4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 #include "sqliteInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
28 int sqlite3_expired(sqlite3_stmt
*pStmt
){
29 Vdbe
*p
= (Vdbe
*)pStmt
;
30 return p
==0 || p
->expired
;
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe
*p
){
41 sqlite3_log(SQLITE_MISUSE
, "API called with finalized prepared statement");
47 static int vdbeSafetyNotNull(Vdbe
*p
){
49 sqlite3_log(SQLITE_MISUSE
, "API called with NULL prepared statement");
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE
void invokeProfileCallback(sqlite3
*db
, Vdbe
*p
){
63 sqlite3_int64 iElapse
;
64 assert( p
->startTime
>0 );
65 assert( db
->xProfile
!=0 || (db
->mTrace
& SQLITE_TRACE_PROFILE
)!=0 );
66 assert( db
->init
.busy
==0 );
68 sqlite3OsCurrentTimeInt64(db
->pVfs
, &iNow
);
69 iElapse
= (iNow
- p
->startTime
)*1000000;
71 db
->xProfile(db
->pProfileArg
, p
->zSql
, iElapse
);
73 if( db
->mTrace
& SQLITE_TRACE_PROFILE
){
74 db
->xTrace(SQLITE_TRACE_PROFILE
, db
->pTraceArg
, p
, (void*)&iElapse
);
79 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
80 ** is needed, and it invokes the callback if it is needed.
82 # define checkProfileCallback(DB,P) \
83 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
85 # define checkProfileCallback(DB,P) /*no-op*/
89 ** The following routine destroys a virtual machine that is created by
90 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
91 ** success/failure code that describes the result of executing the virtual
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_finalize(sqlite3_stmt
*pStmt
){
100 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
101 ** pointer is a harmless no-op. */
104 Vdbe
*v
= (Vdbe
*)pStmt
;
106 if( vdbeSafety(v
) ) return SQLITE_MISUSE_BKPT
;
107 sqlite3_mutex_enter(db
->mutex
);
108 checkProfileCallback(db
, v
);
109 rc
= sqlite3VdbeFinalize(v
);
110 rc
= sqlite3ApiExit(db
, rc
);
111 sqlite3LeaveMutexAndCloseZombie(db
);
117 ** Terminate the current execution of an SQL statement and reset it
118 ** back to its starting state so that it can be reused. A success code from
119 ** the prior execution is returned.
121 ** This routine sets the error code and string returned by
122 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
124 int sqlite3_reset(sqlite3_stmt
*pStmt
){
129 Vdbe
*v
= (Vdbe
*)pStmt
;
131 sqlite3_mutex_enter(db
->mutex
);
132 checkProfileCallback(db
, v
);
133 rc
= sqlite3VdbeReset(v
);
134 sqlite3VdbeRewind(v
);
135 assert( (rc
& (db
->errMask
))==rc
);
136 rc
= sqlite3ApiExit(db
, rc
);
137 sqlite3_mutex_leave(db
->mutex
);
143 ** Set all the parameters in the compiled SQL statement to NULL.
145 int sqlite3_clear_bindings(sqlite3_stmt
*pStmt
){
148 Vdbe
*p
= (Vdbe
*)pStmt
;
149 #if SQLITE_THREADSAFE
150 sqlite3_mutex
*mutex
= ((Vdbe
*)pStmt
)->db
->mutex
;
152 sqlite3_mutex_enter(mutex
);
153 for(i
=0; i
<p
->nVar
; i
++){
154 sqlite3VdbeMemRelease(&p
->aVar
[i
]);
155 p
->aVar
[i
].flags
= MEM_Null
;
157 if( p
->isPrepareV2
&& p
->expmask
){
160 sqlite3_mutex_leave(mutex
);
165 /**************************** sqlite3_value_ *******************************
166 ** The following routines extract information from a Mem or sqlite3_value
169 const void *sqlite3_value_blob(sqlite3_value
*pVal
){
171 if( p
->flags
& (MEM_Blob
|MEM_Str
) ){
172 if( ExpandBlob(p
)!=SQLITE_OK
){
173 assert( p
->flags
==MEM_Null
&& p
->z
==0 );
176 p
->flags
|= MEM_Blob
;
177 return p
->n
? p
->z
: 0;
179 return sqlite3_value_text(pVal
);
182 int sqlite3_value_bytes(sqlite3_value
*pVal
){
183 return sqlite3ValueBytes(pVal
, SQLITE_UTF8
);
185 int sqlite3_value_bytes16(sqlite3_value
*pVal
){
186 return sqlite3ValueBytes(pVal
, SQLITE_UTF16NATIVE
);
188 double sqlite3_value_double(sqlite3_value
*pVal
){
189 return sqlite3VdbeRealValue((Mem
*)pVal
);
191 int sqlite3_value_int(sqlite3_value
*pVal
){
192 return (int)sqlite3VdbeIntValue((Mem
*)pVal
);
194 sqlite_int64
sqlite3_value_int64(sqlite3_value
*pVal
){
195 return sqlite3VdbeIntValue((Mem
*)pVal
);
197 unsigned int sqlite3_value_subtype(sqlite3_value
*pVal
){
198 Mem
*pMem
= (Mem
*)pVal
;
199 return ((pMem
->flags
& MEM_Subtype
) ? pMem
->eSubtype
: 0);
201 const unsigned char *sqlite3_value_text(sqlite3_value
*pVal
){
202 return (const unsigned char *)sqlite3ValueText(pVal
, SQLITE_UTF8
);
204 #ifndef SQLITE_OMIT_UTF16
205 const void *sqlite3_value_text16(sqlite3_value
* pVal
){
206 return sqlite3ValueText(pVal
, SQLITE_UTF16NATIVE
);
208 const void *sqlite3_value_text16be(sqlite3_value
*pVal
){
209 return sqlite3ValueText(pVal
, SQLITE_UTF16BE
);
211 const void *sqlite3_value_text16le(sqlite3_value
*pVal
){
212 return sqlite3ValueText(pVal
, SQLITE_UTF16LE
);
214 #endif /* SQLITE_OMIT_UTF16 */
215 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
216 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
217 ** point number string BLOB NULL
219 int sqlite3_value_type(sqlite3_value
* pVal
){
220 static const u8 aType
[] = {
221 SQLITE_BLOB
, /* 0x00 */
222 SQLITE_NULL
, /* 0x01 */
223 SQLITE_TEXT
, /* 0x02 */
224 SQLITE_NULL
, /* 0x03 */
225 SQLITE_INTEGER
, /* 0x04 */
226 SQLITE_NULL
, /* 0x05 */
227 SQLITE_INTEGER
, /* 0x06 */
228 SQLITE_NULL
, /* 0x07 */
229 SQLITE_FLOAT
, /* 0x08 */
230 SQLITE_NULL
, /* 0x09 */
231 SQLITE_FLOAT
, /* 0x0a */
232 SQLITE_NULL
, /* 0x0b */
233 SQLITE_INTEGER
, /* 0x0c */
234 SQLITE_NULL
, /* 0x0d */
235 SQLITE_INTEGER
, /* 0x0e */
236 SQLITE_NULL
, /* 0x0f */
237 SQLITE_BLOB
, /* 0x10 */
238 SQLITE_NULL
, /* 0x11 */
239 SQLITE_TEXT
, /* 0x12 */
240 SQLITE_NULL
, /* 0x13 */
241 SQLITE_INTEGER
, /* 0x14 */
242 SQLITE_NULL
, /* 0x15 */
243 SQLITE_INTEGER
, /* 0x16 */
244 SQLITE_NULL
, /* 0x17 */
245 SQLITE_FLOAT
, /* 0x18 */
246 SQLITE_NULL
, /* 0x19 */
247 SQLITE_FLOAT
, /* 0x1a */
248 SQLITE_NULL
, /* 0x1b */
249 SQLITE_INTEGER
, /* 0x1c */
250 SQLITE_NULL
, /* 0x1d */
251 SQLITE_INTEGER
, /* 0x1e */
252 SQLITE_NULL
, /* 0x1f */
254 return aType
[pVal
->flags
&MEM_AffMask
];
257 /* Make a copy of an sqlite3_value object
259 sqlite3_value
*sqlite3_value_dup(const sqlite3_value
*pOrig
){
261 if( pOrig
==0 ) return 0;
262 pNew
= sqlite3_malloc( sizeof(*pNew
) );
263 if( pNew
==0 ) return 0;
264 memset(pNew
, 0, sizeof(*pNew
));
265 memcpy(pNew
, pOrig
, MEMCELLSIZE
);
266 pNew
->flags
&= ~MEM_Dyn
;
268 if( pNew
->flags
&(MEM_Str
|MEM_Blob
) ){
269 pNew
->flags
&= ~(MEM_Static
|MEM_Dyn
);
270 pNew
->flags
|= MEM_Ephem
;
271 if( sqlite3VdbeMemMakeWriteable(pNew
)!=SQLITE_OK
){
272 sqlite3ValueFree(pNew
);
279 /* Destroy an sqlite3_value object previously obtained from
280 ** sqlite3_value_dup().
282 void sqlite3_value_free(sqlite3_value
*pOld
){
283 sqlite3ValueFree(pOld
);
287 /**************************** sqlite3_result_ *******************************
288 ** The following routines are used by user-defined functions to specify
289 ** the function result.
291 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
292 ** result as a string or blob but if the string or blob is too large, it
293 ** then sets the error code to SQLITE_TOOBIG
295 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
296 ** on value P is not going to be used and need to be destroyed.
298 static void setResultStrOrError(
299 sqlite3_context
*pCtx
, /* Function context */
300 const char *z
, /* String pointer */
301 int n
, /* Bytes in string, or negative */
302 u8 enc
, /* Encoding of z. 0 for BLOBs */
303 void (*xDel
)(void*) /* Destructor function */
305 if( sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, enc
, xDel
)==SQLITE_TOOBIG
){
306 sqlite3_result_error_toobig(pCtx
);
309 static int invokeValueDestructor(
310 const void *p
, /* Value to destroy */
311 void (*xDel
)(void*), /* The destructor */
312 sqlite3_context
*pCtx
/* Set a SQLITE_TOOBIG error if no NULL */
314 assert( xDel
!=SQLITE_DYNAMIC
);
317 }else if( xDel
==SQLITE_TRANSIENT
){
322 if( pCtx
) sqlite3_result_error_toobig(pCtx
);
323 return SQLITE_TOOBIG
;
325 void sqlite3_result_blob(
326 sqlite3_context
*pCtx
,
332 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
333 setResultStrOrError(pCtx
, z
, n
, 0, xDel
);
335 void sqlite3_result_blob64(
336 sqlite3_context
*pCtx
,
341 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
342 assert( xDel
!=SQLITE_DYNAMIC
);
344 (void)invokeValueDestructor(z
, xDel
, pCtx
);
346 setResultStrOrError(pCtx
, z
, (int)n
, 0, xDel
);
349 void sqlite3_result_double(sqlite3_context
*pCtx
, double rVal
){
350 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
351 sqlite3VdbeMemSetDouble(pCtx
->pOut
, rVal
);
353 void sqlite3_result_error(sqlite3_context
*pCtx
, const char *z
, int n
){
354 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
355 pCtx
->isError
= SQLITE_ERROR
;
356 pCtx
->fErrorOrAux
= 1;
357 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
359 #ifndef SQLITE_OMIT_UTF16
360 void sqlite3_result_error16(sqlite3_context
*pCtx
, const void *z
, int n
){
361 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
362 pCtx
->isError
= SQLITE_ERROR
;
363 pCtx
->fErrorOrAux
= 1;
364 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF16NATIVE
, SQLITE_TRANSIENT
);
367 void sqlite3_result_int(sqlite3_context
*pCtx
, int iVal
){
368 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
369 sqlite3VdbeMemSetInt64(pCtx
->pOut
, (i64
)iVal
);
371 void sqlite3_result_int64(sqlite3_context
*pCtx
, i64 iVal
){
372 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
373 sqlite3VdbeMemSetInt64(pCtx
->pOut
, iVal
);
375 void sqlite3_result_null(sqlite3_context
*pCtx
){
376 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
377 sqlite3VdbeMemSetNull(pCtx
->pOut
);
379 void sqlite3_result_subtype(sqlite3_context
*pCtx
, unsigned int eSubtype
){
380 Mem
*pOut
= pCtx
->pOut
;
381 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
382 pOut
->eSubtype
= eSubtype
& 0xff;
383 pOut
->flags
|= MEM_Subtype
;
385 void sqlite3_result_text(
386 sqlite3_context
*pCtx
,
391 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
392 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF8
, xDel
);
394 void sqlite3_result_text64(
395 sqlite3_context
*pCtx
,
398 void (*xDel
)(void *),
401 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
402 assert( xDel
!=SQLITE_DYNAMIC
);
403 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
405 (void)invokeValueDestructor(z
, xDel
, pCtx
);
407 setResultStrOrError(pCtx
, z
, (int)n
, enc
, xDel
);
410 #ifndef SQLITE_OMIT_UTF16
411 void sqlite3_result_text16(
412 sqlite3_context
*pCtx
,
417 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
418 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16NATIVE
, xDel
);
420 void sqlite3_result_text16be(
421 sqlite3_context
*pCtx
,
426 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
427 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16BE
, xDel
);
429 void sqlite3_result_text16le(
430 sqlite3_context
*pCtx
,
435 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
436 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF16LE
, xDel
);
438 #endif /* SQLITE_OMIT_UTF16 */
439 void sqlite3_result_value(sqlite3_context
*pCtx
, sqlite3_value
*pValue
){
440 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
441 sqlite3VdbeMemCopy(pCtx
->pOut
, pValue
);
443 void sqlite3_result_zeroblob(sqlite3_context
*pCtx
, int n
){
444 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
445 sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, n
);
447 int sqlite3_result_zeroblob64(sqlite3_context
*pCtx
, u64 n
){
448 Mem
*pOut
= pCtx
->pOut
;
449 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
450 if( n
>(u64
)pOut
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
451 return SQLITE_TOOBIG
;
453 sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, (int)n
);
456 void sqlite3_result_error_code(sqlite3_context
*pCtx
, int errCode
){
457 pCtx
->isError
= errCode
;
458 pCtx
->fErrorOrAux
= 1;
460 if( pCtx
->pVdbe
) pCtx
->pVdbe
->rcApp
= errCode
;
462 if( pCtx
->pOut
->flags
& MEM_Null
){
463 sqlite3VdbeMemSetStr(pCtx
->pOut
, sqlite3ErrStr(errCode
), -1,
464 SQLITE_UTF8
, SQLITE_STATIC
);
468 /* Force an SQLITE_TOOBIG error. */
469 void sqlite3_result_error_toobig(sqlite3_context
*pCtx
){
470 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
471 pCtx
->isError
= SQLITE_TOOBIG
;
472 pCtx
->fErrorOrAux
= 1;
473 sqlite3VdbeMemSetStr(pCtx
->pOut
, "string or blob too big", -1,
474 SQLITE_UTF8
, SQLITE_STATIC
);
477 /* An SQLITE_NOMEM error. */
478 void sqlite3_result_error_nomem(sqlite3_context
*pCtx
){
479 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
480 sqlite3VdbeMemSetNull(pCtx
->pOut
);
481 pCtx
->isError
= SQLITE_NOMEM_BKPT
;
482 pCtx
->fErrorOrAux
= 1;
483 sqlite3OomFault(pCtx
->pOut
->db
);
487 ** This function is called after a transaction has been committed. It
488 ** invokes callbacks registered with sqlite3_wal_hook() as required.
490 static int doWalCallbacks(sqlite3
*db
){
492 #ifndef SQLITE_OMIT_WAL
494 for(i
=0; i
<db
->nDb
; i
++){
495 Btree
*pBt
= db
->aDb
[i
].pBt
;
498 sqlite3BtreeEnter(pBt
);
499 nEntry
= sqlite3PagerWalCallback(sqlite3BtreePager(pBt
));
500 sqlite3BtreeLeave(pBt
);
501 if( db
->xWalCallback
&& nEntry
>0 && rc
==SQLITE_OK
){
502 rc
= db
->xWalCallback(db
->pWalArg
, db
, db
->aDb
[i
].zDbSName
, nEntry
);
512 ** Execute the statement pStmt, either until a row of data is ready, the
513 ** statement is completely executed or an error occurs.
515 ** This routine implements the bulk of the logic behind the sqlite_step()
516 ** API. The only thing omitted is the automatic recompile if a
517 ** schema change has occurred. That detail is handled by the
518 ** outer sqlite3_step() wrapper procedure.
520 static int sqlite3Step(Vdbe
*p
){
525 if( p
->magic
!=VDBE_MAGIC_RUN
){
526 /* We used to require that sqlite3_reset() be called before retrying
527 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
528 ** with version 3.7.0, we changed this so that sqlite3_reset() would
529 ** be called automatically instead of throwing the SQLITE_MISUSE error.
530 ** This "automatic-reset" change is not technically an incompatibility,
531 ** since any application that receives an SQLITE_MISUSE is broken by
534 ** Nevertheless, some published applications that were originally written
535 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
536 ** returns, and those were broken by the automatic-reset change. As a
537 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
538 ** legacy behavior of returning SQLITE_MISUSE for cases where the
539 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
540 ** or SQLITE_BUSY error.
542 #ifdef SQLITE_OMIT_AUTORESET
543 if( (rc
= p
->rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_LOCKED
){
544 sqlite3_reset((sqlite3_stmt
*)p
);
546 return SQLITE_MISUSE_BKPT
;
549 sqlite3_reset((sqlite3_stmt
*)p
);
553 /* Check that malloc() has not failed. If it has, return early. */
555 if( db
->mallocFailed
){
556 p
->rc
= SQLITE_NOMEM
;
557 return SQLITE_NOMEM_BKPT
;
560 if( p
->pc
<=0 && p
->expired
){
561 p
->rc
= SQLITE_SCHEMA
;
566 /* If there are no other statements currently running, then
567 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
568 ** from interrupting a statement that has not yet started.
570 if( db
->nVdbeActive
==0 ){
571 db
->u1
.isInterrupted
= 0;
574 assert( db
->nVdbeWrite
>0 || db
->autoCommit
==0
575 || (db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0)
578 #ifndef SQLITE_OMIT_TRACE
579 if( (db
->xProfile
|| (db
->mTrace
& SQLITE_TRACE_PROFILE
)!=0)
580 && !db
->init
.busy
&& p
->zSql
){
581 sqlite3OsCurrentTimeInt64(db
->pVfs
, &p
->startTime
);
583 assert( p
->startTime
==0 );
588 if( p
->readOnly
==0 ) db
->nVdbeWrite
++;
589 if( p
->bIsReader
) db
->nVdbeRead
++;
593 p
->rcApp
= SQLITE_OK
;
595 #ifndef SQLITE_OMIT_EXPLAIN
597 rc
= sqlite3VdbeList(p
);
599 #endif /* SQLITE_OMIT_EXPLAIN */
602 rc
= sqlite3VdbeExec(p
);
606 #ifndef SQLITE_OMIT_TRACE
607 /* If the statement completed successfully, invoke the profile callback */
608 if( rc
!=SQLITE_ROW
) checkProfileCallback(db
, p
);
611 if( rc
==SQLITE_DONE
){
612 assert( p
->rc
==SQLITE_OK
);
613 p
->rc
= doWalCallbacks(db
);
614 if( p
->rc
!=SQLITE_OK
){
620 if( SQLITE_NOMEM
==sqlite3ApiExit(p
->db
, p
->rc
) ){
621 p
->rc
= SQLITE_NOMEM_BKPT
;
624 /* At this point local variable rc holds the value that should be
625 ** returned if this statement was compiled using the legacy
626 ** sqlite3_prepare() interface. According to the docs, this can only
627 ** be one of the values in the first assert() below. Variable p->rc
628 ** contains the value that would be returned if sqlite3_finalize()
629 ** were called on statement p.
631 assert( rc
==SQLITE_ROW
|| rc
==SQLITE_DONE
|| rc
==SQLITE_ERROR
632 || (rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_MISUSE
634 assert( (p
->rc
!=SQLITE_ROW
&& p
->rc
!=SQLITE_DONE
) || p
->rc
==p
->rcApp
);
635 if( p
->isPrepareV2
&& rc
!=SQLITE_ROW
&& rc
!=SQLITE_DONE
){
636 /* If this statement was prepared using sqlite3_prepare_v2(), and an
637 ** error has occurred, then return the error code in p->rc to the
638 ** caller. Set the error code in the database handle to the same value.
640 rc
= sqlite3VdbeTransferError(p
);
642 return (rc
&db
->errMask
);
646 ** This is the top-level implementation of sqlite3_step(). Call
647 ** sqlite3Step() to do most of the work. If a schema error occurs,
648 ** call sqlite3Reprepare() and try again.
650 int sqlite3_step(sqlite3_stmt
*pStmt
){
651 int rc
= SQLITE_OK
; /* Result from sqlite3Step() */
652 int rc2
= SQLITE_OK
; /* Result from sqlite3Reprepare() */
653 Vdbe
*v
= (Vdbe
*)pStmt
; /* the prepared statement */
654 int cnt
= 0; /* Counter to prevent infinite loop of reprepares */
655 sqlite3
*db
; /* The database connection */
657 if( vdbeSafetyNotNull(v
) ){
658 return SQLITE_MISUSE_BKPT
;
661 sqlite3_mutex_enter(db
->mutex
);
663 while( (rc
= sqlite3Step(v
))==SQLITE_SCHEMA
664 && cnt
++ < SQLITE_MAX_SCHEMA_RETRY
){
666 rc2
= rc
= sqlite3Reprepare(v
);
667 if( rc
!=SQLITE_OK
) break;
668 sqlite3_reset(pStmt
);
669 if( savedPc
>=0 ) v
->doingRerun
= 1;
670 assert( v
->expired
==0 );
672 if( rc2
!=SQLITE_OK
){
673 /* This case occurs after failing to recompile an sql statement.
674 ** The error message from the SQL compiler has already been loaded
675 ** into the database handle. This block copies the error message
676 ** from the database handle into the statement and sets the statement
677 ** program counter to 0 to ensure that when the statement is
678 ** finalized or reset the parser error message is available via
679 ** sqlite3_errmsg() and sqlite3_errcode().
681 const char *zErr
= (const char *)sqlite3_value_text(db
->pErr
);
682 sqlite3DbFree(db
, v
->zErrMsg
);
683 if( !db
->mallocFailed
){
684 v
->zErrMsg
= sqlite3DbStrDup(db
, zErr
);
688 v
->rc
= rc
= SQLITE_NOMEM_BKPT
;
691 rc
= sqlite3ApiExit(db
, rc
);
692 sqlite3_mutex_leave(db
->mutex
);
698 ** Extract the user data from a sqlite3_context structure and return a
701 void *sqlite3_user_data(sqlite3_context
*p
){
702 assert( p
&& p
->pFunc
);
703 return p
->pFunc
->pUserData
;
707 ** Extract the user data from a sqlite3_context structure and return a
710 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
711 ** returns a copy of the pointer to the database connection (the 1st
712 ** parameter) of the sqlite3_create_function() and
713 ** sqlite3_create_function16() routines that originally registered the
714 ** application defined function.
716 sqlite3
*sqlite3_context_db_handle(sqlite3_context
*p
){
717 assert( p
&& p
->pOut
);
722 ** Return the current time for a statement. If the current time
723 ** is requested more than once within the same run of a single prepared
724 ** statement, the exact same time is returned for each invocation regardless
725 ** of the amount of time that elapses between invocations. In other words,
726 ** the time returned is always the time of the first call.
728 sqlite3_int64
sqlite3StmtCurrentTime(sqlite3_context
*p
){
730 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
731 sqlite3_int64
*piTime
= &p
->pVdbe
->iCurrentTime
;
732 assert( p
->pVdbe
!=0 );
734 sqlite3_int64 iTime
= 0;
735 sqlite3_int64
*piTime
= p
->pVdbe
!=0 ? &p
->pVdbe
->iCurrentTime
: &iTime
;
738 rc
= sqlite3OsCurrentTimeInt64(p
->pOut
->db
->pVfs
, piTime
);
739 if( rc
) *piTime
= 0;
745 ** The following is the implementation of an SQL function that always
746 ** fails with an error message stating that the function is used in the
747 ** wrong context. The sqlite3_overload_function() API might construct
748 ** SQL function that use this routine so that the functions will exist
749 ** for name resolution but are actually overloaded by the xFindFunction
750 ** method of virtual tables.
752 void sqlite3InvalidFunction(
753 sqlite3_context
*context
, /* The function calling context */
754 int NotUsed
, /* Number of arguments to the function */
755 sqlite3_value
**NotUsed2
/* Value of each argument */
757 const char *zName
= context
->pFunc
->zName
;
759 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
760 zErr
= sqlite3_mprintf(
761 "unable to use function %s in the requested context", zName
);
762 sqlite3_result_error(context
, zErr
, -1);
767 ** Create a new aggregate context for p and return a pointer to
768 ** its pMem->z element.
770 static SQLITE_NOINLINE
void *createAggContext(sqlite3_context
*p
, int nByte
){
772 assert( (pMem
->flags
& MEM_Agg
)==0 );
774 sqlite3VdbeMemSetNull(pMem
);
777 sqlite3VdbeMemClearAndResize(pMem
, nByte
);
778 pMem
->flags
= MEM_Agg
;
779 pMem
->u
.pDef
= p
->pFunc
;
781 memset(pMem
->z
, 0, nByte
);
784 return (void*)pMem
->z
;
788 ** Allocate or return the aggregate context for a user function. A new
789 ** context is allocated on the first call. Subsequent calls return the
790 ** same context that was returned on prior calls.
792 void *sqlite3_aggregate_context(sqlite3_context
*p
, int nByte
){
793 assert( p
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
794 assert( sqlite3_mutex_held(p
->pOut
->db
->mutex
) );
796 if( (p
->pMem
->flags
& MEM_Agg
)==0 ){
797 return createAggContext(p
, nByte
);
799 return (void*)p
->pMem
->z
;
804 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
805 ** the user-function defined by pCtx.
807 void *sqlite3_get_auxdata(sqlite3_context
*pCtx
, int iArg
){
810 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
811 #if SQLITE_ENABLE_STAT3_OR_STAT4
812 if( pCtx
->pVdbe
==0 ) return 0;
814 assert( pCtx
->pVdbe
!=0 );
816 for(pAuxData
=pCtx
->pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNext
){
817 if( pAuxData
->iOp
==pCtx
->iOp
&& pAuxData
->iArg
==iArg
) break;
820 return (pAuxData
? pAuxData
->pAux
: 0);
824 ** Set the auxiliary data pointer and delete function, for the iArg'th
825 ** argument to the user-function defined by pCtx. Any previous value is
826 ** deleted by calling the delete function specified when it was set.
828 void sqlite3_set_auxdata(
829 sqlite3_context
*pCtx
,
832 void (*xDelete
)(void*)
835 Vdbe
*pVdbe
= pCtx
->pVdbe
;
837 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
838 if( iArg
<0 ) goto failed
;
839 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
840 if( pVdbe
==0 ) goto failed
;
845 for(pAuxData
=pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNext
){
846 if( pAuxData
->iOp
==pCtx
->iOp
&& pAuxData
->iArg
==iArg
) break;
849 pAuxData
= sqlite3DbMallocZero(pVdbe
->db
, sizeof(AuxData
));
850 if( !pAuxData
) goto failed
;
851 pAuxData
->iOp
= pCtx
->iOp
;
852 pAuxData
->iArg
= iArg
;
853 pAuxData
->pNext
= pVdbe
->pAuxData
;
854 pVdbe
->pAuxData
= pAuxData
;
855 if( pCtx
->fErrorOrAux
==0 ){
857 pCtx
->fErrorOrAux
= 1;
859 }else if( pAuxData
->xDelete
){
860 pAuxData
->xDelete(pAuxData
->pAux
);
863 pAuxData
->pAux
= pAux
;
864 pAuxData
->xDelete
= xDelete
;
873 #ifndef SQLITE_OMIT_DEPRECATED
875 ** Return the number of times the Step function of an aggregate has been
878 ** This function is deprecated. Do not use it for new code. It is
879 ** provide only to avoid breaking legacy code. New aggregate function
880 ** implementations should keep their own counts within their aggregate
883 int sqlite3_aggregate_count(sqlite3_context
*p
){
884 assert( p
&& p
->pMem
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
890 ** Return the number of columns in the result set for the statement pStmt.
892 int sqlite3_column_count(sqlite3_stmt
*pStmt
){
893 Vdbe
*pVm
= (Vdbe
*)pStmt
;
894 return pVm
? pVm
->nResColumn
: 0;
898 ** Return the number of values available from the current row of the
899 ** currently executing statement pStmt.
901 int sqlite3_data_count(sqlite3_stmt
*pStmt
){
902 Vdbe
*pVm
= (Vdbe
*)pStmt
;
903 if( pVm
==0 || pVm
->pResultSet
==0 ) return 0;
904 return pVm
->nResColumn
;
908 ** Return a pointer to static memory containing an SQL NULL value.
910 static const Mem
*columnNullValue(void){
911 /* Even though the Mem structure contains an element
912 ** of type i64, on certain architectures (x86) with certain compiler
913 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
914 ** instead of an 8-byte one. This all works fine, except that when
915 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
916 ** that a Mem structure is located on an 8-byte boundary. To prevent
917 ** these assert()s from failing, when building with SQLITE_DEBUG defined
918 ** using gcc, we force nullMem to be 8-byte aligned using the magical
919 ** __attribute__((aligned(8))) macro. */
920 static const Mem nullMem
921 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
922 __attribute__((aligned(8)))
926 /* .flags = */ (u16
)MEM_Null
,
928 /* .eSubtype = */ (u8
)0,
931 /* .zMalloc = */ (char*)0,
932 /* .szMalloc = */ (int)0,
933 /* .uTemp = */ (u32
)0,
934 /* .db = */ (sqlite3
*)0,
935 /* .xDel = */ (void(*)(void*))0,
937 /* .pScopyFrom = */ (Mem
*)0,
938 /* .pFiller = */ (void*)0,
945 ** Check to see if column iCol of the given statement is valid. If
946 ** it is, return a pointer to the Mem for the value of that column.
947 ** If iCol is not valid, return a pointer to a Mem which has a value
950 static Mem
*columnMem(sqlite3_stmt
*pStmt
, int i
){
955 if( pVm
==0 ) return (Mem
*)columnNullValue();
957 sqlite3_mutex_enter(pVm
->db
->mutex
);
958 if( pVm
->pResultSet
!=0 && i
<pVm
->nResColumn
&& i
>=0 ){
959 pOut
= &pVm
->pResultSet
[i
];
961 sqlite3Error(pVm
->db
, SQLITE_RANGE
);
962 pOut
= (Mem
*)columnNullValue();
968 ** This function is called after invoking an sqlite3_value_XXX function on a
969 ** column value (i.e. a value returned by evaluating an SQL expression in the
970 ** select list of a SELECT statement) that may cause a malloc() failure. If
971 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
972 ** code of statement pStmt set to SQLITE_NOMEM.
974 ** Specifically, this is called from within:
976 ** sqlite3_column_int()
977 ** sqlite3_column_int64()
978 ** sqlite3_column_text()
979 ** sqlite3_column_text16()
980 ** sqlite3_column_real()
981 ** sqlite3_column_bytes()
982 ** sqlite3_column_bytes16()
983 ** sqiite3_column_blob()
985 static void columnMallocFailure(sqlite3_stmt
*pStmt
)
987 /* If malloc() failed during an encoding conversion within an
988 ** sqlite3_column_XXX API, then set the return code of the statement to
989 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
990 ** and _finalize() will return NOMEM.
992 Vdbe
*p
= (Vdbe
*)pStmt
;
995 assert( sqlite3_mutex_held(p
->db
->mutex
) );
996 p
->rc
= sqlite3ApiExit(p
->db
, p
->rc
);
997 sqlite3_mutex_leave(p
->db
->mutex
);
1001 /**************************** sqlite3_column_ *******************************
1002 ** The following routines are used to access elements of the current row
1003 ** in the result set.
1005 const void *sqlite3_column_blob(sqlite3_stmt
*pStmt
, int i
){
1007 val
= sqlite3_value_blob( columnMem(pStmt
,i
) );
1008 /* Even though there is no encoding conversion, value_blob() might
1009 ** need to call malloc() to expand the result of a zeroblob()
1012 columnMallocFailure(pStmt
);
1015 int sqlite3_column_bytes(sqlite3_stmt
*pStmt
, int i
){
1016 int val
= sqlite3_value_bytes( columnMem(pStmt
,i
) );
1017 columnMallocFailure(pStmt
);
1020 int sqlite3_column_bytes16(sqlite3_stmt
*pStmt
, int i
){
1021 int val
= sqlite3_value_bytes16( columnMem(pStmt
,i
) );
1022 columnMallocFailure(pStmt
);
1025 double sqlite3_column_double(sqlite3_stmt
*pStmt
, int i
){
1026 double val
= sqlite3_value_double( columnMem(pStmt
,i
) );
1027 columnMallocFailure(pStmt
);
1030 int sqlite3_column_int(sqlite3_stmt
*pStmt
, int i
){
1031 int val
= sqlite3_value_int( columnMem(pStmt
,i
) );
1032 columnMallocFailure(pStmt
);
1035 sqlite_int64
sqlite3_column_int64(sqlite3_stmt
*pStmt
, int i
){
1036 sqlite_int64 val
= sqlite3_value_int64( columnMem(pStmt
,i
) );
1037 columnMallocFailure(pStmt
);
1040 const unsigned char *sqlite3_column_text(sqlite3_stmt
*pStmt
, int i
){
1041 const unsigned char *val
= sqlite3_value_text( columnMem(pStmt
,i
) );
1042 columnMallocFailure(pStmt
);
1045 sqlite3_value
*sqlite3_column_value(sqlite3_stmt
*pStmt
, int i
){
1046 Mem
*pOut
= columnMem(pStmt
, i
);
1047 if( pOut
->flags
&MEM_Static
){
1048 pOut
->flags
&= ~MEM_Static
;
1049 pOut
->flags
|= MEM_Ephem
;
1051 columnMallocFailure(pStmt
);
1052 return (sqlite3_value
*)pOut
;
1054 #ifndef SQLITE_OMIT_UTF16
1055 const void *sqlite3_column_text16(sqlite3_stmt
*pStmt
, int i
){
1056 const void *val
= sqlite3_value_text16( columnMem(pStmt
,i
) );
1057 columnMallocFailure(pStmt
);
1060 #endif /* SQLITE_OMIT_UTF16 */
1061 int sqlite3_column_type(sqlite3_stmt
*pStmt
, int i
){
1062 int iType
= sqlite3_value_type( columnMem(pStmt
,i
) );
1063 columnMallocFailure(pStmt
);
1068 ** Convert the N-th element of pStmt->pColName[] into a string using
1069 ** xFunc() then return that string. If N is out of range, return 0.
1071 ** There are up to 5 names for each column. useType determines which
1072 ** name is returned. Here are the names:
1074 ** 0 The column name as it should be displayed for output
1075 ** 1 The datatype name for the column
1076 ** 2 The name of the database that the column derives from
1077 ** 3 The name of the table that the column derives from
1078 ** 4 The name of the table column that the result column derives from
1080 ** If the result is not a simple column reference (if it is an expression
1081 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1083 static const void *columnName(
1084 sqlite3_stmt
*pStmt
,
1086 const void *(*xFunc
)(Mem
*),
1093 #ifdef SQLITE_ENABLE_API_ARMOR
1095 (void)SQLITE_MISUSE_BKPT
;
1103 n
= sqlite3_column_count(pStmt
);
1106 sqlite3_mutex_enter(db
->mutex
);
1107 assert( db
->mallocFailed
==0 );
1108 ret
= xFunc(&p
->aColName
[N
]);
1109 /* A malloc may have failed inside of the xFunc() call. If this
1110 ** is the case, clear the mallocFailed flag and return NULL.
1112 if( db
->mallocFailed
){
1113 sqlite3OomClear(db
);
1116 sqlite3_mutex_leave(db
->mutex
);
1122 ** Return the name of the Nth column of the result set returned by SQL
1125 const char *sqlite3_column_name(sqlite3_stmt
*pStmt
, int N
){
1127 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_NAME
);
1129 #ifndef SQLITE_OMIT_UTF16
1130 const void *sqlite3_column_name16(sqlite3_stmt
*pStmt
, int N
){
1132 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_NAME
);
1137 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1138 ** not define OMIT_DECLTYPE.
1140 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1141 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1142 and SQLITE_ENABLE_COLUMN_METADATA"
1145 #ifndef SQLITE_OMIT_DECLTYPE
1147 ** Return the column declaration type (if applicable) of the 'i'th column
1148 ** of the result set of SQL statement pStmt.
1150 const char *sqlite3_column_decltype(sqlite3_stmt
*pStmt
, int N
){
1152 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_DECLTYPE
);
1154 #ifndef SQLITE_OMIT_UTF16
1155 const void *sqlite3_column_decltype16(sqlite3_stmt
*pStmt
, int N
){
1157 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_DECLTYPE
);
1159 #endif /* SQLITE_OMIT_UTF16 */
1160 #endif /* SQLITE_OMIT_DECLTYPE */
1162 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1164 ** Return the name of the database from which a result column derives.
1165 ** NULL is returned if the result column is an expression or constant or
1166 ** anything else which is not an unambiguous reference to a database column.
1168 const char *sqlite3_column_database_name(sqlite3_stmt
*pStmt
, int N
){
1170 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_DATABASE
);
1172 #ifndef SQLITE_OMIT_UTF16
1173 const void *sqlite3_column_database_name16(sqlite3_stmt
*pStmt
, int N
){
1175 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_DATABASE
);
1177 #endif /* SQLITE_OMIT_UTF16 */
1180 ** Return the name of the table from which a result column derives.
1181 ** NULL is returned if the result column is an expression or constant or
1182 ** anything else which is not an unambiguous reference to a database column.
1184 const char *sqlite3_column_table_name(sqlite3_stmt
*pStmt
, int N
){
1186 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_TABLE
);
1188 #ifndef SQLITE_OMIT_UTF16
1189 const void *sqlite3_column_table_name16(sqlite3_stmt
*pStmt
, int N
){
1191 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_TABLE
);
1193 #endif /* SQLITE_OMIT_UTF16 */
1196 ** Return the name of the table column from which a result column derives.
1197 ** NULL is returned if the result column is an expression or constant or
1198 ** anything else which is not an unambiguous reference to a database column.
1200 const char *sqlite3_column_origin_name(sqlite3_stmt
*pStmt
, int N
){
1202 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text
, COLNAME_COLUMN
);
1204 #ifndef SQLITE_OMIT_UTF16
1205 const void *sqlite3_column_origin_name16(sqlite3_stmt
*pStmt
, int N
){
1207 pStmt
, N
, (const void*(*)(Mem
*))sqlite3_value_text16
, COLNAME_COLUMN
);
1209 #endif /* SQLITE_OMIT_UTF16 */
1210 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1213 /******************************* sqlite3_bind_ ***************************
1215 ** Routines used to attach values to wildcards in a compiled SQL statement.
1218 ** Unbind the value bound to variable i in virtual machine p. This is the
1219 ** the same as binding a NULL value to the column. If the "i" parameter is
1220 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1222 ** A successful evaluation of this routine acquires the mutex on p.
1223 ** the mutex is released if any kind of error occurs.
1225 ** The error code stored in database p->db is overwritten with the return
1226 ** value in any case.
1228 static int vdbeUnbind(Vdbe
*p
, int i
){
1230 if( vdbeSafetyNotNull(p
) ){
1231 return SQLITE_MISUSE_BKPT
;
1233 sqlite3_mutex_enter(p
->db
->mutex
);
1234 if( p
->magic
!=VDBE_MAGIC_RUN
|| p
->pc
>=0 ){
1235 sqlite3Error(p
->db
, SQLITE_MISUSE
);
1236 sqlite3_mutex_leave(p
->db
->mutex
);
1237 sqlite3_log(SQLITE_MISUSE
,
1238 "bind on a busy prepared statement: [%s]", p
->zSql
);
1239 return SQLITE_MISUSE_BKPT
;
1241 if( i
<1 || i
>p
->nVar
){
1242 sqlite3Error(p
->db
, SQLITE_RANGE
);
1243 sqlite3_mutex_leave(p
->db
->mutex
);
1244 return SQLITE_RANGE
;
1248 sqlite3VdbeMemRelease(pVar
);
1249 pVar
->flags
= MEM_Null
;
1250 sqlite3Error(p
->db
, SQLITE_OK
);
1252 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1253 ** binding a new value to this variable invalidates the current query plan.
1255 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1256 ** parameter in the WHERE clause might influence the choice of query plan
1257 ** for a statement, then the statement will be automatically recompiled,
1258 ** as if there had been a schema change, on the first sqlite3_step() call
1259 ** following any change to the bindings of that parameter.
1261 if( p
->isPrepareV2
&&
1262 ((i
<32 && p
->expmask
& ((u32
)1 << i
)) || p
->expmask
==0xffffffff)
1270 ** Bind a text or BLOB value.
1272 static int bindText(
1273 sqlite3_stmt
*pStmt
, /* The statement to bind against */
1274 int i
, /* Index of the parameter to bind */
1275 const void *zData
, /* Pointer to the data to be bound */
1276 int nData
, /* Number of bytes of data to be bound */
1277 void (*xDel
)(void*), /* Destructor for the data */
1278 u8 encoding
/* Encoding for the data */
1280 Vdbe
*p
= (Vdbe
*)pStmt
;
1284 rc
= vdbeUnbind(p
, i
);
1285 if( rc
==SQLITE_OK
){
1287 pVar
= &p
->aVar
[i
-1];
1288 rc
= sqlite3VdbeMemSetStr(pVar
, zData
, nData
, encoding
, xDel
);
1289 if( rc
==SQLITE_OK
&& encoding
!=0 ){
1290 rc
= sqlite3VdbeChangeEncoding(pVar
, ENC(p
->db
));
1292 sqlite3Error(p
->db
, rc
);
1293 rc
= sqlite3ApiExit(p
->db
, rc
);
1295 sqlite3_mutex_leave(p
->db
->mutex
);
1296 }else if( xDel
!=SQLITE_STATIC
&& xDel
!=SQLITE_TRANSIENT
){
1304 ** Bind a blob value to an SQL statement variable.
1306 int sqlite3_bind_blob(
1307 sqlite3_stmt
*pStmt
,
1313 #ifdef SQLITE_ENABLE_API_ARMOR
1314 if( nData
<0 ) return SQLITE_MISUSE_BKPT
;
1316 return bindText(pStmt
, i
, zData
, nData
, xDel
, 0);
1318 int sqlite3_bind_blob64(
1319 sqlite3_stmt
*pStmt
,
1322 sqlite3_uint64 nData
,
1325 assert( xDel
!=SQLITE_DYNAMIC
);
1326 if( nData
>0x7fffffff ){
1327 return invokeValueDestructor(zData
, xDel
, 0);
1329 return bindText(pStmt
, i
, zData
, (int)nData
, xDel
, 0);
1332 int sqlite3_bind_double(sqlite3_stmt
*pStmt
, int i
, double rValue
){
1334 Vdbe
*p
= (Vdbe
*)pStmt
;
1335 rc
= vdbeUnbind(p
, i
);
1336 if( rc
==SQLITE_OK
){
1337 sqlite3VdbeMemSetDouble(&p
->aVar
[i
-1], rValue
);
1338 sqlite3_mutex_leave(p
->db
->mutex
);
1342 int sqlite3_bind_int(sqlite3_stmt
*p
, int i
, int iValue
){
1343 return sqlite3_bind_int64(p
, i
, (i64
)iValue
);
1345 int sqlite3_bind_int64(sqlite3_stmt
*pStmt
, int i
, sqlite_int64 iValue
){
1347 Vdbe
*p
= (Vdbe
*)pStmt
;
1348 rc
= vdbeUnbind(p
, i
);
1349 if( rc
==SQLITE_OK
){
1350 sqlite3VdbeMemSetInt64(&p
->aVar
[i
-1], iValue
);
1351 sqlite3_mutex_leave(p
->db
->mutex
);
1355 int sqlite3_bind_null(sqlite3_stmt
*pStmt
, int i
){
1357 Vdbe
*p
= (Vdbe
*)pStmt
;
1358 rc
= vdbeUnbind(p
, i
);
1359 if( rc
==SQLITE_OK
){
1360 sqlite3_mutex_leave(p
->db
->mutex
);
1364 int sqlite3_bind_text(
1365 sqlite3_stmt
*pStmt
,
1371 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF8
);
1373 int sqlite3_bind_text64(
1374 sqlite3_stmt
*pStmt
,
1377 sqlite3_uint64 nData
,
1378 void (*xDel
)(void*),
1381 assert( xDel
!=SQLITE_DYNAMIC
);
1382 if( nData
>0x7fffffff ){
1383 return invokeValueDestructor(zData
, xDel
, 0);
1385 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
1386 return bindText(pStmt
, i
, zData
, (int)nData
, xDel
, enc
);
1389 #ifndef SQLITE_OMIT_UTF16
1390 int sqlite3_bind_text16(
1391 sqlite3_stmt
*pStmt
,
1397 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF16NATIVE
);
1399 #endif /* SQLITE_OMIT_UTF16 */
1400 int sqlite3_bind_value(sqlite3_stmt
*pStmt
, int i
, const sqlite3_value
*pValue
){
1402 switch( sqlite3_value_type((sqlite3_value
*)pValue
) ){
1403 case SQLITE_INTEGER
: {
1404 rc
= sqlite3_bind_int64(pStmt
, i
, pValue
->u
.i
);
1407 case SQLITE_FLOAT
: {
1408 rc
= sqlite3_bind_double(pStmt
, i
, pValue
->u
.r
);
1412 if( pValue
->flags
& MEM_Zero
){
1413 rc
= sqlite3_bind_zeroblob(pStmt
, i
, pValue
->u
.nZero
);
1415 rc
= sqlite3_bind_blob(pStmt
, i
, pValue
->z
, pValue
->n
,SQLITE_TRANSIENT
);
1420 rc
= bindText(pStmt
,i
, pValue
->z
, pValue
->n
, SQLITE_TRANSIENT
,
1425 rc
= sqlite3_bind_null(pStmt
, i
);
1431 int sqlite3_bind_zeroblob(sqlite3_stmt
*pStmt
, int i
, int n
){
1433 Vdbe
*p
= (Vdbe
*)pStmt
;
1434 rc
= vdbeUnbind(p
, i
);
1435 if( rc
==SQLITE_OK
){
1436 sqlite3VdbeMemSetZeroBlob(&p
->aVar
[i
-1], n
);
1437 sqlite3_mutex_leave(p
->db
->mutex
);
1441 int sqlite3_bind_zeroblob64(sqlite3_stmt
*pStmt
, int i
, sqlite3_uint64 n
){
1443 Vdbe
*p
= (Vdbe
*)pStmt
;
1444 sqlite3_mutex_enter(p
->db
->mutex
);
1445 if( n
>(u64
)p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1448 assert( (n
& 0x7FFFFFFF)==n
);
1449 rc
= sqlite3_bind_zeroblob(pStmt
, i
, n
);
1451 rc
= sqlite3ApiExit(p
->db
, rc
);
1452 sqlite3_mutex_leave(p
->db
->mutex
);
1457 ** Return the number of wildcards that can be potentially bound to.
1458 ** This routine is added to support DBD::SQLite.
1460 int sqlite3_bind_parameter_count(sqlite3_stmt
*pStmt
){
1461 Vdbe
*p
= (Vdbe
*)pStmt
;
1462 return p
? p
->nVar
: 0;
1466 ** Return the name of a wildcard parameter. Return NULL if the index
1467 ** is out of range or if the wildcard is unnamed.
1469 ** The result is always UTF-8.
1471 const char *sqlite3_bind_parameter_name(sqlite3_stmt
*pStmt
, int i
){
1472 Vdbe
*p
= (Vdbe
*)pStmt
;
1473 if( p
==0 ) return 0;
1474 return sqlite3VListNumToName(p
->pVList
, i
);
1478 ** Given a wildcard parameter name, return the index of the variable
1479 ** with that name. If there is no variable with the given name,
1482 int sqlite3VdbeParameterIndex(Vdbe
*p
, const char *zName
, int nName
){
1483 if( p
==0 || zName
==0 ) return 0;
1484 return sqlite3VListNameToNum(p
->pVList
, zName
, nName
);
1486 int sqlite3_bind_parameter_index(sqlite3_stmt
*pStmt
, const char *zName
){
1487 return sqlite3VdbeParameterIndex((Vdbe
*)pStmt
, zName
, sqlite3Strlen30(zName
));
1491 ** Transfer all bindings from the first statement over to the second.
1493 int sqlite3TransferBindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1494 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1495 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1497 assert( pTo
->db
==pFrom
->db
);
1498 assert( pTo
->nVar
==pFrom
->nVar
);
1499 sqlite3_mutex_enter(pTo
->db
->mutex
);
1500 for(i
=0; i
<pFrom
->nVar
; i
++){
1501 sqlite3VdbeMemMove(&pTo
->aVar
[i
], &pFrom
->aVar
[i
]);
1503 sqlite3_mutex_leave(pTo
->db
->mutex
);
1507 #ifndef SQLITE_OMIT_DEPRECATED
1509 ** Deprecated external interface. Internal/core SQLite code
1510 ** should call sqlite3TransferBindings.
1512 ** It is misuse to call this routine with statements from different
1513 ** database connections. But as this is a deprecated interface, we
1514 ** will not bother to check for that condition.
1516 ** If the two statements contain a different number of bindings, then
1517 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1518 ** SQLITE_OK is returned.
1520 int sqlite3_transfer_bindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1521 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1522 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1523 if( pFrom
->nVar
!=pTo
->nVar
){
1524 return SQLITE_ERROR
;
1526 if( pTo
->isPrepareV2
&& pTo
->expmask
){
1529 if( pFrom
->isPrepareV2
&& pFrom
->expmask
){
1532 return sqlite3TransferBindings(pFromStmt
, pToStmt
);
1537 ** Return the sqlite3* database handle to which the prepared statement given
1538 ** in the argument belongs. This is the same database handle that was
1539 ** the first argument to the sqlite3_prepare() that was used to create
1540 ** the statement in the first place.
1542 sqlite3
*sqlite3_db_handle(sqlite3_stmt
*pStmt
){
1543 return pStmt
? ((Vdbe
*)pStmt
)->db
: 0;
1547 ** Return true if the prepared statement is guaranteed to not modify the
1550 int sqlite3_stmt_readonly(sqlite3_stmt
*pStmt
){
1551 return pStmt
? ((Vdbe
*)pStmt
)->readOnly
: 1;
1555 ** Return true if the prepared statement is in need of being reset.
1557 int sqlite3_stmt_busy(sqlite3_stmt
*pStmt
){
1558 Vdbe
*v
= (Vdbe
*)pStmt
;
1559 return v
!=0 && v
->magic
==VDBE_MAGIC_RUN
&& v
->pc
>=0;
1563 ** Return a pointer to the next prepared statement after pStmt associated
1564 ** with database connection pDb. If pStmt is NULL, return the first
1565 ** prepared statement for the database connection. Return NULL if there
1568 sqlite3_stmt
*sqlite3_next_stmt(sqlite3
*pDb
, sqlite3_stmt
*pStmt
){
1569 sqlite3_stmt
*pNext
;
1570 #ifdef SQLITE_ENABLE_API_ARMOR
1571 if( !sqlite3SafetyCheckOk(pDb
) ){
1572 (void)SQLITE_MISUSE_BKPT
;
1576 sqlite3_mutex_enter(pDb
->mutex
);
1578 pNext
= (sqlite3_stmt
*)pDb
->pVdbe
;
1580 pNext
= (sqlite3_stmt
*)((Vdbe
*)pStmt
)->pNext
;
1582 sqlite3_mutex_leave(pDb
->mutex
);
1587 ** Return the value of a status counter for a prepared statement
1589 int sqlite3_stmt_status(sqlite3_stmt
*pStmt
, int op
, int resetFlag
){
1590 Vdbe
*pVdbe
= (Vdbe
*)pStmt
;
1592 #ifdef SQLITE_ENABLE_API_ARMOR
1594 (void)SQLITE_MISUSE_BKPT
;
1598 v
= pVdbe
->aCounter
[op
];
1599 if( resetFlag
) pVdbe
->aCounter
[op
] = 0;
1604 ** Return the SQL associated with a prepared statement
1606 const char *sqlite3_sql(sqlite3_stmt
*pStmt
){
1607 Vdbe
*p
= (Vdbe
*)pStmt
;
1608 return p
? p
->zSql
: 0;
1612 ** Return the SQL associated with a prepared statement with
1613 ** bound parameters expanded. Space to hold the returned string is
1614 ** obtained from sqlite3_malloc(). The caller is responsible for
1615 ** freeing the returned string by passing it to sqlite3_free().
1617 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1618 ** expanded bound parameters.
1620 char *sqlite3_expanded_sql(sqlite3_stmt
*pStmt
){
1621 #ifdef SQLITE_OMIT_TRACE
1625 const char *zSql
= sqlite3_sql(pStmt
);
1627 Vdbe
*p
= (Vdbe
*)pStmt
;
1628 sqlite3_mutex_enter(p
->db
->mutex
);
1629 z
= sqlite3VdbeExpandSql(p
, zSql
);
1630 sqlite3_mutex_leave(p
->db
->mutex
);
1636 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1638 ** Allocate and populate an UnpackedRecord structure based on the serialized
1639 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1640 ** if successful, or a NULL pointer if an OOM error is encountered.
