Fix a couple comment typos. No changes to code.
[sqlite.git] / src / vdbeapi.c
blob7ecdac87c3f745c2121ed959796695d1f961a4bd
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( db->xProfile!=0 || (db->mTrace & SQLITE_TRACE_PROFILE)!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 if( db->xProfile ){
71 db->xProfile(db->pProfileArg, p->zSql, iElapse);
73 if( db->mTrace & SQLITE_TRACE_PROFILE ){
74 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
76 p->startTime = 0;
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
82 # define checkProfileCallback(DB,P) \
83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
84 #else
85 # define checkProfileCallback(DB,P) /*no-op*/
86 #endif
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
92 ** machine.
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_finalize(sqlite3_stmt *pStmt){
98 int rc;
99 if( pStmt==0 ){
100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101 ** pointer is a harmless no-op. */
102 rc = SQLITE_OK;
103 }else{
104 Vdbe *v = (Vdbe*)pStmt;
105 sqlite3 *db = v->db;
106 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
107 sqlite3_mutex_enter(db->mutex);
108 checkProfileCallback(db, v);
109 rc = sqlite3VdbeFinalize(v);
110 rc = sqlite3ApiExit(db, rc);
111 sqlite3LeaveMutexAndCloseZombie(db);
113 return rc;
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
124 int sqlite3_reset(sqlite3_stmt *pStmt){
125 int rc;
126 if( pStmt==0 ){
127 rc = SQLITE_OK;
128 }else{
129 Vdbe *v = (Vdbe*)pStmt;
130 sqlite3 *db = v->db;
131 sqlite3_mutex_enter(db->mutex);
132 checkProfileCallback(db, v);
133 rc = sqlite3VdbeReset(v);
134 sqlite3VdbeRewind(v);
135 assert( (rc & (db->errMask))==rc );
136 rc = sqlite3ApiExit(db, rc);
137 sqlite3_mutex_leave(db->mutex);
139 return rc;
143 ** Set all the parameters in the compiled SQL statement to NULL.
145 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
146 int i;
147 int rc = SQLITE_OK;
148 Vdbe *p = (Vdbe*)pStmt;
149 #if SQLITE_THREADSAFE
150 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
151 #endif
152 sqlite3_mutex_enter(mutex);
153 for(i=0; i<p->nVar; i++){
154 sqlite3VdbeMemRelease(&p->aVar[i]);
155 p->aVar[i].flags = MEM_Null;
157 if( p->isPrepareV2 && p->expmask ){
158 p->expired = 1;
160 sqlite3_mutex_leave(mutex);
161 return rc;
165 /**************************** sqlite3_value_ *******************************
166 ** The following routines extract information from a Mem or sqlite3_value
167 ** structure.
169 const void *sqlite3_value_blob(sqlite3_value *pVal){
170 Mem *p = (Mem*)pVal;
171 if( p->flags & (MEM_Blob|MEM_Str) ){
172 if( ExpandBlob(p)!=SQLITE_OK ){
173 assert( p->flags==MEM_Null && p->z==0 );
174 return 0;
176 p->flags |= MEM_Blob;
177 return p->n ? p->z : 0;
178 }else{
179 return sqlite3_value_text(pVal);
182 int sqlite3_value_bytes(sqlite3_value *pVal){
183 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
185 int sqlite3_value_bytes16(sqlite3_value *pVal){
186 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
188 double sqlite3_value_double(sqlite3_value *pVal){
189 return sqlite3VdbeRealValue((Mem*)pVal);
191 int sqlite3_value_int(sqlite3_value *pVal){
192 return (int)sqlite3VdbeIntValue((Mem*)pVal);
194 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
195 return sqlite3VdbeIntValue((Mem*)pVal);
197 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
198 Mem *pMem = (Mem*)pVal;
199 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
201 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
202 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
204 #ifndef SQLITE_OMIT_UTF16
205 const void *sqlite3_value_text16(sqlite3_value* pVal){
206 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
208 const void *sqlite3_value_text16be(sqlite3_value *pVal){
209 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
211 const void *sqlite3_value_text16le(sqlite3_value *pVal){
212 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
214 #endif /* SQLITE_OMIT_UTF16 */
215 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
216 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
217 ** point number string BLOB NULL
219 int sqlite3_value_type(sqlite3_value* pVal){
220 static const u8 aType[] = {
221 SQLITE_BLOB, /* 0x00 */
222 SQLITE_NULL, /* 0x01 */
223 SQLITE_TEXT, /* 0x02 */
224 SQLITE_NULL, /* 0x03 */
225 SQLITE_INTEGER, /* 0x04 */
226 SQLITE_NULL, /* 0x05 */
227 SQLITE_INTEGER, /* 0x06 */
228 SQLITE_NULL, /* 0x07 */
229 SQLITE_FLOAT, /* 0x08 */
230 SQLITE_NULL, /* 0x09 */
231 SQLITE_FLOAT, /* 0x0a */
232 SQLITE_NULL, /* 0x0b */
233 SQLITE_INTEGER, /* 0x0c */
234 SQLITE_NULL, /* 0x0d */
235 SQLITE_INTEGER, /* 0x0e */
236 SQLITE_NULL, /* 0x0f */
237 SQLITE_BLOB, /* 0x10 */
238 SQLITE_NULL, /* 0x11 */
239 SQLITE_TEXT, /* 0x12 */
240 SQLITE_NULL, /* 0x13 */
241 SQLITE_INTEGER, /* 0x14 */
242 SQLITE_NULL, /* 0x15 */
243 SQLITE_INTEGER, /* 0x16 */
244 SQLITE_NULL, /* 0x17 */
245 SQLITE_FLOAT, /* 0x18 */
246 SQLITE_NULL, /* 0x19 */
247 SQLITE_FLOAT, /* 0x1a */
248 SQLITE_NULL, /* 0x1b */
249 SQLITE_INTEGER, /* 0x1c */
250 SQLITE_NULL, /* 0x1d */
251 SQLITE_INTEGER, /* 0x1e */
252 SQLITE_NULL, /* 0x1f */
254 return aType[pVal->flags&MEM_AffMask];
257 /* Make a copy of an sqlite3_value object
259 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
260 sqlite3_value *pNew;
261 if( pOrig==0 ) return 0;
262 pNew = sqlite3_malloc( sizeof(*pNew) );
263 if( pNew==0 ) return 0;
264 memset(pNew, 0, sizeof(*pNew));
265 memcpy(pNew, pOrig, MEMCELLSIZE);
266 pNew->flags &= ~MEM_Dyn;
267 pNew->db = 0;
268 if( pNew->flags&(MEM_Str|MEM_Blob) ){
269 pNew->flags &= ~(MEM_Static|MEM_Dyn);
270 pNew->flags |= MEM_Ephem;
271 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
272 sqlite3ValueFree(pNew);
273 pNew = 0;
276 return pNew;
279 /* Destroy an sqlite3_value object previously obtained from
280 ** sqlite3_value_dup().
282 void sqlite3_value_free(sqlite3_value *pOld){
283 sqlite3ValueFree(pOld);
287 /**************************** sqlite3_result_ *******************************
288 ** The following routines are used by user-defined functions to specify
289 ** the function result.
291 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
292 ** result as a string or blob but if the string or blob is too large, it
293 ** then sets the error code to SQLITE_TOOBIG
295 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
296 ** on value P is not going to be used and need to be destroyed.
298 static void setResultStrOrError(
299 sqlite3_context *pCtx, /* Function context */
300 const char *z, /* String pointer */
301 int n, /* Bytes in string, or negative */
302 u8 enc, /* Encoding of z. 0 for BLOBs */
303 void (*xDel)(void*) /* Destructor function */
305 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
306 sqlite3_result_error_toobig(pCtx);
309 static int invokeValueDestructor(
310 const void *p, /* Value to destroy */
311 void (*xDel)(void*), /* The destructor */
312 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
314 assert( xDel!=SQLITE_DYNAMIC );
315 if( xDel==0 ){
316 /* noop */
317 }else if( xDel==SQLITE_TRANSIENT ){
318 /* noop */
319 }else{
320 xDel((void*)p);
322 if( pCtx ) sqlite3_result_error_toobig(pCtx);
323 return SQLITE_TOOBIG;
325 void sqlite3_result_blob(
326 sqlite3_context *pCtx,
327 const void *z,
328 int n,
329 void (*xDel)(void *)
331 assert( n>=0 );
332 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
333 setResultStrOrError(pCtx, z, n, 0, xDel);
335 void sqlite3_result_blob64(
336 sqlite3_context *pCtx,
337 const void *z,
338 sqlite3_uint64 n,
339 void (*xDel)(void *)
341 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
342 assert( xDel!=SQLITE_DYNAMIC );
343 if( n>0x7fffffff ){
344 (void)invokeValueDestructor(z, xDel, pCtx);
345 }else{
346 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
349 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
350 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
351 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
353 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
354 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
355 pCtx->isError = SQLITE_ERROR;
356 pCtx->fErrorOrAux = 1;
357 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
359 #ifndef SQLITE_OMIT_UTF16
360 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
361 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
362 pCtx->isError = SQLITE_ERROR;
363 pCtx->fErrorOrAux = 1;
364 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
366 #endif
367 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
369 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
371 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
372 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
373 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
375 void sqlite3_result_null(sqlite3_context *pCtx){
376 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
377 sqlite3VdbeMemSetNull(pCtx->pOut);
379 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
380 Mem *pOut = pCtx->pOut;
381 assert( sqlite3_mutex_held(pOut->db->mutex) );
382 pOut->eSubtype = eSubtype & 0xff;
383 pOut->flags |= MEM_Subtype;
385 void sqlite3_result_text(
386 sqlite3_context *pCtx,
387 const char *z,
388 int n,
389 void (*xDel)(void *)
391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
392 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
394 void sqlite3_result_text64(
395 sqlite3_context *pCtx,
396 const char *z,
397 sqlite3_uint64 n,
398 void (*xDel)(void *),
399 unsigned char enc
401 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
402 assert( xDel!=SQLITE_DYNAMIC );
403 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
404 if( n>0x7fffffff ){
405 (void)invokeValueDestructor(z, xDel, pCtx);
406 }else{
407 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
410 #ifndef SQLITE_OMIT_UTF16
411 void sqlite3_result_text16(
412 sqlite3_context *pCtx,
413 const void *z,
414 int n,
415 void (*xDel)(void *)
417 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
418 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
420 void sqlite3_result_text16be(
421 sqlite3_context *pCtx,
422 const void *z,
423 int n,
424 void (*xDel)(void *)
426 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
427 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
429 void sqlite3_result_text16le(
430 sqlite3_context *pCtx,
431 const void *z,
432 int n,
433 void (*xDel)(void *)
435 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
436 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
438 #endif /* SQLITE_OMIT_UTF16 */
439 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
440 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
441 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
443 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
444 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
445 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
447 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
448 Mem *pOut = pCtx->pOut;
449 assert( sqlite3_mutex_held(pOut->db->mutex) );
450 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
451 return SQLITE_TOOBIG;
453 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
454 return SQLITE_OK;
456 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
457 pCtx->isError = errCode;
458 pCtx->fErrorOrAux = 1;
459 #ifdef SQLITE_DEBUG
460 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
461 #endif
462 if( pCtx->pOut->flags & MEM_Null ){
463 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
464 SQLITE_UTF8, SQLITE_STATIC);
468 /* Force an SQLITE_TOOBIG error. */
469 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
470 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
471 pCtx->isError = SQLITE_TOOBIG;
472 pCtx->fErrorOrAux = 1;
473 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
474 SQLITE_UTF8, SQLITE_STATIC);
477 /* An SQLITE_NOMEM error. */
478 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
479 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
480 sqlite3VdbeMemSetNull(pCtx->pOut);
481 pCtx->isError = SQLITE_NOMEM_BKPT;
482 pCtx->fErrorOrAux = 1;
483 sqlite3OomFault(pCtx->pOut->db);
487 ** This function is called after a transaction has been committed. It
488 ** invokes callbacks registered with sqlite3_wal_hook() as required.
490 static int doWalCallbacks(sqlite3 *db){
491 int rc = SQLITE_OK;
492 #ifndef SQLITE_OMIT_WAL
493 int i;
494 for(i=0; i<db->nDb; i++){
495 Btree *pBt = db->aDb[i].pBt;
496 if( pBt ){
497 int nEntry;
498 sqlite3BtreeEnter(pBt);
499 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
500 sqlite3BtreeLeave(pBt);
501 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
502 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
506 #endif
507 return rc;
512 ** Execute the statement pStmt, either until a row of data is ready, the
513 ** statement is completely executed or an error occurs.
515 ** This routine implements the bulk of the logic behind the sqlite_step()
516 ** API. The only thing omitted is the automatic recompile if a
517 ** schema change has occurred. That detail is handled by the
518 ** outer sqlite3_step() wrapper procedure.
