Compute the correct column name even if the column identifier is the
[sqlite.git] / src / build.c
blob58b39d64758d192e9198cffc280ab9e58ef150df
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 for(i=0; i<pToplevel->nTableLock; i++){
65 p = &pToplevel->aTableLock[i];
66 if( p->iDb==iDb && p->iTab==iTab ){
67 p->isWriteLock = (p->isWriteLock || isWriteLock);
68 return;
72 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
73 pToplevel->aTableLock =
74 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
75 if( pToplevel->aTableLock ){
76 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
77 p->iDb = iDb;
78 p->iTab = iTab;
79 p->isWriteLock = isWriteLock;
80 p->zLockName = zName;
81 }else{
82 pToplevel->nTableLock = 0;
83 sqlite3OomFault(pToplevel->db);
88 ** Code an OP_TableLock instruction for each table locked by the
89 ** statement (configured by calls to sqlite3TableLock()).
91 static void codeTableLocks(Parse *pParse){
92 int i;
93 Vdbe *pVdbe;
95 pVdbe = sqlite3GetVdbe(pParse);
96 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
98 for(i=0; i<pParse->nTableLock; i++){
99 TableLock *p = &pParse->aTableLock[i];
100 int p1 = p->iDb;
101 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
102 p->zLockName, P4_STATIC);
105 #else
106 #define codeTableLocks(x)
107 #endif
110 ** Return TRUE if the given yDbMask object is empty - if it contains no
111 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
112 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
114 #if SQLITE_MAX_ATTACHED>30
115 int sqlite3DbMaskAllZero(yDbMask m){
116 int i;
117 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
118 return 1;
120 #endif
123 ** This routine is called after a single SQL statement has been
124 ** parsed and a VDBE program to execute that statement has been
125 ** prepared. This routine puts the finishing touches on the
126 ** VDBE program and resets the pParse structure for the next
127 ** parse.
129 ** Note that if an error occurred, it might be the case that
130 ** no VDBE code was generated.
132 void sqlite3FinishCoding(Parse *pParse){
133 sqlite3 *db;
134 Vdbe *v;
136 assert( pParse->pToplevel==0 );
137 db = pParse->db;
138 if( pParse->nested ) return;
139 if( db->mallocFailed || pParse->nErr ){
140 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
141 return;
144 /* Begin by generating some termination code at the end of the
145 ** vdbe program
147 v = sqlite3GetVdbe(pParse);
148 assert( !pParse->isMultiWrite
149 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
150 if( v ){
151 sqlite3VdbeAddOp0(v, OP_Halt);
153 #if SQLITE_USER_AUTHENTICATION
154 if( pParse->nTableLock>0 && db->init.busy==0 ){
155 sqlite3UserAuthInit(db);
156 if( db->auth.authLevel<UAUTH_User ){
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 pParse->rc = SQLITE_AUTH_USER;
159 return;
162 #endif
164 /* The cookie mask contains one bit for each database file open.
165 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
166 ** set for each database that is used. Generate code to start a
167 ** transaction on each used database and to verify the schema cookie
168 ** on each used database.
170 if( db->mallocFailed==0
171 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
173 int iDb, i;
174 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
175 sqlite3VdbeJumpHere(v, 0);
176 for(iDb=0; iDb<db->nDb; iDb++){
177 Schema *pSchema;
178 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
179 sqlite3VdbeUsesBtree(v, iDb);
180 pSchema = db->aDb[iDb].pSchema;
181 sqlite3VdbeAddOp4Int(v,
182 OP_Transaction, /* Opcode */
183 iDb, /* P1 */
184 DbMaskTest(pParse->writeMask,iDb), /* P2 */
185 pSchema->schema_cookie, /* P3 */
186 pSchema->iGeneration /* P4 */
188 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
189 VdbeComment((v,
190 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
192 #ifndef SQLITE_OMIT_VIRTUALTABLE
193 for(i=0; i<pParse->nVtabLock; i++){
194 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
195 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
197 pParse->nVtabLock = 0;
198 #endif
200 /* Once all the cookies have been verified and transactions opened,
201 ** obtain the required table-locks. This is a no-op unless the
202 ** shared-cache feature is enabled.
204 codeTableLocks(pParse);
206 /* Initialize any AUTOINCREMENT data structures required.
208 sqlite3AutoincrementBegin(pParse);
210 /* Code constant expressions that where factored out of inner loops */
211 if( pParse->pConstExpr ){
212 ExprList *pEL = pParse->pConstExpr;
213 pParse->okConstFactor = 0;
214 for(i=0; i<pEL->nExpr; i++){
215 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
219 /* Finally, jump back to the beginning of the executable code. */
220 sqlite3VdbeGoto(v, 1);
225 /* Get the VDBE program ready for execution
227 if( v && pParse->nErr==0 && !db->mallocFailed ){
228 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
229 /* A minimum of one cursor is required if autoincrement is used
230 * See ticket [a696379c1f08866] */
231 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
232 sqlite3VdbeMakeReady(v, pParse);
233 pParse->rc = SQLITE_DONE;
234 }else{
235 pParse->rc = SQLITE_ERROR;
240 ** Run the parser and code generator recursively in order to generate
241 ** code for the SQL statement given onto the end of the pParse context
242 ** currently under construction. When the parser is run recursively
243 ** this way, the final OP_Halt is not appended and other initialization
244 ** and finalization steps are omitted because those are handling by the
245 ** outermost parser.
247 ** Not everything is nestable. This facility is designed to permit
248 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
249 ** care if you decide to try to use this routine for some other purposes.
251 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
252 va_list ap;
253 char *zSql;
254 char *zErrMsg = 0;
255 sqlite3 *db = pParse->db;
256 char saveBuf[PARSE_TAIL_SZ];
258 if( pParse->nErr ) return;
259 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
260 va_start(ap, zFormat);
261 zSql = sqlite3VMPrintf(db, zFormat, ap);
262 va_end(ap);
263 if( zSql==0 ){
264 return; /* A malloc must have failed */
266 pParse->nested++;
267 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
268 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
269 sqlite3RunParser(pParse, zSql, &zErrMsg);
270 sqlite3DbFree(db, zErrMsg);
271 sqlite3DbFree(db, zSql);
272 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
273 pParse->nested--;
276 #if SQLITE_USER_AUTHENTICATION
278 ** Return TRUE if zTable is the name of the system table that stores the
279 ** list of users and their access credentials.
281 int sqlite3UserAuthTable(const char *zTable){
282 return sqlite3_stricmp(zTable, "sqlite_user")==0;
284 #endif
287 ** Locate the in-memory structure that describes a particular database
288 ** table given the name of that table and (optionally) the name of the
289 ** database containing the table. Return NULL if not found.
291 ** If zDatabase is 0, all databases are searched for the table and the
292 ** first matching table is returned. (No checking for duplicate table
293 ** names is done.) The search order is TEMP first, then MAIN, then any
294 ** auxiliary databases added using the ATTACH command.
296 ** See also sqlite3LocateTable().
298 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
299 Table *p = 0;
300 int i;
302 /* All mutexes are required for schema access. Make sure we hold them. */
303 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
304 #if SQLITE_USER_AUTHENTICATION
305 /* Only the admin user is allowed to know that the sqlite_user table
306 ** exists */
307 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
308 return 0;
310 #endif
311 while(1){
312 for(i=OMIT_TEMPDB; i<db->nDb; i++){
313 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
314 if( zDatabase==0 || sqlite3StrICmp(zDatabase, db->aDb[j].zDbSName)==0 ){
315 assert( sqlite3SchemaMutexHeld(db, j, 0) );
316 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
317 if( p ) return p;
320 /* Not found. If the name we were looking for was temp.sqlite_master
321 ** then change the name to sqlite_temp_master and try again. */
322 if( sqlite3StrICmp(zName, MASTER_NAME)!=0 ) break;
323 if( sqlite3_stricmp(zDatabase, db->aDb[1].zDbSName)!=0 ) break;
324 zName = TEMP_MASTER_NAME;
326 return 0;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350 return 0;
353 p = sqlite3FindTable(pParse->db, zName, zDbase);
354 if( p==0 ){
355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
363 pMod = sqlite3PragmaVtabRegister(pParse->db, zName);
365 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
366 return pMod->pEpoTab;
369 #endif
370 if( (flags & LOCATE_NOERR)==0 ){
371 if( zDbase ){
372 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
373 }else{
374 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376 pParse->checkSchema = 1;
380 return p;
384 ** Locate the table identified by *p.
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
392 Table *sqlite3LocateTableItem(
393 Parse *pParse,
394 u32 flags,
395 struct SrcList_item *p
397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zDbSName;
402 }else{
403 zDb = p->zDatabase;
405 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0;
422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zDbSName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break;
434 return p;
438 ** Reclaim the memory used by an index
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442 sqlite3DeleteIndexSamples(db, p);
443 #endif
444 sqlite3ExprDelete(db, p->pPartIdxWhere);
445 sqlite3ExprListDelete(db, p->aColExpr);
446 sqlite3DbFree(db, p->zColAff);
447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449 sqlite3_free(p->aiRowEst);
450 #endif
451 sqlite3DbFree(db, p);
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461 Index *pIndex;
462 Hash *pHash;
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pHash = &db->aDb[iDb].pSchema->idxHash;
466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467 if( ALWAYS(pIndex) ){
468 if( pIndex->pTable->pIndex==pIndex ){
469 pIndex->pTable->pIndex = pIndex->pNext;
470 }else{
471 Index *p;
472 /* Justification of ALWAYS(); The index must be on the list of
473 ** indices. */
474 p = pIndex->pTable->pIndex;
475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476 if( ALWAYS(p && p->pNext==pIndex) ){
477 p->pNext = pIndex->pNext;
480 freeIndex(db, pIndex);
482 db->mDbFlags |= DBFLAG_SchemaChange;
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list. Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j;
495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zDbSName);
499 pDb->zDbSName = 0;
500 continue;
502 if( j<i ){
503 db->aDb[j] = db->aDb[i];
505 j++;
507 db->nDb = j;
508 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
509 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
510 sqlite3DbFree(db, db->aDb);
511 db->aDb = db->aDbStatic;
516 ** Reset the schema for the database at index iDb. Also reset the
517 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
518 ** Deferred resets may be run by calling with iDb<0.
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521 int i;
522 assert( iDb<db->nDb );
524 if( iDb>=0 ){
525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
526 DbSetProperty(db, iDb, DB_ResetWanted);
527 DbSetProperty(db, 1, DB_ResetWanted);
530 if( db->nSchemaLock==0 ){
531 for(i=0; i<db->nDb; i++){
532 if( DbHasProperty(db, i, DB_ResetWanted) ){
533 sqlite3SchemaClear(db->aDb[i].pSchema);
540 ** Erase all schema information from all attached databases (including
541 ** "main" and "temp") for a single database connection.
543 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
544 int i;
545 sqlite3BtreeEnterAll(db);
546 assert( db->nSchemaLock==0 );
547 for(i=0; i<db->nDb; i++){
548 Db *pDb = &db->aDb[i];
549 if( pDb->pSchema ){
550 sqlite3SchemaClear(pDb->pSchema);
553 db->mDbFlags &= ~DBFLAG_SchemaChange;
554 sqlite3VtabUnlockList(db);
555 sqlite3BtreeLeaveAll(db);
556 sqlite3CollapseDatabaseArray(db);
560 ** This routine is called when a commit occurs.
562 void sqlite3CommitInternalChanges(sqlite3 *db){
563 db->mDbFlags &= ~DBFLAG_SchemaChange;
567 ** Delete memory allocated for the column names of a table or view (the
568 ** Table.aCol[] array).
570 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
571 int i;
572 Column *pCol;
573 assert( pTable!=0 );
574 if( (pCol = pTable->aCol)!=0 ){
575 for(i=0; i<pTable->nCol; i++, pCol++){
576 sqlite3DbFree(db, pCol->zName);
577 sqlite3ExprDelete(db, pCol->pDflt);
578 sqlite3DbFree(db, pCol->zColl);
580 sqlite3DbFree(db, pTable->aCol);
585 ** Remove the memory data structures associated with the given
586 ** Table. No changes are made to disk by this routine.
588 ** This routine just deletes the data structure. It does not unlink
589 ** the table data structure from the hash table. But it does destroy
590 ** memory structures of the indices and foreign keys associated with
591 ** the table.
593 ** The db parameter is optional. It is needed if the Table object
594 ** contains lookaside memory. (Table objects in the schema do not use
595 ** lookaside memory, but some ephemeral Table objects do.) Or the
596 ** db parameter can be used with db->pnBytesFreed to measure the memory
597 ** used by the Table object.
599 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
600 Index *pIndex, *pNext;
602 #ifdef SQLITE_DEBUG
603 /* Record the number of outstanding lookaside allocations in schema Tables
604 ** prior to doing any free() operations. Since schema Tables do not use
605 ** lookaside, this number should not change. */
606 int nLookaside = 0;
607 if( db && (pTable->tabFlags & TF_Ephemeral)==0 ){
608 nLookaside = sqlite3LookasideUsed(db, 0);
610 #endif
612 /* Delete all indices associated with this table. */
613 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
614 pNext = pIndex->pNext;
615 assert( pIndex->pSchema==pTable->pSchema
616 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
617 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
618 char *zName = pIndex->zName;
619 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
620 &pIndex->pSchema->idxHash, zName, 0
622 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
623 assert( pOld==pIndex || pOld==0 );
625 freeIndex(db, pIndex);
628 /* Delete any foreign keys attached to this table. */
629 sqlite3FkDelete(db, pTable);
631 /* Delete the Table structure itself.
633 sqlite3DeleteColumnNames(db, pTable);
634 sqlite3DbFree(db, pTable->zName);
635 sqlite3DbFree(db, pTable->zColAff);
636 sqlite3SelectDelete(db, pTable->pSelect);
637 sqlite3ExprListDelete(db, pTable->pCheck);
638 #ifndef SQLITE_OMIT_VIRTUALTABLE
639 sqlite3VtabClear(db, pTable);
640 #endif
641 sqlite3DbFree(db, pTable);
643 /* Verify that no lookaside memory was used by schema tables */
644 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
646 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
647 /* Do not delete the table until the reference count reaches zero. */
648 if( !pTable ) return;
649 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
650 deleteTable(db, pTable);
655 ** Unlink the given table from the hash tables and the delete the
656 ** table structure with all its indices and foreign keys.
658 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
659 Table *p;
660 Db *pDb;
662 assert( db!=0 );
663 assert( iDb>=0 && iDb<db->nDb );
664 assert( zTabName );
665 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
666 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
667 pDb = &db->aDb[iDb];
668 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
669 sqlite3DeleteTable(db, p);
670 db->mDbFlags |= DBFLAG_SchemaChange;
674 ** Given a token, return a string that consists of the text of that
675 ** token. Space to hold the returned string
676 ** is obtained from sqliteMalloc() and must be freed by the calling
677 ** function.
679 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
680 ** surround the body of the token are removed.
682 ** Tokens are often just pointers into the original SQL text and so
683 ** are not \000 terminated and are not persistent. The returned string
684 ** is \000 terminated and is persistent.
686 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
687 char *zName;
688 if( pName ){
689 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
690 sqlite3Dequote(zName);
691 }else{
692 zName = 0;
694 return zName;
698 ** Open the sqlite_master table stored in database number iDb for
699 ** writing. The table is opened using cursor 0.
701 void sqlite3OpenMasterTable(Parse *p, int iDb){
702 Vdbe *v = sqlite3GetVdbe(p);
703 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, MASTER_NAME);
704 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
705 if( p->nTab==0 ){
706 p->nTab = 1;
711 ** Parameter zName points to a nul-terminated buffer containing the name
712 ** of a database ("main", "temp" or the name of an attached db). This
713 ** function returns the index of the named database in db->aDb[], or
714 ** -1 if the named db cannot be found.
716 int sqlite3FindDbName(sqlite3 *db, const char *zName){
717 int i = -1; /* Database number */
718 if( zName ){
719 Db *pDb;
720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
722 /* "main" is always an acceptable alias for the primary database
723 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
724 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
727 return i;
731 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist.
736 int sqlite3FindDb(sqlite3 *db, Token *pName){
737 int i; /* Database number */
738 char *zName; /* Name we are searching for */
739 zName = sqlite3NameFromToken(db, pName);
740 i = sqlite3FindDbName(db, zName);
741 sqlite3DbFree(db, zName);
742 return i;
745 /* The table or view or trigger name is passed to this routine via tokens
746 ** pName1 and pName2. If the table name was fully qualified, for example:
748 ** CREATE TABLE xxx.yyy (...);
750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
751 ** the table name is not fully qualified, i.e.:
753 ** CREATE TABLE yyy(...);
755 ** Then pName1 is set to "yyy" and pName2 is "".
757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
758 ** pName2) that stores the unqualified table name. The index of the
759 ** database "xxx" is returned.
761 int sqlite3TwoPartName(
762 Parse *pParse, /* Parsing and code generating context */
763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
765 Token **pUnqual /* Write the unqualified object name here */
767 int iDb; /* Database holding the object */
768 sqlite3 *db = pParse->db;
770 assert( pName2!=0 );
771 if( pName2->n>0 ){
772 if( db->init.busy ) {
773 sqlite3ErrorMsg(pParse, "corrupt database");
774 return -1;
776 *pUnqual = pName2;
777 iDb = sqlite3FindDb(db, pName1);
778 if( iDb<0 ){
779 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
780 return -1;
782 }else{
783 assert( db->init.iDb==0 || db->init.busy
784 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
785 iDb = db->init.iDb;
786 *pUnqual = pName1;
788 return iDb;
792 ** This routine is used to check if the UTF-8 string zName is a legal
793 ** unqualified name for a new schema object (table, index, view or
794 ** trigger). All names are legal except those that begin with the string
795 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
796 ** is reserved for internal use.
798 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
799 if( !pParse->db->init.busy && pParse->nested==0
800 && (pParse->db->flags & SQLITE_WriteSchema)==0
801 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
802 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
803 return SQLITE_ERROR;
805 return SQLITE_OK;
809 ** Return the PRIMARY KEY index of a table
811 Index *sqlite3PrimaryKeyIndex(Table *pTab){
812 Index *p;
813 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
814 return p;
818 ** Return the column of index pIdx that corresponds to table
819 ** column iCol. Return -1 if not found.
821 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
822 int i;
823 for(i=0; i<pIdx->nColumn; i++){
824 if( iCol==pIdx->aiColumn[i] ) return i;
826 return -1;
830 ** Begin constructing a new table representation in memory. This is
831 ** the first of several action routines that get called in response
832 ** to a CREATE TABLE statement. In particular, this routine is called
833 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
834 ** flag is true if the table should be stored in the auxiliary database
835 ** file instead of in the main database file. This is normally the case
836 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
837 ** CREATE and TABLE.
839 ** The new table record is initialized and put in pParse->pNewTable.
840 ** As more of the CREATE TABLE statement is parsed, additional action
841 ** routines will be called to add more information to this record.
842 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
843 ** is called to complete the construction of the new table record.
845 void sqlite3StartTable(
846 Parse *pParse, /* Parser context */
847 Token *pName1, /* First part of the name of the table or view */
848 Token *pName2, /* Second part of the name of the table or view */
849 int isTemp, /* True if this is a TEMP table */
850 int isView, /* True if this is a VIEW */
851 int isVirtual, /* True if this is a VIRTUAL table */
852 int noErr /* Do nothing if table already exists */
854 Table *pTable;
855 char *zName = 0; /* The name of the new table */
856 sqlite3 *db = pParse->db;
857 Vdbe *v;
858 int iDb; /* Database number to create the table in */
859 Token *pName; /* Unqualified name of the table to create */
861 if( db->init.busy && db->init.newTnum==1 ){
862 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
863 iDb = db->init.iDb;
864 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
865 pName = pName1;
866 }else{
867 /* The common case */
868 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
869 if( iDb<0 ) return;
870 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
871 /* If creating a temp table, the name may not be qualified. Unless
872 ** the database name is "temp" anyway. */
873 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
874 return;
876 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
877 zName = sqlite3NameFromToken(db, pName);
879 pParse->sNameToken = *pName;
880 if( zName==0 ) return;
881 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
882 goto begin_table_error;
884 if( db->init.iDb==1 ) isTemp = 1;
885 #ifndef SQLITE_OMIT_AUTHORIZATION
886 assert( isTemp==0 || isTemp==1 );
887 assert( isView==0 || isView==1 );
889 static const u8 aCode[] = {
890 SQLITE_CREATE_TABLE,
891 SQLITE_CREATE_TEMP_TABLE,
892 SQLITE_CREATE_VIEW,
893 SQLITE_CREATE_TEMP_VIEW
895 char *zDb = db->aDb[iDb].zDbSName;
896 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
897 goto begin_table_error;
899 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
900 zName, 0, zDb) ){
901 goto begin_table_error;
904 #endif
906 /* Make sure the new table name does not collide with an existing
907 ** index or table name in the same database. Issue an error message if
908 ** it does. The exception is if the statement being parsed was passed
909 ** to an sqlite3_declare_vtab() call. In that case only the column names
910 ** and types will be used, so there is no need to test for namespace
911 ** collisions.
913 if( !IN_DECLARE_VTAB ){
914 char *zDb = db->aDb[iDb].zDbSName;
915 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
916 goto begin_table_error;
918 pTable = sqlite3FindTable(db, zName, zDb);
919 if( pTable ){
920 if( !noErr ){
921 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
922 }else{
923 assert( !db->init.busy || CORRUPT_DB );
924 sqlite3CodeVerifySchema(pParse, iDb);
926 goto begin_table_error;
928 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
929 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
930 goto begin_table_error;
934 pTable = sqlite3DbMallocZero(db, sizeof(Table));
935 if( pTable==0 ){
936 assert( db->mallocFailed );
937 pParse->rc = SQLITE_NOMEM_BKPT;
938 pParse->nErr++;
939 goto begin_table_error;
941 pTable->zName = zName;
942 pTable->iPKey = -1;
943 pTable->pSchema = db->aDb[iDb].pSchema;
944 pTable->nTabRef = 1;
945 #ifdef SQLITE_DEFAULT_ROWEST
946 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
947 #else
948 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
949 #endif
950 assert( pParse->pNewTable==0 );
951 pParse->pNewTable = pTable;
953 /* If this is the magic sqlite_sequence table used by autoincrement,
954 ** then record a pointer to this table in the main database structure
955 ** so that INSERT can find the table easily.
957 #ifndef SQLITE_OMIT_AUTOINCREMENT
958 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
959 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
960 pTable->pSchema->pSeqTab = pTable;
962 #endif
964 /* Begin generating the code that will insert the table record into
965 ** the SQLITE_MASTER table. Note in particular that we must go ahead
966 ** and allocate the record number for the table entry now. Before any
967 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
968 ** indices to be created and the table record must come before the
969 ** indices. Hence, the record number for the table must be allocated
970 ** now.
972 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
973 int addr1;
974 int fileFormat;
975 int reg1, reg2, reg3;
976 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
977 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
978 sqlite3BeginWriteOperation(pParse, 1, iDb);
980 #ifndef SQLITE_OMIT_VIRTUALTABLE
981 if( isVirtual ){
982 sqlite3VdbeAddOp0(v, OP_VBegin);
984 #endif
986 /* If the file format and encoding in the database have not been set,
987 ** set them now.
989 reg1 = pParse->regRowid = ++pParse->nMem;
990 reg2 = pParse->regRoot = ++pParse->nMem;
991 reg3 = ++pParse->nMem;
992 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
993 sqlite3VdbeUsesBtree(v, iDb);
994 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
995 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
996 1 : SQLITE_MAX_FILE_FORMAT;
997 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
998 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
999 sqlite3VdbeJumpHere(v, addr1);
1001 /* This just creates a place-holder record in the sqlite_master table.
1002 ** The record created does not contain anything yet. It will be replaced
1003 ** by the real entry in code generated at sqlite3EndTable().
1005 ** The rowid for the new entry is left in register pParse->regRowid.
1006 ** The root page number of the new table is left in reg pParse->regRoot.
1007 ** The rowid and root page number values are needed by the code that
1008 ** sqlite3EndTable will generate.
1010 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1011 if( isView || isVirtual ){
1012 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1013 }else
1014 #endif
1016 pParse->addrCrTab =
1017 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1019 sqlite3OpenMasterTable(pParse, iDb);
1020 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1021 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1022 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1023 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1024 sqlite3VdbeAddOp0(v, OP_Close);
1027 /* Normal (non-error) return. */
1028 return;
1030 /* If an error occurs, we jump here */
1031 begin_table_error:
1032 sqlite3DbFree(db, zName);
1033 return;
1036 /* Set properties of a table column based on the (magical)
1037 ** name of the column.
1039 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1040 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1041 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1042 pCol->colFlags |= COLFLAG_HIDDEN;
1043 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1044 pTab->tabFlags |= TF_OOOHidden;
1047 #endif
1051 ** Add a new column to the table currently being constructed.
1053 ** The parser calls this routine once for each column declaration
1054 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1055 ** first to get things going. Then this routine is called for each
1056 ** column.
1058 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1059 Table *p;
1060 int i;
1061 char *z;
1062 char *zType;
1063 Column *pCol;
1064 sqlite3 *db = pParse->db;
1065 if( (p = pParse->pNewTable)==0 ) return;
1066 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1067 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1068 return;
1070 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1071 if( z==0 ) return;
1072 memcpy(z, pName->z, pName->n);
1073 z[pName->n] = 0;
1074 sqlite3Dequote(z);
1075 for(i=0; i<p->nCol; i++){
1076 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1077 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1078 sqlite3DbFree(db, z);
1079 return;
1082 if( (p->nCol & 0x7)==0 ){
1083 Column *aNew;
1084 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1085 if( aNew==0 ){
1086 sqlite3DbFree(db, z);
1087 return;
1089 p->aCol = aNew;
1091 pCol = &p->aCol[p->nCol];
1092 memset(pCol, 0, sizeof(p->aCol[0]));
1093 pCol->zName = z;
1094 sqlite3ColumnPropertiesFromName(p, pCol);
1096 if( pType->n==0 ){
1097 /* If there is no type specified, columns have the default affinity
1098 ** 'BLOB'. */
1099 pCol->affinity = SQLITE_AFF_BLOB;
1100 pCol->szEst = 1;
1101 }else{
1102 zType = z + sqlite3Strlen30(z) + 1;
1103 memcpy(zType, pType->z, pType->n);
1104 zType[pType->n] = 0;
1105 sqlite3Dequote(zType);
1106 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1107 pCol->colFlags |= COLFLAG_HASTYPE;
1109 p->nCol++;
1110 pParse->constraintName.n = 0;
1114 ** This routine is called by the parser while in the middle of
1115 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1116 ** been seen on a column. This routine sets the notNull flag on
1117 ** the column currently under construction.
1119 void sqlite3AddNotNull(Parse *pParse, int onError){
1120 Table *p;
1121 p = pParse->pNewTable;
1122 if( p==0 || NEVER(p->nCol<1) ) return;
1123 p->aCol[p->nCol-1].notNull = (u8)onError;
1124 p->tabFlags |= TF_HasNotNull;
1128 ** Scan the column type name zType (length nType) and return the
1129 ** associated affinity type.
1131 ** This routine does a case-independent search of zType for the
1132 ** substrings in the following table. If one of the substrings is
1133 ** found, the corresponding affinity is returned. If zType contains
1134 ** more than one of the substrings, entries toward the top of
1135 ** the table take priority. For example, if zType is 'BLOBINT',
1136 ** SQLITE_AFF_INTEGER is returned.
1138 ** Substring | Affinity
1139 ** --------------------------------
1140 ** 'INT' | SQLITE_AFF_INTEGER
1141 ** 'CHAR' | SQLITE_AFF_TEXT
1142 ** 'CLOB' | SQLITE_AFF_TEXT
1143 ** 'TEXT' | SQLITE_AFF_TEXT
1144 ** 'BLOB' | SQLITE_AFF_BLOB
1145 ** 'REAL' | SQLITE_AFF_REAL
1146 ** 'FLOA' | SQLITE_AFF_REAL
1147 ** 'DOUB' | SQLITE_AFF_REAL
1149 ** If none of the substrings in the above table are found,
1150 ** SQLITE_AFF_NUMERIC is returned.
1152 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1153 u32 h = 0;
1154 char aff = SQLITE_AFF_NUMERIC;
1155 const char *zChar = 0;
1157 assert( zIn!=0 );
1158 while( zIn[0] ){
1159 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1160 zIn++;
1161 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1162 aff = SQLITE_AFF_TEXT;
1163 zChar = zIn;
1164 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1165 aff = SQLITE_AFF_TEXT;
1166 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1167 aff = SQLITE_AFF_TEXT;
1168 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1169 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1170 aff = SQLITE_AFF_BLOB;
1171 if( zIn[0]=='(' ) zChar = zIn;
1172 #ifndef SQLITE_OMIT_FLOATING_POINT
1173 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1174 && aff==SQLITE_AFF_NUMERIC ){
1175 aff = SQLITE_AFF_REAL;
1176 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1177 && aff==SQLITE_AFF_NUMERIC ){
1178 aff = SQLITE_AFF_REAL;
1179 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1180 && aff==SQLITE_AFF_NUMERIC ){
1181 aff = SQLITE_AFF_REAL;
1182 #endif
1183 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1184 aff = SQLITE_AFF_INTEGER;
1185 break;
1189 /* If pszEst is not NULL, store an estimate of the field size. The
1190 ** estimate is scaled so that the size of an integer is 1. */
1191 if( pszEst ){
1192 *pszEst = 1; /* default size is approx 4 bytes */
1193 if( aff<SQLITE_AFF_NUMERIC ){
1194 if( zChar ){
1195 while( zChar[0] ){
1196 if( sqlite3Isdigit(zChar[0]) ){
1197 int v = 0;
1198 sqlite3GetInt32(zChar, &v);
1199 v = v/4 + 1;
1200 if( v>255 ) v = 255;
1201 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1202 break;
1204 zChar++;
1206 }else{
1207 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1211 return aff;
1215 ** The expression is the default value for the most recently added column
1216 ** of the table currently under construction.
1218 ** Default value expressions must be constant. Raise an exception if this
1219 ** is not the case.
1221 ** This routine is called by the parser while in the middle of
1222 ** parsing a CREATE TABLE statement.
1224 void sqlite3AddDefaultValue(
1225 Parse *pParse, /* Parsing context */
1226 Expr *pExpr, /* The parsed expression of the default value */
1227 const char *zStart, /* Start of the default value text */
1228 const char *zEnd /* First character past end of defaut value text */
1230 Table *p;
1231 Column *pCol;
1232 sqlite3 *db = pParse->db;
1233 p = pParse->pNewTable;
1234 if( p!=0 ){
1235 pCol = &(p->aCol[p->nCol-1]);
1236 if( !sqlite3ExprIsConstantOrFunction(pExpr, db->init.busy) ){
1237 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1238 pCol->zName);
1239 }else{
1240 /* A copy of pExpr is used instead of the original, as pExpr contains
1241 ** tokens that point to volatile memory.
1243 Expr x;
1244 sqlite3ExprDelete(db, pCol->pDflt);
1245 memset(&x, 0, sizeof(x));
1246 x.op = TK_SPAN;
1247 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1248 x.pLeft = pExpr;
1249 x.flags = EP_Skip;
1250 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1251 sqlite3DbFree(db, x.u.zToken);
1254 sqlite3ExprDelete(db, pExpr);
1258 ** Backwards Compatibility Hack:
1260 ** Historical versions of SQLite accepted strings as column names in
1261 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1263 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1264 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1266 ** This is goofy. But to preserve backwards compatibility we continue to
1267 ** accept it. This routine does the necessary conversion. It converts
1268 ** the expression given in its argument from a TK_STRING into a TK_ID
1269 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1270 ** If the epxression is anything other than TK_STRING, the expression is
1271 ** unchanged.
1273 static void sqlite3StringToId(Expr *p){
1274 if( p->op==TK_STRING ){
1275 p->op = TK_ID;
1276 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1277 p->pLeft->op = TK_ID;
1282 ** Designate the PRIMARY KEY for the table. pList is a list of names
1283 ** of columns that form the primary key. If pList is NULL, then the
1284 ** most recently added column of the table is the primary key.
1286 ** A table can have at most one primary key. If the table already has
1287 ** a primary key (and this is the second primary key) then create an
1288 ** error.
1290 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1291 ** then we will try to use that column as the rowid. Set the Table.iPKey
1292 ** field of the table under construction to be the index of the
1293 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1294 ** no INTEGER PRIMARY KEY.
1296 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1297 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1299 void sqlite3AddPrimaryKey(
1300 Parse *pParse, /* Parsing context */
1301 ExprList *pList, /* List of field names to be indexed */
1302 int onError, /* What to do with a uniqueness conflict */
1303 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1304 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1306 Table *pTab = pParse->pNewTable;
1307 Column *pCol = 0;
1308 int iCol = -1, i;
1309 int nTerm;
1310 if( pTab==0 ) goto primary_key_exit;
1311 if( pTab->tabFlags & TF_HasPrimaryKey ){
1312 sqlite3ErrorMsg(pParse,
1313 "table \"%s\" has more than one primary key", pTab->zName);
1314 goto primary_key_exit;
1316 pTab->tabFlags |= TF_HasPrimaryKey;
1317 if( pList==0 ){
1318 iCol = pTab->nCol - 1;
1319 pCol = &pTab->aCol[iCol];
1320 pCol->colFlags |= COLFLAG_PRIMKEY;
1321 nTerm = 1;
1322 }else{
1323 nTerm = pList->nExpr;
1324 for(i=0; i<nTerm; i++){
1325 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1326 assert( pCExpr!=0 );
1327 sqlite3StringToId(pCExpr);
1328 if( pCExpr->op==TK_ID ){
1329 const char *zCName = pCExpr->u.zToken;
1330 for(iCol=0; iCol<pTab->nCol; iCol++){
1331 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1332 pCol = &pTab->aCol[iCol];
1333 pCol->colFlags |= COLFLAG_PRIMKEY;
1334 break;
1340 if( nTerm==1
1341 && pCol
1342 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1343 && sortOrder!=SQLITE_SO_DESC
1345 pTab->iPKey = iCol;
1346 pTab->keyConf = (u8)onError;
1347 assert( autoInc==0 || autoInc==1 );
1348 pTab->tabFlags |= autoInc*TF_Autoincrement;
1349 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1350 }else if( autoInc ){
1351 #ifndef SQLITE_OMIT_AUTOINCREMENT
1352 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1353 "INTEGER PRIMARY KEY");
1354 #endif
1355 }else{
1356 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1357 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1358 pList = 0;
1361 primary_key_exit:
1362 sqlite3ExprListDelete(pParse->db, pList);
1363 return;
1367 ** Add a new CHECK constraint to the table currently under construction.
1369 void sqlite3AddCheckConstraint(
1370 Parse *pParse, /* Parsing context */
1371 Expr *pCheckExpr /* The check expression */
1373 #ifndef SQLITE_OMIT_CHECK
1374 Table *pTab = pParse->pNewTable;
1375 sqlite3 *db = pParse->db;
1376 if( pTab && !IN_DECLARE_VTAB
1377 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1379 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1380 if( pParse->constraintName.n ){
1381 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1383 }else
1384 #endif
1386 sqlite3ExprDelete(pParse->db, pCheckExpr);
1391 ** Set the collation function of the most recently parsed table column
1392 ** to the CollSeq given.
1394 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1395 Table *p;
1396 int i;
1397 char *zColl; /* Dequoted name of collation sequence */
1398 sqlite3 *db;
1400 if( (p = pParse->pNewTable)==0 ) return;
1401 i = p->nCol-1;
1402 db = pParse->db;
1403 zColl = sqlite3NameFromToken(db, pToken);
1404 if( !zColl ) return;
1406 if( sqlite3LocateCollSeq(pParse, zColl) ){
1407 Index *pIdx;
1408 sqlite3DbFree(db, p->aCol[i].zColl);
1409 p->aCol[i].zColl = zColl;
1411 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1412 ** then an index may have been created on this column before the
1413 ** collation type was added. Correct this if it is the case.
1415 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1416 assert( pIdx->nKeyCol==1 );
1417 if( pIdx->aiColumn[0]==i ){
1418 pIdx->azColl[0] = p->aCol[i].zColl;
1421 }else{
1422 sqlite3DbFree(db, zColl);
1427 ** This function returns the collation sequence for database native text
1428 ** encoding identified by the string zName, length nName.
1430 ** If the requested collation sequence is not available, or not available
1431 ** in the database native encoding, the collation factory is invoked to
1432 ** request it. If the collation factory does not supply such a sequence,
1433 ** and the sequence is available in another text encoding, then that is
1434 ** returned instead.
1436 ** If no versions of the requested collations sequence are available, or
1437 ** another error occurs, NULL is returned and an error message written into
1438 ** pParse.
1440 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1441 ** invokes the collation factory if the named collation cannot be found
1442 ** and generates an error message.
1444 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1446 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1447 sqlite3 *db = pParse->db;
1448 u8 enc = ENC(db);
1449 u8 initbusy = db->init.busy;
1450 CollSeq *pColl;
1452 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1453 if( !initbusy && (!pColl || !pColl->xCmp) ){
1454 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1457 return pColl;
1462 ** Generate code that will increment the schema cookie.
1464 ** The schema cookie is used to determine when the schema for the
1465 ** database changes. After each schema change, the cookie value
1466 ** changes. When a process first reads the schema it records the
1467 ** cookie. Thereafter, whenever it goes to access the database,
1468 ** it checks the cookie to make sure the schema has not changed
1469 ** since it was last read.
1471 ** This plan is not completely bullet-proof. It is possible for
1472 ** the schema to change multiple times and for the cookie to be
1473 ** set back to prior value. But schema changes are infrequent
1474 ** and the probability of hitting the same cookie value is only
1475 ** 1 chance in 2^32. So we're safe enough.
1477 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1478 ** the schema-version whenever the schema changes.
1480 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1481 sqlite3 *db = pParse->db;
1482 Vdbe *v = pParse->pVdbe;
1483 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1484 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1485 db->aDb[iDb].pSchema->schema_cookie+1);
1489 ** Measure the number of characters needed to output the given
1490 ** identifier. The number returned includes any quotes used
1491 ** but does not include the null terminator.
1493 ** The estimate is conservative. It might be larger that what is
1494 ** really needed.
1496 static int identLength(const char *z){
1497 int n;
1498 for(n=0; *z; n++, z++){
1499 if( *z=='"' ){ n++; }
1501 return n + 2;
1505 ** The first parameter is a pointer to an output buffer. The second
1506 ** parameter is a pointer to an integer that contains the offset at
1507 ** which to write into the output buffer. This function copies the
1508 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1509 ** to the specified offset in the buffer and updates *pIdx to refer
1510 ** to the first byte after the last byte written before returning.
1512 ** If the string zSignedIdent consists entirely of alpha-numeric
1513 ** characters, does not begin with a digit and is not an SQL keyword,
1514 ** then it is copied to the output buffer exactly as it is. Otherwise,
1515 ** it is quoted using double-quotes.
1517 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1518 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1519 int i, j, needQuote;
1520 i = *pIdx;
1522 for(j=0; zIdent[j]; j++){
1523 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1525 needQuote = sqlite3Isdigit(zIdent[0])
1526 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1527 || zIdent[j]!=0
1528 || j==0;
1530 if( needQuote ) z[i++] = '"';
1531 for(j=0; zIdent[j]; j++){
1532 z[i++] = zIdent[j];
1533 if( zIdent[j]=='"' ) z[i++] = '"';
1535 if( needQuote ) z[i++] = '"';
1536 z[i] = 0;
1537 *pIdx = i;
1541 ** Generate a CREATE TABLE statement appropriate for the given
1542 ** table. Memory to hold the text of the statement is obtained
1543 ** from sqliteMalloc() and must be freed by the calling function.
1545 static char *createTableStmt(sqlite3 *db, Table *p){
1546 int i, k, n;
1547 char *zStmt;
1548 char *zSep, *zSep2, *zEnd;
1549 Column *pCol;
1550 n = 0;
1551 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1552 n += identLength(pCol->zName) + 5;
1554 n += identLength(p->zName);
1555 if( n<50 ){
1556 zSep = "";
1557 zSep2 = ",";
1558 zEnd = ")";
1559 }else{
1560 zSep = "\n ";
1561 zSep2 = ",\n ";
1562 zEnd = "\n)";
1564 n += 35 + 6*p->nCol;
1565 zStmt = sqlite3DbMallocRaw(0, n);
1566 if( zStmt==0 ){
1567 sqlite3OomFault(db);
1568 return 0;
1570 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1571 k = sqlite3Strlen30(zStmt);
1572 identPut(zStmt, &k, p->zName);
1573 zStmt[k++] = '(';
1574 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1575 static const char * const azType[] = {
1576 /* SQLITE_AFF_BLOB */ "",
1577 /* SQLITE_AFF_TEXT */ " TEXT",
1578 /* SQLITE_AFF_NUMERIC */ " NUM",
1579 /* SQLITE_AFF_INTEGER */ " INT",
1580 /* SQLITE_AFF_REAL */ " REAL"
1582 int len;
1583 const char *zType;
1585 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1586 k += sqlite3Strlen30(&zStmt[k]);
1587 zSep = zSep2;
1588 identPut(zStmt, &k, pCol->zName);
1589 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1590 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1591 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1592 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1593 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1594 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1595 testcase( pCol->affinity==SQLITE_AFF_REAL );
1597 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1598 len = sqlite3Strlen30(zType);
1599 assert( pCol->affinity==SQLITE_AFF_BLOB
1600 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1601 memcpy(&zStmt[k], zType, len);
1602 k += len;
1603 assert( k<=n );
1605 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1606 return zStmt;
1610 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1611 ** on success and SQLITE_NOMEM on an OOM error.
1613 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1614 char *zExtra;
1615 int nByte;
1616 if( pIdx->nColumn>=N ) return SQLITE_OK;
1617 assert( pIdx->isResized==0 );
1618 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1619 zExtra = sqlite3DbMallocZero(db, nByte);
1620 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1621 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1622 pIdx->azColl = (const char**)zExtra;
1623 zExtra += sizeof(char*)*N;
1624 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1625 pIdx->aiColumn = (i16*)zExtra;
1626 zExtra += sizeof(i16)*N;
1627 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1628 pIdx->aSortOrder = (u8*)zExtra;
1629 pIdx->nColumn = N;
1630 pIdx->isResized = 1;
1631 return SQLITE_OK;
1635 ** Estimate the total row width for a table.
1637 static void estimateTableWidth(Table *pTab){
1638 unsigned wTable = 0;
1639 const Column *pTabCol;
1640 int i;
1641 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1642 wTable += pTabCol->szEst;
1644 if( pTab->iPKey<0 ) wTable++;
1645 pTab->szTabRow = sqlite3LogEst(wTable*4);
1649 ** Estimate the average size of a row for an index.
1651 static void estimateIndexWidth(Index *pIdx){
1652 unsigned wIndex = 0;
1653 int i;
1654 const Column *aCol = pIdx->pTable->aCol;
1655 for(i=0; i<pIdx->nColumn; i++){
1656 i16 x = pIdx->aiColumn[i];
1657 assert( x<pIdx->pTable->nCol );
1658 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1660 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1663 /* Return true if value x is found any of the first nCol entries of aiCol[]
1665 static int hasColumn(const i16 *aiCol, int nCol, int x){
1666 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1667 return 0;
1671 ** This routine runs at the end of parsing a CREATE TABLE statement that
1672 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1673 ** internal schema data structures and the generated VDBE code so that they
1674 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1675 ** Changes include:
1677 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1678 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
1679 ** into BTREE_BLOBKEY.
1680 ** (3) Bypass the creation of the sqlite_master table entry
1681 ** for the PRIMARY KEY as the primary key index is now
1682 ** identified by the sqlite_master table entry of the table itself.
1683 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1684 ** schema to the rootpage from the main table.
1685 ** (5) Add all table columns to the PRIMARY KEY Index object
1686 ** so that the PRIMARY KEY is a covering index. The surplus
1687 ** columns are part of KeyInfo.nAllField and are not used for
1688 ** sorting or lookup or uniqueness checks.
1689 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1690 ** indices with the PRIMARY KEY columns.
1692 ** For virtual tables, only (1) is performed.
1694 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1695 Index *pIdx;
1696 Index *pPk;
1697 int nPk;
1698 int i, j;
1699 sqlite3 *db = pParse->db;
1700 Vdbe *v = pParse->pVdbe;
1702 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1704 if( !db->init.imposterTable ){
1705 for(i=0; i<pTab->nCol; i++){
1706 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1707 pTab->aCol[i].notNull = OE_Abort;
1712 /* The remaining transformations only apply to b-tree tables, not to
1713 ** virtual tables */
1714 if( IN_DECLARE_VTAB ) return;
1716 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
1717 ** into BTREE_BLOBKEY.
1719 if( pParse->addrCrTab ){
1720 assert( v );
1721 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
1724 /* Locate the PRIMARY KEY index. Or, if this table was originally
1725 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1727 if( pTab->iPKey>=0 ){
1728 ExprList *pList;
1729 Token ipkToken;
1730 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1731 pList = sqlite3ExprListAppend(pParse, 0,
1732 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1733 if( pList==0 ) return;
1734 pList->a[0].sortOrder = pParse->iPkSortOrder;
1735 assert( pParse->pNewTable==pTab );
1736 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1737 SQLITE_IDXTYPE_PRIMARYKEY);
1738 if( db->mallocFailed ) return;
1739 pPk = sqlite3PrimaryKeyIndex(pTab);
1740 pTab->iPKey = -1;
1741 }else{
1742 pPk = sqlite3PrimaryKeyIndex(pTab);
1745 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1746 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1747 ** code assumes the PRIMARY KEY contains no repeated columns.
1749 for(i=j=1; i<pPk->nKeyCol; i++){
1750 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1751 pPk->nColumn--;
1752 }else{
1753 pPk->aiColumn[j++] = pPk->aiColumn[i];
1756 pPk->nKeyCol = j;
1758 assert( pPk!=0 );
1759 pPk->isCovering = 1;
1760 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1761 nPk = pPk->nKeyCol;
1763 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1764 ** table entry. This is only required if currently generating VDBE
1765 ** code for a CREATE TABLE (not when parsing one as part of reading
1766 ** a database schema). */
1767 if( v && pPk->tnum>0 ){
1768 assert( db->init.busy==0 );
1769 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1772 /* The root page of the PRIMARY KEY is the table root page */
1773 pPk->tnum = pTab->tnum;
1775 /* Update the in-memory representation of all UNIQUE indices by converting
1776 ** the final rowid column into one or more columns of the PRIMARY KEY.
1778 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1779 int n;
1780 if( IsPrimaryKeyIndex(pIdx) ) continue;
1781 for(i=n=0; i<nPk; i++){
1782 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1784 if( n==0 ){
1785 /* This index is a superset of the primary key */
1786 pIdx->nColumn = pIdx->nKeyCol;
1787 continue;
1789 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1790 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1791 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1792 pIdx->aiColumn[j] = pPk->aiColumn[i];
1793 pIdx->azColl[j] = pPk->azColl[i];
1794 j++;
1797 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1798 assert( pIdx->nColumn>=j );
1801 /* Add all table columns to the PRIMARY KEY index
1803 if( nPk<pTab->nCol ){
1804 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1805 for(i=0, j=nPk; i<pTab->nCol; i++){
1806 if( !hasColumn(pPk->aiColumn, j, i) ){
1807 assert( j<pPk->nColumn );
1808 pPk->aiColumn[j] = i;
1809 pPk->azColl[j] = sqlite3StrBINARY;
1810 j++;
1813 assert( pPk->nColumn==j );
1814 assert( pTab->nCol==j );
1815 }else{
1816 pPk->nColumn = pTab->nCol;
1821 ** This routine is called to report the final ")" that terminates
1822 ** a CREATE TABLE statement.
1824 ** The table structure that other action routines have been building
1825 ** is added to the internal hash tables, assuming no errors have
1826 ** occurred.
1828 ** An entry for the table is made in the master table on disk, unless
1829 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1830 ** it means we are reading the sqlite_master table because we just
1831 ** connected to the database or because the sqlite_master table has
1832 ** recently changed, so the entry for this table already exists in
1833 ** the sqlite_master table. We do not want to create it again.
1835 ** If the pSelect argument is not NULL, it means that this routine
1836 ** was called to create a table generated from a
1837 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1838 ** the new table will match the result set of the SELECT.
1840 void sqlite3EndTable(
1841 Parse *pParse, /* Parse context */
1842 Token *pCons, /* The ',' token after the last column defn. */
1843 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1844 u8 tabOpts, /* Extra table options. Usually 0. */
1845 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1847 Table *p; /* The new table */
1848 sqlite3 *db = pParse->db; /* The database connection */
1849 int iDb; /* Database in which the table lives */
1850 Index *pIdx; /* An implied index of the table */
1852 if( pEnd==0 && pSelect==0 ){
1853 return;
1855 assert( !db->mallocFailed );
1856 p = pParse->pNewTable;
1857 if( p==0 ) return;
1859 assert( !db->init.busy || !pSelect );
1861 /* If the db->init.busy is 1 it means we are reading the SQL off the
1862 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1863 ** So do not write to the disk again. Extract the root page number
1864 ** for the table from the db->init.newTnum field. (The page number
1865 ** should have been put there by the sqliteOpenCb routine.)
1867 ** If the root page number is 1, that means this is the sqlite_master
1868 ** table itself. So mark it read-only.
1870 if( db->init.busy ){
1871 p->tnum = db->init.newTnum;
1872 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1875 /* Special processing for WITHOUT ROWID Tables */
1876 if( tabOpts & TF_WithoutRowid ){
1877 if( (p->tabFlags & TF_Autoincrement) ){
1878 sqlite3ErrorMsg(pParse,
1879 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1880 return;
1882 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1883 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1884 }else{
1885 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1886 convertToWithoutRowidTable(pParse, p);
1890 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1892 #ifndef SQLITE_OMIT_CHECK
1893 /* Resolve names in all CHECK constraint expressions.
1895 if( p->pCheck ){
1896 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1898 #endif /* !defined(SQLITE_OMIT_CHECK) */
1900 /* Estimate the average row size for the table and for all implied indices */
1901 estimateTableWidth(p);
1902 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1903 estimateIndexWidth(pIdx);
1906 /* If not initializing, then create a record for the new table
1907 ** in the SQLITE_MASTER table of the database.
1909 ** If this is a TEMPORARY table, write the entry into the auxiliary
1910 ** file instead of into the main database file.
1912 if( !db->init.busy ){
1913 int n;
1914 Vdbe *v;
1915 char *zType; /* "view" or "table" */
1916 char *zType2; /* "VIEW" or "TABLE" */
1917 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1919 v = sqlite3GetVdbe(pParse);
1920 if( NEVER(v==0) ) return;
1922 sqlite3VdbeAddOp1(v, OP_Close, 0);
1925 ** Initialize zType for the new view or table.
1927 if( p->pSelect==0 ){
1928 /* A regular table */
1929 zType = "table";
1930 zType2 = "TABLE";
1931 #ifndef SQLITE_OMIT_VIEW
1932 }else{
1933 /* A view */
1934 zType = "view";
1935 zType2 = "VIEW";
1936 #endif
1939 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1940 ** statement to populate the new table. The root-page number for the
1941 ** new table is in register pParse->regRoot.
1943 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1944 ** suitable state to query for the column names and types to be used
1945 ** by the new table.
1947 ** A shared-cache write-lock is not required to write to the new table,
1948 ** as a schema-lock must have already been obtained to create it. Since
1949 ** a schema-lock excludes all other database users, the write-lock would
1950 ** be redundant.
1952 if( pSelect ){
1953 SelectDest dest; /* Where the SELECT should store results */
1954 int regYield; /* Register holding co-routine entry-point */
1955 int addrTop; /* Top of the co-routine */
1956 int regRec; /* A record to be insert into the new table */
1957 int regRowid; /* Rowid of the next row to insert */
1958 int addrInsLoop; /* Top of the loop for inserting rows */
1959 Table *pSelTab; /* A table that describes the SELECT results */
1961 regYield = ++pParse->nMem;
1962 regRec = ++pParse->nMem;
1963 regRowid = ++pParse->nMem;
1964 assert(pParse->nTab==1);
1965 sqlite3MayAbort(pParse);
1966 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1967 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1968 pParse->nTab = 2;
1969 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1970 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1971 if( pParse->nErr ) return;
1972 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1973 if( pSelTab==0 ) return;
1974 assert( p->aCol==0 );
1975 p->nCol = pSelTab->nCol;
1976 p->aCol = pSelTab->aCol;
1977 pSelTab->nCol = 0;
1978 pSelTab->aCol = 0;
1979 sqlite3DeleteTable(db, pSelTab);
1980 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1981 sqlite3Select(pParse, pSelect, &dest);
1982 if( pParse->nErr ) return;
1983 sqlite3VdbeEndCoroutine(v, regYield);
1984 sqlite3VdbeJumpHere(v, addrTop - 1);
1985 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1986 VdbeCoverage(v);
1987 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1988 sqlite3TableAffinity(v, p, 0);
1989 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1990 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1991 sqlite3VdbeGoto(v, addrInsLoop);
1992 sqlite3VdbeJumpHere(v, addrInsLoop);
1993 sqlite3VdbeAddOp1(v, OP_Close, 1);
1996 /* Compute the complete text of the CREATE statement */
1997 if( pSelect ){
1998 zStmt = createTableStmt(db, p);
1999 }else{
2000 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2001 n = (int)(pEnd2->z - pParse->sNameToken.z);
2002 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2003 zStmt = sqlite3MPrintf(db,
2004 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2008 /* A slot for the record has already been allocated in the
2009 ** SQLITE_MASTER table. We just need to update that slot with all
2010 ** the information we've collected.
2012 sqlite3NestedParse(pParse,
2013 "UPDATE %Q.%s "
2014 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2015 "WHERE rowid=#%d",
2016 db->aDb[iDb].zDbSName, MASTER_NAME,
2017 zType,
2018 p->zName,
2019 p->zName,
2020 pParse->regRoot,
2021 zStmt,
2022 pParse->regRowid
2024 sqlite3DbFree(db, zStmt);
2025 sqlite3ChangeCookie(pParse, iDb);
2027 #ifndef SQLITE_OMIT_AUTOINCREMENT
2028 /* Check to see if we need to create an sqlite_sequence table for
2029 ** keeping track of autoincrement keys.
2031 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2032 Db *pDb = &db->aDb[iDb];
2033 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2034 if( pDb->pSchema->pSeqTab==0 ){
2035 sqlite3NestedParse(pParse,
2036 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2037 pDb->zDbSName
2041 #endif
2043 /* Reparse everything to update our internal data structures */
2044 sqlite3VdbeAddParseSchemaOp(v, iDb,
2045 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2049 /* Add the table to the in-memory representation of the database.
2051 if( db->init.busy ){
2052 Table *pOld;
2053 Schema *pSchema = p->pSchema;
2054 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2055 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2056 if( pOld ){
2057 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2058 sqlite3OomFault(db);
2059 return;
2061 pParse->pNewTable = 0;
2062 db->mDbFlags |= DBFLAG_SchemaChange;
2064 #ifndef SQLITE_OMIT_ALTERTABLE
2065 if( !p->pSelect ){
2066 const char *zName = (const char *)pParse->sNameToken.z;
2067 int nName;
2068 assert( !pSelect && pCons && pEnd );
2069 if( pCons->z==0 ){
2070 pCons = pEnd;
2072 nName = (int)((const char *)pCons->z - zName);
2073 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2075 #endif
2079 #ifndef SQLITE_OMIT_VIEW
2081 ** The parser calls this routine in order to create a new VIEW
2083 void sqlite3CreateView(
2084 Parse *pParse, /* The parsing context */
2085 Token *pBegin, /* The CREATE token that begins the statement */
2086 Token *pName1, /* The token that holds the name of the view */
2087 Token *pName2, /* The token that holds the name of the view */
2088 ExprList *pCNames, /* Optional list of view column names */
2089 Select *pSelect, /* A SELECT statement that will become the new view */
2090 int isTemp, /* TRUE for a TEMPORARY view */
2091 int noErr /* Suppress error messages if VIEW already exists */
2093 Table *p;
2094 int n;
2095 const char *z;
2096 Token sEnd;
2097 DbFixer sFix;
2098 Token *pName = 0;
2099 int iDb;
2100 sqlite3 *db = pParse->db;
2102 if( pParse->nVar>0 ){
2103 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2104 goto create_view_fail;
2106 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2107 p = pParse->pNewTable;
2108 if( p==0 || pParse->nErr ) goto create_view_fail;
2109 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2110 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2111 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2112 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2114 /* Make a copy of the entire SELECT statement that defines the view.
2115 ** This will force all the Expr.token.z values to be dynamically
2116 ** allocated rather than point to the input string - which means that
2117 ** they will persist after the current sqlite3_exec() call returns.
2119 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2120 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2121 if( db->mallocFailed ) goto create_view_fail;
2123 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2124 ** the end.
2126 sEnd = pParse->sLastToken;
2127 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2128 if( sEnd.z[0]!=';' ){
2129 sEnd.z += sEnd.n;
2131 sEnd.n = 0;
2132 n = (int)(sEnd.z - pBegin->z);
2133 assert( n>0 );
2134 z = pBegin->z;
2135 while( sqlite3Isspace(z[n-1]) ){ n--; }
2136 sEnd.z = &z[n-1];
2137 sEnd.n = 1;
2139 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2140 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2142 create_view_fail:
2143 sqlite3SelectDelete(db, pSelect);
2144 sqlite3ExprListDelete(db, pCNames);
2145 return;
2147 #endif /* SQLITE_OMIT_VIEW */
2149 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2151 ** The Table structure pTable is really a VIEW. Fill in the names of
2152 ** the columns of the view in the pTable structure. Return the number
2153 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2155 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2156 Table *pSelTab; /* A fake table from which we get the result set */
2157 Select *pSel; /* Copy of the SELECT that implements the view */
2158 int nErr = 0; /* Number of errors encountered */
2159 int n; /* Temporarily holds the number of cursors assigned */
2160 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2161 #ifndef SQLITE_OMIT_VIRTUALTABLE
2162 int rc;
2163 #endif
2164 #ifndef SQLITE_OMIT_AUTHORIZATION
2165 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2166 #endif
2168 assert( pTable );
2170 #ifndef SQLITE_OMIT_VIRTUALTABLE
2171 db->nSchemaLock++;
2172 rc = sqlite3VtabCallConnect(pParse, pTable);
2173 db->nSchemaLock--;
2174 if( rc ){
2175 return 1;
2177 if( IsVirtual(pTable) ) return 0;
2178 #endif
2180 #ifndef SQLITE_OMIT_VIEW
2181 /* A positive nCol means the columns names for this view are
2182 ** already known.
2184 if( pTable->nCol>0 ) return 0;
2186 /* A negative nCol is a special marker meaning that we are currently
2187 ** trying to compute the column names. If we enter this routine with
2188 ** a negative nCol, it means two or more views form a loop, like this:
2190 ** CREATE VIEW one AS SELECT * FROM two;
2191 ** CREATE VIEW two AS SELECT * FROM one;
2193 ** Actually, the error above is now caught prior to reaching this point.
2194 ** But the following test is still important as it does come up
2195 ** in the following:
2197 ** CREATE TABLE main.ex1(a);
2198 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2199 ** SELECT * FROM temp.ex1;
2201 if( pTable->nCol<0 ){
2202 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2203 return 1;
2205 assert( pTable->nCol>=0 );
2207 /* If we get this far, it means we need to compute the table names.
2208 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2209 ** "*" elements in the results set of the view and will assign cursors
2210 ** to the elements of the FROM clause. But we do not want these changes
2211 ** to be permanent. So the computation is done on a copy of the SELECT
2212 ** statement that defines the view.
2214 assert( pTable->pSelect );
2215 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2216 if( pSel ){
2217 n = pParse->nTab;
2218 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2219 pTable->nCol = -1;
2220 db->lookaside.bDisable++;
2221 #ifndef SQLITE_OMIT_AUTHORIZATION
2222 xAuth = db->xAuth;
2223 db->xAuth = 0;
2224 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2225 db->xAuth = xAuth;
2226 #else
2227 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2228 #endif
2229 pParse->nTab = n;
2230 if( pTable->pCheck ){
2231 /* CREATE VIEW name(arglist) AS ...
2232 ** The names of the columns in the table are taken from
2233 ** arglist which is stored in pTable->pCheck. The pCheck field
2234 ** normally holds CHECK constraints on an ordinary table, but for
2235 ** a VIEW it holds the list of column names.
2237 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2238 &pTable->nCol, &pTable->aCol);
2239 if( db->mallocFailed==0
2240 && pParse->nErr==0
2241 && pTable->nCol==pSel->pEList->nExpr
2243 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2245 }else if( pSelTab ){
2246 /* CREATE VIEW name AS... without an argument list. Construct
2247 ** the column names from the SELECT statement that defines the view.
2249 assert( pTable->aCol==0 );
2250 pTable->nCol = pSelTab->nCol;
2251 pTable->aCol = pSelTab->aCol;
2252 pSelTab->nCol = 0;
2253 pSelTab->aCol = 0;
2254 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2255 }else{
2256 pTable->nCol = 0;
2257 nErr++;
2259 sqlite3DeleteTable(db, pSelTab);
2260 sqlite3SelectDelete(db, pSel);
2261 db->lookaside.bDisable--;
2262 } else {
2263 nErr++;
2265 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2266 #endif /* SQLITE_OMIT_VIEW */
2267 return nErr;
2269 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2271 #ifndef SQLITE_OMIT_VIEW
2273 ** Clear the column names from every VIEW in database idx.
2275 static void sqliteViewResetAll(sqlite3 *db, int idx){
2276 HashElem *i;
2277 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2278 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2279 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2280 Table *pTab = sqliteHashData(i);
2281 if( pTab->pSelect ){
2282 sqlite3DeleteColumnNames(db, pTab);
2283 pTab->aCol = 0;
2284 pTab->nCol = 0;
2287 DbClearProperty(db, idx, DB_UnresetViews);
2289 #else
2290 # define sqliteViewResetAll(A,B)
2291 #endif /* SQLITE_OMIT_VIEW */
2294 ** This function is called by the VDBE to adjust the internal schema
2295 ** used by SQLite when the btree layer moves a table root page. The
2296 ** root-page of a table or index in database iDb has changed from iFrom
2297 ** to iTo.
2299 ** Ticket #1728: The symbol table might still contain information
2300 ** on tables and/or indices that are the process of being deleted.
2301 ** If you are unlucky, one of those deleted indices or tables might
2302 ** have the same rootpage number as the real table or index that is
2303 ** being moved. So we cannot stop searching after the first match
2304 ** because the first match might be for one of the deleted indices
2305 ** or tables and not the table/index that is actually being moved.
2306 ** We must continue looping until all tables and indices with
2307 ** rootpage==iFrom have been converted to have a rootpage of iTo
2308 ** in order to be certain that we got the right one.
2310 #ifndef SQLITE_OMIT_AUTOVACUUM
2311 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2312 HashElem *pElem;
2313 Hash *pHash;
2314 Db *pDb;
2316 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2317 pDb = &db->aDb[iDb];
2318 pHash = &pDb->pSchema->tblHash;
2319 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2320 Table *pTab = sqliteHashData(pElem);
2321 if( pTab->tnum==iFrom ){
2322 pTab->tnum = iTo;
2325 pHash = &pDb->pSchema->idxHash;
2326 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2327 Index *pIdx = sqliteHashData(pElem);
2328 if( pIdx->tnum==iFrom ){
2329 pIdx->tnum = iTo;
2333 #endif
2336 ** Write code to erase the table with root-page iTable from database iDb.
2337 ** Also write code to modify the sqlite_master table and internal schema
2338 ** if a root-page of another table is moved by the btree-layer whilst
2339 ** erasing iTable (this can happen with an auto-vacuum database).
2341 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2342 Vdbe *v = sqlite3GetVdbe(pParse);
2343 int r1 = sqlite3GetTempReg(pParse);
2344 assert( iTable>1 );
2345 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2346 sqlite3MayAbort(pParse);
2347 #ifndef SQLITE_OMIT_AUTOVACUUM
2348 /* OP_Destroy stores an in integer r1. If this integer
2349 ** is non-zero, then it is the root page number of a table moved to
2350 ** location iTable. The following code modifies the sqlite_master table to
2351 ** reflect this.
2353 ** The "#NNN" in the SQL is a special constant that means whatever value
2354 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2355 ** token for additional information.
2357 sqlite3NestedParse(pParse,
2358 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2359 pParse->db->aDb[iDb].zDbSName, MASTER_NAME, iTable, r1, r1);
2360 #endif
2361 sqlite3ReleaseTempReg(pParse, r1);
2365 ** Write VDBE code to erase table pTab and all associated indices on disk.
2366 ** Code to update the sqlite_master tables and internal schema definitions
2367 ** in case a root-page belonging to another table is moved by the btree layer
2368 ** is also added (this can happen with an auto-vacuum database).
2370 static void destroyTable(Parse *pParse, Table *pTab){
2371 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2372 ** is not defined), then it is important to call OP_Destroy on the
2373 ** table and index root-pages in order, starting with the numerically
2374 ** largest root-page number. This guarantees that none of the root-pages
2375 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2376 ** following were coded:
2378 ** OP_Destroy 4 0
2379 ** ...
2380 ** OP_Destroy 5 0
2382 ** and root page 5 happened to be the largest root-page number in the
2383 ** database, then root page 5 would be moved to page 4 by the
2384 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2385 ** a free-list page.
2387 int iTab = pTab->tnum;
2388 int iDestroyed = 0;
2390 while( 1 ){
2391 Index *pIdx;
2392 int iLargest = 0;
2394 if( iDestroyed==0 || iTab<iDestroyed ){
2395 iLargest = iTab;
2397 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2398 int iIdx = pIdx->tnum;
2399 assert( pIdx->pSchema==pTab->pSchema );
2400 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2401 iLargest = iIdx;
2404 if( iLargest==0 ){
2405 return;
2406 }else{
2407 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2408 assert( iDb>=0 && iDb<pParse->db->nDb );
2409 destroyRootPage(pParse, iLargest, iDb);
2410 iDestroyed = iLargest;
2416 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2417 ** after a DROP INDEX or DROP TABLE command.
2419 static void sqlite3ClearStatTables(
2420 Parse *pParse, /* The parsing context */
2421 int iDb, /* The database number */
2422 const char *zType, /* "idx" or "tbl" */
2423 const char *zName /* Name of index or table */
2425 int i;
2426 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2427 for(i=1; i<=4; i++){
2428 char zTab[24];
2429 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2430 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2431 sqlite3NestedParse(pParse,
2432 "DELETE FROM %Q.%s WHERE %s=%Q",
2433 zDbName, zTab, zType, zName
2440 ** Generate code to drop a table.
2442 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2443 Vdbe *v;
2444 sqlite3 *db = pParse->db;
2445 Trigger *pTrigger;
2446 Db *pDb = &db->aDb[iDb];
2448 v = sqlite3GetVdbe(pParse);
2449 assert( v!=0 );
2450 sqlite3BeginWriteOperation(pParse, 1, iDb);
2452 #ifndef SQLITE_OMIT_VIRTUALTABLE
2453 if( IsVirtual(pTab) ){
2454 sqlite3VdbeAddOp0(v, OP_VBegin);
2456 #endif
2458 /* Drop all triggers associated with the table being dropped. Code
2459 ** is generated to remove entries from sqlite_master and/or
2460 ** sqlite_temp_master if required.
2462 pTrigger = sqlite3TriggerList(pParse, pTab);
2463 while( pTrigger ){
2464 assert( pTrigger->pSchema==pTab->pSchema ||
2465 pTrigger->pSchema==db->aDb[1].pSchema );
2466 sqlite3DropTriggerPtr(pParse, pTrigger);
2467 pTrigger = pTrigger->pNext;
2470 #ifndef SQLITE_OMIT_AUTOINCREMENT
2471 /* Remove any entries of the sqlite_sequence table associated with
2472 ** the table being dropped. This is done before the table is dropped
2473 ** at the btree level, in case the sqlite_sequence table needs to
2474 ** move as a result of the drop (can happen in auto-vacuum mode).
2476 if( pTab->tabFlags & TF_Autoincrement ){
2477 sqlite3NestedParse(pParse,
2478 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2479 pDb->zDbSName, pTab->zName
2482 #endif
2484 /* Drop all SQLITE_MASTER table and index entries that refer to the
2485 ** table. The program name loops through the master table and deletes
2486 ** every row that refers to a table of the same name as the one being
2487 ** dropped. Triggers are handled separately because a trigger can be
2488 ** created in the temp database that refers to a table in another
2489 ** database.
2491 sqlite3NestedParse(pParse,
2492 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2493 pDb->zDbSName, MASTER_NAME, pTab->zName);
2494 if( !isView && !IsVirtual(pTab) ){
2495 destroyTable(pParse, pTab);
2498 /* Remove the table entry from SQLite's internal schema and modify
2499 ** the schema cookie.
2501 if( IsVirtual(pTab) ){
2502 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2504 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2505 sqlite3ChangeCookie(pParse, iDb);
2506 sqliteViewResetAll(db, iDb);
2510 ** This routine is called to do the work of a DROP TABLE statement.
2511 ** pName is the name of the table to be dropped.
2513 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2514 Table *pTab;
2515 Vdbe *v;
2516 sqlite3 *db = pParse->db;
2517 int iDb;
2519 if( db->mallocFailed ){
2520 goto exit_drop_table;
2522 assert( pParse->nErr==0 );
2523 assert( pName->nSrc==1 );
2524 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2525 if( noErr ) db->suppressErr++;
2526 assert( isView==0 || isView==LOCATE_VIEW );
2527 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2528 if( noErr ) db->suppressErr--;
2530 if( pTab==0 ){
2531 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2532 goto exit_drop_table;
2534 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2535 assert( iDb>=0 && iDb<db->nDb );
2537 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2538 ** it is initialized.
2540 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2541 goto exit_drop_table;
2543 #ifndef SQLITE_OMIT_AUTHORIZATION
2545 int code;
2546 const char *zTab = SCHEMA_TABLE(iDb);
2547 const char *zDb = db->aDb[iDb].zDbSName;
2548 const char *zArg2 = 0;
2549 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2550 goto exit_drop_table;
2552 if( isView ){
2553 if( !OMIT_TEMPDB && iDb==1 ){
2554 code = SQLITE_DROP_TEMP_VIEW;
2555 }else{
2556 code = SQLITE_DROP_VIEW;
2558 #ifndef SQLITE_OMIT_VIRTUALTABLE
2559 }else if( IsVirtual(pTab) ){
2560 code = SQLITE_DROP_VTABLE;
2561 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2562 #endif
2563 }else{
2564 if( !OMIT_TEMPDB && iDb==1 ){
2565 code = SQLITE_DROP_TEMP_TABLE;
2566 }else{
2567 code = SQLITE_DROP_TABLE;
2570 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2571 goto exit_drop_table;
2573 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2574 goto exit_drop_table;
2577 #endif
2578 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2579 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2580 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2581 goto exit_drop_table;
2584 #ifndef SQLITE_OMIT_VIEW
2585 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2586 ** on a table.
2588 if( isView && pTab->pSelect==0 ){
2589 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2590 goto exit_drop_table;
2592 if( !isView && pTab->pSelect ){
2593 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2594 goto exit_drop_table;
2596 #endif
2598 /* Generate code to remove the table from the master table
2599 ** on disk.
2601 v = sqlite3GetVdbe(pParse);
2602 if( v ){
2603 sqlite3BeginWriteOperation(pParse, 1, iDb);
2604 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2605 sqlite3FkDropTable(pParse, pName, pTab);
2606 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2609 exit_drop_table:
2610 sqlite3SrcListDelete(db, pName);
2614 ** This routine is called to create a new foreign key on the table
2615 ** currently under construction. pFromCol determines which columns
2616 ** in the current table point to the foreign key. If pFromCol==0 then
2617 ** connect the key to the last column inserted. pTo is the name of
2618 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2619 ** of tables in the parent pTo table. flags contains all
2620 ** information about the conflict resolution algorithms specified
2621 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2623 ** An FKey structure is created and added to the table currently
2624 ** under construction in the pParse->pNewTable field.
2626 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2627 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2629 void sqlite3CreateForeignKey(
2630 Parse *pParse, /* Parsing context */
2631 ExprList *pFromCol, /* Columns in this table that point to other table */
2632 Token *pTo, /* Name of the other table */
2633 ExprList *pToCol, /* Columns in the other table */
2634 int flags /* Conflict resolution algorithms. */
2636 sqlite3 *db = pParse->db;
2637 #ifndef SQLITE_OMIT_FOREIGN_KEY
2638 FKey *pFKey = 0;
2639 FKey *pNextTo;
2640 Table *p = pParse->pNewTable;
2641 int nByte;
2642 int i;
2643 int nCol;
2644 char *z;
2646 assert( pTo!=0 );
2647 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2648 if( pFromCol==0 ){
2649 int iCol = p->nCol-1;
2650 if( NEVER(iCol<0) ) goto fk_end;
2651 if( pToCol && pToCol->nExpr!=1 ){
2652 sqlite3ErrorMsg(pParse, "foreign key on %s"
2653 " should reference only one column of table %T",
2654 p->aCol[iCol].zName, pTo);
2655 goto fk_end;
2657 nCol = 1;
2658 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2659 sqlite3ErrorMsg(pParse,
2660 "number of columns in foreign key does not match the number of "
2661 "columns in the referenced table");
2662 goto fk_end;
2663 }else{
2664 nCol = pFromCol->nExpr;
2666 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2667 if( pToCol ){
2668 for(i=0; i<pToCol->nExpr; i++){
2669 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2672 pFKey = sqlite3DbMallocZero(db, nByte );
2673 if( pFKey==0 ){
2674 goto fk_end;
2676 pFKey->pFrom = p;
2677 pFKey->pNextFrom = p->pFKey;
2678 z = (char*)&pFKey->aCol[nCol];
2679 pFKey->zTo = z;
2680 memcpy(z, pTo->z, pTo->n);
2681 z[pTo->n] = 0;
2682 sqlite3Dequote(z);
2683 z += pTo->n+1;
2684 pFKey->nCol = nCol;
2685 if( pFromCol==0 ){
2686 pFKey->aCol[0].iFrom = p->nCol-1;
2687 }else{
2688 for(i=0; i<nCol; i++){
2689 int j;
2690 for(j=0; j<p->nCol; j++){
2691 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2692 pFKey->aCol[i].iFrom = j;
2693 break;
2696 if( j>=p->nCol ){
2697 sqlite3ErrorMsg(pParse,
2698 "unknown column \"%s\" in foreign key definition",
2699 pFromCol->a[i].zName);
2700 goto fk_end;
2704 if( pToCol ){
2705 for(i=0; i<nCol; i++){
2706 int n = sqlite3Strlen30(pToCol->a[i].zName);
2707 pFKey->aCol[i].zCol = z;
2708 memcpy(z, pToCol->a[i].zName, n);
2709 z[n] = 0;
2710 z += n+1;
2713 pFKey->isDeferred = 0;
2714 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2715 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2717 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2718 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2719 pFKey->zTo, (void *)pFKey
2721 if( pNextTo==pFKey ){
2722 sqlite3OomFault(db);
2723 goto fk_end;
2725 if( pNextTo ){
2726 assert( pNextTo->pPrevTo==0 );
2727 pFKey->pNextTo = pNextTo;
2728 pNextTo->pPrevTo = pFKey;
2731 /* Link the foreign key to the table as the last step.
2733 p->pFKey = pFKey;
2734 pFKey = 0;
2736 fk_end:
2737 sqlite3DbFree(db, pFKey);
2738 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2739 sqlite3ExprListDelete(db, pFromCol);
2740 sqlite3ExprListDelete(db, pToCol);
2744 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2745 ** clause is seen as part of a foreign key definition. The isDeferred
2746 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2747 ** The behavior of the most recently created foreign key is adjusted
2748 ** accordingly.
2750 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2751 #ifndef SQLITE_OMIT_FOREIGN_KEY
2752 Table *pTab;
2753 FKey *pFKey;
2754 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2755 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2756 pFKey->isDeferred = (u8)isDeferred;
2757 #endif
2761 ** Generate code that will erase and refill index *pIdx. This is
2762 ** used to initialize a newly created index or to recompute the
2763 ** content of an index in response to a REINDEX command.
2765 ** if memRootPage is not negative, it means that the index is newly
2766 ** created. The register specified by memRootPage contains the
2767 ** root page number of the index. If memRootPage is negative, then
2768 ** the index already exists and must be cleared before being refilled and
2769 ** the root page number of the index is taken from pIndex->tnum.
2771 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2772 Table *pTab = pIndex->pTable; /* The table that is indexed */
2773 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2774 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2775 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2776 int addr1; /* Address of top of loop */
2777 int addr2; /* Address to jump to for next iteration */
2778 int tnum; /* Root page of index */
2779 int iPartIdxLabel; /* Jump to this label to skip a row */
2780 Vdbe *v; /* Generate code into this virtual machine */
2781 KeyInfo *pKey; /* KeyInfo for index */
2782 int regRecord; /* Register holding assembled index record */
2783 sqlite3 *db = pParse->db; /* The database connection */
2784 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2786 #ifndef SQLITE_OMIT_AUTHORIZATION
2787 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2788 db->aDb[iDb].zDbSName ) ){
2789 return;
2791 #endif
2793 /* Require a write-lock on the table to perform this operation */
2794 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2796 v = sqlite3GetVdbe(pParse);
2797 if( v==0 ) return;
2798 if( memRootPage>=0 ){
2799 tnum = memRootPage;
2800 }else{
2801 tnum = pIndex->tnum;
2803 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2804 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2806 /* Open the sorter cursor if we are to use one. */
2807 iSorter = pParse->nTab++;
2808 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2809 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2811 /* Open the table. Loop through all rows of the table, inserting index
2812 ** records into the sorter. */
2813 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2814 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2815 regRecord = sqlite3GetTempReg(pParse);
2817 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2818 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2819 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2820 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2821 sqlite3VdbeJumpHere(v, addr1);
2822 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2823 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2824 (char *)pKey, P4_KEYINFO);
2825 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2827 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2828 if( IsUniqueIndex(pIndex) ){
2829 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2830 sqlite3VdbeGoto(v, j2);
2831 addr2 = sqlite3VdbeCurrentAddr(v);
2832 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2833 pIndex->nKeyCol); VdbeCoverage(v);
2834 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2835 }else{
2836 addr2 = sqlite3VdbeCurrentAddr(v);
2838 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2839 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
2840 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2841 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2842 sqlite3ReleaseTempReg(pParse, regRecord);
2843 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2844 sqlite3VdbeJumpHere(v, addr1);
2846 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2847 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2848 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2852 ** Allocate heap space to hold an Index object with nCol columns.
2854 ** Increase the allocation size to provide an extra nExtra bytes
2855 ** of 8-byte aligned space after the Index object and return a
2856 ** pointer to this extra space in *ppExtra.
2858 Index *sqlite3AllocateIndexObject(
2859 sqlite3 *db, /* Database connection */
2860 i16 nCol, /* Total number of columns in the index */
2861 int nExtra, /* Number of bytes of extra space to alloc */
2862 char **ppExtra /* Pointer to the "extra" space */
2864 Index *p; /* Allocated index object */
2865 int nByte; /* Bytes of space for Index object + arrays */
2867 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2868 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2869 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2870 sizeof(i16)*nCol + /* Index.aiColumn */
2871 sizeof(u8)*nCol); /* Index.aSortOrder */
2872 p = sqlite3DbMallocZero(db, nByte + nExtra);
2873 if( p ){
2874 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2875 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2876 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2877 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2878 p->aSortOrder = (u8*)pExtra;
2879 p->nColumn = nCol;
2880 p->nKeyCol = nCol - 1;
2881 *ppExtra = ((char*)p) + nByte;
2883 return p;
2887 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2888 ** and pTblList is the name of the table that is to be indexed. Both will
2889 ** be NULL for a primary key or an index that is created to satisfy a
2890 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2891 ** as the table to be indexed. pParse->pNewTable is a table that is
2892 ** currently being constructed by a CREATE TABLE statement.
2894 ** pList is a list of columns to be indexed. pList will be NULL if this
2895 ** is a primary key or unique-constraint on the most recent column added
2896 ** to the table currently under construction.
2898 void sqlite3CreateIndex(
2899 Parse *pParse, /* All information about this parse */
2900 Token *pName1, /* First part of index name. May be NULL */
2901 Token *pName2, /* Second part of index name. May be NULL */
2902 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2903 ExprList *pList, /* A list of columns to be indexed */
2904 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2905 Token *pStart, /* The CREATE token that begins this statement */
2906 Expr *pPIWhere, /* WHERE clause for partial indices */
2907 int sortOrder, /* Sort order of primary key when pList==NULL */
2908 int ifNotExist, /* Omit error if index already exists */
2909 u8 idxType /* The index type */
2911 Table *pTab = 0; /* Table to be indexed */
2912 Index *pIndex = 0; /* The index to be created */
2913 char *zName = 0; /* Name of the index */
2914 int nName; /* Number of characters in zName */
2915 int i, j;
2916 DbFixer sFix; /* For assigning database names to pTable */
2917 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2918 sqlite3 *db = pParse->db;
2919 Db *pDb; /* The specific table containing the indexed database */
2920 int iDb; /* Index of the database that is being written */
2921 Token *pName = 0; /* Unqualified name of the index to create */
2922 struct ExprList_item *pListItem; /* For looping over pList */
2923 int nExtra = 0; /* Space allocated for zExtra[] */
2924 int nExtraCol; /* Number of extra columns needed */
2925 char *zExtra = 0; /* Extra space after the Index object */
2926 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2928 if( db->mallocFailed || pParse->nErr>0 ){
2929 goto exit_create_index;
2931 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2932 goto exit_create_index;
2934 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2935 goto exit_create_index;
2939 ** Find the table that is to be indexed. Return early if not found.
2941 if( pTblName!=0 ){
2943 /* Use the two-part index name to determine the database
2944 ** to search for the table. 'Fix' the table name to this db
2945 ** before looking up the table.
2947 assert( pName1 && pName2 );
2948 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2949 if( iDb<0 ) goto exit_create_index;
2950 assert( pName && pName->z );
2952 #ifndef SQLITE_OMIT_TEMPDB
2953 /* If the index name was unqualified, check if the table
2954 ** is a temp table. If so, set the database to 1. Do not do this
2955 ** if initialising a database schema.
2957 if( !db->init.busy ){
2958 pTab = sqlite3SrcListLookup(pParse, pTblName);
2959 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2960 iDb = 1;
2963 #endif
2965 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2966 if( sqlite3FixSrcList(&sFix, pTblName) ){
2967 /* Because the parser constructs pTblName from a single identifier,
2968 ** sqlite3FixSrcList can never fail. */
2969 assert(0);
2971 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2972 assert( db->mallocFailed==0 || pTab==0 );
2973 if( pTab==0 ) goto exit_create_index;
2974 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2975 sqlite3ErrorMsg(pParse,
2976 "cannot create a TEMP index on non-TEMP table \"%s\"",
2977 pTab->zName);
2978 goto exit_create_index;
2980 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2981 }else{
2982 assert( pName==0 );
2983 assert( pStart==0 );
2984 pTab = pParse->pNewTable;
2985 if( !pTab ) goto exit_create_index;
2986 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2988 pDb = &db->aDb[iDb];
2990 assert( pTab!=0 );
2991 assert( pParse->nErr==0 );
2992 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2993 && db->init.busy==0
2994 #if SQLITE_USER_AUTHENTICATION
2995 && sqlite3UserAuthTable(pTab->zName)==0
2996 #endif
2997 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2998 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2999 goto exit_create_index;
3001 #ifndef SQLITE_OMIT_VIEW
3002 if( pTab->pSelect ){
3003 sqlite3ErrorMsg(pParse, "views may not be indexed");
3004 goto exit_create_index;
3006 #endif
3007 #ifndef SQLITE_OMIT_VIRTUALTABLE
3008 if( IsVirtual(pTab) ){
3009 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3010 goto exit_create_index;
3012 #endif
3015 ** Find the name of the index. Make sure there is not already another
3016 ** index or table with the same name.
3018 ** Exception: If we are reading the names of permanent indices from the
3019 ** sqlite_master table (because some other process changed the schema) and
3020 ** one of the index names collides with the name of a temporary table or
3021 ** index, then we will continue to process this index.
3023 ** If pName==0 it means that we are
3024 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3025 ** own name.
3027 if( pName ){
3028 zName = sqlite3NameFromToken(db, pName);
3029 if( zName==0 ) goto exit_create_index;
3030 assert( pName->z!=0 );
3031 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3032 goto exit_create_index;
3034 if( !db->init.busy ){
3035 if( sqlite3FindTable(db, zName, 0)!=0 ){
3036 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3037 goto exit_create_index;
3040 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3041 if( !ifNotExist ){
3042 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3043 }else{
3044 assert( !db->init.busy );
3045 sqlite3CodeVerifySchema(pParse, iDb);
3047 goto exit_create_index;
3049 }else{
3050 int n;
3051 Index *pLoop;
3052 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3053 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3054 if( zName==0 ){
3055 goto exit_create_index;
3058 /* Automatic index names generated from within sqlite3_declare_vtab()
3059 ** must have names that are distinct from normal automatic index names.
3060 ** The following statement converts "sqlite3_autoindex..." into
3061 ** "sqlite3_butoindex..." in order to make the names distinct.
3062 ** The "vtab_err.test" test demonstrates the need of this statement. */
3063 if( IN_DECLARE_VTAB ) zName[7]++;
3066 /* Check for authorization to create an index.
3068 #ifndef SQLITE_OMIT_AUTHORIZATION
3070 const char *zDb = pDb->zDbSName;
3071 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3072 goto exit_create_index;
3074 i = SQLITE_CREATE_INDEX;
3075 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3076 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3077 goto exit_create_index;
3080 #endif
3082 /* If pList==0, it means this routine was called to make a primary
3083 ** key out of the last column added to the table under construction.
3084 ** So create a fake list to simulate this.
3086 if( pList==0 ){
3087 Token prevCol;
3088 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3089 pList = sqlite3ExprListAppend(pParse, 0,
3090 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3091 if( pList==0 ) goto exit_create_index;
3092 assert( pList->nExpr==1 );
3093 sqlite3ExprListSetSortOrder(pList, sortOrder);
3094 }else{
3095 sqlite3ExprListCheckLength(pParse, pList, "index");
3098 /* Figure out how many bytes of space are required to store explicitly
3099 ** specified collation sequence names.
3101 for(i=0; i<pList->nExpr; i++){
3102 Expr *pExpr = pList->a[i].pExpr;
3103 assert( pExpr!=0 );
3104 if( pExpr->op==TK_COLLATE ){
3105 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3110 ** Allocate the index structure.
3112 nName = sqlite3Strlen30(zName);
3113 nExtraCol = pPk ? pPk->nKeyCol : 1;
3114 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3115 nName + nExtra + 1, &zExtra);
3116 if( db->mallocFailed ){
3117 goto exit_create_index;
3119 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3120 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3121 pIndex->zName = zExtra;
3122 zExtra += nName + 1;
3123 memcpy(pIndex->zName, zName, nName+1);
3124 pIndex->pTable = pTab;
3125 pIndex->onError = (u8)onError;
3126 pIndex->uniqNotNull = onError!=OE_None;
3127 pIndex->idxType = idxType;
3128 pIndex->pSchema = db->aDb[iDb].pSchema;
3129 pIndex->nKeyCol = pList->nExpr;
3130 if( pPIWhere ){
3131 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3132 pIndex->pPartIdxWhere = pPIWhere;
3133 pPIWhere = 0;
3135 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3137 /* Check to see if we should honor DESC requests on index columns
3139 if( pDb->pSchema->file_format>=4 ){
3140 sortOrderMask = -1; /* Honor DESC */
3141 }else{
3142 sortOrderMask = 0; /* Ignore DESC */
3145 /* Analyze the list of expressions that form the terms of the index and
3146 ** report any errors. In the common case where the expression is exactly
3147 ** a table column, store that column in aiColumn[]. For general expressions,
3148 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3150 ** TODO: Issue a warning if two or more columns of the index are identical.
3151 ** TODO: Issue a warning if the table primary key is used as part of the
3152 ** index key.
3154 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3155 Expr *pCExpr; /* The i-th index expression */
3156 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3157 const char *zColl; /* Collation sequence name */
3159 sqlite3StringToId(pListItem->pExpr);
3160 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3161 if( pParse->nErr ) goto exit_create_index;
3162 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3163 if( pCExpr->op!=TK_COLUMN ){
3164 if( pTab==pParse->pNewTable ){
3165 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3166 "UNIQUE constraints");
3167 goto exit_create_index;
3169 if( pIndex->aColExpr==0 ){
3170 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3171 pIndex->aColExpr = pCopy;
3172 if( !db->mallocFailed ){
3173 assert( pCopy!=0 );
3174 pListItem = &pCopy->a[i];
3177 j = XN_EXPR;
3178 pIndex->aiColumn[i] = XN_EXPR;
3179 pIndex->uniqNotNull = 0;
3180 }else{
3181 j = pCExpr->iColumn;
3182 assert( j<=0x7fff );
3183 if( j<0 ){
3184 j = pTab->iPKey;
3185 }else if( pTab->aCol[j].notNull==0 ){
3186 pIndex->uniqNotNull = 0;
3188 pIndex->aiColumn[i] = (i16)j;
3190 zColl = 0;
3191 if( pListItem->pExpr->op==TK_COLLATE ){
3192 int nColl;
3193 zColl = pListItem->pExpr->u.zToken;
3194 nColl = sqlite3Strlen30(zColl) + 1;
3195 assert( nExtra>=nColl );
3196 memcpy(zExtra, zColl, nColl);
3197 zColl = zExtra;
3198 zExtra += nColl;
3199 nExtra -= nColl;
3200 }else if( j>=0 ){
3201 zColl = pTab->aCol[j].zColl;
3203 if( !zColl ) zColl = sqlite3StrBINARY;
3204 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3205 goto exit_create_index;
3207 pIndex->azColl[i] = zColl;
3208 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3209 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3212 /* Append the table key to the end of the index. For WITHOUT ROWID
3213 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3214 ** normal tables (when pPk==0) this will be the rowid.
3216 if( pPk ){
3217 for(j=0; j<pPk->nKeyCol; j++){
3218 int x = pPk->aiColumn[j];
3219 assert( x>=0 );
3220 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3221 pIndex->nColumn--;
3222 }else{
3223 pIndex->aiColumn[i] = x;
3224 pIndex->azColl[i] = pPk->azColl[j];
3225 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3226 i++;
3229 assert( i==pIndex->nColumn );
3230 }else{
3231 pIndex->aiColumn[i] = XN_ROWID;
3232 pIndex->azColl[i] = sqlite3StrBINARY;
3234 sqlite3DefaultRowEst(pIndex);
3235 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3237 /* If this index contains every column of its table, then mark
3238 ** it as a covering index */
3239 assert( HasRowid(pTab)
3240 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3241 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3242 pIndex->isCovering = 1;
3243 for(j=0; j<pTab->nCol; j++){
3244 if( j==pTab->iPKey ) continue;
3245 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3246 pIndex->isCovering = 0;
3247 break;
3251 if( pTab==pParse->pNewTable ){
3252 /* This routine has been called to create an automatic index as a
3253 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3254 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3255 ** i.e. one of:
3257 ** CREATE TABLE t(x PRIMARY KEY, y);
3258 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3260 ** Either way, check to see if the table already has such an index. If
3261 ** so, don't bother creating this one. This only applies to
3262 ** automatically created indices. Users can do as they wish with
3263 ** explicit indices.
3265 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3266 ** (and thus suppressing the second one) even if they have different
3267 ** sort orders.
3269 ** If there are different collating sequences or if the columns of
3270 ** the constraint occur in different orders, then the constraints are
3271 ** considered distinct and both result in separate indices.
3273 Index *pIdx;
3274 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3275 int k;
3276 assert( IsUniqueIndex(pIdx) );
3277 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3278 assert( IsUniqueIndex(pIndex) );
3280 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3281 for(k=0; k<pIdx->nKeyCol; k++){
3282 const char *z1;
3283 const char *z2;
3284 assert( pIdx->aiColumn[k]>=0 );
3285 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3286 z1 = pIdx->azColl[k];
3287 z2 = pIndex->azColl[k];
3288 if( sqlite3StrICmp(z1, z2) ) break;
3290 if( k==pIdx->nKeyCol ){
3291 if( pIdx->onError!=pIndex->onError ){
3292 /* This constraint creates the same index as a previous
3293 ** constraint specified somewhere in the CREATE TABLE statement.
3294 ** However the ON CONFLICT clauses are different. If both this
3295 ** constraint and the previous equivalent constraint have explicit
3296 ** ON CONFLICT clauses this is an error. Otherwise, use the
3297 ** explicitly specified behavior for the index.
3299 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3300 sqlite3ErrorMsg(pParse,
3301 "conflicting ON CONFLICT clauses specified", 0);
3303 if( pIdx->onError==OE_Default ){
3304 pIdx->onError = pIndex->onError;
3307 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3308 goto exit_create_index;
3313 /* Link the new Index structure to its table and to the other
3314 ** in-memory database structures.
3316 assert( pParse->nErr==0 );
3317 if( db->init.busy ){
3318 Index *p;
3319 assert( !IN_DECLARE_VTAB );
3320 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3321 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3322 pIndex->zName, pIndex);
3323 if( p ){
3324 assert( p==pIndex ); /* Malloc must have failed */
3325 sqlite3OomFault(db);
3326 goto exit_create_index;
3328 db->mDbFlags |= DBFLAG_SchemaChange;
3329 if( pTblName!=0 ){
3330 pIndex->tnum = db->init.newTnum;
3334 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3335 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3336 ** emit code to allocate the index rootpage on disk and make an entry for
3337 ** the index in the sqlite_master table and populate the index with
3338 ** content. But, do not do this if we are simply reading the sqlite_master
3339 ** table to parse the schema, or if this index is the PRIMARY KEY index
3340 ** of a WITHOUT ROWID table.
3342 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3343 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3344 ** has just been created, it contains no data and the index initialization
3345 ** step can be skipped.
3347 else if( HasRowid(pTab) || pTblName!=0 ){
3348 Vdbe *v;
3349 char *zStmt;
3350 int iMem = ++pParse->nMem;
3352 v = sqlite3GetVdbe(pParse);
3353 if( v==0 ) goto exit_create_index;
3355 sqlite3BeginWriteOperation(pParse, 1, iDb);
3357 /* Create the rootpage for the index using CreateIndex. But before
3358 ** doing so, code a Noop instruction and store its address in
3359 ** Index.tnum. This is required in case this index is actually a
3360 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3361 ** that case the convertToWithoutRowidTable() routine will replace
3362 ** the Noop with a Goto to jump over the VDBE code generated below. */
3363 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3364 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3366 /* Gather the complete text of the CREATE INDEX statement into
3367 ** the zStmt variable
3369 if( pStart ){
3370 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3371 if( pName->z[n-1]==';' ) n--;
3372 /* A named index with an explicit CREATE INDEX statement */
3373 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3374 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3375 }else{
3376 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3377 /* zStmt = sqlite3MPrintf(""); */
3378 zStmt = 0;
3381 /* Add an entry in sqlite_master for this index
3383 sqlite3NestedParse(pParse,
3384 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3385 db->aDb[iDb].zDbSName, MASTER_NAME,
3386 pIndex->zName,
3387 pTab->zName,
3388 iMem,
3389 zStmt
3391 sqlite3DbFree(db, zStmt);
3393 /* Fill the index with data and reparse the schema. Code an OP_Expire
3394 ** to invalidate all pre-compiled statements.
3396 if( pTblName ){
3397 sqlite3RefillIndex(pParse, pIndex, iMem);
3398 sqlite3ChangeCookie(pParse, iDb);
3399 sqlite3VdbeAddParseSchemaOp(v, iDb,
3400 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3401 sqlite3VdbeAddOp0(v, OP_Expire);
3404 sqlite3VdbeJumpHere(v, pIndex->tnum);
3407 /* When adding an index to the list of indices for a table, make
3408 ** sure all indices labeled OE_Replace come after all those labeled
3409 ** OE_Ignore. This is necessary for the correct constraint check
3410 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3411 ** UPDATE and INSERT statements.
3413 if( db->init.busy || pTblName==0 ){
3414 if( onError!=OE_Replace || pTab->pIndex==0
3415 || pTab->pIndex->onError==OE_Replace){
3416 pIndex->pNext = pTab->pIndex;
3417 pTab->pIndex = pIndex;
3418 }else{
3419 Index *pOther = pTab->pIndex;
3420 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3421 pOther = pOther->pNext;
3423 pIndex->pNext = pOther->pNext;
3424 pOther->pNext = pIndex;
3426 pIndex = 0;
3429 /* Clean up before exiting */
3430 exit_create_index:
3431 if( pIndex ) freeIndex(db, pIndex);
3432 sqlite3ExprDelete(db, pPIWhere);
3433 sqlite3ExprListDelete(db, pList);
3434 sqlite3SrcListDelete(db, pTblName);
3435 sqlite3DbFree(db, zName);
3439 ** Fill the Index.aiRowEst[] array with default information - information
3440 ** to be used when we have not run the ANALYZE command.
3442 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3443 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3444 ** number of rows in the table that match any particular value of the
3445 ** first column of the index. aiRowEst[2] is an estimate of the number
3446 ** of rows that match any particular combination of the first 2 columns
3447 ** of the index. And so forth. It must always be the case that
3449 ** aiRowEst[N]<=aiRowEst[N-1]
3450 ** aiRowEst[N]>=1
3452 ** Apart from that, we have little to go on besides intuition as to
3453 ** how aiRowEst[] should be initialized. The numbers generated here
3454 ** are based on typical values found in actual indices.
3456 void sqlite3DefaultRowEst(Index *pIdx){
3457 /* 10, 9, 8, 7, 6 */
3458 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3459 LogEst *a = pIdx->aiRowLogEst;
3460 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3461 int i;
3463 /* Indexes with default row estimates should not have stat1 data */
3464 assert( !pIdx->hasStat1 );
3466 /* Set the first entry (number of rows in the index) to the estimated
3467 ** number of rows in the table, or half the number of rows in the table
3468 ** for a partial index. But do not let the estimate drop below 10. */
3469 a[0] = pIdx->pTable->nRowLogEst;
3470 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3471 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3473 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3474 ** 6 and each subsequent value (if any) is 5. */
3475 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3476 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3477 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3480 assert( 0==sqlite3LogEst(1) );
3481 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3485 ** This routine will drop an existing named index. This routine
3486 ** implements the DROP INDEX statement.
3488 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3489 Index *pIndex;
3490 Vdbe *v;
3491 sqlite3 *db = pParse->db;
3492 int iDb;
3494 assert( pParse->nErr==0 ); /* Never called with prior errors */
3495 if( db->mallocFailed ){
3496 goto exit_drop_index;
3498 assert( pName->nSrc==1 );
3499 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3500 goto exit_drop_index;
3502 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3503 if( pIndex==0 ){
3504 if( !ifExists ){
3505 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3506 }else{
3507 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3509 pParse->checkSchema = 1;
3510 goto exit_drop_index;
3512 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3513 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3514 "or PRIMARY KEY constraint cannot be dropped", 0);
3515 goto exit_drop_index;
3517 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3518 #ifndef SQLITE_OMIT_AUTHORIZATION
3520 int code = SQLITE_DROP_INDEX;
3521 Table *pTab = pIndex->pTable;
3522 const char *zDb = db->aDb[iDb].zDbSName;
3523 const char *zTab = SCHEMA_TABLE(iDb);
3524 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3525 goto exit_drop_index;
3527 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3528 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3529 goto exit_drop_index;
3532 #endif
3534 /* Generate code to remove the index and from the master table */
3535 v = sqlite3GetVdbe(pParse);
3536 if( v ){
3537 sqlite3BeginWriteOperation(pParse, 1, iDb);
3538 sqlite3NestedParse(pParse,
3539 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3540 db->aDb[iDb].zDbSName, MASTER_NAME, pIndex->zName
3542 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3543 sqlite3ChangeCookie(pParse, iDb);
3544 destroyRootPage(pParse, pIndex->tnum, iDb);
3545 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3548 exit_drop_index:
3549 sqlite3SrcListDelete(db, pName);
3553 ** pArray is a pointer to an array of objects. Each object in the
3554 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3555 ** to extend the array so that there is space for a new object at the end.
3557 ** When this function is called, *pnEntry contains the current size of
3558 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3559 ** in total).
3561 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3562 ** space allocated for the new object is zeroed, *pnEntry updated to
3563 ** reflect the new size of the array and a pointer to the new allocation
3564 ** returned. *pIdx is set to the index of the new array entry in this case.
3566 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3567 ** unchanged and a copy of pArray returned.
3569 void *sqlite3ArrayAllocate(
3570 sqlite3 *db, /* Connection to notify of malloc failures */
3571 void *pArray, /* Array of objects. Might be reallocated */
3572 int szEntry, /* Size of each object in the array */
3573 int *pnEntry, /* Number of objects currently in use */
3574 int *pIdx /* Write the index of a new slot here */
3576 char *z;
3577 int n = *pnEntry;
3578 if( (n & (n-1))==0 ){
3579 int sz = (n==0) ? 1 : 2*n;
3580 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3581 if( pNew==0 ){
3582 *pIdx = -1;
3583 return pArray;
3585 pArray = pNew;
3587 z = (char*)pArray;
3588 memset(&z[n * szEntry], 0, szEntry);
3589 *pIdx = n;
3590 ++*pnEntry;
3591 return pArray;
3595 ** Append a new element to the given IdList. Create a new IdList if
3596 ** need be.
3598 ** A new IdList is returned, or NULL if malloc() fails.
3600 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3601 int i;
3602 if( pList==0 ){
3603 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3604 if( pList==0 ) return 0;
3606 pList->a = sqlite3ArrayAllocate(
3608 pList->a,
3609 sizeof(pList->a[0]),
3610 &pList->nId,
3613 if( i<0 ){
3614 sqlite3IdListDelete(db, pList);
3615 return 0;
3617 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3618 return pList;
3622 ** Delete an IdList.
3624 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3625 int i;
3626 if( pList==0 ) return;
3627 for(i=0; i<pList->nId; i++){
3628 sqlite3DbFree(db, pList->a[i].zName);
3630 sqlite3DbFree(db, pList->a);
3631 sqlite3DbFreeNN(db, pList);
3635 ** Return the index in pList of the identifier named zId. Return -1
3636 ** if not found.
3638 int sqlite3IdListIndex(IdList *pList, const char *zName){
3639 int i;
3640 if( pList==0 ) return -1;
3641 for(i=0; i<pList->nId; i++){
3642 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3644 return -1;
3648 ** Expand the space allocated for the given SrcList object by
3649 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3650 ** New slots are zeroed.
3652 ** For example, suppose a SrcList initially contains two entries: A,B.
3653 ** To append 3 new entries onto the end, do this:
3655 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3657 ** After the call above it would contain: A, B, nil, nil, nil.
3658 ** If the iStart argument had been 1 instead of 2, then the result
3659 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3660 ** the iStart value would be 0. The result then would
3661 ** be: nil, nil, nil, A, B.
3663 ** If a memory allocation fails the SrcList is unchanged. The
3664 ** db->mallocFailed flag will be set to true.
3666 SrcList *sqlite3SrcListEnlarge(
3667 sqlite3 *db, /* Database connection to notify of OOM errors */
3668 SrcList *pSrc, /* The SrcList to be enlarged */
3669 int nExtra, /* Number of new slots to add to pSrc->a[] */
3670 int iStart /* Index in pSrc->a[] of first new slot */
3672 int i;
3674 /* Sanity checking on calling parameters */
3675 assert( iStart>=0 );
3676 assert( nExtra>=1 );
3677 assert( pSrc!=0 );
3678 assert( iStart<=pSrc->nSrc );
3680 /* Allocate additional space if needed */
3681 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3682 SrcList *pNew;
3683 int nAlloc = pSrc->nSrc*2+nExtra;
3684 int nGot;
3685 pNew = sqlite3DbRealloc(db, pSrc,
3686 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3687 if( pNew==0 ){
3688 assert( db->mallocFailed );
3689 return pSrc;
3691 pSrc = pNew;
3692 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3693 pSrc->nAlloc = nGot;
3696 /* Move existing slots that come after the newly inserted slots
3697 ** out of the way */
3698 for(i=pSrc->nSrc-1; i>=iStart; i--){
3699 pSrc->a[i+nExtra] = pSrc->a[i];
3701 pSrc->nSrc += nExtra;
3703 /* Zero the newly allocated slots */
3704 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3705 for(i=iStart; i<iStart+nExtra; i++){
3706 pSrc->a[i].iCursor = -1;
3709 /* Return a pointer to the enlarged SrcList */
3710 return pSrc;
3715 ** Append a new table name to the given SrcList. Create a new SrcList if
3716 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3718 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3719 ** SrcList might be the same as the SrcList that was input or it might be
3720 ** a new one. If an OOM error does occurs, then the prior value of pList
3721 ** that is input to this routine is automatically freed.
3723 ** If pDatabase is not null, it means that the table has an optional
3724 ** database name prefix. Like this: "database.table". The pDatabase
3725 ** points to the table name and the pTable points to the database name.
3726 ** The SrcList.a[].zName field is filled with the table name which might
3727 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3728 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3729 ** or with NULL if no database is specified.
3731 ** In other words, if call like this:
3733 ** sqlite3SrcListAppend(D,A,B,0);
3735 ** Then B is a table name and the database name is unspecified. If called
3736 ** like this:
3738 ** sqlite3SrcListAppend(D,A,B,C);
3740 ** Then C is the table name and B is the database name. If C is defined
3741 ** then so is B. In other words, we never have a case where:
3743 ** sqlite3SrcListAppend(D,A,0,C);
3745 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3746 ** before being added to the SrcList.
3748 SrcList *sqlite3SrcListAppend(
3749 sqlite3 *db, /* Connection to notify of malloc failures */
3750 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3751 Token *pTable, /* Table to append */
3752 Token *pDatabase /* Database of the table */
3754 struct SrcList_item *pItem;
3755 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3756 assert( db!=0 );
3757 if( pList==0 ){
3758 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3759 if( pList==0 ) return 0;
3760 pList->nAlloc = 1;
3761 pList->nSrc = 1;
3762 memset(&pList->a[0], 0, sizeof(pList->a[0]));
3763 pList->a[0].iCursor = -1;
3764 }else{
3765 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3767 if( db->mallocFailed ){
3768 sqlite3SrcListDelete(db, pList);
3769 return 0;
3771 pItem = &pList->a[pList->nSrc-1];
3772 if( pDatabase && pDatabase->z==0 ){
3773 pDatabase = 0;
3775 if( pDatabase ){
3776 pItem->zName = sqlite3NameFromToken(db, pDatabase);
3777 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
3778 }else{
3779 pItem->zName = sqlite3NameFromToken(db, pTable);
3780 pItem->zDatabase = 0;
3782 return pList;
3786 ** Assign VdbeCursor index numbers to all tables in a SrcList
3788 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3789 int i;
3790 struct SrcList_item *pItem;
3791 assert(pList || pParse->db->mallocFailed );
3792 if( pList ){
3793 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3794 if( pItem->iCursor>=0 ) break;
3795 pItem->iCursor = pParse->nTab++;
3796 if( pItem->pSelect ){
3797 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3804 ** Delete an entire SrcList including all its substructure.
3806 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3807 int i;
3808 struct SrcList_item *pItem;
3809 if( pList==0 ) return;
3810 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3811 sqlite3DbFree(db, pItem->zDatabase);
3812 sqlite3DbFree(db, pItem->zName);
3813 sqlite3DbFree(db, pItem->zAlias);
3814 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3815 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3816 sqlite3DeleteTable(db, pItem->pTab);
3817 sqlite3SelectDelete(db, pItem->pSelect);
3818 sqlite3ExprDelete(db, pItem->pOn);
3819 sqlite3IdListDelete(db, pItem->pUsing);
3821 sqlite3DbFreeNN(db, pList);
3825 ** This routine is called by the parser to add a new term to the
3826 ** end of a growing FROM clause. The "p" parameter is the part of
3827 ** the FROM clause that has already been constructed. "p" is NULL
3828 ** if this is the first term of the FROM clause. pTable and pDatabase
3829 ** are the name of the table and database named in the FROM clause term.
3830 ** pDatabase is NULL if the database name qualifier is missing - the
3831 ** usual case. If the term has an alias, then pAlias points to the
3832 ** alias token. If the term is a subquery, then pSubquery is the
3833 ** SELECT statement that the subquery encodes. The pTable and
3834 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3835 ** parameters are the content of the ON and USING clauses.
3837 ** Return a new SrcList which encodes is the FROM with the new
3838 ** term added.
3840 SrcList *sqlite3SrcListAppendFromTerm(
3841 Parse *pParse, /* Parsing context */
3842 SrcList *p, /* The left part of the FROM clause already seen */
3843 Token *pTable, /* Name of the table to add to the FROM clause */
3844 Token *pDatabase, /* Name of the database containing pTable */
3845 Token *pAlias, /* The right-hand side of the AS subexpression */
3846 Select *pSubquery, /* A subquery used in place of a table name */
3847 Expr *pOn, /* The ON clause of a join */
3848 IdList *pUsing /* The USING clause of a join */
3850 struct SrcList_item *pItem;
3851 sqlite3 *db = pParse->db;
3852 if( !p && (pOn || pUsing) ){
3853 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3854 (pOn ? "ON" : "USING")
3856 goto append_from_error;
3858 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3859 if( p==0 ){
3860 goto append_from_error;
3862 assert( p->nSrc>0 );
3863 pItem = &p->a[p->nSrc-1];
3864 assert( pAlias!=0 );
3865 if( pAlias->n ){
3866 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3868 pItem->pSelect = pSubquery;
3869 pItem->pOn = pOn;
3870 pItem->pUsing = pUsing;
3871 return p;
3873 append_from_error:
3874 assert( p==0 );
3875 sqlite3ExprDelete(db, pOn);
3876 sqlite3IdListDelete(db, pUsing);
3877 sqlite3SelectDelete(db, pSubquery);
3878 return 0;
3882 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3883 ** element of the source-list passed as the second argument.
3885 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3886 assert( pIndexedBy!=0 );
3887 if( p && pIndexedBy->n>0 ){
3888 struct SrcList_item *pItem;
3889 assert( p->nSrc>0 );
3890 pItem = &p->a[p->nSrc-1];
3891 assert( pItem->fg.notIndexed==0 );
3892 assert( pItem->fg.isIndexedBy==0 );
3893 assert( pItem->fg.isTabFunc==0 );
3894 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3895 /* A "NOT INDEXED" clause was supplied. See parse.y
3896 ** construct "indexed_opt" for details. */
3897 pItem->fg.notIndexed = 1;
3898 }else{
3899 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3900 pItem->fg.isIndexedBy = 1;
3906 ** Add the list of function arguments to the SrcList entry for a
3907 ** table-valued-function.
3909 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3910 if( p ){
3911 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3912 assert( pItem->fg.notIndexed==0 );
3913 assert( pItem->fg.isIndexedBy==0 );
3914 assert( pItem->fg.isTabFunc==0 );
3915 pItem->u1.pFuncArg = pList;
3916 pItem->fg.isTabFunc = 1;
3917 }else{
3918 sqlite3ExprListDelete(pParse->db, pList);
3923 ** When building up a FROM clause in the parser, the join operator
3924 ** is initially attached to the left operand. But the code generator
3925 ** expects the join operator to be on the right operand. This routine
3926 ** Shifts all join operators from left to right for an entire FROM
3927 ** clause.
3929 ** Example: Suppose the join is like this:
3931 ** A natural cross join B
3933 ** The operator is "natural cross join". The A and B operands are stored
3934 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3935 ** operator with A. This routine shifts that operator over to B.
3937 void sqlite3SrcListShiftJoinType(SrcList *p){
3938 if( p ){
3939 int i;
3940 for(i=p->nSrc-1; i>0; i--){
3941 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3943 p->a[0].fg.jointype = 0;
3948 ** Generate VDBE code for a BEGIN statement.
3950 void sqlite3BeginTransaction(Parse *pParse, int type){
3951 sqlite3 *db;
3952 Vdbe *v;
3953 int i;
3955 assert( pParse!=0 );
3956 db = pParse->db;
3957 assert( db!=0 );
3958 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3959 return;
3961 v = sqlite3GetVdbe(pParse);
3962 if( !v ) return;
3963 if( type!=TK_DEFERRED ){
3964 for(i=0; i<db->nDb; i++){
3965 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3966 sqlite3VdbeUsesBtree(v, i);
3969 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3973 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
3974 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
3975 ** code is generated for a COMMIT.
3977 void sqlite3EndTransaction(Parse *pParse, int eType){
3978 Vdbe *v;
3979 int isRollback;
3981 assert( pParse!=0 );
3982 assert( pParse->db!=0 );
3983 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
3984 isRollback = eType==TK_ROLLBACK;
3985 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
3986 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
3987 return;
3989 v = sqlite3GetVdbe(pParse);
3990 if( v ){
3991 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
3996 ** This function is called by the parser when it parses a command to create,
3997 ** release or rollback an SQL savepoint.
3999 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4000 char *zName = sqlite3NameFromToken(pParse->db, pName);
4001 if( zName ){
4002 Vdbe *v = sqlite3GetVdbe(pParse);
4003 #ifndef SQLITE_OMIT_AUTHORIZATION
4004 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4005 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4006 #endif
4007 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4008 sqlite3DbFree(pParse->db, zName);
4009 return;
4011 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4016 ** Make sure the TEMP database is open and available for use. Return
4017 ** the number of errors. Leave any error messages in the pParse structure.
4019 int sqlite3OpenTempDatabase(Parse *pParse){
4020 sqlite3 *db = pParse->db;
4021 if( db->aDb[1].pBt==0 && !pParse->explain ){
4022 int rc;
4023 Btree *pBt;
4024 static const int flags =
4025 SQLITE_OPEN_READWRITE |
4026 SQLITE_OPEN_CREATE |
4027 SQLITE_OPEN_EXCLUSIVE |
4028 SQLITE_OPEN_DELETEONCLOSE |
4029 SQLITE_OPEN_TEMP_DB;
4031 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4032 if( rc!=SQLITE_OK ){
4033 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4034 "file for storing temporary tables");
4035 pParse->rc = rc;
4036 return 1;
4038 db->aDb[1].pBt = pBt;
4039 assert( db->aDb[1].pSchema );
4040 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4041 sqlite3OomFault(db);
4042 return 1;
4045 return 0;
4049 ** Record the fact that the schema cookie will need to be verified
4050 ** for database iDb. The code to actually verify the schema cookie
4051 ** will occur at the end of the top-level VDBE and will be generated
4052 ** later, by sqlite3FinishCoding().
4054 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4055 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4057 assert( iDb>=0 && iDb<pParse->db->nDb );
4058 assert( pParse->db->aDb[iDb].pBt!=0 || iDb==1 );
4059 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4060 assert( sqlite3SchemaMutexHeld(pParse->db, iDb, 0) );
4061 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4062 DbMaskSet(pToplevel->cookieMask, iDb);
4063 if( !OMIT_TEMPDB && iDb==1 ){
4064 sqlite3OpenTempDatabase(pToplevel);
4070 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4071 ** attached database. Otherwise, invoke it for the database named zDb only.
4073 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4074 sqlite3 *db = pParse->db;
4075 int i;
4076 for(i=0; i<db->nDb; i++){
4077 Db *pDb = &db->aDb[i];
4078 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4079 sqlite3CodeVerifySchema(pParse, i);
4085 ** Generate VDBE code that prepares for doing an operation that
4086 ** might change the database.
4088 ** This routine starts a new transaction if we are not already within
4089 ** a transaction. If we are already within a transaction, then a checkpoint
4090 ** is set if the setStatement parameter is true. A checkpoint should
4091 ** be set for operations that might fail (due to a constraint) part of
4092 ** the way through and which will need to undo some writes without having to
4093 ** rollback the whole transaction. For operations where all constraints
4094 ** can be checked before any changes are made to the database, it is never
4095 ** necessary to undo a write and the checkpoint should not be set.
4097 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4098 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4099 sqlite3CodeVerifySchema(pParse, iDb);
4100 DbMaskSet(pToplevel->writeMask, iDb);
4101 pToplevel->isMultiWrite |= setStatement;
4105 ** Indicate that the statement currently under construction might write
4106 ** more than one entry (example: deleting one row then inserting another,
4107 ** inserting multiple rows in a table, or inserting a row and index entries.)
4108 ** If an abort occurs after some of these writes have completed, then it will
4109 ** be necessary to undo the completed writes.
4111 void sqlite3MultiWrite(Parse *pParse){
4112 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4113 pToplevel->isMultiWrite = 1;
4117 ** The code generator calls this routine if is discovers that it is
4118 ** possible to abort a statement prior to completion. In order to
4119 ** perform this abort without corrupting the database, we need to make
4120 ** sure that the statement is protected by a statement transaction.
4122 ** Technically, we only need to set the mayAbort flag if the
4123 ** isMultiWrite flag was previously set. There is a time dependency
4124 ** such that the abort must occur after the multiwrite. This makes
4125 ** some statements involving the REPLACE conflict resolution algorithm
4126 ** go a little faster. But taking advantage of this time dependency
4127 ** makes it more difficult to prove that the code is correct (in
4128 ** particular, it prevents us from writing an effective
4129 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4130 ** to take the safe route and skip the optimization.
4132 void sqlite3MayAbort(Parse *pParse){
4133 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4134 pToplevel->mayAbort = 1;
4138 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4139 ** error. The onError parameter determines which (if any) of the statement
4140 ** and/or current transaction is rolled back.
4142 void sqlite3HaltConstraint(
4143 Parse *pParse, /* Parsing context */
4144 int errCode, /* extended error code */
4145 int onError, /* Constraint type */
4146 char *p4, /* Error message */
4147 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4148 u8 p5Errmsg /* P5_ErrMsg type */
4150 Vdbe *v = sqlite3GetVdbe(pParse);
4151 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4152 if( onError==OE_Abort ){
4153 sqlite3MayAbort(pParse);
4155 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4156 sqlite3VdbeChangeP5(v, p5Errmsg);
4160 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4162 void sqlite3UniqueConstraint(
4163 Parse *pParse, /* Parsing context */
4164 int onError, /* Constraint type */
4165 Index *pIdx /* The index that triggers the constraint */
4167 char *zErr;
4168 int j;
4169 StrAccum errMsg;
4170 Table *pTab = pIdx->pTable;
4172 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4173 if( pIdx->aColExpr ){
4174 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4175 }else{
4176 for(j=0; j<pIdx->nKeyCol; j++){
4177 char *zCol;
4178 assert( pIdx->aiColumn[j]>=0 );
4179 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4180 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4181 sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
4182 sqlite3StrAccumAppend(&errMsg, ".", 1);
4183 sqlite3StrAccumAppendAll(&errMsg, zCol);
4186 zErr = sqlite3StrAccumFinish(&errMsg);
4187 sqlite3HaltConstraint(pParse,
4188 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4189 : SQLITE_CONSTRAINT_UNIQUE,
4190 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4195 ** Code an OP_Halt due to non-unique rowid.
4197 void sqlite3RowidConstraint(
4198 Parse *pParse, /* Parsing context */
4199 int onError, /* Conflict resolution algorithm */
4200 Table *pTab /* The table with the non-unique rowid */
4202 char *zMsg;
4203 int rc;
4204 if( pTab->iPKey>=0 ){
4205 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4206 pTab->aCol[pTab->iPKey].zName);
4207 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4208 }else{
4209 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4210 rc = SQLITE_CONSTRAINT_ROWID;
4212 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4213 P5_ConstraintUnique);
4217 ** Check to see if pIndex uses the collating sequence pColl. Return
4218 ** true if it does and false if it does not.
4220 #ifndef SQLITE_OMIT_REINDEX
4221 static int collationMatch(const char *zColl, Index *pIndex){
4222 int i;
4223 assert( zColl!=0 );
4224 for(i=0; i<pIndex->nColumn; i++){
4225 const char *z = pIndex->azColl[i];
4226 assert( z!=0 || pIndex->aiColumn[i]<0 );
4227 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4228 return 1;
4231 return 0;
4233 #endif
4236 ** Recompute all indices of pTab that use the collating sequence pColl.
4237 ** If pColl==0 then recompute all indices of pTab.
4239 #ifndef SQLITE_OMIT_REINDEX
4240 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4241 Index *pIndex; /* An index associated with pTab */
4243 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4244 if( zColl==0 || collationMatch(zColl, pIndex) ){
4245 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4246 sqlite3BeginWriteOperation(pParse, 0, iDb);
4247 sqlite3RefillIndex(pParse, pIndex, -1);
4251 #endif
4254 ** Recompute all indices of all tables in all databases where the
4255 ** indices use the collating sequence pColl. If pColl==0 then recompute
4256 ** all indices everywhere.
4258 #ifndef SQLITE_OMIT_REINDEX
4259 static void reindexDatabases(Parse *pParse, char const *zColl){
4260 Db *pDb; /* A single database */
4261 int iDb; /* The database index number */
4262 sqlite3 *db = pParse->db; /* The database connection */
4263 HashElem *k; /* For looping over tables in pDb */
4264 Table *pTab; /* A table in the database */
4266 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4267 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4268 assert( pDb!=0 );
4269 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4270 pTab = (Table*)sqliteHashData(k);
4271 reindexTable(pParse, pTab, zColl);
4275 #endif
4278 ** Generate code for the REINDEX command.
4280 ** REINDEX -- 1
4281 ** REINDEX <collation> -- 2
4282 ** REINDEX ?<database>.?<tablename> -- 3
4283 ** REINDEX ?<database>.?<indexname> -- 4
4285 ** Form 1 causes all indices in all attached databases to be rebuilt.
4286 ** Form 2 rebuilds all indices in all databases that use the named
4287 ** collating function. Forms 3 and 4 rebuild the named index or all
4288 ** indices associated with the named table.
4290 #ifndef SQLITE_OMIT_REINDEX
4291 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4292 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4293 char *z; /* Name of a table or index */
4294 const char *zDb; /* Name of the database */
4295 Table *pTab; /* A table in the database */
4296 Index *pIndex; /* An index associated with pTab */
4297 int iDb; /* The database index number */
4298 sqlite3 *db = pParse->db; /* The database connection */
4299 Token *pObjName; /* Name of the table or index to be reindexed */
4301 /* Read the database schema. If an error occurs, leave an error message
4302 ** and code in pParse and return NULL. */
4303 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4304 return;
4307 if( pName1==0 ){
4308 reindexDatabases(pParse, 0);
4309 return;
4310 }else if( NEVER(pName2==0) || pName2->z==0 ){
4311 char *zColl;
4312 assert( pName1->z );
4313 zColl = sqlite3NameFromToken(pParse->db, pName1);
4314 if( !zColl ) return;
4315 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4316 if( pColl ){
4317 reindexDatabases(pParse, zColl);
4318 sqlite3DbFree(db, zColl);
4319 return;
4321 sqlite3DbFree(db, zColl);
4323 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4324 if( iDb<0 ) return;
4325 z = sqlite3NameFromToken(db, pObjName);
4326 if( z==0 ) return;
4327 zDb = db->aDb[iDb].zDbSName;
4328 pTab = sqlite3FindTable(db, z, zDb);
4329 if( pTab ){
4330 reindexTable(pParse, pTab, 0);
4331 sqlite3DbFree(db, z);
4332 return;
4334 pIndex = sqlite3FindIndex(db, z, zDb);
4335 sqlite3DbFree(db, z);
4336 if( pIndex ){
4337 sqlite3BeginWriteOperation(pParse, 0, iDb);
4338 sqlite3RefillIndex(pParse, pIndex, -1);
4339 return;
4341 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4343 #endif
4346 ** Return a KeyInfo structure that is appropriate for the given Index.
4348 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4349 ** when it has finished using it.
4351 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4352 int i;
4353 int nCol = pIdx->nColumn;
4354 int nKey = pIdx->nKeyCol;
4355 KeyInfo *pKey;
4356 if( pParse->nErr ) return 0;
4357 if( pIdx->uniqNotNull ){
4358 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4359 }else{
4360 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4362 if( pKey ){
4363 assert( sqlite3KeyInfoIsWriteable(pKey) );
4364 for(i=0; i<nCol; i++){
4365 const char *zColl = pIdx->azColl[i];
4366 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4367 sqlite3LocateCollSeq(pParse, zColl);
4368 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4370 if( pParse->nErr ){
4371 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
4372 if( pIdx->bNoQuery==0 ){
4373 /* Deactivate the index because it contains an unknown collating
4374 ** sequence. The only way to reactive the index is to reload the
4375 ** schema. Adding the missing collating sequence later does not
4376 ** reactive the index. The application had the chance to register
4377 ** the missing index using the collation-needed callback. For
4378 ** simplicity, SQLite will not give the application a second chance.
4380 pIdx->bNoQuery = 1;
4381 pParse->rc = SQLITE_ERROR_RETRY;
4383 sqlite3KeyInfoUnref(pKey);
4384 pKey = 0;
4387 return pKey;
4390 #ifndef SQLITE_OMIT_CTE
4392 ** This routine is invoked once per CTE by the parser while parsing a
4393 ** WITH clause.
4395 With *sqlite3WithAdd(
4396 Parse *pParse, /* Parsing context */
4397 With *pWith, /* Existing WITH clause, or NULL */
4398 Token *pName, /* Name of the common-table */
4399 ExprList *pArglist, /* Optional column name list for the table */
4400 Select *pQuery /* Query used to initialize the table */
4402 sqlite3 *db = pParse->db;
4403 With *pNew;
4404 char *zName;
4406 /* Check that the CTE name is unique within this WITH clause. If
4407 ** not, store an error in the Parse structure. */
4408 zName = sqlite3NameFromToken(pParse->db, pName);
4409 if( zName && pWith ){
4410 int i;
4411 for(i=0; i<pWith->nCte; i++){
4412 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4413 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4418 if( pWith ){
4419 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4420 pNew = sqlite3DbRealloc(db, pWith, nByte);
4421 }else{
4422 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4424 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4426 if( db->mallocFailed ){
4427 sqlite3ExprListDelete(db, pArglist);
4428 sqlite3SelectDelete(db, pQuery);
4429 sqlite3DbFree(db, zName);
4430 pNew = pWith;
4431 }else{
4432 pNew->a[pNew->nCte].pSelect = pQuery;
4433 pNew->a[pNew->nCte].pCols = pArglist;
4434 pNew->a[pNew->nCte].zName = zName;
4435 pNew->a[pNew->nCte].zCteErr = 0;
4436 pNew->nCte++;
4439 return pNew;
4443 ** Free the contents of the With object passed as the second argument.
4445 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4446 if( pWith ){
4447 int i;
4448 for(i=0; i<pWith->nCte; i++){
4449 struct Cte *pCte = &pWith->a[i];
4450 sqlite3ExprListDelete(db, pCte->pCols);
4451 sqlite3SelectDelete(db, pCte->pSelect);
4452 sqlite3DbFree(db, pCte->zName);
4454 sqlite3DbFree(db, pWith);
4457 #endif /* !defined(SQLITE_OMIT_CTE) */