When disconnecting from the 'swarmvtab' extension, close each database prior to invok...
[sqlite.git] / src / util.c
blob75de4b3b307fd8be265cfe327d6e6bbc242f4bfd
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
32 #endif
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
45 #ifndef SQLITE_UNTESTABLE
46 int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
50 #endif
52 #ifndef SQLITE_OMIT_FLOATING_POINT
54 ** Return true if the floating point value is Not a Number (NaN).
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
59 int sqlite3IsNaN(double x){
60 int rc; /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
91 #else /* if HAVE_ISNAN */
92 rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94 testcase( rc );
95 return rc;
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
103 ** The value returned will never be negative. Nor will it ever be greater
104 ** than the actual length of the string. For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
107 int sqlite3Strlen30(const char *z){
108 if( z==0 ) return 0;
109 return 0x3fffffff & (int)strlen(z);
113 ** Return the declared type of a column. Or return zDflt if the column
114 ** has no declared type.
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121 return pCol->zName + strlen(pCol->zName) + 1;
125 ** Helper function for sqlite3Error() - called rarely. Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
130 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131 sqlite3SystemError(db, err_code);
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
139 void sqlite3Error(sqlite3 *db, int err_code){
140 assert( db!=0 );
141 db->errCode = err_code;
142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
149 void sqlite3SystemError(sqlite3 *db, int rc){
150 if( rc==SQLITE_IOERR_NOMEM ) return;
151 rc &= 0xff;
152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
165 ** %s Insert a string
166 ** %z A string that should be freed after use
167 ** %d Insert an integer
168 ** %T Insert a token
169 ** %S Insert the first element of a SrcList
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179 assert( db!=0 );
180 db->errCode = err_code;
181 sqlite3SystemError(db, err_code);
182 if( zFormat==0 ){
183 sqlite3Error(db, err_code);
184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185 char *z;
186 va_list ap;
187 va_start(ap, zFormat);
188 z = sqlite3VMPrintf(db, zFormat, ap);
189 va_end(ap);
190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
198 ** %s Insert a string
199 ** %z A string that should be freed after use
200 ** %d Insert an integer
201 ** %T Insert a token
202 ** %S Insert the first element of a SrcList
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212 char *zMsg;
213 va_list ap;
214 sqlite3 *db = pParse->db;
215 va_start(ap, zFormat);
216 zMsg = sqlite3VMPrintf(db, zFormat, ap);
217 va_end(ap);
218 if( db->suppressErr ){
219 sqlite3DbFree(db, zMsg);
220 }else{
221 pParse->nErr++;
222 sqlite3DbFree(db, pParse->zErrMsg);
223 pParse->zErrMsg = zMsg;
224 pParse->rc = SQLITE_ERROR;
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters. The conversion is done in-place. If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
234 ** The input string must be zero-terminated. A new zero-terminator
235 ** is added to the dequoted string.
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
241 ** 2002-Feb-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers. For example: "[a-b-c]" becomes
243 ** "a-b-c".
245 void sqlite3Dequote(char *z){
246 char quote;
247 int i, j;
248 if( z==0 ) return;
249 quote = z[0];
250 if( !sqlite3Isquote(quote) ) return;
251 if( quote=='[' ) quote = ']';
252 for(i=1, j=0;; i++){
253 assert( z[i] );
254 if( z[i]==quote ){
255 if( z[i+1]==quote ){
256 z[j++] = quote;
257 i++;
258 }else{
259 break;
261 }else{
262 z[j++] = z[i];
265 z[j] = 0;
269 ** Generate a Token object from a string
271 void sqlite3TokenInit(Token *p, char *z){
272 p->z = z;
273 p->n = sqlite3Strlen30(z);
276 /* Convenient short-hand */
277 #define UpperToLower sqlite3UpperToLower
280 ** Some systems have stricmp(). Others have strcasecmp(). Because
281 ** there is no consistency, we will define our own.
283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
285 ** the contents of two buffers containing UTF-8 strings in a
286 ** case-independent fashion, using the same definition of "case
287 ** independence" that SQLite uses internally when comparing identifiers.
289 int sqlite3_stricmp(const char *zLeft, const char *zRight){
290 if( zLeft==0 ){
291 return zRight ? -1 : 0;
292 }else if( zRight==0 ){
293 return 1;
295 return sqlite3StrICmp(zLeft, zRight);
297 int sqlite3StrICmp(const char *zLeft, const char *zRight){
298 unsigned char *a, *b;
299 int c;
300 a = (unsigned char *)zLeft;
301 b = (unsigned char *)zRight;
302 for(;;){
303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
304 if( c || *a==0 ) break;
305 a++;
306 b++;
308 return c;
310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
311 register unsigned char *a, *b;
312 if( zLeft==0 ){
313 return zRight ? -1 : 0;
314 }else if( zRight==0 ){
315 return 1;
317 a = (unsigned char *)zLeft;
318 b = (unsigned char *)zRight;
319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
324 ** Compute 10 to the E-th power. Examples: E==1 results in 10.
325 ** E==2 results in 100. E==50 results in 1.0e50.
327 ** This routine only works for values of E between 1 and 341.
329 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
330 LONGDOUBLE_TYPE x = 10.0;
331 LONGDOUBLE_TYPE r = 1.0;
332 while(1){
333 if( E & 1 ) r *= x;
334 E >>= 1;
335 if( E==0 ) break;
336 x *= x;
338 return r;
342 ** The string z[] is an text representation of a real number.
343 ** Convert this string to a double and write it into *pResult.
345 ** The string z[] is length bytes in length (bytes, not characters) and
346 ** uses the encoding enc. The string is not necessarily zero-terminated.
348 ** Return TRUE if the result is a valid real number (or integer) and FALSE
349 ** if the string is empty or contains extraneous text. Valid numbers
350 ** are in one of these formats:
352 ** [+-]digits[E[+-]digits]
353 ** [+-]digits.[digits][E[+-]digits]
354 ** [+-].digits[E[+-]digits]
356 ** Leading and trailing whitespace is ignored for the purpose of determining
357 ** validity.
359 ** If some prefix of the input string is a valid number, this routine
360 ** returns FALSE but it still converts the prefix and writes the result
361 ** into *pResult.
363 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
364 #ifndef SQLITE_OMIT_FLOATING_POINT
365 int incr;
366 const char *zEnd = z + length;
367 /* sign * significand * (10 ^ (esign * exponent)) */
368 int sign = 1; /* sign of significand */
369 i64 s = 0; /* significand */
370 int d = 0; /* adjust exponent for shifting decimal point */
371 int esign = 1; /* sign of exponent */
372 int e = 0; /* exponent */
373 int eValid = 1; /* True exponent is either not used or is well-formed */
374 double result;
375 int nDigits = 0;
376 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
378 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
379 *pResult = 0.0; /* Default return value, in case of an error */
381 if( enc==SQLITE_UTF8 ){
382 incr = 1;
383 }else{
384 int i;
385 incr = 2;
386 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
387 for(i=3-enc; i<length && z[i]==0; i+=2){}
388 nonNum = i<length;
389 zEnd = &z[i^1];
390 z += (enc&1);
393 /* skip leading spaces */
394 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
395 if( z>=zEnd ) return 0;
397 /* get sign of significand */
398 if( *z=='-' ){
399 sign = -1;
400 z+=incr;
401 }else if( *z=='+' ){
402 z+=incr;
405 /* copy max significant digits to significand */
406 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
407 s = s*10 + (*z - '0');
408 z+=incr; nDigits++;
411 /* skip non-significant significand digits
412 ** (increase exponent by d to shift decimal left) */
413 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
414 if( z>=zEnd ) goto do_atof_calc;
416 /* if decimal point is present */
417 if( *z=='.' ){
418 z+=incr;
419 /* copy digits from after decimal to significand
420 ** (decrease exponent by d to shift decimal right) */
421 while( z<zEnd && sqlite3Isdigit(*z) ){
422 if( s<((LARGEST_INT64-9)/10) ){
423 s = s*10 + (*z - '0');
424 d--;
426 z+=incr; nDigits++;
429 if( z>=zEnd ) goto do_atof_calc;
431 /* if exponent is present */
432 if( *z=='e' || *z=='E' ){
433 z+=incr;
434 eValid = 0;
436 /* This branch is needed to avoid a (harmless) buffer overread. The
437 ** special comment alerts the mutation tester that the correct answer
438 ** is obtained even if the branch is omitted */
439 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
441 /* get sign of exponent */
442 if( *z=='-' ){
443 esign = -1;
444 z+=incr;
445 }else if( *z=='+' ){
446 z+=incr;
448 /* copy digits to exponent */
449 while( z<zEnd && sqlite3Isdigit(*z) ){
450 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
451 z+=incr;
452 eValid = 1;
456 /* skip trailing spaces */
457 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
459 do_atof_calc:
460 /* adjust exponent by d, and update sign */
461 e = (e*esign) + d;
462 if( e<0 ) {
463 esign = -1;
464 e *= -1;
465 } else {
466 esign = 1;
469 if( s==0 ) {
470 /* In the IEEE 754 standard, zero is signed. */
471 result = sign<0 ? -(double)0 : (double)0;
472 } else {
473 /* Attempt to reduce exponent.
475 ** Branches that are not required for the correct answer but which only
476 ** help to obtain the correct answer faster are marked with special
477 ** comments, as a hint to the mutation tester.
479 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
480 if( esign>0 ){
481 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
482 s *= 10;
483 }else{
484 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
485 s /= 10;
487 e--;
490 /* adjust the sign of significand */
491 s = sign<0 ? -s : s;
493 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
494 result = (double)s;
495 }else{
496 /* attempt to handle extremely small/large numbers better */
497 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
498 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
499 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
500 if( esign<0 ){
501 result = s / scale;
502 result /= 1.0e+308;
503 }else{
504 result = s * scale;
505 result *= 1.0e+308;
507 }else{ assert( e>=342 );
508 if( esign<0 ){
509 result = 0.0*s;
510 }else{
511 #ifdef INFINITY
512 result = INFINITY*s;
513 #else
514 result = 1e308*1e308*s; /* Infinity */
515 #endif
518 }else{
519 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
520 if( esign<0 ){
521 result = s / scale;
522 }else{
523 result = s * scale;
529 /* store the result */
530 *pResult = result;
532 /* return true if number and no extra non-whitespace chracters after */
533 return z==zEnd && nDigits>0 && eValid && nonNum==0;
534 #else
535 return !sqlite3Atoi64(z, pResult, length, enc);
536 #endif /* SQLITE_OMIT_FLOATING_POINT */
540 ** Compare the 19-character string zNum against the text representation
541 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
542 ** if zNum is less than, equal to, or greater than the string.
543 ** Note that zNum must contain exactly 19 characters.
545 ** Unlike memcmp() this routine is guaranteed to return the difference
546 ** in the values of the last digit if the only difference is in the
547 ** last digit. So, for example,
549 ** compare2pow63("9223372036854775800", 1)
551 ** will return -8.
553 static int compare2pow63(const char *zNum, int incr){
554 int c = 0;
555 int i;
556 /* 012345678901234567 */
557 const char *pow63 = "922337203685477580";
558 for(i=0; c==0 && i<18; i++){
559 c = (zNum[i*incr]-pow63[i])*10;
561 if( c==0 ){
562 c = zNum[18*incr] - '8';
563 testcase( c==(-1) );
564 testcase( c==0 );
565 testcase( c==(+1) );
567 return c;
571 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
572 ** routine does *not* accept hexadecimal notation.
574 ** Returns:
576 ** 0 Successful transformation. Fits in a 64-bit signed integer.
577 ** 1 Excess text after the integer value
578 ** 2 Integer too large for a 64-bit signed integer or is malformed
579 ** 3 Special case of 9223372036854775808
581 ** length is the number of bytes in the string (bytes, not characters).
582 ** The string is not necessarily zero-terminated. The encoding is
583 ** given by enc.
585 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
586 int incr;
587 u64 u = 0;
588 int neg = 0; /* assume positive */
589 int i;
590 int c = 0;
591 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
592 int rc; /* Baseline return code */
593 const char *zStart;
594 const char *zEnd = zNum + length;
595 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
596 if( enc==SQLITE_UTF8 ){
597 incr = 1;
598 }else{
599 incr = 2;
600 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
601 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
602 nonNum = i<length;
603 zEnd = &zNum[i^1];
604 zNum += (enc&1);
606 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
607 if( zNum<zEnd ){
608 if( *zNum=='-' ){
609 neg = 1;
610 zNum+=incr;
611 }else if( *zNum=='+' ){
612 zNum+=incr;
615 zStart = zNum;
616 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
617 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
618 u = u*10 + c - '0';
620 if( u>LARGEST_INT64 ){
621 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
622 }else if( neg ){
623 *pNum = -(i64)u;
624 }else{
625 *pNum = (i64)u;
627 testcase( i==18 );
628 testcase( i==19 );
629 testcase( i==20 );
630 if( &zNum[i]<zEnd /* Extra bytes at the end */
631 || (i==0 && zStart==zNum) /* No digits */
632 || nonNum /* UTF16 with high-order bytes non-zero */
634 rc = 1;
635 }else{
636 rc = 0;
638 if( i>19*incr ){ /* Too many digits */
639 /* zNum is empty or contains non-numeric text or is longer
640 ** than 19 digits (thus guaranteeing that it is too large) */
641 return 2;
642 }else if( i<19*incr ){
643 /* Less than 19 digits, so we know that it fits in 64 bits */
644 assert( u<=LARGEST_INT64 );
645 return rc;
646 }else{
647 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
648 c = compare2pow63(zNum, incr);
649 if( c<0 ){
650 /* zNum is less than 9223372036854775808 so it fits */
651 assert( u<=LARGEST_INT64 );
652 return rc;
653 }else if( c>0 ){
654 /* zNum is greater than 9223372036854775808 so it overflows */
655 return 2;
656 }else{
657 /* zNum is exactly 9223372036854775808. Fits if negative. The
658 ** special case 2 overflow if positive */
659 assert( u-1==LARGEST_INT64 );
660 return neg ? rc : 3;
666 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
667 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
668 ** whereas sqlite3Atoi64() does not.
670 ** Returns:
672 ** 0 Successful transformation. Fits in a 64-bit signed integer.
673 ** 1 Excess text after the integer value
674 ** 2 Integer too large for a 64-bit signed integer or is malformed
675 ** 3 Special case of 9223372036854775808
677 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
678 #ifndef SQLITE_OMIT_HEX_INTEGER
679 if( z[0]=='0'
680 && (z[1]=='x' || z[1]=='X')
682 u64 u = 0;
683 int i, k;
684 for(i=2; z[i]=='0'; i++){}
685 for(k=i; sqlite3Isxdigit(z[k]); k++){
686 u = u*16 + sqlite3HexToInt(z[k]);
688 memcpy(pOut, &u, 8);
689 return (z[k]==0 && k-i<=16) ? 0 : 2;
690 }else
691 #endif /* SQLITE_OMIT_HEX_INTEGER */
693 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
698 ** If zNum represents an integer that will fit in 32-bits, then set
699 ** *pValue to that integer and return true. Otherwise return false.
701 ** This routine accepts both decimal and hexadecimal notation for integers.
703 ** Any non-numeric characters that following zNum are ignored.
704 ** This is different from sqlite3Atoi64() which requires the
705 ** input number to be zero-terminated.
707 int sqlite3GetInt32(const char *zNum, int *pValue){
708 sqlite_int64 v = 0;
709 int i, c;
710 int neg = 0;
711 if( zNum[0]=='-' ){
712 neg = 1;
713 zNum++;
714 }else if( zNum[0]=='+' ){
715 zNum++;
717 #ifndef SQLITE_OMIT_HEX_INTEGER
718 else if( zNum[0]=='0'
719 && (zNum[1]=='x' || zNum[1]=='X')
720 && sqlite3Isxdigit(zNum[2])
722 u32 u = 0;
723 zNum += 2;
724 while( zNum[0]=='0' ) zNum++;
725 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
726 u = u*16 + sqlite3HexToInt(zNum[i]);
728 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
729 memcpy(pValue, &u, 4);
730 return 1;
731 }else{
732 return 0;
735 #endif
736 if( !sqlite3Isdigit(zNum[0]) ) return 0;
737 while( zNum[0]=='0' ) zNum++;
738 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
739 v = v*10 + c;
742 /* The longest decimal representation of a 32 bit integer is 10 digits:
744 ** 1234567890
745 ** 2^31 -> 2147483648
747 testcase( i==10 );
748 if( i>10 ){
749 return 0;
751 testcase( v-neg==2147483647 );
752 if( v-neg>2147483647 ){
753 return 0;
755 if( neg ){
756 v = -v;
758 *pValue = (int)v;
759 return 1;
763 ** Return a 32-bit integer value extracted from a string. If the
764 ** string is not an integer, just return 0.
766 int sqlite3Atoi(const char *z){
767 int x = 0;
768 if( z ) sqlite3GetInt32(z, &x);
769 return x;
773 ** The variable-length integer encoding is as follows:
775 ** KEY:
776 ** A = 0xxxxxxx 7 bits of data and one flag bit
777 ** B = 1xxxxxxx 7 bits of data and one flag bit
778 ** C = xxxxxxxx 8 bits of data
780 ** 7 bits - A
781 ** 14 bits - BA
782 ** 21 bits - BBA
783 ** 28 bits - BBBA
784 ** 35 bits - BBBBA
785 ** 42 bits - BBBBBA
786 ** 49 bits - BBBBBBA
787 ** 56 bits - BBBBBBBA
788 ** 64 bits - BBBBBBBBC
792 ** Write a 64-bit variable-length integer to memory starting at p[0].
793 ** The length of data write will be between 1 and 9 bytes. The number
794 ** of bytes written is returned.
796 ** A variable-length integer consists of the lower 7 bits of each byte
797 ** for all bytes that have the 8th bit set and one byte with the 8th
798 ** bit clear. Except, if we get to the 9th byte, it stores the full
799 ** 8 bits and is the last byte.
801 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
802 int i, j, n;
803 u8 buf[10];
804 if( v & (((u64)0xff000000)<<32) ){
805 p[8] = (u8)v;
806 v >>= 8;
807 for(i=7; i>=0; i--){
808 p[i] = (u8)((v & 0x7f) | 0x80);
809 v >>= 7;
811 return 9;
813 n = 0;
815 buf[n++] = (u8)((v & 0x7f) | 0x80);
816 v >>= 7;
817 }while( v!=0 );
818 buf[0] &= 0x7f;
819 assert( n<=9 );
820 for(i=0, j=n-1; j>=0; j--, i++){
821 p[i] = buf[j];
823 return n;
825 int sqlite3PutVarint(unsigned char *p, u64 v){
826 if( v<=0x7f ){
827 p[0] = v&0x7f;
828 return 1;
830 if( v<=0x3fff ){
831 p[0] = ((v>>7)&0x7f)|0x80;
832 p[1] = v&0x7f;
833 return 2;
835 return putVarint64(p,v);
839 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
840 ** are defined here rather than simply putting the constant expressions
841 ** inline in order to work around bugs in the RVT compiler.
843 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
845 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
847 #define SLOT_2_0 0x001fc07f
848 #define SLOT_4_2_0 0xf01fc07f
852 ** Read a 64-bit variable-length integer from memory starting at p[0].
853 ** Return the number of bytes read. The value is stored in *v.
855 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
856 u32 a,b,s;
858 a = *p;
859 /* a: p0 (unmasked) */
860 if (!(a&0x80))
862 *v = a;
863 return 1;
866 p++;
867 b = *p;
868 /* b: p1 (unmasked) */
869 if (!(b&0x80))
871 a &= 0x7f;
872 a = a<<7;
873 a |= b;
874 *v = a;
875 return 2;
878 /* Verify that constants are precomputed correctly */
879 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
880 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
882 p++;
883 a = a<<14;
884 a |= *p;
885 /* a: p0<<14 | p2 (unmasked) */
886 if (!(a&0x80))
888 a &= SLOT_2_0;
889 b &= 0x7f;
890 b = b<<7;
891 a |= b;
892 *v = a;
893 return 3;
896 /* CSE1 from below */
897 a &= SLOT_2_0;
898 p++;
899 b = b<<14;
900 b |= *p;
901 /* b: p1<<14 | p3 (unmasked) */
902 if (!(b&0x80))
904 b &= SLOT_2_0;
905 /* moved CSE1 up */
906 /* a &= (0x7f<<14)|(0x7f); */
907 a = a<<7;
908 a |= b;
909 *v = a;
910 return 4;
913 /* a: p0<<14 | p2 (masked) */
914 /* b: p1<<14 | p3 (unmasked) */
915 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
916 /* moved CSE1 up */
917 /* a &= (0x7f<<14)|(0x7f); */
918 b &= SLOT_2_0;
919 s = a;
920 /* s: p0<<14 | p2 (masked) */
922 p++;
923 a = a<<14;
924 a |= *p;
925 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
926 if (!(a&0x80))
928 /* we can skip these cause they were (effectively) done above
929 ** while calculating s */
930 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
931 /* b &= (0x7f<<14)|(0x7f); */
932 b = b<<7;
933 a |= b;
934 s = s>>18;
935 *v = ((u64)s)<<32 | a;
936 return 5;
939 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
940 s = s<<7;
941 s |= b;
942 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
944 p++;
945 b = b<<14;
946 b |= *p;
947 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
948 if (!(b&0x80))
950 /* we can skip this cause it was (effectively) done above in calc'ing s */
951 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
952 a &= SLOT_2_0;
953 a = a<<7;
954 a |= b;
955 s = s>>18;
956 *v = ((u64)s)<<32 | a;
957 return 6;
960 p++;
961 a = a<<14;
962 a |= *p;
963 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
964 if (!(a&0x80))
966 a &= SLOT_4_2_0;
967 b &= SLOT_2_0;
968 b = b<<7;
969 a |= b;
970 s = s>>11;
971 *v = ((u64)s)<<32 | a;
972 return 7;
975 /* CSE2 from below */
976 a &= SLOT_2_0;
977 p++;
978 b = b<<14;
979 b |= *p;
980 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
981 if (!(b&0x80))
983 b &= SLOT_4_2_0;
984 /* moved CSE2 up */
985 /* a &= (0x7f<<14)|(0x7f); */
986 a = a<<7;
987 a |= b;
988 s = s>>4;
989 *v = ((u64)s)<<32 | a;
990 return 8;
993 p++;
994 a = a<<15;
995 a |= *p;
996 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
998 /* moved CSE2 up */
999 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1000 b &= SLOT_2_0;
1001 b = b<<8;
1002 a |= b;
1004 s = s<<4;
1005 b = p[-4];
1006 b &= 0x7f;
1007 b = b>>3;
1008 s |= b;
1010 *v = ((u64)s)<<32 | a;
1012 return 9;
1016 ** Read a 32-bit variable-length integer from memory starting at p[0].
1017 ** Return the number of bytes read. The value is stored in *v.
1019 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1020 ** integer, then set *v to 0xffffffff.
1022 ** A MACRO version, getVarint32, is provided which inlines the
1023 ** single-byte case. All code should use the MACRO version as
1024 ** this function assumes the single-byte case has already been handled.
1026 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1027 u32 a,b;
1029 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1030 ** by the getVarin32() macro */
1031 a = *p;
1032 /* a: p0 (unmasked) */
1033 #ifndef getVarint32
1034 if (!(a&0x80))
1036 /* Values between 0 and 127 */
1037 *v = a;
1038 return 1;
1040 #endif
1042 /* The 2-byte case */
1043 p++;
1044 b = *p;
1045 /* b: p1 (unmasked) */
1046 if (!(b&0x80))
1048 /* Values between 128 and 16383 */
1049 a &= 0x7f;
1050 a = a<<7;
1051 *v = a | b;
1052 return 2;
1055 /* The 3-byte case */
1056 p++;
1057 a = a<<14;
1058 a |= *p;
1059 /* a: p0<<14 | p2 (unmasked) */
1060 if (!(a&0x80))
1062 /* Values between 16384 and 2097151 */
1063 a &= (0x7f<<14)|(0x7f);
1064 b &= 0x7f;
1065 b = b<<7;
1066 *v = a | b;
1067 return 3;
1070 /* A 32-bit varint is used to store size information in btrees.
1071 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1072 ** A 3-byte varint is sufficient, for example, to record the size
1073 ** of a 1048569-byte BLOB or string.
1075 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1076 ** rare larger cases can be handled by the slower 64-bit varint
1077 ** routine.
1079 #if 1
1081 u64 v64;
1082 u8 n;
1084 p -= 2;
1085 n = sqlite3GetVarint(p, &v64);
1086 assert( n>3 && n<=9 );
1087 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1088 *v = 0xffffffff;
1089 }else{
1090 *v = (u32)v64;
1092 return n;
1095 #else
1096 /* For following code (kept for historical record only) shows an
1097 ** unrolling for the 3- and 4-byte varint cases. This code is
1098 ** slightly faster, but it is also larger and much harder to test.
1100 p++;
1101 b = b<<14;
1102 b |= *p;
1103 /* b: p1<<14 | p3 (unmasked) */
1104 if (!(b&0x80))
1106 /* Values between 2097152 and 268435455 */
1107 b &= (0x7f<<14)|(0x7f);
1108 a &= (0x7f<<14)|(0x7f);
1109 a = a<<7;
1110 *v = a | b;
1111 return 4;
1114 p++;
1115 a = a<<14;
1116 a |= *p;
1117 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1118 if (!(a&0x80))
1120 /* Values between 268435456 and 34359738367 */
1121 a &= SLOT_4_2_0;
1122 b &= SLOT_4_2_0;
1123 b = b<<7;
1124 *v = a | b;
1125 return 5;
1128 /* We can only reach this point when reading a corrupt database
1129 ** file. In that case we are not in any hurry. Use the (relatively
1130 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1131 ** value. */
1133 u64 v64;
1134 u8 n;
1136 p -= 4;
1137 n = sqlite3GetVarint(p, &v64);
1138 assert( n>5 && n<=9 );
1139 *v = (u32)v64;
1140 return n;
1142 #endif
1146 ** Return the number of bytes that will be needed to store the given
1147 ** 64-bit integer.
1149 int sqlite3VarintLen(u64 v){
1150 int i;
1151 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1152 return i;
1157 ** Read or write a four-byte big-endian integer value.
1159 u32 sqlite3Get4byte(const u8 *p){
1160 #if SQLITE_BYTEORDER==4321
1161 u32 x;
1162 memcpy(&x,p,4);
1163 return x;
1164 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1165 u32 x;
1166 memcpy(&x,p,4);
1167 return __builtin_bswap32(x);
1168 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1169 u32 x;
1170 memcpy(&x,p,4);
1171 return _byteswap_ulong(x);
1172 #else
1173 testcase( p[0]&0x80 );
1174 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1175 #endif
1177 void sqlite3Put4byte(unsigned char *p, u32 v){
1178 #if SQLITE_BYTEORDER==4321
1179 memcpy(p,&v,4);
1180 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1181 u32 x = __builtin_bswap32(v);
1182 memcpy(p,&x,4);
1183 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1184 u32 x = _byteswap_ulong(v);
1185 memcpy(p,&x,4);
1186 #else
1187 p[0] = (u8)(v>>24);
1188 p[1] = (u8)(v>>16);
1189 p[2] = (u8)(v>>8);
1190 p[3] = (u8)v;
1191 #endif
1197 ** Translate a single byte of Hex into an integer.
1198 ** This routine only works if h really is a valid hexadecimal
1199 ** character: 0..9a..fA..F
1201 u8 sqlite3HexToInt(int h){
1202 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1203 #ifdef SQLITE_ASCII
1204 h += 9*(1&(h>>6));
1205 #endif
1206 #ifdef SQLITE_EBCDIC
1207 h += 9*(1&~(h>>4));
1208 #endif
1209 return (u8)(h & 0xf);
1212 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1214 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1215 ** value. Return a pointer to its binary value. Space to hold the
1216 ** binary value has been obtained from malloc and must be freed by
1217 ** the calling routine.
1219 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1220 char *zBlob;
1221 int i;
1223 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1224 n--;
1225 if( zBlob ){
1226 for(i=0; i<n; i+=2){
1227 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1229 zBlob[i/2] = 0;
1231 return zBlob;
1233 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1236 ** Log an error that is an API call on a connection pointer that should
1237 ** not have been used. The "type" of connection pointer is given as the
1238 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1240 static void logBadConnection(const char *zType){
1241 sqlite3_log(SQLITE_MISUSE,
1242 "API call with %s database connection pointer",
1243 zType
1248 ** Check to make sure we have a valid db pointer. This test is not
1249 ** foolproof but it does provide some measure of protection against
1250 ** misuse of the interface such as passing in db pointers that are
1251 ** NULL or which have been previously closed. If this routine returns
1252 ** 1 it means that the db pointer is valid and 0 if it should not be
1253 ** dereferenced for any reason. The calling function should invoke
1254 ** SQLITE_MISUSE immediately.
1256 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1257 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1258 ** open properly and is not fit for general use but which can be
1259 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1261 int sqlite3SafetyCheckOk(sqlite3 *db){
1262 u32 magic;
1263 if( db==0 ){
1264 logBadConnection("NULL");
1265 return 0;
1267 magic = db->magic;
1268 if( magic!=SQLITE_MAGIC_OPEN ){
1269 if( sqlite3SafetyCheckSickOrOk(db) ){
1270 testcase( sqlite3GlobalConfig.xLog!=0 );
1271 logBadConnection("unopened");
1273 return 0;
1274 }else{
1275 return 1;
1278 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1279 u32 magic;
1280 magic = db->magic;
1281 if( magic!=SQLITE_MAGIC_SICK &&
1282 magic!=SQLITE_MAGIC_OPEN &&
1283 magic!=SQLITE_MAGIC_BUSY ){
1284 testcase( sqlite3GlobalConfig.xLog!=0 );
1285 logBadConnection("invalid");
1286 return 0;
1287 }else{
1288 return 1;
1293 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1294 ** the other 64-bit signed integer at *pA and store the result in *pA.
1295 ** Return 0 on success. Or if the operation would have resulted in an
1296 ** overflow, leave *pA unchanged and return 1.
1298 int sqlite3AddInt64(i64 *pA, i64 iB){
1299 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1300 return __builtin_add_overflow(*pA, iB, pA);
1301 #else
1302 i64 iA = *pA;
1303 testcase( iA==0 ); testcase( iA==1 );
1304 testcase( iB==-1 ); testcase( iB==0 );
1305 if( iB>=0 ){
1306 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1307 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1308 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1309 }else{
1310 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1311 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1312 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1314 *pA += iB;
1315 return 0;
1316 #endif
1318 int sqlite3SubInt64(i64 *pA, i64 iB){
1319 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1320 return __builtin_sub_overflow(*pA, iB, pA);
1321 #else
1322 testcase( iB==SMALLEST_INT64+1 );
1323 if( iB==SMALLEST_INT64 ){
1324 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1325 if( (*pA)>=0 ) return 1;
1326 *pA -= iB;
1327 return 0;
1328 }else{
1329 return sqlite3AddInt64(pA, -iB);
1331 #endif
1333 int sqlite3MulInt64(i64 *pA, i64 iB){
1334 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1335 return __builtin_mul_overflow(*pA, iB, pA);
1336 #else
1337 i64 iA = *pA;
1338 if( iB>0 ){
1339 if( iA>LARGEST_INT64/iB ) return 1;
1340 if( iA<SMALLEST_INT64/iB ) return 1;
1341 }else if( iB<0 ){
1342 if( iA>0 ){
1343 if( iB<SMALLEST_INT64/iA ) return 1;
1344 }else if( iA<0 ){
1345 if( iB==SMALLEST_INT64 ) return 1;
1346 if( iA==SMALLEST_INT64 ) return 1;
1347 if( -iA>LARGEST_INT64/-iB ) return 1;
1350 *pA = iA*iB;
1351 return 0;
1352 #endif
1356 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1357 ** if the integer has a value of -2147483648, return +2147483647
1359 int sqlite3AbsInt32(int x){
1360 if( x>=0 ) return x;
1361 if( x==(int)0x80000000 ) return 0x7fffffff;
1362 return -x;
1365 #ifdef SQLITE_ENABLE_8_3_NAMES
1367 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1368 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1369 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1370 ** three characters, then shorten the suffix on z[] to be the last three
1371 ** characters of the original suffix.
1373 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1374 ** do the suffix shortening regardless of URI parameter.
1376 ** Examples:
1378 ** test.db-journal => test.nal
1379 ** test.db-wal => test.wal
1380 ** test.db-shm => test.shm
1381 ** test.db-mj7f3319fa => test.9fa
1383 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1384 #if SQLITE_ENABLE_8_3_NAMES<2
1385 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1386 #endif
1388 int i, sz;
1389 sz = sqlite3Strlen30(z);
1390 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1391 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1394 #endif
1397 ** Find (an approximate) sum of two LogEst values. This computation is
1398 ** not a simple "+" operator because LogEst is stored as a logarithmic
1399 ** value.
1402 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1403 static const unsigned char x[] = {
1404 10, 10, /* 0,1 */
1405 9, 9, /* 2,3 */
1406 8, 8, /* 4,5 */
1407 7, 7, 7, /* 6,7,8 */
1408 6, 6, 6, /* 9,10,11 */
1409 5, 5, 5, /* 12-14 */
1410 4, 4, 4, 4, /* 15-18 */
1411 3, 3, 3, 3, 3, 3, /* 19-24 */
1412 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1414 if( a>=b ){
1415 if( a>b+49 ) return a;
1416 if( a>b+31 ) return a+1;
1417 return a+x[a-b];
1418 }else{
1419 if( b>a+49 ) return b;
1420 if( b>a+31 ) return b+1;
1421 return b+x[b-a];
1426 ** Convert an integer into a LogEst. In other words, compute an
1427 ** approximation for 10*log2(x).
1429 LogEst sqlite3LogEst(u64 x){
1430 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1431 LogEst y = 40;
1432 if( x<8 ){
1433 if( x<2 ) return 0;
1434 while( x<8 ){ y -= 10; x <<= 1; }
1435 }else{
1436 #if GCC_VERSION>=5004000
1437 int i = 60 - __builtin_clzll(x);
1438 y += i*10;
1439 x >>= i;
1440 #else
1441 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1442 while( x>15 ){ y += 10; x >>= 1; }
1443 #endif
1445 return a[x&7] + y - 10;
1448 #ifndef SQLITE_OMIT_VIRTUALTABLE
1450 ** Convert a double into a LogEst
1451 ** In other words, compute an approximation for 10*log2(x).
1453 LogEst sqlite3LogEstFromDouble(double x){
1454 u64 a;
1455 LogEst e;
1456 assert( sizeof(x)==8 && sizeof(a)==8 );
1457 if( x<=1 ) return 0;
1458 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1459 memcpy(&a, &x, 8);
1460 e = (a>>52) - 1022;
1461 return e*10;
1463 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1465 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1466 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1467 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1469 ** Convert a LogEst into an integer.
1471 ** Note that this routine is only used when one or more of various
1472 ** non-standard compile-time options is enabled.
1474 u64 sqlite3LogEstToInt(LogEst x){
1475 u64 n;
1476 n = x%10;
1477 x /= 10;
1478 if( n>=5 ) n -= 2;
1479 else if( n>=1 ) n -= 1;
1480 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1481 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1482 if( x>60 ) return (u64)LARGEST_INT64;
1483 #else
1484 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1485 ** possible to this routine is 310, resulting in a maximum x of 31 */
1486 assert( x<=60 );
1487 #endif
1488 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1490 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1493 ** Add a new name/number pair to a VList. This might require that the
1494 ** VList object be reallocated, so return the new VList. If an OOM
1495 ** error occurs, the original VList returned and the
1496 ** db->mallocFailed flag is set.
1498 ** A VList is really just an array of integers. To destroy a VList,
1499 ** simply pass it to sqlite3DbFree().
1501 ** The first integer is the number of integers allocated for the whole
1502 ** VList. The second integer is the number of integers actually used.
1503 ** Each name/number pair is encoded by subsequent groups of 3 or more
1504 ** integers.
1506 ** Each name/number pair starts with two integers which are the numeric
1507 ** value for the pair and the size of the name/number pair, respectively.
1508 ** The text name overlays one or more following integers. The text name
1509 ** is always zero-terminated.
1511 ** Conceptually:
1513 ** struct VList {
1514 ** int nAlloc; // Number of allocated slots
1515 ** int nUsed; // Number of used slots
1516 ** struct VListEntry {
1517 ** int iValue; // Value for this entry
1518 ** int nSlot; // Slots used by this entry
1519 ** // ... variable name goes here
1520 ** } a[0];
1521 ** }
1523 ** During code generation, pointers to the variable names within the
1524 ** VList are taken. When that happens, nAlloc is set to zero as an
1525 ** indication that the VList may never again be enlarged, since the
1526 ** accompanying realloc() would invalidate the pointers.
1528 VList *sqlite3VListAdd(
1529 sqlite3 *db, /* The database connection used for malloc() */
1530 VList *pIn, /* The input VList. Might be NULL */
1531 const char *zName, /* Name of symbol to add */
1532 int nName, /* Bytes of text in zName */
1533 int iVal /* Value to associate with zName */
1535 int nInt; /* number of sizeof(int) objects needed for zName */
1536 char *z; /* Pointer to where zName will be stored */
1537 int i; /* Index in pIn[] where zName is stored */
1539 nInt = nName/4 + 3;
1540 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1541 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1542 /* Enlarge the allocation */
1543 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1544 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1545 if( pOut==0 ) return pIn;
1546 if( pIn==0 ) pOut[1] = 2;
1547 pIn = pOut;
1548 pIn[0] = nAlloc;
1550 i = pIn[1];
1551 pIn[i] = iVal;
1552 pIn[i+1] = nInt;
1553 z = (char*)&pIn[i+2];
1554 pIn[1] = i+nInt;
1555 assert( pIn[1]<=pIn[0] );
1556 memcpy(z, zName, nName);
1557 z[nName] = 0;
1558 return pIn;
1562 ** Return a pointer to the name of a variable in the given VList that
1563 ** has the value iVal. Or return a NULL if there is no such variable in
1564 ** the list
1566 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1567 int i, mx;
1568 if( pIn==0 ) return 0;
1569 mx = pIn[1];
1570 i = 2;
1572 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1573 i += pIn[i+1];
1574 }while( i<mx );
1575 return 0;
1579 ** Return the number of the variable named zName, if it is in VList.
1580 ** or return 0 if there is no such variable.
1582 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1583 int i, mx;
1584 if( pIn==0 ) return 0;
1585 mx = pIn[1];
1586 i = 2;
1588 const char *z = (const char*)&pIn[i+2];
1589 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1590 i += pIn[i+1];
1591 }while( i<mx );
1592 return 0;