520 static int sqlite3Step(Vdbe *p){
521 sqlite3 *db;
522 int rc;
524 assert(p);
525 if( p->magic!=VDBE_MAGIC_RUN ){
526 /* We used to require that sqlite3_reset() be called before retrying
527 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
528 ** with version 3.7.0, we changed this so that sqlite3_reset() would
529 ** be called automatically instead of throwing the SQLITE_MISUSE error.
530 ** This "automatic-reset" change is not technically an incompatibility,
531 ** since any application that receives an SQLITE_MISUSE is broken by
532 ** definition.
534 ** Nevertheless, some published applications that were originally written
535 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
536 ** returns, and those were broken by the automatic-reset change. As a
537 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
538 ** legacy behavior of returning SQLITE_MISUSE for cases where the
539 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
540 ** or SQLITE_BUSY error.
542 #ifdef SQLITE_OMIT_AUTORESET
543 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
544 sqlite3_reset((sqlite3_stmt*)p);
545 }else{
546 return SQLITE_MISUSE_BKPT;
548 #else
549 sqlite3_reset((sqlite3_stmt*)p);
550 #endif
553 /* Check that malloc() has not failed. If it has, return early. */
554 db = p->db;
555 if( db->mallocFailed ){
556 p->rc = SQLITE_NOMEM;
557 return SQLITE_NOMEM_BKPT;
560 if( p->pc<=0 && p->expired ){
561 p->rc = SQLITE_SCHEMA;
562 rc = SQLITE_ERROR;
563 goto end_of_step;
565 if( p->pc<0 ){
566 /* If there are no other statements currently running, then
567 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
568 ** from interrupting a statement that has not yet started.
570 if( db->nVdbeActive==0 ){
571 db->u1.isInterrupted = 0;
574 assert( db->nVdbeWrite>0 || db->autoCommit==0
575 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
578 #ifndef SQLITE_OMIT_TRACE
579 if( (db->xProfile || (db->mTrace & SQLITE_TRACE_PROFILE)!=0)
580 && !db->init.busy && p->zSql ){
581 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
582 }else{
583 assert( p->startTime==0 );
585 #endif
587 db->nVdbeActive++;
588 if( p->readOnly==0 ) db->nVdbeWrite++;
589 if( p->bIsReader ) db->nVdbeRead++;
590 p->pc = 0;
592 #ifdef SQLITE_DEBUG
593 p->rcApp = SQLITE_OK;
594 #endif
595 #ifndef SQLITE_OMIT_EXPLAIN
596 if( p->explain ){
597 rc = sqlite3VdbeList(p);
598 }else
599 #endif /* SQLITE_OMIT_EXPLAIN */
601 db->nVdbeExec++;
602 rc = sqlite3VdbeExec(p);
603 db->nVdbeExec--;
606 #ifndef SQLITE_OMIT_TRACE
607 /* If the statement completed successfully, invoke the profile callback */
608 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
609 #endif
611 if( rc==SQLITE_DONE ){
612 assert( p->rc==SQLITE_OK );
613 p->rc = doWalCallbacks(db);
614 if( p->rc!=SQLITE_OK ){
615 rc = SQLITE_ERROR;
619 db->errCode = rc;
620 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
621 p->rc = SQLITE_NOMEM_BKPT;
623 end_of_step:
624 /* At this point local variable rc holds the value that should be
625 ** returned if this statement was compiled using the legacy
626 ** sqlite3_prepare() interface. According to the docs, this can only
627 ** be one of the values in the first assert() below. Variable p->rc
628 ** contains the value that would be returned if sqlite3_finalize()
629 ** were called on statement p.
631 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
632 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
634 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
635 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
636 /* If this statement was prepared using sqlite3_prepare_v2(), and an
637 ** error has occurred, then return the error code in p->rc to the
638 ** caller. Set the error code in the database handle to the same value.
640 rc = sqlite3VdbeTransferError(p);
642 return (rc&db->errMask);
646 ** This is the top-level implementation of sqlite3_step(). Call
647 ** sqlite3Step() to do most of the work. If a schema error occurs,
648 ** call sqlite3Reprepare() and try again.
650 int sqlite3_step(sqlite3_stmt *pStmt){
651 int rc = SQLITE_OK; /* Result from sqlite3Step() */
652 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */
653 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
654 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
655 sqlite3 *db; /* The database connection */
657 if( vdbeSafetyNotNull(v) ){
658 return SQLITE_MISUSE_BKPT;
660 db = v->db;
661 sqlite3_mutex_enter(db->mutex);
662 v->doingRerun = 0;
663 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
664 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
665 int savedPc = v->pc;
666 rc2 = rc = sqlite3Reprepare(v);
667 if( rc!=SQLITE_OK) break;
668 sqlite3_reset(pStmt);
669 if( savedPc>=0 ) v->doingRerun = 1;
670 assert( v->expired==0 );
672 if( rc2!=SQLITE_OK ){
673 /* This case occurs after failing to recompile an sql statement.
674 ** The error message from the SQL compiler has already been loaded
675 ** into the database handle. This block copies the error message
676 ** from the database handle into the statement and sets the statement
677 ** program counter to 0 to ensure that when the statement is
678 ** finalized or reset the parser error message is available via
679 ** sqlite3_errmsg() and sqlite3_errcode().
681 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
682 sqlite3DbFree(db, v->zErrMsg);
683 if( !db->mallocFailed ){
684 v->zErrMsg = sqlite3DbStrDup(db, zErr);
685 v->rc = rc2;
686 } else {
687 v->zErrMsg = 0;
688 v->rc = rc = SQLITE_NOMEM_BKPT;
691 rc = sqlite3ApiExit(db, rc);
692 sqlite3_mutex_leave(db->mutex);
693 return rc;
698 ** Extract the user data from a sqlite3_context structure and return a
699 ** pointer to it.
701 void *sqlite3_user_data(sqlite3_context *p){
702 assert( p && p->pFunc );
703 return p->pFunc->pUserData;
707 ** Extract the user data from a sqlite3_context structure and return a
708 ** pointer to it.
710 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
711 ** returns a copy of the pointer to the database connection (the 1st
712 ** parameter) of the sqlite3_create_function() and
713 ** sqlite3_create_function16() routines that originally registered the
714 ** application defined function.
716 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
717 assert( p && p->pOut );
718 return p->pOut->db;
722 ** Return the current time for a statement. If the current time
723 ** is requested more than once within the same run of a single prepared
724 ** statement, the exact same time is returned for each invocation regardless
725 ** of the amount of time that elapses between invocations. In other words,
726 ** the time returned is always the time of the first call.
728 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
729 int rc;
730 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
731 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
732 assert( p->pVdbe!=0 );
733 #else
734 sqlite3_int64 iTime = 0;
735 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
736 #endif
737 if( *piTime==0 ){
738 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
739 if( rc ) *piTime = 0;
741 return *piTime;
745 ** The following is the implementation of an SQL function that always
746 ** fails with an error message stating that the function is used in the
747 ** wrong context. The sqlite3_overload_function() API might construct
748 ** SQL function that use this routine so that the functions will exist
749 ** for name resolution but are actually overloaded by the xFindFunction
750 ** method of virtual tables.
752 void sqlite3InvalidFunction(
753 sqlite3_context *context, /* The function calling context */
754 int NotUsed, /* Number of arguments to the function */
755 sqlite3_value **NotUsed2 /* Value of each argument */
757 const char *zName = context->pFunc->zName;
758 char *zErr;
759 UNUSED_PARAMETER2(NotUsed, NotUsed2);
760 zErr = sqlite3_mprintf(
761 "unable to use function %s in the requested context", zName);
762 sqlite3_result_error(context, zErr, -1);
763 sqlite3_free(zErr);
767 ** Create a new aggregate context for p and return a pointer to
768 ** its pMem->z element.
770 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
771 Mem *pMem = p->pMem;
772 assert( (pMem->flags & MEM_Agg)==0 );
773 if( nByte<=0 ){
774 sqlite3VdbeMemSetNull(pMem);
775 pMem->z = 0;
776 }else{
777 sqlite3VdbeMemClearAndResize(pMem, nByte);
778 pMem->flags = MEM_Agg;
779 pMem->u.pDef = p->pFunc;
780 if( pMem->z ){
781 memset(pMem->z, 0, nByte);
784 return (void*)pMem->z;
788 ** Allocate or return the aggregate context for a user function. A new
789 ** context is allocated on the first call. Subsequent calls return the
790 ** same context that was returned on prior calls.
792 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
793 assert( p && p->pFunc && p->pFunc->xFinalize );
794 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
795 testcase( nByte<0 );
796 if( (p->pMem->flags & MEM_Agg)==0 ){
797 return createAggContext(p, nByte);
798 }else{
799 return (void*)p->pMem->z;
804 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
805 ** the user-function defined by pCtx.
807 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
808 AuxData *pAuxData;
810 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
811 #if SQLITE_ENABLE_STAT3_OR_STAT4
812 if( pCtx->pVdbe==0 ) return 0;
813 #else
814 assert( pCtx->pVdbe!=0 );
815 #endif
816 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
817 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
820 return (pAuxData ? pAuxData->pAux : 0);
824 ** Set the auxiliary data pointer and delete function, for the iArg'th
825 ** argument to the user-function defined by pCtx. Any previous value is
826 ** deleted by calling the delete function specified when it was set.
828 void sqlite3_set_auxdata(
829 sqlite3_context *pCtx,
830 int iArg,
831 void *pAux,
832 void (*xDelete)(void*)
834 AuxData *pAuxData;
835 Vdbe *pVdbe = pCtx->pVdbe;
837 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
838 if( iArg<0 ) goto failed;
839 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
840 if( pVdbe==0 ) goto failed;
841 #else
842 assert( pVdbe!=0 );
843 #endif
845 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
846 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
848 if( pAuxData==0 ){
849 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
850 if( !pAuxData ) goto failed;
851 pAuxData->iOp = pCtx->iOp;
852 pAuxData->iArg = iArg;
853 pAuxData->pNext = pVdbe->pAuxData;
854 pVdbe->pAuxData = pAuxData;
855 if( pCtx->fErrorOrAux==0 ){
856 pCtx->isError = 0;
857 pCtx->fErrorOrAux = 1;
859 }else if( pAuxData->xDelete ){
860 pAuxData->xDelete(pAuxData->pAux);
863 pAuxData->pAux = pAux;
864 pAuxData->xDelete = xDelete;
865 return;
867 failed:
868 if( xDelete ){
869 xDelete(pAux);
873 #ifndef SQLITE_OMIT_DEPRECATED
875 ** Return the number of times the Step function of an aggregate has been
876 ** called.
878 ** This function is deprecated. Do not use it for new code. It is
879 ** provide only to avoid breaking legacy code. New aggregate function
880 ** implementations should keep their own counts within their aggregate
881 ** context.
883 int sqlite3_aggregate_count(sqlite3_context *p){
884 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
885 return p->pMem->n;
887 #endif
890 ** Return the number of columns in the result set for the statement pStmt.
892 int sqlite3_column_count(sqlite3_stmt *pStmt){
893 Vdbe *pVm = (Vdbe *)pStmt;
894 return pVm ? pVm->nResColumn : 0;
898 ** Return the number of values available from the current row of the
899 ** currently executing statement pStmt.
901 int sqlite3_data_count(sqlite3_stmt *pStmt){
902 Vdbe *pVm = (Vdbe *)pStmt;
903 if( pVm==0 || pVm->pResultSet==0 ) return 0;
904 return pVm->nResColumn;
908 ** Return a pointer to static memory containing an SQL NULL value.
910 static const Mem *columnNullValue(void){
911 /* Even though the Mem structure contains an element
912 ** of type i64, on certain architectures (x86) with certain compiler
913 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
914 ** instead of an 8-byte one. This all works fine, except that when
915 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
916 ** that a Mem structure is located on an 8-byte boundary. To prevent
917 ** these assert()s from failing, when building with SQLITE_DEBUG defined
918 ** using gcc, we force nullMem to be 8-byte aligned using the magical
919 ** __attribute__((aligned(8))) macro. */
920 static const Mem nullMem
921 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
922 __attribute__((aligned(8)))
923 #endif
925 /* .u = */ {0},
926 /* .flags = */ (u16)MEM_Null,
927 /* .enc = */ (u8)0,
928 /* .eSubtype = */ (u8)0,
929 /* .n = */ (int)0,
930 /* .z = */ (char*)0,
931 /* .zMalloc = */ (char*)0,
932 /* .szMalloc = */ (int)0,
933 /* .uTemp = */ (u32)0,
934 /* .db = */ (sqlite3*)0,
935 /* .xDel = */ (void(*)(void*))0,
936 #ifdef SQLITE_DEBUG
937 /* .pScopyFrom = */ (Mem*)0,
938 /* .pFiller = */ (void*)0,
939 #endif
941 return &nullMem;
945 ** Check to see if column iCol of the given statement is valid. If
946 ** it is, return a pointer to the Mem for the value of that column.
947 ** If iCol is not valid, return a pointer to a Mem which has a value
948 ** of NULL.
950 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
951 Vdbe *pVm;
952 Mem *pOut;
954 pVm = (Vdbe *)pStmt;
955 if( pVm==0 ) return (Mem*)columnNullValue();
956 assert( pVm->db );
957 sqlite3_mutex_enter(pVm->db->mutex);
958 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
959 pOut = &pVm->pResultSet[i];
960 }else{
961 sqlite3Error(pVm->db, SQLITE_RANGE);
962 pOut = (Mem*)columnNullValue();
964 return pOut;
968 ** This function is called after invoking an sqlite3_value_XXX function on a
969 ** column value (i.e. a value returned by evaluating an SQL expression in the
970 ** select list of a SELECT statement) that may cause a malloc() failure. If
971 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
972 ** code of statement pStmt set to SQLITE_NOMEM.
974 ** Specifically, this is called from within:
976 ** sqlite3_column_int()
977 ** sqlite3_column_int64()
978 ** sqlite3_column_text()
979 ** sqlite3_column_text16()
980 ** sqlite3_column_real()
981 ** sqlite3_column_bytes()
982 ** sqlite3_column_bytes16()
983 ** sqiite3_column_blob()
985 static void columnMallocFailure(sqlite3_stmt *pStmt)
987 /* If malloc() failed during an encoding conversion within an
988 ** sqlite3_column_XXX API, then set the return code of the statement to
989 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
990 ** and _finalize() will return NOMEM.
992 Vdbe *p = (Vdbe *)pStmt;
993 if( p ){
994 assert( p->db!=0 );
995 assert( sqlite3_mutex_held(p->db->mutex) );
996 p->rc = sqlite3ApiExit(p->db, p->rc);
997 sqlite3_mutex_leave(p->db->mutex);
1001 /**************************** sqlite3_column_ *******************************
1002 ** The following routines are used to access elements of the current row
1003 ** in the result set.
1005 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1006 const void *val;
1007 val = sqlite3_value_blob( columnMem(pStmt,i) );
1008 /* Even though there is no encoding conversion, value_blob() might
1009 ** need to call malloc() to expand the result of a zeroblob()
1010 ** expression.
1012 columnMallocFailure(pStmt);
1013 return val;
1015 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1016 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1017 columnMallocFailure(pStmt);
1018 return val;
1020 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1021 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1022 columnMallocFailure(pStmt);
1023 return val;
1025 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1026 double val = sqlite3_value_double( columnMem(pStmt,i) );
1027 columnMallocFailure(pStmt);
1028 return val;
1030 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1031 int val = sqlite3_value_int( columnMem(pStmt,i) );
1032 columnMallocFailure(pStmt);
1033 return val;
1035 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1036 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1037 columnMallocFailure(pStmt);
1038 return val;
1040 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1041 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1042 columnMallocFailure(pStmt);
1043 return val;
1045 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1046 Mem *pOut = columnMem(pStmt, i);
1047 if( pOut->flags&MEM_Static ){
1048 pOut->flags &= ~MEM_Static;
1049 pOut->flags |= MEM_Ephem;
1051 columnMallocFailure(pStmt);
1052 return (sqlite3_value *)pOut;
1054 #ifndef SQLITE_OMIT_UTF16
1055 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1056 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1057 columnMallocFailure(pStmt);
1058 return val;
1060 #endif /* SQLITE_OMIT_UTF16 */
1061 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1062 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1063 columnMallocFailure(pStmt);
1064 return iType;
1068 ** Convert the N-th element of pStmt->pColName[] into a string using
1069 ** xFunc() then return that string. If N is out of range, return 0.
1071 ** There are up to 5 names for each column. useType determines which
1072 ** name is returned. Here are the names:
1074 ** 0 The column name as it should be displayed for output
1075 ** 1 The datatype name for the column
1076 ** 2 The name of the database that the column derives from
1077 ** 3 The name of the table that the column derives from
1078 ** 4 The name of the table column that the result column derives from
1080 ** If the result is not a simple column reference (if it is an expression
1081 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1083 static const void *columnName(
1084 sqlite3_stmt *pStmt,
1085 int N,
1086 const void *(*xFunc)(Mem*),
1087 int useType
1089 const void *ret;
1090 Vdbe *p;
1091 int n;
1092 sqlite3 *db;
1093 #ifdef SQLITE_ENABLE_API_ARMOR
1094 if( pStmt==0 ){
1095 (void)SQLITE_MISUSE_BKPT;
1096 return 0;
1098 #endif
1099 ret = 0;
1100 p = (Vdbe *)pStmt;
1101 db = p->db;
1102 assert( db!=0 );
1103 n = sqlite3_column_count(pStmt);
1104 if( N<n && N>=0 ){
1105 N += useType*n;
1106 sqlite3_mutex_enter(db->mutex);
1107 assert( db->mallocFailed==0 );
1108 ret = xFunc(&p->aColName[N]);
1109 /* A malloc may have failed inside of the xFunc() call. If this
1110 ** is the case, clear the mallocFailed flag and return NULL.
1112 if( db->mallocFailed ){
1113 sqlite3OomClear(db);
1114 ret = 0;
1116 sqlite3_mutex_leave(db->mutex);
1118 return ret;
1122 ** Return the name of the Nth column of the result set returned by SQL
1123 ** statement pStmt.
1125 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1126 return columnName(
1127 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1129 #ifndef SQLITE_OMIT_UTF16
1130 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1131 return columnName(
1132 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1134 #endif
1137 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1138 ** not define OMIT_DECLTYPE.
1140 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1141 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1142 and SQLITE_ENABLE_COLUMN_METADATA"
1143 #endif
1145 #ifndef SQLITE_OMIT_DECLTYPE
1147 ** Return the column declaration type (if applicable) of the 'i'th column
1148 ** of the result set of SQL statement pStmt.
1150 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1151 return columnName(
1152 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1154 #ifndef SQLITE_OMIT_UTF16
1155 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1156 return columnName(
1157 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1159 #endif /* SQLITE_OMIT_UTF16 */
1160 #endif /* SQLITE_OMIT_DECLTYPE */
1162 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1164 ** Return the name of the database from which a result column derives.
1165 ** NULL is returned if the result column is an expression or constant or
1166 ** anything else which is not an unambiguous reference to a database column.
1168 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1169 return columnName(
1170 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1172 #ifndef SQLITE_OMIT_UTF16
1173 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1174 return columnName(
1175 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1177 #endif /* SQLITE_OMIT_UTF16 */
1180 ** Return the name of the table from which a result column derives.
1181 ** NULL is returned if the result column is an expression or constant or
1182 ** anything else which is not an unambiguous reference to a database column.
1184 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1185 return columnName(
1186 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1188 #ifndef SQLITE_OMIT_UTF16
1189 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1190 return columnName(
1191 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1193 #endif /* SQLITE_OMIT_UTF16 */
1196 ** Return the name of the table column from which a result column derives.
1197 ** NULL is returned if the result column is an expression or constant or
1198 ** anything else which is not an unambiguous reference to a database column.
1200 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1201 return columnName(
1202 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1204 #ifndef SQLITE_OMIT_UTF16
1205 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1206 return columnName(
1207 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1209 #endif /* SQLITE_OMIT_UTF16 */
1210 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1213 /******************************* sqlite3_bind_ ***************************
1215 ** Routines used to attach values to wildcards in a compiled SQL statement.
1218 ** Unbind the value bound to variable i in virtual machine p. This is the
1219 ** the same as binding a NULL value to the column. If the "i" parameter is
1220 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1222 ** A successful evaluation of this routine acquires the mutex on p.
1223 ** the mutex is released if any kind of error occurs.
1225 ** The error code stored in database p->db is overwritten with the return
1226 ** value in any case.
1228 static int vdbeUnbind(Vdbe *p, int i){
1229 Mem *pVar;
1230 if( vdbeSafetyNotNull(p) ){
1231 return SQLITE_MISUSE_BKPT;
1233 sqlite3_mutex_enter(p->db->mutex);
1234 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1235 sqlite3Error(p->db, SQLITE_MISUSE);
1236 sqlite3_mutex_leave(p->db->mutex);
1237 sqlite3_log(SQLITE_MISUSE,
1238 "bind on a busy prepared statement: [%s]", p->zSql);
1239 return SQLITE_MISUSE_BKPT;
1241 if( i<1 || i>p->nVar ){
1242 sqlite3Error(p->db, SQLITE_RANGE);
1243 sqlite3_mutex_leave(p->db->mutex);
1244 return SQLITE_RANGE;
1246 i--;
1247 pVar = &p->aVar[i];
1248 sqlite3VdbeMemRelease(pVar);
1249 pVar->flags = MEM_Null;
1250 sqlite3Error(p->db, SQLITE_OK);
1252 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1253 ** binding a new value to this variable invalidates the current query plan.
1255 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1256 ** parameter in the WHERE clause might influence the choice of query plan
1257 ** for a statement, then the statement will be automatically recompiled,
1258 ** as if there had been a schema change, on the first sqlite3_step() call
1259 ** following any change to the bindings of that parameter.
1261 if( p->isPrepareV2 &&
1262 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1264 p->expired = 1;
1266 return SQLITE_OK;
1270 ** Bind a text or BLOB value.
1272 static int bindText(
1273 sqlite3_stmt *pStmt, /* The statement to bind against */
1274 int i, /* Index of the parameter to bind */
1275 const void *zData, /* Pointer to the data to be bound */
1276 int nData, /* Number of bytes of data to be bound */
1277 void (*xDel)(void*), /* Destructor for the data */
1278 u8 encoding /* Encoding for the data */
1280 Vdbe *p = (Vdbe *)pStmt;
1281 Mem *pVar;
1282 int rc;
1284 rc = vdbeUnbind(p, i);
1285 if( rc==SQLITE_OK ){
1286 if( zData!=0 ){
1287 pVar = &p->aVar[i-1];
1288 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1289 if( rc==SQLITE_OK && encoding!=0 ){
1290 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1292 sqlite3Error(p->db, rc);
1293 rc = sqlite3ApiExit(p->db, rc);
1295 sqlite3_mutex_leave(p->db->mutex);
1296 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1297 xDel((void*)zData);
1299 return rc;
1304 ** Bind a blob value to an SQL statement variable.
1306 int sqlite3_bind_blob(
1307 sqlite3_stmt *pStmt,
1308 int i,
1309 const void *zData,
1310 int nData,
1311 void (*xDel)(void*)
1313 #ifdef SQLITE_ENABLE_API_ARMOR
1314 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1315 #endif
1316 return bindText(pStmt, i, zData, nData, xDel, 0);
1318 int sqlite3_bind_blob64(
1319 sqlite3_stmt *pStmt,
1320 int i,
1321 const void *zData,
1322 sqlite3_uint64 nData,
1323 void (*xDel)(void*)
1325 assert( xDel!=SQLITE_DYNAMIC );
1326 if( nData>0x7fffffff ){
1327 return invokeValueDestructor(zData, xDel, 0);
1328 }else{
1329 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1332 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1333 int rc;
1334 Vdbe *p = (Vdbe *)pStmt;
1335 rc = vdbeUnbind(p, i);
1336 if( rc==SQLITE_OK ){
1337 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1338 sqlite3_mutex_leave(p->db->mutex);
1340 return rc;
1342 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1343 return sqlite3_bind_int64(p, i, (i64)iValue);
1345 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1346 int rc;
1347 Vdbe *p = (Vdbe *)pStmt;
1348 rc = vdbeUnbind(p, i);
1349 if( rc==SQLITE_OK ){
1350 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1351 sqlite3_mutex_leave(p->db->mutex);
1353 return rc;
1355 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1356 int rc;
1357 Vdbe *p = (Vdbe*)pStmt;
1358 rc = vdbeUnbind(p, i);
1359 if( rc==SQLITE_OK ){
1360 sqlite3_mutex_leave(p->db->mutex);
1362 return rc;
1364 int sqlite3_bind_text(
1365 sqlite3_stmt *pStmt,
1366 int i,
1367 const char *zData,
1368 int nData,
1369 void (*xDel)(void*)
1371 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1373 int sqlite3_bind_text64(
1374 sqlite3_stmt *pStmt,
1375 int i,
1376 const char *zData,
1377 sqlite3_uint64 nData,
1378 void (*xDel)(void*),
1379 unsigned char enc
1381 assert( xDel!=SQLITE_DYNAMIC );
1382 if( nData>0x7fffffff ){
1383 return invokeValueDestructor(zData, xDel, 0);
1384 }else{
1385 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1386 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1389 #ifndef SQLITE_OMIT_UTF16
1390 int sqlite3_bind_text16(
1391 sqlite3_stmt *pStmt,
1392 int i,
1393 const void *zData,
1394 int nData,
1395 void (*xDel)(void*)
1397 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1399 #endif /* SQLITE_OMIT_UTF16 */
1400 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1401 int rc;
1402 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1403 case SQLITE_INTEGER: {
1404 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1405 break;
1407 case SQLITE_FLOAT: {
1408 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1409 break;
1411 case SQLITE_BLOB: {
1412 if( pValue->flags & MEM_Zero ){
1413 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1414 }else{
1415 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1417 break;
1419 case SQLITE_TEXT: {
1420 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1421 pValue->enc);
1422 break;
1424 default: {
1425 rc = sqlite3_bind_null(pStmt, i);
1426 break;
1429 return rc;
1431 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1432 int rc;
1433 Vdbe *p = (Vdbe *)pStmt;
1434 rc = vdbeUnbind(p, i);
1435 if( rc==SQLITE_OK ){
1436 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1437 sqlite3_mutex_leave(p->db->mutex);
1439 return rc;
1441 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1442 int rc;
1443 Vdbe *p = (Vdbe *)pStmt;
1444 sqlite3_mutex_enter(p->db->mutex);
1445 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1446 rc = SQLITE_TOOBIG;
1447 }else{
1448 assert( (n & 0x7FFFFFFF)==n );
1449 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1451 rc = sqlite3ApiExit(p->db, rc);
1452 sqlite3_mutex_leave(p->db->mutex);
1453 return rc;
1457 ** Return the number of wildcards that can be potentially bound to.
1458 ** This routine is added to support DBD::SQLite.
1460 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1461 Vdbe *p = (Vdbe*)pStmt;
1462 return p ? p->nVar : 0;
1466 ** Return the name of a wildcard parameter. Return NULL if the index
1467 ** is out of range or if the wildcard is unnamed.
1469 ** The result is always UTF-8.
1471 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1472 Vdbe *p = (Vdbe*)pStmt;
1473 if( p==0 ) return 0;
1474 return sqlite3VListNumToName(p->pVList, i);
1478 ** Given a wildcard parameter name, return the index of the variable
1479 ** with that name. If there is no variable with the given name,
1480 ** return 0.
1482 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1483 if( p==0 || zName==0 ) return 0;
1484 return sqlite3VListNameToNum(p->pVList, zName, nName);
1486 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1487 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1491 ** Transfer all bindings from the first statement over to the second.
1493 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1494 Vdbe *pFrom = (Vdbe*)pFromStmt;
1495 Vdbe *pTo = (Vdbe*)pToStmt;
1496 int i;
1497 assert( pTo->db==pFrom->db );
1498 assert( pTo->nVar==pFrom->nVar );
1499 sqlite3_mutex_enter(pTo->db->mutex);
1500 for(i=0; i<pFrom->nVar; i++){
1501 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1503 sqlite3_mutex_leave(pTo->db->mutex);
1504 return SQLITE_OK;
1507 #ifndef SQLITE_OMIT_DEPRECATED
1509 ** Deprecated external interface. Internal/core SQLite code
1510 ** should call sqlite3TransferBindings.
1512 ** It is misuse to call this routine with statements from different
1513 ** database connections. But as this is a deprecated interface, we
1514 ** will not bother to check for that condition.
1516 ** If the two statements contain a different number of bindings, then
1517 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1518 ** SQLITE_OK is returned.
1520 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1521 Vdbe *pFrom = (Vdbe*)pFromStmt;
1522 Vdbe *pTo = (Vdbe*)pToStmt;
1523 if( pFrom->nVar!=pTo->nVar ){
1524 return SQLITE_ERROR;
1526 if( pTo->isPrepareV2 && pTo->expmask ){
1527 pTo->expired = 1;
1529 if( pFrom->isPrepareV2 && pFrom->expmask ){
1530 pFrom->expired = 1;
1532 return sqlite3TransferBindings(pFromStmt, pToStmt);
1534 #endif
1537 ** Return the sqlite3* database handle to which the prepared statement given
1538 ** in the argument belongs. This is the same database handle that was
1539 ** the first argument to the sqlite3_prepare() that was used to create
1540 ** the statement in the first place.
1542 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1543 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1547 ** Return true if the prepared statement is guaranteed to not modify the
1548 ** database.
1550 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1551 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1555 ** Return true if the prepared statement is in need of being reset.
1557 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1558 Vdbe *v = (Vdbe*)pStmt;
1559 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1563 ** Return a pointer to the next prepared statement after pStmt associated
1564 ** with database connection pDb. If pStmt is NULL, return the first
1565 ** prepared statement for the database connection. Return NULL if there
1566 ** are no more.
1568 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1569 sqlite3_stmt *pNext;
1570 #ifdef SQLITE_ENABLE_API_ARMOR
1571 if( !sqlite3SafetyCheckOk(pDb) ){
1572 (void)SQLITE_MISUSE_BKPT;
1573 return 0;
1575 #endif
1576 sqlite3_mutex_enter(pDb->mutex);
1577 if( pStmt==0 ){
1578 pNext = (sqlite3_stmt*)pDb->pVdbe;
1579 }else{
1580 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1582 sqlite3_mutex_leave(pDb->mutex);
1583 return pNext;
1587 ** Return the value of a status counter for a prepared statement
1589 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1590 Vdbe *pVdbe = (Vdbe*)pStmt;
1591 u32 v;
1592 #ifdef SQLITE_ENABLE_API_ARMOR
1593 if( !pStmt ){
1594 (void)SQLITE_MISUSE_BKPT;
1595 return 0;
1597 #endif
1598 v = pVdbe->aCounter[op];
1599 if( resetFlag ) pVdbe->aCounter[op] = 0;
1600 return (int)v;
1604 ** Return the SQL associated with a prepared statement
1606 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1607 Vdbe *p = (Vdbe *)pStmt;
1608 return p ? p->zSql : 0;
1612 ** Return the SQL associated with a prepared statement with
1613 ** bound parameters expanded. Space to hold the returned string is
1614 ** obtained from sqlite3_malloc(). The caller is responsible for
1615 ** freeing the returned string by passing it to sqlite3_free().
1617 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1618 ** expanded bound parameters.
1620 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1621 #ifdef SQLITE_OMIT_TRACE
1622 return 0;
1623 #else
1624 char *z = 0;
1625 const char *zSql = sqlite3_sql(pStmt);
1626 if( zSql ){
1627 Vdbe *p = (Vdbe *)pStmt;
1628 sqlite3_mutex_enter(p->db->mutex);
1629 z = sqlite3VdbeExpandSql(p, zSql);
1630 sqlite3_mutex_leave(p->db->mutex);
1632 return z;
1633 #endif
1636 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1638 ** Allocate and populate an UnpackedRecord structure based on the serialized
1639 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1640 ** if successful, or a NULL pointer if an OOM error is encountered.
1642 static UnpackedRecord *vdbeUnpackRecord(
1643 KeyInfo *pKeyInfo,
1644 int nKey,
1645 const void *pKey
1647 UnpackedRecord *pRet; /* Return value */
1649 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1650 if( pRet ){
1651 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nField+1));
1652 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1654 return pRet;
1658 ** This function is called from within a pre-update callback to retrieve
1659 ** a field of the row currently being updated or deleted.
1661 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1662 PreUpdate *p = db->pPreUpdate;
1663 Mem *pMem;
1664 int rc = SQLITE_OK;
1666 /* Test that this call is being made from within an SQLITE_DELETE or
1667 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1668 if( !p || p->op==SQLITE_INSERT ){
1669 rc = SQLITE_MISUSE_BKPT;
1670 goto preupdate_old_out;
1672 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1673 rc = SQLITE_RANGE;
1674 goto preupdate_old_out;
1677 /* If the old.* record has not yet been loaded into memory, do so now. */
1678 if( p->pUnpacked==0 ){
1679 u32 nRec;
1680 u8 *aRec;
1682 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1683 aRec = sqlite3DbMallocRaw(db, nRec);
1684 if( !aRec ) goto preupdate_old_out;
1685 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1686 if( rc==SQLITE_OK ){
1687 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1688 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1690 if( rc!=SQLITE_OK ){
1691 sqlite3DbFree(db, aRec);
1692 goto preupdate_old_out;
1694 p->aRecord = aRec;
1697 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1698 if( iIdx==p->pTab->iPKey ){
1699 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1700 }else if( iIdx>=p->pUnpacked->nField ){
1701 *ppValue = (sqlite3_value *)columnNullValue();
1702 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1703 if( pMem->flags & MEM_Int ){
1704 sqlite3VdbeMemRealify(pMem);
1708 preupdate_old_out:
1709 sqlite3Error(db, rc);
1710 return sqlite3ApiExit(db, rc);
1712 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1714 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1716 ** This function is called from within a pre-update callback to retrieve
1717 ** the number of columns in the row being updated, deleted or inserted.
1719 int sqlite3_preupdate_count(sqlite3 *db){
1720 PreUpdate *p = db->pPreUpdate;
1721 return (p ? p->keyinfo.nField : 0);
1723 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1725 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1727 ** This function is designed to be called from within a pre-update callback
1728 ** only. It returns zero if the change that caused the callback was made
1729 ** immediately by a user SQL statement. Or, if the change was made by a
1730 ** trigger program, it returns the number of trigger programs currently
1731 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1732 ** top-level trigger etc.).
1734 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1735 ** or SET DEFAULT action is considered a trigger.
1737 int sqlite3_preupdate_depth(sqlite3 *db){
1738 PreUpdate *p = db->pPreUpdate;
1739 return (p ? p->v->nFrame : 0);
1741 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1743 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1745 ** This function is called from within a pre-update callback to retrieve
1746 ** a field of the row currently being updated or inserted.
1748 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1749 PreUpdate *p = db->pPreUpdate;
1750 int rc = SQLITE_OK;
1751 Mem *pMem;
1753 if( !p || p->op==SQLITE_DELETE ){
1754 rc = SQLITE_MISUSE_BKPT;
1755 goto preupdate_new_out;
1757 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1758 rc = SQLITE_RANGE;
1759 goto preupdate_new_out;
1762 if( p->op==SQLITE_INSERT ){
1763 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1764 ** that is being inserted. Deserialize it. */
1765 UnpackedRecord *pUnpack = p->pNewUnpacked;
1766 if( !pUnpack ){
1767 Mem *pData = &p->v->aMem[p->iNewReg];
1768 rc = ExpandBlob(pData);
1769 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1770 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1771 if( !pUnpack ){
1772 rc = SQLITE_NOMEM;
1773 goto preupdate_new_out;
1775 p->pNewUnpacked = pUnpack;
1777 pMem = &pUnpack->aMem[iIdx];
1778 if( iIdx==p->pTab->iPKey ){
1779 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1780 }else if( iIdx>=pUnpack->nField ){
1781 pMem = (sqlite3_value *)columnNullValue();
1783 }else{
1784 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1785 ** value. Make a copy of the cell contents and return a pointer to it.
1786 ** It is not safe to return a pointer to the memory cell itself as the
1787 ** caller may modify the value text encoding.
1789 assert( p->op==SQLITE_UPDATE );
1790 if( !p->aNew ){
1791 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1792 if( !p->aNew ){
1793 rc = SQLITE_NOMEM;
1794 goto preupdate_new_out;
1797 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1798 pMem = &p->aNew[iIdx];
1799 if( pMem->flags==0 ){
1800 if( iIdx==p->pTab->iPKey ){
1801 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1802 }else{
1803 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1804 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1808 *ppValue = pMem;
1810 preupdate_new_out:
1811 sqlite3Error(db, rc);
1812 return sqlite3ApiExit(db, rc);
1814 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1816 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1818 ** Return status data for a single loop within query pStmt.
1820 int sqlite3_stmt_scanstatus(
1821 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1822 int idx, /* Index of loop to report on */
1823 int iScanStatusOp, /* Which metric to return */
1824 void *pOut /* OUT: Write the answer here */
1826 Vdbe *p = (Vdbe*)pStmt;
1827 ScanStatus *pScan;
1828 if( idx<0 || idx>=p->nScan ) return 1;
1829 pScan = &p->aScan[idx];
1830 switch( iScanStatusOp ){
1831 case SQLITE_SCANSTAT_NLOOP: {
1832 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1833 break;
1835 case SQLITE_SCANSTAT_NVISIT: {
1836 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1837 break;
1839 case SQLITE_SCANSTAT_EST: {
1840 double r = 1.0;
1841 LogEst x = pScan->nEst;
1842 while( x<100 ){
1843 x += 10;
1844 r *= 0.5;
1846 *(double*)pOut = r*sqlite3LogEstToInt(x);
1847 break;
1849 case SQLITE_SCANSTAT_NAME: {
1850 *(const char**)pOut = pScan->zName;
1851 break;
1853 case SQLITE_SCANSTAT_EXPLAIN: {
1854 if( pScan->addrExplain ){
1855 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1856 }else{
1857 *(const char**)pOut = 0;
1859 break;
1861 case SQLITE_SCANSTAT_SELECTID: {
1862 if( pScan->addrExplain ){
1863 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1864 }else{
1865 *(int*)pOut = -1;
1867 break;
1869 default: {
1870 return 1;
1873 return 0;
1877 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1879 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1880 Vdbe *p = (Vdbe*)pStmt;
1881 memset(p->anExec, 0, p->nOp * sizeof(i64));
1883 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */