Avoid leaving view-definitions with an incomplete set of column names/types in
[sqlite.git] / src / vdbeaux.c
blobd6efead3214f02f40b2a27e7d449954227062443
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 p->pParse = pParse;
36 pParse->pVdbe = p;
37 assert( pParse->aLabel==0 );
38 assert( pParse->nLabel==0 );
39 assert( pParse->nOpAlloc==0 );
40 assert( pParse->szOpAlloc==0 );
41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
42 return p;
46 ** Change the error string stored in Vdbe.zErrMsg
48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
49 va_list ap;
50 sqlite3DbFree(p->db, p->zErrMsg);
51 va_start(ap, zFormat);
52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
53 va_end(ap);
57 ** Remember the SQL string for a prepared statement.
59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
60 if( p==0 ) return;
61 p->prepFlags = prepFlags;
62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
63 p->expmask = 0;
65 assert( p->zSql==0 );
66 p->zSql = sqlite3DbStrNDup(p->db, z, n);
70 ** Swap all content between two VDBE structures.
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73 Vdbe tmp, *pTmp;
74 char *zTmp;
75 assert( pA->db==pB->db );
76 tmp = *pA;
77 *pA = *pB;
78 *pB = tmp;
79 pTmp = pA->pNext;
80 pA->pNext = pB->pNext;
81 pB->pNext = pTmp;
82 pTmp = pA->pPrev;
83 pA->pPrev = pB->pPrev;
84 pB->pPrev = pTmp;
85 zTmp = pA->zSql;
86 pA->zSql = pB->zSql;
87 pB->zSql = zTmp;
88 pB->expmask = pA->expmask;
89 pB->prepFlags = pA->prepFlags;
90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
96 ** than its current size. nOp is guaranteed to be less than or equal
97 ** to 1024/sizeof(Op).
99 ** If an out-of-memory error occurs while resizing the array, return
100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
101 ** unchanged (this is so that any opcodes already allocated can be
102 ** correctly deallocated along with the rest of the Vdbe).
104 static int growOpArray(Vdbe *v, int nOp){
105 VdbeOp *pNew;
106 Parse *p = v->pParse;
108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
109 ** more frequent reallocs and hence provide more opportunities for
110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
112 ** by the minimum* amount required until the size reaches 512. Normal
113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
114 ** size of the op array or add 1KB of space, whichever is smaller. */
115 #ifdef SQLITE_TEST_REALLOC_STRESS
116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
117 #else
118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
119 UNUSED_PARAMETER(nOp);
120 #endif
122 /* Ensure that the size of a VDBE does not grow too large */
123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
124 sqlite3OomFault(p->db);
125 return SQLITE_NOMEM;
128 assert( nOp<=(1024/sizeof(Op)) );
129 assert( nNew>=(p->nOpAlloc+nOp) );
130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
131 if( pNew ){
132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
133 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
134 v->aOp = pNew;
136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
139 #ifdef SQLITE_DEBUG
140 /* This routine is just a convenient place to set a breakpoint that will
141 ** fire after each opcode is inserted and displayed using
142 ** "PRAGMA vdbe_addoptrace=on".
144 static void test_addop_breakpoint(void){
145 static int n = 0;
146 n++;
148 #endif
151 ** Add a new instruction to the list of instructions current in the
152 ** VDBE. Return the address of the new instruction.
154 ** Parameters:
156 ** p Pointer to the VDBE
158 ** op The opcode for this instruction
160 ** p1, p2, p3 Operands
162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
163 ** the sqlite3VdbeChangeP4() function to change the value of the P4
164 ** operand.
166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
167 assert( p->pParse->nOpAlloc<=p->nOp );
168 if( growOpArray(p, 1) ) return 1;
169 assert( p->pParse->nOpAlloc>p->nOp );
170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
173 int i;
174 VdbeOp *pOp;
176 i = p->nOp;
177 assert( p->magic==VDBE_MAGIC_INIT );
178 assert( op>=0 && op<0xff );
179 if( p->pParse->nOpAlloc<=i ){
180 return growOp3(p, op, p1, p2, p3);
182 p->nOp++;
183 pOp = &p->aOp[i];
184 pOp->opcode = (u8)op;
185 pOp->p5 = 0;
186 pOp->p1 = p1;
187 pOp->p2 = p2;
188 pOp->p3 = p3;
189 pOp->p4.p = 0;
190 pOp->p4type = P4_NOTUSED;
191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
192 pOp->zComment = 0;
193 #endif
194 #ifdef SQLITE_DEBUG
195 if( p->db->flags & SQLITE_VdbeAddopTrace ){
196 int jj, kk;
197 Parse *pParse = p->pParse;
198 for(jj=kk=0; jj<pParse->nColCache; jj++){
199 struct yColCache *x = pParse->aColCache + jj;
200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
201 kk++;
203 if( kk ) printf("\n");
204 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
205 test_addop_breakpoint();
207 #endif
208 #ifdef VDBE_PROFILE
209 pOp->cycles = 0;
210 pOp->cnt = 0;
211 #endif
212 #ifdef SQLITE_VDBE_COVERAGE
213 pOp->iSrcLine = 0;
214 #endif
215 return i;
217 int sqlite3VdbeAddOp0(Vdbe *p, int op){
218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
227 /* Generate code for an unconditional jump to instruction iDest
229 int sqlite3VdbeGoto(Vdbe *p, int iDest){
230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
233 /* Generate code to cause the string zStr to be loaded into
234 ** register iDest
236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
241 ** Generate code that initializes multiple registers to string or integer
242 ** constants. The registers begin with iDest and increase consecutively.
243 ** One register is initialized for each characgter in zTypes[]. For each
244 ** "s" character in zTypes[], the register is a string if the argument is
245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
246 ** in zTypes[], the register is initialized to an integer.
248 ** If the input string does not end with "X" then an OP_ResultRow instruction
249 ** is generated for the values inserted.
251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
252 va_list ap;
253 int i;
254 char c;
255 va_start(ap, zTypes);
256 for(i=0; (c = zTypes[i])!=0; i++){
257 if( c=='s' ){
258 const char *z = va_arg(ap, const char*);
259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
260 }else if( c=='i' ){
261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
262 }else{
263 goto skip_op_resultrow;
266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
267 skip_op_resultrow:
268 va_end(ap);
272 ** Add an opcode that includes the p4 value as a pointer.
274 int sqlite3VdbeAddOp4(
275 Vdbe *p, /* Add the opcode to this VM */
276 int op, /* The new opcode */
277 int p1, /* The P1 operand */
278 int p2, /* The P2 operand */
279 int p3, /* The P3 operand */
280 const char *zP4, /* The P4 operand */
281 int p4type /* P4 operand type */
283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
284 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
285 return addr;
289 ** Add an opcode that includes the p4 value with a P4_INT64 or
290 ** P4_REAL type.
292 int sqlite3VdbeAddOp4Dup8(
293 Vdbe *p, /* Add the opcode to this VM */
294 int op, /* The new opcode */
295 int p1, /* The P1 operand */
296 int p2, /* The P2 operand */
297 int p3, /* The P3 operand */
298 const u8 *zP4, /* The P4 operand */
299 int p4type /* P4 operand type */
301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
302 if( p4copy ) memcpy(p4copy, zP4, 8);
303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
306 #ifndef SQLITE_OMIT_EXPLAIN
308 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
309 ** 0 means "none".
311 int sqlite3VdbeExplainParent(Parse *pParse){
312 VdbeOp *pOp;
313 if( pParse->addrExplain==0 ) return 0;
314 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
315 return pOp->p2;
319 ** Add a new OP_Explain opcode.
321 ** If the bPush flag is true, then make this opcode the parent for
322 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
324 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
325 if( pParse->explain==2 ){
326 char *zMsg;
327 Vdbe *v = pParse->pVdbe;
328 va_list ap;
329 int iThis;
330 va_start(ap, zFmt);
331 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
332 va_end(ap);
333 v = pParse->pVdbe;
334 iThis = v->nOp;
335 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
336 zMsg, P4_DYNAMIC);
337 if( bPush) pParse->addrExplain = iThis;
342 ** Pop the EXPLAIN QUERY PLAN stack one level.
344 void sqlite3VdbeExplainPop(Parse *pParse){
345 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
347 #endif /* SQLITE_OMIT_EXPLAIN */
350 ** Add an OP_ParseSchema opcode. This routine is broken out from
351 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
352 ** as having been used.
354 ** The zWhere string must have been obtained from sqlite3_malloc().
355 ** This routine will take ownership of the allocated memory.
357 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
358 int j;
359 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
360 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
364 ** Add an opcode that includes the p4 value as an integer.
366 int sqlite3VdbeAddOp4Int(
367 Vdbe *p, /* Add the opcode to this VM */
368 int op, /* The new opcode */
369 int p1, /* The P1 operand */
370 int p2, /* The P2 operand */
371 int p3, /* The P3 operand */
372 int p4 /* The P4 operand as an integer */
374 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
375 if( p->db->mallocFailed==0 ){
376 VdbeOp *pOp = &p->aOp[addr];
377 pOp->p4type = P4_INT32;
378 pOp->p4.i = p4;
380 return addr;
383 /* Insert the end of a co-routine
385 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
386 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
388 /* Clear the temporary register cache, thereby ensuring that each
389 ** co-routine has its own independent set of registers, because co-routines
390 ** might expect their registers to be preserved across an OP_Yield, and
391 ** that could cause problems if two or more co-routines are using the same
392 ** temporary register.
394 v->pParse->nTempReg = 0;
395 v->pParse->nRangeReg = 0;
399 ** Create a new symbolic label for an instruction that has yet to be
400 ** coded. The symbolic label is really just a negative number. The
401 ** label can be used as the P2 value of an operation. Later, when
402 ** the label is resolved to a specific address, the VDBE will scan
403 ** through its operation list and change all values of P2 which match
404 ** the label into the resolved address.
406 ** The VDBE knows that a P2 value is a label because labels are
407 ** always negative and P2 values are suppose to be non-negative.
408 ** Hence, a negative P2 value is a label that has yet to be resolved.
410 ** Zero is returned if a malloc() fails.
412 int sqlite3VdbeMakeLabel(Vdbe *v){
413 Parse *p = v->pParse;
414 int i = p->nLabel++;
415 assert( v->magic==VDBE_MAGIC_INIT );
416 if( (i & (i-1))==0 ){
417 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
418 (i*2+1)*sizeof(p->aLabel[0]));
420 if( p->aLabel ){
421 p->aLabel[i] = -1;
423 return ADDR(i);
427 ** Resolve label "x" to be the address of the next instruction to
428 ** be inserted. The parameter "x" must have been obtained from
429 ** a prior call to sqlite3VdbeMakeLabel().
431 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
432 Parse *p = v->pParse;
433 int j = ADDR(x);
434 assert( v->magic==VDBE_MAGIC_INIT );
435 assert( j<p->nLabel );
436 assert( j>=0 );
437 if( p->aLabel ){
438 #ifdef SQLITE_DEBUG
439 if( p->db->flags & SQLITE_VdbeAddopTrace ){
440 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
442 #endif
443 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
444 p->aLabel[j] = v->nOp;
448 #ifdef SQLITE_COVERAGE_TEST
450 ** Return TRUE if and only if the label x has already been resolved.
451 ** Return FALSE (zero) if label x is still unresolved.
453 ** This routine is only used inside of testcase() macros, and so it
454 ** only exists when measuring test coverage.
456 int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){
457 return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0;
459 #endif /* SQLITE_COVERAGE_TEST */
462 ** Mark the VDBE as one that can only be run one time.
464 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
465 p->runOnlyOnce = 1;
469 ** Mark the VDBE as one that can only be run multiple times.
471 void sqlite3VdbeReusable(Vdbe *p){
472 p->runOnlyOnce = 0;
475 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
478 ** The following type and function are used to iterate through all opcodes
479 ** in a Vdbe main program and each of the sub-programs (triggers) it may
480 ** invoke directly or indirectly. It should be used as follows:
482 ** Op *pOp;
483 ** VdbeOpIter sIter;
485 ** memset(&sIter, 0, sizeof(sIter));
486 ** sIter.v = v; // v is of type Vdbe*
487 ** while( (pOp = opIterNext(&sIter)) ){
488 ** // Do something with pOp
489 ** }
490 ** sqlite3DbFree(v->db, sIter.apSub);
493 typedef struct VdbeOpIter VdbeOpIter;
494 struct VdbeOpIter {
495 Vdbe *v; /* Vdbe to iterate through the opcodes of */
496 SubProgram **apSub; /* Array of subprograms */
497 int nSub; /* Number of entries in apSub */
498 int iAddr; /* Address of next instruction to return */
499 int iSub; /* 0 = main program, 1 = first sub-program etc. */
501 static Op *opIterNext(VdbeOpIter *p){
502 Vdbe *v = p->v;
503 Op *pRet = 0;
504 Op *aOp;
505 int nOp;
507 if( p->iSub<=p->nSub ){
509 if( p->iSub==0 ){
510 aOp = v->aOp;
511 nOp = v->nOp;
512 }else{
513 aOp = p->apSub[p->iSub-1]->aOp;
514 nOp = p->apSub[p->iSub-1]->nOp;
516 assert( p->iAddr<nOp );
518 pRet = &aOp[p->iAddr];
519 p->iAddr++;
520 if( p->iAddr==nOp ){
521 p->iSub++;
522 p->iAddr = 0;
525 if( pRet->p4type==P4_SUBPROGRAM ){
526 int nByte = (p->nSub+1)*sizeof(SubProgram*);
527 int j;
528 for(j=0; j<p->nSub; j++){
529 if( p->apSub[j]==pRet->p4.pProgram ) break;
531 if( j==p->nSub ){
532 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
533 if( !p->apSub ){
534 pRet = 0;
535 }else{
536 p->apSub[p->nSub++] = pRet->p4.pProgram;
542 return pRet;
546 ** Check if the program stored in the VM associated with pParse may
547 ** throw an ABORT exception (causing the statement, but not entire transaction
548 ** to be rolled back). This condition is true if the main program or any
549 ** sub-programs contains any of the following:
551 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
552 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
553 ** * OP_Destroy
554 ** * OP_VUpdate
555 ** * OP_VRename
556 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
557 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
558 ** (for CREATE TABLE AS SELECT ...)
560 ** Then check that the value of Parse.mayAbort is true if an
561 ** ABORT may be thrown, or false otherwise. Return true if it does
562 ** match, or false otherwise. This function is intended to be used as
563 ** part of an assert statement in the compiler. Similar to:
565 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
567 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
568 int hasAbort = 0;
569 int hasFkCounter = 0;
570 int hasCreateTable = 0;
571 int hasInitCoroutine = 0;
572 Op *pOp;
573 VdbeOpIter sIter;
574 memset(&sIter, 0, sizeof(sIter));
575 sIter.v = v;
577 while( (pOp = opIterNext(&sIter))!=0 ){
578 int opcode = pOp->opcode;
579 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
580 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
581 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
583 hasAbort = 1;
584 break;
586 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
587 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
588 #ifndef SQLITE_OMIT_FOREIGN_KEY
589 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
590 hasFkCounter = 1;
592 #endif
594 sqlite3DbFree(v->db, sIter.apSub);
596 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
597 ** If malloc failed, then the while() loop above may not have iterated
598 ** through all opcodes and hasAbort may be set incorrectly. Return
599 ** true for this case to prevent the assert() in the callers frame
600 ** from failing. */
601 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
602 || (hasCreateTable && hasInitCoroutine) );
604 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
606 #ifdef SQLITE_DEBUG
608 ** Increment the nWrite counter in the VDBE if the cursor is not an
609 ** ephemeral cursor, or if the cursor argument is NULL.
611 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
612 if( pC==0
613 || (pC->eCurType!=CURTYPE_SORTER
614 && pC->eCurType!=CURTYPE_PSEUDO
615 && !pC->isEphemeral)
617 p->nWrite++;
620 #endif
622 #ifdef SQLITE_DEBUG
624 ** Assert if an Abort at this point in time might result in a corrupt
625 ** database.
627 void sqlite3VdbeAssertAbortable(Vdbe *p){
628 assert( p->nWrite==0 || p->usesStmtJournal );
630 #endif
633 ** This routine is called after all opcodes have been inserted. It loops
634 ** through all the opcodes and fixes up some details.
636 ** (1) For each jump instruction with a negative P2 value (a label)
637 ** resolve the P2 value to an actual address.
639 ** (2) Compute the maximum number of arguments used by any SQL function
640 ** and store that value in *pMaxFuncArgs.
642 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
643 ** indicate what the prepared statement actually does.
645 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
647 ** (5) Reclaim the memory allocated for storing labels.
649 ** This routine will only function correctly if the mkopcodeh.tcl generator
650 ** script numbers the opcodes correctly. Changes to this routine must be
651 ** coordinated with changes to mkopcodeh.tcl.
653 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
654 int nMaxArgs = *pMaxFuncArgs;
655 Op *pOp;
656 Parse *pParse = p->pParse;
657 int *aLabel = pParse->aLabel;
658 p->readOnly = 1;
659 p->bIsReader = 0;
660 pOp = &p->aOp[p->nOp-1];
661 while(1){
663 /* Only JUMP opcodes and the short list of special opcodes in the switch
664 ** below need to be considered. The mkopcodeh.tcl generator script groups
665 ** all these opcodes together near the front of the opcode list. Skip
666 ** any opcode that does not need processing by virtual of the fact that
667 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
669 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
670 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
671 ** cases from this switch! */
672 switch( pOp->opcode ){
673 case OP_Transaction: {
674 if( pOp->p2!=0 ) p->readOnly = 0;
675 /* fall thru */
677 case OP_AutoCommit:
678 case OP_Savepoint: {
679 p->bIsReader = 1;
680 break;
682 #ifndef SQLITE_OMIT_WAL
683 case OP_Checkpoint:
684 #endif
685 case OP_Vacuum:
686 case OP_JournalMode: {
687 p->readOnly = 0;
688 p->bIsReader = 1;
689 break;
691 case OP_Next:
692 case OP_SorterNext: {
693 pOp->p4.xAdvance = sqlite3BtreeNext;
694 pOp->p4type = P4_ADVANCE;
695 /* The code generator never codes any of these opcodes as a jump
696 ** to a label. They are always coded as a jump backwards to a
697 ** known address */
698 assert( pOp->p2>=0 );
699 break;
701 case OP_Prev: {
702 pOp->p4.xAdvance = sqlite3BtreePrevious;
703 pOp->p4type = P4_ADVANCE;
704 /* The code generator never codes any of these opcodes as a jump
705 ** to a label. They are always coded as a jump backwards to a
706 ** known address */
707 assert( pOp->p2>=0 );
708 break;
710 #ifndef SQLITE_OMIT_VIRTUALTABLE
711 case OP_VUpdate: {
712 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
713 break;
715 case OP_VFilter: {
716 int n;
717 assert( (pOp - p->aOp) >= 3 );
718 assert( pOp[-1].opcode==OP_Integer );
719 n = pOp[-1].p1;
720 if( n>nMaxArgs ) nMaxArgs = n;
721 /* Fall through into the default case */
723 #endif
724 default: {
725 if( pOp->p2<0 ){
726 /* The mkopcodeh.tcl script has so arranged things that the only
727 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
728 ** have non-negative values for P2. */
729 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
730 assert( ADDR(pOp->p2)<pParse->nLabel );
731 pOp->p2 = aLabel[ADDR(pOp->p2)];
733 break;
736 /* The mkopcodeh.tcl script has so arranged things that the only
737 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
738 ** have non-negative values for P2. */
739 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
741 if( pOp==p->aOp ) break;
742 pOp--;
744 sqlite3DbFree(p->db, pParse->aLabel);
745 pParse->aLabel = 0;
746 pParse->nLabel = 0;
747 *pMaxFuncArgs = nMaxArgs;
748 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
752 ** Return the address of the next instruction to be inserted.
754 int sqlite3VdbeCurrentAddr(Vdbe *p){
755 assert( p->magic==VDBE_MAGIC_INIT );
756 return p->nOp;
760 ** Verify that at least N opcode slots are available in p without
761 ** having to malloc for more space (except when compiled using
762 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
763 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
764 ** fail due to a OOM fault and hence that the return value from
765 ** sqlite3VdbeAddOpList() will always be non-NULL.
767 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
768 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
769 assert( p->nOp + N <= p->pParse->nOpAlloc );
771 #endif
774 ** Verify that the VM passed as the only argument does not contain
775 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
776 ** by code in pragma.c to ensure that the implementation of certain
777 ** pragmas comports with the flags specified in the mkpragmatab.tcl
778 ** script.
780 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
781 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
782 int i;
783 for(i=0; i<p->nOp; i++){
784 assert( p->aOp[i].opcode!=OP_ResultRow );
787 #endif
790 ** Generate code (a single OP_Abortable opcode) that will
791 ** verify that the VDBE program can safely call Abort in the current
792 ** context.
794 #if defined(SQLITE_DEBUG)
795 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
796 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
798 #endif
801 ** This function returns a pointer to the array of opcodes associated with
802 ** the Vdbe passed as the first argument. It is the callers responsibility
803 ** to arrange for the returned array to be eventually freed using the
804 ** vdbeFreeOpArray() function.
806 ** Before returning, *pnOp is set to the number of entries in the returned
807 ** array. Also, *pnMaxArg is set to the larger of its current value and
808 ** the number of entries in the Vdbe.apArg[] array required to execute the
809 ** returned program.
811 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
812 VdbeOp *aOp = p->aOp;
813 assert( aOp && !p->db->mallocFailed );
815 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
816 assert( DbMaskAllZero(p->btreeMask) );
818 resolveP2Values(p, pnMaxArg);
819 *pnOp = p->nOp;
820 p->aOp = 0;
821 return aOp;
825 ** Add a whole list of operations to the operation stack. Return a
826 ** pointer to the first operation inserted.
828 ** Non-zero P2 arguments to jump instructions are automatically adjusted
829 ** so that the jump target is relative to the first operation inserted.
831 VdbeOp *sqlite3VdbeAddOpList(
832 Vdbe *p, /* Add opcodes to the prepared statement */
833 int nOp, /* Number of opcodes to add */
834 VdbeOpList const *aOp, /* The opcodes to be added */
835 int iLineno /* Source-file line number of first opcode */
837 int i;
838 VdbeOp *pOut, *pFirst;
839 assert( nOp>0 );
840 assert( p->magic==VDBE_MAGIC_INIT );
841 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
842 return 0;
844 pFirst = pOut = &p->aOp[p->nOp];
845 for(i=0; i<nOp; i++, aOp++, pOut++){
846 pOut->opcode = aOp->opcode;
847 pOut->p1 = aOp->p1;
848 pOut->p2 = aOp->p2;
849 assert( aOp->p2>=0 );
850 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
851 pOut->p2 += p->nOp;
853 pOut->p3 = aOp->p3;
854 pOut->p4type = P4_NOTUSED;
855 pOut->p4.p = 0;
856 pOut->p5 = 0;
857 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
858 pOut->zComment = 0;
859 #endif
860 #ifdef SQLITE_VDBE_COVERAGE
861 pOut->iSrcLine = iLineno+i;
862 #else
863 (void)iLineno;
864 #endif
865 #ifdef SQLITE_DEBUG
866 if( p->db->flags & SQLITE_VdbeAddopTrace ){
867 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
869 #endif
871 p->nOp += nOp;
872 return pFirst;
875 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
877 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
879 void sqlite3VdbeScanStatus(
880 Vdbe *p, /* VM to add scanstatus() to */
881 int addrExplain, /* Address of OP_Explain (or 0) */
882 int addrLoop, /* Address of loop counter */
883 int addrVisit, /* Address of rows visited counter */
884 LogEst nEst, /* Estimated number of output rows */
885 const char *zName /* Name of table or index being scanned */
887 int nByte = (p->nScan+1) * sizeof(ScanStatus);
888 ScanStatus *aNew;
889 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
890 if( aNew ){
891 ScanStatus *pNew = &aNew[p->nScan++];
892 pNew->addrExplain = addrExplain;
893 pNew->addrLoop = addrLoop;
894 pNew->addrVisit = addrVisit;
895 pNew->nEst = nEst;
896 pNew->zName = sqlite3DbStrDup(p->db, zName);
897 p->aScan = aNew;
900 #endif
904 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
905 ** for a specific instruction.
907 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
908 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
910 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
911 sqlite3VdbeGetOp(p,addr)->p1 = val;
913 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
914 sqlite3VdbeGetOp(p,addr)->p2 = val;
916 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
917 sqlite3VdbeGetOp(p,addr)->p3 = val;
919 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
920 assert( p->nOp>0 || p->db->mallocFailed );
921 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
925 ** Change the P2 operand of instruction addr so that it points to
926 ** the address of the next instruction to be coded.
928 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
929 sqlite3VdbeChangeP2(p, addr, p->nOp);
934 ** If the input FuncDef structure is ephemeral, then free it. If
935 ** the FuncDef is not ephermal, then do nothing.
937 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
938 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
939 sqlite3DbFreeNN(db, pDef);
943 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
946 ** Delete a P4 value if necessary.
948 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
949 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
950 sqlite3DbFreeNN(db, p);
952 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
953 freeEphemeralFunction(db, p->pFunc);
954 sqlite3DbFreeNN(db, p);
956 static void freeP4(sqlite3 *db, int p4type, void *p4){
957 assert( db );
958 switch( p4type ){
959 case P4_FUNCCTX: {
960 freeP4FuncCtx(db, (sqlite3_context*)p4);
961 break;
963 case P4_REAL:
964 case P4_INT64:
965 case P4_DYNAMIC:
966 case P4_DYNBLOB:
967 case P4_INTARRAY: {
968 sqlite3DbFree(db, p4);
969 break;
971 case P4_KEYINFO: {
972 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
973 break;
975 #ifdef SQLITE_ENABLE_CURSOR_HINTS
976 case P4_EXPR: {
977 sqlite3ExprDelete(db, (Expr*)p4);
978 break;
980 #endif
981 case P4_FUNCDEF: {
982 freeEphemeralFunction(db, (FuncDef*)p4);
983 break;
985 case P4_MEM: {
986 if( db->pnBytesFreed==0 ){
987 sqlite3ValueFree((sqlite3_value*)p4);
988 }else{
989 freeP4Mem(db, (Mem*)p4);
991 break;
993 case P4_VTAB : {
994 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
995 break;
1001 ** Free the space allocated for aOp and any p4 values allocated for the
1002 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1003 ** nOp entries.
1005 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1006 if( aOp ){
1007 Op *pOp;
1008 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1009 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1010 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1011 sqlite3DbFree(db, pOp->zComment);
1012 #endif
1014 sqlite3DbFreeNN(db, aOp);
1019 ** Link the SubProgram object passed as the second argument into the linked
1020 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1021 ** objects when the VM is no longer required.
1023 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1024 p->pNext = pVdbe->pProgram;
1025 pVdbe->pProgram = p;
1029 ** Change the opcode at addr into OP_Noop
1031 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1032 VdbeOp *pOp;
1033 if( p->db->mallocFailed ) return 0;
1034 assert( addr>=0 && addr<p->nOp );
1035 pOp = &p->aOp[addr];
1036 freeP4(p->db, pOp->p4type, pOp->p4.p);
1037 pOp->p4type = P4_NOTUSED;
1038 pOp->p4.z = 0;
1039 pOp->opcode = OP_Noop;
1040 return 1;
1044 ** If the last opcode is "op" and it is not a jump destination,
1045 ** then remove it. Return true if and only if an opcode was removed.
1047 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1048 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1049 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1050 }else{
1051 return 0;
1056 ** Change the value of the P4 operand for a specific instruction.
1057 ** This routine is useful when a large program is loaded from a
1058 ** static array using sqlite3VdbeAddOpList but we want to make a
1059 ** few minor changes to the program.
1061 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1062 ** the string is made into memory obtained from sqlite3_malloc().
1063 ** A value of n==0 means copy bytes of zP4 up to and including the
1064 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1066 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1067 ** to a string or structure that is guaranteed to exist for the lifetime of
1068 ** the Vdbe. In these cases we can just copy the pointer.
1070 ** If addr<0 then change P4 on the most recently inserted instruction.
1072 static void SQLITE_NOINLINE vdbeChangeP4Full(
1073 Vdbe *p,
1074 Op *pOp,
1075 const char *zP4,
1076 int n
1078 if( pOp->p4type ){
1079 freeP4(p->db, pOp->p4type, pOp->p4.p);
1080 pOp->p4type = 0;
1081 pOp->p4.p = 0;
1083 if( n<0 ){
1084 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1085 }else{
1086 if( n==0 ) n = sqlite3Strlen30(zP4);
1087 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1088 pOp->p4type = P4_DYNAMIC;
1091 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1092 Op *pOp;
1093 sqlite3 *db;
1094 assert( p!=0 );
1095 db = p->db;
1096 assert( p->magic==VDBE_MAGIC_INIT );
1097 assert( p->aOp!=0 || db->mallocFailed );
1098 if( db->mallocFailed ){
1099 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1100 return;
1102 assert( p->nOp>0 );
1103 assert( addr<p->nOp );
1104 if( addr<0 ){
1105 addr = p->nOp - 1;
1107 pOp = &p->aOp[addr];
1108 if( n>=0 || pOp->p4type ){
1109 vdbeChangeP4Full(p, pOp, zP4, n);
1110 return;
1112 if( n==P4_INT32 ){
1113 /* Note: this cast is safe, because the origin data point was an int
1114 ** that was cast to a (const char *). */
1115 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1116 pOp->p4type = P4_INT32;
1117 }else if( zP4!=0 ){
1118 assert( n<0 );
1119 pOp->p4.p = (void*)zP4;
1120 pOp->p4type = (signed char)n;
1121 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1126 ** Change the P4 operand of the most recently coded instruction
1127 ** to the value defined by the arguments. This is a high-speed
1128 ** version of sqlite3VdbeChangeP4().
1130 ** The P4 operand must not have been previously defined. And the new
1131 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1132 ** those cases.
1134 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1135 VdbeOp *pOp;
1136 assert( n!=P4_INT32 && n!=P4_VTAB );
1137 assert( n<=0 );
1138 if( p->db->mallocFailed ){
1139 freeP4(p->db, n, pP4);
1140 }else{
1141 assert( pP4!=0 );
1142 assert( p->nOp>0 );
1143 pOp = &p->aOp[p->nOp-1];
1144 assert( pOp->p4type==P4_NOTUSED );
1145 pOp->p4type = n;
1146 pOp->p4.p = pP4;
1151 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1152 ** index given.
1154 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1155 Vdbe *v = pParse->pVdbe;
1156 KeyInfo *pKeyInfo;
1157 assert( v!=0 );
1158 assert( pIdx!=0 );
1159 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1160 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1163 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1165 ** Change the comment on the most recently coded instruction. Or
1166 ** insert a No-op and add the comment to that new instruction. This
1167 ** makes the code easier to read during debugging. None of this happens
1168 ** in a production build.
1170 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1171 assert( p->nOp>0 || p->aOp==0 );
1172 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1173 if( p->nOp ){
1174 assert( p->aOp );
1175 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1176 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1179 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1180 va_list ap;
1181 if( p ){
1182 va_start(ap, zFormat);
1183 vdbeVComment(p, zFormat, ap);
1184 va_end(ap);
1187 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1188 va_list ap;
1189 if( p ){
1190 sqlite3VdbeAddOp0(p, OP_Noop);
1191 va_start(ap, zFormat);
1192 vdbeVComment(p, zFormat, ap);
1193 va_end(ap);
1196 #endif /* NDEBUG */
1198 #ifdef SQLITE_VDBE_COVERAGE
1200 ** Set the value if the iSrcLine field for the previously coded instruction.
1202 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1203 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1205 #endif /* SQLITE_VDBE_COVERAGE */
1208 ** Return the opcode for a given address. If the address is -1, then
1209 ** return the most recently inserted opcode.
1211 ** If a memory allocation error has occurred prior to the calling of this
1212 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1213 ** is readable but not writable, though it is cast to a writable value.
1214 ** The return of a dummy opcode allows the call to continue functioning
1215 ** after an OOM fault without having to check to see if the return from
1216 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1217 ** dummy will never be written to. This is verified by code inspection and
1218 ** by running with Valgrind.
1220 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1221 /* C89 specifies that the constant "dummy" will be initialized to all
1222 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1223 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1224 assert( p->magic==VDBE_MAGIC_INIT );
1225 if( addr<0 ){
1226 addr = p->nOp - 1;
1228 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1229 if( p->db->mallocFailed ){
1230 return (VdbeOp*)&dummy;
1231 }else{
1232 return &p->aOp[addr];
1236 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1238 ** Return an integer value for one of the parameters to the opcode pOp
1239 ** determined by character c.
1241 static int translateP(char c, const Op *pOp){
1242 if( c=='1' ) return pOp->p1;
1243 if( c=='2' ) return pOp->p2;
1244 if( c=='3' ) return pOp->p3;
1245 if( c=='4' ) return pOp->p4.i;
1246 return pOp->p5;
1250 ** Compute a string for the "comment" field of a VDBE opcode listing.
1252 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1253 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1254 ** absence of other comments, this synopsis becomes the comment on the opcode.
1255 ** Some translation occurs:
1257 ** "PX" -> "r[X]"
1258 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1259 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1260 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1262 static int displayComment(
1263 const Op *pOp, /* The opcode to be commented */
1264 const char *zP4, /* Previously obtained value for P4 */
1265 char *zTemp, /* Write result here */
1266 int nTemp /* Space available in zTemp[] */
1268 const char *zOpName;
1269 const char *zSynopsis;
1270 int nOpName;
1271 int ii, jj;
1272 char zAlt[50];
1273 zOpName = sqlite3OpcodeName(pOp->opcode);
1274 nOpName = sqlite3Strlen30(zOpName);
1275 if( zOpName[nOpName+1] ){
1276 int seenCom = 0;
1277 char c;
1278 zSynopsis = zOpName += nOpName + 1;
1279 if( strncmp(zSynopsis,"IF ",3)==0 ){
1280 if( pOp->p5 & SQLITE_STOREP2 ){
1281 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1282 }else{
1283 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1285 zSynopsis = zAlt;
1287 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1288 if( c=='P' ){
1289 c = zSynopsis[++ii];
1290 if( c=='4' ){
1291 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1292 }else if( c=='X' ){
1293 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1294 seenCom = 1;
1295 }else{
1296 int v1 = translateP(c, pOp);
1297 int v2;
1298 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1299 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1300 ii += 3;
1301 jj += sqlite3Strlen30(zTemp+jj);
1302 v2 = translateP(zSynopsis[ii], pOp);
1303 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1304 ii += 2;
1305 v2++;
1307 if( v2>1 ){
1308 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1310 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1311 ii += 4;
1314 jj += sqlite3Strlen30(zTemp+jj);
1315 }else{
1316 zTemp[jj++] = c;
1319 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1320 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1321 jj += sqlite3Strlen30(zTemp+jj);
1323 if( jj<nTemp ) zTemp[jj] = 0;
1324 }else if( pOp->zComment ){
1325 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1326 jj = sqlite3Strlen30(zTemp);
1327 }else{
1328 zTemp[0] = 0;
1329 jj = 0;
1331 return jj;
1333 #endif /* SQLITE_DEBUG */
1335 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1337 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1338 ** that can be displayed in the P4 column of EXPLAIN output.
1340 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1341 const char *zOp = 0;
1342 switch( pExpr->op ){
1343 case TK_STRING:
1344 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1345 break;
1346 case TK_INTEGER:
1347 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1348 break;
1349 case TK_NULL:
1350 sqlite3_str_appendf(p, "NULL");
1351 break;
1352 case TK_REGISTER: {
1353 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1354 break;
1356 case TK_COLUMN: {
1357 if( pExpr->iColumn<0 ){
1358 sqlite3_str_appendf(p, "rowid");
1359 }else{
1360 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1362 break;
1364 case TK_LT: zOp = "LT"; break;
1365 case TK_LE: zOp = "LE"; break;
1366 case TK_GT: zOp = "GT"; break;
1367 case TK_GE: zOp = "GE"; break;
1368 case TK_NE: zOp = "NE"; break;
1369 case TK_EQ: zOp = "EQ"; break;
1370 case TK_IS: zOp = "IS"; break;
1371 case TK_ISNOT: zOp = "ISNOT"; break;
1372 case TK_AND: zOp = "AND"; break;
1373 case TK_OR: zOp = "OR"; break;
1374 case TK_PLUS: zOp = "ADD"; break;
1375 case TK_STAR: zOp = "MUL"; break;
1376 case TK_MINUS: zOp = "SUB"; break;
1377 case TK_REM: zOp = "REM"; break;
1378 case TK_BITAND: zOp = "BITAND"; break;
1379 case TK_BITOR: zOp = "BITOR"; break;
1380 case TK_SLASH: zOp = "DIV"; break;
1381 case TK_LSHIFT: zOp = "LSHIFT"; break;
1382 case TK_RSHIFT: zOp = "RSHIFT"; break;
1383 case TK_CONCAT: zOp = "CONCAT"; break;
1384 case TK_UMINUS: zOp = "MINUS"; break;
1385 case TK_UPLUS: zOp = "PLUS"; break;
1386 case TK_BITNOT: zOp = "BITNOT"; break;
1387 case TK_NOT: zOp = "NOT"; break;
1388 case TK_ISNULL: zOp = "ISNULL"; break;
1389 case TK_NOTNULL: zOp = "NOTNULL"; break;
1391 default:
1392 sqlite3_str_appendf(p, "%s", "expr");
1393 break;
1396 if( zOp ){
1397 sqlite3_str_appendf(p, "%s(", zOp);
1398 displayP4Expr(p, pExpr->pLeft);
1399 if( pExpr->pRight ){
1400 sqlite3_str_append(p, ",", 1);
1401 displayP4Expr(p, pExpr->pRight);
1403 sqlite3_str_append(p, ")", 1);
1406 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1409 #if VDBE_DISPLAY_P4
1411 ** Compute a string that describes the P4 parameter for an opcode.
1412 ** Use zTemp for any required temporary buffer space.
1414 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1415 char *zP4 = zTemp;
1416 StrAccum x;
1417 assert( nTemp>=20 );
1418 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1419 switch( pOp->p4type ){
1420 case P4_KEYINFO: {
1421 int j;
1422 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1423 assert( pKeyInfo->aSortOrder!=0 );
1424 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1425 for(j=0; j<pKeyInfo->nKeyField; j++){
1426 CollSeq *pColl = pKeyInfo->aColl[j];
1427 const char *zColl = pColl ? pColl->zName : "";
1428 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1429 sqlite3_str_appendf(&x, ",%s%s",
1430 pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1432 sqlite3_str_append(&x, ")", 1);
1433 break;
1435 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1436 case P4_EXPR: {
1437 displayP4Expr(&x, pOp->p4.pExpr);
1438 break;
1440 #endif
1441 case P4_COLLSEQ: {
1442 CollSeq *pColl = pOp->p4.pColl;
1443 sqlite3_str_appendf(&x, "(%.20s)", pColl->zName);
1444 break;
1446 case P4_FUNCDEF: {
1447 FuncDef *pDef = pOp->p4.pFunc;
1448 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1449 break;
1451 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1452 case P4_FUNCCTX: {
1453 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1454 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1455 break;
1457 #endif
1458 case P4_INT64: {
1459 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1460 break;
1462 case P4_INT32: {
1463 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1464 break;
1466 case P4_REAL: {
1467 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1468 break;
1470 case P4_MEM: {
1471 Mem *pMem = pOp->p4.pMem;
1472 if( pMem->flags & MEM_Str ){
1473 zP4 = pMem->z;
1474 }else if( pMem->flags & MEM_Int ){
1475 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1476 }else if( pMem->flags & MEM_Real ){
1477 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1478 }else if( pMem->flags & MEM_Null ){
1479 zP4 = "NULL";
1480 }else{
1481 assert( pMem->flags & MEM_Blob );
1482 zP4 = "(blob)";
1484 break;
1486 #ifndef SQLITE_OMIT_VIRTUALTABLE
1487 case P4_VTAB: {
1488 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1489 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1490 break;
1492 #endif
1493 case P4_INTARRAY: {
1494 int i;
1495 int *ai = pOp->p4.ai;
1496 int n = ai[0]; /* The first element of an INTARRAY is always the
1497 ** count of the number of elements to follow */
1498 for(i=1; i<=n; i++){
1499 sqlite3_str_appendf(&x, ",%d", ai[i]);
1501 zTemp[0] = '[';
1502 sqlite3_str_append(&x, "]", 1);
1503 break;
1505 case P4_SUBPROGRAM: {
1506 sqlite3_str_appendf(&x, "program");
1507 break;
1509 case P4_DYNBLOB:
1510 case P4_ADVANCE: {
1511 zTemp[0] = 0;
1512 break;
1514 case P4_TABLE: {
1515 sqlite3_str_appendf(&x, "%s", pOp->p4.pTab->zName);
1516 break;
1518 default: {
1519 zP4 = pOp->p4.z;
1520 if( zP4==0 ){
1521 zP4 = zTemp;
1522 zTemp[0] = 0;
1526 sqlite3StrAccumFinish(&x);
1527 assert( zP4!=0 );
1528 return zP4;
1530 #endif /* VDBE_DISPLAY_P4 */
1533 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1535 ** The prepared statements need to know in advance the complete set of
1536 ** attached databases that will be use. A mask of these databases
1537 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1538 ** p->btreeMask of databases that will require a lock.
1540 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1541 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1542 assert( i<(int)sizeof(p->btreeMask)*8 );
1543 DbMaskSet(p->btreeMask, i);
1544 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1545 DbMaskSet(p->lockMask, i);
1549 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1551 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1552 ** this routine obtains the mutex associated with each BtShared structure
1553 ** that may be accessed by the VM passed as an argument. In doing so it also
1554 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1555 ** that the correct busy-handler callback is invoked if required.
1557 ** If SQLite is not threadsafe but does support shared-cache mode, then
1558 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1559 ** of all of BtShared structures accessible via the database handle
1560 ** associated with the VM.
1562 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1563 ** function is a no-op.
1565 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1566 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1567 ** corresponding to btrees that use shared cache. Then the runtime of
1568 ** this routine is N*N. But as N is rarely more than 1, this should not
1569 ** be a problem.
1571 void sqlite3VdbeEnter(Vdbe *p){
1572 int i;
1573 sqlite3 *db;
1574 Db *aDb;
1575 int nDb;
1576 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1577 db = p->db;
1578 aDb = db->aDb;
1579 nDb = db->nDb;
1580 for(i=0; i<nDb; i++){
1581 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1582 sqlite3BtreeEnter(aDb[i].pBt);
1586 #endif
1588 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1590 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1592 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1593 int i;
1594 sqlite3 *db;
1595 Db *aDb;
1596 int nDb;
1597 db = p->db;
1598 aDb = db->aDb;
1599 nDb = db->nDb;
1600 for(i=0; i<nDb; i++){
1601 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1602 sqlite3BtreeLeave(aDb[i].pBt);
1606 void sqlite3VdbeLeave(Vdbe *p){
1607 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1608 vdbeLeave(p);
1610 #endif
1612 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1614 ** Print a single opcode. This routine is used for debugging only.
1616 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1617 char *zP4;
1618 char zPtr[50];
1619 char zCom[100];
1620 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1621 if( pOut==0 ) pOut = stdout;
1622 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1623 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1624 displayComment(pOp, zP4, zCom, sizeof(zCom));
1625 #else
1626 zCom[0] = 0;
1627 #endif
1628 /* NB: The sqlite3OpcodeName() function is implemented by code created
1629 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1630 ** information from the vdbe.c source text */
1631 fprintf(pOut, zFormat1, pc,
1632 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1633 zCom
1635 fflush(pOut);
1637 #endif
1640 ** Initialize an array of N Mem element.
1642 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1643 while( (N--)>0 ){
1644 p->db = db;
1645 p->flags = flags;
1646 p->szMalloc = 0;
1647 #ifdef SQLITE_DEBUG
1648 p->pScopyFrom = 0;
1649 #endif
1650 #ifdef SQLITE_DEBUG_COLUMNCACHE
1651 p->iTabColHash = 0;
1652 #endif
1653 p++;
1658 ** Release an array of N Mem elements
1660 static void releaseMemArray(Mem *p, int N){
1661 if( p && N ){
1662 Mem *pEnd = &p[N];
1663 sqlite3 *db = p->db;
1664 if( db->pnBytesFreed ){
1666 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1667 }while( (++p)<pEnd );
1668 return;
1671 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1672 assert( sqlite3VdbeCheckMemInvariants(p) );
1674 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1675 ** that takes advantage of the fact that the memory cell value is
1676 ** being set to NULL after releasing any dynamic resources.
1678 ** The justification for duplicating code is that according to
1679 ** callgrind, this causes a certain test case to hit the CPU 4.7
1680 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1681 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1682 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1683 ** with no indexes using a single prepared INSERT statement, bind()
1684 ** and reset(). Inserts are grouped into a transaction.
1686 testcase( p->flags & MEM_Agg );
1687 testcase( p->flags & MEM_Dyn );
1688 testcase( p->flags & MEM_Frame );
1689 testcase( p->flags & MEM_RowSet );
1690 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1691 sqlite3VdbeMemRelease(p);
1692 }else if( p->szMalloc ){
1693 sqlite3DbFreeNN(db, p->zMalloc);
1694 p->szMalloc = 0;
1697 p->flags = MEM_Undefined;
1698 }while( (++p)<pEnd );
1703 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1704 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1706 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1707 int i;
1708 Mem *aMem = VdbeFrameMem(p);
1709 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1710 for(i=0; i<p->nChildCsr; i++){
1711 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1713 releaseMemArray(aMem, p->nChildMem);
1714 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1715 sqlite3DbFree(p->v->db, p);
1718 #ifndef SQLITE_OMIT_EXPLAIN
1720 ** Give a listing of the program in the virtual machine.
1722 ** The interface is the same as sqlite3VdbeExec(). But instead of
1723 ** running the code, it invokes the callback once for each instruction.
1724 ** This feature is used to implement "EXPLAIN".
1726 ** When p->explain==1, each instruction is listed. When
1727 ** p->explain==2, only OP_Explain instructions are listed and these
1728 ** are shown in a different format. p->explain==2 is used to implement
1729 ** EXPLAIN QUERY PLAN.
1730 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
1731 ** are also shown, so that the boundaries between the main program and
1732 ** each trigger are clear.
1734 ** When p->explain==1, first the main program is listed, then each of
1735 ** the trigger subprograms are listed one by one.
1737 int sqlite3VdbeList(
1738 Vdbe *p /* The VDBE */
1740 int nRow; /* Stop when row count reaches this */
1741 int nSub = 0; /* Number of sub-vdbes seen so far */
1742 SubProgram **apSub = 0; /* Array of sub-vdbes */
1743 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1744 sqlite3 *db = p->db; /* The database connection */
1745 int i; /* Loop counter */
1746 int rc = SQLITE_OK; /* Return code */
1747 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1748 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1749 Op *pOp = 0;
1751 assert( p->explain );
1752 assert( p->magic==VDBE_MAGIC_RUN );
1753 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1755 /* Even though this opcode does not use dynamic strings for
1756 ** the result, result columns may become dynamic if the user calls
1757 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1759 releaseMemArray(pMem, 8);
1760 p->pResultSet = 0;
1762 if( p->rc==SQLITE_NOMEM ){
1763 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1764 ** sqlite3_column_text16() failed. */
1765 sqlite3OomFault(db);
1766 return SQLITE_ERROR;
1769 /* When the number of output rows reaches nRow, that means the
1770 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1771 ** nRow is the sum of the number of rows in the main program, plus
1772 ** the sum of the number of rows in all trigger subprograms encountered
1773 ** so far. The nRow value will increase as new trigger subprograms are
1774 ** encountered, but p->pc will eventually catch up to nRow.
1776 nRow = p->nOp;
1777 if( bListSubprogs ){
1778 /* The first 8 memory cells are used for the result set. So we will
1779 ** commandeer the 9th cell to use as storage for an array of pointers
1780 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1781 ** cells. */
1782 assert( p->nMem>9 );
1783 pSub = &p->aMem[9];
1784 if( pSub->flags&MEM_Blob ){
1785 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1786 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1787 nSub = pSub->n/sizeof(Vdbe*);
1788 apSub = (SubProgram **)pSub->z;
1790 for(i=0; i<nSub; i++){
1791 nRow += apSub[i]->nOp;
1795 while(1){ /* Loop exits via break */
1796 i = p->pc++;
1797 if( i>=nRow ){
1798 p->rc = SQLITE_OK;
1799 rc = SQLITE_DONE;
1800 break;
1802 if( i<p->nOp ){
1803 /* The output line number is small enough that we are still in the
1804 ** main program. */
1805 pOp = &p->aOp[i];
1806 }else{
1807 /* We are currently listing subprograms. Figure out which one and
1808 ** pick up the appropriate opcode. */
1809 int j;
1810 i -= p->nOp;
1811 for(j=0; i>=apSub[j]->nOp; j++){
1812 i -= apSub[j]->nOp;
1814 pOp = &apSub[j]->aOp[i];
1817 /* When an OP_Program opcode is encounter (the only opcode that has
1818 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1819 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1820 ** has not already been seen.
1822 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
1823 int nByte = (nSub+1)*sizeof(SubProgram*);
1824 int j;
1825 for(j=0; j<nSub; j++){
1826 if( apSub[j]==pOp->p4.pProgram ) break;
1828 if( j==nSub ){
1829 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
1830 if( p->rc!=SQLITE_OK ){
1831 rc = SQLITE_ERROR;
1832 break;
1834 apSub = (SubProgram **)pSub->z;
1835 apSub[nSub++] = pOp->p4.pProgram;
1836 pSub->flags |= MEM_Blob;
1837 pSub->n = nSub*sizeof(SubProgram*);
1838 nRow += pOp->p4.pProgram->nOp;
1841 if( p->explain<2 ) break;
1842 if( pOp->opcode==OP_Explain ) break;
1843 if( pOp->opcode==OP_Init && p->pc>1 ) break;
1846 if( rc==SQLITE_OK ){
1847 if( db->u1.isInterrupted ){
1848 p->rc = SQLITE_INTERRUPT;
1849 rc = SQLITE_ERROR;
1850 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1851 }else{
1852 char *zP4;
1853 if( p->explain==1 ){
1854 pMem->flags = MEM_Int;
1855 pMem->u.i = i; /* Program counter */
1856 pMem++;
1858 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1859 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1860 assert( pMem->z!=0 );
1861 pMem->n = sqlite3Strlen30(pMem->z);
1862 pMem->enc = SQLITE_UTF8;
1863 pMem++;
1866 pMem->flags = MEM_Int;
1867 pMem->u.i = pOp->p1; /* P1 */
1868 pMem++;
1870 pMem->flags = MEM_Int;
1871 pMem->u.i = pOp->p2; /* P2 */
1872 pMem++;
1874 pMem->flags = MEM_Int;
1875 pMem->u.i = pOp->p3; /* P3 */
1876 pMem++;
1878 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1879 assert( p->db->mallocFailed );
1880 return SQLITE_ERROR;
1882 pMem->flags = MEM_Str|MEM_Term;
1883 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1884 if( zP4!=pMem->z ){
1885 pMem->n = 0;
1886 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1887 }else{
1888 assert( pMem->z!=0 );
1889 pMem->n = sqlite3Strlen30(pMem->z);
1890 pMem->enc = SQLITE_UTF8;
1892 pMem++;
1894 if( p->explain==1 ){
1895 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1896 assert( p->db->mallocFailed );
1897 return SQLITE_ERROR;
1899 pMem->flags = MEM_Str|MEM_Term;
1900 pMem->n = 2;
1901 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1902 pMem->enc = SQLITE_UTF8;
1903 pMem++;
1905 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1906 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1907 assert( p->db->mallocFailed );
1908 return SQLITE_ERROR;
1910 pMem->flags = MEM_Str|MEM_Term;
1911 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1912 pMem->enc = SQLITE_UTF8;
1913 #else
1914 pMem->flags = MEM_Null; /* Comment */
1915 #endif
1918 p->nResColumn = 8 - 4*(p->explain-1);
1919 p->pResultSet = &p->aMem[1];
1920 p->rc = SQLITE_OK;
1921 rc = SQLITE_ROW;
1924 return rc;
1926 #endif /* SQLITE_OMIT_EXPLAIN */
1928 #ifdef SQLITE_DEBUG
1930 ** Print the SQL that was used to generate a VDBE program.
1932 void sqlite3VdbePrintSql(Vdbe *p){
1933 const char *z = 0;
1934 if( p->zSql ){
1935 z = p->zSql;
1936 }else if( p->nOp>=1 ){
1937 const VdbeOp *pOp = &p->aOp[0];
1938 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1939 z = pOp->p4.z;
1940 while( sqlite3Isspace(*z) ) z++;
1943 if( z ) printf("SQL: [%s]\n", z);
1945 #endif
1947 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1949 ** Print an IOTRACE message showing SQL content.
1951 void sqlite3VdbeIOTraceSql(Vdbe *p){
1952 int nOp = p->nOp;
1953 VdbeOp *pOp;
1954 if( sqlite3IoTrace==0 ) return;
1955 if( nOp<1 ) return;
1956 pOp = &p->aOp[0];
1957 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1958 int i, j;
1959 char z[1000];
1960 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1961 for(i=0; sqlite3Isspace(z[i]); i++){}
1962 for(j=0; z[i]; i++){
1963 if( sqlite3Isspace(z[i]) ){
1964 if( z[i-1]!=' ' ){
1965 z[j++] = ' ';
1967 }else{
1968 z[j++] = z[i];
1971 z[j] = 0;
1972 sqlite3IoTrace("SQL %s\n", z);
1975 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1977 /* An instance of this object describes bulk memory available for use
1978 ** by subcomponents of a prepared statement. Space is allocated out
1979 ** of a ReusableSpace object by the allocSpace() routine below.
1981 struct ReusableSpace {
1982 u8 *pSpace; /* Available memory */
1983 int nFree; /* Bytes of available memory */
1984 int nNeeded; /* Total bytes that could not be allocated */
1987 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1988 ** from the ReusableSpace object. Return a pointer to the allocated
1989 ** memory on success. If insufficient memory is available in the
1990 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1991 ** value by the amount needed and return NULL.
1993 ** If pBuf is not initially NULL, that means that the memory has already
1994 ** been allocated by a prior call to this routine, so just return a copy
1995 ** of pBuf and leave ReusableSpace unchanged.
1997 ** This allocator is employed to repurpose unused slots at the end of the
1998 ** opcode array of prepared state for other memory needs of the prepared
1999 ** statement.
2001 static void *allocSpace(
2002 struct ReusableSpace *p, /* Bulk memory available for allocation */
2003 void *pBuf, /* Pointer to a prior allocation */
2004 int nByte /* Bytes of memory needed */
2006 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2007 if( pBuf==0 ){
2008 nByte = ROUND8(nByte);
2009 if( nByte <= p->nFree ){
2010 p->nFree -= nByte;
2011 pBuf = &p->pSpace[p->nFree];
2012 }else{
2013 p->nNeeded += nByte;
2016 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2017 return pBuf;
2021 ** Rewind the VDBE back to the beginning in preparation for
2022 ** running it.
2024 void sqlite3VdbeRewind(Vdbe *p){
2025 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2026 int i;
2027 #endif
2028 assert( p!=0 );
2029 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2031 /* There should be at least one opcode.
2033 assert( p->nOp>0 );
2035 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2036 p->magic = VDBE_MAGIC_RUN;
2038 #ifdef SQLITE_DEBUG
2039 for(i=0; i<p->nMem; i++){
2040 assert( p->aMem[i].db==p->db );
2042 #endif
2043 p->pc = -1;
2044 p->rc = SQLITE_OK;
2045 p->errorAction = OE_Abort;
2046 p->nChange = 0;
2047 p->cacheCtr = 1;
2048 p->minWriteFileFormat = 255;
2049 p->iStatement = 0;
2050 p->nFkConstraint = 0;
2051 #ifdef VDBE_PROFILE
2052 for(i=0; i<p->nOp; i++){
2053 p->aOp[i].cnt = 0;
2054 p->aOp[i].cycles = 0;
2056 #endif
2060 ** Prepare a virtual machine for execution for the first time after
2061 ** creating the virtual machine. This involves things such
2062 ** as allocating registers and initializing the program counter.
2063 ** After the VDBE has be prepped, it can be executed by one or more
2064 ** calls to sqlite3VdbeExec().
2066 ** This function may be called exactly once on each virtual machine.
2067 ** After this routine is called the VM has been "packaged" and is ready
2068 ** to run. After this routine is called, further calls to
2069 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2070 ** the Vdbe from the Parse object that helped generate it so that the
2071 ** the Vdbe becomes an independent entity and the Parse object can be
2072 ** destroyed.
2074 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2075 ** to its initial state after it has been run.
2077 void sqlite3VdbeMakeReady(
2078 Vdbe *p, /* The VDBE */
2079 Parse *pParse /* Parsing context */
2081 sqlite3 *db; /* The database connection */
2082 int nVar; /* Number of parameters */
2083 int nMem; /* Number of VM memory registers */
2084 int nCursor; /* Number of cursors required */
2085 int nArg; /* Number of arguments in subprograms */
2086 int n; /* Loop counter */
2087 struct ReusableSpace x; /* Reusable bulk memory */
2089 assert( p!=0 );
2090 assert( p->nOp>0 );
2091 assert( pParse!=0 );
2092 assert( p->magic==VDBE_MAGIC_INIT );
2093 assert( pParse==p->pParse );
2094 db = p->db;
2095 assert( db->mallocFailed==0 );
2096 nVar = pParse->nVar;
2097 nMem = pParse->nMem;
2098 nCursor = pParse->nTab;
2099 nArg = pParse->nMaxArg;
2101 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2102 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2103 ** space at the end of aMem[] for cursors 1 and greater.
2104 ** See also: allocateCursor().
2106 nMem += nCursor;
2107 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2109 /* Figure out how much reusable memory is available at the end of the
2110 ** opcode array. This extra memory will be reallocated for other elements
2111 ** of the prepared statement.
2113 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2114 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2115 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2116 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2117 assert( x.nFree>=0 );
2118 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2120 resolveP2Values(p, &nArg);
2121 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2122 if( pParse->explain && nMem<10 ){
2123 nMem = 10;
2125 p->expired = 0;
2127 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2128 ** passes. On the first pass, we try to reuse unused memory at the
2129 ** end of the opcode array. If we are unable to satisfy all memory
2130 ** requirements by reusing the opcode array tail, then the second
2131 ** pass will fill in the remainder using a fresh memory allocation.
2133 ** This two-pass approach that reuses as much memory as possible from
2134 ** the leftover memory at the end of the opcode array. This can significantly
2135 ** reduce the amount of memory held by a prepared statement.
2137 do {
2138 x.nNeeded = 0;
2139 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2140 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2141 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2142 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2143 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2144 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2145 #endif
2146 if( x.nNeeded==0 ) break;
2147 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2148 x.nFree = x.nNeeded;
2149 }while( !db->mallocFailed );
2151 p->pVList = pParse->pVList;
2152 pParse->pVList = 0;
2153 p->explain = pParse->explain;
2154 if( db->mallocFailed ){
2155 p->nVar = 0;
2156 p->nCursor = 0;
2157 p->nMem = 0;
2158 }else{
2159 p->nCursor = nCursor;
2160 p->nVar = (ynVar)nVar;
2161 initMemArray(p->aVar, nVar, db, MEM_Null);
2162 p->nMem = nMem;
2163 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2164 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2165 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2166 memset(p->anExec, 0, p->nOp*sizeof(i64));
2167 #endif
2169 sqlite3VdbeRewind(p);
2173 ** Close a VDBE cursor and release all the resources that cursor
2174 ** happens to hold.
2176 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2177 if( pCx==0 ){
2178 return;
2180 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2181 switch( pCx->eCurType ){
2182 case CURTYPE_SORTER: {
2183 sqlite3VdbeSorterClose(p->db, pCx);
2184 break;
2186 case CURTYPE_BTREE: {
2187 if( pCx->isEphemeral ){
2188 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2189 /* The pCx->pCursor will be close automatically, if it exists, by
2190 ** the call above. */
2191 }else{
2192 assert( pCx->uc.pCursor!=0 );
2193 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2195 break;
2197 #ifndef SQLITE_OMIT_VIRTUALTABLE
2198 case CURTYPE_VTAB: {
2199 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2200 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2201 assert( pVCur->pVtab->nRef>0 );
2202 pVCur->pVtab->nRef--;
2203 pModule->xClose(pVCur);
2204 break;
2206 #endif
2211 ** Close all cursors in the current frame.
2213 static void closeCursorsInFrame(Vdbe *p){
2214 if( p->apCsr ){
2215 int i;
2216 for(i=0; i<p->nCursor; i++){
2217 VdbeCursor *pC = p->apCsr[i];
2218 if( pC ){
2219 sqlite3VdbeFreeCursor(p, pC);
2220 p->apCsr[i] = 0;
2227 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2228 ** is used, for example, when a trigger sub-program is halted to restore
2229 ** control to the main program.
2231 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2232 Vdbe *v = pFrame->v;
2233 closeCursorsInFrame(v);
2234 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2235 v->anExec = pFrame->anExec;
2236 #endif
2237 v->aOp = pFrame->aOp;
2238 v->nOp = pFrame->nOp;
2239 v->aMem = pFrame->aMem;
2240 v->nMem = pFrame->nMem;
2241 v->apCsr = pFrame->apCsr;
2242 v->nCursor = pFrame->nCursor;
2243 v->db->lastRowid = pFrame->lastRowid;
2244 v->nChange = pFrame->nChange;
2245 v->db->nChange = pFrame->nDbChange;
2246 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2247 v->pAuxData = pFrame->pAuxData;
2248 pFrame->pAuxData = 0;
2249 return pFrame->pc;
2253 ** Close all cursors.
2255 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2256 ** cell array. This is necessary as the memory cell array may contain
2257 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2258 ** open cursors.
2260 static void closeAllCursors(Vdbe *p){
2261 if( p->pFrame ){
2262 VdbeFrame *pFrame;
2263 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2264 sqlite3VdbeFrameRestore(pFrame);
2265 p->pFrame = 0;
2266 p->nFrame = 0;
2268 assert( p->nFrame==0 );
2269 closeCursorsInFrame(p);
2270 if( p->aMem ){
2271 releaseMemArray(p->aMem, p->nMem);
2273 while( p->pDelFrame ){
2274 VdbeFrame *pDel = p->pDelFrame;
2275 p->pDelFrame = pDel->pParent;
2276 sqlite3VdbeFrameDelete(pDel);
2279 /* Delete any auxdata allocations made by the VM */
2280 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2281 assert( p->pAuxData==0 );
2285 ** Set the number of result columns that will be returned by this SQL
2286 ** statement. This is now set at compile time, rather than during
2287 ** execution of the vdbe program so that sqlite3_column_count() can
2288 ** be called on an SQL statement before sqlite3_step().
2290 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2291 int n;
2292 sqlite3 *db = p->db;
2294 if( p->nResColumn ){
2295 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2296 sqlite3DbFree(db, p->aColName);
2298 n = nResColumn*COLNAME_N;
2299 p->nResColumn = (u16)nResColumn;
2300 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2301 if( p->aColName==0 ) return;
2302 initMemArray(p->aColName, n, db, MEM_Null);
2306 ** Set the name of the idx'th column to be returned by the SQL statement.
2307 ** zName must be a pointer to a nul terminated string.
2309 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2311 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2312 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2313 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2315 int sqlite3VdbeSetColName(
2316 Vdbe *p, /* Vdbe being configured */
2317 int idx, /* Index of column zName applies to */
2318 int var, /* One of the COLNAME_* constants */
2319 const char *zName, /* Pointer to buffer containing name */
2320 void (*xDel)(void*) /* Memory management strategy for zName */
2322 int rc;
2323 Mem *pColName;
2324 assert( idx<p->nResColumn );
2325 assert( var<COLNAME_N );
2326 if( p->db->mallocFailed ){
2327 assert( !zName || xDel!=SQLITE_DYNAMIC );
2328 return SQLITE_NOMEM_BKPT;
2330 assert( p->aColName!=0 );
2331 pColName = &(p->aColName[idx+var*p->nResColumn]);
2332 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2333 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2334 return rc;
2338 ** A read or write transaction may or may not be active on database handle
2339 ** db. If a transaction is active, commit it. If there is a
2340 ** write-transaction spanning more than one database file, this routine
2341 ** takes care of the master journal trickery.
2343 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2344 int i;
2345 int nTrans = 0; /* Number of databases with an active write-transaction
2346 ** that are candidates for a two-phase commit using a
2347 ** master-journal */
2348 int rc = SQLITE_OK;
2349 int needXcommit = 0;
2351 #ifdef SQLITE_OMIT_VIRTUALTABLE
2352 /* With this option, sqlite3VtabSync() is defined to be simply
2353 ** SQLITE_OK so p is not used.
2355 UNUSED_PARAMETER(p);
2356 #endif
2358 /* Before doing anything else, call the xSync() callback for any
2359 ** virtual module tables written in this transaction. This has to
2360 ** be done before determining whether a master journal file is
2361 ** required, as an xSync() callback may add an attached database
2362 ** to the transaction.
2364 rc = sqlite3VtabSync(db, p);
2366 /* This loop determines (a) if the commit hook should be invoked and
2367 ** (b) how many database files have open write transactions, not
2368 ** including the temp database. (b) is important because if more than
2369 ** one database file has an open write transaction, a master journal
2370 ** file is required for an atomic commit.
2372 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2373 Btree *pBt = db->aDb[i].pBt;
2374 if( sqlite3BtreeIsInTrans(pBt) ){
2375 /* Whether or not a database might need a master journal depends upon
2376 ** its journal mode (among other things). This matrix determines which
2377 ** journal modes use a master journal and which do not */
2378 static const u8 aMJNeeded[] = {
2379 /* DELETE */ 1,
2380 /* PERSIST */ 1,
2381 /* OFF */ 0,
2382 /* TRUNCATE */ 1,
2383 /* MEMORY */ 0,
2384 /* WAL */ 0
2386 Pager *pPager; /* Pager associated with pBt */
2387 needXcommit = 1;
2388 sqlite3BtreeEnter(pBt);
2389 pPager = sqlite3BtreePager(pBt);
2390 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2391 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2392 && sqlite3PagerIsMemdb(pPager)==0
2394 assert( i!=1 );
2395 nTrans++;
2397 rc = sqlite3PagerExclusiveLock(pPager);
2398 sqlite3BtreeLeave(pBt);
2401 if( rc!=SQLITE_OK ){
2402 return rc;
2405 /* If there are any write-transactions at all, invoke the commit hook */
2406 if( needXcommit && db->xCommitCallback ){
2407 rc = db->xCommitCallback(db->pCommitArg);
2408 if( rc ){
2409 return SQLITE_CONSTRAINT_COMMITHOOK;
2413 /* The simple case - no more than one database file (not counting the
2414 ** TEMP database) has a transaction active. There is no need for the
2415 ** master-journal.
2417 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2418 ** string, it means the main database is :memory: or a temp file. In
2419 ** that case we do not support atomic multi-file commits, so use the
2420 ** simple case then too.
2422 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2423 || nTrans<=1
2425 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2426 Btree *pBt = db->aDb[i].pBt;
2427 if( pBt ){
2428 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2432 /* Do the commit only if all databases successfully complete phase 1.
2433 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2434 ** IO error while deleting or truncating a journal file. It is unlikely,
2435 ** but could happen. In this case abandon processing and return the error.
2437 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2438 Btree *pBt = db->aDb[i].pBt;
2439 if( pBt ){
2440 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2443 if( rc==SQLITE_OK ){
2444 sqlite3VtabCommit(db);
2448 /* The complex case - There is a multi-file write-transaction active.
2449 ** This requires a master journal file to ensure the transaction is
2450 ** committed atomically.
2452 #ifndef SQLITE_OMIT_DISKIO
2453 else{
2454 sqlite3_vfs *pVfs = db->pVfs;
2455 char *zMaster = 0; /* File-name for the master journal */
2456 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2457 sqlite3_file *pMaster = 0;
2458 i64 offset = 0;
2459 int res;
2460 int retryCount = 0;
2461 int nMainFile;
2463 /* Select a master journal file name */
2464 nMainFile = sqlite3Strlen30(zMainFile);
2465 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2466 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2467 do {
2468 u32 iRandom;
2469 if( retryCount ){
2470 if( retryCount>100 ){
2471 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2472 sqlite3OsDelete(pVfs, zMaster, 0);
2473 break;
2474 }else if( retryCount==1 ){
2475 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2478 retryCount++;
2479 sqlite3_randomness(sizeof(iRandom), &iRandom);
2480 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2481 (iRandom>>8)&0xffffff, iRandom&0xff);
2482 /* The antipenultimate character of the master journal name must
2483 ** be "9" to avoid name collisions when using 8+3 filenames. */
2484 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2485 sqlite3FileSuffix3(zMainFile, zMaster);
2486 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2487 }while( rc==SQLITE_OK && res );
2488 if( rc==SQLITE_OK ){
2489 /* Open the master journal. */
2490 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2491 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2492 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2495 if( rc!=SQLITE_OK ){
2496 sqlite3DbFree(db, zMaster);
2497 return rc;
2500 /* Write the name of each database file in the transaction into the new
2501 ** master journal file. If an error occurs at this point close
2502 ** and delete the master journal file. All the individual journal files
2503 ** still have 'null' as the master journal pointer, so they will roll
2504 ** back independently if a failure occurs.
2506 for(i=0; i<db->nDb; i++){
2507 Btree *pBt = db->aDb[i].pBt;
2508 if( sqlite3BtreeIsInTrans(pBt) ){
2509 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2510 if( zFile==0 ){
2511 continue; /* Ignore TEMP and :memory: databases */
2513 assert( zFile[0]!=0 );
2514 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2515 offset += sqlite3Strlen30(zFile)+1;
2516 if( rc!=SQLITE_OK ){
2517 sqlite3OsCloseFree(pMaster);
2518 sqlite3OsDelete(pVfs, zMaster, 0);
2519 sqlite3DbFree(db, zMaster);
2520 return rc;
2525 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2526 ** flag is set this is not required.
2528 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2529 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2531 sqlite3OsCloseFree(pMaster);
2532 sqlite3OsDelete(pVfs, zMaster, 0);
2533 sqlite3DbFree(db, zMaster);
2534 return rc;
2537 /* Sync all the db files involved in the transaction. The same call
2538 ** sets the master journal pointer in each individual journal. If
2539 ** an error occurs here, do not delete the master journal file.
2541 ** If the error occurs during the first call to
2542 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2543 ** master journal file will be orphaned. But we cannot delete it,
2544 ** in case the master journal file name was written into the journal
2545 ** file before the failure occurred.
2547 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2548 Btree *pBt = db->aDb[i].pBt;
2549 if( pBt ){
2550 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2553 sqlite3OsCloseFree(pMaster);
2554 assert( rc!=SQLITE_BUSY );
2555 if( rc!=SQLITE_OK ){
2556 sqlite3DbFree(db, zMaster);
2557 return rc;
2560 /* Delete the master journal file. This commits the transaction. After
2561 ** doing this the directory is synced again before any individual
2562 ** transaction files are deleted.
2564 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2565 sqlite3DbFree(db, zMaster);
2566 zMaster = 0;
2567 if( rc ){
2568 return rc;
2571 /* All files and directories have already been synced, so the following
2572 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2573 ** deleting or truncating journals. If something goes wrong while
2574 ** this is happening we don't really care. The integrity of the
2575 ** transaction is already guaranteed, but some stray 'cold' journals
2576 ** may be lying around. Returning an error code won't help matters.
2578 disable_simulated_io_errors();
2579 sqlite3BeginBenignMalloc();
2580 for(i=0; i<db->nDb; i++){
2581 Btree *pBt = db->aDb[i].pBt;
2582 if( pBt ){
2583 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2586 sqlite3EndBenignMalloc();
2587 enable_simulated_io_errors();
2589 sqlite3VtabCommit(db);
2591 #endif
2593 return rc;
2597 ** This routine checks that the sqlite3.nVdbeActive count variable
2598 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2599 ** currently active. An assertion fails if the two counts do not match.
2600 ** This is an internal self-check only - it is not an essential processing
2601 ** step.
2603 ** This is a no-op if NDEBUG is defined.
2605 #ifndef NDEBUG
2606 static void checkActiveVdbeCnt(sqlite3 *db){
2607 Vdbe *p;
2608 int cnt = 0;
2609 int nWrite = 0;
2610 int nRead = 0;
2611 p = db->pVdbe;
2612 while( p ){
2613 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2614 cnt++;
2615 if( p->readOnly==0 ) nWrite++;
2616 if( p->bIsReader ) nRead++;
2618 p = p->pNext;
2620 assert( cnt==db->nVdbeActive );
2621 assert( nWrite==db->nVdbeWrite );
2622 assert( nRead==db->nVdbeRead );
2624 #else
2625 #define checkActiveVdbeCnt(x)
2626 #endif
2629 ** If the Vdbe passed as the first argument opened a statement-transaction,
2630 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2631 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2632 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2633 ** statement transaction is committed.
2635 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2636 ** Otherwise SQLITE_OK.
2638 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2639 sqlite3 *const db = p->db;
2640 int rc = SQLITE_OK;
2641 int i;
2642 const int iSavepoint = p->iStatement-1;
2644 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2645 assert( db->nStatement>0 );
2646 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2648 for(i=0; i<db->nDb; i++){
2649 int rc2 = SQLITE_OK;
2650 Btree *pBt = db->aDb[i].pBt;
2651 if( pBt ){
2652 if( eOp==SAVEPOINT_ROLLBACK ){
2653 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2655 if( rc2==SQLITE_OK ){
2656 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2658 if( rc==SQLITE_OK ){
2659 rc = rc2;
2663 db->nStatement--;
2664 p->iStatement = 0;
2666 if( rc==SQLITE_OK ){
2667 if( eOp==SAVEPOINT_ROLLBACK ){
2668 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2670 if( rc==SQLITE_OK ){
2671 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2675 /* If the statement transaction is being rolled back, also restore the
2676 ** database handles deferred constraint counter to the value it had when
2677 ** the statement transaction was opened. */
2678 if( eOp==SAVEPOINT_ROLLBACK ){
2679 db->nDeferredCons = p->nStmtDefCons;
2680 db->nDeferredImmCons = p->nStmtDefImmCons;
2682 return rc;
2684 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2685 if( p->db->nStatement && p->iStatement ){
2686 return vdbeCloseStatement(p, eOp);
2688 return SQLITE_OK;
2693 ** This function is called when a transaction opened by the database
2694 ** handle associated with the VM passed as an argument is about to be
2695 ** committed. If there are outstanding deferred foreign key constraint
2696 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2698 ** If there are outstanding FK violations and this function returns
2699 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2700 ** and write an error message to it. Then return SQLITE_ERROR.
2702 #ifndef SQLITE_OMIT_FOREIGN_KEY
2703 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2704 sqlite3 *db = p->db;
2705 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2706 || (!deferred && p->nFkConstraint>0)
2708 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2709 p->errorAction = OE_Abort;
2710 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2711 return SQLITE_ERROR;
2713 return SQLITE_OK;
2715 #endif
2718 ** This routine is called the when a VDBE tries to halt. If the VDBE
2719 ** has made changes and is in autocommit mode, then commit those
2720 ** changes. If a rollback is needed, then do the rollback.
2722 ** This routine is the only way to move the state of a VM from
2723 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2724 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2726 ** Return an error code. If the commit could not complete because of
2727 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2728 ** means the close did not happen and needs to be repeated.
2730 int sqlite3VdbeHalt(Vdbe *p){
2731 int rc; /* Used to store transient return codes */
2732 sqlite3 *db = p->db;
2734 /* This function contains the logic that determines if a statement or
2735 ** transaction will be committed or rolled back as a result of the
2736 ** execution of this virtual machine.
2738 ** If any of the following errors occur:
2740 ** SQLITE_NOMEM
2741 ** SQLITE_IOERR
2742 ** SQLITE_FULL
2743 ** SQLITE_INTERRUPT
2745 ** Then the internal cache might have been left in an inconsistent
2746 ** state. We need to rollback the statement transaction, if there is
2747 ** one, or the complete transaction if there is no statement transaction.
2750 if( p->magic!=VDBE_MAGIC_RUN ){
2751 return SQLITE_OK;
2753 if( db->mallocFailed ){
2754 p->rc = SQLITE_NOMEM_BKPT;
2756 closeAllCursors(p);
2757 checkActiveVdbeCnt(db);
2759 /* No commit or rollback needed if the program never started or if the
2760 ** SQL statement does not read or write a database file. */
2761 if( p->pc>=0 && p->bIsReader ){
2762 int mrc; /* Primary error code from p->rc */
2763 int eStatementOp = 0;
2764 int isSpecialError; /* Set to true if a 'special' error */
2766 /* Lock all btrees used by the statement */
2767 sqlite3VdbeEnter(p);
2769 /* Check for one of the special errors */
2770 mrc = p->rc & 0xff;
2771 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2772 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2773 if( isSpecialError ){
2774 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2775 ** no rollback is necessary. Otherwise, at least a savepoint
2776 ** transaction must be rolled back to restore the database to a
2777 ** consistent state.
2779 ** Even if the statement is read-only, it is important to perform
2780 ** a statement or transaction rollback operation. If the error
2781 ** occurred while writing to the journal, sub-journal or database
2782 ** file as part of an effort to free up cache space (see function
2783 ** pagerStress() in pager.c), the rollback is required to restore
2784 ** the pager to a consistent state.
2786 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2787 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2788 eStatementOp = SAVEPOINT_ROLLBACK;
2789 }else{
2790 /* We are forced to roll back the active transaction. Before doing
2791 ** so, abort any other statements this handle currently has active.
2793 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2794 sqlite3CloseSavepoints(db);
2795 db->autoCommit = 1;
2796 p->nChange = 0;
2801 /* Check for immediate foreign key violations. */
2802 if( p->rc==SQLITE_OK ){
2803 sqlite3VdbeCheckFk(p, 0);
2806 /* If the auto-commit flag is set and this is the only active writer
2807 ** VM, then we do either a commit or rollback of the current transaction.
2809 ** Note: This block also runs if one of the special errors handled
2810 ** above has occurred.
2812 if( !sqlite3VtabInSync(db)
2813 && db->autoCommit
2814 && db->nVdbeWrite==(p->readOnly==0)
2816 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2817 rc = sqlite3VdbeCheckFk(p, 1);
2818 if( rc!=SQLITE_OK ){
2819 if( NEVER(p->readOnly) ){
2820 sqlite3VdbeLeave(p);
2821 return SQLITE_ERROR;
2823 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2824 }else{
2825 /* The auto-commit flag is true, the vdbe program was successful
2826 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2827 ** key constraints to hold up the transaction. This means a commit
2828 ** is required. */
2829 rc = vdbeCommit(db, p);
2831 if( rc==SQLITE_BUSY && p->readOnly ){
2832 sqlite3VdbeLeave(p);
2833 return SQLITE_BUSY;
2834 }else if( rc!=SQLITE_OK ){
2835 p->rc = rc;
2836 sqlite3RollbackAll(db, SQLITE_OK);
2837 p->nChange = 0;
2838 }else{
2839 db->nDeferredCons = 0;
2840 db->nDeferredImmCons = 0;
2841 db->flags &= ~SQLITE_DeferFKs;
2842 sqlite3CommitInternalChanges(db);
2844 }else{
2845 sqlite3RollbackAll(db, SQLITE_OK);
2846 p->nChange = 0;
2848 db->nStatement = 0;
2849 }else if( eStatementOp==0 ){
2850 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2851 eStatementOp = SAVEPOINT_RELEASE;
2852 }else if( p->errorAction==OE_Abort ){
2853 eStatementOp = SAVEPOINT_ROLLBACK;
2854 }else{
2855 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2856 sqlite3CloseSavepoints(db);
2857 db->autoCommit = 1;
2858 p->nChange = 0;
2862 /* If eStatementOp is non-zero, then a statement transaction needs to
2863 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2864 ** do so. If this operation returns an error, and the current statement
2865 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2866 ** current statement error code.
2868 if( eStatementOp ){
2869 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2870 if( rc ){
2871 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2872 p->rc = rc;
2873 sqlite3DbFree(db, p->zErrMsg);
2874 p->zErrMsg = 0;
2876 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2877 sqlite3CloseSavepoints(db);
2878 db->autoCommit = 1;
2879 p->nChange = 0;
2883 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2884 ** has been rolled back, update the database connection change-counter.
2886 if( p->changeCntOn ){
2887 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2888 sqlite3VdbeSetChanges(db, p->nChange);
2889 }else{
2890 sqlite3VdbeSetChanges(db, 0);
2892 p->nChange = 0;
2895 /* Release the locks */
2896 sqlite3VdbeLeave(p);
2899 /* We have successfully halted and closed the VM. Record this fact. */
2900 if( p->pc>=0 ){
2901 db->nVdbeActive--;
2902 if( !p->readOnly ) db->nVdbeWrite--;
2903 if( p->bIsReader ) db->nVdbeRead--;
2904 assert( db->nVdbeActive>=db->nVdbeRead );
2905 assert( db->nVdbeRead>=db->nVdbeWrite );
2906 assert( db->nVdbeWrite>=0 );
2908 p->magic = VDBE_MAGIC_HALT;
2909 checkActiveVdbeCnt(db);
2910 if( db->mallocFailed ){
2911 p->rc = SQLITE_NOMEM_BKPT;
2914 /* If the auto-commit flag is set to true, then any locks that were held
2915 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2916 ** to invoke any required unlock-notify callbacks.
2918 if( db->autoCommit ){
2919 sqlite3ConnectionUnlocked(db);
2922 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2923 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2928 ** Each VDBE holds the result of the most recent sqlite3_step() call
2929 ** in p->rc. This routine sets that result back to SQLITE_OK.
2931 void sqlite3VdbeResetStepResult(Vdbe *p){
2932 p->rc = SQLITE_OK;
2936 ** Copy the error code and error message belonging to the VDBE passed
2937 ** as the first argument to its database handle (so that they will be
2938 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2940 ** This function does not clear the VDBE error code or message, just
2941 ** copies them to the database handle.
2943 int sqlite3VdbeTransferError(Vdbe *p){
2944 sqlite3 *db = p->db;
2945 int rc = p->rc;
2946 if( p->zErrMsg ){
2947 db->bBenignMalloc++;
2948 sqlite3BeginBenignMalloc();
2949 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2950 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2951 sqlite3EndBenignMalloc();
2952 db->bBenignMalloc--;
2953 }else if( db->pErr ){
2954 sqlite3ValueSetNull(db->pErr);
2956 db->errCode = rc;
2957 return rc;
2960 #ifdef SQLITE_ENABLE_SQLLOG
2962 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2963 ** invoke it.
2965 static void vdbeInvokeSqllog(Vdbe *v){
2966 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2967 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2968 assert( v->db->init.busy==0 );
2969 if( zExpanded ){
2970 sqlite3GlobalConfig.xSqllog(
2971 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2973 sqlite3DbFree(v->db, zExpanded);
2977 #else
2978 # define vdbeInvokeSqllog(x)
2979 #endif
2982 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2983 ** Write any error messages into *pzErrMsg. Return the result code.
2985 ** After this routine is run, the VDBE should be ready to be executed
2986 ** again.
2988 ** To look at it another way, this routine resets the state of the
2989 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2990 ** VDBE_MAGIC_INIT.
2992 int sqlite3VdbeReset(Vdbe *p){
2993 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2994 int i;
2995 #endif
2997 sqlite3 *db;
2998 db = p->db;
3000 /* If the VM did not run to completion or if it encountered an
3001 ** error, then it might not have been halted properly. So halt
3002 ** it now.
3004 sqlite3VdbeHalt(p);
3006 /* If the VDBE has be run even partially, then transfer the error code
3007 ** and error message from the VDBE into the main database structure. But
3008 ** if the VDBE has just been set to run but has not actually executed any
3009 ** instructions yet, leave the main database error information unchanged.
3011 if( p->pc>=0 ){
3012 vdbeInvokeSqllog(p);
3013 sqlite3VdbeTransferError(p);
3014 if( p->runOnlyOnce ) p->expired = 1;
3015 }else if( p->rc && p->expired ){
3016 /* The expired flag was set on the VDBE before the first call
3017 ** to sqlite3_step(). For consistency (since sqlite3_step() was
3018 ** called), set the database error in this case as well.
3020 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3023 /* Reset register contents and reclaim error message memory.
3025 #ifdef SQLITE_DEBUG
3026 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3027 ** Vdbe.aMem[] arrays have already been cleaned up. */
3028 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3029 if( p->aMem ){
3030 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3032 #endif
3033 sqlite3DbFree(db, p->zErrMsg);
3034 p->zErrMsg = 0;
3035 p->pResultSet = 0;
3036 #ifdef SQLITE_DEBUG
3037 p->nWrite = 0;
3038 #endif
3040 /* Save profiling information from this VDBE run.
3042 #ifdef VDBE_PROFILE
3044 FILE *out = fopen("vdbe_profile.out", "a");
3045 if( out ){
3046 fprintf(out, "---- ");
3047 for(i=0; i<p->nOp; i++){
3048 fprintf(out, "%02x", p->aOp[i].opcode);
3050 fprintf(out, "\n");
3051 if( p->zSql ){
3052 char c, pc = 0;
3053 fprintf(out, "-- ");
3054 for(i=0; (c = p->zSql[i])!=0; i++){
3055 if( pc=='\n' ) fprintf(out, "-- ");
3056 putc(c, out);
3057 pc = c;
3059 if( pc!='\n' ) fprintf(out, "\n");
3061 for(i=0; i<p->nOp; i++){
3062 char zHdr[100];
3063 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3064 p->aOp[i].cnt,
3065 p->aOp[i].cycles,
3066 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3068 fprintf(out, "%s", zHdr);
3069 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3071 fclose(out);
3074 #endif
3075 p->magic = VDBE_MAGIC_RESET;
3076 return p->rc & db->errMask;
3080 ** Clean up and delete a VDBE after execution. Return an integer which is
3081 ** the result code. Write any error message text into *pzErrMsg.
3083 int sqlite3VdbeFinalize(Vdbe *p){
3084 int rc = SQLITE_OK;
3085 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3086 rc = sqlite3VdbeReset(p);
3087 assert( (rc & p->db->errMask)==rc );
3089 sqlite3VdbeDelete(p);
3090 return rc;
3094 ** If parameter iOp is less than zero, then invoke the destructor for
3095 ** all auxiliary data pointers currently cached by the VM passed as
3096 ** the first argument.
3098 ** Or, if iOp is greater than or equal to zero, then the destructor is
3099 ** only invoked for those auxiliary data pointers created by the user
3100 ** function invoked by the OP_Function opcode at instruction iOp of
3101 ** VM pVdbe, and only then if:
3103 ** * the associated function parameter is the 32nd or later (counting
3104 ** from left to right), or
3106 ** * the corresponding bit in argument mask is clear (where the first
3107 ** function parameter corresponds to bit 0 etc.).
3109 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3110 while( *pp ){
3111 AuxData *pAux = *pp;
3112 if( (iOp<0)
3113 || (pAux->iAuxOp==iOp
3114 && pAux->iAuxArg>=0
3115 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3117 testcase( pAux->iAuxArg==31 );
3118 if( pAux->xDeleteAux ){
3119 pAux->xDeleteAux(pAux->pAux);
3121 *pp = pAux->pNextAux;
3122 sqlite3DbFree(db, pAux);
3123 }else{
3124 pp= &pAux->pNextAux;
3130 ** Free all memory associated with the Vdbe passed as the second argument,
3131 ** except for object itself, which is preserved.
3133 ** The difference between this function and sqlite3VdbeDelete() is that
3134 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3135 ** the database connection and frees the object itself.
3137 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3138 SubProgram *pSub, *pNext;
3139 assert( p->db==0 || p->db==db );
3140 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3141 for(pSub=p->pProgram; pSub; pSub=pNext){
3142 pNext = pSub->pNext;
3143 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3144 sqlite3DbFree(db, pSub);
3146 if( p->magic!=VDBE_MAGIC_INIT ){
3147 releaseMemArray(p->aVar, p->nVar);
3148 sqlite3DbFree(db, p->pVList);
3149 sqlite3DbFree(db, p->pFree);
3151 vdbeFreeOpArray(db, p->aOp, p->nOp);
3152 sqlite3DbFree(db, p->aColName);
3153 sqlite3DbFree(db, p->zSql);
3154 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3156 int i;
3157 for(i=0; i<p->nScan; i++){
3158 sqlite3DbFree(db, p->aScan[i].zName);
3160 sqlite3DbFree(db, p->aScan);
3162 #endif
3166 ** Delete an entire VDBE.
3168 void sqlite3VdbeDelete(Vdbe *p){
3169 sqlite3 *db;
3171 assert( p!=0 );
3172 db = p->db;
3173 assert( sqlite3_mutex_held(db->mutex) );
3174 sqlite3VdbeClearObject(db, p);
3175 if( p->pPrev ){
3176 p->pPrev->pNext = p->pNext;
3177 }else{
3178 assert( db->pVdbe==p );
3179 db->pVdbe = p->pNext;
3181 if( p->pNext ){
3182 p->pNext->pPrev = p->pPrev;
3184 p->magic = VDBE_MAGIC_DEAD;
3185 p->db = 0;
3186 sqlite3DbFreeNN(db, p);
3190 ** The cursor "p" has a pending seek operation that has not yet been
3191 ** carried out. Seek the cursor now. If an error occurs, return
3192 ** the appropriate error code.
3194 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3195 int res, rc;
3196 #ifdef SQLITE_TEST
3197 extern int sqlite3_search_count;
3198 #endif
3199 assert( p->deferredMoveto );
3200 assert( p->isTable );
3201 assert( p->eCurType==CURTYPE_BTREE );
3202 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3203 if( rc ) return rc;
3204 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3205 #ifdef SQLITE_TEST
3206 sqlite3_search_count++;
3207 #endif
3208 p->deferredMoveto = 0;
3209 p->cacheStatus = CACHE_STALE;
3210 return SQLITE_OK;
3214 ** Something has moved cursor "p" out of place. Maybe the row it was
3215 ** pointed to was deleted out from under it. Or maybe the btree was
3216 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3217 ** is supposed to be pointing. If the row was deleted out from under the
3218 ** cursor, set the cursor to point to a NULL row.
3220 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3221 int isDifferentRow, rc;
3222 assert( p->eCurType==CURTYPE_BTREE );
3223 assert( p->uc.pCursor!=0 );
3224 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3225 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3226 p->cacheStatus = CACHE_STALE;
3227 if( isDifferentRow ) p->nullRow = 1;
3228 return rc;
3232 ** Check to ensure that the cursor is valid. Restore the cursor
3233 ** if need be. Return any I/O error from the restore operation.
3235 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3236 assert( p->eCurType==CURTYPE_BTREE );
3237 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3238 return handleMovedCursor(p);
3240 return SQLITE_OK;
3244 ** Make sure the cursor p is ready to read or write the row to which it
3245 ** was last positioned. Return an error code if an OOM fault or I/O error
3246 ** prevents us from positioning the cursor to its correct position.
3248 ** If a MoveTo operation is pending on the given cursor, then do that
3249 ** MoveTo now. If no move is pending, check to see if the row has been
3250 ** deleted out from under the cursor and if it has, mark the row as
3251 ** a NULL row.
3253 ** If the cursor is already pointing to the correct row and that row has
3254 ** not been deleted out from under the cursor, then this routine is a no-op.
3256 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3257 VdbeCursor *p = *pp;
3258 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3259 if( p->deferredMoveto ){
3260 int iMap;
3261 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3262 *pp = p->pAltCursor;
3263 *piCol = iMap - 1;
3264 return SQLITE_OK;
3266 return handleDeferredMoveto(p);
3268 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3269 return handleMovedCursor(p);
3271 return SQLITE_OK;
3275 ** The following functions:
3277 ** sqlite3VdbeSerialType()
3278 ** sqlite3VdbeSerialTypeLen()
3279 ** sqlite3VdbeSerialLen()
3280 ** sqlite3VdbeSerialPut()
3281 ** sqlite3VdbeSerialGet()
3283 ** encapsulate the code that serializes values for storage in SQLite
3284 ** data and index records. Each serialized value consists of a
3285 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3286 ** integer, stored as a varint.
3288 ** In an SQLite index record, the serial type is stored directly before
3289 ** the blob of data that it corresponds to. In a table record, all serial
3290 ** types are stored at the start of the record, and the blobs of data at
3291 ** the end. Hence these functions allow the caller to handle the
3292 ** serial-type and data blob separately.
3294 ** The following table describes the various storage classes for data:
3296 ** serial type bytes of data type
3297 ** -------------- --------------- ---------------
3298 ** 0 0 NULL
3299 ** 1 1 signed integer
3300 ** 2 2 signed integer
3301 ** 3 3 signed integer
3302 ** 4 4 signed integer
3303 ** 5 6 signed integer
3304 ** 6 8 signed integer
3305 ** 7 8 IEEE float
3306 ** 8 0 Integer constant 0
3307 ** 9 0 Integer constant 1
3308 ** 10,11 reserved for expansion
3309 ** N>=12 and even (N-12)/2 BLOB
3310 ** N>=13 and odd (N-13)/2 text
3312 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3313 ** of SQLite will not understand those serial types.
3317 ** Return the serial-type for the value stored in pMem.
3319 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3320 int flags = pMem->flags;
3321 u32 n;
3323 assert( pLen!=0 );
3324 if( flags&MEM_Null ){
3325 *pLen = 0;
3326 return 0;
3328 if( flags&MEM_Int ){
3329 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3330 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3331 i64 i = pMem->u.i;
3332 u64 u;
3333 if( i<0 ){
3334 u = ~i;
3335 }else{
3336 u = i;
3338 if( u<=127 ){
3339 if( (i&1)==i && file_format>=4 ){
3340 *pLen = 0;
3341 return 8+(u32)u;
3342 }else{
3343 *pLen = 1;
3344 return 1;
3347 if( u<=32767 ){ *pLen = 2; return 2; }
3348 if( u<=8388607 ){ *pLen = 3; return 3; }
3349 if( u<=2147483647 ){ *pLen = 4; return 4; }
3350 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3351 *pLen = 8;
3352 return 6;
3354 if( flags&MEM_Real ){
3355 *pLen = 8;
3356 return 7;
3358 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3359 assert( pMem->n>=0 );
3360 n = (u32)pMem->n;
3361 if( flags & MEM_Zero ){
3362 n += pMem->u.nZero;
3364 *pLen = n;
3365 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3369 ** The sizes for serial types less than 128
3371 static const u8 sqlite3SmallTypeSizes[] = {
3372 /* 0 1 2 3 4 5 6 7 8 9 */
3373 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3374 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3375 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3376 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3377 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3378 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3379 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3380 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3381 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3382 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3383 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3384 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3385 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3389 ** Return the length of the data corresponding to the supplied serial-type.
3391 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3392 if( serial_type>=128 ){
3393 return (serial_type-12)/2;
3394 }else{
3395 assert( serial_type<12
3396 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3397 return sqlite3SmallTypeSizes[serial_type];
3400 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3401 assert( serial_type<128 );
3402 return sqlite3SmallTypeSizes[serial_type];
3406 ** If we are on an architecture with mixed-endian floating
3407 ** points (ex: ARM7) then swap the lower 4 bytes with the
3408 ** upper 4 bytes. Return the result.
3410 ** For most architectures, this is a no-op.
3412 ** (later): It is reported to me that the mixed-endian problem
3413 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3414 ** that early versions of GCC stored the two words of a 64-bit
3415 ** float in the wrong order. And that error has been propagated
3416 ** ever since. The blame is not necessarily with GCC, though.
3417 ** GCC might have just copying the problem from a prior compiler.
3418 ** I am also told that newer versions of GCC that follow a different
3419 ** ABI get the byte order right.
3421 ** Developers using SQLite on an ARM7 should compile and run their
3422 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3423 ** enabled, some asserts below will ensure that the byte order of
3424 ** floating point values is correct.
3426 ** (2007-08-30) Frank van Vugt has studied this problem closely
3427 ** and has send his findings to the SQLite developers. Frank
3428 ** writes that some Linux kernels offer floating point hardware
3429 ** emulation that uses only 32-bit mantissas instead of a full
3430 ** 48-bits as required by the IEEE standard. (This is the
3431 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3432 ** byte swapping becomes very complicated. To avoid problems,
3433 ** the necessary byte swapping is carried out using a 64-bit integer
3434 ** rather than a 64-bit float. Frank assures us that the code here
3435 ** works for him. We, the developers, have no way to independently
3436 ** verify this, but Frank seems to know what he is talking about
3437 ** so we trust him.
3439 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3440 static u64 floatSwap(u64 in){
3441 union {
3442 u64 r;
3443 u32 i[2];
3444 } u;
3445 u32 t;
3447 u.r = in;
3448 t = u.i[0];
3449 u.i[0] = u.i[1];
3450 u.i[1] = t;
3451 return u.r;
3453 # define swapMixedEndianFloat(X) X = floatSwap(X)
3454 #else
3455 # define swapMixedEndianFloat(X)
3456 #endif
3459 ** Write the serialized data blob for the value stored in pMem into
3460 ** buf. It is assumed that the caller has allocated sufficient space.
3461 ** Return the number of bytes written.
3463 ** nBuf is the amount of space left in buf[]. The caller is responsible
3464 ** for allocating enough space to buf[] to hold the entire field, exclusive
3465 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3467 ** Return the number of bytes actually written into buf[]. The number
3468 ** of bytes in the zero-filled tail is included in the return value only
3469 ** if those bytes were zeroed in buf[].
3471 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3472 u32 len;
3474 /* Integer and Real */
3475 if( serial_type<=7 && serial_type>0 ){
3476 u64 v;
3477 u32 i;
3478 if( serial_type==7 ){
3479 assert( sizeof(v)==sizeof(pMem->u.r) );
3480 memcpy(&v, &pMem->u.r, sizeof(v));
3481 swapMixedEndianFloat(v);
3482 }else{
3483 v = pMem->u.i;
3485 len = i = sqlite3SmallTypeSizes[serial_type];
3486 assert( i>0 );
3488 buf[--i] = (u8)(v&0xFF);
3489 v >>= 8;
3490 }while( i );
3491 return len;
3494 /* String or blob */
3495 if( serial_type>=12 ){
3496 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3497 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3498 len = pMem->n;
3499 if( len>0 ) memcpy(buf, pMem->z, len);
3500 return len;
3503 /* NULL or constants 0 or 1 */
3504 return 0;
3507 /* Input "x" is a sequence of unsigned characters that represent a
3508 ** big-endian integer. Return the equivalent native integer
3510 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3511 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3512 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3513 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3514 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3517 ** Deserialize the data blob pointed to by buf as serial type serial_type
3518 ** and store the result in pMem. Return the number of bytes read.
3520 ** This function is implemented as two separate routines for performance.
3521 ** The few cases that require local variables are broken out into a separate
3522 ** routine so that in most cases the overhead of moving the stack pointer
3523 ** is avoided.
3525 static u32 SQLITE_NOINLINE serialGet(
3526 const unsigned char *buf, /* Buffer to deserialize from */
3527 u32 serial_type, /* Serial type to deserialize */
3528 Mem *pMem /* Memory cell to write value into */
3530 u64 x = FOUR_BYTE_UINT(buf);
3531 u32 y = FOUR_BYTE_UINT(buf+4);
3532 x = (x<<32) + y;
3533 if( serial_type==6 ){
3534 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3535 ** twos-complement integer. */
3536 pMem->u.i = *(i64*)&x;
3537 pMem->flags = MEM_Int;
3538 testcase( pMem->u.i<0 );
3539 }else{
3540 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3541 ** floating point number. */
3542 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3543 /* Verify that integers and floating point values use the same
3544 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3545 ** defined that 64-bit floating point values really are mixed
3546 ** endian.
3548 static const u64 t1 = ((u64)0x3ff00000)<<32;
3549 static const double r1 = 1.0;
3550 u64 t2 = t1;
3551 swapMixedEndianFloat(t2);
3552 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3553 #endif
3554 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3555 swapMixedEndianFloat(x);
3556 memcpy(&pMem->u.r, &x, sizeof(x));
3557 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3559 return 8;
3561 u32 sqlite3VdbeSerialGet(
3562 const unsigned char *buf, /* Buffer to deserialize from */
3563 u32 serial_type, /* Serial type to deserialize */
3564 Mem *pMem /* Memory cell to write value into */
3566 switch( serial_type ){
3567 case 10: { /* Internal use only: NULL with virtual table
3568 ** UPDATE no-change flag set */
3569 pMem->flags = MEM_Null|MEM_Zero;
3570 pMem->n = 0;
3571 pMem->u.nZero = 0;
3572 break;
3574 case 11: /* Reserved for future use */
3575 case 0: { /* Null */
3576 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3577 pMem->flags = MEM_Null;
3578 break;
3580 case 1: {
3581 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3582 ** integer. */
3583 pMem->u.i = ONE_BYTE_INT(buf);
3584 pMem->flags = MEM_Int;
3585 testcase( pMem->u.i<0 );
3586 return 1;
3588 case 2: { /* 2-byte signed integer */
3589 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3590 ** twos-complement integer. */
3591 pMem->u.i = TWO_BYTE_INT(buf);
3592 pMem->flags = MEM_Int;
3593 testcase( pMem->u.i<0 );
3594 return 2;
3596 case 3: { /* 3-byte signed integer */
3597 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3598 ** twos-complement integer. */
3599 pMem->u.i = THREE_BYTE_INT(buf);
3600 pMem->flags = MEM_Int;
3601 testcase( pMem->u.i<0 );
3602 return 3;
3604 case 4: { /* 4-byte signed integer */
3605 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3606 ** twos-complement integer. */
3607 pMem->u.i = FOUR_BYTE_INT(buf);
3608 #ifdef __HP_cc
3609 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3610 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3611 #endif
3612 pMem->flags = MEM_Int;
3613 testcase( pMem->u.i<0 );
3614 return 4;
3616 case 5: { /* 6-byte signed integer */
3617 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3618 ** twos-complement integer. */
3619 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3620 pMem->flags = MEM_Int;
3621 testcase( pMem->u.i<0 );
3622 return 6;
3624 case 6: /* 8-byte signed integer */
3625 case 7: { /* IEEE floating point */
3626 /* These use local variables, so do them in a separate routine
3627 ** to avoid having to move the frame pointer in the common case */
3628 return serialGet(buf,serial_type,pMem);
3630 case 8: /* Integer 0 */
3631 case 9: { /* Integer 1 */
3632 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3633 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3634 pMem->u.i = serial_type-8;
3635 pMem->flags = MEM_Int;
3636 return 0;
3638 default: {
3639 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3640 ** length.
3641 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3642 ** (N-13)/2 bytes in length. */
3643 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3644 pMem->z = (char *)buf;
3645 pMem->n = (serial_type-12)/2;
3646 pMem->flags = aFlag[serial_type&1];
3647 return pMem->n;
3650 return 0;
3653 ** This routine is used to allocate sufficient space for an UnpackedRecord
3654 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3655 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3657 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3658 ** the unaligned buffer passed via the second and third arguments (presumably
3659 ** stack space). If the former, then *ppFree is set to a pointer that should
3660 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3661 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3662 ** before returning.
3664 ** If an OOM error occurs, NULL is returned.
3666 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3667 KeyInfo *pKeyInfo /* Description of the record */
3669 UnpackedRecord *p; /* Unpacked record to return */
3670 int nByte; /* Number of bytes required for *p */
3671 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3672 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3673 if( !p ) return 0;
3674 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3675 assert( pKeyInfo->aSortOrder!=0 );
3676 p->pKeyInfo = pKeyInfo;
3677 p->nField = pKeyInfo->nKeyField + 1;
3678 return p;
3682 ** Given the nKey-byte encoding of a record in pKey[], populate the
3683 ** UnpackedRecord structure indicated by the fourth argument with the
3684 ** contents of the decoded record.
3686 void sqlite3VdbeRecordUnpack(
3687 KeyInfo *pKeyInfo, /* Information about the record format */
3688 int nKey, /* Size of the binary record */
3689 const void *pKey, /* The binary record */
3690 UnpackedRecord *p /* Populate this structure before returning. */
3692 const unsigned char *aKey = (const unsigned char *)pKey;
3693 int d;
3694 u32 idx; /* Offset in aKey[] to read from */
3695 u16 u; /* Unsigned loop counter */
3696 u32 szHdr;
3697 Mem *pMem = p->aMem;
3699 p->default_rc = 0;
3700 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3701 idx = getVarint32(aKey, szHdr);
3702 d = szHdr;
3703 u = 0;
3704 while( idx<szHdr && d<=nKey ){
3705 u32 serial_type;
3707 idx += getVarint32(&aKey[idx], serial_type);
3708 pMem->enc = pKeyInfo->enc;
3709 pMem->db = pKeyInfo->db;
3710 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3711 pMem->szMalloc = 0;
3712 pMem->z = 0;
3713 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3714 pMem++;
3715 if( (++u)>=p->nField ) break;
3717 assert( u<=pKeyInfo->nKeyField + 1 );
3718 p->nField = u;
3721 #ifdef SQLITE_DEBUG
3723 ** This function compares two index or table record keys in the same way
3724 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3725 ** this function deserializes and compares values using the
3726 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3727 ** in assert() statements to ensure that the optimized code in
3728 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3730 ** Return true if the result of comparison is equivalent to desiredResult.
3731 ** Return false if there is a disagreement.
3733 static int vdbeRecordCompareDebug(
3734 int nKey1, const void *pKey1, /* Left key */
3735 const UnpackedRecord *pPKey2, /* Right key */
3736 int desiredResult /* Correct answer */
3738 u32 d1; /* Offset into aKey[] of next data element */
3739 u32 idx1; /* Offset into aKey[] of next header element */
3740 u32 szHdr1; /* Number of bytes in header */
3741 int i = 0;
3742 int rc = 0;
3743 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3744 KeyInfo *pKeyInfo;
3745 Mem mem1;
3747 pKeyInfo = pPKey2->pKeyInfo;
3748 if( pKeyInfo->db==0 ) return 1;
3749 mem1.enc = pKeyInfo->enc;
3750 mem1.db = pKeyInfo->db;
3751 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3752 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3754 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3755 ** We could initialize it, as shown here, to silence those complaints.
3756 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3757 ** the unnecessary initialization has a measurable negative performance
3758 ** impact, since this routine is a very high runner. And so, we choose
3759 ** to ignore the compiler warnings and leave this variable uninitialized.
3761 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3763 idx1 = getVarint32(aKey1, szHdr1);
3764 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3765 d1 = szHdr1;
3766 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3767 assert( pKeyInfo->aSortOrder!=0 );
3768 assert( pKeyInfo->nKeyField>0 );
3769 assert( idx1<=szHdr1 || CORRUPT_DB );
3771 u32 serial_type1;
3773 /* Read the serial types for the next element in each key. */
3774 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3776 /* Verify that there is enough key space remaining to avoid
3777 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3778 ** always be greater than or equal to the amount of required key space.
3779 ** Use that approximation to avoid the more expensive call to
3780 ** sqlite3VdbeSerialTypeLen() in the common case.
3782 if( d1+serial_type1+2>(u32)nKey1
3783 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3785 break;
3788 /* Extract the values to be compared.
3790 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3792 /* Do the comparison
3794 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3795 if( rc!=0 ){
3796 assert( mem1.szMalloc==0 ); /* See comment below */
3797 if( pKeyInfo->aSortOrder[i] ){
3798 rc = -rc; /* Invert the result for DESC sort order. */
3800 goto debugCompareEnd;
3802 i++;
3803 }while( idx1<szHdr1 && i<pPKey2->nField );
3805 /* No memory allocation is ever used on mem1. Prove this using
3806 ** the following assert(). If the assert() fails, it indicates a
3807 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3809 assert( mem1.szMalloc==0 );
3811 /* rc==0 here means that one of the keys ran out of fields and
3812 ** all the fields up to that point were equal. Return the default_rc
3813 ** value. */
3814 rc = pPKey2->default_rc;
3816 debugCompareEnd:
3817 if( desiredResult==0 && rc==0 ) return 1;
3818 if( desiredResult<0 && rc<0 ) return 1;
3819 if( desiredResult>0 && rc>0 ) return 1;
3820 if( CORRUPT_DB ) return 1;
3821 if( pKeyInfo->db->mallocFailed ) return 1;
3822 return 0;
3824 #endif
3826 #ifdef SQLITE_DEBUG
3828 ** Count the number of fields (a.k.a. columns) in the record given by
3829 ** pKey,nKey. The verify that this count is less than or equal to the
3830 ** limit given by pKeyInfo->nAllField.
3832 ** If this constraint is not satisfied, it means that the high-speed
3833 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3834 ** not work correctly. If this assert() ever fires, it probably means
3835 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
3836 ** incorrectly.
3838 static void vdbeAssertFieldCountWithinLimits(
3839 int nKey, const void *pKey, /* The record to verify */
3840 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3842 int nField = 0;
3843 u32 szHdr;
3844 u32 idx;
3845 u32 notUsed;
3846 const unsigned char *aKey = (const unsigned char*)pKey;
3848 if( CORRUPT_DB ) return;
3849 idx = getVarint32(aKey, szHdr);
3850 assert( nKey>=0 );
3851 assert( szHdr<=(u32)nKey );
3852 while( idx<szHdr ){
3853 idx += getVarint32(aKey+idx, notUsed);
3854 nField++;
3856 assert( nField <= pKeyInfo->nAllField );
3858 #else
3859 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3860 #endif
3863 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3864 ** using the collation sequence pColl. As usual, return a negative , zero
3865 ** or positive value if *pMem1 is less than, equal to or greater than
3866 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3868 static int vdbeCompareMemString(
3869 const Mem *pMem1,
3870 const Mem *pMem2,
3871 const CollSeq *pColl,
3872 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3874 if( pMem1->enc==pColl->enc ){
3875 /* The strings are already in the correct encoding. Call the
3876 ** comparison function directly */
3877 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3878 }else{
3879 int rc;
3880 const void *v1, *v2;
3881 Mem c1;
3882 Mem c2;
3883 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3884 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3885 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3886 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3887 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3888 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3889 if( (v1==0 || v2==0) ){
3890 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3891 rc = 0;
3892 }else{
3893 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
3895 sqlite3VdbeMemRelease(&c1);
3896 sqlite3VdbeMemRelease(&c2);
3897 return rc;
3902 ** The input pBlob is guaranteed to be a Blob that is not marked
3903 ** with MEM_Zero. Return true if it could be a zero-blob.
3905 static int isAllZero(const char *z, int n){
3906 int i;
3907 for(i=0; i<n; i++){
3908 if( z[i] ) return 0;
3910 return 1;
3914 ** Compare two blobs. Return negative, zero, or positive if the first
3915 ** is less than, equal to, or greater than the second, respectively.
3916 ** If one blob is a prefix of the other, then the shorter is the lessor.
3918 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3919 int c;
3920 int n1 = pB1->n;
3921 int n2 = pB2->n;
3923 /* It is possible to have a Blob value that has some non-zero content
3924 ** followed by zero content. But that only comes up for Blobs formed
3925 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3926 ** sqlite3MemCompare(). */
3927 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3928 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3930 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3931 if( pB1->flags & pB2->flags & MEM_Zero ){
3932 return pB1->u.nZero - pB2->u.nZero;
3933 }else if( pB1->flags & MEM_Zero ){
3934 if( !isAllZero(pB2->z, pB2->n) ) return -1;
3935 return pB1->u.nZero - n2;
3936 }else{
3937 if( !isAllZero(pB1->z, pB1->n) ) return +1;
3938 return n1 - pB2->u.nZero;
3941 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3942 if( c ) return c;
3943 return n1 - n2;
3947 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3948 ** number. Return negative, zero, or positive if the first (i64) is less than,
3949 ** equal to, or greater than the second (double).
3951 static int sqlite3IntFloatCompare(i64 i, double r){
3952 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3953 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3954 if( x<r ) return -1;
3955 if( x>r ) return +1;
3956 return 0;
3957 }else{
3958 i64 y;
3959 double s;
3960 if( r<-9223372036854775808.0 ) return +1;
3961 if( r>=9223372036854775808.0 ) return -1;
3962 y = (i64)r;
3963 if( i<y ) return -1;
3964 if( i>y ) return +1;
3965 s = (double)i;
3966 if( s<r ) return -1;
3967 if( s>r ) return +1;
3968 return 0;
3973 ** Compare the values contained by the two memory cells, returning
3974 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3975 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3976 ** and reals) sorted numerically, followed by text ordered by the collating
3977 ** sequence pColl and finally blob's ordered by memcmp().
3979 ** Two NULL values are considered equal by this function.
3981 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3982 int f1, f2;
3983 int combined_flags;
3985 f1 = pMem1->flags;
3986 f2 = pMem2->flags;
3987 combined_flags = f1|f2;
3988 assert( (combined_flags & MEM_RowSet)==0 );
3990 /* If one value is NULL, it is less than the other. If both values
3991 ** are NULL, return 0.
3993 if( combined_flags&MEM_Null ){
3994 return (f2&MEM_Null) - (f1&MEM_Null);
3997 /* At least one of the two values is a number
3999 if( combined_flags&(MEM_Int|MEM_Real) ){
4000 if( (f1 & f2 & MEM_Int)!=0 ){
4001 if( pMem1->u.i < pMem2->u.i ) return -1;
4002 if( pMem1->u.i > pMem2->u.i ) return +1;
4003 return 0;
4005 if( (f1 & f2 & MEM_Real)!=0 ){
4006 if( pMem1->u.r < pMem2->u.r ) return -1;
4007 if( pMem1->u.r > pMem2->u.r ) return +1;
4008 return 0;
4010 if( (f1&MEM_Int)!=0 ){
4011 if( (f2&MEM_Real)!=0 ){
4012 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4013 }else{
4014 return -1;
4017 if( (f1&MEM_Real)!=0 ){
4018 if( (f2&MEM_Int)!=0 ){
4019 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4020 }else{
4021 return -1;
4024 return +1;
4027 /* If one value is a string and the other is a blob, the string is less.
4028 ** If both are strings, compare using the collating functions.
4030 if( combined_flags&MEM_Str ){
4031 if( (f1 & MEM_Str)==0 ){
4032 return 1;
4034 if( (f2 & MEM_Str)==0 ){
4035 return -1;
4038 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4039 assert( pMem1->enc==SQLITE_UTF8 ||
4040 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4042 /* The collation sequence must be defined at this point, even if
4043 ** the user deletes the collation sequence after the vdbe program is
4044 ** compiled (this was not always the case).
4046 assert( !pColl || pColl->xCmp );
4048 if( pColl ){
4049 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4051 /* If a NULL pointer was passed as the collate function, fall through
4052 ** to the blob case and use memcmp(). */
4055 /* Both values must be blobs. Compare using memcmp(). */
4056 return sqlite3BlobCompare(pMem1, pMem2);
4061 ** The first argument passed to this function is a serial-type that
4062 ** corresponds to an integer - all values between 1 and 9 inclusive
4063 ** except 7. The second points to a buffer containing an integer value
4064 ** serialized according to serial_type. This function deserializes
4065 ** and returns the value.
4067 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4068 u32 y;
4069 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4070 switch( serial_type ){
4071 case 0:
4072 case 1:
4073 testcase( aKey[0]&0x80 );
4074 return ONE_BYTE_INT(aKey);
4075 case 2:
4076 testcase( aKey[0]&0x80 );
4077 return TWO_BYTE_INT(aKey);
4078 case 3:
4079 testcase( aKey[0]&0x80 );
4080 return THREE_BYTE_INT(aKey);
4081 case 4: {
4082 testcase( aKey[0]&0x80 );
4083 y = FOUR_BYTE_UINT(aKey);
4084 return (i64)*(int*)&y;
4086 case 5: {
4087 testcase( aKey[0]&0x80 );
4088 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4090 case 6: {
4091 u64 x = FOUR_BYTE_UINT(aKey);
4092 testcase( aKey[0]&0x80 );
4093 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4094 return (i64)*(i64*)&x;
4098 return (serial_type - 8);
4102 ** This function compares the two table rows or index records
4103 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4104 ** or positive integer if key1 is less than, equal to or
4105 ** greater than key2. The {nKey1, pKey1} key must be a blob
4106 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4107 ** key must be a parsed key such as obtained from
4108 ** sqlite3VdbeParseRecord.
4110 ** If argument bSkip is non-zero, it is assumed that the caller has already
4111 ** determined that the first fields of the keys are equal.
4113 ** Key1 and Key2 do not have to contain the same number of fields. If all
4114 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4115 ** returned.
4117 ** If database corruption is discovered, set pPKey2->errCode to
4118 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4119 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4120 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4122 int sqlite3VdbeRecordCompareWithSkip(
4123 int nKey1, const void *pKey1, /* Left key */
4124 UnpackedRecord *pPKey2, /* Right key */
4125 int bSkip /* If true, skip the first field */
4127 u32 d1; /* Offset into aKey[] of next data element */
4128 int i; /* Index of next field to compare */
4129 u32 szHdr1; /* Size of record header in bytes */
4130 u32 idx1; /* Offset of first type in header */
4131 int rc = 0; /* Return value */
4132 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4133 KeyInfo *pKeyInfo;
4134 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4135 Mem mem1;
4137 /* If bSkip is true, then the caller has already determined that the first
4138 ** two elements in the keys are equal. Fix the various stack variables so
4139 ** that this routine begins comparing at the second field. */
4140 if( bSkip ){
4141 u32 s1;
4142 idx1 = 1 + getVarint32(&aKey1[1], s1);
4143 szHdr1 = aKey1[0];
4144 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4145 i = 1;
4146 pRhs++;
4147 }else{
4148 idx1 = getVarint32(aKey1, szHdr1);
4149 d1 = szHdr1;
4150 if( d1>(unsigned)nKey1 ){
4151 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4152 return 0; /* Corruption */
4154 i = 0;
4157 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4158 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4159 || CORRUPT_DB );
4160 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4161 assert( pPKey2->pKeyInfo->nKeyField>0 );
4162 assert( idx1<=szHdr1 || CORRUPT_DB );
4164 u32 serial_type;
4166 /* RHS is an integer */
4167 if( pRhs->flags & MEM_Int ){
4168 serial_type = aKey1[idx1];
4169 testcase( serial_type==12 );
4170 if( serial_type>=10 ){
4171 rc = +1;
4172 }else if( serial_type==0 ){
4173 rc = -1;
4174 }else if( serial_type==7 ){
4175 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4176 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4177 }else{
4178 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4179 i64 rhs = pRhs->u.i;
4180 if( lhs<rhs ){
4181 rc = -1;
4182 }else if( lhs>rhs ){
4183 rc = +1;
4188 /* RHS is real */
4189 else if( pRhs->flags & MEM_Real ){
4190 serial_type = aKey1[idx1];
4191 if( serial_type>=10 ){
4192 /* Serial types 12 or greater are strings and blobs (greater than
4193 ** numbers). Types 10 and 11 are currently "reserved for future
4194 ** use", so it doesn't really matter what the results of comparing
4195 ** them to numberic values are. */
4196 rc = +1;
4197 }else if( serial_type==0 ){
4198 rc = -1;
4199 }else{
4200 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4201 if( serial_type==7 ){
4202 if( mem1.u.r<pRhs->u.r ){
4203 rc = -1;
4204 }else if( mem1.u.r>pRhs->u.r ){
4205 rc = +1;
4207 }else{
4208 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4213 /* RHS is a string */
4214 else if( pRhs->flags & MEM_Str ){
4215 getVarint32(&aKey1[idx1], serial_type);
4216 testcase( serial_type==12 );
4217 if( serial_type<12 ){
4218 rc = -1;
4219 }else if( !(serial_type & 0x01) ){
4220 rc = +1;
4221 }else{
4222 mem1.n = (serial_type - 12) / 2;
4223 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4224 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4225 if( (d1+mem1.n) > (unsigned)nKey1 ){
4226 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4227 return 0; /* Corruption */
4228 }else if( (pKeyInfo = pPKey2->pKeyInfo)->aColl[i] ){
4229 mem1.enc = pKeyInfo->enc;
4230 mem1.db = pKeyInfo->db;
4231 mem1.flags = MEM_Str;
4232 mem1.z = (char*)&aKey1[d1];
4233 rc = vdbeCompareMemString(
4234 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4236 }else{
4237 int nCmp = MIN(mem1.n, pRhs->n);
4238 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4239 if( rc==0 ) rc = mem1.n - pRhs->n;
4244 /* RHS is a blob */
4245 else if( pRhs->flags & MEM_Blob ){
4246 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4247 getVarint32(&aKey1[idx1], serial_type);
4248 testcase( serial_type==12 );
4249 if( serial_type<12 || (serial_type & 0x01) ){
4250 rc = -1;
4251 }else{
4252 int nStr = (serial_type - 12) / 2;
4253 testcase( (d1+nStr)==(unsigned)nKey1 );
4254 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4255 if( (d1+nStr) > (unsigned)nKey1 ){
4256 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4257 return 0; /* Corruption */
4258 }else if( pRhs->flags & MEM_Zero ){
4259 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4260 rc = 1;
4261 }else{
4262 rc = nStr - pRhs->u.nZero;
4264 }else{
4265 int nCmp = MIN(nStr, pRhs->n);
4266 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4267 if( rc==0 ) rc = nStr - pRhs->n;
4272 /* RHS is null */
4273 else{
4274 serial_type = aKey1[idx1];
4275 rc = (serial_type!=0);
4278 if( rc!=0 ){
4279 if( pPKey2->pKeyInfo->aSortOrder[i] ){
4280 rc = -rc;
4282 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4283 assert( mem1.szMalloc==0 ); /* See comment below */
4284 return rc;
4287 i++;
4288 if( i==pPKey2->nField ) break;
4289 pRhs++;
4290 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4291 idx1 += sqlite3VarintLen(serial_type);
4292 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4294 /* No memory allocation is ever used on mem1. Prove this using
4295 ** the following assert(). If the assert() fails, it indicates a
4296 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4297 assert( mem1.szMalloc==0 );
4299 /* rc==0 here means that one or both of the keys ran out of fields and
4300 ** all the fields up to that point were equal. Return the default_rc
4301 ** value. */
4302 assert( CORRUPT_DB
4303 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4304 || pPKey2->pKeyInfo->db->mallocFailed
4306 pPKey2->eqSeen = 1;
4307 return pPKey2->default_rc;
4309 int sqlite3VdbeRecordCompare(
4310 int nKey1, const void *pKey1, /* Left key */
4311 UnpackedRecord *pPKey2 /* Right key */
4313 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4318 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4319 ** that (a) the first field of pPKey2 is an integer, and (b) the
4320 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4321 ** byte (i.e. is less than 128).
4323 ** To avoid concerns about buffer overreads, this routine is only used
4324 ** on schemas where the maximum valid header size is 63 bytes or less.
4326 static int vdbeRecordCompareInt(
4327 int nKey1, const void *pKey1, /* Left key */
4328 UnpackedRecord *pPKey2 /* Right key */
4330 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4331 int serial_type = ((const u8*)pKey1)[1];
4332 int res;
4333 u32 y;
4334 u64 x;
4335 i64 v;
4336 i64 lhs;
4338 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4339 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4340 switch( serial_type ){
4341 case 1: { /* 1-byte signed integer */
4342 lhs = ONE_BYTE_INT(aKey);
4343 testcase( lhs<0 );
4344 break;
4346 case 2: { /* 2-byte signed integer */
4347 lhs = TWO_BYTE_INT(aKey);
4348 testcase( lhs<0 );
4349 break;
4351 case 3: { /* 3-byte signed integer */
4352 lhs = THREE_BYTE_INT(aKey);
4353 testcase( lhs<0 );
4354 break;
4356 case 4: { /* 4-byte signed integer */
4357 y = FOUR_BYTE_UINT(aKey);
4358 lhs = (i64)*(int*)&y;
4359 testcase( lhs<0 );
4360 break;
4362 case 5: { /* 6-byte signed integer */
4363 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4364 testcase( lhs<0 );
4365 break;
4367 case 6: { /* 8-byte signed integer */
4368 x = FOUR_BYTE_UINT(aKey);
4369 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4370 lhs = *(i64*)&x;
4371 testcase( lhs<0 );
4372 break;
4374 case 8:
4375 lhs = 0;
4376 break;
4377 case 9:
4378 lhs = 1;
4379 break;
4381 /* This case could be removed without changing the results of running
4382 ** this code. Including it causes gcc to generate a faster switch
4383 ** statement (since the range of switch targets now starts at zero and
4384 ** is contiguous) but does not cause any duplicate code to be generated
4385 ** (as gcc is clever enough to combine the two like cases). Other
4386 ** compilers might be similar. */
4387 case 0: case 7:
4388 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4390 default:
4391 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4394 v = pPKey2->aMem[0].u.i;
4395 if( v>lhs ){
4396 res = pPKey2->r1;
4397 }else if( v<lhs ){
4398 res = pPKey2->r2;
4399 }else if( pPKey2->nField>1 ){
4400 /* The first fields of the two keys are equal. Compare the trailing
4401 ** fields. */
4402 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4403 }else{
4404 /* The first fields of the two keys are equal and there are no trailing
4405 ** fields. Return pPKey2->default_rc in this case. */
4406 res = pPKey2->default_rc;
4407 pPKey2->eqSeen = 1;
4410 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4411 return res;
4415 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4416 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4417 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4418 ** at the start of (pKey1/nKey1) fits in a single byte.
4420 static int vdbeRecordCompareString(
4421 int nKey1, const void *pKey1, /* Left key */
4422 UnpackedRecord *pPKey2 /* Right key */
4424 const u8 *aKey1 = (const u8*)pKey1;
4425 int serial_type;
4426 int res;
4428 assert( pPKey2->aMem[0].flags & MEM_Str );
4429 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4430 getVarint32(&aKey1[1], serial_type);
4431 if( serial_type<12 ){
4432 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4433 }else if( !(serial_type & 0x01) ){
4434 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4435 }else{
4436 int nCmp;
4437 int nStr;
4438 int szHdr = aKey1[0];
4440 nStr = (serial_type-12) / 2;
4441 if( (szHdr + nStr) > nKey1 ){
4442 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4443 return 0; /* Corruption */
4445 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4446 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4448 if( res==0 ){
4449 res = nStr - pPKey2->aMem[0].n;
4450 if( res==0 ){
4451 if( pPKey2->nField>1 ){
4452 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4453 }else{
4454 res = pPKey2->default_rc;
4455 pPKey2->eqSeen = 1;
4457 }else if( res>0 ){
4458 res = pPKey2->r2;
4459 }else{
4460 res = pPKey2->r1;
4462 }else if( res>0 ){
4463 res = pPKey2->r2;
4464 }else{
4465 res = pPKey2->r1;
4469 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4470 || CORRUPT_DB
4471 || pPKey2->pKeyInfo->db->mallocFailed
4473 return res;
4477 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4478 ** suitable for comparing serialized records to the unpacked record passed
4479 ** as the only argument.
4481 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4482 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4483 ** that the size-of-header varint that occurs at the start of each record
4484 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4485 ** also assumes that it is safe to overread a buffer by at least the
4486 ** maximum possible legal header size plus 8 bytes. Because there is
4487 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4488 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4489 ** limit the size of the header to 64 bytes in cases where the first field
4490 ** is an integer.
4492 ** The easiest way to enforce this limit is to consider only records with
4493 ** 13 fields or less. If the first field is an integer, the maximum legal
4494 ** header size is (12*5 + 1 + 1) bytes. */
4495 if( p->pKeyInfo->nAllField<=13 ){
4496 int flags = p->aMem[0].flags;
4497 if( p->pKeyInfo->aSortOrder[0] ){
4498 p->r1 = 1;
4499 p->r2 = -1;
4500 }else{
4501 p->r1 = -1;
4502 p->r2 = 1;
4504 if( (flags & MEM_Int) ){
4505 return vdbeRecordCompareInt;
4507 testcase( flags & MEM_Real );
4508 testcase( flags & MEM_Null );
4509 testcase( flags & MEM_Blob );
4510 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4511 assert( flags & MEM_Str );
4512 return vdbeRecordCompareString;
4516 return sqlite3VdbeRecordCompare;
4520 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4521 ** Read the rowid (the last field in the record) and store it in *rowid.
4522 ** Return SQLITE_OK if everything works, or an error code otherwise.
4524 ** pCur might be pointing to text obtained from a corrupt database file.
4525 ** So the content cannot be trusted. Do appropriate checks on the content.
4527 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4528 i64 nCellKey = 0;
4529 int rc;
4530 u32 szHdr; /* Size of the header */
4531 u32 typeRowid; /* Serial type of the rowid */
4532 u32 lenRowid; /* Size of the rowid */
4533 Mem m, v;
4535 /* Get the size of the index entry. Only indices entries of less
4536 ** than 2GiB are support - anything large must be database corruption.
4537 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4538 ** this code can safely assume that nCellKey is 32-bits
4540 assert( sqlite3BtreeCursorIsValid(pCur) );
4541 nCellKey = sqlite3BtreePayloadSize(pCur);
4542 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4544 /* Read in the complete content of the index entry */
4545 sqlite3VdbeMemInit(&m, db, 0);
4546 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4547 if( rc ){
4548 return rc;
4551 /* The index entry must begin with a header size */
4552 (void)getVarint32((u8*)m.z, szHdr);
4553 testcase( szHdr==3 );
4554 testcase( szHdr==m.n );
4555 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4556 goto idx_rowid_corruption;
4559 /* The last field of the index should be an integer - the ROWID.
4560 ** Verify that the last entry really is an integer. */
4561 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4562 testcase( typeRowid==1 );
4563 testcase( typeRowid==2 );
4564 testcase( typeRowid==3 );
4565 testcase( typeRowid==4 );
4566 testcase( typeRowid==5 );
4567 testcase( typeRowid==6 );
4568 testcase( typeRowid==8 );
4569 testcase( typeRowid==9 );
4570 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4571 goto idx_rowid_corruption;
4573 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4574 testcase( (u32)m.n==szHdr+lenRowid );
4575 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4576 goto idx_rowid_corruption;
4579 /* Fetch the integer off the end of the index record */
4580 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4581 *rowid = v.u.i;
4582 sqlite3VdbeMemRelease(&m);
4583 return SQLITE_OK;
4585 /* Jump here if database corruption is detected after m has been
4586 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4587 idx_rowid_corruption:
4588 testcase( m.szMalloc!=0 );
4589 sqlite3VdbeMemRelease(&m);
4590 return SQLITE_CORRUPT_BKPT;
4594 ** Compare the key of the index entry that cursor pC is pointing to against
4595 ** the key string in pUnpacked. Write into *pRes a number
4596 ** that is negative, zero, or positive if pC is less than, equal to,
4597 ** or greater than pUnpacked. Return SQLITE_OK on success.
4599 ** pUnpacked is either created without a rowid or is truncated so that it
4600 ** omits the rowid at the end. The rowid at the end of the index entry
4601 ** is ignored as well. Hence, this routine only compares the prefixes
4602 ** of the keys prior to the final rowid, not the entire key.
4604 int sqlite3VdbeIdxKeyCompare(
4605 sqlite3 *db, /* Database connection */
4606 VdbeCursor *pC, /* The cursor to compare against */
4607 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4608 int *res /* Write the comparison result here */
4610 i64 nCellKey = 0;
4611 int rc;
4612 BtCursor *pCur;
4613 Mem m;
4615 assert( pC->eCurType==CURTYPE_BTREE );
4616 pCur = pC->uc.pCursor;
4617 assert( sqlite3BtreeCursorIsValid(pCur) );
4618 nCellKey = sqlite3BtreePayloadSize(pCur);
4619 /* nCellKey will always be between 0 and 0xffffffff because of the way
4620 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4621 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4622 *res = 0;
4623 return SQLITE_CORRUPT_BKPT;
4625 sqlite3VdbeMemInit(&m, db, 0);
4626 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4627 if( rc ){
4628 return rc;
4630 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
4631 sqlite3VdbeMemRelease(&m);
4632 return SQLITE_OK;
4636 ** This routine sets the value to be returned by subsequent calls to
4637 ** sqlite3_changes() on the database handle 'db'.
4639 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4640 assert( sqlite3_mutex_held(db->mutex) );
4641 db->nChange = nChange;
4642 db->nTotalChange += nChange;
4646 ** Set a flag in the vdbe to update the change counter when it is finalised
4647 ** or reset.
4649 void sqlite3VdbeCountChanges(Vdbe *v){
4650 v->changeCntOn = 1;
4654 ** Mark every prepared statement associated with a database connection
4655 ** as expired.
4657 ** An expired statement means that recompilation of the statement is
4658 ** recommend. Statements expire when things happen that make their
4659 ** programs obsolete. Removing user-defined functions or collating
4660 ** sequences, or changing an authorization function are the types of
4661 ** things that make prepared statements obsolete.
4663 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4664 Vdbe *p;
4665 for(p = db->pVdbe; p; p=p->pNext){
4666 p->expired = 1;
4671 ** Return the database associated with the Vdbe.
4673 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4674 return v->db;
4678 ** Return the SQLITE_PREPARE flags for a Vdbe.
4680 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4681 return v->prepFlags;
4685 ** Return a pointer to an sqlite3_value structure containing the value bound
4686 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4687 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4688 ** constants) to the value before returning it.
4690 ** The returned value must be freed by the caller using sqlite3ValueFree().
4692 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4693 assert( iVar>0 );
4694 if( v ){
4695 Mem *pMem = &v->aVar[iVar-1];
4696 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4697 if( 0==(pMem->flags & MEM_Null) ){
4698 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4699 if( pRet ){
4700 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4701 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4703 return pRet;
4706 return 0;
4710 ** Configure SQL variable iVar so that binding a new value to it signals
4711 ** to sqlite3_reoptimize() that re-preparing the statement may result
4712 ** in a better query plan.
4714 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4715 assert( iVar>0 );
4716 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4717 if( iVar>=32 ){
4718 v->expmask |= 0x80000000;
4719 }else{
4720 v->expmask |= ((u32)1 << (iVar-1));
4725 ** Cause a function to throw an error if it was call from OP_PureFunc
4726 ** rather than OP_Function.
4728 ** OP_PureFunc means that the function must be deterministic, and should
4729 ** throw an error if it is given inputs that would make it non-deterministic.
4730 ** This routine is invoked by date/time functions that use non-deterministic
4731 ** features such as 'now'.
4733 int sqlite3NotPureFunc(sqlite3_context *pCtx){
4734 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4735 if( pCtx->pVdbe==0 ) return 1;
4736 #endif
4737 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
4738 sqlite3_result_error(pCtx,
4739 "non-deterministic function in index expression or CHECK constraint",
4740 -1);
4741 return 0;
4743 return 1;
4746 #ifndef SQLITE_OMIT_VIRTUALTABLE
4748 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4749 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4750 ** in memory obtained from sqlite3DbMalloc).
4752 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4753 if( pVtab->zErrMsg ){
4754 sqlite3 *db = p->db;
4755 sqlite3DbFree(db, p->zErrMsg);
4756 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4757 sqlite3_free(pVtab->zErrMsg);
4758 pVtab->zErrMsg = 0;
4761 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4763 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4766 ** If the second argument is not NULL, release any allocations associated
4767 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4768 ** structure itself, using sqlite3DbFree().
4770 ** This function is used to free UnpackedRecord structures allocated by
4771 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4773 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4774 if( p ){
4775 int i;
4776 for(i=0; i<nField; i++){
4777 Mem *pMem = &p->aMem[i];
4778 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4780 sqlite3DbFreeNN(db, p);
4783 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4785 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4787 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4788 ** then cursor passed as the second argument should point to the row about
4789 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4790 ** the required value will be read from the row the cursor points to.
4792 void sqlite3VdbePreUpdateHook(
4793 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4794 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4795 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4796 const char *zDb, /* Database name */
4797 Table *pTab, /* Modified table */
4798 i64 iKey1, /* Initial key value */
4799 int iReg /* Register for new.* record */
4801 sqlite3 *db = v->db;
4802 i64 iKey2;
4803 PreUpdate preupdate;
4804 const char *zTbl = pTab->zName;
4805 static const u8 fakeSortOrder = 0;
4807 assert( db->pPreUpdate==0 );
4808 memset(&preupdate, 0, sizeof(PreUpdate));
4809 if( HasRowid(pTab)==0 ){
4810 iKey1 = iKey2 = 0;
4811 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4812 }else{
4813 if( op==SQLITE_UPDATE ){
4814 iKey2 = v->aMem[iReg].u.i;
4815 }else{
4816 iKey2 = iKey1;
4820 assert( pCsr->nField==pTab->nCol
4821 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4824 preupdate.v = v;
4825 preupdate.pCsr = pCsr;
4826 preupdate.op = op;
4827 preupdate.iNewReg = iReg;
4828 preupdate.keyinfo.db = db;
4829 preupdate.keyinfo.enc = ENC(db);
4830 preupdate.keyinfo.nKeyField = pTab->nCol;
4831 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4832 preupdate.iKey1 = iKey1;
4833 preupdate.iKey2 = iKey2;
4834 preupdate.pTab = pTab;
4836 db->pPreUpdate = &preupdate;
4837 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4838 db->pPreUpdate = 0;
4839 sqlite3DbFree(db, preupdate.aRecord);
4840 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
4841 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
4842 if( preupdate.aNew ){
4843 int i;
4844 for(i=0; i<pCsr->nField; i++){
4845 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4847 sqlite3DbFreeNN(db, preupdate.aNew);
4850 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */