_column_int(pXInfo, 5) ){
1747 const char *zOrder = (bDesc ? " DESC" : "");
1748 zImpPK = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\"%s",
1749 zImpPK, zCom, nBind, zCol, zOrder
1752 zImpCols = sqlite3_mprintf("%z%s\"rbu_imp_%d%w\" %s COLLATE %Q",
1753 zImpCols, zCom, nBind, zCol, zType, zCollate
1755 zWhere = sqlite3_mprintf(
1756 "%z%s\"rbu_imp_%d%w\" IS ?", zWhere, zAnd, nBind, zCol
1758 if( zRet==0 || zImpPK==0 || zImpCols==0 || zWhere==0 ) rc = SQLITE_NOMEM;
1759 zCom = ", ";
1760 zAnd = " AND ";
1761 nBind++;
1764 rc2 = sqlite3_finalize(pXInfo);
1765 if( rc==SQLITE_OK ) rc = rc2;
1767 if( rc!=SQLITE_OK ){
1768 sqlite3_free(zRet);
1769 sqlite3_free(zImpCols);
1770 sqlite3_free(zImpPK);
1771 sqlite3_free(zWhere);
1772 zRet = 0;
1773 zImpCols = 0;
1774 zImpPK = 0;
1775 zWhere = 0;
1776 p->rc = rc;
1779 *pzImposterCols = zImpCols;
1780 *pzImposterPk = zImpPK;
1781 *pzWhere = zWhere;
1782 *pnBind = nBind;
1783 return zRet;
1787 ** Assuming the current table columns are "a", "b" and "c", and the zObj
1788 ** paramter is passed "old", return a string of the form:
1790 ** "old.a, old.b, old.b"
1792 ** With the column names escaped.
1794 ** For tables with implicit rowids - RBU_PK_EXTERNAL and RBU_PK_NONE, append
1795 ** the text ", old._rowid_" to the returned value.
1797 static char *rbuObjIterGetOldlist(
1798 sqlite3rbu *p,
1799 RbuObjIter *pIter,
1800 const char *zObj
1802 char *zList = 0;
1803 if( p->rc==SQLITE_OK && pIter->abIndexed ){
1804 const char *zS = "";
1805 int i;
1806 for(i=0; i<pIter->nTblCol; i++){
1807 if( pIter->abIndexed[i] ){
1808 const char *zCol = pIter->azTblCol[i];
1809 zList = sqlite3_mprintf("%z%s%s.\"%w\"", zList, zS, zObj, zCol);
1810 }else{
1811 zList = sqlite3_mprintf("%z%sNULL", zList, zS);
1813 zS = ", ";
1814 if( zList==0 ){
1815 p->rc = SQLITE_NOMEM;
1816 break;
1820 /* For a table with implicit rowids, append "old._rowid_" to the list. */
1821 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
1822 zList = rbuMPrintf(p, "%z, %s._rowid_", zList, zObj);
1825 return zList;
1829 ** Return an expression that can be used in a WHERE clause to match the
1830 ** primary key of the current table. For example, if the table is:
1832 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, c));
1834 ** Return the string:
1836 ** "b = ?1 AND c = ?2"
1838 static char *rbuObjIterGetWhere(
1839 sqlite3rbu *p,
1840 RbuObjIter *pIter
1842 char *zList = 0;
1843 if( pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE ){
1844 zList = rbuMPrintf(p, "_rowid_ = ?%d", pIter->nTblCol+1);
1845 }else if( pIter->eType==RBU_PK_EXTERNAL ){
1846 const char *zSep = "";
1847 int i;
1848 for(i=0; i<pIter->nTblCol; i++){
1849 if( pIter->abTblPk[i] ){
1850 zList = rbuMPrintf(p, "%z%sc%d=?%d", zList, zSep, i, i+1);
1851 zSep = " AND ";
1854 zList = rbuMPrintf(p,
1855 "_rowid_ = (SELECT id FROM rbu_imposter2 WHERE %z)", zList
1858 }else{
1859 const char *zSep = "";
1860 int i;
1861 for(i=0; i<pIter->nTblCol; i++){
1862 if( pIter->abTblPk[i] ){
1863 const char *zCol = pIter->azTblCol[i];
1864 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d", zList, zSep, zCol, i+1);
1865 zSep = " AND ";
1869 return zList;
1873 ** The SELECT statement iterating through the keys for the current object
1874 ** (p->objiter.pSelect) currently points to a valid row. However, there
1875 ** is something wrong with the rbu_control value in the rbu_control value
1876 ** stored in the (p->nCol+1)'th column. Set the error code and error message
1877 ** of the RBU handle to something reflecting this.
1879 static void rbuBadControlError(sqlite3rbu *p){
1880 p->rc = SQLITE_ERROR;
1881 p->zErrmsg = sqlite3_mprintf("invalid rbu_control value");
1886 ** Return a nul-terminated string containing the comma separated list of
1887 ** assignments that should be included following the "SET" keyword of
1888 ** an UPDATE statement used to update the table object that the iterator
1889 ** passed as the second argument currently points to if the rbu_control
1890 ** column of the data_xxx table entry is set to zMask.
1892 ** The memory for the returned string is obtained from sqlite3_malloc().
1893 ** It is the responsibility of the caller to eventually free it using
1894 ** sqlite3_free().
1896 ** If an OOM error is encountered when allocating space for the new
1897 ** string, an error code is left in the rbu handle passed as the first
1898 ** argument and NULL is returned. Or, if an error has already occurred
1899 ** when this function is called, NULL is returned immediately, without
1900 ** attempting the allocation or modifying the stored error code.
1902 static char *rbuObjIterGetSetlist(
1903 sqlite3rbu *p,
1904 RbuObjIter *pIter,
1905 const char *zMask
1907 char *zList = 0;
1908 if( p->rc==SQLITE_OK ){
1909 int i;
1911 if( (int)strlen(zMask)!=pIter->nTblCol ){
1912 rbuBadControlError(p);
1913 }else{
1914 const char *zSep = "";
1915 for(i=0; i<pIter->nTblCol; i++){
1916 char c = zMask[pIter->aiSrcOrder[i]];
1917 if( c=='x' ){
1918 zList = rbuMPrintf(p, "%z%s\"%w\"=?%d",
1919 zList, zSep, pIter->azTblCol[i], i+1
1921 zSep = ", ";
1923 else if( c=='d' ){
1924 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_delta(\"%w\", ?%d)",
1925 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
1927 zSep = ", ";
1929 else if( c=='f' ){
1930 zList = rbuMPrintf(p, "%z%s\"%w\"=rbu_fossil_delta(\"%w\", ?%d)",
1931 zList, zSep, pIter->azTblCol[i], pIter->azTblCol[i], i+1
1933 zSep = ", ";
1938 return zList;
1942 ** Return a nul-terminated string consisting of nByte comma separated
1943 ** "?" expressions. For example, if nByte is 3, return a pointer to
1944 ** a buffer containing the string "?,?,?".
1946 ** The memory for the returned string is obtained from sqlite3_malloc().
1947 ** It is the responsibility of the caller to eventually free it using
1948 ** sqlite3_free().
1950 ** If an OOM error is encountered when allocating space for the new
1951 ** string, an error code is left in the rbu handle passed as the first
1952 ** argument and NULL is returned. Or, if an error has already occurred
1953 ** when this function is called, NULL is returned immediately, without
1954 ** attempting the allocation or modifying the stored error code.
1956 static char *rbuObjIterGetBindlist(sqlite3rbu *p, int nBind){
1957 char *zRet = 0;
1958 sqlite3_int64 nByte = 2*(sqlite3_int64)nBind + 1;
1960 zRet = (char*)rbuMalloc(p, nByte);
1961 if( zRet ){
1962 int i;
1963 for(i=0; i<nBind; i++){
1964 zRet[i*2] = '?';
1965 zRet[i*2+1] = (i+1==nBind) ? '\0' : ',';
1968 return zRet;
1972 ** The iterator currently points to a table (not index) of type
1973 ** RBU_PK_WITHOUT_ROWID. This function creates the PRIMARY KEY
1974 ** declaration for the corresponding imposter table. For example,
1975 ** if the iterator points to a table created as:
1977 ** CREATE TABLE t1(a, b, c, PRIMARY KEY(b, a DESC)) WITHOUT ROWID
1979 ** this function returns:
1981 ** PRIMARY KEY("b", "a" DESC)
1983 static char *rbuWithoutRowidPK(sqlite3rbu *p, RbuObjIter *pIter){
1984 char *z = 0;
1985 assert( pIter->zIdx==0 );
1986 if( p->rc==SQLITE_OK ){
1987 const char *zSep = "PRIMARY KEY(";
1988 sqlite3_stmt *pXList = 0; /* PRAGMA index_list = (pIter->zTbl) */
1989 sqlite3_stmt *pXInfo = 0; /* PRAGMA index_xinfo = <pk-index> */
1991 p->rc = prepareFreeAndCollectError(p->dbMain, &pXList, &p->zErrmsg,
1992 sqlite3_mprintf("PRAGMA main.index_list = %Q", pIter->zTbl)
1994 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXList) ){
1995 const char *zOrig = (const char*)sqlite3_column_text(pXList,3);
1996 if( zOrig && strcmp(zOrig, "pk")==0 ){
1997 const char *zIdx = (const char*)sqlite3_column_text(pXList,1);
1998 if( zIdx ){
1999 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
2000 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
2003 break;
2006 rbuFinalize(p, pXList);
2008 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
2009 if( sqlite3_column_int(pXInfo, 5) ){
2010 /* int iCid = sqlite3_column_int(pXInfo, 0); */
2011 const char *zCol = (const char*)sqlite3_column_text(pXInfo, 2);
2012 const char *zDesc = sqlite3_column_int(pXInfo, 3) ? " DESC" : "";
2013 z = rbuMPrintf(p, "%z%s\"%w\"%s", z, zSep, zCol, zDesc);
2014 zSep = ", ";
2017 z = rbuMPrintf(p, "%z)", z);
2018 rbuFinalize(p, pXInfo);
2020 return z;
2024 ** This function creates the second imposter table used when writing to
2025 ** a table b-tree where the table has an external primary key. If the
2026 ** iterator passed as the second argument does not currently point to
2027 ** a table (not index) with an external primary key, this function is a
2028 ** no-op.
2030 ** Assuming the iterator does point to a table with an external PK, this
2031 ** function creates a WITHOUT ROWID imposter table named "rbu_imposter2"
2032 ** used to access that PK index. For example, if the target table is
2033 ** declared as follows:
2035 ** CREATE TABLE t1(a, b TEXT, c REAL, PRIMARY KEY(b, c));
2037 ** then the imposter table schema is:
2039 ** CREATE TABLE rbu_imposter2(c1 TEXT, c2 REAL, id INTEGER) WITHOUT ROWID;
2042 static void rbuCreateImposterTable2(sqlite3rbu *p, RbuObjIter *pIter){
2043 if( p->rc==SQLITE_OK && pIter->eType==RBU_PK_EXTERNAL ){
2044 int tnum = pIter->iPkTnum; /* Root page of PK index */
2045 sqlite3_stmt *pQuery = 0; /* SELECT name ... WHERE rootpage = $tnum */
2046 const char *zIdx = 0; /* Name of PK index */
2047 sqlite3_stmt *pXInfo = 0; /* PRAGMA main.index_xinfo = $zIdx */
2048 const char *zComma = "";
2049 char *zCols = 0; /* Used to build up list of table cols */
2050 char *zPk = 0; /* Used to build up table PK declaration */
2052 /* Figure out the name of the primary key index for the current table.
2053 ** This is needed for the argument to "PRAGMA index_xinfo". Set
2054 ** zIdx to point to a nul-terminated string containing this name. */
2055 p->rc = prepareAndCollectError(p->dbMain, &pQuery, &p->zErrmsg,
2056 "SELECT name FROM sqlite_schema WHERE rootpage = ?"
2058 if( p->rc==SQLITE_OK ){
2059 sqlite3_bind_int(pQuery, 1, tnum);
2060 if( SQLITE_ROW==sqlite3_step(pQuery) ){
2061 zIdx = (const char*)sqlite3_column_text(pQuery, 0);
2064 if( zIdx ){
2065 p->rc = prepareFreeAndCollectError(p->dbMain, &pXInfo, &p->zErrmsg,
2066 sqlite3_mprintf("PRAGMA main.index_xinfo = %Q", zIdx)
2069 rbuFinalize(p, pQuery);
2071 while( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pXInfo) ){
2072 int bKey = sqlite3_column_int(pXInfo, 5);
2073 if( bKey ){
2074 int iCid = sqlite3_column_int(pXInfo, 1);
2075 int bDesc = sqlite3_column_int(pXInfo, 3);
2076 const char *zCollate = (const char*)sqlite3_column_text(pXInfo, 4);
2077 zCols = rbuMPrintf(p, "%z%sc%d %s COLLATE %Q", zCols, zComma,
2078 iCid, pIter->azTblType[iCid], zCollate
2080 zPk = rbuMPrintf(p, "%z%sc%d%s", zPk, zComma, iCid, bDesc?" DESC":"");
2081 zComma = ", ";
2084 zCols = rbuMPrintf(p, "%z, id INTEGER", zCols);
2085 rbuFinalize(p, pXInfo);
2087 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
2088 rbuMPrintfExec(p, p->dbMain,
2089 "CREATE TABLE rbu_imposter2(%z, PRIMARY KEY(%z)) WITHOUT ROWID",
2090 zCols, zPk
2092 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
2097 ** If an error has already occurred when this function is called, it
2098 ** immediately returns zero (without doing any work). Or, if an error
2099 ** occurs during the execution of this function, it sets the error code
2100 ** in the sqlite3rbu object indicated by the first argument and returns
2101 ** zero.
2103 ** The iterator passed as the second argument is guaranteed to point to
2104 ** a table (not an index) when this function is called. This function
2105 ** attempts to create any imposter table required to write to the main
2106 ** table b-tree of the table before returning. Non-zero is returned if
2107 ** an imposter table are created, or zero otherwise.
2109 ** An imposter table is required in all cases except RBU_PK_VTAB. Only
2110 ** virtual tables are written to directly. The imposter table has the
2111 ** same schema as the actual target table (less any UNIQUE constraints).
2112 ** More precisely, the "same schema" means the same columns, types,
2113 ** collation sequences. For tables that do not have an external PRIMARY
2114 ** KEY, it also means the same PRIMARY KEY declaration.
2116 static void rbuCreateImposterTable(sqlite3rbu *p, RbuObjIter *pIter){
2117 if( p->rc==SQLITE_OK && pIter->eType!=RBU_PK_VTAB ){
2118 int tnum = pIter->iTnum;
2119 const char *zComma = "";
2120 char *zSql = 0;
2121 int iCol;
2122 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
2124 for(iCol=0; p->rc==SQLITE_OK && iCol<pIter->nTblCol; iCol++){
2125 const char *zPk = "";
2126 const char *zCol = pIter->azTblCol[iCol];
2127 const char *zColl = 0;
2129 p->rc = sqlite3_table_column_metadata(
2130 p->dbMain, "main", pIter->zTbl, zCol, 0, &zColl, 0, 0, 0
2133 if( pIter->eType==RBU_PK_IPK && pIter->abTblPk[iCol] ){
2134 /* If the target table column is an "INTEGER PRIMARY KEY", add
2135 ** "PRIMARY KEY" to the imposter table column declaration. */
2136 zPk = "PRIMARY KEY ";
2138 zSql = rbuMPrintf(p, "%z%s\"%w\" %s %sCOLLATE %Q%s",
2139 zSql, zComma, zCol, pIter->azTblType[iCol], zPk, zColl,
2140 (pIter->abNotNull[iCol] ? " NOT NULL" : "")
2142 zComma = ", ";
2145 if( pIter->eType==RBU_PK_WITHOUT_ROWID ){
2146 char *zPk = rbuWithoutRowidPK(p, pIter);
2147 if( zPk ){
2148 zSql = rbuMPrintf(p, "%z, %z", zSql, zPk);
2152 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1, tnum);
2153 rbuMPrintfExec(p, p->dbMain, "CREATE TABLE \"rbu_imp_%w\"(%z)%s",
2154 pIter->zTbl, zSql,
2155 (pIter->eType==RBU_PK_WITHOUT_ROWID ? " WITHOUT ROWID" : "")
2157 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
2162 ** Prepare a statement used to insert rows into the "rbu_tmp_xxx" table.
2163 ** Specifically a statement of the form:
2165 ** INSERT INTO rbu_tmp_xxx VALUES(?, ?, ? ...);
2167 ** The number of bound variables is equal to the number of columns in
2168 ** the target table, plus one (for the rbu_control column), plus one more
2169 ** (for the rbu_rowid column) if the target table is an implicit IPK or
2170 ** virtual table.
2172 static void rbuObjIterPrepareTmpInsert(
2173 sqlite3rbu *p,
2174 RbuObjIter *pIter,
2175 const char *zCollist,
2176 const char *zRbuRowid
2178 int bRbuRowid = (pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE);
2179 char *zBind = rbuObjIterGetBindlist(p, pIter->nTblCol + 1 + bRbuRowid);
2180 if( zBind ){
2181 assert( pIter->pTmpInsert==0 );
2182 p->rc = prepareFreeAndCollectError(
2183 p->dbRbu, &pIter->pTmpInsert, &p->zErrmsg, sqlite3_mprintf(
2184 "INSERT INTO %s.'rbu_tmp_%q'(rbu_control,%s%s) VALUES(%z)",
2185 p->zStateDb, pIter->zDataTbl, zCollist, zRbuRowid, zBind
2190 static void rbuTmpInsertFunc(
2191 sqlite3_context *pCtx,
2192 int nVal,
2193 sqlite3_value **apVal
2195 sqlite3rbu *p = sqlite3_user_data(pCtx);
2196 int rc = SQLITE_OK;
2197 int i;
2199 assert( sqlite3_value_int(apVal[0])!=0
2200 || p->objiter.eType==RBU_PK_EXTERNAL
2201 || p->objiter.eType==RBU_PK_NONE
2203 if( sqlite3_value_int(apVal[0])!=0 ){
2204 p->nPhaseOneStep += p->objiter.nIndex;
2207 for(i=0; rc==SQLITE_OK && i<nVal; i++){
2208 rc = sqlite3_bind_value(p->objiter.pTmpInsert, i+1, apVal[i]);
2210 if( rc==SQLITE_OK ){
2211 sqlite3_step(p->objiter.pTmpInsert);
2212 rc = sqlite3_reset(p->objiter.pTmpInsert);
2215 if( rc!=SQLITE_OK ){
2216 sqlite3_result_error_code(pCtx, rc);
2220 static char *rbuObjIterGetIndexWhere(sqlite3rbu *p, RbuObjIter *pIter){
2221 sqlite3_stmt *pStmt = 0;
2222 int rc = p->rc;
2223 char *zRet = 0;
2225 assert( pIter->zIdxSql==0 && pIter->nIdxCol==0 && pIter->aIdxCol==0 );
2227 if( rc==SQLITE_OK ){
2228 rc = prepareAndCollectError(p->dbMain, &pStmt, &p->zErrmsg,
2229 "SELECT trim(sql) FROM sqlite_schema WHERE type='index' AND name=?"
2232 if( rc==SQLITE_OK ){
2233 int rc2;
2234 rc = sqlite3_bind_text(pStmt, 1, pIter->zIdx, -1, SQLITE_STATIC);
2235 if( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
2236 char *zSql = (char*)sqlite3_column_text(pStmt, 0);
2237 if( zSql ){
2238 pIter->zIdxSql = zSql = rbuStrndup(zSql, &rc);
2240 if( zSql ){
2241 int nParen = 0; /* Number of open parenthesis */
2242 int i;
2243 int iIdxCol = 0;
2244 int nIdxAlloc = 0;
2245 for(i=0; zSql[i]; i++){
2246 char c = zSql[i];
2248 /* If necessary, grow the pIter->aIdxCol[] array */
2249 if( iIdxCol==nIdxAlloc ){
2250 RbuSpan *aIdxCol = (RbuSpan*)sqlite3_realloc(
2251 pIter->aIdxCol, (nIdxAlloc+16)*sizeof(RbuSpan)
2253 if( aIdxCol==0 ){
2254 rc = SQLITE_NOMEM;
2255 break;
2257 pIter->aIdxCol = aIdxCol;
2258 nIdxAlloc += 16;
2261 if( c=='(' ){
2262 if( nParen==0 ){
2263 assert( iIdxCol==0 );
2264 pIter->aIdxCol[0].zSpan = &zSql[i+1];
2266 nParen++;
2268 else if( c==')' ){
2269 nParen--;
2270 if( nParen==0 ){
2271 int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan;
2272 pIter->aIdxCol[iIdxCol++].nSpan = nSpan;
2273 i++;
2274 break;
2276 }else if( c==',' && nParen==1 ){
2277 int nSpan = &zSql[i] - pIter->aIdxCol[iIdxCol].zSpan;
2278 pIter->aIdxCol[iIdxCol++].nSpan = nSpan;
2279 pIter->aIdxCol[iIdxCol].zSpan = &zSql[i+1];
2280 }else if( c=='"' || c=='\'' || c=='`' ){
2281 for(i++; 1; i++){
2282 if( zSql[i]==c ){
2283 if( zSql[i+1]!=c ) break;
2284 i++;
2287 }else if( c=='[' ){
2288 for(i++; 1; i++){
2289 if( zSql[i]==']' ) break;
2291 }else if( c=='-' && zSql[i+1]=='-' ){
2292 for(i=i+2; zSql[i] && zSql[i]!='\n'; i++);
2293 if( zSql[i]=='\0' ) break;
2294 }else if( c=='/' && zSql[i+1]=='*' ){
2295 for(i=i+2; zSql[i] && (zSql[i]!='*' || zSql[i+1]!='/'); i++);
2296 if( zSql[i]=='\0' ) break;
2297 i++;
2300 if( zSql[i] ){
2301 zRet = rbuStrndup(&zSql[i], &rc);
2303 pIter->nIdxCol = iIdxCol;
2307 rc2 = sqlite3_finalize(pStmt);
2308 if( rc==SQLITE_OK ) rc = rc2;
2311 p->rc = rc;
2312 return zRet;
2316 ** Ensure that the SQLite statement handles required to update the
2317 ** target database object currently indicated by the iterator passed
2318 ** as the second argument are available.
2320 static int rbuObjIterPrepareAll(
2321 sqlite3rbu *p,
2322 RbuObjIter *pIter,
2323 int nOffset /* Add "LIMIT -1 OFFSET $nOffset" to SELECT */
2325 assert( pIter->bCleanup==0 );
2326 if( pIter->pSelect==0 && rbuObjIterCacheTableInfo(p, pIter)==SQLITE_OK ){
2327 const int tnum = pIter->iTnum;
2328 char *zCollist = 0; /* List of indexed columns */
2329 char **pz = &p->zErrmsg;
2330 const char *zIdx = pIter->zIdx;
2331 char *zLimit = 0;
2333 if( nOffset ){
2334 zLimit = sqlite3_mprintf(" LIMIT -1 OFFSET %d", nOffset);
2335 if( !zLimit ) p->rc = SQLITE_NOMEM;
2338 if( zIdx ){
2339 const char *zTbl = pIter->zTbl;
2340 char *zImposterCols = 0; /* Columns for imposter table */
2341 char *zImposterPK = 0; /* Primary key declaration for imposter */
2342 char *zWhere = 0; /* WHERE clause on PK columns */
2343 char *zBind = 0;
2344 char *zPart = 0;
2345 int nBind = 0;
2347 assert( pIter->eType!=RBU_PK_VTAB );
2348 zPart = rbuObjIterGetIndexWhere(p, pIter);
2349 zCollist = rbuObjIterGetIndexCols(
2350 p, pIter, &zImposterCols, &zImposterPK, &zWhere, &nBind
2352 zBind = rbuObjIterGetBindlist(p, nBind);
2354 /* Create the imposter table used to write to this index. */
2355 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 1);
2356 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 1,tnum);
2357 rbuMPrintfExec(p, p->dbMain,
2358 "CREATE TABLE \"rbu_imp_%w\"( %s, PRIMARY KEY( %s ) ) WITHOUT ROWID",
2359 zTbl, zImposterCols, zImposterPK
2361 sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, p->dbMain, "main", 0, 0);
2363 /* Create the statement to insert index entries */
2364 pIter->nCol = nBind;
2365 if( p->rc==SQLITE_OK ){
2366 p->rc = prepareFreeAndCollectError(
2367 p->dbMain, &pIter->pInsert, &p->zErrmsg,
2368 sqlite3_mprintf("INSERT INTO \"rbu_imp_%w\" VALUES(%s)", zTbl, zBind)
2372 /* And to delete index entries */
2373 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
2374 p->rc = prepareFreeAndCollectError(
2375 p->dbMain, &pIter->pDelete, &p->zErrmsg,
2376 sqlite3_mprintf("DELETE FROM \"rbu_imp_%w\" WHERE %s", zTbl, zWhere)
2380 /* Create the SELECT statement to read keys in sorted order */
2381 if( p->rc==SQLITE_OK ){
2382 char *zSql;
2383 if( rbuIsVacuum(p) ){
2384 char *zStart = 0;
2385 if( nOffset ){
2386 zStart = rbuVacuumIndexStart(p, pIter);
2387 if( zStart ){
2388 sqlite3_free(zLimit);
2389 zLimit = 0;
2393 zSql = sqlite3_mprintf(
2394 "SELECT %s, 0 AS rbu_control FROM '%q' %s %s %s ORDER BY %s%s",
2395 zCollist,
2396 pIter->zDataTbl,
2397 zPart,
2398 (zStart ? (zPart ? "AND" : "WHERE") : ""), zStart,
2399 zCollist, zLimit
2401 sqlite3_free(zStart);
2402 }else
2404 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2405 zSql = sqlite3_mprintf(
2406 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s ORDER BY %s%s",
2407 zCollist, p->zStateDb, pIter->zDataTbl,
2408 zPart, zCollist, zLimit
2410 }else{
2411 zSql = sqlite3_mprintf(
2412 "SELECT %s, rbu_control FROM %s.'rbu_tmp_%q' %s "
2413 "UNION ALL "
2414 "SELECT %s, rbu_control FROM '%q' "
2415 "%s %s typeof(rbu_control)='integer' AND rbu_control!=1 "
2416 "ORDER BY %s%s",
2417 zCollist, p->zStateDb, pIter->zDataTbl, zPart,
2418 zCollist, pIter->zDataTbl,
2419 zPart,
2420 (zPart ? "AND" : "WHERE"),
2421 zCollist, zLimit
2424 if( p->rc==SQLITE_OK ){
2425 p->rc = prepareFreeAndCollectError(p->dbRbu,&pIter->pSelect,pz,zSql);
2426 }else{
2427 sqlite3_free(zSql);
2431 sqlite3_free(zImposterCols);
2432 sqlite3_free(zImposterPK);
2433 sqlite3_free(zWhere);
2434 sqlite3_free(zBind);
2435 sqlite3_free(zPart);
2436 }else{
2437 int bRbuRowid = (pIter->eType==RBU_PK_VTAB)
2438 ||(pIter->eType==RBU_PK_NONE)
2439 ||(pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p));
2440 const char *zTbl = pIter->zTbl; /* Table this step applies to */
2441 const char *zWrite; /* Imposter table name */
2443 char *zBindings = rbuObjIterGetBindlist(p, pIter->nTblCol + bRbuRowid);
2444 char *zWhere = rbuObjIterGetWhere(p, pIter);
2445 char *zOldlist = rbuObjIterGetOldlist(p, pIter, "old");
2446 char *zNewlist = rbuObjIterGetOldlist(p, pIter, "new");
2448 zCollist = rbuObjIterGetCollist(p, pIter);
2449 pIter->nCol = pIter->nTblCol;
2451 /* Create the imposter table or tables (if required). */
2452 rbuCreateImposterTable(p, pIter);
2453 rbuCreateImposterTable2(p, pIter);
2454 zWrite = (pIter->eType==RBU_PK_VTAB ? "" : "rbu_imp_");
2456 /* Create the INSERT statement to write to the target PK b-tree */
2457 if( p->rc==SQLITE_OK ){
2458 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pInsert, pz,
2459 sqlite3_mprintf(
2460 "INSERT INTO \"%s%w\"(%s%s) VALUES(%s)",
2461 zWrite, zTbl, zCollist, (bRbuRowid ? ", _rowid_" : ""), zBindings
2466 /* Create the DELETE statement to write to the target PK b-tree.
2467 ** Because it only performs INSERT operations, this is not required for
2468 ** an rbu vacuum handle. */
2469 if( rbuIsVacuum(p)==0 && p->rc==SQLITE_OK ){
2470 p->rc = prepareFreeAndCollectError(p->dbMain, &pIter->pDelete, pz,
2471 sqlite3_mprintf(
2472 "DELETE FROM \"%s%w\" WHERE %s", zWrite, zTbl, zWhere
2477 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
2478 const char *zRbuRowid = "";
2479 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2480 zRbuRowid = ", rbu_rowid";
2483 /* Create the rbu_tmp_xxx table and the triggers to populate it. */
2484 rbuMPrintfExec(p, p->dbRbu,
2485 "CREATE TABLE IF NOT EXISTS %s.'rbu_tmp_%q' AS "
2486 "SELECT *%s FROM '%q' WHERE 0;"
2487 , p->zStateDb, pIter->zDataTbl
2488 , (pIter->eType==RBU_PK_EXTERNAL ? ", 0 AS rbu_rowid" : "")
2489 , pIter->zDataTbl
2492 rbuMPrintfExec(p, p->dbMain,
2493 "CREATE TEMP TRIGGER rbu_delete_tr BEFORE DELETE ON \"%s%w\" "
2494 "BEGIN "
2495 " SELECT rbu_tmp_insert(3, %s);"
2496 "END;"
2498 "CREATE TEMP TRIGGER rbu_update1_tr BEFORE UPDATE ON \"%s%w\" "
2499 "BEGIN "
2500 " SELECT rbu_tmp_insert(3, %s);"
2501 "END;"
2503 "CREATE TEMP TRIGGER rbu_update2_tr AFTER UPDATE ON \"%s%w\" "
2504 "BEGIN "
2505 " SELECT rbu_tmp_insert(4, %s);"
2506 "END;",
2507 zWrite, zTbl, zOldlist,
2508 zWrite, zTbl, zOldlist,
2509 zWrite, zTbl, zNewlist
2512 if( pIter->eType==RBU_PK_EXTERNAL || pIter->eType==RBU_PK_NONE ){
2513 rbuMPrintfExec(p, p->dbMain,
2514 "CREATE TEMP TRIGGER rbu_insert_tr AFTER INSERT ON \"%s%w\" "
2515 "BEGIN "
2516 " SELECT rbu_tmp_insert(0, %s);"
2517 "END;",
2518 zWrite, zTbl, zNewlist
2522 rbuObjIterPrepareTmpInsert(p, pIter, zCollist, zRbuRowid);
2525 /* Create the SELECT statement to read keys from data_xxx */
2526 if( p->rc==SQLITE_OK ){
2527 const char *zRbuRowid = "";
2528 char *zStart = 0;
2529 char *zOrder = 0;
2530 if( bRbuRowid ){
2531 zRbuRowid = rbuIsVacuum(p) ? ",_rowid_ " : ",rbu_rowid";
2534 if( rbuIsVacuum(p) ){
2535 if( nOffset ){
2536 zStart = rbuVacuumTableStart(p, pIter, bRbuRowid, zWrite);
2537 if( zStart ){
2538 sqlite3_free(zLimit);
2539 zLimit = 0;
2542 if( bRbuRowid ){
2543 zOrder = rbuMPrintf(p, "_rowid_");
2544 }else{
2545 zOrder = rbuObjIterGetPkList(p, pIter, "", ", ", "");
2549 if( p->rc==SQLITE_OK ){
2550 p->rc = prepareFreeAndCollectError(p->dbRbu, &pIter->pSelect, pz,
2551 sqlite3_mprintf(
2552 "SELECT %s,%s rbu_control%s FROM '%q'%s %s %s %s",
2553 zCollist,
2554 (rbuIsVacuum(p) ? "0 AS " : ""),
2555 zRbuRowid,
2556 pIter->zDataTbl, (zStart ? zStart : ""),
2557 (zOrder ? "ORDER BY" : ""), zOrder,
2558 zLimit
2562 sqlite3_free(zStart);
2563 sqlite3_free(zOrder);
2566 sqlite3_free(zWhere);
2567 sqlite3_free(zOldlist);
2568 sqlite3_free(zNewlist);
2569 sqlite3_free(zBindings);
2571 sqlite3_free(zCollist);
2572 sqlite3_free(zLimit);
2575 return p->rc;
2579 ** Set output variable *ppStmt to point to an UPDATE statement that may
2580 ** be used to update the imposter table for the main table b-tree of the
2581 ** table object that pIter currently points to, assuming that the
2582 ** rbu_control column of the data_xyz table contains zMask.
2584 ** If the zMask string does not specify any columns to update, then this
2585 ** is not an error. Output variable *ppStmt is set to NULL in this case.
2587 static int rbuGetUpdateStmt(
2588 sqlite3rbu *p, /* RBU handle */
2589 RbuObjIter *pIter, /* Object iterator */
2590 const char *zMask, /* rbu_control value ('x.x.') */
2591 sqlite3_stmt **ppStmt /* OUT: UPDATE statement handle */
2593 RbuUpdateStmt **pp;
2594 RbuUpdateStmt *pUp = 0;
2595 int nUp = 0;
2597 /* In case an error occurs */
2598 *ppStmt = 0;
2600 /* Search for an existing statement. If one is found, shift it to the front
2601 ** of the LRU queue and return immediately. Otherwise, leave nUp pointing
2602 ** to the number of statements currently in the cache and pUp to the
2603 ** last object in the list. */
2604 for(pp=&pIter->pRbuUpdate; *pp; pp=&((*pp)->pNext)){
2605 pUp = *pp;
2606 if( strcmp(pUp->zMask, zMask)==0 ){
2607 *pp = pUp->pNext;
2608 pUp->pNext = pIter->pRbuUpdate;
2609 pIter->pRbuUpdate = pUp;
2610 *ppStmt = pUp->pUpdate;
2611 return SQLITE_OK;
2613 nUp++;
2615 assert( pUp==0 || pUp->pNext==0 );
2617 if( nUp>=SQLITE_RBU_UPDATE_CACHESIZE ){
2618 for(pp=&pIter->pRbuUpdate; *pp!=pUp; pp=&((*pp)->pNext));
2619 *pp = 0;
2620 sqlite3_finalize(pUp->pUpdate);
2621 pUp->pUpdate = 0;
2622 }else{
2623 pUp = (RbuUpdateStmt*)rbuMalloc(p, sizeof(RbuUpdateStmt)+pIter->nTblCol+1);
2626 if( pUp ){
2627 char *zWhere = rbuObjIterGetWhere(p, pIter);
2628 char *zSet = rbuObjIterGetSetlist(p, pIter, zMask);
2629 char *zUpdate = 0;
2631 pUp->zMask = (char*)&pUp[1];
2632 memcpy(pUp->zMask, zMask, pIter->nTblCol);
2633 pUp->pNext = pIter->pRbuUpdate;
2634 pIter->pRbuUpdate = pUp;
2636 if( zSet ){
2637 const char *zPrefix = "";
2639 if( pIter->eType!=RBU_PK_VTAB ) zPrefix = "rbu_imp_";
2640 zUpdate = sqlite3_mprintf("UPDATE \"%s%w\" SET %s WHERE %s",
2641 zPrefix, pIter->zTbl, zSet, zWhere
2643 p->rc = prepareFreeAndCollectError(
2644 p->dbMain, &pUp->pUpdate, &p->zErrmsg, zUpdate
2646 *ppStmt = pUp->pUpdate;
2648 sqlite3_free(zWhere);
2649 sqlite3_free(zSet);
2652 return p->rc;
2655 static sqlite3 *rbuOpenDbhandle(
2656 sqlite3rbu *p,
2657 const char *zName,
2658 int bUseVfs
2660 sqlite3 *db = 0;
2661 if( p->rc==SQLITE_OK ){
2662 const int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_URI;
2663 p->rc = sqlite3_open_v2(zName, &db, flags, bUseVfs ? p->zVfsName : 0);
2664 if( p->rc ){
2665 p->zErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2666 sqlite3_close(db);
2667 db = 0;
2670 return db;
2674 ** Free an RbuState object allocated by rbuLoadState().