1642 static UnpackedRecord
*vdbeUnpackRecord(
1647 UnpackedRecord
*pRet
; /* Return value */
1649 pRet
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
1651 memset(pRet
->aMem
, 0, sizeof(Mem
)*(pKeyInfo
->nField
+1));
1652 sqlite3VdbeRecordUnpack(pKeyInfo
, nKey
, pKey
, pRet
);
1658 ** This function is called from within a pre-update callback to retrieve
1659 ** a field of the row currently being updated or deleted.
1661 int sqlite3_preupdate_old(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
1662 PreUpdate
*p
= db
->pPreUpdate
;
1666 /* Test that this call is being made from within an SQLITE_DELETE or
1667 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1668 if( !p
|| p
->op
==SQLITE_INSERT
){
1669 rc
= SQLITE_MISUSE_BKPT
;
1670 goto preupdate_old_out
;
1672 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
1674 goto preupdate_old_out
;
1677 /* If the old.* record has not yet been loaded into memory, do so now. */
1678 if( p
->pUnpacked
==0 ){
1682 nRec
= sqlite3BtreePayloadSize(p
->pCsr
->uc
.pCursor
);
1683 aRec
= sqlite3DbMallocRaw(db
, nRec
);
1684 if( !aRec
) goto preupdate_old_out
;
1685 rc
= sqlite3BtreePayload(p
->pCsr
->uc
.pCursor
, 0, nRec
, aRec
);
1686 if( rc
==SQLITE_OK
){
1687 p
->pUnpacked
= vdbeUnpackRecord(&p
->keyinfo
, nRec
, aRec
);
1688 if( !p
->pUnpacked
) rc
= SQLITE_NOMEM
;
1690 if( rc
!=SQLITE_OK
){
1691 sqlite3DbFree(db
, aRec
);
1692 goto preupdate_old_out
;
1697 pMem
= *ppValue
= &p
->pUnpacked
->aMem
[iIdx
];
1698 if( iIdx
==p
->pTab
->iPKey
){
1699 sqlite3VdbeMemSetInt64(pMem
, p
->iKey1
);
1700 }else if( iIdx
>=p
->pUnpacked
->nField
){
1701 *ppValue
= (sqlite3_value
*)columnNullValue();
1702 }else if( p
->pTab
->aCol
[iIdx
].affinity
==SQLITE_AFF_REAL
){
1703 if( pMem
->flags
& MEM_Int
){
1704 sqlite3VdbeMemRealify(pMem
);
1709 sqlite3Error(db
, rc
);
1710 return sqlite3ApiExit(db
, rc
);
1712 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1714 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1716 ** This function is called from within a pre-update callback to retrieve
1717 ** the number of columns in the row being updated, deleted or inserted.
1719 int sqlite3_preupdate_count(sqlite3
*db
){
1720 PreUpdate
*p
= db
->pPreUpdate
;
1721 return (p
? p
->keyinfo
.nField
: 0);
1723 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1725 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1727 ** This function is designed to be called from within a pre-update callback
1728 ** only. It returns zero if the change that caused the callback was made
1729 ** immediately by a user SQL statement. Or, if the change was made by a
1730 ** trigger program, it returns the number of trigger programs currently
1731 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1732 ** top-level trigger etc.).
1734 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1735 ** or SET DEFAULT action is considered a trigger.
1737 int sqlite3_preupdate_depth(sqlite3
*db
){
1738 PreUpdate
*p
= db
->pPreUpdate
;
1739 return (p
? p
->v
->nFrame
: 0);
1741 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1743 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1745 ** This function is called from within a pre-update callback to retrieve
1746 ** a field of the row currently being updated or inserted.
1748 int sqlite3_preupdate_new(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
1749 PreUpdate
*p
= db
->pPreUpdate
;
1753 if( !p
|| p
->op
==SQLITE_DELETE
){
1754 rc
= SQLITE_MISUSE_BKPT
;
1755 goto preupdate_new_out
;
1757 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
1759 goto preupdate_new_out
;
1762 if( p
->op
==SQLITE_INSERT
){
1763 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1764 ** that is being inserted. Deserialize it. */
1765 UnpackedRecord
*pUnpack
= p
->pNewUnpacked
;
1767 Mem
*pData
= &p
->v
->aMem
[p
->iNewReg
];
1768 rc
= ExpandBlob(pData
);
1769 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
1770 pUnpack
= vdbeUnpackRecord(&p
->keyinfo
, pData
->n
, pData
->z
);
1773 goto preupdate_new_out
;
1775 p
->pNewUnpacked
= pUnpack
;
1777 pMem
= &pUnpack
->aMem
[iIdx
];
1778 if( iIdx
==p
->pTab
->iPKey
){
1779 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
1780 }else if( iIdx
>=pUnpack
->nField
){
1781 pMem
= (sqlite3_value
*)columnNullValue();
1784 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1785 ** value. Make a copy of the cell contents and return a pointer to it.
1786 ** It is not safe to return a pointer to the memory cell itself as the
1787 ** caller may modify the value text encoding.
1789 assert( p
->op
==SQLITE_UPDATE
);
1791 p
->aNew
= (Mem
*)sqlite3DbMallocZero(db
, sizeof(Mem
) * p
->pCsr
->nField
);
1794 goto preupdate_new_out
;
1797 assert( iIdx
>=0 && iIdx
<p
->pCsr
->nField
);
1798 pMem
= &p
->aNew
[iIdx
];
1799 if( pMem
->flags
==0 ){
1800 if( iIdx
==p
->pTab
->iPKey
){
1801 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
1803 rc
= sqlite3VdbeMemCopy(pMem
, &p
->v
->aMem
[p
->iNewReg
+1+iIdx
]);
1804 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
1811 sqlite3Error(db
, rc
);
1812 return sqlite3ApiExit(db
, rc
);
1814 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1816 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1818 ** Return status data for a single loop within query pStmt.
1820 int sqlite3_stmt_scanstatus(
1821 sqlite3_stmt
*pStmt
, /* Prepared statement being queried */
1822 int idx
, /* Index of loop to report on */
1823 int iScanStatusOp
, /* Which metric to return */
1824 void *pOut
/* OUT: Write the answer here */
1826 Vdbe
*p
= (Vdbe
*)pStmt
;
1828 if( idx
<0 || idx
>=p
->nScan
) return 1;
1829 pScan
= &p
->aScan
[idx
];
1830 switch( iScanStatusOp
){
1831 case SQLITE_SCANSTAT_NLOOP
: {
1832 *(sqlite3_int64
*)pOut
= p
->anExec
[pScan
->addrLoop
];
1835 case SQLITE_SCANSTAT_NVISIT
: {
1836 *(sqlite3_int64
*)pOut
= p
->anExec
[pScan
->addrVisit
];
1839 case SQLITE_SCANSTAT_EST
: {
1841 LogEst x
= pScan
->nEst
;
1846 *(double*)pOut
= r
*sqlite3LogEstToInt(x
);
1849 case SQLITE_SCANSTAT_NAME
: {
1850 *(const char**)pOut
= pScan
->zName
;
1853 case SQLITE_SCANSTAT_EXPLAIN
: {
1854 if( pScan
->addrExplain
){
1855 *(const char**)pOut
= p
->aOp
[ pScan
->addrExplain
].p4
.z
;
1857 *(const char**)pOut
= 0;
1861 case SQLITE_SCANSTAT_SELECTID
: {
1862 if( pScan
->addrExplain
){
1863 *(int*)pOut
= p
->aOp
[ pScan
->addrExplain
].p1
;
1877 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1879 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt
*pStmt
){
1880 Vdbe
*p
= (Vdbe
*)pStmt
;
1881 memset(p
->anExec
, 0, p
->nOp
* sizeof(i64
));
1883 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */