3 # The author disclaims copyright to this source code. In place of
4 # a legal notice, here is a blessing:
6 # May you do good and not evil.
7 # May you find forgiveness for yourself and forgive others.
8 # May you share freely, never taking more than you give.
10 #***********************************************************************
11 # This file implements regression tests for SQLite library. The
12 # focus of this file is testing the operation of the library in
13 # "PRAGMA journal_mode=WAL" mode.
16 set testdir [file dirname $argv0]
17 source $testdir/tester.tcl
18 source $testdir/lock_common.tcl
19 source $testdir/malloc_common.tcl
20 source $testdir/wal_common.tcl
24 ifcapable !wal {finish_test ; return }
25 test_set_config_pagecache 0 0
29 forcedelete test.db test.db-wal test.db-wal-summary
30 sqlite3_wal db test.db
36 return [string range [string repeat "${::blobcnt}x" $nByte] 1 $nByte]
39 proc sqlite3_wal {args} {
41 [lindex $args 0] eval { PRAGMA auto_vacuum = 0 }
42 [lindex $args 0] eval { PRAGMA page_size = 1024 }
43 [lindex $args 0] eval { PRAGMA journal_mode = wal }
44 [lindex $args 0] eval { PRAGMA synchronous = normal }
45 [lindex $args 0] function blob blob
48 proc log_deleted {logfile} {
49 return [expr [file exists $logfile]==0]
53 # These are 'warm-body' tests used while developing the WAL code. They
54 # serve to prove that a few really simple cases work:
56 # wal-1.*: Read and write the database.
57 # wal-2.*: Test MVCC with one reader, one writer.
58 # wal-3.*: Test transaction rollback.
59 # wal-4.*: Test savepoint/statement rollback.
60 # wal-5.*: Test the temp database.
61 # wal-6.*: Test creating databases with different page sizes.
66 execsql { PRAGMA auto_vacuum = 0 }
67 execsql { PRAGMA synchronous = normal }
68 execsql { PRAGMA journal_mode = wal }
77 CREATE TABLE t1(a, b);
79 list [file exists test.db-journal] \
80 [file exists test.db-wal] \
85 list [file exists test.db-journal] [file exists test.db-wal]
88 # There are now two pages in the log.
90 } [wal_file_size 2 1024]
93 execsql { SELECT * FROM sqlite_master }
94 } {table t1 t1 2 {CREATE TABLE t1(a, b)}}
97 execsql { INSERT INTO t1 VALUES(1, 2) }
98 execsql { INSERT INTO t1 VALUES(3, 4) }
99 execsql { INSERT INTO t1 VALUES(5, 6) }
100 execsql { INSERT INTO t1 VALUES(7, 8) }
101 execsql { INSERT INTO t1 VALUES(9, 10) }
105 execsql { SELECT * FROM t1 }
106 } {1 2 3 4 5 6 7 8 9 10}
109 sqlite3_wal db2 ./test.db
110 execsql { BEGIN; SELECT * FROM t1 } db2
111 } {1 2 3 4 5 6 7 8 9 10}
114 execsql { INSERT INTO t1 VALUES(11, 12) }
115 execsql { SELECT * FROM t1 }
116 } {1 2 3 4 5 6 7 8 9 10 11 12}
119 execsql { SELECT * FROM t1 } db2
120 } {1 2 3 4 5 6 7 8 9 10}
123 execsql { INSERT INTO t1 VALUES(13, 14) }
124 execsql { SELECT * FROM t1 }
125 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
128 execsql { SELECT * FROM t1 } db2
129 } {1 2 3 4 5 6 7 8 9 10}
132 execsql { COMMIT; SELECT * FROM t1 } db2
133 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
136 execsql { BEGIN; DELETE FROM t1 }
137 execsql { SELECT * FROM t1 }
140 execsql { SELECT * FROM t1 } db2
141 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
144 execsql { SELECT * FROM t1 }
145 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
148 #-------------------------------------------------------------------------
149 # The following tests, wal-4.*, test that savepoints work with WAL
156 INSERT INTO t1 VALUES('a', 'b');
158 INSERT INTO t1 VALUES('c', 'd');
179 list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
182 execsql { PRAGMA cache_size = 10 }
184 CREATE TABLE t2(a, b);
185 INSERT INTO t2 VALUES(blob(400), blob(400));
187 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
188 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
189 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
190 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
191 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
192 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
193 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
194 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
195 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
196 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
197 SELECT count(*) FROM t2;
201 execsql { ROLLBACK TO tr }
204 set logsize [file size test.db-wal]
206 INSERT INTO t1 VALUES('x', 'y');
209 expr { $logsize == [file size test.db-wal] }
212 execsql { SELECT count(*) FROM t2 }
215 forcecopy test.db test2.db
216 forcecopy test.db-wal test2.db-wal
218 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
221 execsql { PRAGMA integrity_check } db2
229 PRAGMA journal_mode = WAL;
230 CREATE TABLE t1(a, b);
231 INSERT INTO t1 VALUES('a', 'b');
235 list [execsql { SELECT * FROM t1 }] [file size test.db-wal]
238 execsql { PRAGMA cache_size = 10 }
240 CREATE TABLE t2(a, b);
242 INSERT INTO t2 VALUES(blob(400), blob(400));
244 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */
245 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */
246 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */
247 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */
248 INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */
249 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */
250 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */
251 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */
252 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */
253 INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */
254 SELECT count(*) FROM t2;
258 execsql { ROLLBACK TO tr }
261 set logsize [file size test.db-wal]
263 INSERT INTO t1 VALUES('x', 'y');
267 expr { $logsize == [file size test.db-wal] }
270 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 }
273 forcecopy test.db test2.db
274 forcecopy test.db-wal test2.db-wal
276 execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2
279 execsql { PRAGMA integrity_check } db2
286 PRAGMA wal_checkpoint;
288 INSERT INTO t2 VALUES('w', 'x');
290 INSERT INTO t2 VALUES('y', 'z');
294 execsql { SELECT * FROM t2 }
301 CREATE TEMP TABLE t2(a, b);
302 INSERT INTO t2 VALUES(1, 2);
308 INSERT INTO t2 VALUES(3, 4);
320 CREATE TEMP TABLE t3(x UNIQUE);
322 INSERT INTO t2 VALUES(3, 4);
323 INSERT INTO t3 VALUES('abc');
325 catchsql { INSERT INTO t3 VALUES('abc') }
326 } {1 {UNIQUE constraint failed: t3.x}}
335 foreach sector {512 4096} {
336 sqlite3_simulate_device -sectorsize $sector
337 foreach pgsz {512 1024 2048 4096} {
338 forcedelete test.db test.db-wal
339 do_test wal-6.$sector.$pgsz.1 {
340 sqlite3 db test.db -vfs devsym
342 PRAGMA page_size = $pgsz;
343 PRAGMA auto_vacuum = 0;
344 PRAGMA journal_mode = wal;
347 CREATE TABLE t1(a, b);
348 INSERT INTO t1 VALUES(1, 2);
354 do_test wal-6.$sector.$pgsz.2 {
355 log_deleted test.db-wal
361 forcedelete test.db test.db-wal
362 sqlite3_wal db test.db
364 PRAGMA page_size = 1024;
365 CREATE TABLE t1(a, b);
366 INSERT INTO t1 VALUES(1, 2);
368 list [file size test.db] [file size test.db-wal]
369 } [list 1024 [wal_file_size 3 1024]]
371 execsql { PRAGMA wal_checkpoint }
372 list [file size test.db] [file size test.db-wal]
373 } [list 2048 [wal_file_size 3 1024]]
375 # Execute some transactions in auto-vacuum mode to test database file
381 forcedelete test.db test.db-wal
384 db function blob blob
386 PRAGMA auto_vacuum = 1;
387 PRAGMA journal_mode = wal;
393 PRAGMA page_size = 1024;
395 INSERT INTO t1 VALUES(blob(900));
396 INSERT INTO t1 VALUES(blob(900));
397 INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
398 INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
399 INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
400 INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
401 INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
402 PRAGMA wal_checkpoint;
408 DELETE FROM t1 WHERE rowid<54;
409 PRAGMA wal_checkpoint;
414 # Run some "warm-body" tests to ensure that log-summary files with more
415 # than 256 entries (log summaries that contain index blocks) work Ok.
420 PRAGMA cache_size=2000;
421 CREATE TABLE t1(x PRIMARY KEY);
422 INSERT INTO t1 VALUES(blob(900));
423 INSERT INTO t1 VALUES(blob(900));
424 INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */
425 INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */
426 INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */
427 INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */
428 INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */
429 INSERT INTO t1 SELECT blob(900) FROM t1; /* 128 */
430 INSERT INTO t1 SELECT blob(900) FROM t1; /* 256 */
435 sqlite3_wal db2 test.db
436 execsql {PRAGMA integrity_check } db2
440 forcedelete test2.db test2.db-wal
441 copy_file test.db test2.db
442 copy_file test.db-wal test2.db-wal
443 sqlite3_wal db3 test2.db
444 execsql {PRAGMA integrity_check } db3
449 execsql { PRAGMA wal_checkpoint }
451 sqlite3_wal db2 test.db
452 execsql {PRAGMA integrity_check } db2
455 foreach handle {db db2 db3} { catch { $handle close } }
458 #-------------------------------------------------------------------------
459 # The following block of tests - wal-10.* - test that the WAL locking
460 # scheme works in simple cases. This block of tests is run twice. Once
461 # using multiple connections in the address space of the current process,
462 # and once with all connections except one running in external processes.
464 do_multiclient_test tn {
466 # Initialize the database schema and contents.
468 do_test wal-10.$tn.1 {
470 PRAGMA auto_vacuum = 0;
471 PRAGMA journal_mode = wal;
472 CREATE TABLE t1(a, b);
473 INSERT INTO t1 VALUES(1, 2);
478 # Open a transaction and write to the database using [db]. Check that [db2]
479 # is still able to read the snapshot before the transaction was opened.
481 do_test wal-10.$tn.2 {
482 execsql { BEGIN; INSERT INTO t1 VALUES(3, 4); }
483 sql2 {SELECT * FROM t1}
486 # Have [db] commit the transaction. Check that [db2] is now seeing the
487 # new, updated snapshot.
489 do_test wal-10.$tn.3 {
491 sql2 {SELECT * FROM t1}
494 # Have [db2] open a read transaction. Then write to the db via [db]. Check
495 # that [db2] is still seeing the original snapshot. Then read with [db3].
496 # [db3] should see the newly committed data.
498 do_test wal-10.$tn.4 {
499 sql2 { BEGIN ; SELECT * FROM t1}
501 do_test wal-10.$tn.5 {
502 execsql { INSERT INTO t1 VALUES(5, 6); }
503 sql2 {SELECT * FROM t1}
505 do_test wal-10.$tn.6 {
506 sql3 {SELECT * FROM t1}
508 do_test wal-10.$tn.7 {
512 # Have [db2] open a write transaction. Then attempt to write to the
513 # database via [db]. This should fail (writer lock cannot be obtained).
515 # Then open a read-transaction with [db]. Commit the [db2] transaction
516 # to disk. Verify that [db] still cannot write to the database (because
517 # it is reading an old snapshot).
519 # Close the current [db] transaction. Open a new one. [db] can now write
520 # to the database (as it is not locked and [db] is reading the latest
523 do_test wal-10.$tn.7 {
524 sql2 { BEGIN; INSERT INTO t1 VALUES(7, 8) ; }
525 catchsql { INSERT INTO t1 VALUES(9, 10) }
526 } {1 {database is locked}}
527 do_test wal-10.$tn.8 {
528 execsql { BEGIN ; SELECT * FROM t1 }
530 do_test wal-10.$tn.9 {
532 catchsql { INSERT INTO t1 VALUES(9, 10) }
533 } {1 {database is locked}}
534 do_test wal-10.$tn.10 {
537 execsql { INSERT INTO t1 VALUES(9, 10) }
539 execsql { SELECT * FROM t1 }
540 } {1 2 3 4 5 6 7 8 9 10}
542 # Open a read transaction with [db2]. Check that this prevents [db] from
543 # checkpointing the database. But not from writing to it.
545 do_test wal-10.$tn.11 {
546 sql2 { BEGIN; SELECT * FROM t1 }
547 } {1 2 3 4 5 6 7 8 9 10}
548 do_test wal-10.$tn.12 {
549 catchsql { PRAGMA wal_checkpoint }
550 } {0 {0 7 7}} ;# Reader no longer block checkpoints
551 do_test wal-10.$tn.13 {
552 execsql { INSERT INTO t1 VALUES(11, 12) }
553 sql2 {SELECT * FROM t1}
554 } {1 2 3 4 5 6 7 8 9 10}
556 # Writers do not block checkpoints any more either.
558 do_test wal-10.$tn.14 {
559 catchsql { PRAGMA wal_checkpoint }
562 # The following series of test cases used to verify another blocking
563 # case in WAL - a case which no longer blocks.
565 do_test wal-10.$tn.15 {
566 sql2 { COMMIT; BEGIN; SELECT * FROM t1; }
567 } {1 2 3 4 5 6 7 8 9 10 11 12}
568 do_test wal-10.$tn.16 {
569 catchsql { PRAGMA wal_checkpoint }
571 do_test wal-10.$tn.17 {
572 execsql { PRAGMA wal_checkpoint }
574 do_test wal-10.$tn.18 {
575 sql3 { BEGIN; SELECT * FROM t1 }
576 } {1 2 3 4 5 6 7 8 9 10 11 12}
577 do_test wal-10.$tn.19 {
578 catchsql { INSERT INTO t1 VALUES(13, 14) }
580 do_test wal-10.$tn.20 {
581 execsql { SELECT * FROM t1 }
582 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
583 do_test wal-10.$tn.21 {
587 do_test wal-10.$tn.22 {
588 execsql { SELECT * FROM t1 }
589 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
591 # Another series of tests that used to demonstrate blocking behavior
592 # but which now work.
594 do_test wal-10.$tn.23 {
595 execsql { PRAGMA wal_checkpoint }
597 do_test wal-10.$tn.24 {
598 sql2 { BEGIN; SELECT * FROM t1; }
599 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14}
600 do_test wal-10.$tn.25 {
601 execsql { PRAGMA wal_checkpoint }
603 do_test wal-10.$tn.26 {
604 catchsql { INSERT INTO t1 VALUES(15, 16) }
606 do_test wal-10.$tn.27 {
607 sql3 { INSERT INTO t1 VALUES(17, 18) }
609 do_test wal-10.$tn.28 {
611 set ::STMT [sqlite3_prepare db3 "SELECT * FROM t1" -1 TAIL]
614 execsql { SELECT * FROM t1 }
615 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18}
616 do_test wal-10.$tn.29 {
617 execsql { INSERT INTO t1 VALUES(19, 20) }
618 catchsql { PRAGMA wal_checkpoint }
620 do_test wal-10.$tn.30 {
621 code3 { sqlite3_finalize $::STMT }
622 execsql { PRAGMA wal_checkpoint }
625 # At one point, if a reader failed to upgrade to a writer because it
626 # was reading an old snapshot, the write-locks were not being released.