2676 static void rbuFreeState(RbuState *p){
2677 if( p ){
2678 sqlite3_free(p->zTbl);
2679 sqlite3_free(p->zDataTbl);
2680 sqlite3_free(p->zIdx);
2681 sqlite3_free(p);
2686 ** Allocate an RbuState object and load the contents of the rbu_state
2687 ** table into it. Return a pointer to the new object. It is the
2688 ** responsibility of the caller to eventually free the object using
2689 ** sqlite3_free().
2691 ** If an error occurs, leave an error code and message in the rbu handle
2692 ** and return NULL.
2694 static RbuState *rbuLoadState(sqlite3rbu *p){
2695 RbuState *pRet = 0;
2696 sqlite3_stmt *pStmt = 0;
2697 int rc;
2698 int rc2;
2700 pRet = (RbuState*)rbuMalloc(p, sizeof(RbuState));
2701 if( pRet==0 ) return 0;
2703 rc = prepareFreeAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
2704 sqlite3_mprintf("SELECT k, v FROM %s.rbu_state", p->zStateDb)
2706 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
2707 switch( sqlite3_column_int(pStmt, 0) ){
2708 case RBU_STATE_STAGE:
2709 pRet->eStage = sqlite3_column_int(pStmt, 1);
2710 if( pRet->eStage!=RBU_STAGE_OAL
2711 && pRet->eStage!=RBU_STAGE_MOVE
2712 && pRet->eStage!=RBU_STAGE_CKPT
2714 p->rc = SQLITE_CORRUPT;
2716 break;
2718 case RBU_STATE_TBL:
2719 pRet->zTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2720 break;
2722 case RBU_STATE_IDX:
2723 pRet->zIdx = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2724 break;
2726 case RBU_STATE_ROW:
2727 pRet->nRow = sqlite3_column_int(pStmt, 1);
2728 break;
2730 case RBU_STATE_PROGRESS:
2731 pRet->nProgress = sqlite3_column_int64(pStmt, 1);
2732 break;
2734 case RBU_STATE_CKPT:
2735 pRet->iWalCksum = sqlite3_column_int64(pStmt, 1);
2736 break;
2738 case RBU_STATE_COOKIE:
2739 pRet->iCookie = (u32)sqlite3_column_int64(pStmt, 1);
2740 break;
2742 case RBU_STATE_OALSZ:
2743 pRet->iOalSz = sqlite3_column_int64(pStmt, 1);
2744 break;
2746 case RBU_STATE_PHASEONESTEP:
2747 pRet->nPhaseOneStep = sqlite3_column_int64(pStmt, 1);
2748 break;
2750 case RBU_STATE_DATATBL:
2751 pRet->zDataTbl = rbuStrndup((char*)sqlite3_column_text(pStmt, 1), &rc);
2752 break;
2754 default:
2755 rc = SQLITE_CORRUPT;
2756 break;
2759 rc2 = sqlite3_finalize(pStmt);
2760 if( rc==SQLITE_OK ) rc = rc2;
2762 p->rc = rc;
2763 return pRet;
2768 ** Open the database handle and attach the RBU database as "rbu". If an
2769 ** error occurs, leave an error code and message in the RBU handle.
2771 ** If argument dbMain is not NULL, then it is a database handle already
2772 ** open on the target database. Use this handle instead of opening a new
2773 ** one.
2775 static void rbuOpenDatabase(sqlite3rbu *p, sqlite3 *dbMain, int *pbRetry){
2776 assert( p->rc || (p->dbMain==0 && p->dbRbu==0) );
2777 assert( p->rc || rbuIsVacuum(p) || p->zTarget!=0 );
2778 assert( dbMain==0 || rbuIsVacuum(p)==0 );
2780 /* Open the RBU database */
2781 p->dbRbu = rbuOpenDbhandle(p, p->zRbu, 1);
2782 p->dbMain = dbMain;
2784 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2785 sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
2786 if( p->zState==0 ){
2787 const char *zFile = sqlite3_db_filename(p->dbRbu, "main");
2788 p->zState = rbuMPrintf(p, "file:///%s-vacuum?modeof=%s", zFile, zFile);
2792 /* If using separate RBU and state databases, attach the state database to
2793 ** the RBU db handle now. */
2794 if( p->zState ){
2795 rbuMPrintfExec(p, p->dbRbu, "ATTACH %Q AS stat", p->zState);
2796 memcpy(p->zStateDb, "stat", 4);
2797 }else{
2798 memcpy(p->zStateDb, "main", 4);
2801 #if 0
2802 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2803 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, 0);
2805 #endif
2807 /* If it has not already been created, create the rbu_state table */
2808 rbuMPrintfExec(p, p->dbRbu, RBU_CREATE_STATE, p->zStateDb);
2810 #if 0
2811 if( rbuIsVacuum(p) ){
2812 if( p->rc==SQLITE_OK ){
2813 int rc2;
2814 int bOk = 0;
2815 sqlite3_stmt *pCnt = 0;
2816 p->rc = prepareAndCollectError(p->dbRbu, &pCnt, &p->zErrmsg,
2817 "SELECT count(*) FROM stat.sqlite_schema"
2819 if( p->rc==SQLITE_OK
2820 && sqlite3_step(pCnt)==SQLITE_ROW
2821 && 1==sqlite3_column_int(pCnt, 0)
2823 bOk = 1;
2825 rc2 = sqlite3_finalize(pCnt);
2826 if( p->rc==SQLITE_OK ) p->rc = rc2;
2828 if( p->rc==SQLITE_OK && bOk==0 ){
2829 p->rc = SQLITE_ERROR;
2830 p->zErrmsg = sqlite3_mprintf("invalid state database");
2833 if( p->rc==SQLITE_OK ){
2834 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
2838 #endif
2840 if( p->rc==SQLITE_OK && rbuIsVacuum(p) ){
2841 int bOpen = 0;
2842 int rc;
2843 p->nRbu = 0;
2844 p->pRbuFd = 0;
2845 rc = sqlite3_file_control(p->dbRbu, "main", SQLITE_FCNTL_RBUCNT, (void*)p);
2846 if( rc!=SQLITE_NOTFOUND ) p->rc = rc;
2847 if( p->eStage>=RBU_STAGE_MOVE ){
2848 bOpen = 1;
2849 }else{
2850 RbuState *pState = rbuLoadState(p);
2851 if( pState ){
2852 bOpen = (pState->eStage>=RBU_STAGE_MOVE);
2853 rbuFreeState(pState);
2856 if( bOpen ) p->dbMain = rbuOpenDbhandle(p, p->zRbu, p->nRbu<=1);
2859 p->eStage = 0;
2860 if( p->rc==SQLITE_OK && p->dbMain==0 ){
2861 if( !rbuIsVacuum(p) ){
2862 p->dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
2863 }else if( p->pRbuFd->pWalFd ){
2864 if( pbRetry ){
2865 p->pRbuFd->bNolock = 0;
2866 sqlite3_close(p->dbRbu);
2867 sqlite3_close(p->dbMain);
2868 p->dbMain = 0;
2869 p->dbRbu = 0;
2870 *pbRetry = 1;
2871 return;
2873 p->rc = SQLITE_ERROR;
2874 p->zErrmsg = sqlite3_mprintf("cannot vacuum wal mode database");
2875 }else{
2876 char *zTarget;
2877 char *zExtra = 0;
2878 if( strlen(p->zRbu)>=5 && 0==memcmp("file:", p->zRbu, 5) ){
2879 zExtra = &p->zRbu[5];
2880 while( *zExtra ){
2881 if( *zExtra++=='?' ) break;
2883 if( *zExtra=='\0' ) zExtra = 0;
2886 zTarget = sqlite3_mprintf("file:%s-vactmp?rbu_memory=1%s%s",
2887 sqlite3_db_filename(p->dbRbu, "main"),
2888 (zExtra==0 ? "" : "&"), (zExtra==0 ? "" : zExtra)
2891 if( zTarget==0 ){
2892 p->rc = SQLITE_NOMEM;
2893 return;
2895 p->dbMain = rbuOpenDbhandle(p, zTarget, p->nRbu<=1);
2896 sqlite3_free(zTarget);
2900 if( p->rc==SQLITE_OK ){
2901 p->rc = sqlite3_create_function(p->dbMain,
2902 "rbu_tmp_insert", -1, SQLITE_UTF8, (void*)p, rbuTmpInsertFunc, 0, 0
2906 if( p->rc==SQLITE_OK ){
2907 p->rc = sqlite3_create_function(p->dbMain,
2908 "rbu_fossil_delta", 2, SQLITE_UTF8, 0, rbuFossilDeltaFunc, 0, 0
2912 if( p->rc==SQLITE_OK ){
2913 p->rc = sqlite3_create_function(p->dbRbu,
2914 "rbu_target_name", -1, SQLITE_UTF8, (void*)p, rbuTargetNameFunc, 0, 0
2918 if( p->rc==SQLITE_OK ){
2919 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
2921 rbuMPrintfExec(p, p->dbMain, "SELECT * FROM sqlite_schema");
2923 /* Mark the database file just opened as an RBU target database. If
2924 ** this call returns SQLITE_NOTFOUND, then the RBU vfs is not in use.
2925 ** This is an error. */
2926 if( p->rc==SQLITE_OK ){
2927 p->rc = sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_RBU, (void*)p);
2930 if( p->rc==SQLITE_NOTFOUND ){
2931 p->rc = SQLITE_ERROR;
2932 p->zErrmsg = sqlite3_mprintf("rbu vfs not found");
2937 ** This routine is a copy of the sqlite3FileSuffix3() routine from the core.
2938 ** It is a no-op unless SQLITE_ENABLE_8_3_NAMES is defined.
2940 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
2941 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
2942 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
2943 ** three characters, then shorten the suffix on z[] to be the last three
2944 ** characters of the original suffix.
2946 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
2947 ** do the suffix shortening regardless of URI parameter.
2949 ** Examples:
2951 ** test.db-journal => test.nal
2952 ** test.db-wal => test.wal
2953 ** test.db-shm => test.shm
2954 ** test.db-mj7f3319fa => test.9fa
2956 static void rbuFileSuffix3(const char *zBase, char *z){
2957 #ifdef SQLITE_ENABLE_8_3_NAMES
2958 #if SQLITE_ENABLE_8_3_NAMES<2
2959 if( sqlite3_uri_boolean(zBase, "8_3_names", 0) )
2960 #endif
2962 int i, sz;
2963 sz = (int)strlen(z)&0xffffff;
2964 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
2965 if( z[i]=='.' && sz>i+4 ) memmove(&z[i+1], &z[sz-3], 4);
2967 #endif
2971 ** Return the current wal-index header checksum for the target database
2972 ** as a 64-bit integer.
2974 ** The checksum is store in the first page of xShmMap memory as an 8-byte
2975 ** blob starting at byte offset 40.
2977 static i64 rbuShmChecksum(sqlite3rbu *p){
2978 i64 iRet = 0;
2979 if( p->rc==SQLITE_OK ){
2980 sqlite3_file *pDb = p->pTargetFd->pReal;
2981 u32 volatile *ptr;
2982 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, (void volatile**)&ptr);
2983 if( p->rc==SQLITE_OK ){
2984 iRet = (i64)(((u64)ptr[10] << 32) + ptr[11]);
2987 return iRet;
2991 ** This function is called as part of initializing or reinitializing an
2992 ** incremental checkpoint.
2994 ** It populates the sqlite3rbu.aFrame[] array with the set of
2995 ** (wal frame -> db page) copy operations required to checkpoint the
2996 ** current wal file, and obtains the set of shm locks required to safely
2997 ** perform the copy operations directly on the file-system.
2999 ** If argument pState is not NULL, then the incremental checkpoint is
3000 ** being resumed. In this case, if the checksum of the wal-index-header
3001 ** following recovery is not the same as the checksum saved in the RbuState
3002 ** object, then the rbu handle is set to DONE state. This occurs if some
3003 ** other client appends a transaction to the wal file in the middle of
3004 ** an incremental checkpoint.
3006 static void rbuSetupCheckpoint(sqlite3rbu *p, RbuState *pState){
3008 /* If pState is NULL, then the wal file may not have been opened and
3009 ** recovered. Running a read-statement here to ensure that doing so
3010 ** does not interfere with the "capture" process below. */
3011 if( pState==0 ){
3012 p->eStage = 0;
3013 if( p->rc==SQLITE_OK ){
3014 p->rc = sqlite3_exec(p->dbMain, "SELECT * FROM sqlite_schema", 0, 0, 0);
3018 /* Assuming no error has occurred, run a "restart" checkpoint with the
3019 ** sqlite3rbu.eStage variable set to CAPTURE. This turns on the following
3020 ** special behaviour in the rbu VFS:
3022 ** * If the exclusive shm WRITER or READ0 lock cannot be obtained,
3023 ** the checkpoint fails with SQLITE_BUSY (normally SQLite would
3024 ** proceed with running a passive checkpoint instead of failing).
3026 ** * Attempts to read from the *-wal file or write to the database file
3027 ** do not perform any IO. Instead, the frame/page combinations that
3028 ** would be read/written are recorded in the sqlite3rbu.aFrame[]
3029 ** array.
3031 ** * Calls to xShmLock(UNLOCK) to release the exclusive shm WRITER,
3032 ** READ0 and CHECKPOINT locks taken as part of the checkpoint are
3033 ** no-ops. These locks will not be released until the connection
3034 ** is closed.
3036 ** * Attempting to xSync() the database file causes an SQLITE_NOTICE
3037 ** error.
3039 ** As a result, unless an error (i.e. OOM or SQLITE_BUSY) occurs, the
3040 ** checkpoint below fails with SQLITE_NOTICE, and leaves the aFrame[]
3041 ** array populated with a set of (frame -> page) mappings. Because the
3042 ** WRITER, CHECKPOINT and READ0 locks are still held, it is safe to copy
3043 ** data from the wal file into the database file according to the
3044 ** contents of aFrame[].
3046 if( p->rc==SQLITE_OK ){
3047 int rc2;
3048 p->eStage = RBU_STAGE_CAPTURE;
3049 rc2 = sqlite3_exec(p->dbMain, "PRAGMA main.wal_checkpoint=restart", 0, 0,0);
3050 if( rc2!=SQLITE_NOTICE ) p->rc = rc2;
3053 if( p->rc==SQLITE_OK && p->nFrame>0 ){
3054 p->eStage = RBU_STAGE_CKPT;
3055 p->nStep = (pState ? pState->nRow : 0);
3056 p->aBuf = rbuMalloc(p, p->pgsz);
3057 p->iWalCksum = rbuShmChecksum(p);
3060 if( p->rc==SQLITE_OK ){
3061 if( p->nFrame==0 || (pState && pState->iWalCksum!=p->iWalCksum) ){
3062 p->rc = SQLITE_DONE;
3063 p->eStage = RBU_STAGE_DONE;
3064 }else{
3065 int nSectorSize;
3066 sqlite3_file *pDb = p->pTargetFd->pReal;
3067 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
3068 assert( p->nPagePerSector==0 );
3069 nSectorSize = pDb->pMethods->xSectorSize(pDb);
3070 if( nSectorSize>p->pgsz ){
3071 p->nPagePerSector = nSectorSize / p->pgsz;
3072 }else{
3073 p->nPagePerSector = 1;
3076 /* Call xSync() on the wal file. This causes SQLite to sync the
3077 ** directory in which the target database and the wal file reside, in
3078 ** case it has not been synced since the rename() call in
3079 ** rbuMoveOalFile(). */
3080 p->rc = pWal->pMethods->xSync(pWal, SQLITE_SYNC_NORMAL);
3086 ** Called when iAmt bytes are read from offset iOff of the wal file while
3087 ** the rbu object is in capture mode. Record the frame number of the frame
3088 ** being read in the aFrame[] array.
3090 static int rbuCaptureWalRead(sqlite3rbu *pRbu, i64 iOff, int iAmt){
3091 const u32 mReq = (1<<WAL_LOCK_WRITE)|(1<<WAL_LOCK_CKPT)|(1<<WAL_LOCK_READ0);
3092 u32 iFrame;
3094 if( pRbu->mLock!=mReq ){
3095 pRbu->rc = SQLITE_BUSY;
3096 return SQLITE_NOTICE_RBU;
3099 pRbu->pgsz = iAmt;
3100 if( pRbu->nFrame==pRbu->nFrameAlloc ){
3101 int nNew = (pRbu->nFrameAlloc ? pRbu->nFrameAlloc : 64) * 2;
3102 RbuFrame *aNew;
3103 aNew = (RbuFrame*)sqlite3_realloc64(pRbu->aFrame, nNew * sizeof(RbuFrame));
3104 if( aNew==0 ) return SQLITE_NOMEM;
3105 pRbu->aFrame = aNew;
3106 pRbu->nFrameAlloc = nNew;
3109 iFrame = (u32)((iOff-32) / (i64)(iAmt+24)) + 1;
3110 if( pRbu->iMaxFrame<iFrame ) pRbu->iMaxFrame = iFrame;
3111 pRbu->aFrame[pRbu->nFrame].iWalFrame = iFrame;
3112 pRbu->aFrame[pRbu->nFrame].iDbPage = 0;
3113 pRbu->nFrame++;
3114 return SQLITE_OK;
3118 ** Called when a page of data is written to offset iOff of the database
3119 ** file while the rbu handle is in capture mode. Record the page number
3120 ** of the page being written in the aFrame[] array.
3122 static int rbuCaptureDbWrite(sqlite3rbu *pRbu, i64 iOff){
3123 pRbu->aFrame[pRbu->nFrame-1].iDbPage = (u32)(iOff / pRbu->pgsz) + 1;
3124 return SQLITE_OK;
3128 ** This is called as part of an incremental checkpoint operation. Copy
3129 ** a single frame of data from the wal file into the database file, as
3130 ** indicated by the RbuFrame object.
3132 static void rbuCheckpointFrame(sqlite3rbu *p, RbuFrame *pFrame){
3133 sqlite3_file *pWal = p->pTargetFd->pWalFd->pReal;
3134 sqlite3_file *pDb = p->pTargetFd->pReal;
3135 i64 iOff;
3137 assert( p->rc==SQLITE_OK );
3138 iOff = (i64)(pFrame->iWalFrame-1) * (p->pgsz + 24) + 32 + 24;
3139 p->rc = pWal->pMethods->xRead(pWal, p->aBuf, p->pgsz, iOff);
3140 if( p->rc ) return;
3142 iOff = (i64)(pFrame->iDbPage-1) * p->pgsz;
3143 p->rc = pDb->pMethods->xWrite(pDb, p->aBuf, p->pgsz, iOff);
3147 ** This value is copied from the definition of ZIPVFS_CTRL_FILE_POINTER
3148 ** in zipvfs.h.
3150 #define RBU_ZIPVFS_CTRL_FILE_POINTER 230439
3153 ** Take an EXCLUSIVE lock on the database file. Return SQLITE_OK if
3154 ** successful, or an SQLite error code otherwise.
3156 static int rbuLockDatabase(sqlite3 *db){
3157 int rc = SQLITE_OK;
3158 sqlite3_file *fd = 0;
3160 sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd);
3161 if( fd ){
3162 sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd);
3163 rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED);
3164 if( rc==SQLITE_OK ){
3165 rc = fd->pMethods->xUnlock(fd, SQLITE_LOCK_NONE);
3167 sqlite3_file_control(db, "main", RBU_ZIPVFS_CTRL_FILE_POINTER, &fd);
3168 }else{
3169 sqlite3_file_control(db, "main", SQLITE_FCNTL_FILE_POINTER, &fd);
3172 if( rc==SQLITE_OK && fd->pMethods ){
3173 rc = fd->pMethods->xLock(fd, SQLITE_LOCK_SHARED);
3174 if( rc==SQLITE_OK ){
3175 rc = fd->pMethods->xLock(fd, SQLITE_LOCK_EXCLUSIVE);
3178 return rc;
3182 ** Return true if the database handle passed as the only argument
3183 ** was opened with the rbu_exclusive_checkpoint=1 URI parameter
3184 ** specified. Or false otherwise.
3186 static int rbuExclusiveCheckpoint(sqlite3 *db){
3187 const char *zUri = sqlite3_db_filename(db, 0);
3188 return sqlite3_uri_boolean(zUri, RBU_EXCLUSIVE_CHECKPOINT, 0);
3191 #if defined(_WIN32_WCE)
3192 static LPWSTR rbuWinUtf8ToUnicode(const char *zFilename){
3193 int nChar;
3194 LPWSTR zWideFilename;
3196 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, NULL, 0);
3197 if( nChar==0 ){
3198 return 0;
3200 zWideFilename = sqlite3_malloc64( nChar*sizeof(zWideFilename[0]) );
3201 if( zWideFilename==0 ){
3202 return 0;
3204 memset(zWideFilename, 0, nChar*sizeof(zWideFilename[0]));
3205 nChar = MultiByteToWideChar(CP_UTF8, 0, zFilename, -1, zWideFilename,
3206 nChar);
3207 if( nChar==0 ){
3208 sqlite3_free(zWideFilename);
3209 zWideFilename = 0;
3211 return zWideFilename;
3213 #endif
3216 ** The RBU handle is currently in RBU_STAGE_OAL state, with a SHARED lock
3217 ** on the database file. This proc moves the *-oal file to the *-wal path,
3218 ** then reopens the database file (this time in vanilla, non-oal, WAL mode).
3219 ** If an error occurs, leave an error code and error message in the rbu
3220 ** handle.
3222 static void rbuMoveOalFile(sqlite3rbu *p){
3223 const char *zBase = sqlite3_db_filename(p->dbMain, "main");
3224 const char *zMove = zBase;
3225 char *zOal;
3226 char *zWal;
3228 if( rbuIsVacuum(p) ){
3229 zMove = sqlite3_db_filename(p->dbRbu, "main");
3231 zOal = sqlite3_mprintf("%s-oal", zMove);
3232 zWal = sqlite3_mprintf("%s-wal", zMove);
3234 assert( p->eStage==RBU_STAGE_MOVE );
3235 assert( p->rc==SQLITE_OK && p->zErrmsg==0 );
3236 if( zWal==0 || zOal==0 ){
3237 p->rc = SQLITE_NOMEM;
3238 }else{
3239 /* Move the *-oal file to *-wal. At this point connection p->db is
3240 ** holding a SHARED lock on the target database file (because it is
3241 ** in WAL mode). So no other connection may be writing the db.
3243 ** In order to ensure that there are no database readers, an EXCLUSIVE
3244 ** lock is obtained here before the *-oal is moved to *-wal.
3246 sqlite3 *dbMain = 0;
3247 rbuFileSuffix3(zBase, zWal);
3248 rbuFileSuffix3(zBase, zOal);
3250 /* Re-open the databases. */
3251 rbuObjIterFinalize(&p->objiter);
3252 sqlite3_close(p->dbRbu);
3253 sqlite3_close(p->dbMain);
3254 p->dbMain = 0;
3255 p->dbRbu = 0;
3257 dbMain = rbuOpenDbhandle(p, p->zTarget, 1);
3258 if( dbMain ){
3259 assert( p->rc==SQLITE_OK );
3260 p->rc = rbuLockDatabase(dbMain);
3263 if( p->rc==SQLITE_OK ){
3264 p->rc = p->xRename(p->pRenameArg, zOal, zWal);
3267 if( p->rc!=SQLITE_OK
3268 || rbuIsVacuum(p)
3269 || rbuExclusiveCheckpoint(dbMain)==0
3271 sqlite3_close(dbMain);
3272 dbMain = 0;
3275 if( p->rc==SQLITE_OK ){
3276 rbuOpenDatabase(p, dbMain, 0);
3277 rbuSetupCheckpoint(p, 0);
3281 sqlite3_free(zWal);
3282 sqlite3_free(zOal);
3286 ** The SELECT statement iterating through the keys for the current object
3287 ** (p->objiter.pSelect) currently points to a valid row. This function
3288 ** determines the type of operation requested by this row and returns
3289 ** one of the following values to indicate the result:
3291 ** * RBU_INSERT
3292 ** * RBU_DELETE
3293 ** * RBU_IDX_DELETE
3294 ** * RBU_UPDATE
3296 ** If RBU_UPDATE is returned, then output variable *pzMask is set to
3297 ** point to the text value indicating the columns to update.
3299 ** If the rbu_control field contains an invalid value, an error code and
3300 ** message are left in the RBU handle and zero returned.
3302 static int rbuStepType(sqlite3rbu *p, const char **pzMask){
3303 int iCol = p->objiter.nCol; /* Index of rbu_control column */
3304 int res = 0; /* Return value */
3306 switch( sqlite3_column_type(p->objiter.pSelect, iCol) ){
3307 case SQLITE_INTEGER: {
3308 int iVal = sqlite3_column_int(p->objiter.pSelect, iCol);
3309 switch( iVal ){
3310 case 0: res = RBU_INSERT; break;
3311 case 1: res = RBU_DELETE; break;
3312 case 2: res = RBU_REPLACE; break;
3313 case 3: res = RBU_IDX_DELETE; break;
3314 case 4: res = RBU_IDX_INSERT; break;
3316 break;
3319 case SQLITE_TEXT: {
3320 const unsigned char *z = sqlite3_column_text(p->objiter.pSelect, iCol);
3321 if( z==0 ){
3322 p->rc = SQLITE_NOMEM;
3323 }else{
3324 *pzMask = (const char*)z;
3326 res = RBU_UPDATE;
3328 break;
3331 default:
3332 break;
3335 if( res==0 ){
3336 rbuBadControlError(p);
3338 return res;
3341 #ifdef SQLITE_DEBUG
3343 ** Assert that column iCol of statement pStmt is named zName.
3345 static void assertColumnName(sqlite3_stmt *pStmt, int iCol, const char *zName){
3346 const char *zCol = sqlite3_column_name(pStmt, iCol);
3347 assert( 0==sqlite3_stricmp(zName, zCol) );
3349 #else
3350 # define assertColumnName(x,y,z)
3351 #endif
3354 ** Argument eType must be one of RBU_INSERT, RBU_DELETE, RBU_IDX_INSERT or
3355 ** RBU_IDX_DELETE. This function performs the work of a single
3356 ** sqlite3rbu_step() call for the type of operation specified by eType.
3358 static void rbuStepOneOp(sqlite3rbu *p, int eType){
3359 RbuObjIter *pIter = &p->objiter;
3360 sqlite3_value *pVal;
3361 sqlite3_stmt *pWriter;
3362 int i;
3364 assert( p->rc==SQLITE_OK );
3365 assert( eType!=RBU_DELETE || pIter->zIdx==0 );
3366 assert( eType==RBU_DELETE || eType==RBU_IDX_DELETE
3367 || eType==RBU_INSERT || eType==RBU_IDX_INSERT
3370 /* If this is a delete, decrement nPhaseOneStep by nIndex. If the DELETE
3371 ** statement below does actually delete a row, nPhaseOneStep will be
3372 ** incremented by the same amount when SQL function rbu_tmp_insert()
3373 ** is invoked by the trigger. */
3374 if( eType==RBU_DELETE ){
3375 p->nPhaseOneStep -= p->objiter.nIndex;
3378 if( eType==RBU_IDX_DELETE || eType==RBU_DELETE ){
3379 pWriter = pIter->pDelete;
3380 }else{
3381 pWriter = pIter->pInsert;
3384 for(i=0; i<pIter->nCol; i++){
3385 /* If this is an INSERT into a table b-tree and the table has an
3386 ** explicit INTEGER PRIMARY KEY, check that this is not an attempt
3387 ** to write a NULL into the IPK column. That is not permitted. */
3388 if( eType==RBU_INSERT
3389 && pIter->zIdx==0 && pIter->eType==RBU_PK_IPK && pIter->abTblPk[i]
3390 && sqlite3_column_type(pIter->pSelect, i)==SQLITE_NULL
3392 p->rc = SQLITE_MISMATCH;
3393 p->zErrmsg = sqlite3_mprintf("datatype mismatch");
3394 return;
3397 if( eType==RBU_DELETE && pIter->abTblPk[i]==0 ){
3398 continue;
3401 pVal = sqlite3_column_value(pIter->pSelect, i);
3402 p->rc = sqlite3_bind_value(pWriter, i+1, pVal);
3403 if( p->rc ) return;
3405 if( pIter->zIdx==0 ){
3406 if( pIter->eType==RBU_PK_VTAB
3407 || pIter->eType==RBU_PK_NONE
3408 || (pIter->eType==RBU_PK_EXTERNAL && rbuIsVacuum(p))
3410 /* For a virtual table, or a table with no primary key, the
3411 ** SELECT statement is:
3413 ** SELECT <cols>, rbu_control, rbu_rowid FROM ....
3415 ** Hence column_value(pIter->nCol+1).
3417 assertColumnName(pIter->pSelect, pIter->nCol+1,
3418 rbuIsVacuum(p) ? "rowid" : "rbu_rowid"
3420 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
3421 p->rc = sqlite3_bind_value(pWriter, pIter->nCol+1, pVal);
3424 if( p->rc==SQLITE_OK ){
3425 sqlite3_step(pWriter);
3426 p->rc = resetAndCollectError(pWriter, &p->zErrmsg);
3431 ** This function does the work for an sqlite3rbu_step() call.
3433 ** The object-iterator (p->objiter) currently points to a valid object,
3434 ** and the input cursor (p->objiter.pSelect) currently points to a valid
3435 ** input row. Perform whatever processing is required and return.
3437 ** If no error occurs, SQLITE_OK is returned. Otherwise, an error code
3438 ** and message is left in the RBU handle and a copy of the error code
3439 ** returned.
3441 static int rbuStep(sqlite3rbu *p){
3442 RbuObjIter *pIter = &p->objiter;
3443 const char *zMask = 0;
3444 int eType = rbuStepType(p, &zMask);
3446 if( eType ){
3447 assert( eType==RBU_INSERT || eType==RBU_DELETE
3448 || eType==RBU_REPLACE || eType==RBU_IDX_DELETE
3449 || eType==RBU_IDX_INSERT || eType==RBU_UPDATE
3451 assert( eType!=RBU_UPDATE || pIter->zIdx==0 );
3453 if( pIter->zIdx==0 && (eType==RBU_IDX_DELETE || eType==RBU_IDX_INSERT) ){
3454 rbuBadControlError(p);
3456 else if( eType==RBU_REPLACE ){
3457 if( pIter->zIdx==0 ){
3458 p->nPhaseOneStep += p->objiter.nIndex;
3459 rbuStepOneOp(p, RBU_DELETE);
3461 if( p->rc==SQLITE_OK ) rbuStepOneOp(p, RBU_INSERT);
3463 else if( eType!=RBU_UPDATE ){
3464 rbuStepOneOp(p, eType);
3466 else{
3467 sqlite3_value *pVal;
3468 sqlite3_stmt *pUpdate = 0;
3469 assert( eType==RBU_UPDATE );
3470 p->nPhaseOneStep -= p->objiter.nIndex;
3471 rbuGetUpdateStmt(p, pIter, zMask, &pUpdate);
3472 if( pUpdate ){
3473 int i;
3474 for(i=0; p->rc==SQLITE_OK && i<pIter->nCol; i++){
3475 char c = zMask[pIter->aiSrcOrder[i]];
3476 pVal = sqlite3_column_value(pIter->pSelect, i);
3477 if( pIter->abTblPk[i] || c!='.' ){
3478 p->rc = sqlite3_bind_value(pUpdate, i+1, pVal);
3481 if( p->rc==SQLITE_OK
3482 && (pIter->eType==RBU_PK_VTAB || pIter->eType==RBU_PK_NONE)
3484 /* Bind the rbu_rowid value to column _rowid_ */
3485 assertColumnName(pIter->pSelect, pIter->nCol+1, "rbu_rowid");
3486 pVal = sqlite3_column_value(pIter->pSelect, pIter->nCol+1);
3487 p->rc = sqlite3_bind_value(pUpdate, pIter->nCol+1, pVal);
3489 if( p->rc==SQLITE_OK ){
3490 sqlite3_step(pUpdate);
3491 p->rc = resetAndCollectError(pUpdate, &p->zErrmsg);
3496 return p->rc;
3500 ** Increment the schema cookie of the main database opened by p->dbMain.
3502 ** Or, if this is an RBU vacuum, set the schema cookie of the main db
3503 ** opened by p->dbMain to one more than the schema cookie of the main
3504 ** db opened by p->dbRbu.
3506 static void rbuIncrSchemaCookie(sqlite3rbu *p){
3507 if( p->rc==SQLITE_OK ){
3508 sqlite3 *dbread = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
3509 int iCookie = 1000000;
3510 sqlite3_stmt *pStmt;
3512 p->rc = prepareAndCollectError(dbread, &pStmt, &p->zErrmsg,
3513 "PRAGMA schema_version"
3515 if( p->rc==SQLITE_OK ){
3516 /* Coverage: it may be that this sqlite3_step() cannot fail. There
3517 ** is already a transaction open, so the prepared statement cannot
3518 ** throw an SQLITE_SCHEMA exception. The only database page the
3519 ** statement reads is page 1, which is guaranteed to be in the cache.
3520 ** And no memory allocations are required. */
3521 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3522 iCookie = sqlite3_column_int(pStmt, 0);
3524 rbuFinalize(p, pStmt);
3526 if( p->rc==SQLITE_OK ){
3527 rbuMPrintfExec(p, p->dbMain, "PRAGMA schema_version = %d", iCookie+1);
3533 ** Update the contents of the rbu_state table within the rbu database. The
3534 ** value stored in the RBU_STATE_STAGE column is eStage. All other values
3535 ** are determined by inspecting the rbu handle passed as the first argument.
3537 static void rbuSaveState(sqlite3rbu *p, int eStage){
3538 if( p->rc==SQLITE_OK || p->rc==SQLITE_DONE ){
3539 sqlite3_stmt *pInsert = 0;
3540 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
3541 int rc;
3543 assert( p->zErrmsg==0 );
3544 rc = prepareFreeAndCollectError(p->dbRbu, &pInsert, &p->zErrmsg,
3545 sqlite3_mprintf(
3546 "INSERT OR REPLACE INTO %s.rbu_state(k, v) VALUES "
3547 "(%d, %d), "
3548 "(%d, %Q), "
3549 "(%d, %Q), "
3550 "(%d, %d), "
3551 "(%d, %d), "
3552 "(%d, %lld), "
3553 "(%d, %lld), "
3554 "(%d, %lld), "
3555 "(%d, %lld), "
3556 "(%d, %Q) ",
3557 p->zStateDb,
3558 RBU_STATE_STAGE, eStage,
3559 RBU_STATE_TBL, p->objiter.zTbl,
3560 RBU_STATE_IDX, p->objiter.zIdx,
3561 RBU_STATE_ROW, p->nStep,
3562 RBU_STATE_PROGRESS, p->nProgress,
3563 RBU_STATE_CKPT, p->iWalCksum,
3564 RBU_STATE_COOKIE, (i64)pFd->iCookie,
3565 RBU_STATE_OALSZ, p->iOalSz,
3566 RBU_STATE_PHASEONESTEP, p->nPhaseOneStep,
3567 RBU_STATE_DATATBL, p->objiter.zDataTbl
3570 assert( pInsert==0 || rc==SQLITE_OK );
3572 if( rc==SQLITE_OK ){
3573 sqlite3_step(pInsert);
3574 rc = sqlite3_finalize(pInsert);
3576 if( rc!=SQLITE_OK ) p->rc = rc;
3582 ** The second argument passed to this function is the name of a PRAGMA
3583 ** setting - "page_size", "auto_vacuum", "user_version" or "application_id".
3584 ** This function executes the following on sqlite3rbu.dbRbu:
3586 ** "PRAGMA main.$zPragma"
3588 ** where $zPragma is the string passed as the second argument, then
3589 ** on sqlite3rbu.dbMain:
3591 ** "PRAGMA main.$zPragma = $val"
3593 ** where $val is the value returned by the first PRAGMA invocation.
3595 ** In short, it copies the value of the specified PRAGMA setting from
3596 ** dbRbu to dbMain.
3598 static void rbuCopyPragma(sqlite3rbu *p, const char *zPragma){
3599 if( p->rc==SQLITE_OK ){
3600 sqlite3_stmt *pPragma = 0;
3601 p->rc = prepareFreeAndCollectError(p->dbRbu, &pPragma, &p->zErrmsg,
3602 sqlite3_mprintf("PRAGMA main.%s", zPragma)
3604 if( p->rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pPragma) ){
3605 p->rc = rbuMPrintfExec(p, p->dbMain, "PRAGMA main.%s = %d",
3606 zPragma, sqlite3_column_int(pPragma, 0)
3609 rbuFinalize(p, pPragma);
3614 ** The RBU handle passed as the only argument has just been opened and
3615 ** the state database is empty. If this RBU handle was opened for an
3616 ** RBU vacuum operation, create the schema in the target db.
3618 static void rbuCreateTargetSchema(sqlite3rbu *p){
3619 sqlite3_stmt *pSql = 0;
3620 sqlite3_stmt *pInsert = 0;
3622 assert( rbuIsVacuum(p) );
3623 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=1", 0,0, &p->zErrmsg);
3624 if( p->rc==SQLITE_OK ){
3625 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
3626 "SELECT sql FROM sqlite_schema WHERE sql!='' AND rootpage!=0"
3627 " AND name!='sqlite_sequence' "
3628 " ORDER BY type DESC"
3632 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
3633 const char *zSql = (const char*)sqlite3_column_text(pSql, 0);
3634 p->rc = sqlite3_exec(p->dbMain, zSql, 0, 0, &p->zErrmsg);
3636 rbuFinalize(p, pSql);
3637 if( p->rc!=SQLITE_OK ) return;
3639 if( p->rc==SQLITE_OK ){
3640 p->rc = prepareAndCollectError(p->dbRbu, &pSql, &p->zErrmsg,
3641 "SELECT * FROM sqlite_schema WHERE rootpage=0 OR rootpage IS NULL"
3645 if( p->rc==SQLITE_OK ){
3646 p->rc = prepareAndCollectError(p->dbMain, &pInsert, &p->zErrmsg,
3647 "INSERT INTO sqlite_schema VALUES(?,?,?,?,?)"
3651 while( p->rc==SQLITE_OK && sqlite3_step(pSql)==SQLITE_ROW ){
3652 int i;
3653 for(i=0; i<5; i++){
3654 sqlite3_bind_value(pInsert, i+1, sqlite3_column_value(pSql, i));
3656 sqlite3_step(pInsert);
3657 p->rc = sqlite3_reset(pInsert);
3659 if( p->rc==SQLITE_OK ){
3660 p->rc = sqlite3_exec(p->dbMain, "PRAGMA writable_schema=0",0,0,&p->zErrmsg);
3663 rbuFinalize(p, pSql);
3664 rbuFinalize(p, pInsert);
3668 ** Step the RBU object.
3670 int sqlite3rbu_step(sqlite3rbu *p){
3671 if( p ){
3672 switch( p->eStage ){
3673 case RBU_STAGE_OAL: {
3674 RbuObjIter *pIter = &p->objiter;
3676 /* If this is an RBU vacuum operation and the state table was empty
3677 ** when this handle was opened, create the target database schema. */
3678 if( rbuIsVacuum(p) && p->nProgress==0 && p->rc==SQLITE_OK ){
3679 rbuCreateTargetSchema(p);
3680 rbuCopyPragma(p, "user_version");
3681 rbuCopyPragma(p, "application_id");
3684 while( p->rc==SQLITE_OK && pIter->zTbl ){
3686 if( pIter->bCleanup ){
3687 /* Clean up the rbu_tmp_xxx table for the previous table. It
3688 ** cannot be dropped as there are currently active SQL statements.
3689 ** But the contents can be deleted. */
3690 if( rbuIsVacuum(p)==0 && pIter->abIndexed ){
3691 rbuMPrintfExec(p, p->dbRbu,
3692 "DELETE FROM %s.'rbu_tmp_%q'", p->zStateDb, pIter->zDataTbl
3695 }else{
3696 rbuObjIterPrepareAll(p, pIter, 0);
3698 /* Advance to the next row to process. */
3699 if( p->rc==SQLITE_OK ){
3700 int rc = sqlite3_step(pIter->pSelect);
3701 if( rc==SQLITE_ROW ){
3702 p->nProgress++;
3703 p->nStep++;
3704 return rbuStep(p);
3706 p->rc = sqlite3_reset(pIter->pSelect);
3707 p->nStep = 0;
3711 rbuObjIterNext(p, pIter);
3714 if( p->rc==SQLITE_OK ){
3715 assert( pIter->zTbl==0 );
3716 rbuSaveState(p, RBU_STAGE_MOVE);
3717 rbuIncrSchemaCookie(p);
3718 if( p->rc==SQLITE_OK ){
3719 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
3721 if( p->rc==SQLITE_OK ){
3722 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
3724 p->eStage = RBU_STAGE_MOVE;
3726 break;
3729 case RBU_STAGE_MOVE: {
3730 if( p->rc==SQLITE_OK ){
3731 rbuMoveOalFile(p);
3732 p->nProgress++;
3734 break;
3737 case RBU_STAGE_CKPT: {
3738 if( p->rc==SQLITE_OK ){
3739 if( p->nStep>=p->nFrame ){
3740 sqlite3_file *pDb = p->pTargetFd->pReal;
3742 /* Sync the db file */
3743 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
3745 /* Update nBackfill */
3746 if( p->rc==SQLITE_OK ){
3747 void volatile *ptr;
3748 p->rc = pDb->pMethods->xShmMap(pDb, 0, 32*1024, 0, &ptr);
3749 if( p->rc==SQLITE_OK ){
3750 ((u32 volatile*)ptr)[24] = p->iMaxFrame;
3754 if( p->rc==SQLITE_OK ){
3755 p->eStage = RBU_STAGE_DONE;
3756 p->rc = SQLITE_DONE;
3758 }else{
3759 /* At one point the following block copied a single frame from the
3760 ** wal file to the database file. So that one call to sqlite3rbu_step()
3761 ** checkpointed a single frame.
3763 ** However, if the sector-size is larger than the page-size, and the
3764 ** application calls sqlite3rbu_savestate() or close() immediately
3765 ** after this step, then rbu_step() again, then a power failure occurs,
3766 ** then the database page written here may be damaged. Work around
3767 ** this by checkpointing frames until the next page in the aFrame[]
3768 ** lies on a different disk sector to the current one. */
3769 u32 iSector;
3771 RbuFrame *pFrame = &p->aFrame[p->nStep];
3772 iSector = (pFrame->iDbPage-1) / p->nPagePerSector;
3773 rbuCheckpointFrame(p, pFrame);
3774 p->nStep++;
3775 }while( p->nStep<p->nFrame
3776 && iSector==((p->aFrame[p->nStep].iDbPage-1) / p->nPagePerSector)
3777 && p->rc==SQLITE_OK
3780 p->nProgress++;
3782 break;
3785 default:
3786 break;
3788 return p->rc;
3789 }else{
3790 return SQLITE_NOMEM;
3795 ** Compare strings z1 and z2, returning 0 if they are identical, or non-zero
3796 ** otherwise. Either or both argument may be NULL. Two NULL values are
3797 ** considered equal, and NULL is considered distinct from all other values.
3799 static int rbuStrCompare(const char *z1, const char *z2){
3800 if( z1==0 && z2==0 ) return 0;
3801 if( z1==0 || z2==0 ) return 1;
3802 return (sqlite3_stricmp(z1, z2)!=0);
3806 ** This function is called as part of sqlite3rbu_open() when initializing
3807 ** an rbu handle in OAL stage. If the rbu update has not started (i.e.
3808 ** the rbu_state table was empty) it is a no-op. Otherwise, it arranges
3809 ** things so that the next call to sqlite3rbu_step() continues on from
3810 ** where the previous rbu handle left off.
3812 ** If an error occurs, an error code and error message are left in the
3813 ** rbu handle passed as the first argument.
3815 static void rbuSetupOal(sqlite3rbu *p, RbuState *pState){
3816 assert( p->rc==SQLITE_OK );
3817 if( pState->zTbl ){
3818 RbuObjIter *pIter = &p->objiter;
3819 int rc = SQLITE_OK;
3821 while( rc==SQLITE_OK && pIter->zTbl && (pIter->bCleanup
3822 || rbuStrCompare(pIter->zIdx, pState->zIdx)
3823 || (pState->zDataTbl==0 && rbuStrCompare(pIter->zTbl, pState->zTbl))
3824 || (pState->zDataTbl && rbuStrCompare(pIter->zDataTbl, pState->zDataTbl))
3826 rc = rbuObjIterNext(p, pIter);
3829 if( rc==SQLITE_OK && !pIter->zTbl ){
3830 rc = SQLITE_ERROR;
3831 p->zErrmsg = sqlite3_mprintf("rbu_state mismatch error");
3834 if( rc==SQLITE_OK ){
3835 p->nStep = pState->nRow;
3836 rc = rbuObjIterPrepareAll(p, &p->objiter, p->nStep);
3839 p->rc = rc;
3844 ** If there is a "*-oal" file in the file-system corresponding to the
3845 ** target database in the file-system, delete it. If an error occurs,
3846 ** leave an error code and error message in the rbu handle.
3848 static void rbuDeleteOalFile(sqlite3rbu *p){
3849 char *zOal = rbuMPrintf(p, "%s-oal", p->zTarget);
3850 if( zOal ){
3851 sqlite3_vfs *pVfs = 0;
3852 sqlite3_file_control(p->dbMain, "main", SQLITE_FCNTL_VFS_POINTER, &pVfs);
3853 assert( pVfs && p->rc==SQLITE_OK && p->zErrmsg==0 );
3854 pVfs->xDelete(pVfs, zOal, 0);
3855 sqlite3_free(zOal);
3860 ** Allocate a private rbu VFS for the rbu handle passed as the only
3861 ** argument. This VFS will be used unless the call to sqlite3rbu_open()
3862 ** specified a URI with a vfs=? option in place of a target database
3863 ** file name.
3865 static void rbuCreateVfs(sqlite3rbu *p){
3866 int rnd;
3867 char zRnd[64];
3869 assert( p->rc==SQLITE_OK );
3870 sqlite3_randomness(sizeof(int), (void*)&rnd);
3871 sqlite3_snprintf(sizeof(zRnd), zRnd, "rbu_vfs_%d", rnd);
3872 p->rc = sqlite3rbu_create_vfs(zRnd, 0);
3873 if( p->rc==SQLITE_OK ){
3874 sqlite3_vfs *pVfs = sqlite3_vfs_find(zRnd);
3875 assert( pVfs );
3876 p->zVfsName = pVfs->zName;
3877 ((rbu_vfs*)pVfs)->pRbu = p;
3882 ** Destroy the private VFS created for the rbu handle passed as the only
3883 ** argument by an earlier call to rbuCreateVfs().
3885 static void rbuDeleteVfs(sqlite3rbu *p){
3886 if( p->zVfsName ){
3887 sqlite3rbu_destroy_vfs(p->zVfsName);
3888 p->zVfsName = 0;
3893 ** This user-defined SQL function is invoked with a single argument - the
3894 ** name of a table expected to appear in the target database. It returns
3895 ** the number of auxilliary indexes on the table.
3897 static void rbuIndexCntFunc(
3898 sqlite3_context *pCtx,
3899 int nVal,
3900 sqlite3_value **apVal
3902 sqlite3rbu *p = (sqlite3rbu*)sqlite3_user_data(pCtx);
3903 sqlite3_stmt *pStmt = 0;
3904 char *zErrmsg = 0;
3905 int rc;
3906 sqlite3 *db = (rbuIsVacuum(p) ? p->dbRbu : p->dbMain);
3908 assert( nVal==1 );
3910 rc = prepareFreeAndCollectError(db, &pStmt, &zErrmsg,
3911 sqlite3_mprintf("SELECT count(*) FROM sqlite_schema "
3912 "WHERE type='index' AND tbl_name = %Q", sqlite3_value_text(apVal[0]))
3914 if( rc!=SQLITE_OK ){
3915 sqlite3_result_error(pCtx, zErrmsg, -1);
3916 }else{
3917 int nIndex = 0;
3918 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3919 nIndex = sqlite3_column_int(pStmt, 0);
3921 rc = sqlite3_finalize(pStmt);
3922 if( rc==SQLITE_OK ){
3923 sqlite3_result_int(pCtx, nIndex);
3924 }else{
3925 sqlite3_result_error(pCtx, sqlite3_errmsg(db), -1);
3929 sqlite3_free(zErrmsg);
3933 ** If the RBU database contains the rbu_count table, use it to initialize
3934 ** the sqlite3rbu.nPhaseOneStep variable. The schema of the rbu_count table
3935 ** is assumed to contain the same columns as:
3937 ** CREATE TABLE rbu_count(tbl TEXT PRIMARY KEY, cnt INTEGER) WITHOUT ROWID;
3939 ** There should be one row in the table for each data_xxx table in the
3940 ** database. The 'tbl' column should contain the name of a data_xxx table,
3941 ** and the cnt column the number of rows it contains.
3943 ** sqlite3rbu.nPhaseOneStep is initialized to the sum of (1 + nIndex) * cnt
3944 ** for all rows in the rbu_count table, where nIndex is the number of
3945 ** indexes on the corresponding target database table.
3947 static void rbuInitPhaseOneSteps(sqlite3rbu *p){
3948 if( p->rc==SQLITE_OK ){
3949 sqlite3_stmt *pStmt = 0;
3950 int bExists = 0; /* True if rbu_count exists */
3952 p->nPhaseOneStep = -1;
3954 p->rc = sqlite3_create_function(p->dbRbu,
3955 "rbu_index_cnt", 1, SQLITE_UTF8, (void*)p, rbuIndexCntFunc, 0, 0
3958 /* Check for the rbu_count table. If it does not exist, or if an error
3959 ** occurs, nPhaseOneStep will be left set to -1. */
3960 if( p->rc==SQLITE_OK ){
3961 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
3962 "SELECT 1 FROM sqlite_schema WHERE tbl_name = 'rbu_count'"
3965 if( p->rc==SQLITE_OK ){
3966 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3967 bExists = 1;
3969 p->rc = sqlite3_finalize(pStmt);
3972 if( p->rc==SQLITE_OK && bExists ){
3973 p->rc = prepareAndCollectError(p->dbRbu, &pStmt, &p->zErrmsg,
3974 "SELECT sum(cnt * (1 + rbu_index_cnt(rbu_target_name(tbl))))"
3975 "FROM rbu_count"
3977 if( p->rc==SQLITE_OK ){
3978 if( SQLITE_ROW==sqlite3_step(pStmt) ){
3979 p->nPhaseOneStep = sqlite3_column_int64(pStmt, 0);
3981 p->rc = sqlite3_finalize(pStmt);
3988 static sqlite3rbu *openRbuHandle(
3989 const char *zTarget,
3990 const char *zRbu,
3991 const char *zState
3993 sqlite3rbu *p;
3994 size_t nTarget = zTarget ? strlen(zTarget) : 0;
3995 size_t nRbu = strlen(zRbu);
3996 size_t nByte = sizeof(sqlite3rbu) + nTarget+1 + nRbu+1;
3998 p = (sqlite3rbu*)sqlite3_malloc64(nByte);
3999 if( p ){
4000 RbuState *pState = 0;
4002 /* Create the custom VFS. */
4003 memset(p, 0, sizeof(sqlite3rbu));
4004 sqlite3rbu_rename_handler(p, 0, 0);
4005 rbuCreateVfs(p);
4007 /* Open the target, RBU and state databases */
4008 if( p->rc==SQLITE_OK ){
4009 char *pCsr = (char*)&p[1];
4010 int bRetry = 0;
4011 if( zTarget ){
4012 p->zTarget = pCsr;
4013 memcpy(p->zTarget, zTarget, nTarget+1);
4014 pCsr += nTarget+1;
4016 p->zRbu = pCsr;
4017 memcpy(p->zRbu, zRbu, nRbu+1);
4018 pCsr += nRbu+1;
4019 if( zState ){
4020 p->zState = rbuMPrintf(p, "%s", zState);
4023 /* If the first attempt to open the database file fails and the bRetry
4024 ** flag it set, this means that the db was not opened because it seemed
4025 ** to be a wal-mode db. But, this may have happened due to an earlier
4026 ** RBU vacuum operation leaving an old wal file in the directory.
4027 ** If this is the case, it will have been checkpointed and deleted
4028 ** when the handle was closed and a second attempt to open the
4029 ** database may succeed. */
4030 rbuOpenDatabase(p, 0, &bRetry);
4031 if( bRetry ){
4032 rbuOpenDatabase(p, 0, 0);
4036 if( p->rc==SQLITE_OK ){
4037 pState = rbuLoadState(p);
4038 assert( pState || p->rc!=SQLITE_OK );
4039 if( p->rc==SQLITE_OK ){
4041 if( pState->eStage==0 ){
4042 rbuDeleteOalFile(p);
4043 rbuInitPhaseOneSteps(p);
4044 p->eStage = RBU_STAGE_OAL;
4045 }else{
4046 p->eStage = pState->eStage;
4047 p->nPhaseOneStep = pState->nPhaseOneStep;
4049 p->nProgress = pState->nProgress;
4050 p->iOalSz = pState->iOalSz;
4053 assert( p->rc!=SQLITE_OK || p->eStage!=0 );
4055 if( p->rc==SQLITE_OK && p->pTargetFd->pWalFd ){
4056 if( p->eStage==RBU_STAGE_OAL ){
4057 p->rc = SQLITE_ERROR;
4058 p->zErrmsg = sqlite3_mprintf("cannot update wal mode database");
4059 }else if( p->eStage==RBU_STAGE_MOVE ){
4060 p->eStage = RBU_STAGE_CKPT;
4061 p->nStep = 0;
4065 if( p->rc==SQLITE_OK
4066 && (p->eStage==RBU_STAGE_OAL || p->eStage==RBU_STAGE_MOVE)
4067 && pState->eStage!=0
4069 rbu_file *pFd = (rbuIsVacuum(p) ? p->pRbuFd : p->pTargetFd);
4070 if( pFd->iCookie!=pState->iCookie ){
4071 /* At this point (pTargetFd->iCookie) contains the value of the
4072 ** change-counter cookie (the thing that gets incremented when a
4073 ** transaction is committed in rollback mode) currently stored on
4074 ** page 1 of the database file. */
4075 p->rc = SQLITE_BUSY;
4076 p->zErrmsg = sqlite3_mprintf("database modified during rbu %s",
4077 (rbuIsVacuum(p) ? "vacuum" : "update")
4082 if( p->rc==SQLITE_OK ){
4083 if( p->eStage==RBU_STAGE_OAL ){
4084 sqlite3 *db = p->dbMain;
4085 p->rc = sqlite3_exec(p->dbRbu, "BEGIN", 0, 0, &p->zErrmsg);
4087 /* Point the object iterator at the first object */
4088 if( p->rc==SQLITE_OK ){
4089 p->rc = rbuObjIterFirst(p, &p->objiter);
4092 /* If the RBU database contains no data_xxx tables, declare the RBU
4093 ** update finished. */
4094 if( p->rc==SQLITE_OK && p->objiter.zTbl==0 ){
4095 p->rc = SQLITE_DONE;
4096 p->eStage = RBU_STAGE_DONE;
4097 }else{
4098 if( p->rc==SQLITE_OK && pState->eStage==0 && rbuIsVacuum(p) ){
4099 rbuCopyPragma(p, "page_size");
4100 rbuCopyPragma(p, "auto_vacuum");
4103 /* Open transactions both databases. The *-oal file is opened or
4104 ** created at this point. */
4105 if( p->rc==SQLITE_OK ){
4106 p->rc = sqlite3_exec(db, "BEGIN IMMEDIATE", 0, 0, &p->zErrmsg);
4109 /* Check if the main database is a zipvfs db. If it is, set the upper
4110 ** level pager to use "journal_mode=off". This prevents it from
4111 ** generating a large journal using a temp file. */
4112 if( p->rc==SQLITE_OK ){
4113 int frc = sqlite3_file_control(db, "main", SQLITE_FCNTL_ZIPVFS, 0);
4114 if( frc==SQLITE_OK ){
4115 p->rc = sqlite3_exec(
4116 db, "PRAGMA journal_mode=off",0,0,&p->zErrmsg);
4120 if( p->rc==SQLITE_OK ){
4121 rbuSetupOal(p, pState);
4124 }else if( p->eStage==RBU_STAGE_MOVE ){
4125 /* no-op */
4126 }else if( p->eStage==RBU_STAGE_CKPT ){
4127 if( !rbuIsVacuum(p) && rbuExclusiveCheckpoint(p->dbMain) ){
4128 /* If the rbu_exclusive_checkpoint=1 URI parameter was specified
4129 ** and an incremental checkpoint is being resumed, attempt an
4130 ** exclusive lock on the db file. If this fails, so be it. */
4131 p->eStage = RBU_STAGE_DONE;
4132 rbuLockDatabase(p->dbMain);
4133 p->eStage = RBU_STAGE_CKPT;
4135 rbuSetupCheckpoint(p, pState);
4136 }else if( p->eStage==RBU_STAGE_DONE ){
4137 p->rc = SQLITE_DONE;
4138 }else{
4139 p->rc = SQLITE_CORRUPT;
4143 rbuFreeState(pState);
4146 return p;
4150 ** Allocate and return an RBU handle with all fields zeroed except for the
4151 ** error code, which is set to SQLITE_MISUSE.
4153 static sqlite3rbu *rbuMisuseError(void){
4154 sqlite3rbu *pRet;
4155 pRet = sqlite3_malloc64(sizeof(sqlite3rbu));
4156 if( pRet ){
4157 memset(pRet, 0, sizeof(sqlite3rbu));
4158 pRet->rc = SQLITE_MISUSE;
4160 return pRet;
4164 ** Open and return a new RBU handle.
4166 sqlite3rbu *sqlite3rbu_open(
4167 const char *zTarget,
4168 const char *zRbu,
4169 const char *zState
4171 if( zTarget==0 || zRbu==0 ){ return rbuMisuseError(); }
4172 return openRbuHandle(zTarget, zRbu, zState);
4176 ** Open a handle to begin or resume an RBU VACUUM operation.
4178 sqlite3rbu *sqlite3rbu_vacuum(
4179 const char *zTarget,
4180 const char *zState
4182 if( zTarget==0 ){ return rbuMisuseError(); }
4183 if( zState ){
4184 int n = strlen(zState);
4185 if( n>=7 && 0==memcmp("-vactmp", &zState[n-7], 7) ){
4186 return rbuMisuseError();
4189 /* TODO: Check that both arguments are non-NULL */
4190 return openRbuHandle(0, zTarget, zState);
4194 ** Return the database handle used by pRbu.
4196 sqlite3 *sqlite3rbu_db(sqlite3rbu *pRbu, int bRbu){
4197 sqlite3 *db = 0;
4198 if( pRbu ){
4199 db = (bRbu ? pRbu->dbRbu : pRbu->dbMain);
4201 return db;
4206 ** If the error code currently stored in the RBU handle is SQLITE_CONSTRAINT,
4207 ** then edit any error message string so as to remove all occurrences of
4208 ** the pattern "rbu_imp_[0-9]*".
4210 static void rbuEditErrmsg(sqlite3rbu *p){
4211 if( p->rc==SQLITE_CONSTRAINT && p->zErrmsg ){
4212 unsigned int i;
4213 size_t nErrmsg = strlen(p->zErrmsg);
4214 for(i=0; i<(nErrmsg-8); i++){
4215 if( memcmp(&p->zErrmsg[i], "rbu_imp_", 8)==0 ){
4216 int nDel = 8;
4217 while( p->zErrmsg[i+nDel]>='0' && p->zErrmsg[i+nDel]<='9' ) nDel++;
4218 memmove(&p->zErrmsg[i], &p->zErrmsg[i+nDel], nErrmsg + 1 - i - nDel);
4219 nErrmsg -= nDel;
4226 ** Close the RBU handle.
4228 int sqlite3rbu_close(sqlite3rbu *p, char **pzErrmsg){
4229 int rc;
4230 if( p ){
4232 /* Commit the transaction to the *-oal file. */
4233 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
4234 p->rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, &p->zErrmsg);
4237 /* Sync the db file if currently doing an incremental checkpoint */
4238 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
4239 sqlite3_file *pDb = p->pTargetFd->pReal;
4240 p->rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
4243 rbuSaveState(p, p->eStage);
4245 if( p->rc==SQLITE_OK && p->eStage==RBU_STAGE_OAL ){
4246 p->rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, &p->zErrmsg);
4249 /* Close any open statement handles. */
4250 rbuObjIterFinalize(&p->objiter);
4252 /* If this is an RBU vacuum handle and the vacuum has either finished
4253 ** successfully or encountered an error, delete the contents of the
4254 ** state table. This causes the next call to sqlite3rbu_vacuum()
4255 ** specifying the current target and state databases to start a new
4256 ** vacuum from scratch. */
4257 if( rbuIsVacuum(p) && p->rc!=SQLITE_OK && p->dbRbu ){
4258 int rc2 = sqlite3_exec(p->dbRbu, "DELETE FROM stat.rbu_state", 0, 0, 0);
4259 if( p->rc==SQLITE_DONE && rc2!=SQLITE_OK ) p->rc = rc2;
4262 /* Close the open database handle and VFS object. */
4263 sqlite3_close(p->dbRbu);
4264 sqlite3_close(p->dbMain);
4265 assert( p->szTemp==0 );
4266 rbuDeleteVfs(p);
4267 sqlite3_free(p->aBuf);
4268 sqlite3_free(p->aFrame);
4270 rbuEditErrmsg(p);
4271 rc = p->rc;
4272 if( pzErrmsg ){
4273 *pzErrmsg = p->zErrmsg;
4274 }else{
4275 sqlite3_free(p->zErrmsg);
4277 sqlite3_free(p->zState);
4278 sqlite3_free(p);
4279 }else{
4280 rc = SQLITE_NOMEM;
4281 *pzErrmsg = 0;
4283 return rc;
4287 ** Return the total number of key-value operations (inserts, deletes or
4288 ** updates) that have been performed on the target database since the
4289 ** current RBU update was started.
4291 sqlite3_int64 sqlite3rbu_progress(sqlite3rbu *pRbu){
4292 return pRbu->nProgress;
4296 ** Return permyriadage progress indications for the two main stages of
4297 ** an RBU update.
4299 void sqlite3rbu_bp_progress(sqlite3rbu *p, int *pnOne, int *pnTwo){
4300 const int MAX_PROGRESS = 10000;
4301 switch( p->eStage ){
4302 case RBU_STAGE_OAL:
4303 if( p->nPhaseOneStep>0 ){
4304 *pnOne = (int)(MAX_PROGRESS * (i64)p->nProgress/(i64)p->nPhaseOneStep);
4305 }else{
4306 *pnOne = -1;
4308 *pnTwo = 0;
4309 break;
4311 case RBU_STAGE_MOVE:
4312 *pnOne = MAX_PROGRESS;
4313 *pnTwo = 0;
4314 break;
4316 case RBU_STAGE_CKPT:
4317 *pnOne = MAX_PROGRESS;
4318 *pnTwo = (int)(MAX_PROGRESS * (i64)p->nStep / (i64)p->nFrame);
4319 break;
4321 case RBU_STAGE_DONE:
4322 *pnOne = MAX_PROGRESS;
4323 *pnTwo = MAX_PROGRESS;
4324 break;
4326 default:
4327 assert( 0 );
4332 ** Return the current state of the RBU vacuum or update operation.
4334 int sqlite3rbu_state(sqlite3rbu *p){
4335 int aRes[] = {
4336 0, SQLITE_RBU_STATE_OAL, SQLITE_RBU_STATE_MOVE,
4337 0, SQLITE_RBU_STATE_CHECKPOINT, SQLITE_RBU_STATE_DONE
4340 assert( RBU_STAGE_OAL==1 );
4341 assert( RBU_STAGE_MOVE==2 );
4342 assert( RBU_STAGE_CKPT==4 );
4343 assert( RBU_STAGE_DONE==5 );
4344 assert( aRes[RBU_STAGE_OAL]==SQLITE_RBU_STATE_OAL );
4345 assert( aRes[RBU_STAGE_MOVE]==SQLITE_RBU_STATE_MOVE );
4346 assert( aRes[RBU_STAGE_CKPT]==SQLITE_RBU_STATE_CHECKPOINT );
4347 assert( aRes[RBU_STAGE_DONE]==SQLITE_RBU_STATE_DONE );
4349 if( p->rc!=SQLITE_OK && p->rc!=SQLITE_DONE ){
4350 return SQLITE_RBU_STATE_ERROR;
4351 }else{
4352 assert( p->rc!=SQLITE_DONE || p->eStage==RBU_STAGE_DONE );
4353 assert( p->eStage==RBU_STAGE_OAL
4354 || p->eStage==RBU_STAGE_MOVE
4355 || p->eStage==RBU_STAGE_CKPT
4356 || p->eStage==RBU_STAGE_DONE
4358 return aRes[p->eStage];
4362 int sqlite3rbu_savestate(sqlite3rbu *p){
4363 int rc = p->rc;
4364 if( rc==SQLITE_DONE ) return SQLITE_OK;
4366 assert( p->eStage>=RBU_STAGE_OAL && p->eStage<=RBU_STAGE_DONE );
4367 if( p->eStage==RBU_STAGE_OAL ){
4368 assert( rc!=SQLITE_DONE );
4369 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "COMMIT", 0, 0, 0);
4372 /* Sync the db file */
4373 if( rc==SQLITE_OK && p->eStage==RBU_STAGE_CKPT ){
4374 sqlite3_file *pDb = p->pTargetFd->pReal;
4375 rc = pDb->pMethods->xSync(pDb, SQLITE_SYNC_NORMAL);
4378 p->rc = rc;
4379 rbuSaveState(p, p->eStage);
4380 rc = p->rc;
4382 if( p->eStage==RBU_STAGE_OAL ){
4383 assert( rc!=SQLITE_DONE );
4384 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbRbu, "COMMIT", 0, 0, 0);
4385 if( rc==SQLITE_OK ){
4386 const char *zBegin = rbuIsVacuum(p) ? "BEGIN" : "BEGIN IMMEDIATE";
4387 rc = sqlite3_exec(p->dbRbu, zBegin, 0, 0, 0);
4389 if( rc==SQLITE_OK ) rc = sqlite3_exec(p->dbMain, "BEGIN IMMEDIATE", 0, 0,0);
4392 p->rc = rc;
4393 return rc;
4397 ** Default xRename callback for RBU.
4399 static int xDefaultRename(void *pArg, const char *zOld, const char *zNew){
4400 int rc = SQLITE_OK;
4401 #if defined(_WIN32_WCE)
4403 LPWSTR zWideOld;
4404 LPWSTR zWideNew;
4406 zWideOld = rbuWinUtf8ToUnicode(zOld);
4407 if( zWideOld ){
4408 zWideNew = rbuWinUtf8ToUnicode(zNew);
4409 if( zWideNew ){
4410 if( MoveFileW(zWideOld, zWideNew) ){
4411 rc = SQLITE_OK;
4412 }else{
4413 rc = SQLITE_IOERR;
4415 sqlite3_free(zWideNew);
4416 }else{
4417 rc = SQLITE_IOERR_NOMEM;
4419 sqlite3_free(zWideOld);
4420 }else{
4421 rc = SQLITE_IOERR_NOMEM;
4424 #else
4425 rc = rename(zOld, zNew) ? SQLITE_IOERR : SQLITE_OK;
4426 #endif
4427 return rc;
4430 void sqlite3rbu_rename_handler(
4431 sqlite3rbu *pRbu,
4432 void *pArg,
4433 int (*xRename)(void *pArg, const char *zOld, const char *zNew)
4435 if( xRename ){
4436 pRbu->xRename = xRename;
4437 pRbu->pRenameArg = pArg;
4438 }else{
4439 pRbu->xRename = xDefaultRename;
4440 pRbu->pRenameArg = 0;
4444 /**************************************************************************
4445 ** Beginning of RBU VFS shim methods. The VFS shim modifies the behaviour
4446 ** of a standard VFS in the following ways:
4448 ** 1. Whenever the first page of a main database file is read or
4449 ** written, the value of the change-counter cookie is stored in
4450 ** rbu_file.iCookie. Similarly, the value of the "write-version"
4451 ** database header field is stored in rbu_file.iWriteVer. This ensures
4452 ** that the values are always trustworthy within an open transaction.
4454 ** 2. Whenever an SQLITE_OPEN_WAL file is opened, the (rbu_file.pWalFd)
4455 ** member variable of the associated database file descriptor is set
4456 ** to point to the new file. A mutex protected linked list of all main
4457 ** db fds opened using a particular RBU VFS is maintained at
4458 ** rbu_vfs.pMain to facilitate this.
4460 ** 3. Using a new file-control "SQLITE_FCNTL_RBU", a main db rbu_file
4461 ** object can be marked as the target database of an RBU update. This
4462 ** turns on the following extra special behaviour:
4464 ** 3a. If xAccess() is called to check if there exists a *-wal file
4465 ** associated with an RBU target database currently in RBU_STAGE_OAL
4466 ** stage (preparing the *-oal file), the following special handling
4467 ** applies:
4469 ** * if the *-wal file does exist, return SQLITE_CANTOPEN. An RBU
4470 ** target database may not be in wal mode already.
4472 ** * if the *-wal file does not exist, set the output parameter to
4473 ** non-zero (to tell SQLite that it does exist) anyway.
4475 ** Then, when xOpen() is called to open the *-wal file associated with
4476 ** the RBU target in RBU_STAGE_OAL stage, instead of opening the *-wal
4477 ** file, the rbu vfs opens the corresponding *-oal file instead.
4479 ** 3b. The *-shm pages returned by xShmMap() for a target db file in
4480 ** RBU_STAGE_OAL mode are actually stored in heap memory. This is to
4481 ** avoid creating a *-shm file on disk. Additionally, xShmLock() calls
4482 ** are no-ops on target database files in RBU_STAGE_OAL mode. This is
4483 ** because assert() statements in some VFS implementations fail if
4484 ** xShmLock() is called before xShmMap().
4486 ** 3c. If an EXCLUSIVE lock is attempted on a target database file in any
4487 ** mode except RBU_STAGE_DONE (all work completed and checkpointed), it
4488 ** fails with an SQLITE_BUSY error. This is to stop RBU connections
4489 ** from automatically checkpointing a *-wal (or *-oal) file from within
4490 ** sqlite3_close().
4492 ** 3d. In RBU_STAGE_CAPTURE mode, all xRead() calls on the wal file, and
4493 ** all xWrite() calls on the target database file perform no IO.
4494 ** Instead the frame and page numbers that would be read and written
4495 ** are recorded. Additionally, successful attempts to obtain exclusive
4496 ** xShmLock() WRITER, CHECKPOINTER and READ0 locks on the target
4497 ** database file are recorded. xShmLock() calls to unlock the same
4498 ** locks are no-ops (so that once obtained, these locks are never
4499 ** relinquished). Finally, calls to xSync() on the target database
4500 ** file fail with SQLITE_NOTICE errors.
4503 static void rbuUnlockShm(rbu_file *p){
4504 assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
4505 if( p->pRbu ){
4506 int (*xShmLock)(sqlite3_file*,int,int,int) = p->pReal->pMethods->xShmLock;
4507 int i;
4508 for(i=0; i<SQLITE_SHM_NLOCK;i++){
4509 if( (1<<i) & p->pRbu->mLock ){
4510 xShmLock(p->pReal, i, 1, SQLITE_SHM_UNLOCK|SQLITE_SHM_EXCLUSIVE);
4513 p->pRbu->mLock = 0;
4519 static int rbuUpdateTempSize(rbu_file *pFd, sqlite3_int64 nNew){
4520 sqlite3rbu *pRbu = pFd->pRbu;
4521 i64 nDiff = nNew - pFd->sz;
4522 pRbu->szTemp += nDiff;
4523 pFd->sz = nNew;
4524 assert( pRbu->szTemp>=0 );
4525 if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
4526 return SQLITE_OK;
4530 ** Add an item to the main-db lists, if it is not already present.
4532 ** There are two main-db lists. One for all file descriptors, and one
4533 ** for all file descriptors with rbu_file.pDb!=0. If the argument has
4534 ** rbu_file.pDb!=0, then it is assumed to already be present on the
4535 ** main list and is only added to the pDb!=0 list.
4537 static void rbuMainlistAdd(rbu_file *p){
4538 rbu_vfs *pRbuVfs = p->pRbuVfs;
4539 rbu_file *pIter;
4540 assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) );
4541 sqlite3_mutex_enter(pRbuVfs->mutex);
4542 if( p->pRbu==0 ){
4543 for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext);
4544 p->pMainNext = pRbuVfs->pMain;
4545 pRbuVfs->pMain = p;
4546 }else{
4547 for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){}
4548 if( pIter==0 ){
4549 p->pMainRbuNext = pRbuVfs->pMainRbu;
4550 pRbuVfs->pMainRbu = p;
4553 sqlite3_mutex_leave(pRbuVfs->mutex);
4557 ** Remove an item from the main-db lists.
4559 static void rbuMainlistRemove(rbu_file *p){
4560 rbu_file **pp;
4561 sqlite3_mutex_enter(p->pRbuVfs->mutex);
4562 for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){}
4563 if( *pp ) *pp = p->pMainNext;
4564 p->pMainNext = 0;
4565 for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){}
4566 if( *pp ) *pp = p->pMainRbuNext;
4567 p->pMainRbuNext = 0;
4568 sqlite3_mutex_leave(p->pRbuVfs->mutex);
4572 ** Given that zWal points to a buffer containing a wal file name passed to
4573 ** either the xOpen() or xAccess() VFS method, search the main-db list for
4574 ** a file-handle opened by the same database connection on the corresponding
4575 ** database file.
4577 ** If parameter bRbu is true, only search for file-descriptors with
4578 ** rbu_file.pDb!=0.
4580 static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){
4581 rbu_file *pDb;
4582 sqlite3_mutex_enter(pRbuVfs->mutex);
4583 if( bRbu ){
4584 for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){}
4585 }else{
4586 for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
4588 sqlite3_mutex_leave(pRbuVfs->mutex);
4589 return pDb;
4593 ** Close an rbu file.
4595 static int rbuVfsClose(sqlite3_file *pFile){
4596 rbu_file *p = (rbu_file*)pFile;
4597 int rc;
4598 int i;
4600 /* Free the contents of the apShm[] array. And the array itself. */
4601 for(i=0; i<p->nShm; i++){
4602 sqlite3_free(p->apShm[i]);
4604 sqlite3_free(p->apShm);
4605 p->apShm = 0;
4606 sqlite3_free(p->zDel);
4608 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
4609 const sqlite3_io_methods *pMeth = p->pReal->pMethods;
4610 rbuMainlistRemove(p);
4611 rbuUnlockShm(p);
4612 if( pMeth->iVersion>1 && pMeth->xShmUnmap ){
4613 pMeth->xShmUnmap(p->pReal, 0);
4616 else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
4617 rbuUpdateTempSize(p, 0);
4619 assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p );
4621 /* Close the underlying file handle */
4622 rc = p->pReal->pMethods->xClose(p->pReal);
4623 return rc;
4628 ** Read and return an unsigned 32-bit big-endian integer from the buffer
4629 ** passed as the only argument.
4631 static u32 rbuGetU32(u8 *aBuf){
4632 return ((u32)aBuf[0] << 24)
4633 + ((u32)aBuf[1] << 16)
4634 + ((u32)aBuf[2] << 8)
4635 + ((u32)aBuf[3]);
4639 ** Write an unsigned 32-bit value in big-endian format to the supplied
4640 ** buffer.
4642 static void rbuPutU32(u8 *aBuf, u32 iVal){
4643 aBuf[0] = (iVal >> 24) & 0xFF;
4644 aBuf[1] = (iVal >> 16) & 0xFF;
4645 aBuf[2] = (iVal >> 8) & 0xFF;
4646 aBuf[3] = (iVal >> 0) & 0xFF;
4649 static void rbuPutU16(u8 *aBuf, u16 iVal){
4650 aBuf[0] = (iVal >> 8) & 0xFF;
4651 aBuf[1] = (iVal >> 0) & 0xFF;
4655 ** Read data from an rbuVfs-file.
4657 static int rbuVfsRead(
4658 sqlite3_file *pFile,
4659 void *zBuf,
4660 int iAmt,
4661 sqlite_int64 iOfst
4663 rbu_file *p = (rbu_file*)pFile;
4664 sqlite3rbu *pRbu = p->pRbu;
4665 int rc;
4667 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4668 assert( p->openFlags & SQLITE_OPEN_WAL );
4669 rc = rbuCaptureWalRead(p->pRbu, iOfst, iAmt);
4670 }else{
4671 if( pRbu && pRbu->eStage==RBU_STAGE_OAL
4672 && (p->openFlags & SQLITE_OPEN_WAL)
4673 && iOfst>=pRbu->iOalSz
4675 rc = SQLITE_OK;
4676 memset(zBuf, 0, iAmt);
4677 }else{
4678 rc = p->pReal->pMethods->xRead(p->pReal, zBuf, iAmt, iOfst);
4679 #if 1
4680 /* If this is being called to read the first page of the target
4681 ** database as part of an rbu vacuum operation, synthesize the
4682 ** contents of the first page if it does not yet exist. Otherwise,
4683 ** SQLite will not check for a *-wal file. */
4684 if( pRbu && rbuIsVacuum(pRbu)
4685 && rc==SQLITE_IOERR_SHORT_READ && iOfst==0
4686 && (p->openFlags & SQLITE_OPEN_MAIN_DB)
4687 && pRbu->rc==SQLITE_OK
4689 sqlite3_file *pFd = (sqlite3_file*)pRbu->pRbuFd;
4690 rc = pFd->pMethods->xRead(pFd, zBuf, iAmt, iOfst);
4691 if( rc==SQLITE_OK ){
4692 u8 *aBuf = (u8*)zBuf;
4693 u32 iRoot = rbuGetU32(&aBuf[52]) ? 1 : 0;
4694 rbuPutU32(&aBuf[52], iRoot); /* largest root page number */
4695 rbuPutU32(&aBuf[36], 0); /* number of free pages */
4696 rbuPutU32(&aBuf[32], 0); /* first page on free list trunk */
4697 rbuPutU32(&aBuf[28], 1); /* size of db file in pages */
4698 rbuPutU32(&aBuf[24], pRbu->pRbuFd->iCookie+1); /* Change counter */
4700 if( iAmt>100 ){
4701 memset(&aBuf[100], 0, iAmt-100);
4702 rbuPutU16(&aBuf[105], iAmt & 0xFFFF);
4703 aBuf[100] = 0x0D;
4707 #endif
4709 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
4710 /* These look like magic numbers. But they are stable, as they are part
4711 ** of the definition of the SQLite file format, which may not change. */
4712 u8 *pBuf = (u8*)zBuf;
4713 p->iCookie = rbuGetU32(&pBuf[24]);
4714 p->iWriteVer = pBuf[19];
4717 return rc;
4721 ** Write data to an rbuVfs-file.
4723 static int rbuVfsWrite(
4724 sqlite3_file *pFile,
4725 const void *zBuf,
4726 int iAmt,
4727 sqlite_int64 iOfst
4729 rbu_file *p = (rbu_file*)pFile;
4730 sqlite3rbu *pRbu = p->pRbu;
4731 int rc;
4733 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4734 assert( p->openFlags & SQLITE_OPEN_MAIN_DB );
4735 rc = rbuCaptureDbWrite(p->pRbu, iOfst);
4736 }else{
4737 if( pRbu ){
4738 if( pRbu->eStage==RBU_STAGE_OAL
4739 && (p->openFlags & SQLITE_OPEN_WAL)
4740 && iOfst>=pRbu->iOalSz
4742 pRbu->iOalSz = iAmt + iOfst;
4743 }else if( p->openFlags & SQLITE_OPEN_DELETEONCLOSE ){
4744 i64 szNew = iAmt+iOfst;
4745 if( szNew>p->sz ){
4746 rc = rbuUpdateTempSize(p, szNew);
4747 if( rc!=SQLITE_OK ) return rc;
4751 rc = p->pReal->pMethods->xWrite(p->pReal, zBuf, iAmt, iOfst);
4752 if( rc==SQLITE_OK && iOfst==0 && (p->openFlags & SQLITE_OPEN_MAIN_DB) ){
4753 /* These look like magic numbers. But they are stable, as they are part
4754 ** of the definition of the SQLite file format, which may not change. */
4755 u8 *pBuf = (u8*)zBuf;
4756 p->iCookie = rbuGetU32(&pBuf[24]);
4757 p->iWriteVer = pBuf[19];
4760 return rc;
4764 ** Truncate an rbuVfs-file.
4766 static int rbuVfsTruncate(sqlite3_file *pFile, sqlite_int64 size){
4767 rbu_file *p = (rbu_file*)pFile;
4768 if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
4769 int rc = rbuUpdateTempSize(p, size);
4770 if( rc!=SQLITE_OK ) return rc;
4772 return p->pReal->pMethods->xTruncate(p->pReal, size);
4776 ** Sync an rbuVfs-file.
4778 static int rbuVfsSync(sqlite3_file *pFile, int flags){
4779 rbu_file *p = (rbu_file *)pFile;
4780 if( p->pRbu && p->pRbu->eStage==RBU_STAGE_CAPTURE ){
4781 if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
4782 return SQLITE_NOTICE_RBU;
4784 return SQLITE_OK;
4786 return p->pReal->pMethods->xSync(p->pReal, flags);
4790 ** Return the current file-size of an rbuVfs-file.
4792 static int rbuVfsFileSize(sqlite3_file *pFile, sqlite_int64 *pSize){
4793 rbu_file *p = (rbu_file *)pFile;
4794 int rc;
4795 rc = p->pReal->pMethods->xFileSize(p->pReal, pSize);
4797 /* If this is an RBU vacuum operation and this is the target database,
4798 ** pretend that it has at least one page. Otherwise, SQLite will not
4799 ** check for the existance of a *-wal file. rbuVfsRead() contains
4800 ** similar logic. */
4801 if( rc==SQLITE_OK && *pSize==0
4802 && p->pRbu && rbuIsVacuum(p->pRbu)
4803 && (p->openFlags & SQLITE_OPEN_MAIN_DB)
4805 *pSize = 1024;
4807 return rc;
4811 ** Lock an rbuVfs-file.
4813 static int rbuVfsLock(sqlite3_file *pFile, int eLock){
4814 rbu_file *p = (rbu_file*)pFile;
4815 sqlite3rbu *pRbu = p->pRbu;
4816 int rc = SQLITE_OK;
4818 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4819 if( eLock==SQLITE_LOCK_EXCLUSIVE
4820 && (p->bNolock || (pRbu && pRbu->eStage!=RBU_STAGE_DONE))
4822 /* Do not allow EXCLUSIVE locks. Preventing SQLite from taking this
4823 ** prevents it from checkpointing the database from sqlite3_close(). */
4824 rc = SQLITE_BUSY;
4825 }else{
4826 rc = p->pReal->pMethods->xLock(p->pReal, eLock);
4829 return rc;
4833 ** Unlock an rbuVfs-file.
4835 static int rbuVfsUnlock(sqlite3_file *pFile, int eLock){
4836 rbu_file *p = (rbu_file *)pFile;
4837 return p->pReal->pMethods->xUnlock(p->pReal, eLock);
4841 ** Check if another file-handle holds a RESERVED lock on an rbuVfs-file.
4843 static int rbuVfsCheckReservedLock(sqlite3_file *pFile, int *pResOut){
4844 rbu_file *p = (rbu_file *)pFile;
4845 return p->pReal->pMethods->xCheckReservedLock(p->pReal, pResOut);
4849 ** File control method. For custom operations on an rbuVfs-file.
4851 static int rbuVfsFileControl(sqlite3_file *pFile, int op, void *pArg){
4852 rbu_file *p = (rbu_file *)pFile;
4853 int (*xControl)(sqlite3_file*,int,void*) = p->pReal->pMethods->xFileControl;
4854 int rc;
4856 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB)
4857 || p->openFlags & (SQLITE_OPEN_TRANSIENT_DB|SQLITE_OPEN_TEMP_JOURNAL)
4859 if( op==SQLITE_FCNTL_RBU ){
4860 sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
4862 /* First try to find another RBU vfs lower down in the vfs stack. If
4863 ** one is found, this vfs will operate in pass-through mode. The lower
4864 ** level vfs will do the special RBU handling. */
4865 rc = xControl(p->pReal, op, pArg);
4867 if( rc==SQLITE_NOTFOUND ){
4868 /* Now search for a zipvfs instance lower down in the VFS stack. If
4869 ** one is found, this is an error. */
4870 void *dummy = 0;
4871 rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
4872 if( rc==SQLITE_OK ){
4873 rc = SQLITE_ERROR;
4874 pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
4875 }else if( rc==SQLITE_NOTFOUND ){
4876 pRbu->pTargetFd = p;
4877 p->pRbu = pRbu;
4878 rbuMainlistAdd(p);
4879 if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
4880 rc = SQLITE_OK;
4883 return rc;
4885 else if( op==SQLITE_FCNTL_RBUCNT ){
4886 sqlite3rbu *pRbu = (sqlite3rbu*)pArg;
4887 pRbu->nRbu++;
4888 pRbu->pRbuFd = p;
4889 p->bNolock = 1;
4892 rc = xControl(p->pReal, op, pArg);
4893 if( rc==SQLITE_OK && op==SQLITE_FCNTL_VFSNAME ){
4894 rbu_vfs *pRbuVfs = p->pRbuVfs;
4895 char *zIn = *(char**)pArg;
4896 char *zOut = sqlite3_mprintf("rbu(%s)/%z", pRbuVfs->base.zName, zIn);
4897 *(char**)pArg = zOut;
4898 if( zOut==0 ) rc = SQLITE_NOMEM;
4901 return rc;
4905 ** Return the sector-size in bytes for an rbuVfs-file.
4907 static int rbuVfsSectorSize(sqlite3_file *pFile){
4908 rbu_file *p = (rbu_file *)pFile;
4909 return p->pReal->pMethods->xSectorSize(p->pReal);
4913 ** Return the device characteristic flags supported by an rbuVfs-file.
4915 static int rbuVfsDeviceCharacteristics(sqlite3_file *pFile){
4916 rbu_file *p = (rbu_file *)pFile;
4917 return p->pReal->pMethods->xDeviceCharacteristics(p->pReal);
4921 ** Take or release a shared-memory lock.
4923 static int rbuVfsShmLock(sqlite3_file *pFile, int ofst, int n, int flags){
4924 rbu_file *p = (rbu_file*)pFile;
4925 sqlite3rbu *pRbu = p->pRbu;
4926 int rc = SQLITE_OK;
4928 #ifdef SQLITE_AMALGAMATION
4929 assert( WAL_CKPT_LOCK==1 );
4930 #endif
4932 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4933 if( pRbu && (
4934 pRbu->eStage==RBU_STAGE_OAL
4935 || pRbu->eStage==RBU_STAGE_MOVE
4936 || pRbu->eStage==RBU_STAGE_DONE
4938 /* Prevent SQLite from taking a shm-lock on the target file when it
4939 ** is supplying heap memory to the upper layer in place of *-shm
4940 ** segments. */
4941 if( ofst==WAL_LOCK_CKPT && n==1 ) rc = SQLITE_BUSY;
4942 }else{
4943 int bCapture = 0;
4944 if( pRbu && pRbu->eStage==RBU_STAGE_CAPTURE ){
4945 bCapture = 1;
4947 if( bCapture==0 || 0==(flags & SQLITE_SHM_UNLOCK) ){
4948 rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags);
4949 if( bCapture && rc==SQLITE_OK ){
4950 pRbu->mLock |= ((1<<n) - 1) << ofst;
4955 return rc;
4959 ** Obtain a pointer to a mapping of a single 32KiB page of the *-shm file.
4961 static int rbuVfsShmMap(
4962 sqlite3_file *pFile,
4963 int iRegion,
4964 int szRegion,
4965 int isWrite,
4966 void volatile **pp
4968 rbu_file *p = (rbu_file*)pFile;
4969 int rc = SQLITE_OK;
4970 int eStage = (p->pRbu ? p->pRbu->eStage : 0);
4972 /* If not in RBU_STAGE_OAL, allow this call to pass through. Or, if this
4973 ** rbu is in the RBU_STAGE_OAL state, use heap memory for *-shm space
4974 ** instead of a file on disk. */
4975 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
4976 if( eStage==RBU_STAGE_OAL ){
4977 sqlite3_int64 nByte = (iRegion+1) * sizeof(char*);
4978 char **apNew = (char**)sqlite3_realloc64(p->apShm, nByte);
4980 /* This is an RBU connection that uses its own heap memory for the
4981 ** pages of the *-shm file. Since no other process can have run
4982 ** recovery, the connection must request *-shm pages in order
4983 ** from start to finish. */
4984 assert( iRegion==p->nShm );
4985 if( apNew==0 ){
4986 rc = SQLITE_NOMEM;
4987 }else{
4988 memset(&apNew[p->nShm], 0, sizeof(char*) * (1 + iRegion - p->nShm));
4989 p->apShm = apNew;
4990 p->nShm = iRegion+1;
4993 if( rc==SQLITE_OK ){
4994 char *pNew = (char*)sqlite3_malloc64(szRegion);
4995 if( pNew==0 ){
4996 rc = SQLITE_NOMEM;
4997 }else{
4998 memset(pNew, 0, szRegion);
4999 p->apShm[iRegion] = pNew;
5003 if( rc==SQLITE_OK ){
5004 *pp = p->apShm[iRegion];
5005 }else{
5006 *pp = 0;
5008 }else{
5009 assert( p->apShm==0 );
5010 rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp);
5013 return rc;
5017 ** Memory barrier.
5019 static void rbuVfsShmBarrier(sqlite3_file *pFile){
5020 rbu_file *p = (rbu_file *)pFile;
5021 p->pReal->pMethods->xShmBarrier(p->pReal);
5025 ** The xShmUnmap method.
5027 static int rbuVfsShmUnmap(sqlite3_file *pFile, int delFlag){
5028 rbu_file *p = (rbu_file*)pFile;
5029 int rc = SQLITE_OK;
5030 int eStage = (p->pRbu ? p->pRbu->eStage : 0);
5032 assert( p->openFlags & (SQLITE_OPEN_MAIN_DB|SQLITE_OPEN_TEMP_DB) );
5033 if( eStage==RBU_STAGE_OAL || eStage==RBU_STAGE_MOVE ){
5034 /* no-op */
5035 }else{
5036 /* Release the checkpointer and writer locks */
5037 rbuUnlockShm(p);
5038 rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
5040 return rc;
5044 ** Open an rbu file handle.
5046 static int rbuVfsOpen(
5047 sqlite3_vfs *pVfs,
5048 const char *zName,
5049 sqlite3_file *pFile,
5050 int flags,
5051 int *pOutFlags
5053 static sqlite3_io_methods rbuvfs_io_methods = {
5054 2, /* iVersion */
5055 rbuVfsClose, /* xClose */
5056 rbuVfsRead, /* xRead */
5057 rbuVfsWrite, /* xWrite */
5058 rbuVfsTruncate, /* xTruncate */
5059 rbuVfsSync, /* xSync */
5060 rbuVfsFileSize, /* xFileSize */
5061 rbuVfsLock, /* xLock */
5062 rbuVfsUnlock, /* xUnlock */
5063 rbuVfsCheckReservedLock, /* xCheckReservedLock */
5064 rbuVfsFileControl, /* xFileControl */
5065 rbuVfsSectorSize, /* xSectorSize */
5066 rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
5067 rbuVfsShmMap, /* xShmMap */
5068 rbuVfsShmLock, /* xShmLock */
5069 rbuVfsShmBarrier, /* xShmBarrier */
5070 rbuVfsShmUnmap, /* xShmUnmap */
5071 0, 0 /* xFetch, xUnfetch */
5073 static sqlite3_io_methods rbuvfs_io_methods1 = {
5074 1, /* iVersion */
5075 rbuVfsClose, /* xClose */
5076 rbuVfsRead, /* xRead */
5077 rbuVfsWrite, /* xWrite */
5078 rbuVfsTruncate, /* xTruncate */
5079 rbuVfsSync, /* xSync */
5080 rbuVfsFileSize, /* xFileSize */
5081 rbuVfsLock, /* xLock */
5082 rbuVfsUnlock, /* xUnlock */
5083 rbuVfsCheckReservedLock, /* xCheckReservedLock */
5084 rbuVfsFileControl, /* xFileControl */
5085 rbuVfsSectorSize, /* xSectorSize */
5086 rbuVfsDeviceCharacteristics, /* xDeviceCharacteristics */
5087 0, 0, 0, 0, 0, 0
5092 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
5093 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
5094 rbu_file *pFd = (rbu_file *)pFile;
5095 int rc = SQLITE_OK;
5096 const char *zOpen = zName;
5097 int oflags = flags;
5099 memset(pFd, 0, sizeof(rbu_file));
5100 pFd->pReal = (sqlite3_file*)&pFd[1];
5101 pFd->pRbuVfs = pRbuVfs;
5102 pFd->openFlags = flags;
5103 if( zName ){
5104 if( flags & SQLITE_OPEN_MAIN_DB ){
5105 /* A main database has just been opened. The following block sets
5106 ** (pFd->zWal) to point to a buffer owned by SQLite that contains
5107 ** the name of the *-wal file this db connection will use. SQLite
5108 ** happens to pass a pointer to this buffer when using xAccess()
5109 ** or xOpen() to operate on the *-wal file. */
5110 pFd->zWal = sqlite3_filename_wal(zName);
5112 else if( flags & SQLITE_OPEN_WAL ){
5113 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0);
5114 if( pDb ){
5115 if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
5116 /* This call is to open a *-wal file. Intead, open the *-oal. */
5117 size_t nOpen;
5118 if( rbuIsVacuum(pDb->pRbu) ){
5119 zOpen = sqlite3_db_filename(pDb->pRbu->dbRbu, "main");
5120 zOpen = sqlite3_filename_wal(zOpen);
5122 nOpen = strlen(zOpen);
5123 ((char*)zOpen)[nOpen-3] = 'o';
5124 pFd->pRbu = pDb->pRbu;
5126 pDb->pWalFd = pFd;
5129 }else{
5130 pFd->pRbu = pRbuVfs->pRbu;
5133 if( oflags & SQLITE_OPEN_MAIN_DB
5134 && sqlite3_uri_boolean(zName, "rbu_memory", 0)
5136 assert( oflags & SQLITE_OPEN_MAIN_DB );
5137 oflags = SQLITE_OPEN_TEMP_DB | SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
5138 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
5139 zOpen = 0;
5142 if( rc==SQLITE_OK ){
5143 rc = pRealVfs->xOpen(pRealVfs, zOpen, pFd->pReal, oflags, pOutFlags);
5145 if( pFd->pReal->pMethods ){
5146 const sqlite3_io_methods *pMeth = pFd->pReal->pMethods;
5147 /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
5148 ** pointer and, if the file is a main database file, link it into the
5149 ** mutex protected linked list of all such files. */
5150 if( pMeth->iVersion<2 || pMeth->xShmLock==0 ){
5151 pFile->pMethods = &rbuvfs_io_methods1;
5152 }else{
5153 pFile->pMethods = &rbuvfs_io_methods;
5155 if( flags & SQLITE_OPEN_MAIN_DB ){
5156 rbuMainlistAdd(pFd);
5158 }else{
5159 sqlite3_free(pFd->zDel);
5162 return rc;
5166 ** Delete the file located at zPath.
5168 static int rbuVfsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
5169 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5170 return pRealVfs->xDelete(pRealVfs, zPath, dirSync);
5174 ** Test for access permissions. Return true if the requested permission
5175 ** is available, or false otherwise.
5177 static int rbuVfsAccess(
5178 sqlite3_vfs *pVfs,
5179 const char *zPath,
5180 int flags,
5181 int *pResOut
5183 rbu_vfs *pRbuVfs = (rbu_vfs*)pVfs;
5184 sqlite3_vfs *pRealVfs = pRbuVfs->pRealVfs;
5185 int rc;
5187 rc = pRealVfs->xAccess(pRealVfs, zPath, flags, pResOut);
5189 /* If this call is to check if a *-wal file associated with an RBU target
5190 ** database connection exists, and the RBU update is in RBU_STAGE_OAL,
5191 ** the following special handling is activated:
5193 ** a) if the *-wal file does exist, return SQLITE_CANTOPEN. This
5194 ** ensures that the RBU extension never tries to update a database
5195 ** in wal mode, even if the first page of the database file has
5196 ** been damaged.
5198 ** b) if the *-wal file does not exist, claim that it does anyway,
5199 ** causing SQLite to call xOpen() to open it. This call will also
5200 ** be intercepted (see the rbuVfsOpen() function) and the *-oal
5201 ** file opened instead.
5203 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
5204 rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1);
5205 if( pDb && pDb->pRbu->eStage==RBU_STAGE_OAL ){
5206 assert( pDb->pRbu );
5207 if( *pResOut ){
5208 rc = SQLITE_CANTOPEN;
5209 }else{
5210 sqlite3_int64 sz = 0;
5211 rc = rbuVfsFileSize(&pDb->base, &sz);
5212 *pResOut = (sz>0);
5217 return rc;
5221 ** Populate buffer zOut with the full canonical pathname corresponding
5222 ** to the pathname in zPath. zOut is guaranteed to point to a buffer
5223 ** of at least (DEVSYM_MAX_PATHNAME+1) bytes.
5225 static int rbuVfsFullPathname(
5226 sqlite3_vfs *pVfs,
5227 const char *zPath,
5228 int nOut,
5229 char *zOut
5231 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5232 return pRealVfs->xFullPathname(pRealVfs, zPath, nOut, zOut);
5235 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5237 ** Open the dynamic library located at zPath and return a handle.
5239 static void *rbuVfsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
5240 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5241 return pRealVfs->xDlOpen(pRealVfs, zPath);
5245 ** Populate the buffer zErrMsg (size nByte bytes) with a human readable
5246 ** utf-8 string describing the most recent error encountered associated
5247 ** with dynamic libraries.
5249 static void rbuVfsDlError(sqlite3_vfs *pVfs, int nByte, char *zErrMsg){
5250 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5251 pRealVfs->xDlError(pRealVfs, nByte, zErrMsg);
5255 ** Return a pointer to the symbol zSymbol in the dynamic library pHandle.
5257 static void (*rbuVfsDlSym(
5258 sqlite3_vfs *pVfs,
5259 void *pArg,
5260 const char *zSym
5261 ))(void){
5262 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5263 return pRealVfs->xDlSym(pRealVfs, pArg, zSym);
5267 ** Close the dynamic library handle pHandle.
5269 static void rbuVfsDlClose(sqlite3_vfs *pVfs, void *pHandle){
5270 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5271 pRealVfs->xDlClose(pRealVfs, pHandle);
5273 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
5276 ** Populate the buffer pointed to by zBufOut with nByte bytes of
5277 ** random data.
5279 static int rbuVfsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
5280 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5281 return pRealVfs->xRandomness(pRealVfs, nByte, zBufOut);
5285 ** Sleep for nMicro microseconds. Return the number of microseconds
5286 ** actually slept.
5288 static int rbuVfsSleep(sqlite3_vfs *pVfs, int nMicro){
5289 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5290 return pRealVfs->xSleep(pRealVfs, nMicro);
5294 ** Return the current time as a Julian Day number in *pTimeOut.
5296 static int rbuVfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){
5297 sqlite3_vfs *pRealVfs = ((rbu_vfs*)pVfs)->pRealVfs;
5298 return pRealVfs->xCurrentTime(pRealVfs, pTimeOut);
5302 ** No-op.
5304 static int rbuVfsGetLastError(sqlite3_vfs *pVfs, int a, char *b){
5305 return 0;
5309 ** Deregister and destroy an RBU vfs created by an earlier call to
5310 ** sqlite3rbu_create_vfs().
5312 void sqlite3rbu_destroy_vfs(const char *zName){
5313 sqlite3_vfs *pVfs = sqlite3_vfs_find(zName);
5314 if( pVfs && pVfs->xOpen==rbuVfsOpen ){
5315 sqlite3_mutex_free(((rbu_vfs*)pVfs)->mutex);
5316 sqlite3_vfs_unregister(pVfs);
5317 sqlite3_free(pVfs);
5322 ** Create an RBU VFS named zName that accesses the underlying file-system
5323 ** via existing VFS zParent. The new object is registered as a non-default
5324 ** VFS with SQLite before returning.
5326 int sqlite3rbu_create_vfs(const char *zName, const char *zParent){
5328 /* Template for VFS */
5329 static sqlite3_vfs vfs_template = {
5330 1, /* iVersion */
5331 0, /* szOsFile */
5332 0, /* mxPathname */
5333 0, /* pNext */
5334 0, /* zName */
5335 0, /* pAppData */
5336 rbuVfsOpen, /* xOpen */
5337 rbuVfsDelete, /* xDelete */
5338 rbuVfsAccess, /* xAccess */
5339 rbuVfsFullPathname, /* xFullPathname */
5341 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5342 rbuVfsDlOpen, /* xDlOpen */
5343 rbuVfsDlError, /* xDlError */
5344 rbuVfsDlSym, /* xDlSym */
5345 rbuVfsDlClose, /* xDlClose */
5346 #else
5347 0, 0, 0, 0,
5348 #endif
5350 rbuVfsRandomness, /* xRandomness */
5351 rbuVfsSleep, /* xSleep */
5352 rbuVfsCurrentTime, /* xCurrentTime */
5353 rbuVfsGetLastError, /* xGetLastError */
5354 0, /* xCurrentTimeInt64 (version 2) */
5355 0, 0, 0 /* Unimplemented version 3 methods */
5358 rbu_vfs *pNew = 0; /* Newly allocated VFS */
5359 int rc = SQLITE_OK;
5360 size_t nName;
5361 size_t nByte;
5363 nName = strlen(zName);
5364 nByte = sizeof(rbu_vfs) + nName + 1;
5365 pNew = (rbu_vfs*)sqlite3_malloc64(nByte);
5366 if( pNew==0 ){
5367 rc = SQLITE_NOMEM;
5368 }else{
5369 sqlite3_vfs *pParent; /* Parent VFS */
5370 memset(pNew, 0, nByte);
5371 pParent = sqlite3_vfs_find(zParent);
5372 if( pParent==0 ){
5373 rc = SQLITE_NOTFOUND;
5374 }else{
5375 char *zSpace;
5376 memcpy(&pNew->base, &vfs_template, sizeof(sqlite3_vfs));
5377 pNew->base.mxPathname = pParent->mxPathname;
5378 pNew->base.szOsFile = sizeof(rbu_file) + pParent->szOsFile;
5379 pNew->pRealVfs = pParent;
5380 pNew->base.zName = (const char*)(zSpace = (char*)&pNew[1]);
5381 memcpy(zSpace, zName, nName);
5383 /* Allocate the mutex and register the new VFS (not as the default) */
5384 pNew->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE);
5385 if( pNew->mutex==0 ){
5386 rc = SQLITE_NOMEM;
5387 }else{
5388 rc = sqlite3_vfs_register(&pNew->base, 0);
5392 if( rc!=SQLITE_OK ){
5393 sqlite3_mutex_free(pNew->mutex);
5394 sqlite3_free(pNew);
5398 return rc;
5402 ** Configure the aggregate temp file size limit for this RBU handle.
5404 sqlite3_int64 sqlite3rbu_temp_size_limit(sqlite3rbu *pRbu, sqlite3_int64 n){
5405 if( n>=0 ){
5406 pRbu->szTempLimit = n;
5408 return pRbu->szTempLimit;
5411 sqlite3_int64 sqlite3rbu_temp_size(sqlite3rbu *pRbu){
5412 return pRbu->szTemp;
5416 /**************************************************************************/
5418 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RBU) */