Merge the ".stat/.eqp" CLI fix from trunk.
[sqlite.git] / src / wal.c
blob69a89a709b25275e1da17af6fd8a75b3561ef5bc
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file. All changes to the database are recorded by writing
21 ** frames into the WAL. Transactions commit when a frame is written that
22 ** contains a commit marker. A single WAL can and usually does record
23 ** multiple transactions. Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
27 ** A single WAL file can be used multiple times. In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones. A WAL always grows from beginning
30 ** toward the end. Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
37 ** 0: Magic number. 0x377f0682 or 0x377f0683
38 ** 4: File format version. Currently 3007000
39 ** 8: Database page size. Example: 1024
40 ** 12: Checkpoint sequence number
41 ** 16: Salt-1, random integer incremented with each checkpoint
42 ** 20: Salt-2, a different random integer changing with each ckpt
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
51 ** 0: Page number.
52 ** 4: For commit records, the size of the database image in pages
53 ** after the commit. For all other records, zero.
54 ** 8: Salt-1 (copied from the header)
55 ** 12: Salt-2 (copied from the header)
56 ** 16: Checksum-1.
57 ** 20: Checksum-2.
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
62 ** (1) The salt-1 and salt-2 values in the frame-header match
63 ** salt values in the wal-header
65 ** (2) The checksum values in the final 8 bytes of the frame-header
66 ** exactly match the checksum computed consecutively on the
67 ** WAL header and the first 8 bytes and the content of all frames
68 ** up to and including the current frame.
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum. The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
77 ** algorithm used for the checksum is as follows:
78 **
79 ** for i from 0 to n-1 step 2:
80 ** s0 += x[i] + s1;
81 ** s1 += x[i+1] + s0;
82 ** endfor
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.) The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized. This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
100 ** READER ALGORITHM
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P. If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read. If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations. New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time. This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames. If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers. To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
127 ** WAL-INDEX FORMAT
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file. Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem. All users of the database must be able to
133 ** share memory.
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added. For that
137 ** reason, the wal-index is sometimes called the "shm" file.
139 ** The wal-index is transient. After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file. In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes. Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
148 ** The purpose of the wal-index is to answer this question quickly: Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index.
166 ** Each index block contains two sections, a page-mapping that contains the
167 ** database page number associated with each wal frame, and a hash-table
168 ** that allows readers to query an index block for a specific page number.
169 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170 ** for the first index block) 32-bit page numbers. The first entry in the
171 ** first index-block contains the database page number corresponding to the
172 ** first frame in the WAL file. The first entry in the second index block
173 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174 ** the log, and so on.
176 ** The last index block in a wal-index usually contains less than the full
177 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178 ** depending on the contents of the WAL file. This does not change the
179 ** allocated size of the page-mapping array - the page-mapping array merely
180 ** contains unused entries.
182 ** Even without using the hash table, the last frame for page P
183 ** can be found by scanning the page-mapping sections of each index block
184 ** starting with the last index block and moving toward the first, and
185 ** within each index block, starting at the end and moving toward the
186 ** beginning. The first entry that equals P corresponds to the frame
187 ** holding the content for that page.
189 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191 ** hash table for each page number in the mapping section, so the hash
192 ** table is never more than half full. The expected number of collisions
193 ** prior to finding a match is 1. Each entry of the hash table is an
194 ** 1-based index of an entry in the mapping section of the same
195 ** index block. Let K be the 1-based index of the largest entry in
196 ** the mapping section. (For index blocks other than the last, K will
197 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
199 ** contain a value of 0.
201 ** To look for page P in the hash table, first compute a hash iKey on
202 ** P as follows:
204 ** iKey = (P * 383) % HASHTABLE_NSLOT
206 ** Then start scanning entries of the hash table, starting with iKey
207 ** (wrapping around to the beginning when the end of the hash table is
208 ** reached) until an unused hash slot is found. Let the first unused slot
209 ** be at index iUnused. (iUnused might be less than iKey if there was
210 ** wrap-around.) Because the hash table is never more than half full,
211 ** the search is guaranteed to eventually hit an unused entry. Let
212 ** iMax be the value between iKey and iUnused, closest to iUnused,
213 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
214 ** no hash slot such that aHash[i]==p) then page P is not in the
215 ** current index block. Otherwise the iMax-th mapping entry of the
216 ** current index block corresponds to the last entry that references
217 ** page P.
219 ** A hash search begins with the last index block and moves toward the
220 ** first index block, looking for entries corresponding to page P. On
221 ** average, only two or three slots in each index block need to be
222 ** examined in order to either find the last entry for page P, or to
223 ** establish that no such entry exists in the block. Each index block
224 ** holds over 4000 entries. So two or three index blocks are sufficient
225 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226 ** comparisons (on average) suffice to either locate a frame in the
227 ** WAL or to establish that the frame does not exist in the WAL. This
228 ** is much faster than scanning the entire 10MB WAL.
230 ** Note that entries are added in order of increasing K. Hence, one
231 ** reader might be using some value K0 and a second reader that started
232 ** at a later time (after additional transactions were added to the WAL
233 ** and to the wal-index) might be using a different value K1, where K1>K0.
234 ** Both readers can use the same hash table and mapping section to get
235 ** the correct result. There may be entries in the hash table with
236 ** K>K0 but to the first reader, those entries will appear to be unused
237 ** slots in the hash table and so the first reader will get an answer as
238 ** if no values greater than K0 had ever been inserted into the hash table
239 ** in the first place - which is what reader one wants. Meanwhile, the
240 ** second reader using K1 will see additional values that were inserted
241 ** later, which is exactly what reader two wants.
243 ** When a rollback occurs, the value of K is decreased. Hash table entries
244 ** that correspond to frames greater than the new K value are removed
245 ** from the hash table at this point.
247 #ifndef SQLITE_OMIT_WAL
249 #include "wal.h"
252 ** Trace output macros
254 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
255 int sqlite3WalTrace = 0;
256 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257 #else
258 # define WALTRACE(X)
259 #endif
262 ** The maximum (and only) versions of the wal and wal-index formats
263 ** that may be interpreted by this version of SQLite.
265 ** If a client begins recovering a WAL file and finds that (a) the checksum
266 ** values in the wal-header are correct and (b) the version field is not
267 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
269 ** Similarly, if a client successfully reads a wal-index header (i.e. the
270 ** checksum test is successful) and finds that the version field is not
271 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272 ** returns SQLITE_CANTOPEN.
274 #define WAL_MAX_VERSION 3007000
275 #define WALINDEX_MAX_VERSION 3007000
278 ** Index numbers for various locking bytes. WAL_NREADER is the number
279 ** of available reader locks and should be at least 3. The default
280 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
282 ** Technically, the various VFSes are free to implement these locks however
283 ** they see fit. However, compatibility is encouraged so that VFSes can
284 ** interoperate. The standard implemention used on both unix and windows
285 ** is for the index number to indicate a byte offset into the
286 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288 ** should be 120) is the location in the shm file for the first locking
289 ** byte.
291 #define WAL_WRITE_LOCK 0
292 #define WAL_ALL_BUT_WRITE 1
293 #define WAL_CKPT_LOCK 1
294 #define WAL_RECOVER_LOCK 2
295 #define WAL_READ_LOCK(I) (3+(I))
296 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
299 /* Object declarations */
300 typedef struct WalIndexHdr WalIndexHdr;
301 typedef struct WalIterator WalIterator;
302 typedef struct WalCkptInfo WalCkptInfo;
306 ** The following object holds a copy of the wal-index header content.
308 ** The actual header in the wal-index consists of two copies of this
309 ** object followed by one instance of the WalCkptInfo object.
310 ** For all versions of SQLite through 3.10.0 and probably beyond,
311 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312 ** the total header size is 136 bytes.
314 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315 ** Or it can be 1 to represent a 65536-byte page. The latter case was
316 ** added in 3.7.1 when support for 64K pages was added.
318 struct WalIndexHdr {
319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
321 u32 iChange; /* Counter incremented each transaction */
322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
324 u16 szPage; /* Database page size in bytes. 1==64K */
325 u32 mxFrame; /* Index of last valid frame in the WAL */
326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
333 ** A copy of the following object occurs in the wal-index immediately
334 ** following the second copy of the WalIndexHdr. This object stores
335 ** information used by checkpoint.
337 ** nBackfill is the number of frames in the WAL that have been written
338 ** back into the database. (We call the act of moving content from WAL to
339 ** database "backfilling".) The nBackfill number is never greater than
340 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343 ** mxFrame back to zero when the WAL is reset.
345 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347 ** the nBackfillAttempted is set before any backfilling is done and the
348 ** nBackfill is only set after all backfilling completes. So if a checkpoint
349 ** crashes, nBackfillAttempted might be larger than nBackfill. The
350 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
352 ** The aLock[] field is a set of bytes used for locking. These bytes should
353 ** never be read or written.
355 ** There is one entry in aReadMark[] for each reader lock. If a reader
356 ** holds read-lock K, then the value in aReadMark[K] is no greater than
357 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
359 ** a special case; its value is never used and it exists as a place-holder
360 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
361 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362 ** directly from the database.
364 ** The value of aReadMark[K] may only be changed by a thread that
365 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366 ** aReadMark[K] cannot changed while there is a reader is using that mark
367 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
369 ** The checkpointer may only transfer frames from WAL to database where
370 ** the frame numbers are less than or equal to every aReadMark[] that is
371 ** in use (that is, every aReadMark[j] for which there is a corresponding
372 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373 ** largest value and will increase an unused aReadMark[] to mxFrame if there
374 ** is not already an aReadMark[] equal to mxFrame. The exception to the
375 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
376 ** in the WAL has been backfilled into the database) then new readers
377 ** will choose aReadMark[0] which has value 0 and hence such reader will
378 ** get all their all content directly from the database file and ignore
379 ** the WAL.
381 ** Writers normally append new frames to the end of the WAL. However,
382 ** if nBackfill equals mxFrame (meaning that all WAL content has been
383 ** written back into the database) and if no readers are using the WAL
384 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385 ** the writer will first "reset" the WAL back to the beginning and start
386 ** writing new content beginning at frame 1.
388 ** We assume that 32-bit loads are atomic and so no locks are needed in
389 ** order to read from any aReadMark[] entries.
391 struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
398 #define READMARK_NOT_USED 0xffffffff
401 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403 ** only support mandatory file-locks, we do not read or write data
404 ** from the region of the file on which locks are applied.
406 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
409 /* Size of header before each frame in wal */
410 #define WAL_FRAME_HDRSIZE 24
412 /* Size of write ahead log header, including checksum. */
413 #define WAL_HDRSIZE 32
415 /* WAL magic value. Either this value, or the same value with the least
416 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417 ** big-endian format in the first 4 bytes of a WAL file.
419 ** If the LSB is set, then the checksums for each frame within the WAL
420 ** file are calculated by treating all data as an array of 32-bit
421 ** big-endian words. Otherwise, they are calculated by interpreting
422 ** all data as 32-bit little-endian words.
424 #define WAL_MAGIC 0x377f0682
427 ** Return the offset of frame iFrame in the write-ahead log file,
428 ** assuming a database page size of szPage bytes. The offset returned
429 ** is to the start of the write-ahead log frame-header.
431 #define walFrameOffset(iFrame, szPage) ( \
432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
436 ** An open write-ahead log file is represented by an instance of the
437 ** following object.
439 struct Wal {
440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
443 u32 iCallback; /* Value to pass to log callback (or 0) */
444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
445 int nWiData; /* Size of array apWiData */
446 int szFirstBlock; /* Size of first block written to WAL file */
447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
448 u32 szPage; /* Database page size */
449 i16 readLock; /* Which read lock is being held. -1 for none */
450 u8 syncFlags; /* Flags to use to sync header writes */
451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
456 u8 syncHeader; /* Fsync the WAL header if true */
457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
459 WalIndexHdr hdr; /* Wal-index header for current transaction */
460 u32 minFrame; /* Ignore wal frames before this one */
461 u32 iReCksum; /* On commit, recalculate checksums from here */
462 const char *zWalName; /* Name of WAL file */
463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
464 #ifdef SQLITE_DEBUG
465 u8 lockError; /* True if a locking error has occurred */
466 #endif
467 #ifdef SQLITE_ENABLE_SNAPSHOT
468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
469 #endif
473 ** Candidate values for Wal.exclusiveMode.
475 #define WAL_NORMAL_MODE 0
476 #define WAL_EXCLUSIVE_MODE 1
477 #define WAL_HEAPMEMORY_MODE 2
480 ** Possible values for WAL.readOnly
482 #define WAL_RDWR 0 /* Normal read/write connection */
483 #define WAL_RDONLY 1 /* The WAL file is readonly */
484 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
487 ** Each page of the wal-index mapping contains a hash-table made up of
488 ** an array of HASHTABLE_NSLOT elements of the following type.
490 typedef u16 ht_slot;
493 ** This structure is used to implement an iterator that loops through
494 ** all frames in the WAL in database page order. Where two or more frames
495 ** correspond to the same database page, the iterator visits only the
496 ** frame most recently written to the WAL (in other words, the frame with
497 ** the largest index).
499 ** The internals of this structure are only accessed by:
501 ** walIteratorInit() - Create a new iterator,
502 ** walIteratorNext() - Step an iterator,
503 ** walIteratorFree() - Free an iterator.
505 ** This functionality is used by the checkpoint code (see walCheckpoint()).
507 struct WalIterator {
508 int iPrior; /* Last result returned from the iterator */
509 int nSegment; /* Number of entries in aSegment[] */
510 struct WalSegment {
511 int iNext; /* Next slot in aIndex[] not yet returned */
512 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
513 u32 *aPgno; /* Array of page numbers. */
514 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
515 int iZero; /* Frame number associated with aPgno[0] */
516 } aSegment[1]; /* One for every 32KB page in the wal-index */
520 ** Define the parameters of the hash tables in the wal-index file. There
521 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
522 ** wal-index.
524 ** Changing any of these constants will alter the wal-index format and
525 ** create incompatibilities.
527 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
528 #define HASHTABLE_HASH_1 383 /* Should be prime */
529 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
532 ** The block of page numbers associated with the first hash-table in a
533 ** wal-index is smaller than usual. This is so that there is a complete
534 ** hash-table on each aligned 32KB page of the wal-index.
536 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
538 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
539 #define WALINDEX_PGSZ ( \
540 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
545 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
546 ** numbered from zero.
548 ** If the wal-index is currently smaller the iPage pages then the size
549 ** of the wal-index might be increased, but only if it is safe to do
550 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true
551 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
553 ** If this call is successful, *ppPage is set to point to the wal-index
554 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
555 ** then an SQLite error code is returned and *ppPage is set to 0.
557 static SQLITE_NOINLINE int walIndexPageRealloc(
558 Wal *pWal, /* The WAL context */
559 int iPage, /* The page we seek */
560 volatile u32 **ppPage /* Write the page pointer here */
562 int rc = SQLITE_OK;
564 /* Enlarge the pWal->apWiData[] array if required */
565 if( pWal->nWiData<=iPage ){
566 int nByte = sizeof(u32*)*(iPage+1);
567 volatile u32 **apNew;
568 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
569 if( !apNew ){
570 *ppPage = 0;
571 return SQLITE_NOMEM_BKPT;
573 memset((void*)&apNew[pWal->nWiData], 0,
574 sizeof(u32*)*(iPage+1-pWal->nWiData));
575 pWal->apWiData = apNew;
576 pWal->nWiData = iPage+1;
579 /* Request a pointer to the required page from the VFS */
580 assert( pWal->apWiData[iPage]==0 );
581 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
582 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
583 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
584 }else{
585 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
586 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
588 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
589 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
590 if( (rc&0xff)==SQLITE_READONLY ){
591 pWal->readOnly |= WAL_SHM_RDONLY;
592 if( rc==SQLITE_READONLY ){
593 rc = SQLITE_OK;
598 *ppPage = pWal->apWiData[iPage];
599 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
600 return rc;
602 static int walIndexPage(
603 Wal *pWal, /* The WAL context */
604 int iPage, /* The page we seek */
605 volatile u32 **ppPage /* Write the page pointer here */
607 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
608 return walIndexPageRealloc(pWal, iPage, ppPage);
610 return SQLITE_OK;
614 ** Return a pointer to the WalCkptInfo structure in the wal-index.
616 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
617 assert( pWal->nWiData>0 && pWal->apWiData[0] );
618 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
622 ** Return a pointer to the WalIndexHdr structure in the wal-index.
624 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
625 assert( pWal->nWiData>0 && pWal->apWiData[0] );
626 return (volatile WalIndexHdr*)pWal->apWiData[0];
630 ** The argument to this macro must be of type u32. On a little-endian
631 ** architecture, it returns the u32 value that results from interpreting
632 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
633 ** returns the value that would be produced by interpreting the 4 bytes
634 ** of the input value as a little-endian integer.
636 #define BYTESWAP32(x) ( \
637 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
638 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
642 ** Generate or extend an 8 byte checksum based on the data in
643 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
644 ** initial values of 0 and 0 if aIn==NULL).
646 ** The checksum is written back into aOut[] before returning.
648 ** nByte must be a positive multiple of 8.
650 static void walChecksumBytes(
651 int nativeCksum, /* True for native byte-order, false for non-native */
652 u8 *a, /* Content to be checksummed */
653 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
654 const u32 *aIn, /* Initial checksum value input */
655 u32 *aOut /* OUT: Final checksum value output */
657 u32 s1, s2;
658 u32 *aData = (u32 *)a;
659 u32 *aEnd = (u32 *)&a[nByte];
661 if( aIn ){
662 s1 = aIn[0];
663 s2 = aIn[1];
664 }else{
665 s1 = s2 = 0;
668 assert( nByte>=8 );
669 assert( (nByte&0x00000007)==0 );
671 if( nativeCksum ){
672 do {
673 s1 += *aData++ + s2;
674 s2 += *aData++ + s1;
675 }while( aData<aEnd );
676 }else{
677 do {
678 s1 += BYTESWAP32(aData[0]) + s2;
679 s2 += BYTESWAP32(aData[1]) + s1;
680 aData += 2;
681 }while( aData<aEnd );
684 aOut[0] = s1;
685 aOut[1] = s2;
688 static void walShmBarrier(Wal *pWal){
689 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
690 sqlite3OsShmBarrier(pWal->pDbFd);
695 ** Write the header information in pWal->hdr into the wal-index.
697 ** The checksum on pWal->hdr is updated before it is written.
699 static void walIndexWriteHdr(Wal *pWal){
700 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
701 const int nCksum = offsetof(WalIndexHdr, aCksum);
703 assert( pWal->writeLock );
704 pWal->hdr.isInit = 1;
705 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
706 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
707 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
708 walShmBarrier(pWal);
709 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
713 ** This function encodes a single frame header and writes it to a buffer
714 ** supplied by the caller. A frame-header is made up of a series of
715 ** 4-byte big-endian integers, as follows:
717 ** 0: Page number.
718 ** 4: For commit records, the size of the database image in pages
719 ** after the commit. For all other records, zero.
720 ** 8: Salt-1 (copied from the wal-header)
721 ** 12: Salt-2 (copied from the wal-header)
722 ** 16: Checksum-1.
723 ** 20: Checksum-2.
725 static void walEncodeFrame(
726 Wal *pWal, /* The write-ahead log */
727 u32 iPage, /* Database page number for frame */
728 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
729 u8 *aData, /* Pointer to page data */
730 u8 *aFrame /* OUT: Write encoded frame here */
732 int nativeCksum; /* True for native byte-order checksums */
733 u32 *aCksum = pWal->hdr.aFrameCksum;
734 assert( WAL_FRAME_HDRSIZE==24 );
735 sqlite3Put4byte(&aFrame[0], iPage);
736 sqlite3Put4byte(&aFrame[4], nTruncate);
737 if( pWal->iReCksum==0 ){
738 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
740 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
741 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
742 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
744 sqlite3Put4byte(&aFrame[16], aCksum[0]);
745 sqlite3Put4byte(&aFrame[20], aCksum[1]);
746 }else{
747 memset(&aFrame[8], 0, 16);
752 ** Check to see if the frame with header in aFrame[] and content
753 ** in aData[] is valid. If it is a valid frame, fill *piPage and
754 ** *pnTruncate and return true. Return if the frame is not valid.
756 static int walDecodeFrame(
757 Wal *pWal, /* The write-ahead log */
758 u32 *piPage, /* OUT: Database page number for frame */
759 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
760 u8 *aData, /* Pointer to page data (for checksum) */
761 u8 *aFrame /* Frame data */
763 int nativeCksum; /* True for native byte-order checksums */
764 u32 *aCksum = pWal->hdr.aFrameCksum;
765 u32 pgno; /* Page number of the frame */
766 assert( WAL_FRAME_HDRSIZE==24 );
768 /* A frame is only valid if the salt values in the frame-header
769 ** match the salt values in the wal-header.
771 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
772 return 0;
775 /* A frame is only valid if the page number is creater than zero.
777 pgno = sqlite3Get4byte(&aFrame[0]);
778 if( pgno==0 ){
779 return 0;
782 /* A frame is only valid if a checksum of the WAL header,
783 ** all prior frams, the first 16 bytes of this frame-header,
784 ** and the frame-data matches the checksum in the last 8
785 ** bytes of this frame-header.
787 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
788 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
789 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
790 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
791 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
793 /* Checksum failed. */
794 return 0;
797 /* If we reach this point, the frame is valid. Return the page number
798 ** and the new database size.
800 *piPage = pgno;
801 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
802 return 1;
806 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
808 ** Names of locks. This routine is used to provide debugging output and is not
809 ** a part of an ordinary build.
811 static const char *walLockName(int lockIdx){
812 if( lockIdx==WAL_WRITE_LOCK ){
813 return "WRITE-LOCK";
814 }else if( lockIdx==WAL_CKPT_LOCK ){
815 return "CKPT-LOCK";
816 }else if( lockIdx==WAL_RECOVER_LOCK ){
817 return "RECOVER-LOCK";
818 }else{
819 static char zName[15];
820 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
821 lockIdx-WAL_READ_LOCK(0));
822 return zName;
825 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
829 ** Set or release locks on the WAL. Locks are either shared or exclusive.
830 ** A lock cannot be moved directly between shared and exclusive - it must go
831 ** through the unlocked state first.
833 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
835 static int walLockShared(Wal *pWal, int lockIdx){
836 int rc;
837 if( pWal->exclusiveMode ) return SQLITE_OK;
838 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
839 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
840 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
841 walLockName(lockIdx), rc ? "failed" : "ok"));
842 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
843 return rc;
845 static void walUnlockShared(Wal *pWal, int lockIdx){
846 if( pWal->exclusiveMode ) return;
847 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
848 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
849 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
851 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
852 int rc;
853 if( pWal->exclusiveMode ) return SQLITE_OK;
854 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
855 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
856 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
857 walLockName(lockIdx), n, rc ? "failed" : "ok"));
858 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
859 return rc;
861 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
862 if( pWal->exclusiveMode ) return;
863 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
864 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
865 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
866 walLockName(lockIdx), n));
870 ** Compute a hash on a page number. The resulting hash value must land
871 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
872 ** the hash to the next value in the event of a collision.
874 static int walHash(u32 iPage){
875 assert( iPage>0 );
876 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
877 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
879 static int walNextHash(int iPriorHash){
880 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
884 ** Return pointers to the hash table and page number array stored on
885 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
886 ** numbered starting from 0.
888 ** Set output variable *paHash to point to the start of the hash table
889 ** in the wal-index file. Set *piZero to one less than the frame
890 ** number of the first frame indexed by this hash table. If a
891 ** slot in the hash table is set to N, it refers to frame number
892 ** (*piZero+N) in the log.
894 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
895 ** first frame indexed by the hash table, frame (*piZero+1).
897 static int walHashGet(
898 Wal *pWal, /* WAL handle */
899 int iHash, /* Find the iHash'th table */
900 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
901 volatile u32 **paPgno, /* OUT: Pointer to page number array */
902 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
904 int rc; /* Return code */
905 volatile u32 *aPgno;
907 rc = walIndexPage(pWal, iHash, &aPgno);
908 assert( rc==SQLITE_OK || iHash>0 );
910 if( rc==SQLITE_OK ){
911 u32 iZero;
912 volatile ht_slot *aHash;
914 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
915 if( iHash==0 ){
916 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
917 iZero = 0;
918 }else{
919 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
922 *paPgno = &aPgno[-1];
923 *paHash = aHash;
924 *piZero = iZero;
926 return rc;
930 ** Return the number of the wal-index page that contains the hash-table
931 ** and page-number array that contain entries corresponding to WAL frame
932 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
933 ** are numbered starting from 0.
935 static int walFramePage(u32 iFrame){
936 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
937 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
938 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
939 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
940 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
941 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
943 return iHash;
947 ** Return the page number associated with frame iFrame in this WAL.
949 static u32 walFramePgno(Wal *pWal, u32 iFrame){
950 int iHash = walFramePage(iFrame);
951 if( iHash==0 ){
952 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
954 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
958 ** Remove entries from the hash table that point to WAL slots greater
959 ** than pWal->hdr.mxFrame.
961 ** This function is called whenever pWal->hdr.mxFrame is decreased due
962 ** to a rollback or savepoint.
964 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
965 ** updated. Any later hash tables will be automatically cleared when
966 ** pWal->hdr.mxFrame advances to the point where those hash tables are
967 ** actually needed.
969 static void walCleanupHash(Wal *pWal){
970 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
971 volatile u32 *aPgno = 0; /* Page number array for hash table */
972 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
973 int iLimit = 0; /* Zero values greater than this */
974 int nByte; /* Number of bytes to zero in aPgno[] */
975 int i; /* Used to iterate through aHash[] */
977 assert( pWal->writeLock );
978 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
979 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
980 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
982 if( pWal->hdr.mxFrame==0 ) return;
984 /* Obtain pointers to the hash-table and page-number array containing
985 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
986 ** that the page said hash-table and array reside on is already mapped.
988 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
989 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
990 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
992 /* Zero all hash-table entries that correspond to frame numbers greater
993 ** than pWal->hdr.mxFrame.
995 iLimit = pWal->hdr.mxFrame - iZero;
996 assert( iLimit>0 );
997 for(i=0; i<HASHTABLE_NSLOT; i++){
998 if( aHash[i]>iLimit ){
999 aHash[i] = 0;
1003 /* Zero the entries in the aPgno array that correspond to frames with
1004 ** frame numbers greater than pWal->hdr.mxFrame.
1006 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
1007 memset((void *)&aPgno[iLimit+1], 0, nByte);
1009 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1010 /* Verify that the every entry in the mapping region is still reachable
1011 ** via the hash table even after the cleanup.
1013 if( iLimit ){
1014 int j; /* Loop counter */
1015 int iKey; /* Hash key */
1016 for(j=1; j<=iLimit; j++){
1017 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
1018 if( aHash[iKey]==j ) break;
1020 assert( aHash[iKey]==j );
1023 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1028 ** Set an entry in the wal-index that will map database page number
1029 ** pPage into WAL frame iFrame.
1031 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1032 int rc; /* Return code */
1033 u32 iZero = 0; /* One less than frame number of aPgno[1] */
1034 volatile u32 *aPgno = 0; /* Page number array */
1035 volatile ht_slot *aHash = 0; /* Hash table */
1037 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
1039 /* Assuming the wal-index file was successfully mapped, populate the
1040 ** page number array and hash table entry.
1042 if( rc==SQLITE_OK ){
1043 int iKey; /* Hash table key */
1044 int idx; /* Value to write to hash-table slot */
1045 int nCollide; /* Number of hash collisions */
1047 idx = iFrame - iZero;
1048 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1050 /* If this is the first entry to be added to this hash-table, zero the
1051 ** entire hash table and aPgno[] array before proceeding.
1053 if( idx==1 ){
1054 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
1055 memset((void*)&aPgno[1], 0, nByte);
1058 /* If the entry in aPgno[] is already set, then the previous writer
1059 ** must have exited unexpectedly in the middle of a transaction (after
1060 ** writing one or more dirty pages to the WAL to free up memory).
1061 ** Remove the remnants of that writers uncommitted transaction from
1062 ** the hash-table before writing any new entries.
1064 if( aPgno[idx] ){
1065 walCleanupHash(pWal);
1066 assert( !aPgno[idx] );
1069 /* Write the aPgno[] array entry and the hash-table slot. */
1070 nCollide = idx;
1071 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
1072 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1074 aPgno[idx] = iPage;
1075 aHash[iKey] = (ht_slot)idx;
1077 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1078 /* Verify that the number of entries in the hash table exactly equals
1079 ** the number of entries in the mapping region.
1082 int i; /* Loop counter */
1083 int nEntry = 0; /* Number of entries in the hash table */
1084 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1085 assert( nEntry==idx );
1088 /* Verify that the every entry in the mapping region is reachable
1089 ** via the hash table. This turns out to be a really, really expensive
1090 ** thing to check, so only do this occasionally - not on every
1091 ** iteration.
1093 if( (idx&0x3ff)==0 ){
1094 int i; /* Loop counter */
1095 for(i=1; i<=idx; i++){
1096 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1097 if( aHash[iKey]==i ) break;
1099 assert( aHash[iKey]==i );
1102 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1106 return rc;
1111 ** Recover the wal-index by reading the write-ahead log file.
1113 ** This routine first tries to establish an exclusive lock on the
1114 ** wal-index to prevent other threads/processes from doing anything
1115 ** with the WAL or wal-index while recovery is running. The
1116 ** WAL_RECOVER_LOCK is also held so that other threads will know
1117 ** that this thread is running recovery. If unable to establish
1118 ** the necessary locks, this routine returns SQLITE_BUSY.
1120 static int walIndexRecover(Wal *pWal){
1121 int rc; /* Return Code */
1122 i64 nSize; /* Size of log file */
1123 u32 aFrameCksum[2] = {0, 0};
1124 int iLock; /* Lock offset to lock for checkpoint */
1126 /* Obtain an exclusive lock on all byte in the locking range not already
1127 ** locked by the caller. The caller is guaranteed to have locked the
1128 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1129 ** If successful, the same bytes that are locked here are unlocked before
1130 ** this function returns.
1132 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1133 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1134 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1135 assert( pWal->writeLock );
1136 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1137 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1138 if( rc==SQLITE_OK ){
1139 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1140 if( rc!=SQLITE_OK ){
1141 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1144 if( rc ){
1145 return rc;
1148 WALTRACE(("WAL%p: recovery begin...\n", pWal));
1150 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1152 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1153 if( rc!=SQLITE_OK ){
1154 goto recovery_error;
1157 if( nSize>WAL_HDRSIZE ){
1158 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
1159 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
1160 int szFrame; /* Number of bytes in buffer aFrame[] */
1161 u8 *aData; /* Pointer to data part of aFrame buffer */
1162 int iFrame; /* Index of last frame read */
1163 i64 iOffset; /* Next offset to read from log file */
1164 int szPage; /* Page size according to the log */
1165 u32 magic; /* Magic value read from WAL header */
1166 u32 version; /* Magic value read from WAL header */
1167 int isValid; /* True if this frame is valid */
1169 /* Read in the WAL header. */
1170 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1171 if( rc!=SQLITE_OK ){
1172 goto recovery_error;
1175 /* If the database page size is not a power of two, or is greater than
1176 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1177 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1178 ** WAL file.
1180 magic = sqlite3Get4byte(&aBuf[0]);
1181 szPage = sqlite3Get4byte(&aBuf[8]);
1182 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1183 || szPage&(szPage-1)
1184 || szPage>SQLITE_MAX_PAGE_SIZE
1185 || szPage<512
1187 goto finished;
1189 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1190 pWal->szPage = szPage;
1191 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1192 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1194 /* Verify that the WAL header checksum is correct */
1195 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1196 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1198 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1199 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1201 goto finished;
1204 /* Verify that the version number on the WAL format is one that
1205 ** are able to understand */
1206 version = sqlite3Get4byte(&aBuf[4]);
1207 if( version!=WAL_MAX_VERSION ){
1208 rc = SQLITE_CANTOPEN_BKPT;
1209 goto finished;
1212 /* Malloc a buffer to read frames into. */
1213 szFrame = szPage + WAL_FRAME_HDRSIZE;
1214 aFrame = (u8 *)sqlite3_malloc64(szFrame);
1215 if( !aFrame ){
1216 rc = SQLITE_NOMEM_BKPT;
1217 goto recovery_error;
1219 aData = &aFrame[WAL_FRAME_HDRSIZE];
1221 /* Read all frames from the log file. */
1222 iFrame = 0;
1223 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1224 u32 pgno; /* Database page number for frame */
1225 u32 nTruncate; /* dbsize field from frame header */
1227 /* Read and decode the next log frame. */
1228 iFrame++;
1229 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1230 if( rc!=SQLITE_OK ) break;
1231 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1232 if( !isValid ) break;
1233 rc = walIndexAppend(pWal, iFrame, pgno);
1234 if( rc!=SQLITE_OK ) break;
1236 /* If nTruncate is non-zero, this is a commit record. */
1237 if( nTruncate ){
1238 pWal->hdr.mxFrame = iFrame;
1239 pWal->hdr.nPage = nTruncate;
1240 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1241 testcase( szPage<=32768 );
1242 testcase( szPage>=65536 );
1243 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1244 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1248 sqlite3_free(aFrame);
1251 finished:
1252 if( rc==SQLITE_OK ){
1253 volatile WalCkptInfo *pInfo;
1254 int i;
1255 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1256 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1257 walIndexWriteHdr(pWal);
1259 /* Reset the checkpoint-header. This is safe because this thread is
1260 ** currently holding locks that exclude all other readers, writers and
1261 ** checkpointers.
1263 pInfo = walCkptInfo(pWal);
1264 pInfo->nBackfill = 0;
1265 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1266 pInfo->aReadMark[0] = 0;
1267 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1268 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
1270 /* If more than one frame was recovered from the log file, report an
1271 ** event via sqlite3_log(). This is to help with identifying performance
1272 ** problems caused by applications routinely shutting down without
1273 ** checkpointing the log file.
1275 if( pWal->hdr.nPage ){
1276 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1277 "recovered %d frames from WAL file %s",
1278 pWal->hdr.mxFrame, pWal->zWalName
1283 recovery_error:
1284 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1285 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1286 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1287 return rc;
1291 ** Close an open wal-index.
1293 static void walIndexClose(Wal *pWal, int isDelete){
1294 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1295 int i;
1296 for(i=0; i<pWal->nWiData; i++){
1297 sqlite3_free((void *)pWal->apWiData[i]);
1298 pWal->apWiData[i] = 0;
1301 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1302 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1307 ** Open a connection to the WAL file zWalName. The database file must
1308 ** already be opened on connection pDbFd. The buffer that zWalName points
1309 ** to must remain valid for the lifetime of the returned Wal* handle.
1311 ** A SHARED lock should be held on the database file when this function
1312 ** is called. The purpose of this SHARED lock is to prevent any other
1313 ** client from unlinking the WAL or wal-index file. If another process
1314 ** were to do this just after this client opened one of these files, the
1315 ** system would be badly broken.
1317 ** If the log file is successfully opened, SQLITE_OK is returned and
1318 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1319 ** an SQLite error code is returned and *ppWal is left unmodified.
1321 int sqlite3WalOpen(
1322 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
1323 sqlite3_file *pDbFd, /* The open database file */
1324 const char *zWalName, /* Name of the WAL file */
1325 int bNoShm, /* True to run in heap-memory mode */
1326 i64 mxWalSize, /* Truncate WAL to this size on reset */
1327 Wal **ppWal /* OUT: Allocated Wal handle */
1329 int rc; /* Return Code */
1330 Wal *pRet; /* Object to allocate and return */
1331 int flags; /* Flags passed to OsOpen() */
1333 assert( zWalName && zWalName[0] );
1334 assert( pDbFd );
1336 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1337 ** this source file. Verify that the #defines of the locking byte offsets
1338 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1339 ** For that matter, if the lock offset ever changes from its initial design
1340 ** value of 120, we need to know that so there is an assert() to check it.
1342 assert( 120==WALINDEX_LOCK_OFFSET );
1343 assert( 136==WALINDEX_HDR_SIZE );
1344 #ifdef WIN_SHM_BASE
1345 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1346 #endif
1347 #ifdef UNIX_SHM_BASE
1348 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1349 #endif
1352 /* Allocate an instance of struct Wal to return. */
1353 *ppWal = 0;
1354 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1355 if( !pRet ){
1356 return SQLITE_NOMEM_BKPT;
1359 pRet->pVfs = pVfs;
1360 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1361 pRet->pDbFd = pDbFd;
1362 pRet->readLock = -1;
1363 pRet->mxWalSize = mxWalSize;
1364 pRet->zWalName = zWalName;
1365 pRet->syncHeader = 1;
1366 pRet->padToSectorBoundary = 1;
1367 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1369 /* Open file handle on the write-ahead log file. */
1370 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1371 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1372 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1373 pRet->readOnly = WAL_RDONLY;
1376 if( rc!=SQLITE_OK ){
1377 walIndexClose(pRet, 0);
1378 sqlite3OsClose(pRet->pWalFd);
1379 sqlite3_free(pRet);
1380 }else{
1381 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1382 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1383 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1384 pRet->padToSectorBoundary = 0;
1386 *ppWal = pRet;
1387 WALTRACE(("WAL%d: opened\n", pRet));
1389 return rc;
1393 ** Change the size to which the WAL file is trucated on each reset.
1395 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1396 if( pWal ) pWal->mxWalSize = iLimit;
1400 ** Find the smallest page number out of all pages held in the WAL that
1401 ** has not been returned by any prior invocation of this method on the
1402 ** same WalIterator object. Write into *piFrame the frame index where
1403 ** that page was last written into the WAL. Write into *piPage the page
1404 ** number.
1406 ** Return 0 on success. If there are no pages in the WAL with a page
1407 ** number larger than *piPage, then return 1.
1409 static int walIteratorNext(
1410 WalIterator *p, /* Iterator */
1411 u32 *piPage, /* OUT: The page number of the next page */
1412 u32 *piFrame /* OUT: Wal frame index of next page */
1414 u32 iMin; /* Result pgno must be greater than iMin */
1415 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1416 int i; /* For looping through segments */
1418 iMin = p->iPrior;
1419 assert( iMin<0xffffffff );
1420 for(i=p->nSegment-1; i>=0; i--){
1421 struct WalSegment *pSegment = &p->aSegment[i];
1422 while( pSegment->iNext<pSegment->nEntry ){
1423 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1424 if( iPg>iMin ){
1425 if( iPg<iRet ){
1426 iRet = iPg;
1427 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1429 break;
1431 pSegment->iNext++;
1435 *piPage = p->iPrior = iRet;
1436 return (iRet==0xFFFFFFFF);
1440 ** This function merges two sorted lists into a single sorted list.
1442 ** aLeft[] and aRight[] are arrays of indices. The sort key is
1443 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1444 ** is guaranteed for all J<K:
1446 ** aContent[aLeft[J]] < aContent[aLeft[K]]
1447 ** aContent[aRight[J]] < aContent[aRight[K]]
1449 ** This routine overwrites aRight[] with a new (probably longer) sequence
1450 ** of indices such that the aRight[] contains every index that appears in
1451 ** either aLeft[] or the old aRight[] and such that the second condition
1452 ** above is still met.
1454 ** The aContent[aLeft[X]] values will be unique for all X. And the
1455 ** aContent[aRight[X]] values will be unique too. But there might be
1456 ** one or more combinations of X and Y such that
1458 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1460 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1462 static void walMerge(
1463 const u32 *aContent, /* Pages in wal - keys for the sort */
1464 ht_slot *aLeft, /* IN: Left hand input list */
1465 int nLeft, /* IN: Elements in array *paLeft */
1466 ht_slot **paRight, /* IN/OUT: Right hand input list */
1467 int *pnRight, /* IN/OUT: Elements in *paRight */
1468 ht_slot *aTmp /* Temporary buffer */
1470 int iLeft = 0; /* Current index in aLeft */
1471 int iRight = 0; /* Current index in aRight */
1472 int iOut = 0; /* Current index in output buffer */
1473 int nRight = *pnRight;
1474 ht_slot *aRight = *paRight;
1476 assert( nLeft>0 && nRight>0 );
1477 while( iRight<nRight || iLeft<nLeft ){
1478 ht_slot logpage;
1479 Pgno dbpage;
1481 if( (iLeft<nLeft)
1482 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1484 logpage = aLeft[iLeft++];
1485 }else{
1486 logpage = aRight[iRight++];
1488 dbpage = aContent[logpage];
1490 aTmp[iOut++] = logpage;
1491 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1493 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1494 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1497 *paRight = aLeft;
1498 *pnRight = iOut;
1499 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1503 ** Sort the elements in list aList using aContent[] as the sort key.
1504 ** Remove elements with duplicate keys, preferring to keep the
1505 ** larger aList[] values.
1507 ** The aList[] entries are indices into aContent[]. The values in
1508 ** aList[] are to be sorted so that for all J<K:
1510 ** aContent[aList[J]] < aContent[aList[K]]
1512 ** For any X and Y such that
1514 ** aContent[aList[X]] == aContent[aList[Y]]
1516 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1517 ** the smaller.
1519 static void walMergesort(
1520 const u32 *aContent, /* Pages in wal */
1521 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1522 ht_slot *aList, /* IN/OUT: List to sort */
1523 int *pnList /* IN/OUT: Number of elements in aList[] */
1525 struct Sublist {
1526 int nList; /* Number of elements in aList */
1527 ht_slot *aList; /* Pointer to sub-list content */
1530 const int nList = *pnList; /* Size of input list */
1531 int nMerge = 0; /* Number of elements in list aMerge */
1532 ht_slot *aMerge = 0; /* List to be merged */
1533 int iList; /* Index into input list */
1534 u32 iSub = 0; /* Index into aSub array */
1535 struct Sublist aSub[13]; /* Array of sub-lists */
1537 memset(aSub, 0, sizeof(aSub));
1538 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1539 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1541 for(iList=0; iList<nList; iList++){
1542 nMerge = 1;
1543 aMerge = &aList[iList];
1544 for(iSub=0; iList & (1<<iSub); iSub++){
1545 struct Sublist *p;
1546 assert( iSub<ArraySize(aSub) );
1547 p = &aSub[iSub];
1548 assert( p->aList && p->nList<=(1<<iSub) );
1549 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1550 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1552 aSub[iSub].aList = aMerge;
1553 aSub[iSub].nList = nMerge;
1556 for(iSub++; iSub<ArraySize(aSub); iSub++){
1557 if( nList & (1<<iSub) ){
1558 struct Sublist *p;
1559 assert( iSub<ArraySize(aSub) );
1560 p = &aSub[iSub];
1561 assert( p->nList<=(1<<iSub) );
1562 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1563 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1566 assert( aMerge==aList );
1567 *pnList = nMerge;
1569 #ifdef SQLITE_DEBUG
1571 int i;
1572 for(i=1; i<*pnList; i++){
1573 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1576 #endif
1580 ** Free an iterator allocated by walIteratorInit().
1582 static void walIteratorFree(WalIterator *p){
1583 sqlite3_free(p);
1587 ** Construct a WalInterator object that can be used to loop over all
1588 ** pages in the WAL following frame nBackfill in ascending order. Frames
1589 ** nBackfill or earlier may be included - excluding them is an optimization
1590 ** only. The caller must hold the checkpoint lock.
1592 ** On success, make *pp point to the newly allocated WalInterator object
1593 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1594 ** returns an error, the value of *pp is undefined.
1596 ** The calling routine should invoke walIteratorFree() to destroy the
1597 ** WalIterator object when it has finished with it.
1599 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1600 WalIterator *p; /* Return value */
1601 int nSegment; /* Number of segments to merge */
1602 u32 iLast; /* Last frame in log */
1603 int nByte; /* Number of bytes to allocate */
1604 int i; /* Iterator variable */
1605 ht_slot *aTmp; /* Temp space used by merge-sort */
1606 int rc = SQLITE_OK; /* Return Code */
1608 /* This routine only runs while holding the checkpoint lock. And
1609 ** it only runs if there is actually content in the log (mxFrame>0).
1611 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1612 iLast = pWal->hdr.mxFrame;
1614 /* Allocate space for the WalIterator object. */
1615 nSegment = walFramePage(iLast) + 1;
1616 nByte = sizeof(WalIterator)
1617 + (nSegment-1)*sizeof(struct WalSegment)
1618 + iLast*sizeof(ht_slot);
1619 p = (WalIterator *)sqlite3_malloc64(nByte);
1620 if( !p ){
1621 return SQLITE_NOMEM_BKPT;
1623 memset(p, 0, nByte);
1624 p->nSegment = nSegment;
1626 /* Allocate temporary space used by the merge-sort routine. This block
1627 ** of memory will be freed before this function returns.
1629 aTmp = (ht_slot *)sqlite3_malloc64(
1630 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1632 if( !aTmp ){
1633 rc = SQLITE_NOMEM_BKPT;
1636 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1637 volatile ht_slot *aHash;
1638 u32 iZero;
1639 volatile u32 *aPgno;
1641 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1642 if( rc==SQLITE_OK ){
1643 int j; /* Counter variable */
1644 int nEntry; /* Number of entries in this segment */
1645 ht_slot *aIndex; /* Sorted index for this segment */
1647 aPgno++;
1648 if( (i+1)==nSegment ){
1649 nEntry = (int)(iLast - iZero);
1650 }else{
1651 nEntry = (int)((u32*)aHash - (u32*)aPgno);
1653 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1654 iZero++;
1656 for(j=0; j<nEntry; j++){
1657 aIndex[j] = (ht_slot)j;
1659 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1660 p->aSegment[i].iZero = iZero;
1661 p->aSegment[i].nEntry = nEntry;
1662 p->aSegment[i].aIndex = aIndex;
1663 p->aSegment[i].aPgno = (u32 *)aPgno;
1666 sqlite3_free(aTmp);
1668 if( rc!=SQLITE_OK ){
1669 walIteratorFree(p);
1670 p = 0;
1672 *pp = p;
1673 return rc;
1677 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1678 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1679 ** busy-handler function. Invoke it and retry the lock until either the
1680 ** lock is successfully obtained or the busy-handler returns 0.
1682 static int walBusyLock(
1683 Wal *pWal, /* WAL connection */
1684 int (*xBusy)(void*), /* Function to call when busy */
1685 void *pBusyArg, /* Context argument for xBusyHandler */
1686 int lockIdx, /* Offset of first byte to lock */
1687 int n /* Number of bytes to lock */
1689 int rc;
1690 do {
1691 rc = walLockExclusive(pWal, lockIdx, n);
1692 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1693 return rc;
1697 ** The cache of the wal-index header must be valid to call this function.
1698 ** Return the page-size in bytes used by the database.
1700 static int walPagesize(Wal *pWal){
1701 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1705 ** The following is guaranteed when this function is called:
1707 ** a) the WRITER lock is held,
1708 ** b) the entire log file has been checkpointed, and
1709 ** c) any existing readers are reading exclusively from the database
1710 ** file - there are no readers that may attempt to read a frame from
1711 ** the log file.
1713 ** This function updates the shared-memory structures so that the next
1714 ** client to write to the database (which may be this one) does so by
1715 ** writing frames into the start of the log file.
1717 ** The value of parameter salt1 is used as the aSalt[1] value in the
1718 ** new wal-index header. It should be passed a pseudo-random value (i.e.
1719 ** one obtained from sqlite3_randomness()).
1721 static void walRestartHdr(Wal *pWal, u32 salt1){
1722 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1723 int i; /* Loop counter */
1724 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1725 pWal->nCkpt++;
1726 pWal->hdr.mxFrame = 0;
1727 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
1728 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
1729 walIndexWriteHdr(pWal);
1730 pInfo->nBackfill = 0;
1731 pInfo->nBackfillAttempted = 0;
1732 pInfo->aReadMark[1] = 0;
1733 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1734 assert( pInfo->aReadMark[0]==0 );
1738 ** Copy as much content as we can from the WAL back into the database file
1739 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1741 ** The amount of information copies from WAL to database might be limited
1742 ** by active readers. This routine will never overwrite a database page
1743 ** that a concurrent reader might be using.
1745 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1746 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1747 ** checkpoints are always run by a background thread or background
1748 ** process, foreground threads will never block on a lengthy fsync call.
1750 ** Fsync is called on the WAL before writing content out of the WAL and
1751 ** into the database. This ensures that if the new content is persistent
1752 ** in the WAL and can be recovered following a power-loss or hard reset.
1754 ** Fsync is also called on the database file if (and only if) the entire
1755 ** WAL content is copied into the database file. This second fsync makes
1756 ** it safe to delete the WAL since the new content will persist in the
1757 ** database file.
1759 ** This routine uses and updates the nBackfill field of the wal-index header.
1760 ** This is the only routine that will increase the value of nBackfill.
1761 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1762 ** its value.)
1764 ** The caller must be holding sufficient locks to ensure that no other
1765 ** checkpoint is running (in any other thread or process) at the same
1766 ** time.
1768 static int walCheckpoint(
1769 Wal *pWal, /* Wal connection */
1770 sqlite3 *db, /* Check for interrupts on this handle */
1771 int eMode, /* One of PASSIVE, FULL or RESTART */
1772 int (*xBusy)(void*), /* Function to call when busy */
1773 void *pBusyArg, /* Context argument for xBusyHandler */
1774 int sync_flags, /* Flags for OsSync() (or 0) */
1775 u8 *zBuf /* Temporary buffer to use */
1777 int rc = SQLITE_OK; /* Return code */
1778 int szPage; /* Database page-size */
1779 WalIterator *pIter = 0; /* Wal iterator context */
1780 u32 iDbpage = 0; /* Next database page to write */
1781 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
1782 u32 mxSafeFrame; /* Max frame that can be backfilled */
1783 u32 mxPage; /* Max database page to write */
1784 int i; /* Loop counter */
1785 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
1787 szPage = walPagesize(pWal);
1788 testcase( szPage<=32768 );
1789 testcase( szPage>=65536 );
1790 pInfo = walCkptInfo(pWal);
1791 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1793 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1794 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1795 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
1797 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1798 ** safe to write into the database. Frames beyond mxSafeFrame might
1799 ** overwrite database pages that are in use by active readers and thus
1800 ** cannot be backfilled from the WAL.
1802 mxSafeFrame = pWal->hdr.mxFrame;
1803 mxPage = pWal->hdr.nPage;
1804 for(i=1; i<WAL_NREADER; i++){
1805 /* Thread-sanitizer reports that the following is an unsafe read,
1806 ** as some other thread may be in the process of updating the value
1807 ** of the aReadMark[] slot. The assumption here is that if that is
1808 ** happening, the other client may only be increasing the value,
1809 ** not decreasing it. So assuming either that either the "old" or
1810 ** "new" version of the value is read, and not some arbitrary value
1811 ** that would never be written by a real client, things are still
1812 ** safe. */
1813 u32 y = pInfo->aReadMark[i];
1814 if( mxSafeFrame>y ){
1815 assert( y<=pWal->hdr.mxFrame );
1816 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1817 if( rc==SQLITE_OK ){
1818 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1819 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1820 }else if( rc==SQLITE_BUSY ){
1821 mxSafeFrame = y;
1822 xBusy = 0;
1823 }else{
1824 goto walcheckpoint_out;
1829 /* Allocate the iterator */
1830 if( pInfo->nBackfill<mxSafeFrame ){
1831 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1832 assert( rc==SQLITE_OK || pIter==0 );
1835 if( pIter
1836 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1838 i64 nSize; /* Current size of database file */
1839 u32 nBackfill = pInfo->nBackfill;
1841 pInfo->nBackfillAttempted = mxSafeFrame;
1843 /* Sync the WAL to disk */
1844 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
1846 /* If the database may grow as a result of this checkpoint, hint
1847 ** about the eventual size of the db file to the VFS layer.
1849 if( rc==SQLITE_OK ){
1850 i64 nReq = ((i64)mxPage * szPage);
1851 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1852 if( rc==SQLITE_OK && nSize<nReq ){
1853 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1858 /* Iterate through the contents of the WAL, copying data to the db file */
1859 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1860 i64 iOffset;
1861 assert( walFramePgno(pWal, iFrame)==iDbpage );
1862 if( db->u1.isInterrupted ){
1863 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1864 break;
1866 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1867 continue;
1869 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1870 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1871 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1872 if( rc!=SQLITE_OK ) break;
1873 iOffset = (iDbpage-1)*(i64)szPage;
1874 testcase( IS_BIG_INT(iOffset) );
1875 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1876 if( rc!=SQLITE_OK ) break;
1879 /* If work was actually accomplished... */
1880 if( rc==SQLITE_OK ){
1881 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1882 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1883 testcase( IS_BIG_INT(szDb) );
1884 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1885 if( rc==SQLITE_OK ){
1886 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
1889 if( rc==SQLITE_OK ){
1890 pInfo->nBackfill = mxSafeFrame;
1894 /* Release the reader lock held while backfilling */
1895 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1898 if( rc==SQLITE_BUSY ){
1899 /* Reset the return code so as not to report a checkpoint failure
1900 ** just because there are active readers. */
1901 rc = SQLITE_OK;
1905 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1906 ** entire wal file has been copied into the database file, then block
1907 ** until all readers have finished using the wal file. This ensures that
1908 ** the next process to write to the database restarts the wal file.
1910 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1911 assert( pWal->writeLock );
1912 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1913 rc = SQLITE_BUSY;
1914 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
1915 u32 salt1;
1916 sqlite3_randomness(4, &salt1);
1917 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
1918 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1919 if( rc==SQLITE_OK ){
1920 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
1921 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1922 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1923 ** truncates the log file to zero bytes just prior to a
1924 ** successful return.
1926 ** In theory, it might be safe to do this without updating the
1927 ** wal-index header in shared memory, as all subsequent reader or
1928 ** writer clients should see that the entire log file has been
1929 ** checkpointed and behave accordingly. This seems unsafe though,
1930 ** as it would leave the system in a state where the contents of
1931 ** the wal-index header do not match the contents of the
1932 ** file-system. To avoid this, update the wal-index header to
1933 ** indicate that the log file contains zero valid frames. */
1934 walRestartHdr(pWal, salt1);
1935 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1937 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1942 walcheckpoint_out:
1943 walIteratorFree(pIter);
1944 return rc;
1948 ** If the WAL file is currently larger than nMax bytes in size, truncate
1949 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
1951 static void walLimitSize(Wal *pWal, i64 nMax){
1952 i64 sz;
1953 int rx;
1954 sqlite3BeginBenignMalloc();
1955 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1956 if( rx==SQLITE_OK && (sz > nMax ) ){
1957 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1959 sqlite3EndBenignMalloc();
1960 if( rx ){
1961 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
1966 ** Close a connection to a log file.
1968 int sqlite3WalClose(
1969 Wal *pWal, /* Wal to close */
1970 sqlite3 *db, /* For interrupt flag */
1971 int sync_flags, /* Flags to pass to OsSync() (or 0) */
1972 int nBuf,
1973 u8 *zBuf /* Buffer of at least nBuf bytes */
1975 int rc = SQLITE_OK;
1976 if( pWal ){
1977 int isDelete = 0; /* True to unlink wal and wal-index files */
1979 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1980 ** ordinary, rollback-mode locking methods, this guarantees that the
1981 ** connection associated with this log file is the only connection to
1982 ** the database. In this case checkpoint the database and unlink both
1983 ** the wal and wal-index files.
1985 ** The EXCLUSIVE lock is not released before returning.
1987 if( zBuf!=0
1988 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
1990 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1991 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1993 rc = sqlite3WalCheckpoint(pWal, db,
1994 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1996 if( rc==SQLITE_OK ){
1997 int bPersist = -1;
1998 sqlite3OsFileControlHint(
1999 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2001 if( bPersist!=1 ){
2002 /* Try to delete the WAL file if the checkpoint completed and
2003 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2004 ** mode (!bPersist) */
2005 isDelete = 1;
2006 }else if( pWal->mxWalSize>=0 ){
2007 /* Try to truncate the WAL file to zero bytes if the checkpoint
2008 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2009 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2010 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2011 ** to zero bytes as truncating to the journal_size_limit might
2012 ** leave a corrupt WAL file on disk. */
2013 walLimitSize(pWal, 0);
2018 walIndexClose(pWal, isDelete);
2019 sqlite3OsClose(pWal->pWalFd);
2020 if( isDelete ){
2021 sqlite3BeginBenignMalloc();
2022 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2023 sqlite3EndBenignMalloc();
2025 WALTRACE(("WAL%p: closed\n", pWal));
2026 sqlite3_free((void *)pWal->apWiData);
2027 sqlite3_free(pWal);
2029 return rc;
2033 ** Try to read the wal-index header. Return 0 on success and 1 if
2034 ** there is a problem.
2036 ** The wal-index is in shared memory. Another thread or process might
2037 ** be writing the header at the same time this procedure is trying to
2038 ** read it, which might result in inconsistency. A dirty read is detected
2039 ** by verifying that both copies of the header are the same and also by
2040 ** a checksum on the header.
2042 ** If and only if the read is consistent and the header is different from
2043 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2044 ** and *pChanged is set to 1.
2046 ** If the checksum cannot be verified return non-zero. If the header
2047 ** is read successfully and the checksum verified, return zero.
2049 static int walIndexTryHdr(Wal *pWal, int *pChanged){
2050 u32 aCksum[2]; /* Checksum on the header content */
2051 WalIndexHdr h1, h2; /* Two copies of the header content */
2052 WalIndexHdr volatile *aHdr; /* Header in shared memory */
2054 /* The first page of the wal-index must be mapped at this point. */
2055 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2057 /* Read the header. This might happen concurrently with a write to the
2058 ** same area of shared memory on a different CPU in a SMP,
2059 ** meaning it is possible that an inconsistent snapshot is read
2060 ** from the file. If this happens, return non-zero.
2062 ** There are two copies of the header at the beginning of the wal-index.
2063 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2064 ** Memory barriers are used to prevent the compiler or the hardware from
2065 ** reordering the reads and writes.
2067 aHdr = walIndexHdr(pWal);
2068 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
2069 walShmBarrier(pWal);
2070 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2072 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2073 return 1; /* Dirty read */
2075 if( h1.isInit==0 ){
2076 return 1; /* Malformed header - probably all zeros */
2078 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2079 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2080 return 1; /* Checksum does not match */
2083 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2084 *pChanged = 1;
2085 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2086 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2087 testcase( pWal->szPage<=32768 );
2088 testcase( pWal->szPage>=65536 );
2091 /* The header was successfully read. Return zero. */
2092 return 0;
2096 ** This is the value that walTryBeginRead returns when it needs to
2097 ** be retried.
2099 #define WAL_RETRY (-1)
2102 ** Read the wal-index header from the wal-index and into pWal->hdr.
2103 ** If the wal-header appears to be corrupt, try to reconstruct the
2104 ** wal-index from the WAL before returning.
2106 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2107 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged
2108 ** to 0.
2110 ** If the wal-index header is successfully read, return SQLITE_OK.
2111 ** Otherwise an SQLite error code.
2113 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2114 int rc; /* Return code */
2115 int badHdr; /* True if a header read failed */
2116 volatile u32 *page0; /* Chunk of wal-index containing header */
2118 /* Ensure that page 0 of the wal-index (the page that contains the
2119 ** wal-index header) is mapped. Return early if an error occurs here.
2121 assert( pChanged );
2122 rc = walIndexPage(pWal, 0, &page0);
2123 if( rc!=SQLITE_OK ){
2124 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2125 if( rc==SQLITE_READONLY_CANTINIT ){
2126 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2127 ** was openable but is not writable, and this thread is unable to
2128 ** confirm that another write-capable connection has the shared-memory
2129 ** open, and hence the content of the shared-memory is unreliable,
2130 ** since the shared-memory might be inconsistent with the WAL file
2131 ** and there is no writer on hand to fix it. */
2132 assert( page0==0 );
2133 assert( pWal->writeLock==0 );
2134 assert( pWal->readOnly & WAL_SHM_RDONLY );
2135 pWal->bShmUnreliable = 1;
2136 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2137 *pChanged = 1;
2138 }else{
2139 return rc; /* Any other non-OK return is just an error */
2141 }else{
2142 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2143 ** is zero, which prevents the SHM from growing */
2144 testcase( page0!=0 );
2146 assert( page0!=0 || pWal->writeLock==0 );
2148 /* If the first page of the wal-index has been mapped, try to read the
2149 ** wal-index header immediately, without holding any lock. This usually
2150 ** works, but may fail if the wal-index header is corrupt or currently
2151 ** being modified by another thread or process.
2153 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2155 /* If the first attempt failed, it might have been due to a race
2156 ** with a writer. So get a WRITE lock and try again.
2158 assert( badHdr==0 || pWal->writeLock==0 );
2159 if( badHdr ){
2160 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2161 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2162 walUnlockShared(pWal, WAL_WRITE_LOCK);
2163 rc = SQLITE_READONLY_RECOVERY;
2165 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
2166 pWal->writeLock = 1;
2167 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2168 badHdr = walIndexTryHdr(pWal, pChanged);
2169 if( badHdr ){
2170 /* If the wal-index header is still malformed even while holding
2171 ** a WRITE lock, it can only mean that the header is corrupted and
2172 ** needs to be reconstructed. So run recovery to do exactly that.
2174 rc = walIndexRecover(pWal);
2175 *pChanged = 1;
2178 pWal->writeLock = 0;
2179 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2183 /* If the header is read successfully, check the version number to make
2184 ** sure the wal-index was not constructed with some future format that
2185 ** this version of SQLite cannot understand.
2187 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2188 rc = SQLITE_CANTOPEN_BKPT;
2190 if( pWal->bShmUnreliable ){
2191 if( rc!=SQLITE_OK ){
2192 walIndexClose(pWal, 0);
2193 pWal->bShmUnreliable = 0;
2194 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2195 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2196 ** writer truncated the WAL out from under it. If that happens, it
2197 ** indicates that a writer has fixed the SHM file for us, so retry */
2198 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2200 pWal->exclusiveMode = WAL_NORMAL_MODE;
2203 return rc;
2207 ** Open a transaction in a connection where the shared-memory is read-only
2208 ** and where we cannot verify that there is a separate write-capable connection
2209 ** on hand to keep the shared-memory up-to-date with the WAL file.
2211 ** This can happen, for example, when the shared-memory is implemented by
2212 ** memory-mapping a *-shm file, where a prior writer has shut down and
2213 ** left the *-shm file on disk, and now the present connection is trying
2214 ** to use that database but lacks write permission on the *-shm file.
2215 ** Other scenarios are also possible, depending on the VFS implementation.
2217 ** Precondition:
2219 ** The *-wal file has been read and an appropriate wal-index has been
2220 ** constructed in pWal->apWiData[] using heap memory instead of shared
2221 ** memory.
2223 ** If this function returns SQLITE_OK, then the read transaction has
2224 ** been successfully opened. In this case output variable (*pChanged)
2225 ** is set to true before returning if the caller should discard the
2226 ** contents of the page cache before proceeding. Or, if it returns
2227 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2228 ** the caller should retry opening the read transaction from the
2229 ** beginning (including attempting to map the *-shm file).
2231 ** If an error occurs, an SQLite error code is returned.
2233 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2234 i64 szWal; /* Size of wal file on disk in bytes */
2235 i64 iOffset; /* Current offset when reading wal file */
2236 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2237 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2238 int szFrame; /* Number of bytes in buffer aFrame[] */
2239 u8 *aData; /* Pointer to data part of aFrame buffer */
2240 volatile void *pDummy; /* Dummy argument for xShmMap */
2241 int rc; /* Return code */
2242 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2244 assert( pWal->bShmUnreliable );
2245 assert( pWal->readOnly & WAL_SHM_RDONLY );
2246 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2248 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2249 ** writers from running a checkpoint, but does not stop them
2250 ** from running recovery. */
2251 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2252 if( rc!=SQLITE_OK ){
2253 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2254 goto begin_unreliable_shm_out;
2256 pWal->readLock = 0;
2258 /* Check to see if a separate writer has attached to the shared-memory area,
2259 ** thus making the shared-memory "reliable" again. Do this by invoking
2260 ** the xShmMap() routine of the VFS and looking to see if the return
2261 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2263 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2264 ** cause the heap-memory WAL-index to be discarded and the actual
2265 ** shared memory to be used in its place.
2267 ** This step is important because, even though this connection is holding
2268 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2269 ** have already checkpointed the WAL file and, while the current
2270 ** is active, wrap the WAL and start overwriting frames that this
2271 ** process wants to use.
2273 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2274 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2275 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2276 ** even if some external agent does a "chmod" to make the shared-memory
2277 ** writable by us, until sqlite3OsShmUnmap() has been called.
2278 ** This is a requirement on the VFS implementation.
2280 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2281 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2282 if( rc!=SQLITE_READONLY_CANTINIT ){
2283 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2284 goto begin_unreliable_shm_out;
2287 /* We reach this point only if the real shared-memory is still unreliable.
2288 ** Assume the in-memory WAL-index substitute is correct and load it
2289 ** into pWal->hdr.
2291 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2293 /* Make sure some writer hasn't come in and changed the WAL file out
2294 ** from under us, then disconnected, while we were not looking.
2296 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2297 if( rc!=SQLITE_OK ){
2298 goto begin_unreliable_shm_out;
2300 if( szWal<WAL_HDRSIZE ){
2301 /* If the wal file is too small to contain a wal-header and the
2302 ** wal-index header has mxFrame==0, then it must be safe to proceed
2303 ** reading the database file only. However, the page cache cannot
2304 ** be trusted, as a read/write connection may have connected, written
2305 ** the db, run a checkpoint, truncated the wal file and disconnected
2306 ** since this client's last read transaction. */
2307 *pChanged = 1;
2308 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2309 goto begin_unreliable_shm_out;
2312 /* Check the salt keys at the start of the wal file still match. */
2313 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2314 if( rc!=SQLITE_OK ){
2315 goto begin_unreliable_shm_out;
2317 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2318 /* Some writer has wrapped the WAL file while we were not looking.
2319 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2320 ** rebuilt. */
2321 rc = WAL_RETRY;
2322 goto begin_unreliable_shm_out;
2325 /* Allocate a buffer to read frames into */
2326 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2327 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2328 if( aFrame==0 ){
2329 rc = SQLITE_NOMEM_BKPT;
2330 goto begin_unreliable_shm_out;
2332 aData = &aFrame[WAL_FRAME_HDRSIZE];
2334 /* Check to see if a complete transaction has been appended to the
2335 ** wal file since the heap-memory wal-index was created. If so, the
2336 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2337 ** the caller. */
2338 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2339 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2340 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2341 iOffset+szFrame<=szWal;
2342 iOffset+=szFrame
2344 u32 pgno; /* Database page number for frame */
2345 u32 nTruncate; /* dbsize field from frame header */
2347 /* Read and decode the next log frame. */
2348 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2349 if( rc!=SQLITE_OK ) break;
2350 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2352 /* If nTruncate is non-zero, then a complete transaction has been
2353 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2354 ** the loop. */
2355 if( nTruncate ){
2356 rc = WAL_RETRY;
2357 break;
2360 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2361 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2363 begin_unreliable_shm_out:
2364 sqlite3_free(aFrame);
2365 if( rc!=SQLITE_OK ){
2366 int i;
2367 for(i=0; i<pWal->nWiData; i++){
2368 sqlite3_free((void*)pWal->apWiData[i]);
2369 pWal->apWiData[i] = 0;
2371 pWal->bShmUnreliable = 0;
2372 sqlite3WalEndReadTransaction(pWal);
2373 *pChanged = 1;
2375 return rc;
2379 ** Attempt to start a read transaction. This might fail due to a race or
2380 ** other transient condition. When that happens, it returns WAL_RETRY to
2381 ** indicate to the caller that it is safe to retry immediately.
2383 ** On success return SQLITE_OK. On a permanent failure (such an
2384 ** I/O error or an SQLITE_BUSY because another process is running
2385 ** recovery) return a positive error code.
2387 ** The useWal parameter is true to force the use of the WAL and disable
2388 ** the case where the WAL is bypassed because it has been completely
2389 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2390 ** to make a copy of the wal-index header into pWal->hdr. If the
2391 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2392 ** to the caller that the local page cache is obsolete and needs to be
2393 ** flushed.) When useWal==1, the wal-index header is assumed to already
2394 ** be loaded and the pChanged parameter is unused.
2396 ** The caller must set the cnt parameter to the number of prior calls to
2397 ** this routine during the current read attempt that returned WAL_RETRY.
2398 ** This routine will start taking more aggressive measures to clear the
2399 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2400 ** number of errors will ultimately return SQLITE_PROTOCOL. The
2401 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2402 ** and is not honoring the locking protocol. There is a vanishingly small
2403 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2404 ** bad luck when there is lots of contention for the wal-index, but that
2405 ** possibility is so small that it can be safely neglected, we believe.
2407 ** On success, this routine obtains a read lock on
2408 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2409 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2410 ** that means the Wal does not hold any read lock. The reader must not
2411 ** access any database page that is modified by a WAL frame up to and
2412 ** including frame number aReadMark[pWal->readLock]. The reader will
2413 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2414 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2415 ** completely and get all content directly from the database file.
2416 ** If the useWal parameter is 1 then the WAL will never be ignored and
2417 ** this routine will always set pWal->readLock>0 on success.
2418 ** When the read transaction is completed, the caller must release the
2419 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2421 ** This routine uses the nBackfill and aReadMark[] fields of the header
2422 ** to select a particular WAL_READ_LOCK() that strives to let the
2423 ** checkpoint process do as much work as possible. This routine might
2424 ** update values of the aReadMark[] array in the header, but if it does
2425 ** so it takes care to hold an exclusive lock on the corresponding
2426 ** WAL_READ_LOCK() while changing values.
2428 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2429 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2430 u32 mxReadMark; /* Largest aReadMark[] value */
2431 int mxI; /* Index of largest aReadMark[] value */
2432 int i; /* Loop counter */
2433 int rc = SQLITE_OK; /* Return code */
2434 u32 mxFrame; /* Wal frame to lock to */
2436 assert( pWal->readLock<0 ); /* Not currently locked */
2438 /* useWal may only be set for read/write connections */
2439 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2441 /* Take steps to avoid spinning forever if there is a protocol error.
2443 ** Circumstances that cause a RETRY should only last for the briefest
2444 ** instances of time. No I/O or other system calls are done while the
2445 ** locks are held, so the locks should not be held for very long. But
2446 ** if we are unlucky, another process that is holding a lock might get
2447 ** paged out or take a page-fault that is time-consuming to resolve,
2448 ** during the few nanoseconds that it is holding the lock. In that case,
2449 ** it might take longer than normal for the lock to free.
2451 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2452 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2453 ** is more of a scheduler yield than an actual delay. But on the 10th
2454 ** an subsequent retries, the delays start becoming longer and longer,
2455 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2456 ** The total delay time before giving up is less than 10 seconds.
2458 if( cnt>5 ){
2459 int nDelay = 1; /* Pause time in microseconds */
2460 if( cnt>100 ){
2461 VVA_ONLY( pWal->lockError = 1; )
2462 return SQLITE_PROTOCOL;
2464 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2465 sqlite3OsSleep(pWal->pVfs, nDelay);
2468 if( !useWal ){
2469 assert( rc==SQLITE_OK );
2470 if( pWal->bShmUnreliable==0 ){
2471 rc = walIndexReadHdr(pWal, pChanged);
2473 if( rc==SQLITE_BUSY ){
2474 /* If there is not a recovery running in another thread or process
2475 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2476 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2477 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2478 ** would be technically correct. But the race is benign since with
2479 ** WAL_RETRY this routine will be called again and will probably be
2480 ** right on the second iteration.
2482 if( pWal->apWiData[0]==0 ){
2483 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2484 ** We assume this is a transient condition, so return WAL_RETRY. The
2485 ** xShmMap() implementation used by the default unix and win32 VFS
2486 ** modules may return SQLITE_BUSY due to a race condition in the
2487 ** code that determines whether or not the shared-memory region
2488 ** must be zeroed before the requested page is returned.
2490 rc = WAL_RETRY;
2491 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2492 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2493 rc = WAL_RETRY;
2494 }else if( rc==SQLITE_BUSY ){
2495 rc = SQLITE_BUSY_RECOVERY;
2498 if( rc!=SQLITE_OK ){
2499 return rc;
2501 else if( pWal->bShmUnreliable ){
2502 return walBeginShmUnreliable(pWal, pChanged);
2506 assert( pWal->nWiData>0 );
2507 assert( pWal->apWiData[0]!=0 );
2508 pInfo = walCkptInfo(pWal);
2509 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
2510 #ifdef SQLITE_ENABLE_SNAPSHOT
2511 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2512 #endif
2514 /* The WAL has been completely backfilled (or it is empty).
2515 ** and can be safely ignored.
2517 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2518 walShmBarrier(pWal);
2519 if( rc==SQLITE_OK ){
2520 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2521 /* It is not safe to allow the reader to continue here if frames
2522 ** may have been appended to the log before READ_LOCK(0) was obtained.
2523 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2524 ** which implies that the database file contains a trustworthy
2525 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2526 ** happening, this is usually correct.
2528 ** However, if frames have been appended to the log (or if the log
2529 ** is wrapped and written for that matter) before the READ_LOCK(0)
2530 ** is obtained, that is not necessarily true. A checkpointer may
2531 ** have started to backfill the appended frames but crashed before
2532 ** it finished. Leaving a corrupt image in the database file.
2534 walUnlockShared(pWal, WAL_READ_LOCK(0));
2535 return WAL_RETRY;
2537 pWal->readLock = 0;
2538 return SQLITE_OK;
2539 }else if( rc!=SQLITE_BUSY ){
2540 return rc;
2544 /* If we get this far, it means that the reader will want to use
2545 ** the WAL to get at content from recent commits. The job now is
2546 ** to select one of the aReadMark[] entries that is closest to
2547 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2549 mxReadMark = 0;
2550 mxI = 0;
2551 mxFrame = pWal->hdr.mxFrame;
2552 #ifdef SQLITE_ENABLE_SNAPSHOT
2553 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2554 mxFrame = pWal->pSnapshot->mxFrame;
2556 #endif
2557 for(i=1; i<WAL_NREADER; i++){
2558 u32 thisMark = pInfo->aReadMark[i];
2559 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2560 assert( thisMark!=READMARK_NOT_USED );
2561 mxReadMark = thisMark;
2562 mxI = i;
2565 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2566 && (mxReadMark<mxFrame || mxI==0)
2568 for(i=1; i<WAL_NREADER; i++){
2569 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2570 if( rc==SQLITE_OK ){
2571 mxReadMark = pInfo->aReadMark[i] = mxFrame;
2572 mxI = i;
2573 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2574 break;
2575 }else if( rc!=SQLITE_BUSY ){
2576 return rc;
2580 if( mxI==0 ){
2581 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2582 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2585 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2586 if( rc ){
2587 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2589 /* Now that the read-lock has been obtained, check that neither the
2590 ** value in the aReadMark[] array or the contents of the wal-index
2591 ** header have changed.
2593 ** It is necessary to check that the wal-index header did not change
2594 ** between the time it was read and when the shared-lock was obtained
2595 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2596 ** that the log file may have been wrapped by a writer, or that frames
2597 ** that occur later in the log than pWal->hdr.mxFrame may have been
2598 ** copied into the database by a checkpointer. If either of these things
2599 ** happened, then reading the database with the current value of
2600 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2601 ** instead.
2603 ** Before checking that the live wal-index header has not changed
2604 ** since it was read, set Wal.minFrame to the first frame in the wal
2605 ** file that has not yet been checkpointed. This client will not need
2606 ** to read any frames earlier than minFrame from the wal file - they
2607 ** can be safely read directly from the database file.
2609 ** Because a ShmBarrier() call is made between taking the copy of
2610 ** nBackfill and checking that the wal-header in shared-memory still
2611 ** matches the one cached in pWal->hdr, it is guaranteed that the
2612 ** checkpointer that set nBackfill was not working with a wal-index
2613 ** header newer than that cached in pWal->hdr. If it were, that could
2614 ** cause a problem. The checkpointer could omit to checkpoint
2615 ** a version of page X that lies before pWal->minFrame (call that version
2616 ** A) on the basis that there is a newer version (version B) of the same
2617 ** page later in the wal file. But if version B happens to like past
2618 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2619 ** that it can read version A from the database file. However, since
2620 ** we can guarantee that the checkpointer that set nBackfill could not
2621 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2623 pWal->minFrame = pInfo->nBackfill+1;
2624 walShmBarrier(pWal);
2625 if( pInfo->aReadMark[mxI]!=mxReadMark
2626 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2628 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2629 return WAL_RETRY;
2630 }else{
2631 assert( mxReadMark<=pWal->hdr.mxFrame );
2632 pWal->readLock = (i16)mxI;
2634 return rc;
2637 #ifdef SQLITE_ENABLE_SNAPSHOT
2639 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2640 ** variable so that older snapshots can be accessed. To do this, loop
2641 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2642 ** comparing their content to the corresponding page with the database
2643 ** file, if any. Set nBackfillAttempted to the frame number of the
2644 ** first frame for which the wal file content matches the db file.
2646 ** This is only really safe if the file-system is such that any page
2647 ** writes made by earlier checkpointers were atomic operations, which
2648 ** is not always true. It is also possible that nBackfillAttempted
2649 ** may be left set to a value larger than expected, if a wal frame
2650 ** contains content that duplicate of an earlier version of the same
2651 ** page.
2653 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2654 ** error occurs. It is not an error if nBackfillAttempted cannot be
2655 ** decreased at all.
2657 int sqlite3WalSnapshotRecover(Wal *pWal){
2658 int rc;
2660 assert( pWal->readLock>=0 );
2661 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2662 if( rc==SQLITE_OK ){
2663 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2664 int szPage = (int)pWal->szPage;
2665 i64 szDb; /* Size of db file in bytes */
2667 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2668 if( rc==SQLITE_OK ){
2669 void *pBuf1 = sqlite3_malloc(szPage);
2670 void *pBuf2 = sqlite3_malloc(szPage);
2671 if( pBuf1==0 || pBuf2==0 ){
2672 rc = SQLITE_NOMEM;
2673 }else{
2674 u32 i = pInfo->nBackfillAttempted;
2675 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
2676 volatile ht_slot *dummy;
2677 volatile u32 *aPgno; /* Array of page numbers */
2678 u32 iZero; /* Frame corresponding to aPgno[0] */
2679 u32 pgno; /* Page number in db file */
2680 i64 iDbOff; /* Offset of db file entry */
2681 i64 iWalOff; /* Offset of wal file entry */
2683 rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
2684 if( rc!=SQLITE_OK ) break;
2685 pgno = aPgno[i-iZero];
2686 iDbOff = (i64)(pgno-1) * szPage;
2688 if( iDbOff+szPage<=szDb ){
2689 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2690 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2692 if( rc==SQLITE_OK ){
2693 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2696 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2697 break;
2701 pInfo->nBackfillAttempted = i-1;
2705 sqlite3_free(pBuf1);
2706 sqlite3_free(pBuf2);
2708 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2711 return rc;
2713 #endif /* SQLITE_ENABLE_SNAPSHOT */
2716 ** Begin a read transaction on the database.
2718 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2719 ** it takes a snapshot of the state of the WAL and wal-index for the current
2720 ** instant in time. The current thread will continue to use this snapshot.
2721 ** Other threads might append new content to the WAL and wal-index but
2722 ** that extra content is ignored by the current thread.
2724 ** If the database contents have changes since the previous read
2725 ** transaction, then *pChanged is set to 1 before returning. The
2726 ** Pager layer will use this to know that is cache is stale and
2727 ** needs to be flushed.
2729 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2730 int rc; /* Return code */
2731 int cnt = 0; /* Number of TryBeginRead attempts */
2733 #ifdef SQLITE_ENABLE_SNAPSHOT
2734 int bChanged = 0;
2735 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2736 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2737 bChanged = 1;
2739 #endif
2742 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2743 }while( rc==WAL_RETRY );
2744 testcase( (rc&0xff)==SQLITE_BUSY );
2745 testcase( (rc&0xff)==SQLITE_IOERR );
2746 testcase( rc==SQLITE_PROTOCOL );
2747 testcase( rc==SQLITE_OK );
2749 #ifdef SQLITE_ENABLE_SNAPSHOT
2750 if( rc==SQLITE_OK ){
2751 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2752 /* At this point the client has a lock on an aReadMark[] slot holding
2753 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2754 ** is populated with the wal-index header corresponding to the head
2755 ** of the wal file. Verify that pSnapshot is still valid before
2756 ** continuing. Reasons why pSnapshot might no longer be valid:
2758 ** (1) The WAL file has been reset since the snapshot was taken.
2759 ** In this case, the salt will have changed.
2761 ** (2) A checkpoint as been attempted that wrote frames past
2762 ** pSnapshot->mxFrame into the database file. Note that the
2763 ** checkpoint need not have completed for this to cause problems.
2765 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2767 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
2768 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2770 /* It is possible that there is a checkpointer thread running
2771 ** concurrent with this code. If this is the case, it may be that the
2772 ** checkpointer has already determined that it will checkpoint
2773 ** snapshot X, where X is later in the wal file than pSnapshot, but
2774 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2775 ** its intent. To avoid the race condition this leads to, ensure that
2776 ** there is no checkpointer process by taking a shared CKPT lock
2777 ** before checking pInfo->nBackfillAttempted.
2779 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2780 ** this already?
2782 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2784 if( rc==SQLITE_OK ){
2785 /* Check that the wal file has not been wrapped. Assuming that it has
2786 ** not, also check that no checkpointer has attempted to checkpoint any
2787 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2788 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
2789 ** with *pSnapshot and set *pChanged as appropriate for opening the
2790 ** snapshot. */
2791 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2792 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2794 assert( pWal->readLock>0 );
2795 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2796 *pChanged = bChanged;
2797 }else{
2798 rc = SQLITE_BUSY_SNAPSHOT;
2801 /* Release the shared CKPT lock obtained above. */
2802 walUnlockShared(pWal, WAL_CKPT_LOCK);
2806 if( rc!=SQLITE_OK ){
2807 sqlite3WalEndReadTransaction(pWal);
2811 #endif
2812 return rc;
2816 ** Finish with a read transaction. All this does is release the
2817 ** read-lock.
2819 void sqlite3WalEndReadTransaction(Wal *pWal){
2820 sqlite3WalEndWriteTransaction(pWal);
2821 if( pWal->readLock>=0 ){
2822 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2823 pWal->readLock = -1;
2828 ** Search the wal file for page pgno. If found, set *piRead to the frame that
2829 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2830 ** to zero.
2832 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2833 ** error does occur, the final value of *piRead is undefined.
2835 int sqlite3WalFindFrame(
2836 Wal *pWal, /* WAL handle */
2837 Pgno pgno, /* Database page number to read data for */
2838 u32 *piRead /* OUT: Frame number (or zero) */
2840 u32 iRead = 0; /* If !=0, WAL frame to return data from */
2841 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
2842 int iHash; /* Used to loop through N hash tables */
2843 int iMinHash;
2845 /* This routine is only be called from within a read transaction. */
2846 assert( pWal->readLock>=0 || pWal->lockError );
2848 /* If the "last page" field of the wal-index header snapshot is 0, then
2849 ** no data will be read from the wal under any circumstances. Return early
2850 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2851 ** then the WAL is ignored by the reader so return early, as if the
2852 ** WAL were empty.
2854 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
2855 *piRead = 0;
2856 return SQLITE_OK;
2859 /* Search the hash table or tables for an entry matching page number
2860 ** pgno. Each iteration of the following for() loop searches one
2861 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2863 ** This code might run concurrently to the code in walIndexAppend()
2864 ** that adds entries to the wal-index (and possibly to this hash
2865 ** table). This means the value just read from the hash
2866 ** slot (aHash[iKey]) may have been added before or after the
2867 ** current read transaction was opened. Values added after the
2868 ** read transaction was opened may have been written incorrectly -
2869 ** i.e. these slots may contain garbage data. However, we assume
2870 ** that any slots written before the current read transaction was
2871 ** opened remain unmodified.
2873 ** For the reasons above, the if(...) condition featured in the inner
2874 ** loop of the following block is more stringent that would be required
2875 ** if we had exclusive access to the hash-table:
2877 ** (aPgno[iFrame]==pgno):
2878 ** This condition filters out normal hash-table collisions.
2880 ** (iFrame<=iLast):
2881 ** This condition filters out entries that were added to the hash
2882 ** table after the current read-transaction had started.
2884 iMinHash = walFramePage(pWal->minFrame);
2885 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
2886 volatile ht_slot *aHash; /* Pointer to hash table */
2887 volatile u32 *aPgno; /* Pointer to array of page numbers */
2888 u32 iZero; /* Frame number corresponding to aPgno[0] */
2889 int iKey; /* Hash slot index */
2890 int nCollide; /* Number of hash collisions remaining */
2891 int rc; /* Error code */
2893 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2894 if( rc!=SQLITE_OK ){
2895 return rc;
2897 nCollide = HASHTABLE_NSLOT;
2898 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2899 u32 iFrame = aHash[iKey] + iZero;
2900 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
2901 assert( iFrame>iRead || CORRUPT_DB );
2902 iRead = iFrame;
2904 if( (nCollide--)==0 ){
2905 return SQLITE_CORRUPT_BKPT;
2908 if( iRead ) break;
2911 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2912 /* If expensive assert() statements are available, do a linear search
2913 ** of the wal-index file content. Make sure the results agree with the
2914 ** result obtained using the hash indexes above. */
2916 u32 iRead2 = 0;
2917 u32 iTest;
2918 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
2919 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
2920 if( walFramePgno(pWal, iTest)==pgno ){
2921 iRead2 = iTest;
2922 break;
2925 assert( iRead==iRead2 );
2927 #endif
2929 *piRead = iRead;
2930 return SQLITE_OK;
2934 ** Read the contents of frame iRead from the wal file into buffer pOut
2935 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2936 ** error code otherwise.
2938 int sqlite3WalReadFrame(
2939 Wal *pWal, /* WAL handle */
2940 u32 iRead, /* Frame to read */
2941 int nOut, /* Size of buffer pOut in bytes */
2942 u8 *pOut /* Buffer to write page data to */
2944 int sz;
2945 i64 iOffset;
2946 sz = pWal->hdr.szPage;
2947 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2948 testcase( sz<=32768 );
2949 testcase( sz>=65536 );
2950 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2951 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2952 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2956 ** Return the size of the database in pages (or zero, if unknown).
2958 Pgno sqlite3WalDbsize(Wal *pWal){
2959 if( pWal && ALWAYS(pWal->readLock>=0) ){
2960 return pWal->hdr.nPage;
2962 return 0;
2967 ** This function starts a write transaction on the WAL.
2969 ** A read transaction must have already been started by a prior call
2970 ** to sqlite3WalBeginReadTransaction().
2972 ** If another thread or process has written into the database since
2973 ** the read transaction was started, then it is not possible for this
2974 ** thread to write as doing so would cause a fork. So this routine
2975 ** returns SQLITE_BUSY in that case and no write transaction is started.
2977 ** There can only be a single writer active at a time.
2979 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2980 int rc;
2982 /* Cannot start a write transaction without first holding a read
2983 ** transaction. */
2984 assert( pWal->readLock>=0 );
2985 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
2987 if( pWal->readOnly ){
2988 return SQLITE_READONLY;
2991 /* Only one writer allowed at a time. Get the write lock. Return
2992 ** SQLITE_BUSY if unable.
2994 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2995 if( rc ){
2996 return rc;
2998 pWal->writeLock = 1;
3000 /* If another connection has written to the database file since the
3001 ** time the read transaction on this connection was started, then
3002 ** the write is disallowed.
3004 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3005 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3006 pWal->writeLock = 0;
3007 rc = SQLITE_BUSY_SNAPSHOT;
3010 return rc;
3014 ** End a write transaction. The commit has already been done. This
3015 ** routine merely releases the lock.
3017 int sqlite3WalEndWriteTransaction(Wal *pWal){
3018 if( pWal->writeLock ){
3019 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3020 pWal->writeLock = 0;
3021 pWal->iReCksum = 0;
3022 pWal->truncateOnCommit = 0;
3024 return SQLITE_OK;
3028 ** If any data has been written (but not committed) to the log file, this
3029 ** function moves the write-pointer back to the start of the transaction.
3031 ** Additionally, the callback function is invoked for each frame written
3032 ** to the WAL since the start of the transaction. If the callback returns
3033 ** other than SQLITE_OK, it is not invoked again and the error code is
3034 ** returned to the caller.
3036 ** Otherwise, if the callback function does not return an error, this
3037 ** function returns SQLITE_OK.
3039 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3040 int rc = SQLITE_OK;
3041 if( ALWAYS(pWal->writeLock) ){
3042 Pgno iMax = pWal->hdr.mxFrame;
3043 Pgno iFrame;
3045 /* Restore the clients cache of the wal-index header to the state it
3046 ** was in before the client began writing to the database.
3048 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3050 for(iFrame=pWal->hdr.mxFrame+1;
3051 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3052 iFrame++
3054 /* This call cannot fail. Unless the page for which the page number
3055 ** is passed as the second argument is (a) in the cache and
3056 ** (b) has an outstanding reference, then xUndo is either a no-op
3057 ** (if (a) is false) or simply expels the page from the cache (if (b)
3058 ** is false).
3060 ** If the upper layer is doing a rollback, it is guaranteed that there
3061 ** are no outstanding references to any page other than page 1. And
3062 ** page 1 is never written to the log until the transaction is
3063 ** committed. As a result, the call to xUndo may not fail.
3065 assert( walFramePgno(pWal, iFrame)!=1 );
3066 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3068 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3070 return rc;
3074 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3075 ** values. This function populates the array with values required to
3076 ** "rollback" the write position of the WAL handle back to the current
3077 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3079 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3080 assert( pWal->writeLock );
3081 aWalData[0] = pWal->hdr.mxFrame;
3082 aWalData[1] = pWal->hdr.aFrameCksum[0];
3083 aWalData[2] = pWal->hdr.aFrameCksum[1];
3084 aWalData[3] = pWal->nCkpt;
3088 ** Move the write position of the WAL back to the point identified by
3089 ** the values in the aWalData[] array. aWalData must point to an array
3090 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3091 ** by a call to WalSavepoint().
3093 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3094 int rc = SQLITE_OK;
3096 assert( pWal->writeLock );
3097 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3099 if( aWalData[3]!=pWal->nCkpt ){
3100 /* This savepoint was opened immediately after the write-transaction
3101 ** was started. Right after that, the writer decided to wrap around
3102 ** to the start of the log. Update the savepoint values to match.
3104 aWalData[0] = 0;
3105 aWalData[3] = pWal->nCkpt;
3108 if( aWalData[0]<pWal->hdr.mxFrame ){
3109 pWal->hdr.mxFrame = aWalData[0];
3110 pWal->hdr.aFrameCksum[0] = aWalData[1];
3111 pWal->hdr.aFrameCksum[1] = aWalData[2];
3112 walCleanupHash(pWal);
3115 return rc;
3119 ** This function is called just before writing a set of frames to the log
3120 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3121 ** to the current log file, it is possible to overwrite the start of the
3122 ** existing log file with the new frames (i.e. "reset" the log). If so,
3123 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3124 ** unchanged.
3126 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3127 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3128 ** if an error occurs.
3130 static int walRestartLog(Wal *pWal){
3131 int rc = SQLITE_OK;
3132 int cnt;
3134 if( pWal->readLock==0 ){
3135 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3136 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3137 if( pInfo->nBackfill>0 ){
3138 u32 salt1;
3139 sqlite3_randomness(4, &salt1);
3140 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3141 if( rc==SQLITE_OK ){
3142 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3143 ** readers are currently using the WAL), then the transactions
3144 ** frames will overwrite the start of the existing log. Update the
3145 ** wal-index header to reflect this.
3147 ** In theory it would be Ok to update the cache of the header only
3148 ** at this point. But updating the actual wal-index header is also
3149 ** safe and means there is no special case for sqlite3WalUndo()
3150 ** to handle if this transaction is rolled back. */
3151 walRestartHdr(pWal, salt1);
3152 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3153 }else if( rc!=SQLITE_BUSY ){
3154 return rc;
3157 walUnlockShared(pWal, WAL_READ_LOCK(0));
3158 pWal->readLock = -1;
3159 cnt = 0;
3161 int notUsed;
3162 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3163 }while( rc==WAL_RETRY );
3164 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3165 testcase( (rc&0xff)==SQLITE_IOERR );
3166 testcase( rc==SQLITE_PROTOCOL );
3167 testcase( rc==SQLITE_OK );
3169 return rc;
3173 ** Information about the current state of the WAL file and where
3174 ** the next fsync should occur - passed from sqlite3WalFrames() into
3175 ** walWriteToLog().
3177 typedef struct WalWriter {
3178 Wal *pWal; /* The complete WAL information */
3179 sqlite3_file *pFd; /* The WAL file to which we write */
3180 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3181 int syncFlags; /* Flags for the fsync */
3182 int szPage; /* Size of one page */
3183 } WalWriter;
3186 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3187 ** Do a sync when crossing the p->iSyncPoint boundary.
3189 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3190 ** first write the part before iSyncPoint, then sync, then write the
3191 ** rest.
3193 static int walWriteToLog(
3194 WalWriter *p, /* WAL to write to */
3195 void *pContent, /* Content to be written */
3196 int iAmt, /* Number of bytes to write */
3197 sqlite3_int64 iOffset /* Start writing at this offset */
3199 int rc;
3200 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3201 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3202 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3203 if( rc ) return rc;
3204 iOffset += iFirstAmt;
3205 iAmt -= iFirstAmt;
3206 pContent = (void*)(iFirstAmt + (char*)pContent);
3207 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3208 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3209 if( iAmt==0 || rc ) return rc;
3211 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3212 return rc;
3216 ** Write out a single frame of the WAL
3218 static int walWriteOneFrame(
3219 WalWriter *p, /* Where to write the frame */
3220 PgHdr *pPage, /* The page of the frame to be written */
3221 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3222 sqlite3_int64 iOffset /* Byte offset at which to write */
3224 int rc; /* Result code from subfunctions */
3225 void *pData; /* Data actually written */
3226 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3227 #if defined(SQLITE_HAS_CODEC)
3228 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3229 #else
3230 pData = pPage->pData;
3231 #endif
3232 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3233 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3234 if( rc ) return rc;
3235 /* Write the page data */
3236 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3237 return rc;
3241 ** This function is called as part of committing a transaction within which
3242 ** one or more frames have been overwritten. It updates the checksums for
3243 ** all frames written to the wal file by the current transaction starting
3244 ** with the earliest to have been overwritten.
3246 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3248 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3249 const int szPage = pWal->szPage;/* Database page size */
3250 int rc = SQLITE_OK; /* Return code */
3251 u8 *aBuf; /* Buffer to load data from wal file into */
3252 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3253 u32 iRead; /* Next frame to read from wal file */
3254 i64 iCksumOff;
3256 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3257 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3259 /* Find the checksum values to use as input for the recalculating the
3260 ** first checksum. If the first frame is frame 1 (implying that the current
3261 ** transaction restarted the wal file), these values must be read from the
3262 ** wal-file header. Otherwise, read them from the frame header of the
3263 ** previous frame. */
3264 assert( pWal->iReCksum>0 );
3265 if( pWal->iReCksum==1 ){
3266 iCksumOff = 24;
3267 }else{
3268 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3270 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3271 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3272 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3274 iRead = pWal->iReCksum;
3275 pWal->iReCksum = 0;
3276 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3277 i64 iOff = walFrameOffset(iRead, szPage);
3278 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3279 if( rc==SQLITE_OK ){
3280 u32 iPgno, nDbSize;
3281 iPgno = sqlite3Get4byte(aBuf);
3282 nDbSize = sqlite3Get4byte(&aBuf[4]);
3284 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3285 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3289 sqlite3_free(aBuf);
3290 return rc;
3294 ** Write a set of frames to the log. The caller must hold the write-lock
3295 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3297 int sqlite3WalFrames(
3298 Wal *pWal, /* Wal handle to write to */
3299 int szPage, /* Database page-size in bytes */
3300 PgHdr *pList, /* List of dirty pages to write */
3301 Pgno nTruncate, /* Database size after this commit */
3302 int isCommit, /* True if this is a commit */
3303 int sync_flags /* Flags to pass to OsSync() (or 0) */
3305 int rc; /* Used to catch return codes */
3306 u32 iFrame; /* Next frame address */
3307 PgHdr *p; /* Iterator to run through pList with. */
3308 PgHdr *pLast = 0; /* Last frame in list */
3309 int nExtra = 0; /* Number of extra copies of last page */
3310 int szFrame; /* The size of a single frame */
3311 i64 iOffset; /* Next byte to write in WAL file */
3312 WalWriter w; /* The writer */
3313 u32 iFirst = 0; /* First frame that may be overwritten */
3314 WalIndexHdr *pLive; /* Pointer to shared header */
3316 assert( pList );
3317 assert( pWal->writeLock );
3319 /* If this frame set completes a transaction, then nTruncate>0. If
3320 ** nTruncate==0 then this frame set does not complete the transaction. */
3321 assert( (isCommit!=0)==(nTruncate!=0) );
3323 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3324 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3325 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3326 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3328 #endif
3330 pLive = (WalIndexHdr*)walIndexHdr(pWal);
3331 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3332 iFirst = pLive->mxFrame+1;
3335 /* See if it is possible to write these frames into the start of the
3336 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3338 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3339 return rc;
3342 /* If this is the first frame written into the log, write the WAL
3343 ** header to the start of the WAL file. See comments at the top of
3344 ** this source file for a description of the WAL header format.
3346 iFrame = pWal->hdr.mxFrame;
3347 if( iFrame==0 ){
3348 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3349 u32 aCksum[2]; /* Checksum for wal-header */
3351 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3352 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3353 sqlite3Put4byte(&aWalHdr[8], szPage);
3354 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3355 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3356 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3357 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3358 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3359 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3361 pWal->szPage = szPage;
3362 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3363 pWal->hdr.aFrameCksum[0] = aCksum[0];
3364 pWal->hdr.aFrameCksum[1] = aCksum[1];
3365 pWal->truncateOnCommit = 1;
3367 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3368 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3369 if( rc!=SQLITE_OK ){
3370 return rc;
3373 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3374 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3375 ** an out-of-order write following a WAL restart could result in
3376 ** database corruption. See the ticket:
3378 ** https://sqlite.org/src/info/ff5be73dee
3380 if( pWal->syncHeader ){
3381 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3382 if( rc ) return rc;
3385 assert( (int)pWal->szPage==szPage );
3387 /* Setup information needed to write frames into the WAL */
3388 w.pWal = pWal;
3389 w.pFd = pWal->pWalFd;
3390 w.iSyncPoint = 0;
3391 w.syncFlags = sync_flags;
3392 w.szPage = szPage;
3393 iOffset = walFrameOffset(iFrame+1, szPage);
3394 szFrame = szPage + WAL_FRAME_HDRSIZE;
3396 /* Write all frames into the log file exactly once */
3397 for(p=pList; p; p=p->pDirty){
3398 int nDbSize; /* 0 normally. Positive == commit flag */
3400 /* Check if this page has already been written into the wal file by
3401 ** the current transaction. If so, overwrite the existing frame and
3402 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3403 ** checksums must be recomputed when the transaction is committed. */
3404 if( iFirst && (p->pDirty || isCommit==0) ){
3405 u32 iWrite = 0;
3406 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3407 assert( rc==SQLITE_OK || iWrite==0 );
3408 if( iWrite>=iFirst ){
3409 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3410 void *pData;
3411 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3412 pWal->iReCksum = iWrite;
3414 #if defined(SQLITE_HAS_CODEC)
3415 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3416 #else
3417 pData = p->pData;
3418 #endif
3419 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3420 if( rc ) return rc;
3421 p->flags &= ~PGHDR_WAL_APPEND;
3422 continue;
3426 iFrame++;
3427 assert( iOffset==walFrameOffset(iFrame, szPage) );
3428 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3429 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3430 if( rc ) return rc;
3431 pLast = p;
3432 iOffset += szFrame;
3433 p->flags |= PGHDR_WAL_APPEND;
3436 /* Recalculate checksums within the wal file if required. */
3437 if( isCommit && pWal->iReCksum ){
3438 rc = walRewriteChecksums(pWal, iFrame);
3439 if( rc ) return rc;
3442 /* If this is the end of a transaction, then we might need to pad
3443 ** the transaction and/or sync the WAL file.
3445 ** Padding and syncing only occur if this set of frames complete a
3446 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
3447 ** or synchronous==OFF, then no padding or syncing are needed.
3449 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3450 ** needed and only the sync is done. If padding is needed, then the
3451 ** final frame is repeated (with its commit mark) until the next sector
3452 ** boundary is crossed. Only the part of the WAL prior to the last
3453 ** sector boundary is synced; the part of the last frame that extends
3454 ** past the sector boundary is written after the sync.
3456 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3457 int bSync = 1;
3458 if( pWal->padToSectorBoundary ){
3459 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3460 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3461 bSync = (w.iSyncPoint==iOffset);
3462 testcase( bSync );
3463 while( iOffset<w.iSyncPoint ){
3464 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3465 if( rc ) return rc;
3466 iOffset += szFrame;
3467 nExtra++;
3470 if( bSync ){
3471 assert( rc==SQLITE_OK );
3472 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3476 /* If this frame set completes the first transaction in the WAL and
3477 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3478 ** journal size limit, if possible.
3480 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3481 i64 sz = pWal->mxWalSize;
3482 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3483 sz = walFrameOffset(iFrame+nExtra+1, szPage);
3485 walLimitSize(pWal, sz);
3486 pWal->truncateOnCommit = 0;
3489 /* Append data to the wal-index. It is not necessary to lock the
3490 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3491 ** guarantees that there are no other writers, and no data that may
3492 ** be in use by existing readers is being overwritten.
3494 iFrame = pWal->hdr.mxFrame;
3495 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3496 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3497 iFrame++;
3498 rc = walIndexAppend(pWal, iFrame, p->pgno);
3500 while( rc==SQLITE_OK && nExtra>0 ){
3501 iFrame++;
3502 nExtra--;
3503 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3506 if( rc==SQLITE_OK ){
3507 /* Update the private copy of the header. */
3508 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3509 testcase( szPage<=32768 );
3510 testcase( szPage>=65536 );
3511 pWal->hdr.mxFrame = iFrame;
3512 if( isCommit ){
3513 pWal->hdr.iChange++;
3514 pWal->hdr.nPage = nTruncate;
3516 /* If this is a commit, update the wal-index header too. */
3517 if( isCommit ){
3518 walIndexWriteHdr(pWal);
3519 pWal->iCallback = iFrame;
3523 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3524 return rc;
3528 ** This routine is called to implement sqlite3_wal_checkpoint() and
3529 ** related interfaces.
3531 ** Obtain a CHECKPOINT lock and then backfill as much information as
3532 ** we can from WAL into the database.
3534 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3535 ** callback. In this case this function runs a blocking checkpoint.
3537 int sqlite3WalCheckpoint(
3538 Wal *pWal, /* Wal connection */
3539 sqlite3 *db, /* Check this handle's interrupt flag */
3540 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
3541 int (*xBusy)(void*), /* Function to call when busy */
3542 void *pBusyArg, /* Context argument for xBusyHandler */
3543 int sync_flags, /* Flags to sync db file with (or 0) */
3544 int nBuf, /* Size of temporary buffer */
3545 u8 *zBuf, /* Temporary buffer to use */
3546 int *pnLog, /* OUT: Number of frames in WAL */
3547 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
3549 int rc; /* Return code */
3550 int isChanged = 0; /* True if a new wal-index header is loaded */
3551 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
3552 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
3554 assert( pWal->ckptLock==0 );
3555 assert( pWal->writeLock==0 );
3557 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3558 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3559 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3561 if( pWal->readOnly ) return SQLITE_READONLY;
3562 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3564 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3565 ** "checkpoint" lock on the database file. */
3566 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3567 if( rc ){
3568 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3569 ** checkpoint operation at the same time, the lock cannot be obtained and
3570 ** SQLITE_BUSY is returned.
3571 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3572 ** it will not be invoked in this case.
3574 testcase( rc==SQLITE_BUSY );
3575 testcase( xBusy!=0 );
3576 return rc;
3578 pWal->ckptLock = 1;
3580 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3581 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3582 ** file.
3584 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3585 ** immediately, and a busy-handler is configured, it is invoked and the
3586 ** writer lock retried until either the busy-handler returns 0 or the
3587 ** lock is successfully obtained.
3589 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3590 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
3591 if( rc==SQLITE_OK ){
3592 pWal->writeLock = 1;
3593 }else if( rc==SQLITE_BUSY ){
3594 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3595 xBusy2 = 0;
3596 rc = SQLITE_OK;
3600 /* Read the wal-index header. */
3601 if( rc==SQLITE_OK ){
3602 rc = walIndexReadHdr(pWal, &isChanged);
3603 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3604 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3608 /* Copy data from the log to the database file. */
3609 if( rc==SQLITE_OK ){
3611 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3612 rc = SQLITE_CORRUPT_BKPT;
3613 }else{
3614 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3617 /* If no error occurred, set the output variables. */
3618 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3619 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3620 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3624 if( isChanged ){
3625 /* If a new wal-index header was loaded before the checkpoint was
3626 ** performed, then the pager-cache associated with pWal is now
3627 ** out of date. So zero the cached wal-index header to ensure that
3628 ** next time the pager opens a snapshot on this database it knows that
3629 ** the cache needs to be reset.
3631 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3634 /* Release the locks. */
3635 sqlite3WalEndWriteTransaction(pWal);
3636 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3637 pWal->ckptLock = 0;
3638 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3639 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3642 /* Return the value to pass to a sqlite3_wal_hook callback, the
3643 ** number of frames in the WAL at the point of the last commit since
3644 ** sqlite3WalCallback() was called. If no commits have occurred since
3645 ** the last call, then return 0.
3647 int sqlite3WalCallback(Wal *pWal){
3648 u32 ret = 0;
3649 if( pWal ){
3650 ret = pWal->iCallback;
3651 pWal->iCallback = 0;
3653 return (int)ret;
3657 ** This function is called to change the WAL subsystem into or out
3658 ** of locking_mode=EXCLUSIVE.
3660 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3661 ** into locking_mode=NORMAL. This means that we must acquire a lock
3662 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3663 ** or if the acquisition of the lock fails, then return 0. If the
3664 ** transition out of exclusive-mode is successful, return 1. This
3665 ** operation must occur while the pager is still holding the exclusive
3666 ** lock on the main database file.
3668 ** If op is one, then change from locking_mode=NORMAL into
3669 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3670 ** be released. Return 1 if the transition is made and 0 if the
3671 ** WAL is already in exclusive-locking mode - meaning that this
3672 ** routine is a no-op. The pager must already hold the exclusive lock
3673 ** on the main database file before invoking this operation.
3675 ** If op is negative, then do a dry-run of the op==1 case but do
3676 ** not actually change anything. The pager uses this to see if it
3677 ** should acquire the database exclusive lock prior to invoking
3678 ** the op==1 case.
3680 int sqlite3WalExclusiveMode(Wal *pWal, int op){
3681 int rc;
3682 assert( pWal->writeLock==0 );
3683 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
3685 /* pWal->readLock is usually set, but might be -1 if there was a
3686 ** prior error while attempting to acquire are read-lock. This cannot
3687 ** happen if the connection is actually in exclusive mode (as no xShmLock
3688 ** locks are taken in this case). Nor should the pager attempt to
3689 ** upgrade to exclusive-mode following such an error.
3691 assert( pWal->readLock>=0 || pWal->lockError );
3692 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3694 if( op==0 ){
3695 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3696 pWal->exclusiveMode = WAL_NORMAL_MODE;
3697 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
3698 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3700 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3701 }else{
3702 /* Already in locking_mode=NORMAL */
3703 rc = 0;
3705 }else if( op>0 ){
3706 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
3707 assert( pWal->readLock>=0 );
3708 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3709 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
3710 rc = 1;
3711 }else{
3712 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
3714 return rc;
3718 ** Return true if the argument is non-NULL and the WAL module is using
3719 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3720 ** WAL module is using shared-memory, return false.
3722 int sqlite3WalHeapMemory(Wal *pWal){
3723 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3726 #ifdef SQLITE_ENABLE_SNAPSHOT
3727 /* Create a snapshot object. The content of a snapshot is opaque to
3728 ** every other subsystem, so the WAL module can put whatever it needs
3729 ** in the object.
3731 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3732 int rc = SQLITE_OK;
3733 WalIndexHdr *pRet;
3734 static const u32 aZero[4] = { 0, 0, 0, 0 };
3736 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3738 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3739 *ppSnapshot = 0;
3740 return SQLITE_ERROR;
3742 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3743 if( pRet==0 ){
3744 rc = SQLITE_NOMEM_BKPT;
3745 }else{
3746 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3747 *ppSnapshot = (sqlite3_snapshot*)pRet;
3750 return rc;
3753 /* Try to open on pSnapshot when the next read-transaction starts
3755 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3756 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3760 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3761 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3763 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3764 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3765 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3767 /* aSalt[0] is a copy of the value stored in the wal file header. It
3768 ** is incremented each time the wal file is restarted. */
3769 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3770 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3771 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3772 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3773 return 0;
3775 #endif /* SQLITE_ENABLE_SNAPSHOT */
3777 #ifdef SQLITE_ENABLE_ZIPVFS
3779 ** If the argument is not NULL, it points to a Wal object that holds a
3780 ** read-lock. This function returns the database page-size if it is known,
3781 ** or zero if it is not (or if pWal is NULL).
3783 int sqlite3WalFramesize(Wal *pWal){
3784 assert( pWal==0 || pWal->readLock>=0 );
3785 return (pWal ? pWal->szPage : 0);
3787 #endif
3789 /* Return the sqlite3_file object for the WAL file
3791 sqlite3_file *sqlite3WalFile(Wal *pWal){
3792 return pWal->pWalFd;
3795 #endif /* #ifndef SQLITE_OMIT_WAL */