Another minor optimization to OP_Transaction.
[sqlite.git] / ext / fts1 / fts1_porter.c
blob1d26236681a05feab0b72eaece40902003d0bbcb
1 /*
2 ** 2006 September 30
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Implementation of the full-text-search tokenizer that implements
13 ** a Porter stemmer.
17 ** The code in this file is only compiled if:
19 ** * The FTS1 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS1 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
28 #include <assert.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <string.h>
32 #include <ctype.h>
34 #include "fts1_tokenizer.h"
37 ** Class derived from sqlite3_tokenizer
39 typedef struct porter_tokenizer {
40 sqlite3_tokenizer base; /* Base class */
41 } porter_tokenizer;
44 ** Class derived from sqlit3_tokenizer_cursor
46 typedef struct porter_tokenizer_cursor {
47 sqlite3_tokenizer_cursor base;
48 const char *zInput; /* input we are tokenizing */
49 int nInput; /* size of the input */
50 int iOffset; /* current position in zInput */
51 int iToken; /* index of next token to be returned */
52 char *zToken; /* storage for current token */
53 int nAllocated; /* space allocated to zToken buffer */
54 } porter_tokenizer_cursor;
57 /* Forward declaration */
58 static const sqlite3_tokenizer_module porterTokenizerModule;
62 ** Create a new tokenizer instance.
64 static int porterCreate(
65 int argc, const char * const *argv,
66 sqlite3_tokenizer **ppTokenizer
68 porter_tokenizer *t;
69 t = (porter_tokenizer *) calloc(sizeof(*t), 1);
70 if( t==NULL ) return SQLITE_NOMEM;
72 *ppTokenizer = &t->base;
73 return SQLITE_OK;
77 ** Destroy a tokenizer
79 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
80 free(pTokenizer);
81 return SQLITE_OK;
85 ** Prepare to begin tokenizing a particular string. The input
86 ** string to be tokenized is zInput[0..nInput-1]. A cursor
87 ** used to incrementally tokenize this string is returned in
88 ** *ppCursor.
90 static int porterOpen(
91 sqlite3_tokenizer *pTokenizer, /* The tokenizer */
92 const char *zInput, int nInput, /* String to be tokenized */
93 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
95 porter_tokenizer_cursor *c;
97 c = (porter_tokenizer_cursor *) malloc(sizeof(*c));
98 if( c==NULL ) return SQLITE_NOMEM;
100 c->zInput = zInput;
101 if( zInput==0 ){
102 c->nInput = 0;
103 }else if( nInput<0 ){
104 c->nInput = (int)strlen(zInput);
105 }else{
106 c->nInput = nInput;
108 c->iOffset = 0; /* start tokenizing at the beginning */
109 c->iToken = 0;
110 c->zToken = NULL; /* no space allocated, yet. */
111 c->nAllocated = 0;
113 *ppCursor = &c->base;
114 return SQLITE_OK;
118 ** Close a tokenization cursor previously opened by a call to
119 ** porterOpen() above.
121 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
122 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
123 free(c->zToken);
124 free(c);
125 return SQLITE_OK;
128 ** Vowel or consonant
130 static const char cType[] = {
131 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
132 1, 1, 1, 2, 1
136 ** isConsonant() and isVowel() determine if their first character in
137 ** the string they point to is a consonant or a vowel, according
138 ** to Porter ruls.
140 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
141 ** 'Y' is a consonant unless it follows another consonant,
142 ** in which case it is a vowel.
144 ** In these routine, the letters are in reverse order. So the 'y' rule
145 ** is that 'y' is a consonant unless it is followed by another
146 ** consonent.
148 static int isVowel(const char*);
149 static int isConsonant(const char *z){
150 int j;
151 char x = *z;
152 if( x==0 ) return 0;
153 assert( x>='a' && x<='z' );
154 j = cType[x-'a'];
155 if( j<2 ) return j;
156 return z[1]==0 || isVowel(z + 1);
158 static int isVowel(const char *z){
159 int j;
160 char x = *z;
161 if( x==0 ) return 0;
162 assert( x>='a' && x<='z' );
163 j = cType[x-'a'];
164 if( j<2 ) return 1-j;
165 return isConsonant(z + 1);
169 ** Let any sequence of one or more vowels be represented by V and let
170 ** C be sequence of one or more consonants. Then every word can be
171 ** represented as:
173 ** [C] (VC){m} [V]
175 ** In prose: A word is an optional consonant followed by zero or
176 ** vowel-consonant pairs followed by an optional vowel. "m" is the
177 ** number of vowel consonant pairs. This routine computes the value
178 ** of m for the first i bytes of a word.
180 ** Return true if the m-value for z is 1 or more. In other words,
181 ** return true if z contains at least one vowel that is followed
182 ** by a consonant.
184 ** In this routine z[] is in reverse order. So we are really looking
185 ** for an instance of of a consonant followed by a vowel.
187 static int m_gt_0(const char *z){
188 while( isVowel(z) ){ z++; }
189 if( *z==0 ) return 0;
190 while( isConsonant(z) ){ z++; }
191 return *z!=0;
194 /* Like mgt0 above except we are looking for a value of m which is
195 ** exactly 1
197 static int m_eq_1(const char *z){
198 while( isVowel(z) ){ z++; }
199 if( *z==0 ) return 0;
200 while( isConsonant(z) ){ z++; }
201 if( *z==0 ) return 0;
202 while( isVowel(z) ){ z++; }
203 if( *z==0 ) return 1;
204 while( isConsonant(z) ){ z++; }
205 return *z==0;
208 /* Like mgt0 above except we are looking for a value of m>1 instead
209 ** or m>0
211 static int m_gt_1(const char *z){
212 while( isVowel(z) ){ z++; }
213 if( *z==0 ) return 0;
214 while( isConsonant(z) ){ z++; }
215 if( *z==0 ) return 0;
216 while( isVowel(z) ){ z++; }
217 if( *z==0 ) return 0;
218 while( isConsonant(z) ){ z++; }
219 return *z!=0;
223 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
225 static int hasVowel(const char *z){
226 while( isConsonant(z) ){ z++; }
227 return *z!=0;
231 ** Return TRUE if the word ends in a double consonant.
233 ** The text is reversed here. So we are really looking at
234 ** the first two characters of z[].
236 static int doubleConsonant(const char *z){
237 return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
241 ** Return TRUE if the word ends with three letters which
242 ** are consonant-vowel-consonent and where the final consonant
243 ** is not 'w', 'x', or 'y'.
245 ** The word is reversed here. So we are really checking the
246 ** first three letters and the first one cannot be in [wxy].
248 static int star_oh(const char *z){
249 return
250 z[0]!=0 && isConsonant(z) &&
251 z[0]!='w' && z[0]!='x' && z[0]!='y' &&
252 z[1]!=0 && isVowel(z+1) &&
253 z[2]!=0 && isConsonant(z+2);
257 ** If the word ends with zFrom and xCond() is true for the stem
258 ** of the word that preceeds the zFrom ending, then change the
259 ** ending to zTo.
261 ** The input word *pz and zFrom are both in reverse order. zTo
262 ** is in normal order.
264 ** Return TRUE if zFrom matches. Return FALSE if zFrom does not
265 ** match. Not that TRUE is returned even if xCond() fails and
266 ** no substitution occurs.
268 static int stem(
269 char **pz, /* The word being stemmed (Reversed) */
270 const char *zFrom, /* If the ending matches this... (Reversed) */
271 const char *zTo, /* ... change the ending to this (not reversed) */
272 int (*xCond)(const char*) /* Condition that must be true */
274 char *z = *pz;
275 while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
276 if( *zFrom!=0 ) return 0;
277 if( xCond && !xCond(z) ) return 1;
278 while( *zTo ){
279 *(--z) = *(zTo++);
281 *pz = z;
282 return 1;
286 ** This is the fallback stemmer used when the porter stemmer is
287 ** inappropriate. The input word is copied into the output with
288 ** US-ASCII case folding. If the input word is too long (more
289 ** than 20 bytes if it contains no digits or more than 6 bytes if
290 ** it contains digits) then word is truncated to 20 or 6 bytes
291 ** by taking 10 or 3 bytes from the beginning and end.
293 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
294 int i, mx, j;
295 int hasDigit = 0;
296 for(i=0; i<nIn; i++){
297 int c = zIn[i];
298 if( c>='A' && c<='Z' ){
299 zOut[i] = c - 'A' + 'a';
300 }else{
301 if( c>='0' && c<='9' ) hasDigit = 1;
302 zOut[i] = c;
305 mx = hasDigit ? 3 : 10;
306 if( nIn>mx*2 ){
307 for(j=mx, i=nIn-mx; i<nIn; i++, j++){
308 zOut[j] = zOut[i];
310 i = j;
312 zOut[i] = 0;
313 *pnOut = i;
318 ** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
319 ** zOut is at least big enough to hold nIn bytes. Write the actual
320 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
322 ** Any upper-case characters in the US-ASCII character set ([A-Z])
323 ** are converted to lower case. Upper-case UTF characters are
324 ** unchanged.
326 ** Words that are longer than about 20 bytes are stemmed by retaining
327 ** a few bytes from the beginning and the end of the word. If the
328 ** word contains digits, 3 bytes are taken from the beginning and
329 ** 3 bytes from the end. For long words without digits, 10 bytes
330 ** are taken from each end. US-ASCII case folding still applies.
332 ** If the input word contains not digits but does characters not
333 ** in [a-zA-Z] then no stemming is attempted and this routine just
334 ** copies the input into the input into the output with US-ASCII
335 ** case folding.
337 ** Stemming never increases the length of the word. So there is
338 ** no chance of overflowing the zOut buffer.
340 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
341 int i, j, c;
342 char zReverse[28];
343 char *z, *z2;
344 if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
345 /* The word is too big or too small for the porter stemmer.
346 ** Fallback to the copy stemmer */
347 copy_stemmer(zIn, nIn, zOut, pnOut);
348 return;
350 for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
351 c = zIn[i];
352 if( c>='A' && c<='Z' ){
353 zReverse[j] = c + 'a' - 'A';
354 }else if( c>='a' && c<='z' ){
355 zReverse[j] = c;
356 }else{
357 /* The use of a character not in [a-zA-Z] means that we fallback
358 ** to the copy stemmer */
359 copy_stemmer(zIn, nIn, zOut, pnOut);
360 return;
363 memset(&zReverse[sizeof(zReverse)-5], 0, 5);
364 z = &zReverse[j+1];
367 /* Step 1a */
368 if( z[0]=='s' ){
370 !stem(&z, "sess", "ss", 0) &&
371 !stem(&z, "sei", "i", 0) &&
372 !stem(&z, "ss", "ss", 0)
374 z++;
378 /* Step 1b */
379 z2 = z;
380 if( stem(&z, "dee", "ee", m_gt_0) ){
381 /* Do nothing. The work was all in the test */
382 }else if(
383 (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
384 && z!=z2
386 if( stem(&z, "ta", "ate", 0) ||
387 stem(&z, "lb", "ble", 0) ||
388 stem(&z, "zi", "ize", 0) ){
389 /* Do nothing. The work was all in the test */
390 }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
391 z++;
392 }else if( m_eq_1(z) && star_oh(z) ){
393 *(--z) = 'e';
397 /* Step 1c */
398 if( z[0]=='y' && hasVowel(z+1) ){
399 z[0] = 'i';
402 /* Step 2 */
403 switch( z[1] ){
404 case 'a':
405 stem(&z, "lanoita", "ate", m_gt_0) ||
406 stem(&z, "lanoit", "tion", m_gt_0);
407 break;
408 case 'c':
409 stem(&z, "icne", "ence", m_gt_0) ||
410 stem(&z, "icna", "ance", m_gt_0);
411 break;
412 case 'e':
413 stem(&z, "rezi", "ize", m_gt_0);
414 break;
415 case 'g':
416 stem(&z, "igol", "log", m_gt_0);
417 break;
418 case 'l':
419 stem(&z, "ilb", "ble", m_gt_0) ||
420 stem(&z, "illa", "al", m_gt_0) ||
421 stem(&z, "iltne", "ent", m_gt_0) ||
422 stem(&z, "ile", "e", m_gt_0) ||
423 stem(&z, "ilsuo", "ous", m_gt_0);
424 break;
425 case 'o':
426 stem(&z, "noitazi", "ize", m_gt_0) ||
427 stem(&z, "noita", "ate", m_gt_0) ||
428 stem(&z, "rota", "ate", m_gt_0);
429 break;
430 case 's':
431 stem(&z, "msila", "al", m_gt_0) ||
432 stem(&z, "ssenevi", "ive", m_gt_0) ||
433 stem(&z, "ssenluf", "ful", m_gt_0) ||
434 stem(&z, "ssensuo", "ous", m_gt_0);
435 break;
436 case 't':
437 stem(&z, "itila", "al", m_gt_0) ||
438 stem(&z, "itivi", "ive", m_gt_0) ||
439 stem(&z, "itilib", "ble", m_gt_0);
440 break;
443 /* Step 3 */
444 switch( z[0] ){
445 case 'e':
446 stem(&z, "etaci", "ic", m_gt_0) ||
447 stem(&z, "evita", "", m_gt_0) ||
448 stem(&z, "ezila", "al", m_gt_0);
449 break;
450 case 'i':
451 stem(&z, "itici", "ic", m_gt_0);
452 break;
453 case 'l':
454 stem(&z, "laci", "ic", m_gt_0) ||
455 stem(&z, "luf", "", m_gt_0);
456 break;
457 case 's':
458 stem(&z, "ssen", "", m_gt_0);
459 break;
462 /* Step 4 */
463 switch( z[1] ){
464 case 'a':
465 if( z[0]=='l' && m_gt_1(z+2) ){
466 z += 2;
468 break;
469 case 'c':
470 if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
471 z += 4;
473 break;
474 case 'e':
475 if( z[0]=='r' && m_gt_1(z+2) ){
476 z += 2;
478 break;
479 case 'i':
480 if( z[0]=='c' && m_gt_1(z+2) ){
481 z += 2;
483 break;
484 case 'l':
485 if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
486 z += 4;
488 break;
489 case 'n':
490 if( z[0]=='t' ){
491 if( z[2]=='a' ){
492 if( m_gt_1(z+3) ){
493 z += 3;
495 }else if( z[2]=='e' ){
496 stem(&z, "tneme", "", m_gt_1) ||
497 stem(&z, "tnem", "", m_gt_1) ||
498 stem(&z, "tne", "", m_gt_1);
501 break;
502 case 'o':
503 if( z[0]=='u' ){
504 if( m_gt_1(z+2) ){
505 z += 2;
507 }else if( z[3]=='s' || z[3]=='t' ){
508 stem(&z, "noi", "", m_gt_1);
510 break;
511 case 's':
512 if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
513 z += 3;
515 break;
516 case 't':
517 stem(&z, "eta", "", m_gt_1) ||
518 stem(&z, "iti", "", m_gt_1);
519 break;
520 case 'u':
521 if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
522 z += 3;
524 break;
525 case 'v':
526 case 'z':
527 if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
528 z += 3;
530 break;
533 /* Step 5a */
534 if( z[0]=='e' ){
535 if( m_gt_1(z+1) ){
536 z++;
537 }else if( m_eq_1(z+1) && !star_oh(z+1) ){
538 z++;
542 /* Step 5b */
543 if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
544 z++;
547 /* z[] is now the stemmed word in reverse order. Flip it back
548 ** around into forward order and return.
550 *pnOut = i = strlen(z);
551 zOut[i] = 0;
552 while( *z ){
553 zOut[--i] = *(z++);
558 ** Characters that can be part of a token. We assume any character
559 ** whose value is greater than 0x80 (any UTF character) can be
560 ** part of a token. In other words, delimiters all must have
561 ** values of 0x7f or lower.
563 static const char isIdChar[] = {
564 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
565 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
566 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
567 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
568 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
569 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
571 #define idChar(C) (((ch=C)&0x80)!=0 || (ch>0x2f && isIdChar[ch-0x30]))
572 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !isIdChar[ch-0x30]))
575 ** Extract the next token from a tokenization cursor. The cursor must
576 ** have been opened by a prior call to porterOpen().
578 static int porterNext(
579 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
580 const char **pzToken, /* OUT: *pzToken is the token text */
581 int *pnBytes, /* OUT: Number of bytes in token */
582 int *piStartOffset, /* OUT: Starting offset of token */
583 int *piEndOffset, /* OUT: Ending offset of token */
584 int *piPosition /* OUT: Position integer of token */
586 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
587 const char *z = c->zInput;
589 while( c->iOffset<c->nInput ){
590 int iStartOffset, ch;
592 /* Scan past delimiter characters */
593 while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
594 c->iOffset++;
597 /* Count non-delimiter characters. */
598 iStartOffset = c->iOffset;
599 while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
600 c->iOffset++;
603 if( c->iOffset>iStartOffset ){
604 int n = c->iOffset-iStartOffset;
605 if( n>c->nAllocated ){
606 c->nAllocated = n+20;
607 c->zToken = realloc(c->zToken, c->nAllocated);
608 if( c->zToken==NULL ) return SQLITE_NOMEM;
610 porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
611 *pzToken = c->zToken;
612 *piStartOffset = iStartOffset;
613 *piEndOffset = c->iOffset;
614 *piPosition = c->iToken++;
615 return SQLITE_OK;
618 return SQLITE_DONE;
622 ** The set of routines that implement the porter-stemmer tokenizer
624 static const sqlite3_tokenizer_module porterTokenizerModule = {
626 porterCreate,
627 porterDestroy,
628 porterOpen,
629 porterClose,
630 porterNext,
634 ** Allocate a new porter tokenizer. Return a pointer to the new
635 ** tokenizer in *ppModule
637 void sqlite3Fts1PorterTokenizerModule(
638 sqlite3_tokenizer_module const**ppModule
640 *ppModule = &porterTokenizerModule;
643 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */