Merge the ".stat/.eqp" CLI fix from trunk.
[sqlite.git] / src / pragma.c
blob02510188f3bc91d1e0594ba7975bb3cdc1b7f7b6
1 /*
2 ** 2003 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to implement the PRAGMA command.
14 #include "sqliteInt.h"
16 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
17 # if defined(__APPLE__)
18 # define SQLITE_ENABLE_LOCKING_STYLE 1
19 # else
20 # define SQLITE_ENABLE_LOCKING_STYLE 0
21 # endif
22 #endif
24 /***************************************************************************
25 ** The "pragma.h" include file is an automatically generated file that
26 ** that includes the PragType_XXXX macro definitions and the aPragmaName[]
27 ** object. This ensures that the aPragmaName[] table is arranged in
28 ** lexicographical order to facility a binary search of the pragma name.
29 ** Do not edit pragma.h directly. Edit and rerun the script in at
30 ** ../tool/mkpragmatab.tcl. */
31 #include "pragma.h"
34 ** Interpret the given string as a safety level. Return 0 for OFF,
35 ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or
36 ** unrecognized string argument. The FULL and EXTRA option is disallowed
37 ** if the omitFull parameter it 1.
39 ** Note that the values returned are one less that the values that
40 ** should be passed into sqlite3BtreeSetSafetyLevel(). The is done
41 ** to support legacy SQL code. The safety level used to be boolean
42 ** and older scripts may have used numbers 0 for OFF and 1 for ON.
44 static u8 getSafetyLevel(const char *z, int omitFull, u8 dflt){
45 /* 123456789 123456789 123 */
46 static const char zText[] = "onoffalseyestruextrafull";
47 static const u8 iOffset[] = {0, 1, 2, 4, 9, 12, 15, 20};
48 static const u8 iLength[] = {2, 2, 3, 5, 3, 4, 5, 4};
49 static const u8 iValue[] = {1, 0, 0, 0, 1, 1, 3, 2};
50 /* on no off false yes true extra full */
51 int i, n;
52 if( sqlite3Isdigit(*z) ){
53 return (u8)sqlite3Atoi(z);
55 n = sqlite3Strlen30(z);
56 for(i=0; i<ArraySize(iLength); i++){
57 if( iLength[i]==n && sqlite3StrNICmp(&zText[iOffset[i]],z,n)==0
58 && (!omitFull || iValue[i]<=1)
60 return iValue[i];
63 return dflt;
67 ** Interpret the given string as a boolean value.
69 u8 sqlite3GetBoolean(const char *z, u8 dflt){
70 return getSafetyLevel(z,1,dflt)!=0;
73 /* The sqlite3GetBoolean() function is used by other modules but the
74 ** remainder of this file is specific to PRAGMA processing. So omit
75 ** the rest of the file if PRAGMAs are omitted from the build.
77 #if !defined(SQLITE_OMIT_PRAGMA)
80 ** Interpret the given string as a locking mode value.
82 static int getLockingMode(const char *z){
83 if( z ){
84 if( 0==sqlite3StrICmp(z, "exclusive") ) return PAGER_LOCKINGMODE_EXCLUSIVE;
85 if( 0==sqlite3StrICmp(z, "normal") ) return PAGER_LOCKINGMODE_NORMAL;
87 return PAGER_LOCKINGMODE_QUERY;
90 #ifndef SQLITE_OMIT_AUTOVACUUM
92 ** Interpret the given string as an auto-vacuum mode value.
94 ** The following strings, "none", "full" and "incremental" are
95 ** acceptable, as are their numeric equivalents: 0, 1 and 2 respectively.
97 static int getAutoVacuum(const char *z){
98 int i;
99 if( 0==sqlite3StrICmp(z, "none") ) return BTREE_AUTOVACUUM_NONE;
100 if( 0==sqlite3StrICmp(z, "full") ) return BTREE_AUTOVACUUM_FULL;
101 if( 0==sqlite3StrICmp(z, "incremental") ) return BTREE_AUTOVACUUM_INCR;
102 i = sqlite3Atoi(z);
103 return (u8)((i>=0&&i<=2)?i:0);
105 #endif /* ifndef SQLITE_OMIT_AUTOVACUUM */
107 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
109 ** Interpret the given string as a temp db location. Return 1 for file
110 ** backed temporary databases, 2 for the Red-Black tree in memory database
111 ** and 0 to use the compile-time default.
113 static int getTempStore(const char *z){
114 if( z[0]>='0' && z[0]<='2' ){
115 return z[0] - '0';
116 }else if( sqlite3StrICmp(z, "file")==0 ){
117 return 1;
118 }else if( sqlite3StrICmp(z, "memory")==0 ){
119 return 2;
120 }else{
121 return 0;
124 #endif /* SQLITE_PAGER_PRAGMAS */
126 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
128 ** Invalidate temp storage, either when the temp storage is changed
129 ** from default, or when 'file' and the temp_store_directory has changed
131 static int invalidateTempStorage(Parse *pParse){
132 sqlite3 *db = pParse->db;
133 if( db->aDb[1].pBt!=0 ){
134 if( !db->autoCommit || sqlite3BtreeIsInReadTrans(db->aDb[1].pBt) ){
135 sqlite3ErrorMsg(pParse, "temporary storage cannot be changed "
136 "from within a transaction");
137 return SQLITE_ERROR;
139 sqlite3BtreeClose(db->aDb[1].pBt);
140 db->aDb[1].pBt = 0;
141 sqlite3ResetAllSchemasOfConnection(db);
143 return SQLITE_OK;
145 #endif /* SQLITE_PAGER_PRAGMAS */
147 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
149 ** If the TEMP database is open, close it and mark the database schema
150 ** as needing reloading. This must be done when using the SQLITE_TEMP_STORE
151 ** or DEFAULT_TEMP_STORE pragmas.
153 static int changeTempStorage(Parse *pParse, const char *zStorageType){
154 int ts = getTempStore(zStorageType);
155 sqlite3 *db = pParse->db;
156 if( db->temp_store==ts ) return SQLITE_OK;
157 if( invalidateTempStorage( pParse ) != SQLITE_OK ){
158 return SQLITE_ERROR;
160 db->temp_store = (u8)ts;
161 return SQLITE_OK;
163 #endif /* SQLITE_PAGER_PRAGMAS */
166 ** Set result column names for a pragma.
168 static void setPragmaResultColumnNames(
169 Vdbe *v, /* The query under construction */
170 const PragmaName *pPragma /* The pragma */
172 u8 n = pPragma->nPragCName;
173 sqlite3VdbeSetNumCols(v, n==0 ? 1 : n);
174 if( n==0 ){
175 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, pPragma->zName, SQLITE_STATIC);
176 }else{
177 int i, j;
178 for(i=0, j=pPragma->iPragCName; i<n; i++, j++){
179 sqlite3VdbeSetColName(v, i, COLNAME_NAME, pragCName[j], SQLITE_STATIC);
185 ** Generate code to return a single integer value.
187 static void returnSingleInt(Vdbe *v, i64 value){
188 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, 1, 0, (const u8*)&value, P4_INT64);
189 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
193 ** Generate code to return a single text value.
195 static void returnSingleText(
196 Vdbe *v, /* Prepared statement under construction */
197 const char *zValue /* Value to be returned */
199 if( zValue ){
200 sqlite3VdbeLoadString(v, 1, (const char*)zValue);
201 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
207 ** Set the safety_level and pager flags for pager iDb. Or if iDb<0
208 ** set these values for all pagers.
210 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
211 static void setAllPagerFlags(sqlite3 *db){
212 if( db->autoCommit ){
213 Db *pDb = db->aDb;
214 int n = db->nDb;
215 assert( SQLITE_FullFSync==PAGER_FULLFSYNC );
216 assert( SQLITE_CkptFullFSync==PAGER_CKPT_FULLFSYNC );
217 assert( SQLITE_CacheSpill==PAGER_CACHESPILL );
218 assert( (PAGER_FULLFSYNC | PAGER_CKPT_FULLFSYNC | PAGER_CACHESPILL)
219 == PAGER_FLAGS_MASK );
220 assert( (pDb->safety_level & PAGER_SYNCHRONOUS_MASK)==pDb->safety_level );
221 while( (n--) > 0 ){
222 if( pDb->pBt ){
223 sqlite3BtreeSetPagerFlags(pDb->pBt,
224 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK) );
226 pDb++;
230 #else
231 # define setAllPagerFlags(X) /* no-op */
232 #endif
236 ** Return a human-readable name for a constraint resolution action.
238 #ifndef SQLITE_OMIT_FOREIGN_KEY
239 static const char *actionName(u8 action){
240 const char *zName;
241 switch( action ){
242 case OE_SetNull: zName = "SET NULL"; break;
243 case OE_SetDflt: zName = "SET DEFAULT"; break;
244 case OE_Cascade: zName = "CASCADE"; break;
245 case OE_Restrict: zName = "RESTRICT"; break;
246 default: zName = "NO ACTION";
247 assert( action==OE_None ); break;
249 return zName;
251 #endif
255 ** Parameter eMode must be one of the PAGER_JOURNALMODE_XXX constants
256 ** defined in pager.h. This function returns the associated lowercase
257 ** journal-mode name.
259 const char *sqlite3JournalModename(int eMode){
260 static char * const azModeName[] = {
261 "delete", "persist", "off", "truncate", "memory"
262 #ifndef SQLITE_OMIT_WAL
263 , "wal"
264 #endif
266 assert( PAGER_JOURNALMODE_DELETE==0 );
267 assert( PAGER_JOURNALMODE_PERSIST==1 );
268 assert( PAGER_JOURNALMODE_OFF==2 );
269 assert( PAGER_JOURNALMODE_TRUNCATE==3 );
270 assert( PAGER_JOURNALMODE_MEMORY==4 );
271 assert( PAGER_JOURNALMODE_WAL==5 );
272 assert( eMode>=0 && eMode<=ArraySize(azModeName) );
274 if( eMode==ArraySize(azModeName) ) return 0;
275 return azModeName[eMode];
279 ** Locate a pragma in the aPragmaName[] array.
281 static const PragmaName *pragmaLocate(const char *zName){
282 int upr, lwr, mid = 0, rc;
283 lwr = 0;
284 upr = ArraySize(aPragmaName)-1;
285 while( lwr<=upr ){
286 mid = (lwr+upr)/2;
287 rc = sqlite3_stricmp(zName, aPragmaName[mid].zName);
288 if( rc==0 ) break;
289 if( rc<0 ){
290 upr = mid - 1;
291 }else{
292 lwr = mid + 1;
295 return lwr>upr ? 0 : &aPragmaName[mid];
299 ** Helper subroutine for PRAGMA integrity_check:
301 ** Generate code to output a single-column result row with a value of the
302 ** string held in register 3. Decrement the result count in register 1
303 ** and halt if the maximum number of result rows have been issued.
305 static int integrityCheckResultRow(Vdbe *v){
306 int addr;
307 sqlite3VdbeAddOp2(v, OP_ResultRow, 3, 1);
308 addr = sqlite3VdbeAddOp3(v, OP_IfPos, 1, sqlite3VdbeCurrentAddr(v)+2, 1);
309 VdbeCoverage(v);
310 sqlite3VdbeAddOp0(v, OP_Halt);
311 return addr;
315 ** Process a pragma statement.
317 ** Pragmas are of this form:
319 ** PRAGMA [schema.]id [= value]
321 ** The identifier might also be a string. The value is a string, and
322 ** identifier, or a number. If minusFlag is true, then the value is
323 ** a number that was preceded by a minus sign.
325 ** If the left side is "database.id" then pId1 is the database name
326 ** and pId2 is the id. If the left side is just "id" then pId1 is the
327 ** id and pId2 is any empty string.
329 void sqlite3Pragma(
330 Parse *pParse,
331 Token *pId1, /* First part of [schema.]id field */
332 Token *pId2, /* Second part of [schema.]id field, or NULL */
333 Token *pValue, /* Token for <value>, or NULL */
334 int minusFlag /* True if a '-' sign preceded <value> */
336 char *zLeft = 0; /* Nul-terminated UTF-8 string <id> */
337 char *zRight = 0; /* Nul-terminated UTF-8 string <value>, or NULL */
338 const char *zDb = 0; /* The database name */
339 Token *pId; /* Pointer to <id> token */
340 char *aFcntl[4]; /* Argument to SQLITE_FCNTL_PRAGMA */
341 int iDb; /* Database index for <database> */
342 int rc; /* return value form SQLITE_FCNTL_PRAGMA */
343 sqlite3 *db = pParse->db; /* The database connection */
344 Db *pDb; /* The specific database being pragmaed */
345 Vdbe *v = sqlite3GetVdbe(pParse); /* Prepared statement */
346 const PragmaName *pPragma; /* The pragma */
348 if( v==0 ) return;
349 sqlite3VdbeRunOnlyOnce(v);
350 pParse->nMem = 2;
352 /* Interpret the [schema.] part of the pragma statement. iDb is the
353 ** index of the database this pragma is being applied to in db.aDb[]. */
354 iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
355 if( iDb<0 ) return;
356 pDb = &db->aDb[iDb];
358 /* If the temp database has been explicitly named as part of the
359 ** pragma, make sure it is open.
361 if( iDb==1 && sqlite3OpenTempDatabase(pParse) ){
362 return;
365 zLeft = sqlite3NameFromToken(db, pId);
366 if( !zLeft ) return;
367 if( minusFlag ){
368 zRight = sqlite3MPrintf(db, "-%T", pValue);
369 }else{
370 zRight = sqlite3NameFromToken(db, pValue);
373 assert( pId2 );
374 zDb = pId2->n>0 ? pDb->zDbSName : 0;
375 if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
376 goto pragma_out;
379 /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
380 ** connection. If it returns SQLITE_OK, then assume that the VFS
381 ** handled the pragma and generate a no-op prepared statement.
383 ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
384 ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
385 ** object corresponding to the database file to which the pragma
386 ** statement refers.
388 ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
389 ** file control is an array of pointers to strings (char**) in which the
390 ** second element of the array is the name of the pragma and the third
391 ** element is the argument to the pragma or NULL if the pragma has no
392 ** argument.
394 aFcntl[0] = 0;
395 aFcntl[1] = zLeft;
396 aFcntl[2] = zRight;
397 aFcntl[3] = 0;
398 db->busyHandler.nBusy = 0;
399 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
400 if( rc==SQLITE_OK ){
401 sqlite3VdbeSetNumCols(v, 1);
402 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, aFcntl[0], SQLITE_TRANSIENT);
403 returnSingleText(v, aFcntl[0]);
404 sqlite3_free(aFcntl[0]);
405 goto pragma_out;
407 if( rc!=SQLITE_NOTFOUND ){
408 if( aFcntl[0] ){
409 sqlite3ErrorMsg(pParse, "%s", aFcntl[0]);
410 sqlite3_free(aFcntl[0]);
412 pParse->nErr++;
413 pParse->rc = rc;
414 goto pragma_out;
417 /* Locate the pragma in the lookup table */
418 pPragma = pragmaLocate(zLeft);
419 if( pPragma==0 ) goto pragma_out;
421 /* Make sure the database schema is loaded if the pragma requires that */
422 if( (pPragma->mPragFlg & PragFlg_NeedSchema)!=0 ){
423 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
426 /* Register the result column names for pragmas that return results */
427 if( (pPragma->mPragFlg & PragFlg_NoColumns)==0
428 && ((pPragma->mPragFlg & PragFlg_NoColumns1)==0 || zRight==0)
430 setPragmaResultColumnNames(v, pPragma);
433 /* Jump to the appropriate pragma handler */
434 switch( pPragma->ePragTyp ){
436 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
438 ** PRAGMA [schema.]default_cache_size
439 ** PRAGMA [schema.]default_cache_size=N
441 ** The first form reports the current persistent setting for the
442 ** page cache size. The value returned is the maximum number of
443 ** pages in the page cache. The second form sets both the current
444 ** page cache size value and the persistent page cache size value
445 ** stored in the database file.
447 ** Older versions of SQLite would set the default cache size to a
448 ** negative number to indicate synchronous=OFF. These days, synchronous
449 ** is always on by default regardless of the sign of the default cache
450 ** size. But continue to take the absolute value of the default cache
451 ** size of historical compatibility.
453 case PragTyp_DEFAULT_CACHE_SIZE: {
454 static const int iLn = VDBE_OFFSET_LINENO(2);
455 static const VdbeOpList getCacheSize[] = {
456 { OP_Transaction, 0, 0, 0}, /* 0 */
457 { OP_ReadCookie, 0, 1, BTREE_DEFAULT_CACHE_SIZE}, /* 1 */
458 { OP_IfPos, 1, 8, 0},
459 { OP_Integer, 0, 2, 0},
460 { OP_Subtract, 1, 2, 1},
461 { OP_IfPos, 1, 8, 0},
462 { OP_Integer, 0, 1, 0}, /* 6 */
463 { OP_Noop, 0, 0, 0},
464 { OP_ResultRow, 1, 1, 0},
466 VdbeOp *aOp;
467 sqlite3VdbeUsesBtree(v, iDb);
468 if( !zRight ){
469 pParse->nMem += 2;
470 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(getCacheSize));
471 aOp = sqlite3VdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize, iLn);
472 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
473 aOp[0].p1 = iDb;
474 aOp[1].p1 = iDb;
475 aOp[6].p1 = SQLITE_DEFAULT_CACHE_SIZE;
476 }else{
477 int size = sqlite3AbsInt32(sqlite3Atoi(zRight));
478 sqlite3BeginWriteOperation(pParse, 0, iDb);
479 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_DEFAULT_CACHE_SIZE, size);
480 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
481 pDb->pSchema->cache_size = size;
482 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
484 break;
486 #endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */
488 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
490 ** PRAGMA [schema.]page_size
491 ** PRAGMA [schema.]page_size=N
493 ** The first form reports the current setting for the
494 ** database page size in bytes. The second form sets the
495 ** database page size value. The value can only be set if
496 ** the database has not yet been created.
498 case PragTyp_PAGE_SIZE: {
499 Btree *pBt = pDb->pBt;
500 assert( pBt!=0 );
501 if( !zRight ){
502 int size = ALWAYS(pBt) ? sqlite3BtreeGetPageSize(pBt) : 0;
503 returnSingleInt(v, size);
504 }else{
505 /* Malloc may fail when setting the page-size, as there is an internal
506 ** buffer that the pager module resizes using sqlite3_realloc().
508 db->nextPagesize = sqlite3Atoi(zRight);
509 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize,-1,0) ){
510 sqlite3OomFault(db);
513 break;
517 ** PRAGMA [schema.]secure_delete
518 ** PRAGMA [schema.]secure_delete=ON/OFF/FAST
520 ** The first form reports the current setting for the
521 ** secure_delete flag. The second form changes the secure_delete
522 ** flag setting and reports the new value.
524 case PragTyp_SECURE_DELETE: {
525 Btree *pBt = pDb->pBt;
526 int b = -1;
527 assert( pBt!=0 );
528 if( zRight ){
529 if( sqlite3_stricmp(zRight, "fast")==0 ){
530 b = 2;
531 }else{
532 b = sqlite3GetBoolean(zRight, 0);
535 if( pId2->n==0 && b>=0 ){
536 int ii;
537 for(ii=0; ii<db->nDb; ii++){
538 sqlite3BtreeSecureDelete(db->aDb[ii].pBt, b);
541 b = sqlite3BtreeSecureDelete(pBt, b);
542 returnSingleInt(v, b);
543 break;
547 ** PRAGMA [schema.]max_page_count
548 ** PRAGMA [schema.]max_page_count=N
550 ** The first form reports the current setting for the
551 ** maximum number of pages in the database file. The
552 ** second form attempts to change this setting. Both
553 ** forms return the current setting.
555 ** The absolute value of N is used. This is undocumented and might
556 ** change. The only purpose is to provide an easy way to test
557 ** the sqlite3AbsInt32() function.
559 ** PRAGMA [schema.]page_count
561 ** Return the number of pages in the specified database.
563 case PragTyp_PAGE_COUNT: {
564 int iReg;
565 sqlite3CodeVerifySchema(pParse, iDb);
566 iReg = ++pParse->nMem;
567 if( sqlite3Tolower(zLeft[0])=='p' ){
568 sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
569 }else{
570 sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg,
571 sqlite3AbsInt32(sqlite3Atoi(zRight)));
573 sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
574 break;
578 ** PRAGMA [schema.]locking_mode
579 ** PRAGMA [schema.]locking_mode = (normal|exclusive)
581 case PragTyp_LOCKING_MODE: {
582 const char *zRet = "normal";
583 int eMode = getLockingMode(zRight);
585 if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
586 /* Simple "PRAGMA locking_mode;" statement. This is a query for
587 ** the current default locking mode (which may be different to
588 ** the locking-mode of the main database).
590 eMode = db->dfltLockMode;
591 }else{
592 Pager *pPager;
593 if( pId2->n==0 ){
594 /* This indicates that no database name was specified as part
595 ** of the PRAGMA command. In this case the locking-mode must be
596 ** set on all attached databases, as well as the main db file.
598 ** Also, the sqlite3.dfltLockMode variable is set so that
599 ** any subsequently attached databases also use the specified
600 ** locking mode.
602 int ii;
603 assert(pDb==&db->aDb[0]);
604 for(ii=2; ii<db->nDb; ii++){
605 pPager = sqlite3BtreePager(db->aDb[ii].pBt);
606 sqlite3PagerLockingMode(pPager, eMode);
608 db->dfltLockMode = (u8)eMode;
610 pPager = sqlite3BtreePager(pDb->pBt);
611 eMode = sqlite3PagerLockingMode(pPager, eMode);
614 assert( eMode==PAGER_LOCKINGMODE_NORMAL
615 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
616 if( eMode==PAGER_LOCKINGMODE_EXCLUSIVE ){
617 zRet = "exclusive";
619 returnSingleText(v, zRet);
620 break;
624 ** PRAGMA [schema.]journal_mode
625 ** PRAGMA [schema.]journal_mode =
626 ** (delete|persist|off|truncate|memory|wal|off)
628 case PragTyp_JOURNAL_MODE: {
629 int eMode; /* One of the PAGER_JOURNALMODE_XXX symbols */
630 int ii; /* Loop counter */
632 if( zRight==0 ){
633 /* If there is no "=MODE" part of the pragma, do a query for the
634 ** current mode */
635 eMode = PAGER_JOURNALMODE_QUERY;
636 }else{
637 const char *zMode;
638 int n = sqlite3Strlen30(zRight);
639 for(eMode=0; (zMode = sqlite3JournalModename(eMode))!=0; eMode++){
640 if( sqlite3StrNICmp(zRight, zMode, n)==0 ) break;
642 if( !zMode ){
643 /* If the "=MODE" part does not match any known journal mode,
644 ** then do a query */
645 eMode = PAGER_JOURNALMODE_QUERY;
648 if( eMode==PAGER_JOURNALMODE_QUERY && pId2->n==0 ){
649 /* Convert "PRAGMA journal_mode" into "PRAGMA main.journal_mode" */
650 iDb = 0;
651 pId2->n = 1;
653 for(ii=db->nDb-1; ii>=0; ii--){
654 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
655 sqlite3VdbeUsesBtree(v, ii);
656 sqlite3VdbeAddOp3(v, OP_JournalMode, ii, 1, eMode);
659 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
660 break;
664 ** PRAGMA [schema.]journal_size_limit
665 ** PRAGMA [schema.]journal_size_limit=N
667 ** Get or set the size limit on rollback journal files.
669 case PragTyp_JOURNAL_SIZE_LIMIT: {
670 Pager *pPager = sqlite3BtreePager(pDb->pBt);
671 i64 iLimit = -2;
672 if( zRight ){
673 sqlite3DecOrHexToI64(zRight, &iLimit);
674 if( iLimit<-1 ) iLimit = -1;
676 iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
677 returnSingleInt(v, iLimit);
678 break;
681 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
684 ** PRAGMA [schema.]auto_vacuum
685 ** PRAGMA [schema.]auto_vacuum=N
687 ** Get or set the value of the database 'auto-vacuum' parameter.
688 ** The value is one of: 0 NONE 1 FULL 2 INCREMENTAL
690 #ifndef SQLITE_OMIT_AUTOVACUUM
691 case PragTyp_AUTO_VACUUM: {
692 Btree *pBt = pDb->pBt;
693 assert( pBt!=0 );
694 if( !zRight ){
695 returnSingleInt(v, sqlite3BtreeGetAutoVacuum(pBt));
696 }else{
697 int eAuto = getAutoVacuum(zRight);
698 assert( eAuto>=0 && eAuto<=2 );
699 db->nextAutovac = (u8)eAuto;
700 /* Call SetAutoVacuum() to set initialize the internal auto and
701 ** incr-vacuum flags. This is required in case this connection
702 ** creates the database file. It is important that it is created
703 ** as an auto-vacuum capable db.
705 rc = sqlite3BtreeSetAutoVacuum(pBt, eAuto);
706 if( rc==SQLITE_OK && (eAuto==1 || eAuto==2) ){
707 /* When setting the auto_vacuum mode to either "full" or
708 ** "incremental", write the value of meta[6] in the database
709 ** file. Before writing to meta[6], check that meta[3] indicates
710 ** that this really is an auto-vacuum capable database.
712 static const int iLn = VDBE_OFFSET_LINENO(2);
713 static const VdbeOpList setMeta6[] = {
714 { OP_Transaction, 0, 1, 0}, /* 0 */
715 { OP_ReadCookie, 0, 1, BTREE_LARGEST_ROOT_PAGE},
716 { OP_If, 1, 0, 0}, /* 2 */
717 { OP_Halt, SQLITE_OK, OE_Abort, 0}, /* 3 */
718 { OP_SetCookie, 0, BTREE_INCR_VACUUM, 0}, /* 4 */
720 VdbeOp *aOp;
721 int iAddr = sqlite3VdbeCurrentAddr(v);
722 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setMeta6));
723 aOp = sqlite3VdbeAddOpList(v, ArraySize(setMeta6), setMeta6, iLn);
724 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
725 aOp[0].p1 = iDb;
726 aOp[1].p1 = iDb;
727 aOp[2].p2 = iAddr+4;
728 aOp[4].p1 = iDb;
729 aOp[4].p3 = eAuto - 1;
730 sqlite3VdbeUsesBtree(v, iDb);
733 break;
735 #endif
738 ** PRAGMA [schema.]incremental_vacuum(N)
740 ** Do N steps of incremental vacuuming on a database.
742 #ifndef SQLITE_OMIT_AUTOVACUUM
743 case PragTyp_INCREMENTAL_VACUUM: {
744 int iLimit, addr;
745 if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
746 iLimit = 0x7fffffff;
748 sqlite3BeginWriteOperation(pParse, 0, iDb);
749 sqlite3VdbeAddOp2(v, OP_Integer, iLimit, 1);
750 addr = sqlite3VdbeAddOp1(v, OP_IncrVacuum, iDb); VdbeCoverage(v);
751 sqlite3VdbeAddOp1(v, OP_ResultRow, 1);
752 sqlite3VdbeAddOp2(v, OP_AddImm, 1, -1);
753 sqlite3VdbeAddOp2(v, OP_IfPos, 1, addr); VdbeCoverage(v);
754 sqlite3VdbeJumpHere(v, addr);
755 break;
757 #endif
759 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
761 ** PRAGMA [schema.]cache_size
762 ** PRAGMA [schema.]cache_size=N
764 ** The first form reports the current local setting for the
765 ** page cache size. The second form sets the local
766 ** page cache size value. If N is positive then that is the
767 ** number of pages in the cache. If N is negative, then the
768 ** number of pages is adjusted so that the cache uses -N kibibytes
769 ** of memory.
771 case PragTyp_CACHE_SIZE: {
772 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
773 if( !zRight ){
774 returnSingleInt(v, pDb->pSchema->cache_size);
775 }else{
776 int size = sqlite3Atoi(zRight);
777 pDb->pSchema->cache_size = size;
778 sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
780 break;
784 ** PRAGMA [schema.]cache_spill
785 ** PRAGMA cache_spill=BOOLEAN
786 ** PRAGMA [schema.]cache_spill=N
788 ** The first form reports the current local setting for the
789 ** page cache spill size. The second form turns cache spill on
790 ** or off. When turnning cache spill on, the size is set to the
791 ** current cache_size. The third form sets a spill size that
792 ** may be different form the cache size.
793 ** If N is positive then that is the
794 ** number of pages in the cache. If N is negative, then the
795 ** number of pages is adjusted so that the cache uses -N kibibytes
796 ** of memory.
798 ** If the number of cache_spill pages is less then the number of
799 ** cache_size pages, no spilling occurs until the page count exceeds
800 ** the number of cache_size pages.
802 ** The cache_spill=BOOLEAN setting applies to all attached schemas,
803 ** not just the schema specified.
805 case PragTyp_CACHE_SPILL: {
806 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
807 if( !zRight ){
808 returnSingleInt(v,
809 (db->flags & SQLITE_CacheSpill)==0 ? 0 :
810 sqlite3BtreeSetSpillSize(pDb->pBt,0));
811 }else{
812 int size = 1;
813 if( sqlite3GetInt32(zRight, &size) ){
814 sqlite3BtreeSetSpillSize(pDb->pBt, size);
816 if( sqlite3GetBoolean(zRight, size!=0) ){
817 db->flags |= SQLITE_CacheSpill;
818 }else{
819 db->flags &= ~SQLITE_CacheSpill;
821 setAllPagerFlags(db);
823 break;
827 ** PRAGMA [schema.]mmap_size(N)
829 ** Used to set mapping size limit. The mapping size limit is
830 ** used to limit the aggregate size of all memory mapped regions of the
831 ** database file. If this parameter is set to zero, then memory mapping
832 ** is not used at all. If N is negative, then the default memory map
833 ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
834 ** The parameter N is measured in bytes.
836 ** This value is advisory. The underlying VFS is free to memory map
837 ** as little or as much as it wants. Except, if N is set to 0 then the
838 ** upper layers will never invoke the xFetch interfaces to the VFS.
840 case PragTyp_MMAP_SIZE: {
841 sqlite3_int64 sz;
842 #if SQLITE_MAX_MMAP_SIZE>0
843 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
844 if( zRight ){
845 int ii;
846 sqlite3DecOrHexToI64(zRight, &sz);
847 if( sz<0 ) sz = sqlite3GlobalConfig.szMmap;
848 if( pId2->n==0 ) db->szMmap = sz;
849 for(ii=db->nDb-1; ii>=0; ii--){
850 if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){
851 sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz);
855 sz = -1;
856 rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_MMAP_SIZE, &sz);
857 #else
858 sz = 0;
859 rc = SQLITE_OK;
860 #endif
861 if( rc==SQLITE_OK ){
862 returnSingleInt(v, sz);
863 }else if( rc!=SQLITE_NOTFOUND ){
864 pParse->nErr++;
865 pParse->rc = rc;
867 break;
871 ** PRAGMA temp_store
872 ** PRAGMA temp_store = "default"|"memory"|"file"
874 ** Return or set the local value of the temp_store flag. Changing
875 ** the local value does not make changes to the disk file and the default
876 ** value will be restored the next time the database is opened.
878 ** Note that it is possible for the library compile-time options to
879 ** override this setting
881 case PragTyp_TEMP_STORE: {
882 if( !zRight ){
883 returnSingleInt(v, db->temp_store);
884 }else{
885 changeTempStorage(pParse, zRight);
887 break;
891 ** PRAGMA temp_store_directory
892 ** PRAGMA temp_store_directory = ""|"directory_name"
894 ** Return or set the local value of the temp_store_directory flag. Changing
895 ** the value sets a specific directory to be used for temporary files.
896 ** Setting to a null string reverts to the default temporary directory search.
897 ** If temporary directory is changed, then invalidateTempStorage.
900 case PragTyp_TEMP_STORE_DIRECTORY: {
901 if( !zRight ){
902 returnSingleText(v, sqlite3_temp_directory);
903 }else{
904 #ifndef SQLITE_OMIT_WSD
905 if( zRight[0] ){
906 int res;
907 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
908 if( rc!=SQLITE_OK || res==0 ){
909 sqlite3ErrorMsg(pParse, "not a writable directory");
910 goto pragma_out;
913 if( SQLITE_TEMP_STORE==0
914 || (SQLITE_TEMP_STORE==1 && db->temp_store<=1)
915 || (SQLITE_TEMP_STORE==2 && db->temp_store==1)
917 invalidateTempStorage(pParse);
919 sqlite3_free(sqlite3_temp_directory);
920 if( zRight[0] ){
921 sqlite3_temp_directory = sqlite3_mprintf("%s", zRight);
922 }else{
923 sqlite3_temp_directory = 0;
925 #endif /* SQLITE_OMIT_WSD */
927 break;
930 #if SQLITE_OS_WIN
932 ** PRAGMA data_store_directory
933 ** PRAGMA data_store_directory = ""|"directory_name"
935 ** Return or set the local value of the data_store_directory flag. Changing
936 ** the value sets a specific directory to be used for database files that
937 ** were specified with a relative pathname. Setting to a null string reverts
938 ** to the default database directory, which for database files specified with
939 ** a relative path will probably be based on the current directory for the
940 ** process. Database file specified with an absolute path are not impacted
941 ** by this setting, regardless of its value.
944 case PragTyp_DATA_STORE_DIRECTORY: {
945 if( !zRight ){
946 returnSingleText(v, sqlite3_data_directory);
947 }else{
948 #ifndef SQLITE_OMIT_WSD
949 if( zRight[0] ){
950 int res;
951 rc = sqlite3OsAccess(db->pVfs, zRight, SQLITE_ACCESS_READWRITE, &res);
952 if( rc!=SQLITE_OK || res==0 ){
953 sqlite3ErrorMsg(pParse, "not a writable directory");
954 goto pragma_out;
957 sqlite3_free(sqlite3_data_directory);
958 if( zRight[0] ){
959 sqlite3_data_directory = sqlite3_mprintf("%s", zRight);
960 }else{
961 sqlite3_data_directory = 0;
963 #endif /* SQLITE_OMIT_WSD */
965 break;
967 #endif
969 #if SQLITE_ENABLE_LOCKING_STYLE
971 ** PRAGMA [schema.]lock_proxy_file
972 ** PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
974 ** Return or set the value of the lock_proxy_file flag. Changing
975 ** the value sets a specific file to be used for database access locks.
978 case PragTyp_LOCK_PROXY_FILE: {
979 if( !zRight ){
980 Pager *pPager = sqlite3BtreePager(pDb->pBt);
981 char *proxy_file_path = NULL;
982 sqlite3_file *pFile = sqlite3PagerFile(pPager);
983 sqlite3OsFileControlHint(pFile, SQLITE_GET_LOCKPROXYFILE,
984 &proxy_file_path);
985 returnSingleText(v, proxy_file_path);
986 }else{
987 Pager *pPager = sqlite3BtreePager(pDb->pBt);
988 sqlite3_file *pFile = sqlite3PagerFile(pPager);
989 int res;
990 if( zRight[0] ){
991 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
992 zRight);
993 } else {
994 res=sqlite3OsFileControl(pFile, SQLITE_SET_LOCKPROXYFILE,
995 NULL);
997 if( res!=SQLITE_OK ){
998 sqlite3ErrorMsg(pParse, "failed to set lock proxy file");
999 goto pragma_out;
1002 break;
1004 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
1007 ** PRAGMA [schema.]synchronous
1008 ** PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL|EXTRA
1010 ** Return or set the local value of the synchronous flag. Changing
1011 ** the local value does not make changes to the disk file and the
1012 ** default value will be restored the next time the database is
1013 ** opened.
1015 case PragTyp_SYNCHRONOUS: {
1016 if( !zRight ){
1017 returnSingleInt(v, pDb->safety_level-1);
1018 }else{
1019 if( !db->autoCommit ){
1020 sqlite3ErrorMsg(pParse,
1021 "Safety level may not be changed inside a transaction");
1022 }else if( iDb!=1 ){
1023 int iLevel = (getSafetyLevel(zRight,0,1)+1) & PAGER_SYNCHRONOUS_MASK;
1024 if( iLevel==0 ) iLevel = 1;
1025 pDb->safety_level = iLevel;
1026 pDb->bSyncSet = 1;
1027 setAllPagerFlags(db);
1030 break;
1032 #endif /* SQLITE_OMIT_PAGER_PRAGMAS */
1034 #ifndef SQLITE_OMIT_FLAG_PRAGMAS
1035 case PragTyp_FLAG: {
1036 if( zRight==0 ){
1037 setPragmaResultColumnNames(v, pPragma);
1038 returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
1039 }else{
1040 int mask = pPragma->iArg; /* Mask of bits to set or clear. */
1041 if( db->autoCommit==0 ){
1042 /* Foreign key support may not be enabled or disabled while not
1043 ** in auto-commit mode. */
1044 mask &= ~(SQLITE_ForeignKeys);
1046 #if SQLITE_USER_AUTHENTICATION
1047 if( db->auth.authLevel==UAUTH_User ){
1048 /* Do not allow non-admin users to modify the schema arbitrarily */
1049 mask &= ~(SQLITE_WriteSchema);
1051 #endif
1053 if( sqlite3GetBoolean(zRight, 0) ){
1054 db->flags |= mask;
1055 }else{
1056 db->flags &= ~mask;
1057 if( mask==SQLITE_DeferFKs ) db->nDeferredImmCons = 0;
1060 /* Many of the flag-pragmas modify the code generated by the SQL
1061 ** compiler (eg. count_changes). So add an opcode to expire all
1062 ** compiled SQL statements after modifying a pragma value.
1064 sqlite3VdbeAddOp0(v, OP_Expire);
1065 setAllPagerFlags(db);
1067 break;
1069 #endif /* SQLITE_OMIT_FLAG_PRAGMAS */
1071 #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS
1073 ** PRAGMA table_info(<table>)
1075 ** Return a single row for each column of the named table. The columns of
1076 ** the returned data set are:
1078 ** cid: Column id (numbered from left to right, starting at 0)
1079 ** name: Column name
1080 ** type: Column declaration type.
1081 ** notnull: True if 'NOT NULL' is part of column declaration
1082 ** dflt_value: The default value for the column, if any.
1083 ** pk: Non-zero for PK fields.
1085 case PragTyp_TABLE_INFO: if( zRight ){
1086 Table *pTab;
1087 pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
1088 if( pTab ){
1089 int i, k;
1090 int nHidden = 0;
1091 Column *pCol;
1092 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1093 pParse->nMem = 6;
1094 sqlite3CodeVerifySchema(pParse, iDb);
1095 sqlite3ViewGetColumnNames(pParse, pTab);
1096 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1097 if( IsHiddenColumn(pCol) ){
1098 nHidden++;
1099 continue;
1101 if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
1102 k = 0;
1103 }else if( pPk==0 ){
1104 k = 1;
1105 }else{
1106 for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
1108 assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
1109 sqlite3VdbeMultiLoad(v, 1, "issisi",
1110 i-nHidden,
1111 pCol->zName,
1112 sqlite3ColumnType(pCol,""),
1113 pCol->notNull ? 1 : 0,
1114 pCol->pDflt ? pCol->pDflt->u.zToken : 0,
1119 break;
1121 #ifdef SQLITE_DEBUG
1122 case PragTyp_STATS: {
1123 Index *pIdx;
1124 HashElem *i;
1125 pParse->nMem = 5;
1126 sqlite3CodeVerifySchema(pParse, iDb);
1127 for(i=sqliteHashFirst(&pDb->pSchema->tblHash); i; i=sqliteHashNext(i)){
1128 Table *pTab = sqliteHashData(i);
1129 sqlite3VdbeMultiLoad(v, 1, "ssiii",
1130 pTab->zName,
1132 pTab->szTabRow,
1133 pTab->nRowLogEst,
1134 pTab->tabFlags);
1135 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1136 sqlite3VdbeMultiLoad(v, 2, "siiiX",
1137 pIdx->zName,
1138 pIdx->szIdxRow,
1139 pIdx->aiRowLogEst[0],
1140 pIdx->hasStat1);
1141 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
1145 break;
1146 #endif
1148 case PragTyp_INDEX_INFO: if( zRight ){
1149 Index *pIdx;
1150 Table *pTab;
1151 pIdx = sqlite3FindIndex(db, zRight, zDb);
1152 if( pIdx ){
1153 int i;
1154 int mx;
1155 if( pPragma->iArg ){
1156 /* PRAGMA index_xinfo (newer version with more rows and columns) */
1157 mx = pIdx->nColumn;
1158 pParse->nMem = 6;
1159 }else{
1160 /* PRAGMA index_info (legacy version) */
1161 mx = pIdx->nKeyCol;
1162 pParse->nMem = 3;
1164 pTab = pIdx->pTable;
1165 sqlite3CodeVerifySchema(pParse, iDb);
1166 assert( pParse->nMem<=pPragma->nPragCName );
1167 for(i=0; i<mx; i++){
1168 i16 cnum = pIdx->aiColumn[i];
1169 sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
1170 cnum<0 ? 0 : pTab->aCol[cnum].zName);
1171 if( pPragma->iArg ){
1172 sqlite3VdbeMultiLoad(v, 4, "isiX",
1173 pIdx->aSortOrder[i],
1174 pIdx->azColl[i],
1175 i<pIdx->nKeyCol);
1177 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
1181 break;
1183 case PragTyp_INDEX_LIST: if( zRight ){
1184 Index *pIdx;
1185 Table *pTab;
1186 int i;
1187 pTab = sqlite3FindTable(db, zRight, zDb);
1188 if( pTab ){
1189 pParse->nMem = 5;
1190 sqlite3CodeVerifySchema(pParse, iDb);
1191 for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
1192 const char *azOrigin[] = { "c", "u", "pk" };
1193 sqlite3VdbeMultiLoad(v, 1, "isisi",
1195 pIdx->zName,
1196 IsUniqueIndex(pIdx),
1197 azOrigin[pIdx->idxType],
1198 pIdx->pPartIdxWhere!=0);
1202 break;
1204 case PragTyp_DATABASE_LIST: {
1205 int i;
1206 pParse->nMem = 3;
1207 for(i=0; i<db->nDb; i++){
1208 if( db->aDb[i].pBt==0 ) continue;
1209 assert( db->aDb[i].zDbSName!=0 );
1210 sqlite3VdbeMultiLoad(v, 1, "iss",
1212 db->aDb[i].zDbSName,
1213 sqlite3BtreeGetFilename(db->aDb[i].pBt));
1216 break;
1218 case PragTyp_COLLATION_LIST: {
1219 int i = 0;
1220 HashElem *p;
1221 pParse->nMem = 2;
1222 for(p=sqliteHashFirst(&db->aCollSeq); p; p=sqliteHashNext(p)){
1223 CollSeq *pColl = (CollSeq *)sqliteHashData(p);
1224 sqlite3VdbeMultiLoad(v, 1, "is", i++, pColl->zName);
1227 break;
1229 #ifdef SQLITE_INTROSPECTION_PRAGMAS
1230 case PragTyp_FUNCTION_LIST: {
1231 int i;
1232 HashElem *j;
1233 FuncDef *p;
1234 pParse->nMem = 2;
1235 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1236 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
1237 sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1);
1240 for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
1241 p = (FuncDef*)sqliteHashData(j);
1242 sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0);
1245 break;
1247 #ifndef SQLITE_OMIT_VIRTUALTABLE
1248 case PragTyp_MODULE_LIST: {
1249 HashElem *j;
1250 pParse->nMem = 1;
1251 for(j=sqliteHashFirst(&db->aModule); j; j=sqliteHashNext(j)){
1252 Module *pMod = (Module*)sqliteHashData(j);
1253 sqlite3VdbeMultiLoad(v, 1, "s", pMod->zName);
1256 break;
1257 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1259 case PragTyp_PRAGMA_LIST: {
1260 int i;
1261 for(i=0; i<ArraySize(aPragmaName); i++){
1262 sqlite3VdbeMultiLoad(v, 1, "s", aPragmaName[i].zName);
1265 break;
1266 #endif /* SQLITE_INTROSPECTION_PRAGMAS */
1268 #endif /* SQLITE_OMIT_SCHEMA_PRAGMAS */
1270 #ifndef SQLITE_OMIT_FOREIGN_KEY
1271 case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
1272 FKey *pFK;
1273 Table *pTab;
1274 pTab = sqlite3FindTable(db, zRight, zDb);
1275 if( pTab ){
1276 pFK = pTab->pFKey;
1277 if( pFK ){
1278 int i = 0;
1279 pParse->nMem = 8;
1280 sqlite3CodeVerifySchema(pParse, iDb);
1281 while(pFK){
1282 int j;
1283 for(j=0; j<pFK->nCol; j++){
1284 sqlite3VdbeMultiLoad(v, 1, "iissssss",
1287 pFK->zTo,
1288 pTab->aCol[pFK->aCol[j].iFrom].zName,
1289 pFK->aCol[j].zCol,
1290 actionName(pFK->aAction[1]), /* ON UPDATE */
1291 actionName(pFK->aAction[0]), /* ON DELETE */
1292 "NONE");
1294 ++i;
1295 pFK = pFK->pNextFrom;
1300 break;
1301 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1303 #ifndef SQLITE_OMIT_FOREIGN_KEY
1304 #ifndef SQLITE_OMIT_TRIGGER
1305 case PragTyp_FOREIGN_KEY_CHECK: {
1306 FKey *pFK; /* A foreign key constraint */
1307 Table *pTab; /* Child table contain "REFERENCES" keyword */
1308 Table *pParent; /* Parent table that child points to */
1309 Index *pIdx; /* Index in the parent table */
1310 int i; /* Loop counter: Foreign key number for pTab */
1311 int j; /* Loop counter: Field of the foreign key */
1312 HashElem *k; /* Loop counter: Next table in schema */
1313 int x; /* result variable */
1314 int regResult; /* 3 registers to hold a result row */
1315 int regKey; /* Register to hold key for checking the FK */
1316 int regRow; /* Registers to hold a row from pTab */
1317 int addrTop; /* Top of a loop checking foreign keys */
1318 int addrOk; /* Jump here if the key is OK */
1319 int *aiCols; /* child to parent column mapping */
1321 regResult = pParse->nMem+1;
1322 pParse->nMem += 4;
1323 regKey = ++pParse->nMem;
1324 regRow = ++pParse->nMem;
1325 sqlite3CodeVerifySchema(pParse, iDb);
1326 k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
1327 while( k ){
1328 if( zRight ){
1329 pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
1330 k = 0;
1331 }else{
1332 pTab = (Table*)sqliteHashData(k);
1333 k = sqliteHashNext(k);
1335 if( pTab==0 || pTab->pFKey==0 ) continue;
1336 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1337 if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
1338 sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
1339 sqlite3VdbeLoadString(v, regResult, pTab->zName);
1340 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1341 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1342 if( pParent==0 ) continue;
1343 pIdx = 0;
1344 sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
1345 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
1346 if( x==0 ){
1347 if( pIdx==0 ){
1348 sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
1349 }else{
1350 sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
1351 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1353 }else{
1354 k = 0;
1355 break;
1358 assert( pParse->nErr>0 || pFK==0 );
1359 if( pFK ) break;
1360 if( pParse->nTab<i ) pParse->nTab = i;
1361 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, 0); VdbeCoverage(v);
1362 for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
1363 pParent = sqlite3FindTable(db, pFK->zTo, zDb);
1364 pIdx = 0;
1365 aiCols = 0;
1366 if( pParent ){
1367 x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, &aiCols);
1368 assert( x==0 );
1370 addrOk = sqlite3VdbeMakeLabel(v);
1372 /* Generate code to read the child key values into registers
1373 ** regRow..regRow+n. If any of the child key values are NULL, this
1374 ** row cannot cause an FK violation. Jump directly to addrOk in
1375 ** this case. */
1376 for(j=0; j<pFK->nCol; j++){
1377 int iCol = aiCols ? aiCols[j] : pFK->aCol[j].iFrom;
1378 sqlite3ExprCodeGetColumnOfTable(v, pTab, 0, iCol, regRow+j);
1379 sqlite3VdbeAddOp2(v, OP_IsNull, regRow+j, addrOk); VdbeCoverage(v);
1382 /* Generate code to query the parent index for a matching parent
1383 ** key. If a match is found, jump to addrOk. */
1384 if( pIdx ){
1385 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, pFK->nCol, regKey,
1386 sqlite3IndexAffinityStr(db,pIdx), pFK->nCol);
1387 sqlite3VdbeAddOp4Int(v, OP_Found, i, addrOk, regKey, 0);
1388 VdbeCoverage(v);
1389 }else if( pParent ){
1390 int jmp = sqlite3VdbeCurrentAddr(v)+2;
1391 sqlite3VdbeAddOp3(v, OP_SeekRowid, i, jmp, regRow); VdbeCoverage(v);
1392 sqlite3VdbeGoto(v, addrOk);
1393 assert( pFK->nCol==1 );
1396 /* Generate code to report an FK violation to the caller. */
1397 if( HasRowid(pTab) ){
1398 sqlite3VdbeAddOp2(v, OP_Rowid, 0, regResult+1);
1399 }else{
1400 sqlite3VdbeAddOp2(v, OP_Null, 0, regResult+1);
1402 sqlite3VdbeMultiLoad(v, regResult+2, "siX", pFK->zTo, i-1);
1403 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, 4);
1404 sqlite3VdbeResolveLabel(v, addrOk);
1405 sqlite3DbFree(db, aiCols);
1407 sqlite3VdbeAddOp2(v, OP_Next, 0, addrTop+1); VdbeCoverage(v);
1408 sqlite3VdbeJumpHere(v, addrTop);
1411 break;
1412 #endif /* !defined(SQLITE_OMIT_TRIGGER) */
1413 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
1415 #ifndef NDEBUG
1416 case PragTyp_PARSER_TRACE: {
1417 if( zRight ){
1418 if( sqlite3GetBoolean(zRight, 0) ){
1419 sqlite3ParserTrace(stdout, "parser: ");
1420 }else{
1421 sqlite3ParserTrace(0, 0);
1425 break;
1426 #endif
1428 /* Reinstall the LIKE and GLOB functions. The variant of LIKE
1429 ** used will be case sensitive or not depending on the RHS.
1431 case PragTyp_CASE_SENSITIVE_LIKE: {
1432 if( zRight ){
1433 sqlite3RegisterLikeFunctions(db, sqlite3GetBoolean(zRight, 0));
1436 break;
1438 #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX
1439 # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100
1440 #endif
1442 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
1443 /* PRAGMA integrity_check
1444 ** PRAGMA integrity_check(N)
1445 ** PRAGMA quick_check
1446 ** PRAGMA quick_check(N)
1448 ** Verify the integrity of the database.
1450 ** The "quick_check" is reduced version of
1451 ** integrity_check designed to detect most database corruption
1452 ** without the overhead of cross-checking indexes. Quick_check
1453 ** is linear time wherease integrity_check is O(NlogN).
1455 case PragTyp_INTEGRITY_CHECK: {
1456 int i, j, addr, mxErr;
1458 int isQuick = (sqlite3Tolower(zLeft[0])=='q');
1460 /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
1461 ** then iDb is set to the index of the database identified by <db>.
1462 ** In this case, the integrity of database iDb only is verified by
1463 ** the VDBE created below.
1465 ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
1466 ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
1467 ** to -1 here, to indicate that the VDBE should verify the integrity
1468 ** of all attached databases. */
1469 assert( iDb>=0 );
1470 assert( iDb==0 || pId2->z );
1471 if( pId2->z==0 ) iDb = -1;
1473 /* Initialize the VDBE program */
1474 pParse->nMem = 6;
1476 /* Set the maximum error count */
1477 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1478 if( zRight ){
1479 sqlite3GetInt32(zRight, &mxErr);
1480 if( mxErr<=0 ){
1481 mxErr = SQLITE_INTEGRITY_CHECK_ERROR_MAX;
1484 sqlite3VdbeAddOp2(v, OP_Integer, mxErr-1, 1); /* reg[1] holds errors left */
1486 /* Do an integrity check on each database file */
1487 for(i=0; i<db->nDb; i++){
1488 HashElem *x; /* For looping over tables in the schema */
1489 Hash *pTbls; /* Set of all tables in the schema */
1490 int *aRoot; /* Array of root page numbers of all btrees */
1491 int cnt = 0; /* Number of entries in aRoot[] */
1492 int mxIdx = 0; /* Maximum number of indexes for any table */
1494 if( OMIT_TEMPDB && i==1 ) continue;
1495 if( iDb>=0 && i!=iDb ) continue;
1497 sqlite3CodeVerifySchema(pParse, i);
1499 /* Do an integrity check of the B-Tree
1501 ** Begin by finding the root pages numbers
1502 ** for all tables and indices in the database.
1504 assert( sqlite3SchemaMutexHeld(db, i, 0) );
1505 pTbls = &db->aDb[i].pSchema->tblHash;
1506 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1507 Table *pTab = sqliteHashData(x); /* Current table */
1508 Index *pIdx; /* An index on pTab */
1509 int nIdx; /* Number of indexes on pTab */
1510 if( HasRowid(pTab) ) cnt++;
1511 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ cnt++; }
1512 if( nIdx>mxIdx ) mxIdx = nIdx;
1514 aRoot = sqlite3DbMallocRawNN(db, sizeof(int)*(cnt+1));
1515 if( aRoot==0 ) break;
1516 for(cnt=0, x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1517 Table *pTab = sqliteHashData(x);
1518 Index *pIdx;
1519 if( HasRowid(pTab) ) aRoot[++cnt] = pTab->tnum;
1520 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1521 aRoot[++cnt] = pIdx->tnum;
1524 aRoot[0] = cnt;
1526 /* Make sure sufficient number of registers have been allocated */
1527 pParse->nMem = MAX( pParse->nMem, 8+mxIdx );
1528 sqlite3ClearTempRegCache(pParse);
1530 /* Do the b-tree integrity checks */
1531 sqlite3VdbeAddOp4(v, OP_IntegrityCk, 2, cnt, 1, (char*)aRoot,P4_INTARRAY);
1532 sqlite3VdbeChangeP5(v, (u8)i);
1533 addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); VdbeCoverage(v);
1534 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0,
1535 sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zDbSName),
1536 P4_DYNAMIC);
1537 sqlite3VdbeAddOp3(v, OP_Concat, 2, 3, 3);
1538 integrityCheckResultRow(v);
1539 sqlite3VdbeJumpHere(v, addr);
1541 /* Make sure all the indices are constructed correctly.
1543 for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
1544 Table *pTab = sqliteHashData(x);
1545 Index *pIdx, *pPk;
1546 Index *pPrior = 0;
1547 int loopTop;
1548 int iDataCur, iIdxCur;
1549 int r1 = -1;
1551 if( pTab->tnum<1 ) continue; /* Skip VIEWs or VIRTUAL TABLEs */
1552 pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
1553 sqlite3ExprCacheClear(pParse);
1554 sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
1555 1, 0, &iDataCur, &iIdxCur);
1556 /* reg[7] counts the number of entries in the table.
1557 ** reg[8+i] counts the number of entries in the i-th index
1559 sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
1560 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1561 sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
1563 assert( pParse->nMem>=8+j );
1564 assert( sqlite3NoTempsInRange(pParse,1,7+j) );
1565 sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
1566 loopTop = sqlite3VdbeAddOp2(v, OP_AddImm, 7, 1);
1567 if( !isQuick ){
1568 /* Sanity check on record header decoding */
1569 sqlite3VdbeAddOp3(v, OP_Column, iDataCur, pTab->nCol-1, 3);
1570 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1572 /* Verify that all NOT NULL columns really are NOT NULL */
1573 for(j=0; j<pTab->nCol; j++){
1574 char *zErr;
1575 int jmp2;
1576 if( j==pTab->iPKey ) continue;
1577 if( pTab->aCol[j].notNull==0 ) continue;
1578 sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, j, 3);
1579 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1580 jmp2 = sqlite3VdbeAddOp1(v, OP_NotNull, 3); VdbeCoverage(v);
1581 zErr = sqlite3MPrintf(db, "NULL value in %s.%s", pTab->zName,
1582 pTab->aCol[j].zName);
1583 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1584 integrityCheckResultRow(v);
1585 sqlite3VdbeJumpHere(v, jmp2);
1587 /* Verify CHECK constraints */
1588 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1589 ExprList *pCheck = sqlite3ExprListDup(db, pTab->pCheck, 0);
1590 if( db->mallocFailed==0 ){
1591 int addrCkFault = sqlite3VdbeMakeLabel(v);
1592 int addrCkOk = sqlite3VdbeMakeLabel(v);
1593 char *zErr;
1594 int k;
1595 pParse->iSelfTab = iDataCur + 1;
1596 sqlite3ExprCachePush(pParse);
1597 for(k=pCheck->nExpr-1; k>0; k--){
1598 sqlite3ExprIfFalse(pParse, pCheck->a[k].pExpr, addrCkFault, 0);
1600 sqlite3ExprIfTrue(pParse, pCheck->a[0].pExpr, addrCkOk,
1601 SQLITE_JUMPIFNULL);
1602 sqlite3VdbeResolveLabel(v, addrCkFault);
1603 pParse->iSelfTab = 0;
1604 zErr = sqlite3MPrintf(db, "CHECK constraint failed in %s",
1605 pTab->zName);
1606 sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, zErr, P4_DYNAMIC);
1607 integrityCheckResultRow(v);
1608 sqlite3VdbeResolveLabel(v, addrCkOk);
1609 sqlite3ExprCachePop(pParse);
1611 sqlite3ExprListDelete(db, pCheck);
1613 if( !isQuick ){ /* Omit the remaining tests for quick_check */
1614 /* Validate index entries for the current row */
1615 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1616 int jmp2, jmp3, jmp4, jmp5;
1617 int ckUniq = sqlite3VdbeMakeLabel(v);
1618 if( pPk==pIdx ) continue;
1619 r1 = sqlite3GenerateIndexKey(pParse, pIdx, iDataCur, 0, 0, &jmp3,
1620 pPrior, r1);
1621 pPrior = pIdx;
1622 sqlite3VdbeAddOp2(v, OP_AddImm, 8+j, 1);/* increment entry count */
1623 /* Verify that an index entry exists for the current table row */
1624 jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, iIdxCur+j, ckUniq, r1,
1625 pIdx->nColumn); VdbeCoverage(v);
1626 sqlite3VdbeLoadString(v, 3, "row ");
1627 sqlite3VdbeAddOp3(v, OP_Concat, 7, 3, 3);
1628 sqlite3VdbeLoadString(v, 4, " missing from index ");
1629 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1630 jmp5 = sqlite3VdbeLoadString(v, 4, pIdx->zName);
1631 sqlite3VdbeAddOp3(v, OP_Concat, 4, 3, 3);
1632 jmp4 = integrityCheckResultRow(v);
1633 sqlite3VdbeJumpHere(v, jmp2);
1634 /* For UNIQUE indexes, verify that only one entry exists with the
1635 ** current key. The entry is unique if (1) any column is NULL
1636 ** or (2) the next entry has a different key */
1637 if( IsUniqueIndex(pIdx) ){
1638 int uniqOk = sqlite3VdbeMakeLabel(v);
1639 int jmp6;
1640 int kk;
1641 for(kk=0; kk<pIdx->nKeyCol; kk++){
1642 int iCol = pIdx->aiColumn[kk];
1643 assert( iCol!=XN_ROWID && iCol<pTab->nCol );
1644 if( iCol>=0 && pTab->aCol[iCol].notNull ) continue;
1645 sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk);
1646 VdbeCoverage(v);
1648 jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v);
1649 sqlite3VdbeGoto(v, uniqOk);
1650 sqlite3VdbeJumpHere(v, jmp6);
1651 sqlite3VdbeAddOp4Int(v, OP_IdxGT, iIdxCur+j, uniqOk, r1,
1652 pIdx->nKeyCol); VdbeCoverage(v);
1653 sqlite3VdbeLoadString(v, 3, "non-unique entry in index ");
1654 sqlite3VdbeGoto(v, jmp5);
1655 sqlite3VdbeResolveLabel(v, uniqOk);
1657 sqlite3VdbeJumpHere(v, jmp4);
1658 sqlite3ResolvePartIdxLabel(pParse, jmp3);
1661 sqlite3VdbeAddOp2(v, OP_Next, iDataCur, loopTop); VdbeCoverage(v);
1662 sqlite3VdbeJumpHere(v, loopTop-1);
1663 #ifndef SQLITE_OMIT_BTREECOUNT
1664 if( !isQuick ){
1665 sqlite3VdbeLoadString(v, 2, "wrong # of entries in index ");
1666 for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
1667 if( pPk==pIdx ) continue;
1668 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur+j, 3);
1669 addr = sqlite3VdbeAddOp3(v, OP_Eq, 8+j, 0, 3); VdbeCoverage(v);
1670 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1671 sqlite3VdbeLoadString(v, 4, pIdx->zName);
1672 sqlite3VdbeAddOp3(v, OP_Concat, 4, 2, 3);
1673 integrityCheckResultRow(v);
1674 sqlite3VdbeJumpHere(v, addr);
1677 #endif /* SQLITE_OMIT_BTREECOUNT */
1681 static const int iLn = VDBE_OFFSET_LINENO(2);
1682 static const VdbeOpList endCode[] = {
1683 { OP_AddImm, 1, 0, 0}, /* 0 */
1684 { OP_IfNotZero, 1, 4, 0}, /* 1 */
1685 { OP_String8, 0, 3, 0}, /* 2 */
1686 { OP_ResultRow, 3, 1, 0}, /* 3 */
1687 { OP_Halt, 0, 0, 0}, /* 4 */
1688 { OP_String8, 0, 3, 0}, /* 5 */
1689 { OP_Goto, 0, 3, 0}, /* 6 */
1691 VdbeOp *aOp;
1693 aOp = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn);
1694 if( aOp ){
1695 aOp[0].p2 = 1-mxErr;
1696 aOp[2].p4type = P4_STATIC;
1697 aOp[2].p4.z = "ok";
1698 aOp[5].p4type = P4_STATIC;
1699 aOp[5].p4.z = (char*)sqlite3ErrStr(SQLITE_CORRUPT);
1701 sqlite3VdbeChangeP3(v, 0, sqlite3VdbeCurrentAddr(v)-2);
1704 break;
1705 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
1707 #ifndef SQLITE_OMIT_UTF16
1709 ** PRAGMA encoding
1710 ** PRAGMA encoding = "utf-8"|"utf-16"|"utf-16le"|"utf-16be"
1712 ** In its first form, this pragma returns the encoding of the main
1713 ** database. If the database is not initialized, it is initialized now.
1715 ** The second form of this pragma is a no-op if the main database file
1716 ** has not already been initialized. In this case it sets the default
1717 ** encoding that will be used for the main database file if a new file
1718 ** is created. If an existing main database file is opened, then the
1719 ** default text encoding for the existing database is used.
1721 ** In all cases new databases created using the ATTACH command are
1722 ** created to use the same default text encoding as the main database. If
1723 ** the main database has not been initialized and/or created when ATTACH
1724 ** is executed, this is done before the ATTACH operation.
1726 ** In the second form this pragma sets the text encoding to be used in
1727 ** new database files created using this database handle. It is only
1728 ** useful if invoked immediately after the main database i
1730 case PragTyp_ENCODING: {
1731 static const struct EncName {
1732 char *zName;
1733 u8 enc;
1734 } encnames[] = {
1735 { "UTF8", SQLITE_UTF8 },
1736 { "UTF-8", SQLITE_UTF8 }, /* Must be element [1] */
1737 { "UTF-16le", SQLITE_UTF16LE }, /* Must be element [2] */
1738 { "UTF-16be", SQLITE_UTF16BE }, /* Must be element [3] */
1739 { "UTF16le", SQLITE_UTF16LE },
1740 { "UTF16be", SQLITE_UTF16BE },
1741 { "UTF-16", 0 }, /* SQLITE_UTF16NATIVE */
1742 { "UTF16", 0 }, /* SQLITE_UTF16NATIVE */
1743 { 0, 0 }
1745 const struct EncName *pEnc;
1746 if( !zRight ){ /* "PRAGMA encoding" */
1747 if( sqlite3ReadSchema(pParse) ) goto pragma_out;
1748 assert( encnames[SQLITE_UTF8].enc==SQLITE_UTF8 );
1749 assert( encnames[SQLITE_UTF16LE].enc==SQLITE_UTF16LE );
1750 assert( encnames[SQLITE_UTF16BE].enc==SQLITE_UTF16BE );
1751 returnSingleText(v, encnames[ENC(pParse->db)].zName);
1752 }else{ /* "PRAGMA encoding = XXX" */
1753 /* Only change the value of sqlite.enc if the database handle is not
1754 ** initialized. If the main database exists, the new sqlite.enc value
1755 ** will be overwritten when the schema is next loaded. If it does not
1756 ** already exists, it will be created to use the new encoding value.
1758 if(
1759 !(DbHasProperty(db, 0, DB_SchemaLoaded)) ||
1760 DbHasProperty(db, 0, DB_Empty)
1762 for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
1763 if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
1764 SCHEMA_ENC(db) = ENC(db) =
1765 pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
1766 break;
1769 if( !pEnc->zName ){
1770 sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
1775 break;
1776 #endif /* SQLITE_OMIT_UTF16 */
1778 #ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
1780 ** PRAGMA [schema.]schema_version
1781 ** PRAGMA [schema.]schema_version = <integer>
1783 ** PRAGMA [schema.]user_version
1784 ** PRAGMA [schema.]user_version = <integer>
1786 ** PRAGMA [schema.]freelist_count
1788 ** PRAGMA [schema.]data_version
1790 ** PRAGMA [schema.]application_id
1791 ** PRAGMA [schema.]application_id = <integer>
1793 ** The pragma's schema_version and user_version are used to set or get
1794 ** the value of the schema-version and user-version, respectively. Both
1795 ** the schema-version and the user-version are 32-bit signed integers
1796 ** stored in the database header.
1798 ** The schema-cookie is usually only manipulated internally by SQLite. It
1799 ** is incremented by SQLite whenever the database schema is modified (by
1800 ** creating or dropping a table or index). The schema version is used by
1801 ** SQLite each time a query is executed to ensure that the internal cache
1802 ** of the schema used when compiling the SQL query matches the schema of
1803 ** the database against which the compiled query is actually executed.
1804 ** Subverting this mechanism by using "PRAGMA schema_version" to modify
1805 ** the schema-version is potentially dangerous and may lead to program
1806 ** crashes or database corruption. Use with caution!
1808 ** The user-version is not used internally by SQLite. It may be used by
1809 ** applications for any purpose.
1811 case PragTyp_HEADER_VALUE: {
1812 int iCookie = pPragma->iArg; /* Which cookie to read or write */
1813 sqlite3VdbeUsesBtree(v, iDb);
1814 if( zRight && (pPragma->mPragFlg & PragFlg_ReadOnly)==0 ){
1815 /* Write the specified cookie value */
1816 static const VdbeOpList setCookie[] = {
1817 { OP_Transaction, 0, 1, 0}, /* 0 */
1818 { OP_SetCookie, 0, 0, 0}, /* 1 */
1820 VdbeOp *aOp;
1821 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(setCookie));
1822 aOp = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
1823 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1824 aOp[0].p1 = iDb;
1825 aOp[1].p1 = iDb;
1826 aOp[1].p2 = iCookie;
1827 aOp[1].p3 = sqlite3Atoi(zRight);
1828 }else{
1829 /* Read the specified cookie value */
1830 static const VdbeOpList readCookie[] = {
1831 { OP_Transaction, 0, 0, 0}, /* 0 */
1832 { OP_ReadCookie, 0, 1, 0}, /* 1 */
1833 { OP_ResultRow, 1, 1, 0}
1835 VdbeOp *aOp;
1836 sqlite3VdbeVerifyNoMallocRequired(v, ArraySize(readCookie));
1837 aOp = sqlite3VdbeAddOpList(v, ArraySize(readCookie),readCookie,0);
1838 if( ONLY_IF_REALLOC_STRESS(aOp==0) ) break;
1839 aOp[0].p1 = iDb;
1840 aOp[1].p1 = iDb;
1841 aOp[1].p3 = iCookie;
1842 sqlite3VdbeReusable(v);
1845 break;
1846 #endif /* SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS */
1848 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1850 ** PRAGMA compile_options
1852 ** Return the names of all compile-time options used in this build,
1853 ** one option per row.
1855 case PragTyp_COMPILE_OPTIONS: {
1856 int i = 0;
1857 const char *zOpt;
1858 pParse->nMem = 1;
1859 while( (zOpt = sqlite3_compileoption_get(i++))!=0 ){
1860 sqlite3VdbeLoadString(v, 1, zOpt);
1861 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
1863 sqlite3VdbeReusable(v);
1865 break;
1866 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1868 #ifndef SQLITE_OMIT_WAL
1870 ** PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
1872 ** Checkpoint the database.
1874 case PragTyp_WAL_CHECKPOINT: {
1875 int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
1876 int eMode = SQLITE_CHECKPOINT_PASSIVE;
1877 if( zRight ){
1878 if( sqlite3StrICmp(zRight, "full")==0 ){
1879 eMode = SQLITE_CHECKPOINT_FULL;
1880 }else if( sqlite3StrICmp(zRight, "restart")==0 ){
1881 eMode = SQLITE_CHECKPOINT_RESTART;
1882 }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
1883 eMode = SQLITE_CHECKPOINT_TRUNCATE;
1886 pParse->nMem = 3;
1887 sqlite3VdbeAddOp3(v, OP_Checkpoint, iBt, eMode, 1);
1888 sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
1890 break;
1893 ** PRAGMA wal_autocheckpoint
1894 ** PRAGMA wal_autocheckpoint = N
1896 ** Configure a database connection to automatically checkpoint a database
1897 ** after accumulating N frames in the log. Or query for the current value
1898 ** of N.
1900 case PragTyp_WAL_AUTOCHECKPOINT: {
1901 if( zRight ){
1902 sqlite3_wal_autocheckpoint(db, sqlite3Atoi(zRight));
1904 returnSingleInt(v,
1905 db->xWalCallback==sqlite3WalDefaultHook ?
1906 SQLITE_PTR_TO_INT(db->pWalArg) : 0);
1908 break;
1909 #endif
1912 ** PRAGMA shrink_memory
1914 ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
1915 ** connection on which it is invoked to free up as much memory as it
1916 ** can, by calling sqlite3_db_release_memory().
1918 case PragTyp_SHRINK_MEMORY: {
1919 sqlite3_db_release_memory(db);
1920 break;
1924 ** PRAGMA optimize
1925 ** PRAGMA optimize(MASK)
1926 ** PRAGMA schema.optimize
1927 ** PRAGMA schema.optimize(MASK)
1929 ** Attempt to optimize the database. All schemas are optimized in the first
1930 ** two forms, and only the specified schema is optimized in the latter two.
1932 ** The details of optimizations performed by this pragma are expected
1933 ** to change and improve over time. Applications should anticipate that
1934 ** this pragma will perform new optimizations in future releases.
1936 ** The optional argument is a bitmask of optimizations to perform:
1938 ** 0x0001 Debugging mode. Do not actually perform any optimizations
1939 ** but instead return one line of text for each optimization
1940 ** that would have been done. Off by default.
1942 ** 0x0002 Run ANALYZE on tables that might benefit. On by default.
1943 ** See below for additional information.
1945 ** 0x0004 (Not yet implemented) Record usage and performance
1946 ** information from the current session in the
1947 ** database file so that it will be available to "optimize"
1948 ** pragmas run by future database connections.
1950 ** 0x0008 (Not yet implemented) Create indexes that might have
1951 ** been helpful to recent queries
1953 ** The default MASK is and always shall be 0xfffe. 0xfffe means perform all
1954 ** of the optimizations listed above except Debug Mode, including new
1955 ** optimizations that have not yet been invented. If new optimizations are
1956 ** ever added that should be off by default, those off-by-default
1957 ** optimizations will have bitmasks of 0x10000 or larger.
1959 ** DETERMINATION OF WHEN TO RUN ANALYZE
1961 ** In the current implementation, a table is analyzed if only if all of
1962 ** the following are true:
1964 ** (1) MASK bit 0x02 is set.
1966 ** (2) The query planner used sqlite_stat1-style statistics for one or
1967 ** more indexes of the table at some point during the lifetime of
1968 ** the current connection.
1970 ** (3) One or more indexes of the table are currently unanalyzed OR
1971 ** the number of rows in the table has increased by 25 times or more
1972 ** since the last time ANALYZE was run.
1974 ** The rules for when tables are analyzed are likely to change in
1975 ** future releases.
1977 case PragTyp_OPTIMIZE: {
1978 int iDbLast; /* Loop termination point for the schema loop */
1979 int iTabCur; /* Cursor for a table whose size needs checking */
1980 HashElem *k; /* Loop over tables of a schema */
1981 Schema *pSchema; /* The current schema */
1982 Table *pTab; /* A table in the schema */
1983 Index *pIdx; /* An index of the table */
1984 LogEst szThreshold; /* Size threshold above which reanalysis is needd */
1985 char *zSubSql; /* SQL statement for the OP_SqlExec opcode */
1986 u32 opMask; /* Mask of operations to perform */
1988 if( zRight ){
1989 opMask = (u32)sqlite3Atoi(zRight);
1990 if( (opMask & 0x02)==0 ) break;
1991 }else{
1992 opMask = 0xfffe;
1994 iTabCur = pParse->nTab++;
1995 for(iDbLast = zDb?iDb:db->nDb-1; iDb<=iDbLast; iDb++){
1996 if( iDb==1 ) continue;
1997 sqlite3CodeVerifySchema(pParse, iDb);
1998 pSchema = db->aDb[iDb].pSchema;
1999 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
2000 pTab = (Table*)sqliteHashData(k);
2002 /* If table pTab has not been used in a way that would benefit from
2003 ** having analysis statistics during the current session, then skip it.
2004 ** This also has the effect of skipping virtual tables and views */
2005 if( (pTab->tabFlags & TF_StatsUsed)==0 ) continue;
2007 /* Reanalyze if the table is 25 times larger than the last analysis */
2008 szThreshold = pTab->nRowLogEst + 46; assert( sqlite3LogEst(25)==46 );
2009 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2010 if( !pIdx->hasStat1 ){
2011 szThreshold = 0; /* Always analyze if any index lacks statistics */
2012 break;
2015 if( szThreshold ){
2016 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
2017 sqlite3VdbeAddOp3(v, OP_IfSmaller, iTabCur,
2018 sqlite3VdbeCurrentAddr(v)+2+(opMask&1), szThreshold);
2019 VdbeCoverage(v);
2021 zSubSql = sqlite3MPrintf(db, "ANALYZE \"%w\".\"%w\"",
2022 db->aDb[iDb].zDbSName, pTab->zName);
2023 if( opMask & 0x01 ){
2024 int r1 = sqlite3GetTempReg(pParse);
2025 sqlite3VdbeAddOp4(v, OP_String8, 0, r1, 0, zSubSql, P4_DYNAMIC);
2026 sqlite3VdbeAddOp2(v, OP_ResultRow, r1, 1);
2027 }else{
2028 sqlite3VdbeAddOp4(v, OP_SqlExec, 0, 0, 0, zSubSql, P4_DYNAMIC);
2032 sqlite3VdbeAddOp0(v, OP_Expire);
2033 break;
2037 ** PRAGMA busy_timeout
2038 ** PRAGMA busy_timeout = N
2040 ** Call sqlite3_busy_timeout(db, N). Return the current timeout value
2041 ** if one is set. If no busy handler or a different busy handler is set
2042 ** then 0 is returned. Setting the busy_timeout to 0 or negative
2043 ** disables the timeout.
2045 /*case PragTyp_BUSY_TIMEOUT*/ default: {
2046 assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
2047 if( zRight ){
2048 sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
2050 returnSingleInt(v, db->busyTimeout);
2051 break;
2055 ** PRAGMA soft_heap_limit
2056 ** PRAGMA soft_heap_limit = N
2058 ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
2059 ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
2060 ** specified and is a non-negative integer.
2061 ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
2062 ** returns the same integer that would be returned by the
2063 ** sqlite3_soft_heap_limit64(-1) C-language function.
2065 case PragTyp_SOFT_HEAP_LIMIT: {
2066 sqlite3_int64 N;
2067 if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
2068 sqlite3_soft_heap_limit64(N);
2070 returnSingleInt(v, sqlite3_soft_heap_limit64(-1));
2071 break;
2075 ** PRAGMA threads
2076 ** PRAGMA threads = N
2078 ** Configure the maximum number of worker threads. Return the new
2079 ** maximum, which might be less than requested.
2081 case PragTyp_THREADS: {
2082 sqlite3_int64 N;
2083 if( zRight
2084 && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK
2085 && N>=0
2087 sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, (int)(N&0x7fffffff));
2089 returnSingleInt(v, sqlite3_limit(db, SQLITE_LIMIT_WORKER_THREADS, -1));
2090 break;
2093 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
2095 ** Report the current state of file logs for all databases
2097 case PragTyp_LOCK_STATUS: {
2098 static const char *const azLockName[] = {
2099 "unlocked", "shared", "reserved", "pending", "exclusive"
2101 int i;
2102 pParse->nMem = 2;
2103 for(i=0; i<db->nDb; i++){
2104 Btree *pBt;
2105 const char *zState = "unknown";
2106 int j;
2107 if( db->aDb[i].zDbSName==0 ) continue;
2108 pBt = db->aDb[i].pBt;
2109 if( pBt==0 || sqlite3BtreePager(pBt)==0 ){
2110 zState = "closed";
2111 }else if( sqlite3_file_control(db, i ? db->aDb[i].zDbSName : 0,
2112 SQLITE_FCNTL_LOCKSTATE, &j)==SQLITE_OK ){
2113 zState = azLockName[j];
2115 sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
2117 break;
2119 #endif
2121 #ifdef SQLITE_HAS_CODEC
2122 case PragTyp_KEY: {
2123 if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
2124 break;
2126 case PragTyp_REKEY: {
2127 if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
2128 break;
2130 case PragTyp_HEXKEY: {
2131 if( zRight ){
2132 u8 iByte;
2133 int i;
2134 char zKey[40];
2135 for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
2136 iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
2137 if( (i&1)!=0 ) zKey[i/2] = iByte;
2139 if( (zLeft[3] & 0xf)==0xb ){
2140 sqlite3_key_v2(db, zDb, zKey, i/2);
2141 }else{
2142 sqlite3_rekey_v2(db, zDb, zKey, i/2);
2145 break;
2147 #endif
2148 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
2149 case PragTyp_ACTIVATE_EXTENSIONS: if( zRight ){
2150 #ifdef SQLITE_HAS_CODEC
2151 if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){
2152 sqlite3_activate_see(&zRight[4]);
2154 #endif
2155 #ifdef SQLITE_ENABLE_CEROD
2156 if( sqlite3StrNICmp(zRight, "cerod-", 6)==0 ){
2157 sqlite3_activate_cerod(&zRight[6]);
2159 #endif
2161 break;
2162 #endif
2164 } /* End of the PRAGMA switch */
2166 /* The following block is a no-op unless SQLITE_DEBUG is defined. Its only
2167 ** purpose is to execute assert() statements to verify that if the
2168 ** PragFlg_NoColumns1 flag is set and the caller specified an argument
2169 ** to the PRAGMA, the implementation has not added any OP_ResultRow
2170 ** instructions to the VM. */
2171 if( (pPragma->mPragFlg & PragFlg_NoColumns1) && zRight ){
2172 sqlite3VdbeVerifyNoResultRow(v);
2175 pragma_out:
2176 sqlite3DbFree(db, zLeft);
2177 sqlite3DbFree(db, zRight);
2179 #ifndef SQLITE_OMIT_VIRTUALTABLE
2180 /*****************************************************************************
2181 ** Implementation of an eponymous virtual table that runs a pragma.
2184 typedef struct PragmaVtab PragmaVtab;
2185 typedef struct PragmaVtabCursor PragmaVtabCursor;
2186 struct PragmaVtab {
2187 sqlite3_vtab base; /* Base class. Must be first */
2188 sqlite3 *db; /* The database connection to which it belongs */
2189 const PragmaName *pName; /* Name of the pragma */
2190 u8 nHidden; /* Number of hidden columns */
2191 u8 iHidden; /* Index of the first hidden column */
2193 struct PragmaVtabCursor {
2194 sqlite3_vtab_cursor base; /* Base class. Must be first */
2195 sqlite3_stmt *pPragma; /* The pragma statement to run */
2196 sqlite_int64 iRowid; /* Current rowid */
2197 char *azArg[2]; /* Value of the argument and schema */
2201 ** Pragma virtual table module xConnect method.
2203 static int pragmaVtabConnect(
2204 sqlite3 *db,
2205 void *pAux,
2206 int argc, const char *const*argv,
2207 sqlite3_vtab **ppVtab,
2208 char **pzErr
2210 const PragmaName *pPragma = (const PragmaName*)pAux;
2211 PragmaVtab *pTab = 0;
2212 int rc;
2213 int i, j;
2214 char cSep = '(';
2215 StrAccum acc;
2216 char zBuf[200];
2218 UNUSED_PARAMETER(argc);
2219 UNUSED_PARAMETER(argv);
2220 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
2221 sqlite3_str_appendall(&acc, "CREATE TABLE x");
2222 for(i=0, j=pPragma->iPragCName; i<pPragma->nPragCName; i++, j++){
2223 sqlite3_str_appendf(&acc, "%c\"%s\"", cSep, pragCName[j]);
2224 cSep = ',';
2226 if( i==0 ){
2227 sqlite3_str_appendf(&acc, "(\"%s\"", pPragma->zName);
2228 cSep = ',';
2229 i++;
2231 j = 0;
2232 if( pPragma->mPragFlg & PragFlg_Result1 ){
2233 sqlite3_str_appendall(&acc, ",arg HIDDEN");
2234 j++;
2236 if( pPragma->mPragFlg & (PragFlg_SchemaOpt|PragFlg_SchemaReq) ){
2237 sqlite3_str_appendall(&acc, ",schema HIDDEN");
2238 j++;
2240 sqlite3_str_append(&acc, ")", 1);
2241 sqlite3StrAccumFinish(&acc);
2242 assert( strlen(zBuf) < sizeof(zBuf)-1 );
2243 rc = sqlite3_declare_vtab(db, zBuf);
2244 if( rc==SQLITE_OK ){
2245 pTab = (PragmaVtab*)sqlite3_malloc(sizeof(PragmaVtab));
2246 if( pTab==0 ){
2247 rc = SQLITE_NOMEM;
2248 }else{
2249 memset(pTab, 0, sizeof(PragmaVtab));
2250 pTab->pName = pPragma;
2251 pTab->db = db;
2252 pTab->iHidden = i;
2253 pTab->nHidden = j;
2255 }else{
2256 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
2259 *ppVtab = (sqlite3_vtab*)pTab;
2260 return rc;
2264 ** Pragma virtual table module xDisconnect method.
2266 static int pragmaVtabDisconnect(sqlite3_vtab *pVtab){
2267 PragmaVtab *pTab = (PragmaVtab*)pVtab;
2268 sqlite3_free(pTab);
2269 return SQLITE_OK;
2272 /* Figure out the best index to use to search a pragma virtual table.
2274 ** There are not really any index choices. But we want to encourage the
2275 ** query planner to give == constraints on as many hidden parameters as
2276 ** possible, and especially on the first hidden parameter. So return a
2277 ** high cost if hidden parameters are unconstrained.
2279 static int pragmaVtabBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
2280 PragmaVtab *pTab = (PragmaVtab*)tab;
2281 const struct sqlite3_index_constraint *pConstraint;
2282 int i, j;
2283 int seen[2];
2285 pIdxInfo->estimatedCost = (double)1;
2286 if( pTab->nHidden==0 ){ return SQLITE_OK; }
2287 pConstraint = pIdxInfo->aConstraint;
2288 seen[0] = 0;
2289 seen[1] = 0;
2290 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
2291 if( pConstraint->usable==0 ) continue;
2292 if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
2293 if( pConstraint->iColumn < pTab->iHidden ) continue;
2294 j = pConstraint->iColumn - pTab->iHidden;
2295 assert( j < 2 );
2296 seen[j] = i+1;
2298 if( seen[0]==0 ){
2299 pIdxInfo->estimatedCost = (double)2147483647;
2300 pIdxInfo->estimatedRows = 2147483647;
2301 return SQLITE_OK;
2303 j = seen[0]-1;
2304 pIdxInfo->aConstraintUsage[j].argvIndex = 1;
2305 pIdxInfo->aConstraintUsage[j].omit = 1;
2306 if( seen[1]==0 ) return SQLITE_OK;
2307 pIdxInfo->estimatedCost = (double)20;
2308 pIdxInfo->estimatedRows = 20;
2309 j = seen[1]-1;
2310 pIdxInfo->aConstraintUsage[j].argvIndex = 2;
2311 pIdxInfo->aConstraintUsage[j].omit = 1;
2312 return SQLITE_OK;
2315 /* Create a new cursor for the pragma virtual table */
2316 static int pragmaVtabOpen(sqlite3_vtab *pVtab, sqlite3_vtab_cursor **ppCursor){
2317 PragmaVtabCursor *pCsr;
2318 pCsr = (PragmaVtabCursor*)sqlite3_malloc(sizeof(*pCsr));
2319 if( pCsr==0 ) return SQLITE_NOMEM;
2320 memset(pCsr, 0, sizeof(PragmaVtabCursor));
2321 pCsr->base.pVtab = pVtab;
2322 *ppCursor = &pCsr->base;
2323 return SQLITE_OK;
2326 /* Clear all content from pragma virtual table cursor. */
2327 static void pragmaVtabCursorClear(PragmaVtabCursor *pCsr){
2328 int i;
2329 sqlite3_finalize(pCsr->pPragma);
2330 pCsr->pPragma = 0;
2331 for(i=0; i<ArraySize(pCsr->azArg); i++){
2332 sqlite3_free(pCsr->azArg[i]);
2333 pCsr->azArg[i] = 0;
2337 /* Close a pragma virtual table cursor */
2338 static int pragmaVtabClose(sqlite3_vtab_cursor *cur){
2339 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)cur;
2340 pragmaVtabCursorClear(pCsr);
2341 sqlite3_free(pCsr);
2342 return SQLITE_OK;
2345 /* Advance the pragma virtual table cursor to the next row */
2346 static int pragmaVtabNext(sqlite3_vtab_cursor *pVtabCursor){
2347 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2348 int rc = SQLITE_OK;
2350 /* Increment the xRowid value */
2351 pCsr->iRowid++;
2352 assert( pCsr->pPragma );
2353 if( SQLITE_ROW!=sqlite3_step(pCsr->pPragma) ){
2354 rc = sqlite3_finalize(pCsr->pPragma);
2355 pCsr->pPragma = 0;
2356 pragmaVtabCursorClear(pCsr);
2358 return rc;
2362 ** Pragma virtual table module xFilter method.
2364 static int pragmaVtabFilter(
2365 sqlite3_vtab_cursor *pVtabCursor,
2366 int idxNum, const char *idxStr,
2367 int argc, sqlite3_value **argv
2369 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2370 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2371 int rc;
2372 int i, j;
2373 StrAccum acc;
2374 char *zSql;
2376 UNUSED_PARAMETER(idxNum);
2377 UNUSED_PARAMETER(idxStr);
2378 pragmaVtabCursorClear(pCsr);
2379 j = (pTab->pName->mPragFlg & PragFlg_Result1)!=0 ? 0 : 1;
2380 for(i=0; i<argc; i++, j++){
2381 const char *zText = (const char*)sqlite3_value_text(argv[i]);
2382 assert( j<ArraySize(pCsr->azArg) );
2383 assert( pCsr->azArg[j]==0 );
2384 if( zText ){
2385 pCsr->azArg[j] = sqlite3_mprintf("%s", zText);
2386 if( pCsr->azArg[j]==0 ){
2387 return SQLITE_NOMEM;
2391 sqlite3StrAccumInit(&acc, 0, 0, 0, pTab->db->aLimit[SQLITE_LIMIT_SQL_LENGTH]);
2392 sqlite3_str_appendall(&acc, "PRAGMA ");
2393 if( pCsr->azArg[1] ){
2394 sqlite3_str_appendf(&acc, "%Q.", pCsr->azArg[1]);
2396 sqlite3_str_appendall(&acc, pTab->pName->zName);
2397 if( pCsr->azArg[0] ){
2398 sqlite3_str_appendf(&acc, "=%Q", pCsr->azArg[0]);
2400 zSql = sqlite3StrAccumFinish(&acc);
2401 if( zSql==0 ) return SQLITE_NOMEM;
2402 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pPragma, 0);
2403 sqlite3_free(zSql);
2404 if( rc!=SQLITE_OK ){
2405 pTab->base.zErrMsg = sqlite3_mprintf("%s", sqlite3_errmsg(pTab->db));
2406 return rc;
2408 return pragmaVtabNext(pVtabCursor);
2412 ** Pragma virtual table module xEof method.
2414 static int pragmaVtabEof(sqlite3_vtab_cursor *pVtabCursor){
2415 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2416 return (pCsr->pPragma==0);
2419 /* The xColumn method simply returns the corresponding column from
2420 ** the PRAGMA.
2422 static int pragmaVtabColumn(
2423 sqlite3_vtab_cursor *pVtabCursor,
2424 sqlite3_context *ctx,
2425 int i
2427 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2428 PragmaVtab *pTab = (PragmaVtab*)(pVtabCursor->pVtab);
2429 if( i<pTab->iHidden ){
2430 sqlite3_result_value(ctx, sqlite3_column_value(pCsr->pPragma, i));
2431 }else{
2432 sqlite3_result_text(ctx, pCsr->azArg[i-pTab->iHidden],-1,SQLITE_TRANSIENT);
2434 return SQLITE_OK;
2438 ** Pragma virtual table module xRowid method.
2440 static int pragmaVtabRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *p){
2441 PragmaVtabCursor *pCsr = (PragmaVtabCursor*)pVtabCursor;
2442 *p = pCsr->iRowid;
2443 return SQLITE_OK;
2446 /* The pragma virtual table object */
2447 static const sqlite3_module pragmaVtabModule = {
2448 0, /* iVersion */
2449 0, /* xCreate - create a table */
2450 pragmaVtabConnect, /* xConnect - connect to an existing table */
2451 pragmaVtabBestIndex, /* xBestIndex - Determine search strategy */
2452 pragmaVtabDisconnect, /* xDisconnect - Disconnect from a table */
2453 0, /* xDestroy - Drop a table */
2454 pragmaVtabOpen, /* xOpen - open a cursor */
2455 pragmaVtabClose, /* xClose - close a cursor */
2456 pragmaVtabFilter, /* xFilter - configure scan constraints */
2457 pragmaVtabNext, /* xNext - advance a cursor */
2458 pragmaVtabEof, /* xEof */
2459 pragmaVtabColumn, /* xColumn - read data */
2460 pragmaVtabRowid, /* xRowid - read data */
2461 0, /* xUpdate - write data */
2462 0, /* xBegin - begin transaction */
2463 0, /* xSync - sync transaction */
2464 0, /* xCommit - commit transaction */
2465 0, /* xRollback - rollback transaction */
2466 0, /* xFindFunction - function overloading */
2467 0, /* xRename - rename the table */
2468 0, /* xSavepoint */
2469 0, /* xRelease */
2470 0 /* xRollbackTo */
2474 ** Check to see if zTabName is really the name of a pragma. If it is,
2475 ** then register an eponymous virtual table for that pragma and return
2476 ** a pointer to the Module object for the new virtual table.
2478 Module *sqlite3PragmaVtabRegister(sqlite3 *db, const char *zName){
2479 const PragmaName *pName;
2480 assert( sqlite3_strnicmp(zName, "pragma_", 7)==0 );
2481 pName = pragmaLocate(zName+7);
2482 if( pName==0 ) return 0;
2483 if( (pName->mPragFlg & (PragFlg_Result0|PragFlg_Result1))==0 ) return 0;
2484 assert( sqlite3HashFind(&db->aModule, zName)==0 );
2485 return sqlite3VtabCreateModule(db, zName, &pragmaVtabModule, (void*)pName, 0);
2488 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2490 #endif /* SQLITE_OMIT_PRAGMA */