627 # Test that this bug has been fixed.
629 do_test wal-10.$tn.31 {
631 execsql { BEGIN ; SELECT * FROM t1 }
632 sql2 { INSERT INTO t1 VALUES(21, 22) }
633 catchsql { INSERT INTO t1 VALUES(23, 24) }
634 } {1 {database is locked}}
635 do_test wal-10.$tn.32 {
636 # This statement would fail when the bug was present.
637 sql2 { INSERT INTO t1 VALUES(23, 24) }
639 do_test wal-10.$tn.33 {
640 execsql { SELECT * FROM t1 ; COMMIT }
641 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
642 do_test wal-10.$tn.34 {
643 execsql { SELECT * FROM t1 }
644 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
646 # Test that if a checkpointer cannot obtain the required locks, it
647 # releases all locks before returning a busy error.
649 do_test wal-10.$tn.35 {
652 INSERT INTO t1 VALUES('a', 'b');
653 INSERT INTO t1 VALUES('c', 'd');
660 do_test wal-10.$tn.36 {
661 catchsql { PRAGMA wal_checkpoint }
663 do_test wal-10.$tn.36 {
664 sql3 { INSERT INTO t1 VALUES('e', 'f') }
665 sql2 { SELECT * FROM t1 }
667 do_test wal-10.$tn.37 {
669 execsql { PRAGMA wal_checkpoint }
673 #-------------------------------------------------------------------------
674 # This block of tests, wal-11.*, test that nothing goes terribly wrong
675 # if frames must be written to the log file before a transaction is
676 # committed (in order to free up memory).
681 PRAGMA cache_size = 10;
682 PRAGMA page_size = 1024;
683 CREATE TABLE t1(x PRIMARY KEY);
685 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
688 execsql { PRAGMA wal_checkpoint }
689 list [expr [file size test.db]/1024] [file size test.db-wal]
690 } [list 3 [wal_file_size 3 1024]]
692 execsql { INSERT INTO t1 VALUES( blob(900) ) }
693 list [expr [file size test.db]/1024] [file size test.db-wal]
694 } [list 3 [wal_file_size 4 1024]]
699 INSERT INTO t1 SELECT blob(900) FROM t1; -- 2
700 INSERT INTO t1 SELECT blob(900) FROM t1; -- 4
701 INSERT INTO t1 SELECT blob(900) FROM t1; -- 8
702 INSERT INTO t1 SELECT blob(900) FROM t1; -- 16
704 list [expr [file size test.db]/1024] [file size test.db-wal]
705 } [list 3 [wal_file_size 32 1024]]
708 SELECT count(*) FROM t1;
709 PRAGMA integrity_check;
714 list [expr [file size test.db]/1024] [file size test.db-wal]
715 } [list 3 [wal_file_size 40 1024]]
718 SELECT count(*) FROM t1;
719 PRAGMA integrity_check;
723 execsql { PRAGMA wal_checkpoint }
724 list [expr [file size test.db]/1024] [file size test.db-wal]
725 } [list 37 [wal_file_size 40 1024]]
728 list [expr [file size test.db]/1024] [log_deleted test.db-wal]
730 sqlite3_wal db test.db
732 # After adding the capability of WAL to overwrite prior uncommitted
733 # frame in the WAL-file with revised content, the size of the WAL file
734 # following cache-spill is smaller.
737 #if {[permutation]!="mmap"} {set nWal 37}
738 #ifcapable !mmap {set nWal 37}
743 PRAGMA cache_size = 10;
745 INSERT INTO t1 SELECT blob(900) FROM t1; -- 32
746 SELECT count(*) FROM t1;
748 list [expr [file size test.db]/1024] [file size test.db-wal]
749 } [list 37 [wal_file_size $nWal 1024]]
752 SELECT count(*) FROM t1;
754 SELECT count(*) FROM t1;
758 list [expr [file size test.db]/1024] [file size test.db-wal]
759 } [list 37 [wal_file_size $nWal 1024]]
762 INSERT INTO t1 VALUES( blob(900) );
763 SELECT count(*) FROM t1;
764 PRAGMA integrity_check;
768 list [expr [file size test.db]/1024] [file size test.db-wal]
769 } [list 37 [wal_file_size $nWal 1024]]
772 #-------------------------------------------------------------------------
773 # This block of tests, wal-12.*, tests the fix for a problem that
774 # could occur if a log that is a prefix of an older log is written
775 # into a reused log file.
780 PRAGMA page_size = 1024;
781 CREATE TABLE t1(x, y);
782 CREATE TABLE t2(x, y);
783 INSERT INTO t1 VALUES('A', 1);
785 list [expr [file size test.db]/1024] [file size test.db-wal]
786 } [list 1 [wal_file_size 5 1024]]
791 PRAGMA synchronous = normal;
792 UPDATE t1 SET y = 0 WHERE x = 'A';
794 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
797 execsql { INSERT INTO t2 VALUES('B', 1) }
798 list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044]
801 forcecopy test.db test2.db
802 forcecopy test.db-wal test2.db-wal
803 sqlite3_wal db2 test2.db
804 execsql { SELECT * FROM t2 } db2
809 PRAGMA wal_checkpoint;
810 UPDATE t2 SET y = 2 WHERE x = 'B';
811 PRAGMA wal_checkpoint;
812 UPDATE t1 SET y = 1 WHERE x = 'A';
813 PRAGMA wal_checkpoint;
814 UPDATE t1 SET y = 0 WHERE x = 'A';
816 execsql { SELECT * FROM t2 }
819 forcecopy test.db test2.db
820 forcecopy test.db-wal test2.db-wal
821 sqlite3_wal db2 test2.db
822 execsql { SELECT * FROM t2 } db2
827 #-------------------------------------------------------------------------
828 # Check a fun corruption case has been fixed.
830 # The problem was that after performing a checkpoint using a connection
831 # that had an out-of-date pager-cache, the next time the connection was
832 # used it did not realize the cache was out-of-date and proceeded to
833 # operate with an inconsistent cache. Leading to corruption.
838 forcedelete test.db test.db-wal
843 PRAGMA journal_mode = WAL;
844 CREATE TABLE t1(a PRIMARY KEY, b);
845 INSERT INTO t1 VALUES(randomblob(10), randomblob(100));
846 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
847 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
848 INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1;
852 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
853 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
854 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
855 INSERT INTO t1 SELECT randomblob(10), randomblob(100);
858 # After executing the "PRAGMA wal_checkpoint", connection [db] was being
859 # left with an inconsistent cache. Running the CREATE INDEX statement
860 # in this state led to database corruption.
862 PRAGMA wal_checkpoint;
863 CREATE INDEX i1 on t1(b);
866 db2 eval { PRAGMA integrity_check }
872 #-------------------------------------------------------------------------
873 # The following block of tests - wal-15.* - focus on testing the
874 # implementation of the sqlite3_wal_checkpoint() interface.
876 forcedelete test.db test.db-wal
880 PRAGMA auto_vacuum = 0;
881 PRAGMA page_size = 1024;
882 PRAGMA journal_mode = WAL;
885 CREATE TABLE t1(a, b);
886 INSERT INTO t1 VALUES(1, 2);
890 # Test that an error is returned if the database name is not recognized
893 sqlite3_wal_checkpoint db aux
900 } {unknown database: aux}
902 # Test that an error is returned if an attempt is made to checkpoint
903 # if a transaction is open on the database.
908 INSERT INTO t1 VALUES(3, 4);
910 sqlite3_wal_checkpoint db main
917 } {database table is locked}
919 # Earlier versions returned an error is returned if the db cannot be
920 # checkpointed because of locks held by another connection. Check that
921 # this is no longer the case.
932 sqlite3_wal_checkpoint db
938 # After [db2] drops its lock, [db] may checkpoint the db.
941 execsql { COMMIT } db2
942 sqlite3_wal_checkpoint db
954 #-------------------------------------------------------------------------
955 # The following block of tests - wal-16.* - test that if a NULL pointer or
956 # an empty string is passed as the second argument of the wal_checkpoint()
957 # API, an attempt is made to checkpoint all attached databases.
959 foreach {tn ckpt_cmd ckpt_res ckpt_main ckpt_aux} {
960 1 {sqlite3_wal_checkpoint db} SQLITE_OK 1 1
961 2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1
962 3 {db eval "PRAGMA wal_checkpoint"} {0 10 10} 1 1
964 4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0
965 5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1
966 6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0
967 7 {db eval "PRAGMA main.wal_checkpoint"} {0 10 10} 1 0
968 8 {db eval "PRAGMA aux.wal_checkpoint"} {0 13 13} 0 1
969 9 {db eval "PRAGMA temp.wal_checkpoint"} {0 -1 -1} 0 0
971 do_test wal-16.$tn.1 {
972 forcedelete test2.db test2.db-wal test2.db-journal
973 forcedelete test.db test.db-wal test.db-journal
977 ATTACH 'test2.db' AS aux;
978 PRAGMA main.auto_vacuum = 0;
979 PRAGMA aux.auto_vacuum = 0;
980 PRAGMA main.journal_mode = WAL;
981 PRAGMA aux.journal_mode = WAL;
982 PRAGMA main.synchronous = NORMAL;
983 PRAGMA aux.synchronous = NORMAL;
987 do_test wal-16.$tn.2 {
989 CREATE TABLE main.t1(a, b, PRIMARY KEY(a, b));
990 CREATE TABLE aux.t2(a, b, PRIMARY KEY(a, b));
992 INSERT INTO t2 VALUES(1, randomblob(1000));
993 INSERT INTO t2 VALUES(2, randomblob(1000));
994 INSERT INTO t1 SELECT * FROM t2;
997 list [file size test.db] [file size test.db-wal]
998 } [list [expr 1*1024] [wal_file_size 10 1024]]
999 do_test wal-16.$tn.3 {
1000 list [file size test2.db] [file size test2.db-wal]
1001 } [list [expr 1*1024] [wal_file_size 13 1024]]
1003 do_test wal-16.$tn.4 [list eval $ckpt_cmd] $ckpt_res
1005 do_test wal-16.$tn.5 {
1006 list [file size test.db] [file size test.db-wal]
1007 } [list [expr ($ckpt_main ? 7 : 1)*1024] [wal_file_size 10 1024]]
1009 do_test wal-16.$tn.6 {
1010 list [file size test2.db] [file size test2.db-wal]
1011 } [list [expr ($ckpt_aux ? 7 : 1)*1024] [wal_file_size 13 1024]]
1016 #-------------------------------------------------------------------------
1017 # The following tests - wal-17.* - attempt to verify that the correct
1018 # number of "padding" frames are appended to the log file when a transaction
1019 # is committed in synchronous=FULL mode.
1021 # Do this by creating a database that uses 512 byte pages. Then writing
1022 # a transaction that modifies 171 pages. In synchronous=NORMAL mode, this
1023 # produces a log file of:
1025 # 32 + (24+512)*171 = 90312 bytes.
1027 # Slightly larger than 11*8192 = 90112 bytes.
1029 # Run the test using various different sector-sizes. In each case, the
1030 # WAL code should write the 90300 bytes of log file containing the
1031 # transaction, then append as may frames as are required to extend the
1032 # log file so that no part of the next transaction will be written into
1033 # a disk-sector used by transaction just committed.
1035 set old_pending_byte [sqlite3_test_control_pending_byte 0x10000000]
1037 foreach {tn sectorsize logsize} "
1038 1 128 [wal_file_size 172 512]
1039 2 256 [wal_file_size 172 512]
1040 3 512 [wal_file_size 172 512]
1041 4 1024 [wal_file_size 172 512]
1042 5 2048 [wal_file_size 172 512]
1043 6 4096 [wal_file_size 176 512]
1044 7 8192 [wal_file_size 184 512]
1046 forcedelete test.db test.db-wal test.db-journal
1047 sqlite3_simulate_device -sectorsize $sectorsize
1048 sqlite3 db test.db -vfs devsym
1050 do_test wal-17.$tn.1 {
1052 PRAGMA auto_vacuum = 0;
1053 PRAGMA page_size = 512;
1054 PRAGMA cache_size = -2000;
1055 PRAGMA journal_mode = WAL;
1056 PRAGMA synchronous = FULL;
1062 for {set i 0} {$i<166} {incr i} {
1063 execsql { INSERT INTO t VALUES(randomblob(400)) }
1067 file size test.db-wal
1070 do_test wal-17.$tn.2 {
1074 do_test wal-17.$tn.3 {
1079 sqlite3_test_control_pending_byte $old_pending_byte
1081 #-------------------------------------------------------------------------
1082 # This test - wal-18.* - verifies a couple of specific conditions that
1083 # may be encountered while recovering a log file are handled correctly:
1085 # wal-18.1.* When the first 32-bits of a frame checksum is correct but
1086 # the second 32-bits are false, and
1088 # wal-18.2.* When the page-size field that occurs at the start of a log
1089 # file is a power of 2 greater than 16384 or smaller than 512.
1091 forcedelete test.db test.db-wal test.db-journal
1095 PRAGMA page_size = 1024;
1096 PRAGMA auto_vacuum = 0;
1097 PRAGMA journal_mode = WAL;
1098 PRAGMA synchronous = OFF;
1100 CREATE TABLE t1(a, b, UNIQUE(a, b));
1101 INSERT INTO t1 VALUES(0, 0);
1102 PRAGMA wal_checkpoint;
1104 INSERT INTO t1 VALUES(1, 2); -- frames 1 and 2
1105 INSERT INTO t1 VALUES(3, 4); -- frames 3 and 4
1106 INSERT INTO t1 VALUES(5, 6); -- frames 5 and 6
1109 forcecopy test.db testX.db
1110 forcecopy test.db-wal testX.db-wal
1112 list [file size testX.db] [file size testX.db-wal]
1113 } [list [expr 3*1024] [wal_file_size 6 1024]]
1115 unset -nocomplain nFrame result
1116 foreach {nFrame result} {
1125 do_test wal-18.1.$nFrame {
1126 forcecopy testX.db test.db
1127 forcecopy testX.db-wal test.db-wal
1129 hexio_write test.db-wal [expr 24 + $nFrame*(24+1024) + 20] 00000000
1134 PRAGMA integrity_check;
1136 } [concat $result ok]
1140 proc randomblob {pgsz} {
1141 sqlite3 rbdb :memory:
1142 set blob [rbdb one {SELECT randomblob($pgsz)}]
1147 proc logcksum {ckv1 ckv2 blob} {
1151 # Since the magic number at the start of the -wal file header is
1152 # 931071618 that indicates that the content should always be read as
1157 binary scan $blob $scanpattern values
1158 foreach {v1 v2} $values {
1159 set c1 [expr {($c1 + $v1 + $c2)&0xFFFFFFFF}]
1160 set c2 [expr {($c2 + $v2 + $c1)&0xFFFFFFFF}]
1164 forcecopy test.db testX.db
1165 foreach {tn pgsz works} {
1180 if {$::SQLITE_MAX_PAGE_SIZE < $pgsz} {
1184 for {set pg 1} {$pg <= 3} {incr pg} {
1185 forcecopy testX.db test.db
1186 forcedelete test.db-wal
1188 # Check that the database now exists and consists of three pages. And
1189 # that there is no associated wal file.
1191 do_test wal-18.2.$tn.$pg.1 { file exists test.db-wal } 0
1192 do_test wal-18.2.$tn.$pg.2 { file exists test.db } 1
1193 do_test wal-18.2.$tn.$pg.3 { file size test.db } [expr 1024*3]
1195 do_test wal-18.2.$tn.$pg.4 {
1197 # Create a wal file that contains a single frame (database page
1198 # number $pg) with the commit flag set. The frame checksum is
1199 # correct, but the contents of the database page are corrupt.
1201 # The page-size in the log file header is set to $pgsz. If the
1202 # WAL code considers $pgsz to be a valid SQLite database file page-size,
1203 # the database will be corrupt (because the garbage frame contents
1204 # will be treated as valid content). If $pgsz is invalid (too small
1205 # or too large), the db will not be corrupt as the log file will
1208 set walhdr [binary format IIIIII 931071618 3007000 $pgsz 1234 22 23]
1209 set framebody [randomblob $pgsz]
1210 set framehdr [binary format IIII $pg 5 22 23]
1213 logcksum c1 c2 $walhdr
1215 append walhdr [binary format II $c1 $c2]
1216 logcksum c1 c2 [string range $framehdr 0 7]
1217 logcksum c1 c2 $framebody
1218 set framehdr [binary format IIIIII $pg 5 22 23 $c1 $c2]
1220 set fd [open test.db-wal w]
1221 fconfigure $fd -encoding binary -translation binary
1222 puts -nonewline $fd $walhdr
1223 puts -nonewline $fd $framehdr
1224 puts -nonewline $fd $framebody
1227 file size test.db-wal
1228 } [wal_file_size 1 $pgsz]
1230 do_test wal-18.2.$tn.$pg.5 {
1232 set rc [catch { db one {PRAGMA integrity_check} } msg]
1233 expr { $rc!=0 || $msg!="ok" }
1240 #-------------------------------------------------------------------------
1241 # The following test - wal-19.* - fixes a bug that was present during
1244 # When a database connection in WAL mode is closed, it attempts an
1245 # EXCLUSIVE lock on the database file. If the lock is obtained, the
1246 # connection knows that it is the last connection to disconnect from
1247 # the database, so it runs a checkpoint operation. The bug was that
1248 # the connection was not updating its private copy of the wal-index
1249 # header before doing so, meaning that it could checkpoint an old
1253 forcedelete test.db test.db-wal test.db-journal
1257 PRAGMA journal_mode = WAL;
1258 CREATE TABLE t1(a, b);
1259 INSERT INTO t1 VALUES(1, 2);
1260 INSERT INTO t1 VALUES(3, 4);
1262 execsql { SELECT * FROM t1 } db2
1266 INSERT INTO t1 VALUES(5, 6);
1273 file exists test.db-wal
1276 # When the bug was present, the following was returning {1 2 3 4} only,
1277 # as [db2] had an out-of-date copy of the wal-index header when it was
1281 execsql { SELECT * FROM t1 }
1284 #-------------------------------------------------------------------------
1285 # This test - wal-20.* - uses two connections. One in this process and
1286 # the other in an external process. The procedure is:
1288 # 1. Using connection 1, create the database schema.
1290 # 2. Using connection 2 (in an external process), add so much
1291 # data to the database without checkpointing that a wal-index
1292 # larger than 64KB is required.
1294 # 3. Using connection 1, checkpoint the database. Make sure all
1295 # the data is present and the database is not corrupt.
1297 # At one point, SQLite was failing to grow the mapping of the wal-index
1298 # file in step 3 and the checkpoint was corrupting the database file.
1302 forcedelete test.db test.db-wal test.db-journal
1305 PRAGMA journal_mode = WAL;
1307 INSERT INTO t1 VALUES(randomblob(900));
1308 SELECT count(*) FROM t1;
1312 set ::buddy [launch_testfixture]
1313 testfixture $::buddy {
1315 db transaction { db eval {
1316 PRAGMA wal_autocheckpoint = 0;
1317 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2 */
1318 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4 */
1319 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8 */
1320 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16 */
1321 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 32 */
1322 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 64 */
1323 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 128 */
1324 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 256 */
1325 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 512 */
1326 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 1024 */
1327 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 2048 */
1328 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 4096 */
1329 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 8192 */
1330 INSERT INTO t1 SELECT randomblob(900) FROM t1; /* 16384 */
1336 execsql { PRAGMA wal_checkpoint }
1337 execsql { SELECT count(*) FROM t1 }
1342 execsql { SELECT count(*) FROM t1 }
1344 integrity_check wal-20.5
1350 faultsim_delete_and_reopen
1352 PRAGMA journal_mode = WAL;
1353 CREATE TABLE t1(a, b);
1354 INSERT INTO t1 VALUES(1, 2);
1355 INSERT INTO t1 VALUES(3, 4);
1356 INSERT INTO t1 VALUES(5, 6);
1357 INSERT INTO t1 VALUES(7, 8);
1358 INSERT INTO t1 VALUES(9, 10);
1359 INSERT INTO t1 VALUES(11, 12);
1364 PRAGMA cache_size = 10;
1365 PRAGMA wal_checkpoint;
1368 INSERT INTO t1 SELECT randomblob(900), randomblob(900) FROM t1;
1372 execsql { SELECT * FROM t1 }
1373 } {1 2 3 4 5 6 7 8 9 10 11 12}
1375 execsql { PRAGMA integrity_check }
1378 #-------------------------------------------------------------------------
1379 # Test reading and writing of databases with different page-sizes.
1381 incr ::do_not_use_codec
1382 foreach pgsz {512 1024 2048 4096 8192 16384 32768 65536} {
1383 do_multiclient_test tn [string map [list %PGSZ% $pgsz] {
1384 do_test wal-22.%PGSZ%.$tn.1 {
1386 PRAGMA main.page_size = %PGSZ%;
1387 PRAGMA auto_vacuum = 0;
1388 PRAGMA journal_mode = WAL;
1389 CREATE TABLE t1(x UNIQUE);
1390 INSERT INTO t1 SELECT randomblob(800);
1391 INSERT INTO t1 SELECT randomblob(800);
1392 INSERT INTO t1 SELECT randomblob(800);
1395 do_test wal-22.%PGSZ%.$tn.2 { sql2 { PRAGMA integrity_check } } {ok}
1396 do_test wal-22.%PGSZ%.$tn.3 {
1397 sql1 {PRAGMA wal_checkpoint}
1398 expr {[file size test.db] % %PGSZ%}
1402 incr ::do_not_use_codec -1
1404 #-------------------------------------------------------------------------
1405 # Test that when 1 or more pages are recovered from a WAL file,
1406 # sqlite3_log() is invoked to report this to the user.
1409 set walfile [file nativename [file join [get_pwd] test.db-wal]]
1411 set walfile test.db-wal
1416 faultsim_delete_and_reopen
1418 CREATE TABLE t1(a, b);
1419 PRAGMA journal_mode = WAL;
1420 INSERT INTO t1 VALUES(1, 2);
1421 INSERT INTO t1 VALUES(3, 4);
1423 faultsim_save_and_close
1426 test_sqlite3_log [list lappend ::log]
1429 execsql { SELECT * FROM t1 }
1431 do_test wal-23.2 { set ::log } {}
1436 faultsim_restore_and_reopen
1437 execsql { SELECT * FROM t1 }
1441 } [list SQLITE_NOTICE_RECOVER_WAL \
1442 "recovered 2 frames from WAL file $walfile"]
1445 ifcapable autovacuum {
1446 # This block tests that if the size of a database is reduced by a
1447 # transaction (because of an incremental or auto-vacuum), that no
1448 # data is written to the WAL file for the truncated pages as part
1449 # of the commit. e.g. if a transaction reduces the size of a database
1450 # to N pages, data for page N+1 should not be written to the WAL file
1451 # when committing the transaction. At one point such data was being
1457 do_execsql_test 24.1 {
1458 PRAGMA auto_vacuum = 2;
1459 PRAGMA journal_mode = WAL;
1460 PRAGMA page_size = 1024;
1462 INSERT INTO t1 VALUES(randomblob(5000));
1463 INSERT INTO t1 SELECT * FROM t1;
1464 INSERT INTO t1 SELECT * FROM t1;
1465 INSERT INTO t1 SELECT * FROM t1;
1466 INSERT INTO t1 SELECT * FROM t1;
1471 PRAGMA wal_checkpoint;
1475 file exists test.db-wal
1482 PRAGMA cache_size = 200;
1483 PRAGMA incremental_vacuum;
1484 PRAGMA wal_checkpoint;
1489 # WAL file now contains a single frame - the new root page for table t1.
1490 # It would be two frames (the new root page and a padding frame) if the
1491 # ZERO_DAMAGE flag were not set.
1493 file size test.db-wal
1494 } [wal_file_size 1 1024]
1502 # Make sure PRAGMA journal_mode=WAL works with ATTACHED databases in
1503 # all journal modes.
1505 foreach mode {OFF MEMORY PERSIST DELETE TRUNCATE WAL} {
1506 delete_file test.db test2.db
1508 do_test wal-25.$mode {
1509 db eval "PRAGMA journal_mode=$mode"
1510 db eval {ATTACH 'test2.db' AS t2; PRAGMA journal_mode=WAL;}
1515 test_restore_config_pagecache