Avoid leaving view-definitions with an incomplete set of column names/types in
[sqlite.git] / src / vdbemem.c
blobd0d52ce41cac341f9e05079ac0a3dfa2ac31fc38
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
96 #ifdef SQLITE_DEBUG
98 ** Check that string value of pMem agrees with its integer or real value.
100 ** A single int or real value always converts to the same strings. But
101 ** many different strings can be converted into the same int or real.
102 ** If a table contains a numeric value and an index is based on the
103 ** corresponding string value, then it is important that the string be
104 ** derived from the numeric value, not the other way around, to ensure
105 ** that the index and table are consistent. See ticket
106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107 ** an example.
109 ** This routine looks at pMem to verify that if it has both a numeric
110 ** representation and a string representation then the string rep has
111 ** been derived from the numeric and not the other way around. It returns
112 ** true if everything is ok and false if there is a problem.
114 ** This routine is for use inside of assert() statements only.
116 int sqlite3VdbeMemConsistentDualRep(Mem *p){
117 char zBuf[100];
118 char *z;
119 int i, j, incr;
120 if( (p->flags & MEM_Str)==0 ) return 1;
121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122 if( p->flags & MEM_Int ){
123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124 }else{
125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
127 z = p->z;
128 i = j = 0;
129 incr = 1;
130 if( p->enc!=SQLITE_UTF8 ){
131 incr = 2;
132 if( p->enc==SQLITE_UTF16BE ) z++;
134 while( zBuf[j] ){
135 if( zBuf[j++]!=z[i] ) return 0;
136 i += incr;
138 return 1;
140 #endif /* SQLITE_DEBUG */
143 ** If pMem is an object with a valid string representation, this routine
144 ** ensures the internal encoding for the string representation is
145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
147 ** If pMem is not a string object, or the encoding of the string
148 ** representation is already stored using the requested encoding, then this
149 ** routine is a no-op.
151 ** SQLITE_OK is returned if the conversion is successful (or not required).
152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153 ** between formats.
155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
156 #ifndef SQLITE_OMIT_UTF16
157 int rc;
158 #endif
159 assert( (pMem->flags&MEM_RowSet)==0 );
160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161 || desiredEnc==SQLITE_UTF16BE );
162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
163 return SQLITE_OK;
165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
166 #ifdef SQLITE_OMIT_UTF16
167 return SQLITE_ERROR;
168 #else
170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171 ** then the encoding of the value may not have changed.
173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
177 return rc;
178 #endif
182 ** Make sure pMem->z points to a writable allocation of at least
183 ** min(n,32) bytes.
185 ** If the bPreserve argument is true, then copy of the content of
186 ** pMem->z into the new allocation. pMem must be either a string or
187 ** blob if bPreserve is true. If bPreserve is false, any prior content
188 ** in pMem->z is discarded.
190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
191 assert( sqlite3VdbeCheckMemInvariants(pMem) );
192 assert( (pMem->flags&MEM_RowSet)==0 );
193 testcase( pMem->db==0 );
195 /* If the bPreserve flag is set to true, then the memory cell must already
196 ** contain a valid string or blob value. */
197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198 testcase( bPreserve && pMem->z==0 );
200 assert( pMem->szMalloc==0
201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
202 if( n<32 ) n = 32;
203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205 bPreserve = 0;
206 }else{
207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
210 if( pMem->zMalloc==0 ){
211 sqlite3VdbeMemSetNull(pMem);
212 pMem->z = 0;
213 pMem->szMalloc = 0;
214 return SQLITE_NOMEM_BKPT;
215 }else{
216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
219 if( bPreserve && pMem->z ){
220 assert( pMem->z!=pMem->zMalloc );
221 memcpy(pMem->zMalloc, pMem->z, pMem->n);
223 if( (pMem->flags&MEM_Dyn)!=0 ){
224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
225 pMem->xDel((void *)(pMem->z));
228 pMem->z = pMem->zMalloc;
229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
230 return SQLITE_OK;
234 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
235 ** If pMem->zMalloc already meets or exceeds the requested size, this
236 ** routine is a no-op.
238 ** Any prior string or blob content in the pMem object may be discarded.
239 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241 ** values are preserved.
243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244 ** if unable to complete the resizing.
246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
247 assert( szNew>0 );
248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
249 if( pMem->szMalloc<szNew ){
250 return sqlite3VdbeMemGrow(pMem, szNew, 0);
252 assert( (pMem->flags & MEM_Dyn)==0 );
253 pMem->z = pMem->zMalloc;
254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
255 return SQLITE_OK;
259 ** It is already known that pMem contains an unterminated string.
260 ** Add the zero terminator.
262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264 return SQLITE_NOMEM_BKPT;
266 pMem->z[pMem->n] = 0;
267 pMem->z[pMem->n+1] = 0;
268 pMem->flags |= MEM_Term;
269 return SQLITE_OK;
273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274 ** MEM.zMalloc, where it can be safely written.
276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
280 assert( (pMem->flags&MEM_RowSet)==0 );
281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
284 int rc = vdbeMemAddTerminator(pMem);
285 if( rc ) return rc;
288 pMem->flags &= ~MEM_Ephem;
289 #ifdef SQLITE_DEBUG
290 pMem->pScopyFrom = 0;
291 #endif
293 return SQLITE_OK;
297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
298 ** blob stored in dynamically allocated space.
300 #ifndef SQLITE_OMIT_INCRBLOB
301 int sqlite3VdbeMemExpandBlob(Mem *pMem){
302 int nByte;
303 assert( pMem->flags & MEM_Zero );
304 assert( pMem->flags&MEM_Blob );
305 assert( (pMem->flags&MEM_RowSet)==0 );
306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
308 /* Set nByte to the number of bytes required to store the expanded blob. */
309 nByte = pMem->n + pMem->u.nZero;
310 if( nByte<=0 ){
311 nByte = 1;
313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314 return SQLITE_NOMEM_BKPT;
317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318 pMem->n += pMem->u.nZero;
319 pMem->flags &= ~(MEM_Zero|MEM_Term);
320 return SQLITE_OK;
322 #endif
325 ** Make sure the given Mem is \u0000 terminated.
327 int sqlite3VdbeMemNulTerminate(Mem *pMem){
328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332 return SQLITE_OK; /* Nothing to do */
333 }else{
334 return vdbeMemAddTerminator(pMem);
339 ** Add MEM_Str to the set of representations for the given Mem. Numbers
340 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
341 ** is a no-op.
343 ** Existing representations MEM_Int and MEM_Real are invalidated if
344 ** bForce is true but are retained if bForce is false.
346 ** A MEM_Null value will never be passed to this function. This function is
347 ** used for converting values to text for returning to the user (i.e. via
348 ** sqlite3_value_text()), or for ensuring that values to be used as btree
349 ** keys are strings. In the former case a NULL pointer is returned the
350 ** user and the latter is an internal programming error.
352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
353 int fg = pMem->flags;
354 const int nByte = 32;
356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
357 assert( !(fg&MEM_Zero) );
358 assert( !(fg&(MEM_Str|MEM_Blob)) );
359 assert( fg&(MEM_Int|MEM_Real) );
360 assert( (pMem->flags&MEM_RowSet)==0 );
361 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
365 pMem->enc = 0;
366 return SQLITE_NOMEM_BKPT;
369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
370 ** string representation of the value. Then, if the required encoding
371 ** is UTF-16le or UTF-16be do a translation.
373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
375 if( fg & MEM_Int ){
376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
377 }else{
378 assert( fg & MEM_Real );
379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
381 pMem->n = sqlite3Strlen30(pMem->z);
382 pMem->enc = SQLITE_UTF8;
383 pMem->flags |= MEM_Str|MEM_Term;
384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
385 sqlite3VdbeChangeEncoding(pMem, enc);
386 return SQLITE_OK;
390 ** Memory cell pMem contains the context of an aggregate function.
391 ** This routine calls the finalize method for that function. The
392 ** result of the aggregate is stored back into pMem.
394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395 ** otherwise.
397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
419 ** Memory cell pAccum contains the context of an aggregate function.
420 ** This routine calls the xValue method for that function and stores
421 ** the results in memory cell pMem.
423 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
424 ** otherwise.
426 #ifndef SQLITE_OMIT_WINDOWFUNC
427 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
428 sqlite3_context ctx;
429 Mem t;
430 assert( pFunc!=0 );
431 assert( pFunc->xValue!=0 );
432 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
433 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
434 memset(&ctx, 0, sizeof(ctx));
435 memset(&t, 0, sizeof(t));
436 t.flags = MEM_Null;
437 t.db = pAccum->db;
438 sqlite3VdbeMemSetNull(pOut);
439 ctx.pOut = pOut;
440 ctx.pMem = pAccum;
441 ctx.pFunc = pFunc;
442 pFunc->xValue(&ctx);
443 return ctx.isError;
445 #endif /* SQLITE_OMIT_WINDOWFUNC */
448 ** If the memory cell contains a value that must be freed by
449 ** invoking the external callback in Mem.xDel, then this routine
450 ** will free that value. It also sets Mem.flags to MEM_Null.
452 ** This is a helper routine for sqlite3VdbeMemSetNull() and
453 ** for sqlite3VdbeMemRelease(). Use those other routines as the
454 ** entry point for releasing Mem resources.
456 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
457 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
458 assert( VdbeMemDynamic(p) );
459 if( p->flags&MEM_Agg ){
460 sqlite3VdbeMemFinalize(p, p->u.pDef);
461 assert( (p->flags & MEM_Agg)==0 );
462 testcase( p->flags & MEM_Dyn );
464 if( p->flags&MEM_Dyn ){
465 assert( (p->flags&MEM_RowSet)==0 );
466 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
467 p->xDel((void *)p->z);
468 }else if( p->flags&MEM_RowSet ){
469 sqlite3RowSetClear(p->u.pRowSet);
470 }else if( p->flags&MEM_Frame ){
471 VdbeFrame *pFrame = p->u.pFrame;
472 pFrame->pParent = pFrame->v->pDelFrame;
473 pFrame->v->pDelFrame = pFrame;
475 p->flags = MEM_Null;
479 ** Release memory held by the Mem p, both external memory cleared
480 ** by p->xDel and memory in p->zMalloc.
482 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
483 ** the unusual case where there really is memory in p that needs
484 ** to be freed.
486 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
487 if( VdbeMemDynamic(p) ){
488 vdbeMemClearExternAndSetNull(p);
490 if( p->szMalloc ){
491 sqlite3DbFreeNN(p->db, p->zMalloc);
492 p->szMalloc = 0;
494 p->z = 0;
498 ** Release any memory resources held by the Mem. Both the memory that is
499 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
501 ** Use this routine prior to clean up prior to abandoning a Mem, or to
502 ** reset a Mem back to its minimum memory utilization.
504 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
505 ** prior to inserting new content into the Mem.
507 void sqlite3VdbeMemRelease(Mem *p){
508 assert( sqlite3VdbeCheckMemInvariants(p) );
509 if( VdbeMemDynamic(p) || p->szMalloc ){
510 vdbeMemClear(p);
515 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
516 ** If the double is out of range of a 64-bit signed integer then
517 ** return the closest available 64-bit signed integer.
519 static SQLITE_NOINLINE i64 doubleToInt64(double r){
520 #ifdef SQLITE_OMIT_FLOATING_POINT
521 /* When floating-point is omitted, double and int64 are the same thing */
522 return r;
523 #else
525 ** Many compilers we encounter do not define constants for the
526 ** minimum and maximum 64-bit integers, or they define them
527 ** inconsistently. And many do not understand the "LL" notation.
528 ** So we define our own static constants here using nothing
529 ** larger than a 32-bit integer constant.
531 static const i64 maxInt = LARGEST_INT64;
532 static const i64 minInt = SMALLEST_INT64;
534 if( r<=(double)minInt ){
535 return minInt;
536 }else if( r>=(double)maxInt ){
537 return maxInt;
538 }else{
539 return (i64)r;
541 #endif
545 ** Return some kind of integer value which is the best we can do
546 ** at representing the value that *pMem describes as an integer.
547 ** If pMem is an integer, then the value is exact. If pMem is
548 ** a floating-point then the value returned is the integer part.
549 ** If pMem is a string or blob, then we make an attempt to convert
550 ** it into an integer and return that. If pMem represents an
551 ** an SQL-NULL value, return 0.
553 ** If pMem represents a string value, its encoding might be changed.
555 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
556 i64 value = 0;
557 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
558 return value;
560 i64 sqlite3VdbeIntValue(Mem *pMem){
561 int flags;
562 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
563 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
564 flags = pMem->flags;
565 if( flags & MEM_Int ){
566 return pMem->u.i;
567 }else if( flags & MEM_Real ){
568 return doubleToInt64(pMem->u.r);
569 }else if( flags & (MEM_Str|MEM_Blob) ){
570 assert( pMem->z || pMem->n==0 );
571 return memIntValue(pMem);
572 }else{
573 return 0;
578 ** Return the best representation of pMem that we can get into a
579 ** double. If pMem is already a double or an integer, return its
580 ** value. If it is a string or blob, try to convert it to a double.
581 ** If it is a NULL, return 0.0.
583 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
584 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
585 double val = (double)0;
586 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
587 return val;
589 double sqlite3VdbeRealValue(Mem *pMem){
590 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
591 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
592 if( pMem->flags & MEM_Real ){
593 return pMem->u.r;
594 }else if( pMem->flags & MEM_Int ){
595 return (double)pMem->u.i;
596 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
597 return memRealValue(pMem);
598 }else{
599 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
600 return (double)0;
605 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
606 ** Return the value ifNull if pMem is NULL.
608 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
609 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
610 if( pMem->flags & MEM_Null ) return ifNull;
611 return sqlite3VdbeRealValue(pMem)!=0.0;
615 ** The MEM structure is already a MEM_Real. Try to also make it a
616 ** MEM_Int if we can.
618 void sqlite3VdbeIntegerAffinity(Mem *pMem){
619 i64 ix;
620 assert( pMem->flags & MEM_Real );
621 assert( (pMem->flags & MEM_RowSet)==0 );
622 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
623 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
625 ix = doubleToInt64(pMem->u.r);
627 /* Only mark the value as an integer if
629 ** (1) the round-trip conversion real->int->real is a no-op, and
630 ** (2) The integer is neither the largest nor the smallest
631 ** possible integer (ticket #3922)
633 ** The second and third terms in the following conditional enforces
634 ** the second condition under the assumption that addition overflow causes
635 ** values to wrap around.
637 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
638 pMem->u.i = ix;
639 MemSetTypeFlag(pMem, MEM_Int);
644 ** Convert pMem to type integer. Invalidate any prior representations.
646 int sqlite3VdbeMemIntegerify(Mem *pMem){
647 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
648 assert( (pMem->flags & MEM_RowSet)==0 );
649 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
651 pMem->u.i = sqlite3VdbeIntValue(pMem);
652 MemSetTypeFlag(pMem, MEM_Int);
653 return SQLITE_OK;
657 ** Convert pMem so that it is of type MEM_Real.
658 ** Invalidate any prior representations.
660 int sqlite3VdbeMemRealify(Mem *pMem){
661 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
662 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
664 pMem->u.r = sqlite3VdbeRealValue(pMem);
665 MemSetTypeFlag(pMem, MEM_Real);
666 return SQLITE_OK;
669 /* Compare a floating point value to an integer. Return true if the two
670 ** values are the same within the precision of the floating point value.
672 ** For some versions of GCC on 32-bit machines, if you do the more obvious
673 ** comparison of "r1==(double)i" you sometimes get an answer of false even
674 ** though the r1 and (double)i values are bit-for-bit the same.
676 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
677 double r2 = (double)i;
678 return memcmp(&r1, &r2, sizeof(r1))==0;
682 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
683 ** Invalidate any prior representations.
685 ** Every effort is made to force the conversion, even if the input
686 ** is a string that does not look completely like a number. Convert
687 ** as much of the string as we can and ignore the rest.
689 int sqlite3VdbeMemNumerify(Mem *pMem){
690 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
691 int rc;
692 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
693 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
694 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
695 if( rc==0 ){
696 MemSetTypeFlag(pMem, MEM_Int);
697 }else{
698 i64 i = pMem->u.i;
699 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
700 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
701 pMem->u.i = i;
702 MemSetTypeFlag(pMem, MEM_Int);
703 }else{
704 MemSetTypeFlag(pMem, MEM_Real);
708 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
709 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
710 return SQLITE_OK;
714 ** Cast the datatype of the value in pMem according to the affinity
715 ** "aff". Casting is different from applying affinity in that a cast
716 ** is forced. In other words, the value is converted into the desired
717 ** affinity even if that results in loss of data. This routine is
718 ** used (for example) to implement the SQL "cast()" operator.
720 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
721 if( pMem->flags & MEM_Null ) return;
722 switch( aff ){
723 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
724 if( (pMem->flags & MEM_Blob)==0 ){
725 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
726 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
727 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
728 }else{
729 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
731 break;
733 case SQLITE_AFF_NUMERIC: {
734 sqlite3VdbeMemNumerify(pMem);
735 break;
737 case SQLITE_AFF_INTEGER: {
738 sqlite3VdbeMemIntegerify(pMem);
739 break;
741 case SQLITE_AFF_REAL: {
742 sqlite3VdbeMemRealify(pMem);
743 break;
745 default: {
746 assert( aff==SQLITE_AFF_TEXT );
747 assert( MEM_Str==(MEM_Blob>>3) );
748 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
749 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
750 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
751 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
752 break;
758 ** Initialize bulk memory to be a consistent Mem object.
760 ** The minimum amount of initialization feasible is performed.
762 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
763 assert( (flags & ~MEM_TypeMask)==0 );
764 pMem->flags = flags;
765 pMem->db = db;
766 pMem->szMalloc = 0;
771 ** Delete any previous value and set the value stored in *pMem to NULL.
773 ** This routine calls the Mem.xDel destructor to dispose of values that
774 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
775 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
776 ** routine to invoke the destructor and deallocates Mem.zMalloc.
778 ** Use this routine to reset the Mem prior to insert a new value.
780 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
782 void sqlite3VdbeMemSetNull(Mem *pMem){
783 if( VdbeMemDynamic(pMem) ){
784 vdbeMemClearExternAndSetNull(pMem);
785 }else{
786 pMem->flags = MEM_Null;
789 void sqlite3ValueSetNull(sqlite3_value *p){
790 sqlite3VdbeMemSetNull((Mem*)p);
794 ** Delete any previous value and set the value to be a BLOB of length
795 ** n containing all zeros.
797 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
798 sqlite3VdbeMemRelease(pMem);
799 pMem->flags = MEM_Blob|MEM_Zero;
800 pMem->n = 0;
801 if( n<0 ) n = 0;
802 pMem->u.nZero = n;
803 pMem->enc = SQLITE_UTF8;
804 pMem->z = 0;
808 ** The pMem is known to contain content that needs to be destroyed prior
809 ** to a value change. So invoke the destructor, then set the value to
810 ** a 64-bit integer.
812 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
813 sqlite3VdbeMemSetNull(pMem);
814 pMem->u.i = val;
815 pMem->flags = MEM_Int;
819 ** Delete any previous value and set the value stored in *pMem to val,
820 ** manifest type INTEGER.
822 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
823 if( VdbeMemDynamic(pMem) ){
824 vdbeReleaseAndSetInt64(pMem, val);
825 }else{
826 pMem->u.i = val;
827 pMem->flags = MEM_Int;
831 /* A no-op destructor */
832 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
835 ** Set the value stored in *pMem should already be a NULL.
836 ** Also store a pointer to go with it.
838 void sqlite3VdbeMemSetPointer(
839 Mem *pMem,
840 void *pPtr,
841 const char *zPType,
842 void (*xDestructor)(void*)
844 assert( pMem->flags==MEM_Null );
845 pMem->u.zPType = zPType ? zPType : "";
846 pMem->z = pPtr;
847 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
848 pMem->eSubtype = 'p';
849 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
852 #ifndef SQLITE_OMIT_FLOATING_POINT
854 ** Delete any previous value and set the value stored in *pMem to val,
855 ** manifest type REAL.
857 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
858 sqlite3VdbeMemSetNull(pMem);
859 if( !sqlite3IsNaN(val) ){
860 pMem->u.r = val;
861 pMem->flags = MEM_Real;
864 #endif
867 ** Delete any previous value and set the value of pMem to be an
868 ** empty boolean index.
870 void sqlite3VdbeMemSetRowSet(Mem *pMem){
871 sqlite3 *db = pMem->db;
872 assert( db!=0 );
873 assert( (pMem->flags & MEM_RowSet)==0 );
874 sqlite3VdbeMemRelease(pMem);
875 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
876 if( db->mallocFailed ){
877 pMem->flags = MEM_Null;
878 pMem->szMalloc = 0;
879 }else{
880 assert( pMem->zMalloc );
881 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
882 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
883 assert( pMem->u.pRowSet!=0 );
884 pMem->flags = MEM_RowSet;
889 ** Return true if the Mem object contains a TEXT or BLOB that is
890 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
892 int sqlite3VdbeMemTooBig(Mem *p){
893 assert( p->db!=0 );
894 if( p->flags & (MEM_Str|MEM_Blob) ){
895 int n = p->n;
896 if( p->flags & MEM_Zero ){
897 n += p->u.nZero;
899 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
901 return 0;
904 #ifdef SQLITE_DEBUG
906 ** This routine prepares a memory cell for modification by breaking
907 ** its link to a shallow copy and by marking any current shallow
908 ** copies of this cell as invalid.
910 ** This is used for testing and debugging only - to make sure shallow
911 ** copies are not misused.
913 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
914 int i;
915 Mem *pX;
916 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
917 if( pX->pScopyFrom==pMem ){
918 /* If pX is marked as a shallow copy of pMem, then verify that
919 ** no significant changes have been made to pX since the OP_SCopy.
920 ** A significant change would indicated a missed call to this
921 ** function for pX. Minor changes, such as adding or removing a
922 ** dual type, are allowed, as long as the underlying value is the
923 ** same. */
924 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
925 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
926 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
927 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
928 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
930 /* pMem is the register that is changing. But also mark pX as
931 ** undefined so that we can quickly detect the shallow-copy error */
932 pX->flags = MEM_Undefined;
933 pX->pScopyFrom = 0;
936 pMem->pScopyFrom = 0;
937 #ifdef SQLITE_DEBUG_COLUMN_CACHE
938 pMem->iTabColHash = 0;
939 #endif
941 #endif /* SQLITE_DEBUG */
945 ** Make an shallow copy of pFrom into pTo. Prior contents of
946 ** pTo are freed. The pFrom->z field is not duplicated. If
947 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
948 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
950 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
951 vdbeMemClearExternAndSetNull(pTo);
952 assert( !VdbeMemDynamic(pTo) );
953 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
955 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
956 assert( (pFrom->flags & MEM_RowSet)==0 );
957 assert( pTo->db==pFrom->db );
958 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
959 memcpy(pTo, pFrom, MEMCELLSIZE);
960 #ifdef SQLITE_DEBUG_COLUMNCACHE
961 pTo->iTabColHash = pFrom->iTabColHash;
962 #endif
963 if( (pFrom->flags&MEM_Static)==0 ){
964 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
965 assert( srcType==MEM_Ephem || srcType==MEM_Static );
966 pTo->flags |= srcType;
971 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
972 ** freed before the copy is made.
974 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
975 int rc = SQLITE_OK;
977 assert( (pFrom->flags & MEM_RowSet)==0 );
978 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
979 memcpy(pTo, pFrom, MEMCELLSIZE);
980 #ifdef SQLITE_DEBUG_COLUMNCACHE
981 pTo->iTabColHash = pFrom->iTabColHash;
982 #endif
983 pTo->flags &= ~MEM_Dyn;
984 if( pTo->flags&(MEM_Str|MEM_Blob) ){
985 if( 0==(pFrom->flags&MEM_Static) ){
986 pTo->flags |= MEM_Ephem;
987 rc = sqlite3VdbeMemMakeWriteable(pTo);
991 return rc;
995 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
996 ** freed. If pFrom contains ephemeral data, a copy is made.
998 ** pFrom contains an SQL NULL when this routine returns.
1000 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1001 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1002 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1003 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1005 sqlite3VdbeMemRelease(pTo);
1006 memcpy(pTo, pFrom, sizeof(Mem));
1007 pFrom->flags = MEM_Null;
1008 pFrom->szMalloc = 0;
1012 ** Change the value of a Mem to be a string or a BLOB.
1014 ** The memory management strategy depends on the value of the xDel
1015 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1016 ** string is copied into a (possibly existing) buffer managed by the
1017 ** Mem structure. Otherwise, any existing buffer is freed and the
1018 ** pointer copied.
1020 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1021 ** size limit) then no memory allocation occurs. If the string can be
1022 ** stored without allocating memory, then it is. If a memory allocation
1023 ** is required to store the string, then value of pMem is unchanged. In
1024 ** either case, SQLITE_TOOBIG is returned.
1026 int sqlite3VdbeMemSetStr(
1027 Mem *pMem, /* Memory cell to set to string value */
1028 const char *z, /* String pointer */
1029 int n, /* Bytes in string, or negative */
1030 u8 enc, /* Encoding of z. 0 for BLOBs */
1031 void (*xDel)(void*) /* Destructor function */
1033 int nByte = n; /* New value for pMem->n */
1034 int iLimit; /* Maximum allowed string or blob size */
1035 u16 flags = 0; /* New value for pMem->flags */
1037 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1038 assert( (pMem->flags & MEM_RowSet)==0 );
1040 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1041 if( !z ){
1042 sqlite3VdbeMemSetNull(pMem);
1043 return SQLITE_OK;
1046 if( pMem->db ){
1047 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1048 }else{
1049 iLimit = SQLITE_MAX_LENGTH;
1051 flags = (enc==0?MEM_Blob:MEM_Str);
1052 if( nByte<0 ){
1053 assert( enc!=0 );
1054 if( enc==SQLITE_UTF8 ){
1055 nByte = 0x7fffffff & (int)strlen(z);
1056 if( nByte>iLimit ) nByte = iLimit+1;
1057 }else{
1058 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1060 flags |= MEM_Term;
1063 /* The following block sets the new values of Mem.z and Mem.xDel. It
1064 ** also sets a flag in local variable "flags" to indicate the memory
1065 ** management (one of MEM_Dyn or MEM_Static).
1067 if( xDel==SQLITE_TRANSIENT ){
1068 int nAlloc = nByte;
1069 if( flags&MEM_Term ){
1070 nAlloc += (enc==SQLITE_UTF8?1:2);
1072 if( nByte>iLimit ){
1073 return SQLITE_TOOBIG;
1075 testcase( nAlloc==0 );
1076 testcase( nAlloc==31 );
1077 testcase( nAlloc==32 );
1078 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
1079 return SQLITE_NOMEM_BKPT;
1081 memcpy(pMem->z, z, nAlloc);
1082 }else if( xDel==SQLITE_DYNAMIC ){
1083 sqlite3VdbeMemRelease(pMem);
1084 pMem->zMalloc = pMem->z = (char *)z;
1085 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1086 }else{
1087 sqlite3VdbeMemRelease(pMem);
1088 pMem->z = (char *)z;
1089 pMem->xDel = xDel;
1090 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1093 pMem->n = nByte;
1094 pMem->flags = flags;
1095 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1097 #ifndef SQLITE_OMIT_UTF16
1098 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1099 return SQLITE_NOMEM_BKPT;
1101 #endif
1103 if( nByte>iLimit ){
1104 return SQLITE_TOOBIG;
1107 return SQLITE_OK;
1111 ** Move data out of a btree key or data field and into a Mem structure.
1112 ** The data is payload from the entry that pCur is currently pointing
1113 ** to. offset and amt determine what portion of the data or key to retrieve.
1114 ** The result is written into the pMem element.
1116 ** The pMem object must have been initialized. This routine will use
1117 ** pMem->zMalloc to hold the content from the btree, if possible. New
1118 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1119 ** is responsible for making sure that the pMem object is eventually
1120 ** destroyed.
1122 ** If this routine fails for any reason (malloc returns NULL or unable
1123 ** to read from the disk) then the pMem is left in an inconsistent state.
1125 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1126 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1127 u32 offset, /* Offset from the start of data to return bytes from. */
1128 u32 amt, /* Number of bytes to return. */
1129 Mem *pMem /* OUT: Return data in this Mem structure. */
1131 int rc;
1132 pMem->flags = MEM_Null;
1133 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1134 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1135 if( rc==SQLITE_OK ){
1136 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1137 pMem->flags = MEM_Blob;
1138 pMem->n = (int)amt;
1139 }else{
1140 sqlite3VdbeMemRelease(pMem);
1143 return rc;
1145 int sqlite3VdbeMemFromBtree(
1146 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1147 u32 offset, /* Offset from the start of data to return bytes from. */
1148 u32 amt, /* Number of bytes to return. */
1149 Mem *pMem /* OUT: Return data in this Mem structure. */
1151 char *zData; /* Data from the btree layer */
1152 u32 available = 0; /* Number of bytes available on the local btree page */
1153 int rc = SQLITE_OK; /* Return code */
1155 assert( sqlite3BtreeCursorIsValid(pCur) );
1156 assert( !VdbeMemDynamic(pMem) );
1158 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1159 ** that both the BtShared and database handle mutexes are held. */
1160 assert( (pMem->flags & MEM_RowSet)==0 );
1161 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1162 assert( zData!=0 );
1164 if( offset+amt<=available ){
1165 pMem->z = &zData[offset];
1166 pMem->flags = MEM_Blob|MEM_Ephem;
1167 pMem->n = (int)amt;
1168 }else{
1169 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1172 return rc;
1176 ** The pVal argument is known to be a value other than NULL.
1177 ** Convert it into a string with encoding enc and return a pointer
1178 ** to a zero-terminated version of that string.
1180 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1181 assert( pVal!=0 );
1182 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1183 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1184 assert( (pVal->flags & MEM_RowSet)==0 );
1185 assert( (pVal->flags & (MEM_Null))==0 );
1186 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1187 if( ExpandBlob(pVal) ) return 0;
1188 pVal->flags |= MEM_Str;
1189 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1190 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1192 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1193 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1194 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1195 return 0;
1198 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1199 }else{
1200 sqlite3VdbeMemStringify(pVal, enc, 0);
1201 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1203 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1204 || pVal->db->mallocFailed );
1205 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1206 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1207 return pVal->z;
1208 }else{
1209 return 0;
1213 /* This function is only available internally, it is not part of the
1214 ** external API. It works in a similar way to sqlite3_value_text(),
1215 ** except the data returned is in the encoding specified by the second
1216 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1217 ** SQLITE_UTF8.
1219 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1220 ** If that is the case, then the result must be aligned on an even byte
1221 ** boundary.
1223 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1224 if( !pVal ) return 0;
1225 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1226 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1227 assert( (pVal->flags & MEM_RowSet)==0 );
1228 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1229 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1230 return pVal->z;
1232 if( pVal->flags&MEM_Null ){
1233 return 0;
1235 return valueToText(pVal, enc);
1239 ** Create a new sqlite3_value object.
1241 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1242 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1243 if( p ){
1244 p->flags = MEM_Null;
1245 p->db = db;
1247 return p;
1251 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1252 ** valueNew(). See comments above valueNew() for details.
1254 struct ValueNewStat4Ctx {
1255 Parse *pParse;
1256 Index *pIdx;
1257 UnpackedRecord **ppRec;
1258 int iVal;
1262 ** Allocate and return a pointer to a new sqlite3_value object. If
1263 ** the second argument to this function is NULL, the object is allocated
1264 ** by calling sqlite3ValueNew().
1266 ** Otherwise, if the second argument is non-zero, then this function is
1267 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1268 ** already been allocated, allocate the UnpackedRecord structure that
1269 ** that function will return to its caller here. Then return a pointer to
1270 ** an sqlite3_value within the UnpackedRecord.a[] array.
1272 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1273 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1274 if( p ){
1275 UnpackedRecord *pRec = p->ppRec[0];
1277 if( pRec==0 ){
1278 Index *pIdx = p->pIdx; /* Index being probed */
1279 int nByte; /* Bytes of space to allocate */
1280 int i; /* Counter variable */
1281 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1283 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1284 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1285 if( pRec ){
1286 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1287 if( pRec->pKeyInfo ){
1288 assert( pRec->pKeyInfo->nAllField==nCol );
1289 assert( pRec->pKeyInfo->enc==ENC(db) );
1290 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1291 for(i=0; i<nCol; i++){
1292 pRec->aMem[i].flags = MEM_Null;
1293 pRec->aMem[i].db = db;
1295 }else{
1296 sqlite3DbFreeNN(db, pRec);
1297 pRec = 0;
1300 if( pRec==0 ) return 0;
1301 p->ppRec[0] = pRec;
1304 pRec->nField = p->iVal+1;
1305 return &pRec->aMem[p->iVal];
1307 #else
1308 UNUSED_PARAMETER(p);
1309 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1310 return sqlite3ValueNew(db);
1314 ** The expression object indicated by the second argument is guaranteed
1315 ** to be a scalar SQL function. If
1317 ** * all function arguments are SQL literals,
1318 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1319 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1321 ** then this routine attempts to invoke the SQL function. Assuming no
1322 ** error occurs, output parameter (*ppVal) is set to point to a value
1323 ** object containing the result before returning SQLITE_OK.
1325 ** Affinity aff is applied to the result of the function before returning.
1326 ** If the result is a text value, the sqlite3_value object uses encoding
1327 ** enc.
1329 ** If the conditions above are not met, this function returns SQLITE_OK
1330 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1331 ** NULL and an SQLite error code returned.
1333 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1334 static int valueFromFunction(
1335 sqlite3 *db, /* The database connection */
1336 Expr *p, /* The expression to evaluate */
1337 u8 enc, /* Encoding to use */
1338 u8 aff, /* Affinity to use */
1339 sqlite3_value **ppVal, /* Write the new value here */
1340 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1342 sqlite3_context ctx; /* Context object for function invocation */
1343 sqlite3_value **apVal = 0; /* Function arguments */
1344 int nVal = 0; /* Size of apVal[] array */
1345 FuncDef *pFunc = 0; /* Function definition */
1346 sqlite3_value *pVal = 0; /* New value */
1347 int rc = SQLITE_OK; /* Return code */
1348 ExprList *pList = 0; /* Function arguments */
1349 int i; /* Iterator variable */
1351 assert( pCtx!=0 );
1352 assert( (p->flags & EP_TokenOnly)==0 );
1353 pList = p->x.pList;
1354 if( pList ) nVal = pList->nExpr;
1355 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1356 assert( pFunc );
1357 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1358 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1360 return SQLITE_OK;
1363 if( pList ){
1364 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1365 if( apVal==0 ){
1366 rc = SQLITE_NOMEM_BKPT;
1367 goto value_from_function_out;
1369 for(i=0; i<nVal; i++){
1370 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1371 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1375 pVal = valueNew(db, pCtx);
1376 if( pVal==0 ){
1377 rc = SQLITE_NOMEM_BKPT;
1378 goto value_from_function_out;
1381 assert( pCtx->pParse->rc==SQLITE_OK );
1382 memset(&ctx, 0, sizeof(ctx));
1383 ctx.pOut = pVal;
1384 ctx.pFunc = pFunc;
1385 pFunc->xSFunc(&ctx, nVal, apVal);
1386 if( ctx.isError ){
1387 rc = ctx.isError;
1388 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1389 }else{
1390 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1391 assert( rc==SQLITE_OK );
1392 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1393 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1394 rc = SQLITE_TOOBIG;
1395 pCtx->pParse->nErr++;
1398 pCtx->pParse->rc = rc;
1400 value_from_function_out:
1401 if( rc!=SQLITE_OK ){
1402 pVal = 0;
1404 if( apVal ){
1405 for(i=0; i<nVal; i++){
1406 sqlite3ValueFree(apVal[i]);
1408 sqlite3DbFreeNN(db, apVal);
1411 *ppVal = pVal;
1412 return rc;
1414 #else
1415 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1416 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1419 ** Extract a value from the supplied expression in the manner described
1420 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1421 ** using valueNew().
1423 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1424 ** has been allocated, it is freed before returning. Or, if pCtx is not
1425 ** NULL, it is assumed that the caller will free any allocated object
1426 ** in all cases.
1428 static int valueFromExpr(
1429 sqlite3 *db, /* The database connection */
1430 Expr *pExpr, /* The expression to evaluate */
1431 u8 enc, /* Encoding to use */
1432 u8 affinity, /* Affinity to use */
1433 sqlite3_value **ppVal, /* Write the new value here */
1434 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1436 int op;
1437 char *zVal = 0;
1438 sqlite3_value *pVal = 0;
1439 int negInt = 1;
1440 const char *zNeg = "";
1441 int rc = SQLITE_OK;
1443 assert( pExpr!=0 );
1444 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1445 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1446 if( op==TK_REGISTER ) op = pExpr->op2;
1447 #else
1448 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1449 #endif
1451 /* Compressed expressions only appear when parsing the DEFAULT clause
1452 ** on a table column definition, and hence only when pCtx==0. This
1453 ** check ensures that an EP_TokenOnly expression is never passed down
1454 ** into valueFromFunction(). */
1455 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1457 if( op==TK_CAST ){
1458 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1459 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1460 testcase( rc!=SQLITE_OK );
1461 if( *ppVal ){
1462 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1463 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1465 return rc;
1468 /* Handle negative integers in a single step. This is needed in the
1469 ** case when the value is -9223372036854775808.
1471 if( op==TK_UMINUS
1472 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1473 pExpr = pExpr->pLeft;
1474 op = pExpr->op;
1475 negInt = -1;
1476 zNeg = "-";
1479 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1480 pVal = valueNew(db, pCtx);
1481 if( pVal==0 ) goto no_mem;
1482 if( ExprHasProperty(pExpr, EP_IntValue) ){
1483 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1484 }else{
1485 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1486 if( zVal==0 ) goto no_mem;
1487 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1489 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1490 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1491 }else{
1492 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1494 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1495 if( enc!=SQLITE_UTF8 ){
1496 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1498 }else if( op==TK_UMINUS ) {
1499 /* This branch happens for multiple negative signs. Ex: -(-5) */
1500 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1501 && pVal!=0
1503 sqlite3VdbeMemNumerify(pVal);
1504 if( pVal->flags & MEM_Real ){
1505 pVal->u.r = -pVal->u.r;
1506 }else if( pVal->u.i==SMALLEST_INT64 ){
1507 pVal->u.r = -(double)SMALLEST_INT64;
1508 MemSetTypeFlag(pVal, MEM_Real);
1509 }else{
1510 pVal->u.i = -pVal->u.i;
1512 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1514 }else if( op==TK_NULL ){
1515 pVal = valueNew(db, pCtx);
1516 if( pVal==0 ) goto no_mem;
1517 sqlite3VdbeMemNumerify(pVal);
1519 #ifndef SQLITE_OMIT_BLOB_LITERAL
1520 else if( op==TK_BLOB ){
1521 int nVal;
1522 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1523 assert( pExpr->u.zToken[1]=='\'' );
1524 pVal = valueNew(db, pCtx);
1525 if( !pVal ) goto no_mem;
1526 zVal = &pExpr->u.zToken[2];
1527 nVal = sqlite3Strlen30(zVal)-1;
1528 assert( zVal[nVal]=='\'' );
1529 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1530 0, SQLITE_DYNAMIC);
1532 #endif
1533 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1534 else if( op==TK_FUNCTION && pCtx!=0 ){
1535 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1537 #endif
1538 else if( op==TK_TRUEFALSE ){
1539 pVal = valueNew(db, pCtx);
1540 pVal->flags = MEM_Int;
1541 pVal->u.i = pExpr->u.zToken[4]==0;
1544 *ppVal = pVal;
1545 return rc;
1547 no_mem:
1548 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1549 if( pCtx==0 || pCtx->pParse->nErr==0 )
1550 #endif
1551 sqlite3OomFault(db);
1552 sqlite3DbFree(db, zVal);
1553 assert( *ppVal==0 );
1554 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1555 if( pCtx==0 ) sqlite3ValueFree(pVal);
1556 #else
1557 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1558 #endif
1559 return SQLITE_NOMEM_BKPT;
1563 ** Create a new sqlite3_value object, containing the value of pExpr.
1565 ** This only works for very simple expressions that consist of one constant
1566 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1567 ** be converted directly into a value, then the value is allocated and
1568 ** a pointer written to *ppVal. The caller is responsible for deallocating
1569 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1570 ** cannot be converted to a value, then *ppVal is set to NULL.
1572 int sqlite3ValueFromExpr(
1573 sqlite3 *db, /* The database connection */
1574 Expr *pExpr, /* The expression to evaluate */
1575 u8 enc, /* Encoding to use */
1576 u8 affinity, /* Affinity to use */
1577 sqlite3_value **ppVal /* Write the new value here */
1579 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1582 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1584 ** The implementation of the sqlite_record() function. This function accepts
1585 ** a single argument of any type. The return value is a formatted database
1586 ** record (a blob) containing the argument value.
1588 ** This is used to convert the value stored in the 'sample' column of the
1589 ** sqlite_stat3 table to the record format SQLite uses internally.
1591 static void recordFunc(
1592 sqlite3_context *context,
1593 int argc,
1594 sqlite3_value **argv
1596 const int file_format = 1;
1597 u32 iSerial; /* Serial type */
1598 int nSerial; /* Bytes of space for iSerial as varint */
1599 u32 nVal; /* Bytes of space required for argv[0] */
1600 int nRet;
1601 sqlite3 *db;
1602 u8 *aRet;
1604 UNUSED_PARAMETER( argc );
1605 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1606 nSerial = sqlite3VarintLen(iSerial);
1607 db = sqlite3_context_db_handle(context);
1609 nRet = 1 + nSerial + nVal;
1610 aRet = sqlite3DbMallocRawNN(db, nRet);
1611 if( aRet==0 ){
1612 sqlite3_result_error_nomem(context);
1613 }else{
1614 aRet[0] = nSerial+1;
1615 putVarint32(&aRet[1], iSerial);
1616 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1617 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1618 sqlite3DbFreeNN(db, aRet);
1623 ** Register built-in functions used to help read ANALYZE data.
1625 void sqlite3AnalyzeFunctions(void){
1626 static FuncDef aAnalyzeTableFuncs[] = {
1627 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1629 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1633 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1635 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1636 ** pAlloc if one does not exist and the new value is added to the
1637 ** UnpackedRecord object.
1639 ** A value is extracted in the following cases:
1641 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1643 ** * The expression is a bound variable, and this is a reprepare, or
1645 ** * The expression is a literal value.
1647 ** On success, *ppVal is made to point to the extracted value. The caller
1648 ** is responsible for ensuring that the value is eventually freed.
1650 static int stat4ValueFromExpr(
1651 Parse *pParse, /* Parse context */
1652 Expr *pExpr, /* The expression to extract a value from */
1653 u8 affinity, /* Affinity to use */
1654 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1655 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1657 int rc = SQLITE_OK;
1658 sqlite3_value *pVal = 0;
1659 sqlite3 *db = pParse->db;
1661 /* Skip over any TK_COLLATE nodes */
1662 pExpr = sqlite3ExprSkipCollate(pExpr);
1664 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1665 if( !pExpr ){
1666 pVal = valueNew(db, pAlloc);
1667 if( pVal ){
1668 sqlite3VdbeMemSetNull((Mem*)pVal);
1670 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1671 Vdbe *v;
1672 int iBindVar = pExpr->iColumn;
1673 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1674 if( (v = pParse->pReprepare)!=0 ){
1675 pVal = valueNew(db, pAlloc);
1676 if( pVal ){
1677 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1678 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1679 pVal->db = pParse->db;
1682 }else{
1683 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1686 assert( pVal==0 || pVal->db==db );
1687 *ppVal = pVal;
1688 return rc;
1692 ** This function is used to allocate and populate UnpackedRecord
1693 ** structures intended to be compared against sample index keys stored
1694 ** in the sqlite_stat4 table.
1696 ** A single call to this function populates zero or more fields of the
1697 ** record starting with field iVal (fields are numbered from left to
1698 ** right starting with 0). A single field is populated if:
1700 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1702 ** * The expression is a bound variable, and this is a reprepare, or
1704 ** * The sqlite3ValueFromExpr() function is able to extract a value
1705 ** from the expression (i.e. the expression is a literal value).
1707 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1708 ** vector components that match either of the two latter criteria listed
1709 ** above.
1711 ** Before any value is appended to the record, the affinity of the
1712 ** corresponding column within index pIdx is applied to it. Before
1713 ** this function returns, output parameter *pnExtract is set to the
1714 ** number of values appended to the record.
1716 ** When this function is called, *ppRec must either point to an object
1717 ** allocated by an earlier call to this function, or must be NULL. If it
1718 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1719 ** is allocated (and *ppRec set to point to it) before returning.
1721 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1722 ** error if a value cannot be extracted from pExpr. If an error does
1723 ** occur, an SQLite error code is returned.
1725 int sqlite3Stat4ProbeSetValue(
1726 Parse *pParse, /* Parse context */
1727 Index *pIdx, /* Index being probed */
1728 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1729 Expr *pExpr, /* The expression to extract a value from */
1730 int nElem, /* Maximum number of values to append */
1731 int iVal, /* Array element to populate */
1732 int *pnExtract /* OUT: Values appended to the record */
1734 int rc = SQLITE_OK;
1735 int nExtract = 0;
1737 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1738 int i;
1739 struct ValueNewStat4Ctx alloc;
1741 alloc.pParse = pParse;
1742 alloc.pIdx = pIdx;
1743 alloc.ppRec = ppRec;
1745 for(i=0; i<nElem; i++){
1746 sqlite3_value *pVal = 0;
1747 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1748 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1749 alloc.iVal = iVal+i;
1750 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1751 if( !pVal ) break;
1752 nExtract++;
1756 *pnExtract = nExtract;
1757 return rc;
1761 ** Attempt to extract a value from expression pExpr using the methods
1762 ** as described for sqlite3Stat4ProbeSetValue() above.
1764 ** If successful, set *ppVal to point to a new value object and return
1765 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1766 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1767 ** does occur, return an SQLite error code. The final value of *ppVal
1768 ** is undefined in this case.
1770 int sqlite3Stat4ValueFromExpr(
1771 Parse *pParse, /* Parse context */
1772 Expr *pExpr, /* The expression to extract a value from */
1773 u8 affinity, /* Affinity to use */
1774 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1776 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1780 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1781 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1782 ** sqlite3_value object is allocated.
1784 ** If *ppVal is initially NULL then the caller is responsible for
1785 ** ensuring that the value written into *ppVal is eventually freed.
1787 int sqlite3Stat4Column(
1788 sqlite3 *db, /* Database handle */
1789 const void *pRec, /* Pointer to buffer containing record */
1790 int nRec, /* Size of buffer pRec in bytes */
1791 int iCol, /* Column to extract */
1792 sqlite3_value **ppVal /* OUT: Extracted value */
1794 u32 t; /* a column type code */
1795 int nHdr; /* Size of the header in the record */
1796 int iHdr; /* Next unread header byte */
1797 int iField; /* Next unread data byte */
1798 int szField; /* Size of the current data field */
1799 int i; /* Column index */
1800 u8 *a = (u8*)pRec; /* Typecast byte array */
1801 Mem *pMem = *ppVal; /* Write result into this Mem object */
1803 assert( iCol>0 );
1804 iHdr = getVarint32(a, nHdr);
1805 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1806 iField = nHdr;
1807 for(i=0; i<=iCol; i++){
1808 iHdr += getVarint32(&a[iHdr], t);
1809 testcase( iHdr==nHdr );
1810 testcase( iHdr==nHdr+1 );
1811 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1812 szField = sqlite3VdbeSerialTypeLen(t);
1813 iField += szField;
1815 testcase( iField==nRec );
1816 testcase( iField==nRec+1 );
1817 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1818 if( pMem==0 ){
1819 pMem = *ppVal = sqlite3ValueNew(db);
1820 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1822 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1823 pMem->enc = ENC(db);
1824 return SQLITE_OK;
1828 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1829 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1830 ** the object.
1832 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1833 if( pRec ){
1834 int i;
1835 int nCol = pRec->pKeyInfo->nAllField;
1836 Mem *aMem = pRec->aMem;
1837 sqlite3 *db = aMem[0].db;
1838 for(i=0; i<nCol; i++){
1839 sqlite3VdbeMemRelease(&aMem[i]);
1841 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1842 sqlite3DbFreeNN(db, pRec);
1845 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1848 ** Change the string value of an sqlite3_value object
1850 void sqlite3ValueSetStr(
1851 sqlite3_value *v, /* Value to be set */
1852 int n, /* Length of string z */
1853 const void *z, /* Text of the new string */
1854 u8 enc, /* Encoding to use */
1855 void (*xDel)(void*) /* Destructor for the string */
1857 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1861 ** Free an sqlite3_value object
1863 void sqlite3ValueFree(sqlite3_value *v){
1864 if( !v ) return;
1865 sqlite3VdbeMemRelease((Mem *)v);
1866 sqlite3DbFreeNN(((Mem*)v)->db, v);
1870 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1871 ** sqlite3_value object assuming that it uses the encoding "enc".
1872 ** The valueBytes() routine is a helper function.
1874 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1875 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1877 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1878 Mem *p = (Mem*)pVal;
1879 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1880 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1881 return p->n;
1883 if( (p->flags & MEM_Blob)!=0 ){
1884 if( p->flags & MEM_Zero ){
1885 return p->n + p->u.nZero;
1886 }else{
1887 return p->n;
1890 if( p->flags & MEM_Null ) return 0;
1891 return valueBytes(pVal, enc);