Revise variable declaration moved in the previous check-in so sqlite3VdbeReset()...
[sqlite.git] / src / vdbeapi.c
blobb9df40b8fd35357c7c1f7b105170706ccd7fd843
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 if( db->xProfile ){
71 db->xProfile(db->pProfileArg, p->zSql, iElapse);
73 if( db->mTrace & SQLITE_TRACE_PROFILE ){
74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
76 p->startTime = 0;
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
82 # define checkProfileCallback(DB,P) \
83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P) /*no-op*/
86 #endif
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98 int rc;
99 if( pStmt==0 ){
100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101 ** pointer is a harmless no-op. */
102 rc = SQLITE_OK;
103 }else{
104 Vdbe *v = (Vdbe*)pStmt;
105 sqlite3 *db = v->db;
106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107 sqlite3_mutex_enter(db->mutex);
108 checkProfileCallback(db, v);
109 rc = sqlite3VdbeFinalize(v);
110 rc = sqlite3ApiExit(db, rc);
111 sqlite3LeaveMutexAndCloseZombie(db);
113 return rc;
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125 int rc;
126 if( pStmt==0 ){
127 rc = SQLITE_OK;
128 }else{
129 Vdbe *v = (Vdbe*)pStmt;
130 sqlite3 *db = v->db;
131 sqlite3_mutex_enter(db->mutex);
132 checkProfileCallback(db, v);
133 rc = sqlite3VdbeReset(v);
134 sqlite3VdbeRewind(v);
135 assert( (rc & (db->errMask))==rc );
136 rc = sqlite3ApiExit(db, rc);
137 sqlite3_mutex_leave(db->mutex);
139 return rc;
143 ** Set all the parameters in the compiled SQL statement to NULL.
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146 int i;
147 int rc = SQLITE_OK;
148 Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152 sqlite3_mutex_enter(mutex);
153 for(i=0; i<p->nVar; i++){
154 sqlite3VdbeMemRelease(&p->aVar[i]);
155 p->aVar[i].flags = MEM_Null;
157 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
158 if( p->expmask ){
159 p->expired = 1;
161 sqlite3_mutex_leave(mutex);
162 return rc;
166 /**************************** sqlite3_value_ *******************************
167 ** The following routines extract information from a Mem or sqlite3_value
168 ** structure.
170 const void *sqlite3_value_blob(sqlite3_value *pVal){
171 Mem *p = (Mem*)pVal;
172 if( p->flags & (MEM_Blob|MEM_Str) ){
173 if( ExpandBlob(p)!=SQLITE_OK ){
174 assert( p->flags==MEM_Null && p->z==0 );
175 return 0;
177 p->flags |= MEM_Blob;
178 return p->n ? p->z : 0;
179 }else{
180 return sqlite3_value_text(pVal);
183 int sqlite3_value_bytes(sqlite3_value *pVal){
184 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
186 int sqlite3_value_bytes16(sqlite3_value *pVal){
187 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
189 double sqlite3_value_double(sqlite3_value *pVal){
190 return sqlite3VdbeRealValue((Mem*)pVal);
192 int sqlite3_value_int(sqlite3_value *pVal){
193 return (int)sqlite3VdbeIntValue((Mem*)pVal);
195 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
196 return sqlite3VdbeIntValue((Mem*)pVal);
198 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
199 Mem *pMem = (Mem*)pVal;
200 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
202 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
203 Mem *p = (Mem*)pVal;
204 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
205 (MEM_Null|MEM_Term|MEM_Subtype)
206 && zPType!=0
207 && p->eSubtype=='p'
208 && strcmp(p->u.zPType, zPType)==0
210 return (void*)p->z;
211 }else{
212 return 0;
215 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
216 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
218 #ifndef SQLITE_OMIT_UTF16
219 const void *sqlite3_value_text16(sqlite3_value* pVal){
220 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
222 const void *sqlite3_value_text16be(sqlite3_value *pVal){
223 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
225 const void *sqlite3_value_text16le(sqlite3_value *pVal){
226 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
228 #endif /* SQLITE_OMIT_UTF16 */
229 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
230 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
231 ** point number string BLOB NULL
233 int sqlite3_value_type(sqlite3_value* pVal){
234 static const u8 aType[] = {
235 SQLITE_BLOB, /* 0x00 */
236 SQLITE_NULL, /* 0x01 */
237 SQLITE_TEXT, /* 0x02 */
238 SQLITE_NULL, /* 0x03 */
239 SQLITE_INTEGER, /* 0x04 */
240 SQLITE_NULL, /* 0x05 */
241 SQLITE_INTEGER, /* 0x06 */
242 SQLITE_NULL, /* 0x07 */
243 SQLITE_FLOAT, /* 0x08 */
244 SQLITE_NULL, /* 0x09 */
245 SQLITE_FLOAT, /* 0x0a */
246 SQLITE_NULL, /* 0x0b */
247 SQLITE_INTEGER, /* 0x0c */
248 SQLITE_NULL, /* 0x0d */
249 SQLITE_INTEGER, /* 0x0e */
250 SQLITE_NULL, /* 0x0f */
251 SQLITE_BLOB, /* 0x10 */
252 SQLITE_NULL, /* 0x11 */
253 SQLITE_TEXT, /* 0x12 */
254 SQLITE_NULL, /* 0x13 */
255 SQLITE_INTEGER, /* 0x14 */
256 SQLITE_NULL, /* 0x15 */
257 SQLITE_INTEGER, /* 0x16 */
258 SQLITE_NULL, /* 0x17 */
259 SQLITE_FLOAT, /* 0x18 */
260 SQLITE_NULL, /* 0x19 */
261 SQLITE_FLOAT, /* 0x1a */
262 SQLITE_NULL, /* 0x1b */
263 SQLITE_INTEGER, /* 0x1c */
264 SQLITE_NULL, /* 0x1d */
265 SQLITE_INTEGER, /* 0x1e */
266 SQLITE_NULL, /* 0x1f */
268 return aType[pVal->flags&MEM_AffMask];
271 /* Make a copy of an sqlite3_value object
273 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
274 sqlite3_value *pNew;
275 if( pOrig==0 ) return 0;
276 pNew = sqlite3_malloc( sizeof(*pNew) );
277 if( pNew==0 ) return 0;
278 memset(pNew, 0, sizeof(*pNew));
279 memcpy(pNew, pOrig, MEMCELLSIZE);
280 pNew->flags &= ~MEM_Dyn;
281 pNew->db = 0;
282 if( pNew->flags&(MEM_Str|MEM_Blob) ){
283 pNew->flags &= ~(MEM_Static|MEM_Dyn);
284 pNew->flags |= MEM_Ephem;
285 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
286 sqlite3ValueFree(pNew);
287 pNew = 0;
290 return pNew;
293 /* Destroy an sqlite3_value object previously obtained from
294 ** sqlite3_value_dup().
296 void sqlite3_value_free(sqlite3_value *pOld){
297 sqlite3ValueFree(pOld);
301 /**************************** sqlite3_result_ *******************************
302 ** The following routines are used by user-defined functions to specify
303 ** the function result.
305 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
306 ** result as a string or blob but if the string or blob is too large, it
307 ** then sets the error code to SQLITE_TOOBIG
309 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
310 ** on value P is not going to be used and need to be destroyed.
312 static void setResultStrOrError(
313 sqlite3_context *pCtx, /* Function context */
314 const char *z, /* String pointer */
315 int n, /* Bytes in string, or negative */
316 u8 enc, /* Encoding of z. 0 for BLOBs */
317 void (*xDel)(void*) /* Destructor function */
319 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
320 sqlite3_result_error_toobig(pCtx);
323 static int invokeValueDestructor(
324 const void *p, /* Value to destroy */
325 void (*xDel)(void*), /* The destructor */
326 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
328 assert( xDel!=SQLITE_DYNAMIC );
329 if( xDel==0 ){
330 /* noop */
331 }else if( xDel==SQLITE_TRANSIENT ){
332 /* noop */
333 }else{
334 xDel((void*)p);
336 if( pCtx ) sqlite3_result_error_toobig(pCtx);
337 return SQLITE_TOOBIG;
339 void sqlite3_result_blob(
340 sqlite3_context *pCtx,
341 const void *z,
342 int n,
343 void (*xDel)(void *)
345 assert( n>=0 );
346 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
347 setResultStrOrError(pCtx, z, n, 0, xDel);
349 void sqlite3_result_blob64(
350 sqlite3_context *pCtx,
351 const void *z,
352 sqlite3_uint64 n,
353 void (*xDel)(void *)
355 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
356 assert( xDel!=SQLITE_DYNAMIC );
357 if( n>0x7fffffff ){
358 (void)invokeValueDestructor(z, xDel, pCtx);
359 }else{
360 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
363 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
364 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
365 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
367 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
369 pCtx->isError = SQLITE_ERROR;
370 pCtx->fErrorOrAux = 1;
371 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
373 #ifndef SQLITE_OMIT_UTF16
374 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
375 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
376 pCtx->isError = SQLITE_ERROR;
377 pCtx->fErrorOrAux = 1;
378 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
380 #endif
381 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
382 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
383 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
385 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
386 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
387 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
389 void sqlite3_result_null(sqlite3_context *pCtx){
390 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
391 sqlite3VdbeMemSetNull(pCtx->pOut);
393 void sqlite3_result_pointer(
394 sqlite3_context *pCtx,
395 void *pPtr,
396 const char *zPType,
397 void (*xDestructor)(void*)
399 Mem *pOut = pCtx->pOut;
400 assert( sqlite3_mutex_held(pOut->db->mutex) );
401 sqlite3VdbeMemRelease(pOut);
402 pOut->flags = MEM_Null;
403 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
405 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
406 Mem *pOut = pCtx->pOut;
407 assert( sqlite3_mutex_held(pOut->db->mutex) );
408 pOut->eSubtype = eSubtype & 0xff;
409 pOut->flags |= MEM_Subtype;
411 void sqlite3_result_text(
412 sqlite3_context *pCtx,
413 const char *z,
414 int n,
415 void (*xDel)(void *)
417 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
418 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
420 void sqlite3_result_text64(
421 sqlite3_context *pCtx,
422 const char *z,
423 sqlite3_uint64 n,
424 void (*xDel)(void *),
425 unsigned char enc
427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428 assert( xDel!=SQLITE_DYNAMIC );
429 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
430 if( n>0x7fffffff ){
431 (void)invokeValueDestructor(z, xDel, pCtx);
432 }else{
433 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
436 #ifndef SQLITE_OMIT_UTF16
437 void sqlite3_result_text16(
438 sqlite3_context *pCtx,
439 const void *z,
440 int n,
441 void (*xDel)(void *)
443 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
444 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
446 void sqlite3_result_text16be(
447 sqlite3_context *pCtx,
448 const void *z,
449 int n,
450 void (*xDel)(void *)
452 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
453 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
455 void sqlite3_result_text16le(
456 sqlite3_context *pCtx,
457 const void *z,
458 int n,
459 void (*xDel)(void *)
461 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
462 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
464 #endif /* SQLITE_OMIT_UTF16 */
465 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
466 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
467 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
469 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
470 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
471 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
473 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
474 Mem *pOut = pCtx->pOut;
475 assert( sqlite3_mutex_held(pOut->db->mutex) );
476 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
477 return SQLITE_TOOBIG;
479 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
480 return SQLITE_OK;
482 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
483 pCtx->isError = errCode;
484 pCtx->fErrorOrAux = 1;
485 #ifdef SQLITE_DEBUG
486 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
487 #endif
488 if( pCtx->pOut->flags & MEM_Null ){
489 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
490 SQLITE_UTF8, SQLITE_STATIC);
494 /* Force an SQLITE_TOOBIG error. */
495 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
496 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
497 pCtx->isError = SQLITE_TOOBIG;
498 pCtx->fErrorOrAux = 1;
499 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
500 SQLITE_UTF8, SQLITE_STATIC);
503 /* An SQLITE_NOMEM error. */
504 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
505 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
506 sqlite3VdbeMemSetNull(pCtx->pOut);
507 pCtx->isError = SQLITE_NOMEM_BKPT;
508 pCtx->fErrorOrAux = 1;
509 sqlite3OomFault(pCtx->pOut->db);
513 ** This function is called after a transaction has been committed. It
514 ** invokes callbacks registered with sqlite3_wal_hook() as required.
516 static int doWalCallbacks(sqlite3 *db){
517 int rc = SQLITE_OK;
518 #ifndef SQLITE_OMIT_WAL
519 int i;
520 for(i=0; i<db->nDb; i++){
521 Btree *pBt = db->aDb[i].pBt;
522 if( pBt ){
523 int nEntry;
524 sqlite3BtreeEnter(pBt);
525 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
526 sqlite3BtreeLeave(pBt);
527 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
528 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
532 #endif
533 return rc;
538 ** Execute the statement pStmt, either until a row of data is ready, the
539 ** statement is completely executed or an error occurs.
541 ** This routine implements the bulk of the logic behind the sqlite_step()
542 ** API. The only thing omitted is the automatic recompile if a
543 ** schema change has occurred. That detail is handled by the
544 ** outer sqlite3_step() wrapper procedure.
546 static int sqlite3Step(Vdbe *p){
547 sqlite3 *db;
548 int rc;
550 assert(p);
551 if( p->magic!=VDBE_MAGIC_RUN ){
552 /* We used to require that sqlite3_reset() be called before retrying
553 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
554 ** with version 3.7.0, we changed this so that sqlite3_reset() would
555 ** be called automatically instead of throwing the SQLITE_MISUSE error.
556 ** This "automatic-reset" change is not technically an incompatibility,
557 ** since any application that receives an SQLITE_MISUSE is broken by
558 ** definition.
560 ** Nevertheless, some published applications that were originally written
561 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
562 ** returns, and those were broken by the automatic-reset change. As a
563 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
564 ** legacy behavior of returning SQLITE_MISUSE for cases where the
565 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
566 ** or SQLITE_BUSY error.
568 #ifdef SQLITE_OMIT_AUTORESET
569 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
570 sqlite3_reset((sqlite3_stmt*)p);
571 }else{
572 return SQLITE_MISUSE_BKPT;
574 #else
575 sqlite3_reset((sqlite3_stmt*)p);
576 #endif
579 /* Check that malloc() has not failed. If it has, return early. */
580 db = p->db;
581 if( db->mallocFailed ){
582 p->rc = SQLITE_NOMEM;
583 return SQLITE_NOMEM_BKPT;
586 if( p->pc<=0 && p->expired ){
587 p->rc = SQLITE_SCHEMA;
588 rc = SQLITE_ERROR;
589 goto end_of_step;
591 if( p->pc<0 ){
592 /* If there are no other statements currently running, then
593 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
594 ** from interrupting a statement that has not yet started.
596 if( db->nVdbeActive==0 ){
597 db->u1.isInterrupted = 0;
600 assert( db->nVdbeWrite>0 || db->autoCommit==0
601 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
604 #ifndef SQLITE_OMIT_TRACE
605 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
606 && !db->init.busy && p->zSql ){
607 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
608 }else{
609 assert( p->startTime==0 );
611 #endif
613 db->nVdbeActive++;
614 if( p->readOnly==0 ) db->nVdbeWrite++;
615 if( p->bIsReader ) db->nVdbeRead++;
616 p->pc = 0;
618 #ifdef SQLITE_DEBUG
619 p->rcApp = SQLITE_OK;
620 #endif
621 #ifndef SQLITE_OMIT_EXPLAIN
622 if( p->explain ){
623 rc = sqlite3VdbeList(p);
624 }else
625 #endif /* SQLITE_OMIT_EXPLAIN */
627 db->nVdbeExec++;
628 rc = sqlite3VdbeExec(p);
629 db->nVdbeExec--;
632 #ifndef SQLITE_OMIT_TRACE
633 /* If the statement completed successfully, invoke the profile callback */
634 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
635 #endif
637 if( rc==SQLITE_DONE && db->autoCommit ){
638 assert( p->rc==SQLITE_OK );
639 p->rc = doWalCallbacks(db);
640 if( p->rc!=SQLITE_OK ){
641 rc = SQLITE_ERROR;
645 db->errCode = rc;
646 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
647 p->rc = SQLITE_NOMEM_BKPT;
649 end_of_step:
650 /* At this point local variable rc holds the value that should be
651 ** returned if this statement was compiled using the legacy
652 ** sqlite3_prepare() interface. According to the docs, this can only
653 ** be one of the values in the first assert() below. Variable p->rc
654 ** contains the value that would be returned if sqlite3_finalize()
655 ** were called on statement p.
657 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
658 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
660 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
661 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
662 && rc!=SQLITE_ROW
663 && rc!=SQLITE_DONE
665 /* If this statement was prepared using saved SQL and an
666 ** error has occurred, then return the error code in p->rc to the
667 ** caller. Set the error code in the database handle to the same value.
669 rc = sqlite3VdbeTransferError(p);
671 return (rc&db->errMask);
675 ** This is the top-level implementation of sqlite3_step(). Call
676 ** sqlite3Step() to do most of the work. If a schema error occurs,
677 ** call sqlite3Reprepare() and try again.
679 int sqlite3_step(sqlite3_stmt *pStmt){
680 int rc = SQLITE_OK; /* Result from sqlite3Step() */
681 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
682 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
683 sqlite3 *db; /* The database connection */
685 if( vdbeSafetyNotNull(v) ){
686 return SQLITE_MISUSE_BKPT;
688 db = v->db;
689 sqlite3_mutex_enter(db->mutex);
690 v->doingRerun = 0;
691 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
692 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
693 int savedPc = v->pc;
694 rc = sqlite3Reprepare(v);
695 if( rc!=SQLITE_OK ){
696 /* This case occurs after failing to recompile an sql statement.
697 ** The error message from the SQL compiler has already been loaded
698 ** into the database handle. This block copies the error message
699 ** from the database handle into the statement and sets the statement
700 ** program counter to 0 to ensure that when the statement is
701 ** finalized or reset the parser error message is available via
702 ** sqlite3_errmsg() and sqlite3_errcode().
704 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
705 sqlite3DbFree(db, v->zErrMsg);
706 if( !db->mallocFailed ){
707 v->zErrMsg = sqlite3DbStrDup(db, zErr);
708 v->rc = rc = sqlite3ApiExit(db, rc);
709 } else {
710 v->zErrMsg = 0;
711 v->rc = rc = SQLITE_NOMEM_BKPT;
713 break;
715 sqlite3_reset(pStmt);
716 if( savedPc>=0 ) v->doingRerun = 1;
717 assert( v->expired==0 );
719 sqlite3_mutex_leave(db->mutex);
720 return rc;
725 ** Extract the user data from a sqlite3_context structure and return a
726 ** pointer to it.
728 void *sqlite3_user_data(sqlite3_context *p){
729 assert( p && p->pFunc );
730 return p->pFunc->pUserData;
734 ** Extract the user data from a sqlite3_context structure and return a
735 ** pointer to it.
737 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
738 ** returns a copy of the pointer to the database connection (the 1st
739 ** parameter) of the sqlite3_create_function() and
740 ** sqlite3_create_function16() routines that originally registered the
741 ** application defined function.
743 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
744 assert( p && p->pOut );
745 return p->pOut->db;
749 ** Return the current time for a statement. If the current time
750 ** is requested more than once within the same run of a single prepared
751 ** statement, the exact same time is returned for each invocation regardless
752 ** of the amount of time that elapses between invocations. In other words,
753 ** the time returned is always the time of the first call.
755 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
756 int rc;
757 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
758 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
759 assert( p->pVdbe!=0 );
760 #else
761 sqlite3_int64 iTime = 0;
762 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
763 #endif
764 if( *piTime==0 ){
765 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
766 if( rc ) *piTime = 0;
768 return *piTime;
772 ** The following is the implementation of an SQL function that always
773 ** fails with an error message stating that the function is used in the
774 ** wrong context. The sqlite3_overload_function() API might construct
775 ** SQL function that use this routine so that the functions will exist
776 ** for name resolution but are actually overloaded by the xFindFunction
777 ** method of virtual tables.
779 void sqlite3InvalidFunction(
780 sqlite3_context *context, /* The function calling context */
781 int NotUsed, /* Number of arguments to the function */
782 sqlite3_value **NotUsed2 /* Value of each argument */
784 const char *zName = context->pFunc->zName;
785 char *zErr;
786 UNUSED_PARAMETER2(NotUsed, NotUsed2);
787 zErr = sqlite3_mprintf(
788 "unable to use function %s in the requested context", zName);
789 sqlite3_result_error(context, zErr, -1);
790 sqlite3_free(zErr);
794 ** Create a new aggregate context for p and return a pointer to
795 ** its pMem->z element.
797 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
798 Mem *pMem = p->pMem;
799 assert( (pMem->flags & MEM_Agg)==0 );
800 if( nByte<=0 ){
801 sqlite3VdbeMemSetNull(pMem);
802 pMem->z = 0;
803 }else{
804 sqlite3VdbeMemClearAndResize(pMem, nByte);
805 pMem->flags = MEM_Agg;
806 pMem->u.pDef = p->pFunc;
807 if( pMem->z ){
808 memset(pMem->z, 0, nByte);
811 return (void*)pMem->z;
815 ** Allocate or return the aggregate context for a user function. A new
816 ** context is allocated on the first call. Subsequent calls return the
817 ** same context that was returned on prior calls.
819 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
820 assert( p && p->pFunc && p->pFunc->xFinalize );
821 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
822 testcase( nByte<0 );
823 if( (p->pMem->flags & MEM_Agg)==0 ){
824 return createAggContext(p, nByte);
825 }else{
826 return (void*)p->pMem->z;
831 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
832 ** the user-function defined by pCtx.
834 ** The left-most argument is 0.
836 ** Undocumented behavior: If iArg is negative then access a cache of
837 ** auxiliary data pointers that is available to all functions within a
838 ** single prepared statement. The iArg values must match.
840 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
841 AuxData *pAuxData;
843 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
844 #if SQLITE_ENABLE_STAT3_OR_STAT4
845 if( pCtx->pVdbe==0 ) return 0;
846 #else
847 assert( pCtx->pVdbe!=0 );
848 #endif
849 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
850 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
851 return pAuxData->pAux;
854 return 0;
858 ** Set the auxiliary data pointer and delete function, for the iArg'th
859 ** argument to the user-function defined by pCtx. Any previous value is
860 ** deleted by calling the delete function specified when it was set.
862 ** The left-most argument is 0.
864 ** Undocumented behavior: If iArg is negative then make the data available
865 ** to all functions within the current prepared statement using iArg as an
866 ** access code.
868 void sqlite3_set_auxdata(
869 sqlite3_context *pCtx,
870 int iArg,
871 void *pAux,
872 void (*xDelete)(void*)
874 AuxData *pAuxData;
875 Vdbe *pVdbe = pCtx->pVdbe;
877 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
878 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
879 if( pVdbe==0 ) goto failed;
880 #else
881 assert( pVdbe!=0 );
882 #endif
884 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
885 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
886 break;
889 if( pAuxData==0 ){
890 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
891 if( !pAuxData ) goto failed;
892 pAuxData->iAuxOp = pCtx->iOp;
893 pAuxData->iAuxArg = iArg;
894 pAuxData->pNextAux = pVdbe->pAuxData;
895 pVdbe->pAuxData = pAuxData;
896 if( pCtx->fErrorOrAux==0 ){
897 pCtx->isError = 0;
898 pCtx->fErrorOrAux = 1;
900 }else if( pAuxData->xDeleteAux ){
901 pAuxData->xDeleteAux(pAuxData->pAux);
904 pAuxData->pAux = pAux;
905 pAuxData->xDeleteAux = xDelete;
906 return;
908 failed:
909 if( xDelete ){
910 xDelete(pAux);
914 #ifndef SQLITE_OMIT_DEPRECATED
916 ** Return the number of times the Step function of an aggregate has been
917 ** called.
919 ** This function is deprecated. Do not use it for new code. It is
920 ** provide only to avoid breaking legacy code. New aggregate function
921 ** implementations should keep their own counts within their aggregate
922 ** context.
924 int sqlite3_aggregate_count(sqlite3_context *p){
925 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
926 return p->pMem->n;
928 #endif
931 ** Return the number of columns in the result set for the statement pStmt.
933 int sqlite3_column_count(sqlite3_stmt *pStmt){
934 Vdbe *pVm = (Vdbe *)pStmt;
935 return pVm ? pVm->nResColumn : 0;
939 ** Return the number of values available from the current row of the
940 ** currently executing statement pStmt.
942 int sqlite3_data_count(sqlite3_stmt *pStmt){
943 Vdbe *pVm = (Vdbe *)pStmt;
944 if( pVm==0 || pVm->pResultSet==0 ) return 0;
945 return pVm->nResColumn;
949 ** Return a pointer to static memory containing an SQL NULL value.
951 static const Mem *columnNullValue(void){
952 /* Even though the Mem structure contains an element
953 ** of type i64, on certain architectures (x86) with certain compiler
954 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
955 ** instead of an 8-byte one. This all works fine, except that when
956 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
957 ** that a Mem structure is located on an 8-byte boundary. To prevent
958 ** these assert()s from failing, when building with SQLITE_DEBUG defined
959 ** using gcc, we force nullMem to be 8-byte aligned using the magical
960 ** __attribute__((aligned(8))) macro. */
961 static const Mem nullMem
962 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
963 __attribute__((aligned(8)))
964 #endif
966 /* .u = */ {0},
967 /* .flags = */ (u16)MEM_Null,
968 /* .enc = */ (u8)0,
969 /* .eSubtype = */ (u8)0,
970 /* .n = */ (int)0,
971 /* .z = */ (char*)0,
972 /* .zMalloc = */ (char*)0,
973 /* .szMalloc = */ (int)0,
974 /* .uTemp = */ (u32)0,
975 /* .db = */ (sqlite3*)0,
976 /* .xDel = */ (void(*)(void*))0,
977 #ifdef SQLITE_DEBUG
978 /* .pScopyFrom = */ (Mem*)0,
979 /* .pFiller = */ (void*)0,
980 #endif
982 return &nullMem;
986 ** Check to see if column iCol of the given statement is valid. If
987 ** it is, return a pointer to the Mem for the value of that column.
988 ** If iCol is not valid, return a pointer to a Mem which has a value
989 ** of NULL.
991 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
992 Vdbe *pVm;
993 Mem *pOut;
995 pVm = (Vdbe *)pStmt;
996 if( pVm==0 ) return (Mem*)columnNullValue();
997 assert( pVm->db );
998 sqlite3_mutex_enter(pVm->db->mutex);
999 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1000 pOut = &pVm->pResultSet[i];
1001 }else{
1002 sqlite3Error(pVm->db, SQLITE_RANGE);
1003 pOut = (Mem*)columnNullValue();
1005 return pOut;
1009 ** This function is called after invoking an sqlite3_value_XXX function on a
1010 ** column value (i.e. a value returned by evaluating an SQL expression in the
1011 ** select list of a SELECT statement) that may cause a malloc() failure. If
1012 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1013 ** code of statement pStmt set to SQLITE_NOMEM.
1015 ** Specifically, this is called from within:
1017 ** sqlite3_column_int()
1018 ** sqlite3_column_int64()
1019 ** sqlite3_column_text()
1020 ** sqlite3_column_text16()
1021 ** sqlite3_column_real()
1022 ** sqlite3_column_bytes()
1023 ** sqlite3_column_bytes16()
1024 ** sqiite3_column_blob()
1026 static void columnMallocFailure(sqlite3_stmt *pStmt)
1028 /* If malloc() failed during an encoding conversion within an
1029 ** sqlite3_column_XXX API, then set the return code of the statement to
1030 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1031 ** and _finalize() will return NOMEM.
1033 Vdbe *p = (Vdbe *)pStmt;
1034 if( p ){
1035 assert( p->db!=0 );
1036 assert( sqlite3_mutex_held(p->db->mutex) );
1037 p->rc = sqlite3ApiExit(p->db, p->rc);
1038 sqlite3_mutex_leave(p->db->mutex);
1042 /**************************** sqlite3_column_ *******************************
1043 ** The following routines are used to access elements of the current row
1044 ** in the result set.
1046 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1047 const void *val;
1048 val = sqlite3_value_blob( columnMem(pStmt,i) );
1049 /* Even though there is no encoding conversion, value_blob() might
1050 ** need to call malloc() to expand the result of a zeroblob()
1051 ** expression.
1053 columnMallocFailure(pStmt);
1054 return val;
1056 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1057 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1058 columnMallocFailure(pStmt);
1059 return val;
1061 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1062 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1063 columnMallocFailure(pStmt);
1064 return val;
1066 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1067 double val = sqlite3_value_double( columnMem(pStmt,i) );
1068 columnMallocFailure(pStmt);
1069 return val;
1071 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1072 int val = sqlite3_value_int( columnMem(pStmt,i) );
1073 columnMallocFailure(pStmt);
1074 return val;
1076 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1077 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1078 columnMallocFailure(pStmt);
1079 return val;
1081 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1082 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1083 columnMallocFailure(pStmt);
1084 return val;
1086 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1087 Mem *pOut = columnMem(pStmt, i);
1088 if( pOut->flags&MEM_Static ){
1089 pOut->flags &= ~MEM_Static;
1090 pOut->flags |= MEM_Ephem;
1092 columnMallocFailure(pStmt);
1093 return (sqlite3_value *)pOut;
1095 #ifndef SQLITE_OMIT_UTF16
1096 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1097 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1098 columnMallocFailure(pStmt);
1099 return val;
1101 #endif /* SQLITE_OMIT_UTF16 */
1102 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1103 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1104 columnMallocFailure(pStmt);
1105 return iType;
1109 ** Convert the N-th element of pStmt->pColName[] into a string using
1110 ** xFunc() then return that string. If N is out of range, return 0.
1112 ** There are up to 5 names for each column. useType determines which
1113 ** name is returned. Here are the names:
1115 ** 0 The column name as it should be displayed for output
1116 ** 1 The datatype name for the column
1117 ** 2 The name of the database that the column derives from
1118 ** 3 The name of the table that the column derives from
1119 ** 4 The name of the table column that the result column derives from
1121 ** If the result is not a simple column reference (if it is an expression
1122 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1124 static const void *columnName(
1125 sqlite3_stmt *pStmt,
1126 int N,
1127 const void *(*xFunc)(Mem*),
1128 int useType
1130 const void *ret;
1131 Vdbe *p;
1132 int n;
1133 sqlite3 *db;
1134 #ifdef SQLITE_ENABLE_API_ARMOR
1135 if( pStmt==0 ){
1136 (void)SQLITE_MISUSE_BKPT;
1137 return 0;
1139 #endif
1140 ret = 0;
1141 p = (Vdbe *)pStmt;
1142 db = p->db;
1143 assert( db!=0 );
1144 n = sqlite3_column_count(pStmt);
1145 if( N<n && N>=0 ){
1146 N += useType*n;
1147 sqlite3_mutex_enter(db->mutex);
1148 assert( db->mallocFailed==0 );
1149 ret = xFunc(&p->aColName[N]);
1150 /* A malloc may have failed inside of the xFunc() call. If this
1151 ** is the case, clear the mallocFailed flag and return NULL.
1153 if( db->mallocFailed ){
1154 sqlite3OomClear(db);
1155 ret = 0;
1157 sqlite3_mutex_leave(db->mutex);
1159 return ret;
1163 ** Return the name of the Nth column of the result set returned by SQL
1164 ** statement pStmt.
1166 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1167 return columnName(
1168 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1170 #ifndef SQLITE_OMIT_UTF16
1171 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1172 return columnName(
1173 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1175 #endif
1178 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1179 ** not define OMIT_DECLTYPE.
1181 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1182 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1183 and SQLITE_ENABLE_COLUMN_METADATA"
1184 #endif
1186 #ifndef SQLITE_OMIT_DECLTYPE
1188 ** Return the column declaration type (if applicable) of the 'i'th column
1189 ** of the result set of SQL statement pStmt.
1191 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1192 return columnName(
1193 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1195 #ifndef SQLITE_OMIT_UTF16
1196 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1197 return columnName(
1198 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1200 #endif /* SQLITE_OMIT_UTF16 */
1201 #endif /* SQLITE_OMIT_DECLTYPE */
1203 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1205 ** Return the name of the database from which a result column derives.
1206 ** NULL is returned if the result column is an expression or constant or
1207 ** anything else which is not an unambiguous reference to a database column.
1209 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1210 return columnName(
1211 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1213 #ifndef SQLITE_OMIT_UTF16
1214 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1215 return columnName(
1216 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1218 #endif /* SQLITE_OMIT_UTF16 */
1221 ** Return the name of the table from which a result column derives.
1222 ** NULL is returned if the result column is an expression or constant or
1223 ** anything else which is not an unambiguous reference to a database column.
1225 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1226 return columnName(
1227 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1229 #ifndef SQLITE_OMIT_UTF16
1230 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1231 return columnName(
1232 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1234 #endif /* SQLITE_OMIT_UTF16 */
1237 ** Return the name of the table column from which a result column derives.
1238 ** NULL is returned if the result column is an expression or constant or
1239 ** anything else which is not an unambiguous reference to a database column.
1241 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1242 return columnName(
1243 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1245 #ifndef SQLITE_OMIT_UTF16
1246 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1247 return columnName(
1248 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1250 #endif /* SQLITE_OMIT_UTF16 */
1251 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1254 /******************************* sqlite3_bind_ ***************************
1256 ** Routines used to attach values to wildcards in a compiled SQL statement.
1259 ** Unbind the value bound to variable i in virtual machine p. This is the
1260 ** the same as binding a NULL value to the column. If the "i" parameter is
1261 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1263 ** A successful evaluation of this routine acquires the mutex on p.
1264 ** the mutex is released if any kind of error occurs.
1266 ** The error code stored in database p->db is overwritten with the return
1267 ** value in any case.
1269 static int vdbeUnbind(Vdbe *p, int i){
1270 Mem *pVar;
1271 if( vdbeSafetyNotNull(p) ){
1272 return SQLITE_MISUSE_BKPT;
1274 sqlite3_mutex_enter(p->db->mutex);
1275 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1276 sqlite3Error(p->db, SQLITE_MISUSE);
1277 sqlite3_mutex_leave(p->db->mutex);
1278 sqlite3_log(SQLITE_MISUSE,
1279 "bind on a busy prepared statement: [%s]", p->zSql);
1280 return SQLITE_MISUSE_BKPT;
1282 if( i<1 || i>p->nVar ){
1283 sqlite3Error(p->db, SQLITE_RANGE);
1284 sqlite3_mutex_leave(p->db->mutex);
1285 return SQLITE_RANGE;
1287 i--;
1288 pVar = &p->aVar[i];
1289 sqlite3VdbeMemRelease(pVar);
1290 pVar->flags = MEM_Null;
1291 sqlite3Error(p->db, SQLITE_OK);
1293 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1294 ** binding a new value to this variable invalidates the current query plan.
1296 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1297 ** parameter in the WHERE clause might influence the choice of query plan
1298 ** for a statement, then the statement will be automatically recompiled,
1299 ** as if there had been a schema change, on the first sqlite3_step() call
1300 ** following any change to the bindings of that parameter.
1302 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1303 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1304 p->expired = 1;
1306 return SQLITE_OK;
1310 ** Bind a text or BLOB value.
1312 static int bindText(
1313 sqlite3_stmt *pStmt, /* The statement to bind against */
1314 int i, /* Index of the parameter to bind */
1315 const void *zData, /* Pointer to the data to be bound */
1316 int nData, /* Number of bytes of data to be bound */
1317 void (*xDel)(void*), /* Destructor for the data */
1318 u8 encoding /* Encoding for the data */
1320 Vdbe *p = (Vdbe *)pStmt;
1321 Mem *pVar;
1322 int rc;
1324 rc = vdbeUnbind(p, i);
1325 if( rc==SQLITE_OK ){
1326 if( zData!=0 ){
1327 pVar = &p->aVar[i-1];
1328 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1329 if( rc==SQLITE_OK && encoding!=0 ){
1330 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1332 if( rc ){
1333 sqlite3Error(p->db, rc);
1334 rc = sqlite3ApiExit(p->db, rc);
1337 sqlite3_mutex_leave(p->db->mutex);
1338 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1339 xDel((void*)zData);
1341 return rc;
1346 ** Bind a blob value to an SQL statement variable.
1348 int sqlite3_bind_blob(
1349 sqlite3_stmt *pStmt,
1350 int i,
1351 const void *zData,
1352 int nData,
1353 void (*xDel)(void*)
1355 #ifdef SQLITE_ENABLE_API_ARMOR
1356 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1357 #endif
1358 return bindText(pStmt, i, zData, nData, xDel, 0);
1360 int sqlite3_bind_blob64(
1361 sqlite3_stmt *pStmt,
1362 int i,
1363 const void *zData,
1364 sqlite3_uint64 nData,
1365 void (*xDel)(void*)
1367 assert( xDel!=SQLITE_DYNAMIC );
1368 if( nData>0x7fffffff ){
1369 return invokeValueDestructor(zData, xDel, 0);
1370 }else{
1371 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1374 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1375 int rc;
1376 Vdbe *p = (Vdbe *)pStmt;
1377 rc = vdbeUnbind(p, i);
1378 if( rc==SQLITE_OK ){
1379 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1380 sqlite3_mutex_leave(p->db->mutex);
1382 return rc;
1384 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1385 return sqlite3_bind_int64(p, i, (i64)iValue);
1387 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1388 int rc;
1389 Vdbe *p = (Vdbe *)pStmt;
1390 rc = vdbeUnbind(p, i);
1391 if( rc==SQLITE_OK ){
1392 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1393 sqlite3_mutex_leave(p->db->mutex);
1395 return rc;
1397 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1398 int rc;
1399 Vdbe *p = (Vdbe*)pStmt;
1400 rc = vdbeUnbind(p, i);
1401 if( rc==SQLITE_OK ){
1402 sqlite3_mutex_leave(p->db->mutex);
1404 return rc;
1406 int sqlite3_bind_pointer(
1407 sqlite3_stmt *pStmt,
1408 int i,
1409 void *pPtr,
1410 const char *zPTtype,
1411 void (*xDestructor)(void*)
1413 int rc;
1414 Vdbe *p = (Vdbe*)pStmt;
1415 rc = vdbeUnbind(p, i);
1416 if( rc==SQLITE_OK ){
1417 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1418 sqlite3_mutex_leave(p->db->mutex);
1419 }else if( xDestructor ){
1420 xDestructor(pPtr);
1422 return rc;
1424 int sqlite3_bind_text(
1425 sqlite3_stmt *pStmt,
1426 int i,
1427 const char *zData,
1428 int nData,
1429 void (*xDel)(void*)
1431 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1433 int sqlite3_bind_text64(
1434 sqlite3_stmt *pStmt,
1435 int i,
1436 const char *zData,
1437 sqlite3_uint64 nData,
1438 void (*xDel)(void*),
1439 unsigned char enc
1441 assert( xDel!=SQLITE_DYNAMIC );
1442 if( nData>0x7fffffff ){
1443 return invokeValueDestructor(zData, xDel, 0);
1444 }else{
1445 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1446 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1449 #ifndef SQLITE_OMIT_UTF16
1450 int sqlite3_bind_text16(
1451 sqlite3_stmt *pStmt,
1452 int i,
1453 const void *zData,
1454 int nData,
1455 void (*xDel)(void*)
1457 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1459 #endif /* SQLITE_OMIT_UTF16 */
1460 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1461 int rc;
1462 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1463 case SQLITE_INTEGER: {
1464 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1465 break;
1467 case SQLITE_FLOAT: {
1468 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1469 break;
1471 case SQLITE_BLOB: {
1472 if( pValue->flags & MEM_Zero ){
1473 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1474 }else{
1475 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1477 break;
1479 case SQLITE_TEXT: {
1480 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1481 pValue->enc);
1482 break;
1484 default: {
1485 rc = sqlite3_bind_null(pStmt, i);
1486 break;
1489 return rc;
1491 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1492 int rc;
1493 Vdbe *p = (Vdbe *)pStmt;
1494 rc = vdbeUnbind(p, i);
1495 if( rc==SQLITE_OK ){
1496 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1497 sqlite3_mutex_leave(p->db->mutex);
1499 return rc;
1501 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1502 int rc;
1503 Vdbe *p = (Vdbe *)pStmt;
1504 sqlite3_mutex_enter(p->db->mutex);
1505 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1506 rc = SQLITE_TOOBIG;
1507 }else{
1508 assert( (n & 0x7FFFFFFF)==n );
1509 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1511 rc = sqlite3ApiExit(p->db, rc);
1512 sqlite3_mutex_leave(p->db->mutex);
1513 return rc;
1517 ** Return the number of wildcards that can be potentially bound to.
1518 ** This routine is added to support DBD::SQLite.
1520 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1521 Vdbe *p = (Vdbe*)pStmt;
1522 return p ? p->nVar : 0;
1526 ** Return the name of a wildcard parameter. Return NULL if the index
1527 ** is out of range or if the wildcard is unnamed.
1529 ** The result is always UTF-8.
1531 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1532 Vdbe *p = (Vdbe*)pStmt;
1533 if( p==0 ) return 0;
1534 return sqlite3VListNumToName(p->pVList, i);
1538 ** Given a wildcard parameter name, return the index of the variable
1539 ** with that name. If there is no variable with the given name,
1540 ** return 0.
1542 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1543 if( p==0 || zName==0 ) return 0;
1544 return sqlite3VListNameToNum(p->pVList, zName, nName);
1546 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1547 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1551 ** Transfer all bindings from the first statement over to the second.
1553 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1554 Vdbe *pFrom = (Vdbe*)pFromStmt;
1555 Vdbe *pTo = (Vdbe*)pToStmt;
1556 int i;
1557 assert( pTo->db==pFrom->db );
1558 assert( pTo->nVar==pFrom->nVar );
1559 sqlite3_mutex_enter(pTo->db->mutex);
1560 for(i=0; i<pFrom->nVar; i++){
1561 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1563 sqlite3_mutex_leave(pTo->db->mutex);
1564 return SQLITE_OK;
1567 #ifndef SQLITE_OMIT_DEPRECATED
1569 ** Deprecated external interface. Internal/core SQLite code
1570 ** should call sqlite3TransferBindings.
1572 ** It is misuse to call this routine with statements from different
1573 ** database connections. But as this is a deprecated interface, we
1574 ** will not bother to check for that condition.
1576 ** If the two statements contain a different number of bindings, then
1577 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1578 ** SQLITE_OK is returned.
1580 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1581 Vdbe *pFrom = (Vdbe*)pFromStmt;
1582 Vdbe *pTo = (Vdbe*)pToStmt;
1583 if( pFrom->nVar!=pTo->nVar ){
1584 return SQLITE_ERROR;
1586 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1587 if( pTo->expmask ){
1588 pTo->expired = 1;
1590 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1591 if( pFrom->expmask ){
1592 pFrom->expired = 1;
1594 return sqlite3TransferBindings(pFromStmt, pToStmt);
1596 #endif
1599 ** Return the sqlite3* database handle to which the prepared statement given
1600 ** in the argument belongs. This is the same database handle that was
1601 ** the first argument to the sqlite3_prepare() that was used to create
1602 ** the statement in the first place.
1604 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1605 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1609 ** Return true if the prepared statement is guaranteed to not modify the
1610 ** database.
1612 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1613 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1617 ** Return true if the prepared statement is in need of being reset.
1619 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1620 Vdbe *v = (Vdbe*)pStmt;
1621 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1625 ** Return a pointer to the next prepared statement after pStmt associated
1626 ** with database connection pDb. If pStmt is NULL, return the first
1627 ** prepared statement for the database connection. Return NULL if there
1628 ** are no more.
1630 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1631 sqlite3_stmt *pNext;
1632 #ifdef SQLITE_ENABLE_API_ARMOR
1633 if( !sqlite3SafetyCheckOk(pDb) ){
1634 (void)SQLITE_MISUSE_BKPT;
1635 return 0;
1637 #endif
1638 sqlite3_mutex_enter(pDb->mutex);
1639 if( pStmt==0 ){
1640 pNext = (sqlite3_stmt*)pDb->pVdbe;
1641 }else{
1642 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1644 sqlite3_mutex_leave(pDb->mutex);
1645 return pNext;
1649 ** Return the value of a status counter for a prepared statement
1651 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1652 Vdbe *pVdbe = (Vdbe*)pStmt;
1653 u32 v;
1654 #ifdef SQLITE_ENABLE_API_ARMOR
1655 if( !pStmt ){
1656 (void)SQLITE_MISUSE_BKPT;
1657 return 0;
1659 #endif
1660 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1661 sqlite3 *db = pVdbe->db;
1662 sqlite3_mutex_enter(db->mutex);
1663 v = 0;
1664 db->pnBytesFreed = (int*)&v;
1665 sqlite3VdbeClearObject(db, pVdbe);
1666 sqlite3DbFree(db, pVdbe);
1667 db->pnBytesFreed = 0;
1668 sqlite3_mutex_leave(db->mutex);
1669 }else{
1670 v = pVdbe->aCounter[op];
1671 if( resetFlag ) pVdbe->aCounter[op] = 0;
1673 return (int)v;
1677 ** Return the SQL associated with a prepared statement
1679 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1680 Vdbe *p = (Vdbe *)pStmt;
1681 return p ? p->zSql : 0;
1685 ** Return the SQL associated with a prepared statement with
1686 ** bound parameters expanded. Space to hold the returned string is
1687 ** obtained from sqlite3_malloc(). The caller is responsible for
1688 ** freeing the returned string by passing it to sqlite3_free().
1690 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1691 ** expanded bound parameters.
1693 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1694 #ifdef SQLITE_OMIT_TRACE
1695 return 0;
1696 #else
1697 char *z = 0;
1698 const char *zSql = sqlite3_sql(pStmt);
1699 if( zSql ){
1700 Vdbe *p = (Vdbe *)pStmt;
1701 sqlite3_mutex_enter(p->db->mutex);
1702 z = sqlite3VdbeExpandSql(p, zSql);
1703 sqlite3_mutex_leave(p->db->mutex);
1705 return z;
1706 #endif
1709 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1711 ** Allocate and populate an UnpackedRecord structure based on the serialized
1712 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1713 ** if successful, or a NULL pointer if an OOM error is encountered.
1715 static UnpackedRecord *vdbeUnpackRecord(
1716 KeyInfo *pKeyInfo,
1717 int nKey,
1718 const void *pKey
1720 UnpackedRecord *pRet; /* Return value */
1722 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1723 if( pRet ){
1724 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1725 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1727 return pRet;
1731 ** This function is called from within a pre-update callback to retrieve
1732 ** a field of the row currently being updated or deleted.
1734 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1735 PreUpdate *p = db->pPreUpdate;
1736 Mem *pMem;
1737 int rc = SQLITE_OK;
1739 /* Test that this call is being made from within an SQLITE_DELETE or
1740 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1741 if( !p || p->op==SQLITE_INSERT ){
1742 rc = SQLITE_MISUSE_BKPT;
1743 goto preupdate_old_out;
1745 if( p->pPk ){
1746 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1748 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1749 rc = SQLITE_RANGE;
1750 goto preupdate_old_out;
1753 /* If the old.* record has not yet been loaded into memory, do so now. */
1754 if( p->pUnpacked==0 ){
1755 u32 nRec;
1756 u8 *aRec;
1758 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1759 aRec = sqlite3DbMallocRaw(db, nRec);
1760 if( !aRec ) goto preupdate_old_out;
1761 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1762 if( rc==SQLITE_OK ){
1763 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1764 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1766 if( rc!=SQLITE_OK ){
1767 sqlite3DbFree(db, aRec);
1768 goto preupdate_old_out;
1770 p->aRecord = aRec;
1773 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1774 if( iIdx==p->pTab->iPKey ){
1775 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1776 }else if( iIdx>=p->pUnpacked->nField ){
1777 *ppValue = (sqlite3_value *)columnNullValue();
1778 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1779 if( pMem->flags & MEM_Int ){
1780 sqlite3VdbeMemRealify(pMem);
1784 preupdate_old_out:
1785 sqlite3Error(db, rc);
1786 return sqlite3ApiExit(db, rc);
1788 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1790 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1792 ** This function is called from within a pre-update callback to retrieve
1793 ** the number of columns in the row being updated, deleted or inserted.
1795 int sqlite3_preupdate_count(sqlite3 *db){
1796 PreUpdate *p = db->pPreUpdate;
1797 return (p ? p->keyinfo.nKeyField : 0);
1799 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1801 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1803 ** This function is designed to be called from within a pre-update callback
1804 ** only. It returns zero if the change that caused the callback was made
1805 ** immediately by a user SQL statement. Or, if the change was made by a
1806 ** trigger program, it returns the number of trigger programs currently
1807 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1808 ** top-level trigger etc.).
1810 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1811 ** or SET DEFAULT action is considered a trigger.
1813 int sqlite3_preupdate_depth(sqlite3 *db){
1814 PreUpdate *p = db->pPreUpdate;
1815 return (p ? p->v->nFrame : 0);
1817 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1819 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1821 ** This function is called from within a pre-update callback to retrieve
1822 ** a field of the row currently being updated or inserted.
1824 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1825 PreUpdate *p = db->pPreUpdate;
1826 int rc = SQLITE_OK;
1827 Mem *pMem;
1829 if( !p || p->op==SQLITE_DELETE ){
1830 rc = SQLITE_MISUSE_BKPT;
1831 goto preupdate_new_out;
1833 if( p->pPk && p->op!=SQLITE_UPDATE ){
1834 iIdx = sqlite3ColumnOfIndex(p->pPk, iIdx);
1836 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1837 rc = SQLITE_RANGE;
1838 goto preupdate_new_out;
1841 if( p->op==SQLITE_INSERT ){
1842 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1843 ** that is being inserted. Deserialize it. */
1844 UnpackedRecord *pUnpack = p->pNewUnpacked;
1845 if( !pUnpack ){
1846 Mem *pData = &p->v->aMem[p->iNewReg];
1847 rc = ExpandBlob(pData);
1848 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1849 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1850 if( !pUnpack ){
1851 rc = SQLITE_NOMEM;
1852 goto preupdate_new_out;
1854 p->pNewUnpacked = pUnpack;
1856 pMem = &pUnpack->aMem[iIdx];
1857 if( iIdx==p->pTab->iPKey ){
1858 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1859 }else if( iIdx>=pUnpack->nField ){
1860 pMem = (sqlite3_value *)columnNullValue();
1862 }else{
1863 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1864 ** value. Make a copy of the cell contents and return a pointer to it.
1865 ** It is not safe to return a pointer to the memory cell itself as the
1866 ** caller may modify the value text encoding.
1868 assert( p->op==SQLITE_UPDATE );
1869 if( !p->aNew ){
1870 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1871 if( !p->aNew ){
1872 rc = SQLITE_NOMEM;
1873 goto preupdate_new_out;
1876 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1877 pMem = &p->aNew[iIdx];
1878 if( pMem->flags==0 ){
1879 if( iIdx==p->pTab->iPKey ){
1880 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1881 }else{
1882 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1883 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1887 *ppValue = pMem;
1889 preupdate_new_out:
1890 sqlite3Error(db, rc);
1891 return sqlite3ApiExit(db, rc);
1893 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1895 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1897 ** Return status data for a single loop within query pStmt.
1899 int sqlite3_stmt_scanstatus(
1900 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1901 int idx, /* Index of loop to report on */
1902 int iScanStatusOp, /* Which metric to return */
1903 void *pOut /* OUT: Write the answer here */
1905 Vdbe *p = (Vdbe*)pStmt;
1906 ScanStatus *pScan;
1907 if( idx<0 || idx>=p->nScan ) return 1;
1908 pScan = &p->aScan[idx];
1909 switch( iScanStatusOp ){
1910 case SQLITE_SCANSTAT_NLOOP: {
1911 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1912 break;
1914 case SQLITE_SCANSTAT_NVISIT: {
1915 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1916 break;
1918 case SQLITE_SCANSTAT_EST: {
1919 double r = 1.0;
1920 LogEst x = pScan->nEst;
1921 while( x<100 ){
1922 x += 10;
1923 r *= 0.5;
1925 *(double*)pOut = r*sqlite3LogEstToInt(x);
1926 break;
1928 case SQLITE_SCANSTAT_NAME: {
1929 *(const char**)pOut = pScan->zName;
1930 break;
1932 case SQLITE_SCANSTAT_EXPLAIN: {
1933 if( pScan->addrExplain ){
1934 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1935 }else{
1936 *(const char**)pOut = 0;
1938 break;
1940 case SQLITE_SCANSTAT_SELECTID: {
1941 if( pScan->addrExplain ){
1942 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1943 }else{
1944 *(int*)pOut = -1;
1946 break;
1948 default: {
1949 return 1;
1952 return 0;
1956 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1958 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1959 Vdbe *p = (Vdbe*)pStmt;
1960 memset(p->anExec, 0, p->nOp * sizeof(i64));
1962 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */