4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3
*, WhereLoop
*, int);
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace
= 0;
32 ** Return the estimated number of output rows from a WHERE clause
34 LogEst
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
35 return pWInfo
->nRowOut
;
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
42 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
43 return pWInfo
->eDistinct
;
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
50 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
51 return pWInfo
->nOBSat
;
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted. As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
62 int sqlite3WhereOrderedInnerLoop(WhereInfo
*pWInfo
){
63 return pWInfo
->bOrderedInnerLoop
;
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
70 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
71 assert( pWInfo
->iContinue
!=0 );
72 return pWInfo
->iContinue
;
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
79 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
80 return pWInfo
->iBreak
;
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause. Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
100 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
101 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103 if( sqlite3WhereTrace
&& pWInfo
->eOnePass
!=ONEPASS_OFF
){
104 sqlite3DebugPrintf("%s cursors: %d %d\n",
105 pWInfo
->eOnePass
==ONEPASS_SINGLE
? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
109 return pWInfo
->eOnePass
;
113 ** Move the content of pSrc into pDest
115 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
117 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded. Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
127 static int whereOrInsert(
128 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
129 Bitmask prereq
, /* Prerequisites of the new entry */
130 LogEst rRun
, /* Run-cost of the new entry */
131 LogEst nOut
/* Number of outputs for the new entry */
135 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
136 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
137 goto whereOrInsert_done
;
139 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
143 if( pSet
->n
<N_OR_COST
){
144 p
= &pSet
->a
[pSet
->n
++];
148 for(i
=1; i
<pSet
->n
; i
++){
149 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
151 if( p
->rRun
<=rRun
) return 0;
156 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
161 ** Return the bitmask for the given cursor number. Return 0 if
162 ** iCursor is not in the set.
164 Bitmask
sqlite3WhereGetMask(WhereMaskSet
*pMaskSet
, int iCursor
){
166 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
167 for(i
=0; i
<pMaskSet
->n
; i
++){
168 if( pMaskSet
->ix
[i
]==iCursor
){
176 ** Create a new mask for cursor iCursor.
178 ** There is one cursor per table in the FROM clause. The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
181 ** array will never overflow.
183 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
184 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
185 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
193 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
194 int iCur
; /* The cursor on the LHS of the term */
195 i16 iColumn
; /* The column on the LHS of the term. -1 for IPK */
196 Expr
*pX
; /* An expression being tested */
197 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
198 WhereTerm
*pTerm
; /* The term being tested */
199 int k
= pScan
->k
; /* Where to start scanning */
201 assert( pScan
->iEquiv
<=pScan
->nEquiv
);
204 iColumn
= pScan
->aiColumn
[pScan
->iEquiv
-1];
205 iCur
= pScan
->aiCur
[pScan
->iEquiv
-1];
208 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
209 if( pTerm
->leftCursor
==iCur
210 && pTerm
->u
.leftColumn
==iColumn
212 || sqlite3ExprCompareSkip(pTerm
->pExpr
->pLeft
,
213 pScan
->pIdxExpr
,iCur
)==0)
214 && (pScan
->iEquiv
<=1 || !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
216 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
217 && pScan
->nEquiv
<ArraySize(pScan
->aiCur
)
218 && (pX
= sqlite3ExprSkipCollate(pTerm
->pExpr
->pRight
))->op
==TK_COLUMN
221 for(j
=0; j
<pScan
->nEquiv
; j
++){
222 if( pScan
->aiCur
[j
]==pX
->iTable
223 && pScan
->aiColumn
[j
]==pX
->iColumn
){
227 if( j
==pScan
->nEquiv
){
228 pScan
->aiCur
[j
] = pX
->iTable
;
229 pScan
->aiColumn
[j
] = pX
->iColumn
;
233 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
234 /* Verify the affinity and collating sequence match */
235 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
237 Parse
*pParse
= pWC
->pWInfo
->pParse
;
239 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
243 pColl
= sqlite3BinaryCompareCollSeq(pParse
,
244 pX
->pLeft
, pX
->pRight
);
245 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
246 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
250 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))!=0
251 && (pX
= pTerm
->pExpr
->pRight
)->op
==TK_COLUMN
252 && pX
->iTable
==pScan
->aiCur
[0]
253 && pX
->iColumn
==pScan
->aiColumn
[0]
255 testcase( pTerm
->eOperator
& WO_IS
);
267 if( pScan
->iEquiv
>=pScan
->nEquiv
) break;
268 pWC
= pScan
->pOrigWC
;
276 ** Initialize a WHERE clause scanner object. Return a pointer to the
277 ** first match. Return NULL if there are no matches.
279 ** The scanner will be searching the WHERE clause pWC. It will look
280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
281 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
282 ** must be one of the indexes of table iCur.
284 ** The <op> must be one of the operators described by opMask.
286 ** If the search is for X and the WHERE clause contains terms of the
287 ** form X=Y then this routine might also return terms of the form
288 ** "Y <op> <expr>". The number of levels of transitivity is limited,
289 ** but is enough to handle most commonly occurring SQL statements.
291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
294 static WhereTerm
*whereScanInit(
295 WhereScan
*pScan
, /* The WhereScan object being initialized */
296 WhereClause
*pWC
, /* The WHERE clause to be scanned */
297 int iCur
, /* Cursor to scan for */
298 int iColumn
, /* Column to scan for */
299 u32 opMask
, /* Operator(s) to scan for */
300 Index
*pIdx
/* Must be compatible with this index */
302 pScan
->pOrigWC
= pWC
;
306 pScan
->zCollName
= 0;
309 iColumn
= pIdx
->aiColumn
[j
];
310 if( iColumn
==XN_EXPR
){
311 pScan
->pIdxExpr
= pIdx
->aColExpr
->a
[j
].pExpr
;
312 pScan
->zCollName
= pIdx
->azColl
[j
];
313 }else if( iColumn
==pIdx
->pTable
->iPKey
){
315 }else if( iColumn
>=0 ){
316 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
317 pScan
->zCollName
= pIdx
->azColl
[j
];
319 }else if( iColumn
==XN_EXPR
){
322 pScan
->opMask
= opMask
;
324 pScan
->aiCur
[0] = iCur
;
325 pScan
->aiColumn
[0] = iColumn
;
328 return whereScanNext(pScan
);
332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
333 ** where X is a reference to the iColumn of table iCur or of index pIdx
334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
335 ** the op parameter. Return a pointer to the term. Return 0 if not found.
337 ** If pIdx!=0 then it must be one of the indexes of table iCur.
338 ** Search for terms matching the iColumn-th column of pIdx
339 ** rather than the iColumn-th column of table iCur.
341 ** The term returned might by Y=<expr> if there is another constraint in
342 ** the WHERE clause that specifies that X=Y. Any such constraints will be
343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
346 ** other equivalent values. Hence a search for X will return <expr> if X=A1
347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
350 ** then try for the one with no dependencies on <expr> - in other words where
351 ** <expr> is a constant expression of some kind. Only return entries of
352 ** the form "X <op> Y" where Y is a column in another table if no terms of
353 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
354 ** exist, try to return a term that does not use WO_EQUIV.
356 WhereTerm
*sqlite3WhereFindTerm(
357 WhereClause
*pWC
, /* The WHERE clause to be searched */
358 int iCur
, /* Cursor number of LHS */
359 int iColumn
, /* Column number of LHS */
360 Bitmask notReady
, /* RHS must not overlap with this mask */
361 u32 op
, /* Mask of WO_xx values describing operator */
362 Index
*pIdx
/* Must be compatible with this index, if not NULL */
364 WhereTerm
*pResult
= 0;
368 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
371 if( (p
->prereqRight
& notReady
)==0 ){
372 if( p
->prereqRight
==0 && (p
->eOperator
&op
)!=0 ){
373 testcase( p
->eOperator
& WO_IS
);
376 if( pResult
==0 ) pResult
= p
;
378 p
= whereScanNext(&scan
);
384 ** This function searches pList for an entry that matches the iCol-th column
387 ** If such an expression is found, its index in pList->a[] is returned. If
388 ** no expression is found, -1 is returned.
390 static int findIndexCol(
391 Parse
*pParse
, /* Parse context */
392 ExprList
*pList
, /* Expression list to search */
393 int iBase
, /* Cursor for table associated with pIdx */
394 Index
*pIdx
, /* Index to match column of */
395 int iCol
/* Column of index to match */
398 const char *zColl
= pIdx
->azColl
[iCol
];
400 for(i
=0; i
<pList
->nExpr
; i
++){
401 Expr
*p
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
403 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
406 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pParse
, pList
->a
[i
].pExpr
);
407 if( 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
419 static int indexColumnNotNull(Index
*pIdx
, int iCol
){
422 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
423 j
= pIdx
->aiColumn
[iCol
];
425 return pIdx
->pTable
->aCol
[j
].notNull
;
430 return 0; /* Assume an indexed expression can always yield a NULL */
436 ** Return true if the DISTINCT expression-list passed as the third argument
439 ** A DISTINCT list is redundant if any subset of the columns in the
440 ** DISTINCT list are collectively unique and individually non-null.
442 static int isDistinctRedundant(
443 Parse
*pParse
, /* Parsing context */
444 SrcList
*pTabList
, /* The FROM clause */
445 WhereClause
*pWC
, /* The WHERE clause */
446 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
453 /* If there is more than one table or sub-select in the FROM clause of
454 ** this query, then it will not be possible to show that the DISTINCT
455 ** clause is redundant. */
456 if( pTabList
->nSrc
!=1 ) return 0;
457 iBase
= pTabList
->a
[0].iCursor
;
458 pTab
= pTabList
->a
[0].pTab
;
460 /* If any of the expressions is an IPK column on table iBase, then return
461 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
462 ** current SELECT is a correlated sub-query.
464 for(i
=0; i
<pDistinct
->nExpr
; i
++){
465 Expr
*p
= sqlite3ExprSkipCollate(pDistinct
->a
[i
].pExpr
);
466 if( p
->op
==TK_COLUMN
&& p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
469 /* Loop through all indices on the table, checking each to see if it makes
470 ** the DISTINCT qualifier redundant. It does so if:
472 ** 1. The index is itself UNIQUE, and
474 ** 2. All of the columns in the index are either part of the pDistinct
475 ** list, or else the WHERE clause contains a term of the form "col=X",
476 ** where X is a constant value. The collation sequences of the
477 ** comparison and select-list expressions must match those of the index.
479 ** 3. All of those index columns for which the WHERE clause does not
480 ** contain a "col=X" term are subject to a NOT NULL constraint.
482 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
483 if( !IsUniqueIndex(pIdx
) ) continue;
484 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
485 if( 0==sqlite3WhereFindTerm(pWC
, iBase
, i
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
486 if( findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)<0 ) break;
487 if( indexColumnNotNull(pIdx
, i
)==0 ) break;
490 if( i
==pIdx
->nKeyCol
){
491 /* This index implies that the DISTINCT qualifier is redundant. */
501 ** Estimate the logarithm of the input value to base 2.
503 static LogEst
estLog(LogEst N
){
504 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
508 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
510 ** This routine runs over generated VDBE code and translates OP_Column
511 ** opcodes into OP_Copy when the table is being accessed via co-routine
512 ** instead of via table lookup.
514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
516 ** then each OP_Rowid is transformed into an instruction to increment the
517 ** value stored in its output register.
519 static void translateColumnToCopy(
520 Parse
*pParse
, /* Parsing context */
521 int iStart
, /* Translate from this opcode to the end */
522 int iTabCur
, /* OP_Column/OP_Rowid references to this table */
523 int iRegister
, /* The first column is in this register */
524 int bIncrRowid
/* If non-zero, transform OP_rowid to OP_AddImm(1) */
526 Vdbe
*v
= pParse
->pVdbe
;
527 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iStart
);
528 int iEnd
= sqlite3VdbeCurrentAddr(v
);
529 if( pParse
->db
->mallocFailed
) return;
530 for(; iStart
<iEnd
; iStart
++, pOp
++){
531 if( pOp
->p1
!=iTabCur
) continue;
532 if( pOp
->opcode
==OP_Column
){
533 pOp
->opcode
= OP_Copy
;
534 pOp
->p1
= pOp
->p2
+ iRegister
;
537 }else if( pOp
->opcode
==OP_Rowid
){
539 /* Increment the value stored in the P2 operand of the OP_Rowid. */
540 pOp
->opcode
= OP_AddImm
;
544 pOp
->opcode
= OP_Null
;
553 ** Two routines for printing the content of an sqlite3_index_info
554 ** structure. Used for testing and debugging only. If neither
555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
559 static void TRACE_IDX_INPUTS(sqlite3_index_info
*p
){
561 if( !sqlite3WhereTrace
) return;
562 for(i
=0; i
<p
->nConstraint
; i
++){
563 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
565 p
->aConstraint
[i
].iColumn
,
566 p
->aConstraint
[i
].iTermOffset
,
567 p
->aConstraint
[i
].op
,
568 p
->aConstraint
[i
].usable
);
570 for(i
=0; i
<p
->nOrderBy
; i
++){
571 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
573 p
->aOrderBy
[i
].iColumn
,
574 p
->aOrderBy
[i
].desc
);
577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info
*p
){
579 if( !sqlite3WhereTrace
) return;
580 for(i
=0; i
<p
->nConstraint
; i
++){
581 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
583 p
->aConstraintUsage
[i
].argvIndex
,
584 p
->aConstraintUsage
[i
].omit
);
586 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
587 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
588 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
589 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
590 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
593 #define TRACE_IDX_INPUTS(A)
594 #define TRACE_IDX_OUTPUTS(A)
597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
599 ** Return TRUE if the WHERE clause term pTerm is of a form where it
600 ** could be used with an index to access pSrc, assuming an appropriate
603 static int termCanDriveIndex(
604 WhereTerm
*pTerm
, /* WHERE clause term to check */
605 struct SrcList_item
*pSrc
, /* Table we are trying to access */
606 Bitmask notReady
/* Tables in outer loops of the join */
609 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
610 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) return 0;
611 if( (pSrc
->fg
.jointype
& JT_LEFT
)
612 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
613 && (pTerm
->eOperator
& WO_IS
)
615 /* Cannot use an IS term from the WHERE clause as an index driver for
616 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
620 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
621 if( pTerm
->u
.leftColumn
<0 ) return 0;
622 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.leftColumn
].affinity
;
623 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
624 testcase( pTerm
->pExpr
->op
==TK_IS
);
630 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
632 ** Generate code to construct the Index object for an automatic index
633 ** and to set up the WhereLevel object pLevel so that the code generator
634 ** makes use of the automatic index.
636 static void constructAutomaticIndex(
637 Parse
*pParse
, /* The parsing context */
638 WhereClause
*pWC
, /* The WHERE clause */
639 struct SrcList_item
*pSrc
, /* The FROM clause term to get the next index */
640 Bitmask notReady
, /* Mask of cursors that are not available */
641 WhereLevel
*pLevel
/* Write new index here */
643 int nKeyCol
; /* Number of columns in the constructed index */
644 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
645 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
646 Index
*pIdx
; /* Object describing the transient index */
647 Vdbe
*v
; /* Prepared statement under construction */
648 int addrInit
; /* Address of the initialization bypass jump */
649 Table
*pTable
; /* The table being indexed */
650 int addrTop
; /* Top of the index fill loop */
651 int regRecord
; /* Register holding an index record */
652 int n
; /* Column counter */
653 int i
; /* Loop counter */
654 int mxBitCol
; /* Maximum column in pSrc->colUsed */
655 CollSeq
*pColl
; /* Collating sequence to on a column */
656 WhereLoop
*pLoop
; /* The Loop object */
657 char *zNotUsed
; /* Extra space on the end of pIdx */
658 Bitmask idxCols
; /* Bitmap of columns used for indexing */
659 Bitmask extraCols
; /* Bitmap of additional columns */
660 u8 sentWarning
= 0; /* True if a warnning has been issued */
661 Expr
*pPartial
= 0; /* Partial Index Expression */
662 int iContinue
= 0; /* Jump here to skip excluded rows */
663 struct SrcList_item
*pTabItem
; /* FROM clause term being indexed */
664 int addrCounter
= 0; /* Address where integer counter is initialized */
665 int regBase
; /* Array of registers where record is assembled */
667 /* Generate code to skip over the creation and initialization of the
668 ** transient index on 2nd and subsequent iterations of the loop. */
671 addrInit
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
673 /* Count the number of columns that will be added to the index
674 ** and used to match WHERE clause constraints */
677 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
678 pLoop
= pLevel
->pWLoop
;
680 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
681 Expr
*pExpr
= pTerm
->pExpr
;
682 assert( !ExprHasProperty(pExpr
, EP_FromJoin
) /* prereq always non-zero */
683 || pExpr
->iRightJoinTable
!=pSrc
->iCursor
/* for the right-hand */
684 || pLoop
->prereq
!=0 ); /* table of a LEFT JOIN */
686 && (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
687 && !ExprHasProperty(pExpr
, EP_FromJoin
)
688 && sqlite3ExprIsTableConstant(pExpr
, pSrc
->iCursor
) ){
689 pPartial
= sqlite3ExprAnd(pParse
->db
, pPartial
,
690 sqlite3ExprDup(pParse
->db
, pExpr
, 0));
692 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
693 int iCol
= pTerm
->u
.leftColumn
;
694 Bitmask cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
695 testcase( iCol
==BMS
);
696 testcase( iCol
==BMS
-1 );
698 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
699 "automatic index on %s(%s)", pTable
->zName
,
700 pTable
->aCol
[iCol
].zName
);
703 if( (idxCols
& cMask
)==0 ){
704 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ){
705 goto end_auto_index_create
;
707 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
713 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
714 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
717 /* Count the number of additional columns needed to create a
718 ** covering index. A "covering index" is an index that contains all
719 ** columns that are needed by the query. With a covering index, the
720 ** original table never needs to be accessed. Automatic indices must
721 ** be a covering index because the index will not be updated if the
722 ** original table changes and the index and table cannot both be used
723 ** if they go out of sync.
725 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
726 mxBitCol
= MIN(BMS
-1,pTable
->nCol
);
727 testcase( pTable
->nCol
==BMS
-1 );
728 testcase( pTable
->nCol
==BMS
-2 );
729 for(i
=0; i
<mxBitCol
; i
++){
730 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
732 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
733 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
736 /* Construct the Index object to describe this index */
737 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
738 if( pIdx
==0 ) goto end_auto_index_create
;
739 pLoop
->u
.btree
.pIndex
= pIdx
;
740 pIdx
->zName
= "auto-index";
741 pIdx
->pTable
= pTable
;
744 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
745 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
746 int iCol
= pTerm
->u
.leftColumn
;
747 Bitmask cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
748 testcase( iCol
==BMS
-1 );
749 testcase( iCol
==BMS
);
750 if( (idxCols
& cMask
)==0 ){
751 Expr
*pX
= pTerm
->pExpr
;
753 pIdx
->aiColumn
[n
] = pTerm
->u
.leftColumn
;
754 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
755 pIdx
->azColl
[n
] = pColl
? pColl
->zName
: sqlite3StrBINARY
;
760 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
762 /* Add additional columns needed to make the automatic index into
763 ** a covering index */
764 for(i
=0; i
<mxBitCol
; i
++){
765 if( extraCols
& MASKBIT(i
) ){
766 pIdx
->aiColumn
[n
] = i
;
767 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
771 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
772 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
773 pIdx
->aiColumn
[n
] = i
;
774 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
778 assert( n
==nKeyCol
);
779 pIdx
->aiColumn
[n
] = XN_ROWID
;
780 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
782 /* Create the automatic index */
783 assert( pLevel
->iIdxCur
>=0 );
784 pLevel
->iIdxCur
= pParse
->nTab
++;
785 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
786 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
787 VdbeComment((v
, "for %s", pTable
->zName
));
789 /* Fill the automatic index with content */
790 sqlite3ExprCachePush(pParse
);
791 pTabItem
= &pWC
->pWInfo
->pTabList
->a
[pLevel
->iFrom
];
792 if( pTabItem
->fg
.viaCoroutine
){
793 int regYield
= pTabItem
->regReturn
;
794 addrCounter
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, 0);
795 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pTabItem
->addrFillSub
);
796 addrTop
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
798 VdbeComment((v
, "next row of \"%s\"", pTabItem
->pTab
->zName
));
800 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
803 iContinue
= sqlite3VdbeMakeLabel(v
);
804 sqlite3ExprIfFalse(pParse
, pPartial
, iContinue
, SQLITE_JUMPIFNULL
);
805 pLoop
->wsFlags
|= WHERE_PARTIALIDX
;
807 regRecord
= sqlite3GetTempReg(pParse
);
808 regBase
= sqlite3GenerateIndexKey(
809 pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0
811 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
812 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
813 if( pPartial
) sqlite3VdbeResolveLabel(v
, iContinue
);
814 if( pTabItem
->fg
.viaCoroutine
){
815 sqlite3VdbeChangeP2(v
, addrCounter
, regBase
+n
);
816 testcase( pParse
->db
->mallocFailed
);
817 translateColumnToCopy(pParse
, addrTop
, pLevel
->iTabCur
,
818 pTabItem
->regResult
, 1);
819 sqlite3VdbeGoto(v
, addrTop
);
820 pTabItem
->fg
.viaCoroutine
= 0;
822 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
824 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
825 sqlite3VdbeJumpHere(v
, addrTop
);
826 sqlite3ReleaseTempReg(pParse
, regRecord
);
827 sqlite3ExprCachePop(pParse
);
829 /* Jump here when skipping the initialization */
830 sqlite3VdbeJumpHere(v
, addrInit
);
832 end_auto_index_create
:
833 sqlite3ExprDelete(pParse
->db
, pPartial
);
835 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
837 #ifndef SQLITE_OMIT_VIRTUALTABLE
839 ** Allocate and populate an sqlite3_index_info structure. It is the
840 ** responsibility of the caller to eventually release the structure
841 ** by passing the pointer returned by this function to sqlite3_free().
843 static sqlite3_index_info
*allocateIndexInfo(
846 Bitmask mUnusable
, /* Ignore terms with these prereqs */
847 struct SrcList_item
*pSrc
,
849 u16
*pmNoOmit
/* Mask of terms not to omit */
853 struct sqlite3_index_constraint
*pIdxCons
;
854 struct sqlite3_index_orderby
*pIdxOrderBy
;
855 struct sqlite3_index_constraint_usage
*pUsage
;
858 sqlite3_index_info
*pIdxInfo
;
861 /* Count the number of possible WHERE clause constraints referring
862 ** to this virtual table */
863 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
864 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
865 if( pTerm
->prereqRight
& mUnusable
) continue;
866 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
867 testcase( pTerm
->eOperator
& WO_IN
);
868 testcase( pTerm
->eOperator
& WO_ISNULL
);
869 testcase( pTerm
->eOperator
& WO_IS
);
870 testcase( pTerm
->eOperator
& WO_ALL
);
871 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
872 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
873 assert( pTerm
->u
.leftColumn
>=(-1) );
877 /* If the ORDER BY clause contains only columns in the current
878 ** virtual table then allocate space for the aOrderBy part of
879 ** the sqlite3_index_info structure.
883 int n
= pOrderBy
->nExpr
;
885 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
886 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=pSrc
->iCursor
) break;
893 /* Allocate the sqlite3_index_info structure
895 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
896 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
897 + sizeof(*pIdxOrderBy
)*nOrderBy
);
899 sqlite3ErrorMsg(pParse
, "out of memory");
903 /* Initialize the structure. The sqlite3_index_info structure contains
904 ** many fields that are declared "const" to prevent xBestIndex from
905 ** changing them. We have to do some funky casting in order to
906 ** initialize those fields.
908 pIdxCons
= (struct sqlite3_index_constraint
*)&pIdxInfo
[1];
909 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
910 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
911 *(int*)&pIdxInfo
->nConstraint
= nTerm
;
912 *(int*)&pIdxInfo
->nOrderBy
= nOrderBy
;
913 *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
= pIdxCons
;
914 *(struct sqlite3_index_orderby
**)&pIdxInfo
->aOrderBy
= pIdxOrderBy
;
915 *(struct sqlite3_index_constraint_usage
**)&pIdxInfo
->aConstraintUsage
=
918 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
920 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
921 if( pTerm
->prereqRight
& mUnusable
) continue;
922 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
923 testcase( pTerm
->eOperator
& WO_IN
);
924 testcase( pTerm
->eOperator
& WO_IS
);
925 testcase( pTerm
->eOperator
& WO_ISNULL
);
926 testcase( pTerm
->eOperator
& WO_ALL
);
927 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
928 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
929 assert( pTerm
->u
.leftColumn
>=(-1) );
930 pIdxCons
[j
].iColumn
= pTerm
->u
.leftColumn
;
931 pIdxCons
[j
].iTermOffset
= i
;
932 op
= pTerm
->eOperator
& WO_ALL
;
933 if( op
==WO_IN
) op
= WO_EQ
;
935 pIdxCons
[j
].op
= pTerm
->eMatchOp
;
936 }else if( op
& (WO_ISNULL
|WO_IS
) ){
938 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_ISNULL
;
940 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_IS
;
943 pIdxCons
[j
].op
= (u8
)op
;
944 /* The direct assignment in the previous line is possible only because
945 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
946 ** following asserts verify this fact. */
947 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
948 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
949 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
950 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
951 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
952 assert( pTerm
->eOperator
&(WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_AUX
) );
954 if( op
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
)
955 && sqlite3ExprIsVector(pTerm
->pExpr
->pRight
)
957 if( i
<16 ) mNoOmit
|= (1 << i
);
958 if( op
==WO_LT
) pIdxCons
[j
].op
= WO_LE
;
959 if( op
==WO_GT
) pIdxCons
[j
].op
= WO_GE
;
965 for(i
=0; i
<nOrderBy
; i
++){
966 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
967 pIdxOrderBy
[i
].iColumn
= pExpr
->iColumn
;
968 pIdxOrderBy
[i
].desc
= pOrderBy
->a
[i
].sortOrder
;
976 ** The table object reference passed as the second argument to this function
977 ** must represent a virtual table. This function invokes the xBestIndex()
978 ** method of the virtual table with the sqlite3_index_info object that
979 ** comes in as the 3rd argument to this function.
981 ** If an error occurs, pParse is populated with an error message and a
982 ** non-zero value is returned. Otherwise, 0 is returned and the output
983 ** part of the sqlite3_index_info structure is left populated.
985 ** Whether or not an error is returned, it is the responsibility of the
986 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
987 ** that this is required.
989 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
990 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
994 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
995 TRACE_IDX_OUTPUTS(p
);
998 if( rc
==SQLITE_NOMEM
){
999 sqlite3OomFault(pParse
->db
);
1000 }else if( !pVtab
->zErrMsg
){
1001 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1003 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1006 sqlite3_free(pVtab
->zErrMsg
);
1010 /* This error is now caught by the caller.
1011 ** Search for "xBestIndex malfunction" below */
1012 for(i
=0; i
<p
->nConstraint
; i
++){
1013 if( !p
->aConstraint
[i
].usable
&& p
->aConstraintUsage
[i
].argvIndex
>0 ){
1014 sqlite3ErrorMsg(pParse
,
1015 "table %s: xBestIndex returned an invalid plan", pTab
->zName
);
1020 return pParse
->nErr
;
1022 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1024 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1026 ** Estimate the location of a particular key among all keys in an
1027 ** index. Store the results in aStat as follows:
1029 ** aStat[0] Est. number of rows less than pRec
1030 ** aStat[1] Est. number of rows equal to pRec
1032 ** Return the index of the sample that is the smallest sample that
1033 ** is greater than or equal to pRec. Note that this index is not an index
1034 ** into the aSample[] array - it is an index into a virtual set of samples
1035 ** based on the contents of aSample[] and the number of fields in record
1038 static int whereKeyStats(
1039 Parse
*pParse
, /* Database connection */
1040 Index
*pIdx
, /* Index to consider domain of */
1041 UnpackedRecord
*pRec
, /* Vector of values to consider */
1042 int roundUp
, /* Round up if true. Round down if false */
1043 tRowcnt
*aStat
/* OUT: stats written here */
1045 IndexSample
*aSample
= pIdx
->aSample
;
1046 int iCol
; /* Index of required stats in anEq[] etc. */
1047 int i
; /* Index of first sample >= pRec */
1048 int iSample
; /* Smallest sample larger than or equal to pRec */
1049 int iMin
= 0; /* Smallest sample not yet tested */
1050 int iTest
; /* Next sample to test */
1051 int res
; /* Result of comparison operation */
1052 int nField
; /* Number of fields in pRec */
1053 tRowcnt iLower
= 0; /* anLt[] + anEq[] of largest sample pRec is > */
1055 #ifndef SQLITE_DEBUG
1056 UNUSED_PARAMETER( pParse
);
1059 assert( pIdx
->nSample
>0 );
1060 assert( pRec
->nField
>0 && pRec
->nField
<=pIdx
->nSampleCol
);
1062 /* Do a binary search to find the first sample greater than or equal
1063 ** to pRec. If pRec contains a single field, the set of samples to search
1064 ** is simply the aSample[] array. If the samples in aSample[] contain more
1065 ** than one fields, all fields following the first are ignored.
1067 ** If pRec contains N fields, where N is more than one, then as well as the
1068 ** samples in aSample[] (truncated to N fields), the search also has to
1069 ** consider prefixes of those samples. For example, if the set of samples
1072 ** aSample[0] = (a, 5)
1073 ** aSample[1] = (a, 10)
1074 ** aSample[2] = (b, 5)
1075 ** aSample[3] = (c, 100)
1076 ** aSample[4] = (c, 105)
1078 ** Then the search space should ideally be the samples above and the
1079 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1080 ** the code actually searches this set:
1093 ** For each sample in the aSample[] array, N samples are present in the
1094 ** effective sample array. In the above, samples 0 and 1 are based on
1095 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1097 ** Often, sample i of each block of N effective samples has (i+1) fields.
1098 ** Except, each sample may be extended to ensure that it is greater than or
1099 ** equal to the previous sample in the array. For example, in the above,
1100 ** sample 2 is the first sample of a block of N samples, so at first it
1101 ** appears that it should be 1 field in size. However, that would make it
1102 ** smaller than sample 1, so the binary search would not work. As a result,
1103 ** it is extended to two fields. The duplicates that this creates do not
1104 ** cause any problems.
1106 nField
= pRec
->nField
;
1108 iSample
= pIdx
->nSample
* nField
;
1110 int iSamp
; /* Index in aSample[] of test sample */
1111 int n
; /* Number of fields in test sample */
1113 iTest
= (iMin
+iSample
)/2;
1114 iSamp
= iTest
/ nField
;
1116 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1117 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1118 ** fields that is greater than the previous effective sample. */
1119 for(n
=(iTest
% nField
) + 1; n
<nField
; n
++){
1120 if( aSample
[iSamp
-1].anLt
[n
-1]!=aSample
[iSamp
].anLt
[n
-1] ) break;
1127 res
= sqlite3VdbeRecordCompare(aSample
[iSamp
].n
, aSample
[iSamp
].p
, pRec
);
1129 iLower
= aSample
[iSamp
].anLt
[n
-1] + aSample
[iSamp
].anEq
[n
-1];
1131 }else if( res
==0 && n
<nField
){
1132 iLower
= aSample
[iSamp
].anLt
[n
-1];
1139 }while( res
&& iMin
<iSample
);
1140 i
= iSample
/ nField
;
1143 /* The following assert statements check that the binary search code
1144 ** above found the right answer. This block serves no purpose other
1145 ** than to invoke the asserts. */
1146 if( pParse
->db
->mallocFailed
==0 ){
1148 /* If (res==0) is true, then pRec must be equal to sample i. */
1149 assert( i
<pIdx
->nSample
);
1150 assert( iCol
==nField
-1 );
1151 pRec
->nField
= nField
;
1152 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1153 || pParse
->db
->mallocFailed
1156 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1157 ** all samples in the aSample[] array, pRec must be smaller than the
1158 ** (iCol+1) field prefix of sample i. */
1159 assert( i
<=pIdx
->nSample
&& i
>=0 );
1160 pRec
->nField
= iCol
+1;
1161 assert( i
==pIdx
->nSample
1162 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1163 || pParse
->db
->mallocFailed
);
1165 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1166 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1167 ** be greater than or equal to the (iCol) field prefix of sample i.
1168 ** If (i>0), then pRec must also be greater than sample (i-1). */
1170 pRec
->nField
= iCol
;
1171 assert( sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)<=0
1172 || pParse
->db
->mallocFailed
);
1175 pRec
->nField
= nField
;
1176 assert( sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1177 || pParse
->db
->mallocFailed
);
1181 #endif /* ifdef SQLITE_DEBUG */
1184 /* Record pRec is equal to sample i */
1185 assert( iCol
==nField
-1 );
1186 aStat
[0] = aSample
[i
].anLt
[iCol
];
1187 aStat
[1] = aSample
[i
].anEq
[iCol
];
1189 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1190 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1191 ** is larger than all samples in the array. */
1192 tRowcnt iUpper
, iGap
;
1193 if( i
>=pIdx
->nSample
){
1194 iUpper
= sqlite3LogEstToInt(pIdx
->aiRowLogEst
[0]);
1196 iUpper
= aSample
[i
].anLt
[iCol
];
1199 if( iLower
>=iUpper
){
1202 iGap
= iUpper
- iLower
;
1209 aStat
[0] = iLower
+ iGap
;
1210 aStat
[1] = pIdx
->aAvgEq
[nField
-1];
1213 /* Restore the pRec->nField value before returning. */
1214 pRec
->nField
= nField
;
1217 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1220 ** If it is not NULL, pTerm is a term that provides an upper or lower
1221 ** bound on a range scan. Without considering pTerm, it is estimated
1222 ** that the scan will visit nNew rows. This function returns the number
1223 ** estimated to be visited after taking pTerm into account.
1225 ** If the user explicitly specified a likelihood() value for this term,
1226 ** then the return value is the likelihood multiplied by the number of
1227 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1228 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1230 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1233 if( pTerm
->truthProb
<=0 ){
1234 nRet
+= pTerm
->truthProb
;
1235 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1236 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1243 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1245 ** Return the affinity for a single column of an index.
1247 char sqlite3IndexColumnAffinity(sqlite3
*db
, Index
*pIdx
, int iCol
){
1248 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
1249 if( !pIdx
->zColAff
){
1250 if( sqlite3IndexAffinityStr(db
, pIdx
)==0 ) return SQLITE_AFF_BLOB
;
1252 return pIdx
->zColAff
[iCol
];
1257 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1259 ** This function is called to estimate the number of rows visited by a
1260 ** range-scan on a skip-scan index. For example:
1262 ** CREATE INDEX i1 ON t1(a, b, c);
1263 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1265 ** Value pLoop->nOut is currently set to the estimated number of rows
1266 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1267 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1268 ** on the stat4 data for the index. this scan will be peformed multiple
1269 ** times (once for each (a,b) combination that matches a=?) is dealt with
1272 ** It does this by scanning through all stat4 samples, comparing values
1273 ** extracted from pLower and pUpper with the corresponding column in each
1274 ** sample. If L and U are the number of samples found to be less than or
1275 ** equal to the values extracted from pLower and pUpper respectively, and
1276 ** N is the total number of samples, the pLoop->nOut value is adjusted
1279 ** nOut = nOut * ( min(U - L, 1) / N )
1281 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1282 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1285 ** Normally, this function sets *pbDone to 1 before returning. However,
1286 ** if no value can be extracted from either pLower or pUpper (and so the
1287 ** estimate of the number of rows delivered remains unchanged), *pbDone
1290 ** If an error occurs, an SQLite error code is returned. Otherwise,
1293 static int whereRangeSkipScanEst(
1294 Parse
*pParse
, /* Parsing & code generating context */
1295 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1296 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1297 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
1298 int *pbDone
/* Set to true if at least one expr. value extracted */
1300 Index
*p
= pLoop
->u
.btree
.pIndex
;
1301 int nEq
= pLoop
->u
.btree
.nEq
;
1302 sqlite3
*db
= pParse
->db
;
1304 int nUpper
= p
->nSample
+1;
1306 u8 aff
= sqlite3IndexColumnAffinity(db
, p
, nEq
);
1309 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
1310 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
1311 sqlite3_value
*pVal
= 0; /* Value extracted from record */
1313 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
1315 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
1318 if( pUpper
&& rc
==SQLITE_OK
){
1319 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
1320 nUpper
= p2
? 0 : p
->nSample
;
1326 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
1327 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
1328 if( rc
==SQLITE_OK
&& p1
){
1329 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
1330 if( res
>=0 ) nLower
++;
1332 if( rc
==SQLITE_OK
&& p2
){
1333 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
1334 if( res
>=0 ) nUpper
++;
1337 nDiff
= (nUpper
- nLower
);
1338 if( nDiff
<=0 ) nDiff
= 1;
1340 /* If there is both an upper and lower bound specified, and the
1341 ** comparisons indicate that they are close together, use the fallback
1342 ** method (assume that the scan visits 1/64 of the rows) for estimating
1343 ** the number of rows visited. Otherwise, estimate the number of rows
1344 ** using the method described in the header comment for this function. */
1345 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
1346 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
1347 pLoop
->nOut
-= nAdjust
;
1349 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1350 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
1354 assert( *pbDone
==0 );
1357 sqlite3ValueFree(p1
);
1358 sqlite3ValueFree(p2
);
1359 sqlite3ValueFree(pVal
);
1363 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1366 ** This function is used to estimate the number of rows that will be visited
1367 ** by scanning an index for a range of values. The range may have an upper
1368 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1369 ** and lower bounds are represented by pLower and pUpper respectively. For
1370 ** example, assuming that index p is on t1(a):
1372 ** ... FROM t1 WHERE a > ? AND a < ? ...
1377 ** If either of the upper or lower bound is not present, then NULL is passed in
1378 ** place of the corresponding WhereTerm.
1380 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1381 ** column subject to the range constraint. Or, equivalently, the number of
1382 ** equality constraints optimized by the proposed index scan. For example,
1383 ** assuming index p is on t1(a, b), and the SQL query is:
1385 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1387 ** then nEq is set to 1 (as the range restricted column, b, is the second
1388 ** left-most column of the index). Or, if the query is:
1390 ** ... FROM t1 WHERE a > ? AND a < ? ...
1392 ** then nEq is set to 0.
1394 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1395 ** number of rows that the index scan is expected to visit without
1396 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1397 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1398 ** to account for the range constraints pLower and pUpper.
1400 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1401 ** used, a single range inequality reduces the search space by a factor of 4.
1402 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1403 ** rows visited by a factor of 64.
1405 static int whereRangeScanEst(
1406 Parse
*pParse
, /* Parsing & code generating context */
1407 WhereLoopBuilder
*pBuilder
,
1408 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1409 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1410 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
1413 int nOut
= pLoop
->nOut
;
1416 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1417 Index
*p
= pLoop
->u
.btree
.pIndex
;
1418 int nEq
= pLoop
->u
.btree
.nEq
;
1420 if( p
->nSample
>0 && nEq
<p
->nSampleCol
){
1421 if( nEq
==pBuilder
->nRecValid
){
1422 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1424 int nBtm
= pLoop
->u
.btree
.nBtm
;
1425 int nTop
= pLoop
->u
.btree
.nTop
;
1427 /* Variable iLower will be set to the estimate of the number of rows in
1428 ** the index that are less than the lower bound of the range query. The
1429 ** lower bound being the concatenation of $P and $L, where $P is the
1430 ** key-prefix formed by the nEq values matched against the nEq left-most
1431 ** columns of the index, and $L is the value in pLower.
1433 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1434 ** is not a simple variable or literal value), the lower bound of the
1435 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1436 ** if $L is available, whereKeyStats() is called for both ($P) and
1437 ** ($P:$L) and the larger of the two returned values is used.
1439 ** Similarly, iUpper is to be set to the estimate of the number of rows
1440 ** less than the upper bound of the range query. Where the upper bound
1441 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1442 ** of iUpper are requested of whereKeyStats() and the smaller used.
1444 ** The number of rows between the two bounds is then just iUpper-iLower.
1446 tRowcnt iLower
; /* Rows less than the lower bound */
1447 tRowcnt iUpper
; /* Rows less than the upper bound */
1448 int iLwrIdx
= -2; /* aSample[] for the lower bound */
1449 int iUprIdx
= -1; /* aSample[] for the upper bound */
1452 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
1453 pRec
->nField
= pBuilder
->nRecValid
;
1455 /* Determine iLower and iUpper using ($P) only. */
1458 iUpper
= p
->nRowEst0
;
1460 /* Note: this call could be optimized away - since the same values must
1461 ** have been requested when testing key $P in whereEqualScanEst(). */
1462 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1464 iUpper
= a
[0] + a
[1];
1467 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
1468 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
1469 assert( p
->aSortOrder
!=0 );
1470 if( p
->aSortOrder
[nEq
] ){
1471 /* The roles of pLower and pUpper are swapped for a DESC index */
1472 SWAP(WhereTerm
*, pLower
, pUpper
);
1473 SWAP(int, nBtm
, nTop
);
1476 /* If possible, improve on the iLower estimate using ($P:$L). */
1478 int n
; /* Values extracted from pExpr */
1479 Expr
*pExpr
= pLower
->pExpr
->pRight
;
1480 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nBtm
, nEq
, &n
);
1481 if( rc
==SQLITE_OK
&& n
){
1483 u16 mask
= WO_GT
|WO_LE
;
1484 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1485 iLwrIdx
= whereKeyStats(pParse
, p
, pRec
, 0, a
);
1486 iNew
= a
[0] + ((pLower
->eOperator
& mask
) ? a
[1] : 0);
1487 if( iNew
>iLower
) iLower
= iNew
;
1493 /* If possible, improve on the iUpper estimate using ($P:$U). */
1495 int n
; /* Values extracted from pExpr */
1496 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
1497 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nTop
, nEq
, &n
);
1498 if( rc
==SQLITE_OK
&& n
){
1500 u16 mask
= WO_GT
|WO_LE
;
1501 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1502 iUprIdx
= whereKeyStats(pParse
, p
, pRec
, 1, a
);
1503 iNew
= a
[0] + ((pUpper
->eOperator
& mask
) ? a
[1] : 0);
1504 if( iNew
<iUpper
) iUpper
= iNew
;
1510 pBuilder
->pRec
= pRec
;
1511 if( rc
==SQLITE_OK
){
1512 if( iUpper
>iLower
){
1513 nNew
= sqlite3LogEst(iUpper
- iLower
);
1514 /* TUNING: If both iUpper and iLower are derived from the same
1515 ** sample, then assume they are 4x more selective. This brings
1516 ** the estimated selectivity more in line with what it would be
1517 ** if estimated without the use of STAT3/4 tables. */
1518 if( iLwrIdx
==iUprIdx
) nNew
-= 20; assert( 20==sqlite3LogEst(4) );
1520 nNew
= 10; assert( 10==sqlite3LogEst(2) );
1525 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1526 (u32
)iLower
, (u32
)iUpper
, nOut
));
1530 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
1531 if( bDone
) return rc
;
1535 UNUSED_PARAMETER(pParse
);
1536 UNUSED_PARAMETER(pBuilder
);
1537 assert( pLower
|| pUpper
);
1539 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 );
1540 nNew
= whereRangeAdjust(pLower
, nOut
);
1541 nNew
= whereRangeAdjust(pUpper
, nNew
);
1543 /* TUNING: If there is both an upper and lower limit and neither limit
1544 ** has an application-defined likelihood(), assume the range is
1545 ** reduced by an additional 75%. This means that, by default, an open-ended
1546 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1547 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1548 ** match 1/64 of the index. */
1549 if( pLower
&& pLower
->truthProb
>0 && pUpper
&& pUpper
->truthProb
>0 ){
1553 nOut
-= (pLower
!=0) + (pUpper
!=0);
1554 if( nNew
<10 ) nNew
= 10;
1555 if( nNew
<nOut
) nOut
= nNew
;
1556 #if defined(WHERETRACE_ENABLED)
1557 if( pLoop
->nOut
>nOut
){
1558 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1559 pLoop
->nOut
, nOut
));
1562 pLoop
->nOut
= (LogEst
)nOut
;
1566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1568 ** Estimate the number of rows that will be returned based on
1569 ** an equality constraint x=VALUE and where that VALUE occurs in
1570 ** the histogram data. This only works when x is the left-most
1571 ** column of an index and sqlite_stat3 histogram data is available
1572 ** for that index. When pExpr==NULL that means the constraint is
1573 ** "x IS NULL" instead of "x=VALUE".
1575 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1576 ** If unable to make an estimate, leave *pnRow unchanged and return
1579 ** This routine can fail if it is unable to load a collating sequence
1580 ** required for string comparison, or if unable to allocate memory
1581 ** for a UTF conversion required for comparison. The error is stored
1582 ** in the pParse structure.
1584 static int whereEqualScanEst(
1585 Parse
*pParse
, /* Parsing & code generating context */
1586 WhereLoopBuilder
*pBuilder
,
1587 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
1588 tRowcnt
*pnRow
/* Write the revised row estimate here */
1590 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
1591 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
1592 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1593 int rc
; /* Subfunction return code */
1594 tRowcnt a
[2]; /* Statistics */
1598 assert( nEq
<=p
->nColumn
);
1599 assert( p
->aSample
!=0 );
1600 assert( p
->nSample
>0 );
1601 assert( pBuilder
->nRecValid
<nEq
);
1603 /* If values are not available for all fields of the index to the left
1604 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1605 if( pBuilder
->nRecValid
<(nEq
-1) ){
1606 return SQLITE_NOTFOUND
;
1609 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1610 ** below would return the same value. */
1611 if( nEq
>=p
->nColumn
){
1616 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, 1, nEq
-1, &bOk
);
1617 pBuilder
->pRec
= pRec
;
1618 if( rc
!=SQLITE_OK
) return rc
;
1619 if( bOk
==0 ) return SQLITE_NOTFOUND
;
1620 pBuilder
->nRecValid
= nEq
;
1622 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1623 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1624 p
->zName
, nEq
-1, (int)a
[1]));
1629 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1631 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1633 ** Estimate the number of rows that will be returned based on
1634 ** an IN constraint where the right-hand side of the IN operator
1635 ** is a list of values. Example:
1637 ** WHERE x IN (1,2,3,4)
1639 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1640 ** If unable to make an estimate, leave *pnRow unchanged and return
1643 ** This routine can fail if it is unable to load a collating sequence
1644 ** required for string comparison, or if unable to allocate memory
1645 ** for a UTF conversion required for comparison. The error is stored
1646 ** in the pParse structure.
1648 static int whereInScanEst(
1649 Parse
*pParse
, /* Parsing & code generating context */
1650 WhereLoopBuilder
*pBuilder
,
1651 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1652 tRowcnt
*pnRow
/* Write the revised row estimate here */
1654 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
1655 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
1656 int nRecValid
= pBuilder
->nRecValid
;
1657 int rc
= SQLITE_OK
; /* Subfunction return code */
1658 tRowcnt nEst
; /* Number of rows for a single term */
1659 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
1660 int i
; /* Loop counter */
1662 assert( p
->aSample
!=0 );
1663 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
1665 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
1667 pBuilder
->nRecValid
= nRecValid
;
1670 if( rc
==SQLITE_OK
){
1671 if( nRowEst
> nRow0
) nRowEst
= nRow0
;
1673 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst
));
1675 assert( pBuilder
->nRecValid
==nRecValid
);
1678 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1681 #ifdef WHERETRACE_ENABLED
1683 ** Print the content of a WhereTerm object
1685 static void whereTermPrint(WhereTerm
*pTerm
, int iTerm
){
1687 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
1691 memcpy(zType
, "...", 4);
1692 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
1693 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
1694 if( ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
) ) zType
[2] = 'L';
1695 if( pTerm
->eOperator
& WO_SINGLE
){
1696 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left={%d:%d}",
1697 pTerm
->leftCursor
, pTerm
->u
.leftColumn
);
1698 }else if( (pTerm
->eOperator
& WO_OR
)!=0 && pTerm
->u
.pOrInfo
!=0 ){
1699 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"indexable=0x%lld",
1700 pTerm
->u
.pOrInfo
->indexable
);
1702 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left=%d", pTerm
->leftCursor
);
1705 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1706 iTerm
, pTerm
, zType
, zLeft
, pTerm
->truthProb
,
1707 pTerm
->eOperator
, pTerm
->wtFlags
);
1708 if( pTerm
->iField
){
1709 sqlite3DebugPrintf(" iField=%d\n", pTerm
->iField
);
1711 sqlite3DebugPrintf("\n");
1713 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
1718 #ifdef WHERETRACE_ENABLED
1720 ** Show the complete content of a WhereClause
1722 void sqlite3WhereClausePrint(WhereClause
*pWC
){
1724 for(i
=0; i
<pWC
->nTerm
; i
++){
1725 whereTermPrint(&pWC
->a
[i
], i
);
1730 #ifdef WHERETRACE_ENABLED
1732 ** Print a WhereLoop object for debugging purposes
1734 static void whereLoopPrint(WhereLoop
*p
, WhereClause
*pWC
){
1735 WhereInfo
*pWInfo
= pWC
->pWInfo
;
1736 int nb
= 1+(pWInfo
->pTabList
->nSrc
+3)/4;
1737 struct SrcList_item
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
1738 Table
*pTab
= pItem
->pTab
;
1739 Bitmask mAll
= (((Bitmask
)1)<<(nb
*4)) - 1;
1740 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
1741 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
& mAll
);
1742 sqlite3DebugPrintf(" %12s",
1743 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
1744 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
1746 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
1747 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
1748 int i
= sqlite3Strlen30(zName
) - 1;
1749 while( zName
[i
]!='_' ) i
--;
1752 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
1754 sqlite3DebugPrintf("%20s","");
1758 if( p
->u
.vtab
.idxStr
){
1759 z
= sqlite3_mprintf("(%d,\"%s\",%x)",
1760 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
1762 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
1764 sqlite3DebugPrintf(" %-19s", z
);
1767 if( p
->wsFlags
& WHERE_SKIPSCAN
){
1768 sqlite3DebugPrintf(" f %05x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->nSkip
);
1770 sqlite3DebugPrintf(" f %05x N %d", p
->wsFlags
, p
->nLTerm
);
1772 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
1773 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x100)!=0 ){
1775 for(i
=0; i
<p
->nLTerm
; i
++){
1776 whereTermPrint(p
->aLTerm
[i
], i
);
1783 ** Convert bulk memory into a valid WhereLoop that can be passed
1784 ** to whereLoopClear harmlessly.
1786 static void whereLoopInit(WhereLoop
*p
){
1787 p
->aLTerm
= p
->aLTermSpace
;
1789 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
1794 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1796 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
1797 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
1798 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
1799 sqlite3_free(p
->u
.vtab
.idxStr
);
1800 p
->u
.vtab
.needFree
= 0;
1801 p
->u
.vtab
.idxStr
= 0;
1802 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
1803 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
1804 sqlite3DbFreeNN(db
, p
->u
.btree
.pIndex
);
1805 p
->u
.btree
.pIndex
= 0;
1811 ** Deallocate internal memory used by a WhereLoop object
1813 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
1814 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
1815 whereLoopClearUnion(db
, p
);
1820 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1822 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
1824 if( p
->nLSlot
>=n
) return SQLITE_OK
;
1826 paNew
= sqlite3DbMallocRawNN(db
, sizeof(p
->aLTerm
[0])*n
);
1827 if( paNew
==0 ) return SQLITE_NOMEM_BKPT
;
1828 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
1829 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
1836 ** Transfer content from the second pLoop into the first.
1838 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
1839 whereLoopClearUnion(db
, pTo
);
1840 if( whereLoopResize(db
, pTo
, pFrom
->nLTerm
) ){
1841 memset(&pTo
->u
, 0, sizeof(pTo
->u
));
1842 return SQLITE_NOMEM_BKPT
;
1844 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
1845 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
1846 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
1847 pFrom
->u
.vtab
.needFree
= 0;
1848 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
1849 pFrom
->u
.btree
.pIndex
= 0;
1855 ** Delete a WhereLoop object
1857 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
1858 whereLoopClear(db
, p
);
1859 sqlite3DbFreeNN(db
, p
);
1863 ** Free a WhereInfo structure
1865 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
1866 if( ALWAYS(pWInfo
) ){
1868 for(i
=0; i
<pWInfo
->nLevel
; i
++){
1869 WhereLevel
*pLevel
= &pWInfo
->a
[i
];
1870 if( pLevel
->pWLoop
&& (pLevel
->pWLoop
->wsFlags
& WHERE_IN_ABLE
) ){
1871 sqlite3DbFree(db
, pLevel
->u
.in
.aInLoop
);
1874 sqlite3WhereClauseClear(&pWInfo
->sWC
);
1875 while( pWInfo
->pLoops
){
1876 WhereLoop
*p
= pWInfo
->pLoops
;
1877 pWInfo
->pLoops
= p
->pNextLoop
;
1878 whereLoopDelete(db
, p
);
1880 sqlite3DbFreeNN(db
, pWInfo
);
1885 ** Return TRUE if all of the following are true:
1887 ** (1) X has the same or lower cost that Y
1888 ** (2) X is a proper subset of Y
1889 ** (3) X skips at least as many columns as Y
1891 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1892 ** than Y and that every WHERE clause term used by X is also used
1895 ** If X is a proper subset of Y then Y is a better choice and ought
1896 ** to have a lower cost. This routine returns TRUE when that cost
1897 ** relationship is inverted and needs to be adjusted. The third rule
1898 ** was added because if X uses skip-scan less than Y it still might
1899 ** deserve a lower cost even if it is a proper subset of Y.
1901 static int whereLoopCheaperProperSubset(
1902 const WhereLoop
*pX
, /* First WhereLoop to compare */
1903 const WhereLoop
*pY
/* Compare against this WhereLoop */
1906 if( pX
->nLTerm
-pX
->nSkip
>= pY
->nLTerm
-pY
->nSkip
){
1907 return 0; /* X is not a subset of Y */
1909 if( pY
->nSkip
> pX
->nSkip
) return 0;
1910 if( pX
->rRun
>= pY
->rRun
){
1911 if( pX
->rRun
> pY
->rRun
) return 0; /* X costs more than Y */
1912 if( pX
->nOut
> pY
->nOut
) return 0; /* X costs more than Y */
1914 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
1915 if( pX
->aLTerm
[i
]==0 ) continue;
1916 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
1917 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
1919 if( j
<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
1921 return 1; /* All conditions meet */
1925 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1928 ** (1) pTemplate costs less than any other WhereLoops that are a proper
1929 ** subset of pTemplate
1931 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
1932 ** is a proper subset.
1934 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1935 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1938 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
1939 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
1940 for(; p
; p
=p
->pNextLoop
){
1941 if( p
->iTab
!=pTemplate
->iTab
) continue;
1942 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
1943 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
1944 /* Adjust pTemplate cost downward so that it is cheaper than its
1946 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1947 pTemplate
->rRun
, pTemplate
->nOut
, p
->rRun
, p
->nOut
-1));
1948 pTemplate
->rRun
= p
->rRun
;
1949 pTemplate
->nOut
= p
->nOut
- 1;
1950 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
1951 /* Adjust pTemplate cost upward so that it is costlier than p since
1952 ** pTemplate is a proper subset of p */
1953 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1954 pTemplate
->rRun
, pTemplate
->nOut
, p
->rRun
, p
->nOut
+1));
1955 pTemplate
->rRun
= p
->rRun
;
1956 pTemplate
->nOut
= p
->nOut
+ 1;
1962 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1963 ** replaced by pTemplate.
1965 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1966 ** In other words if pTemplate ought to be dropped from further consideration.
1968 ** If pX is a WhereLoop that pTemplate can replace, then return the
1969 ** link that points to pX.
1971 ** If pTemplate cannot replace any existing element of the list but needs
1972 ** to be added to the list as a new entry, then return a pointer to the
1973 ** tail of the list.
1975 static WhereLoop
**whereLoopFindLesser(
1977 const WhereLoop
*pTemplate
1980 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
1981 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
1982 /* If either the iTab or iSortIdx values for two WhereLoop are different
1983 ** then those WhereLoops need to be considered separately. Neither is
1984 ** a candidate to replace the other. */
1987 /* In the current implementation, the rSetup value is either zero
1988 ** or the cost of building an automatic index (NlogN) and the NlogN
1989 ** is the same for compatible WhereLoops. */
1990 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
1991 || p
->rSetup
==pTemplate
->rSetup
);
1993 /* whereLoopAddBtree() always generates and inserts the automatic index
1994 ** case first. Hence compatible candidate WhereLoops never have a larger
1995 ** rSetup. Call this SETUP-INVARIANT */
1996 assert( p
->rSetup
>=pTemplate
->rSetup
);
1998 /* Any loop using an appliation-defined index (or PRIMARY KEY or
1999 ** UNIQUE constraint) with one or more == constraints is better
2000 ** than an automatic index. Unless it is a skip-scan. */
2001 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
2002 && (pTemplate
->nSkip
)==0
2003 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
2004 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
2005 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
2010 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2011 ** discarded. WhereLoop p is better if:
2012 ** (1) p has no more dependencies than pTemplate, and
2013 ** (2) p has an equal or lower cost than pTemplate
2015 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
2016 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
2017 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
2018 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
2020 return 0; /* Discard pTemplate */
2023 /* If pTemplate is always better than p, then cause p to be overwritten
2024 ** with pTemplate. pTemplate is better than p if:
2025 ** (1) pTemplate has no more dependences than p, and
2026 ** (2) pTemplate has an equal or lower cost than p.
2028 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
2029 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
2030 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
2032 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
2033 break; /* Cause p to be overwritten by pTemplate */
2040 ** Insert or replace a WhereLoop entry using the template supplied.
2042 ** An existing WhereLoop entry might be overwritten if the new template
2043 ** is better and has fewer dependencies. Or the template will be ignored
2044 ** and no insert will occur if an existing WhereLoop is faster and has
2045 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2046 ** added based on the template.
2048 ** If pBuilder->pOrSet is not NULL then we care about only the
2049 ** prerequisites and rRun and nOut costs of the N best loops. That
2050 ** information is gathered in the pBuilder->pOrSet object. This special
2051 ** processing mode is used only for OR clause processing.
2053 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2054 ** still might overwrite similar loops with the new template if the
2055 ** new template is better. Loops may be overwritten if the following
2056 ** conditions are met:
2058 ** (1) They have the same iTab.
2059 ** (2) They have the same iSortIdx.
2060 ** (3) The template has same or fewer dependencies than the current loop
2061 ** (4) The template has the same or lower cost than the current loop
2063 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
2064 WhereLoop
**ppPrev
, *p
;
2065 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
2066 sqlite3
*db
= pWInfo
->pParse
->db
;
2069 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2072 if( pBuilder
->pOrSet
!=0 ){
2073 if( pTemplate
->nLTerm
){
2074 #if WHERETRACE_ENABLED
2075 u16 n
= pBuilder
->pOrSet
->n
;
2078 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
2080 #if WHERETRACE_ENABLED /* 0x8 */
2081 if( sqlite3WhereTrace
& 0x8 ){
2082 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
2083 whereLoopPrint(pTemplate
, pBuilder
->pWC
);
2090 /* Look for an existing WhereLoop to replace with pTemplate
2092 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
2093 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
2096 /* There already exists a WhereLoop on the list that is better
2097 ** than pTemplate, so just ignore pTemplate */
2098 #if WHERETRACE_ENABLED /* 0x8 */
2099 if( sqlite3WhereTrace
& 0x8 ){
2100 sqlite3DebugPrintf(" skip: ");
2101 whereLoopPrint(pTemplate
, pBuilder
->pWC
);
2109 /* If we reach this point it means that either p[] should be overwritten
2110 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2111 ** WhereLoop and insert it.
2113 #if WHERETRACE_ENABLED /* 0x8 */
2114 if( sqlite3WhereTrace
& 0x8 ){
2116 sqlite3DebugPrintf("replace: ");
2117 whereLoopPrint(p
, pBuilder
->pWC
);
2118 sqlite3DebugPrintf(" with: ");
2120 sqlite3DebugPrintf(" add: ");
2122 whereLoopPrint(pTemplate
, pBuilder
->pWC
);
2126 /* Allocate a new WhereLoop to add to the end of the list */
2127 *ppPrev
= p
= sqlite3DbMallocRawNN(db
, sizeof(WhereLoop
));
2128 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
2132 /* We will be overwriting WhereLoop p[]. But before we do, first
2133 ** go through the rest of the list and delete any other entries besides
2134 ** p[] that are also supplated by pTemplate */
2135 WhereLoop
**ppTail
= &p
->pNextLoop
;
2138 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
2139 if( ppTail
==0 ) break;
2141 if( pToDel
==0 ) break;
2142 *ppTail
= pToDel
->pNextLoop
;
2143 #if WHERETRACE_ENABLED /* 0x8 */
2144 if( sqlite3WhereTrace
& 0x8 ){
2145 sqlite3DebugPrintf(" delete: ");
2146 whereLoopPrint(pToDel
, pBuilder
->pWC
);
2149 whereLoopDelete(db
, pToDel
);
2152 rc
= whereLoopXfer(db
, p
, pTemplate
);
2153 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2154 Index
*pIndex
= p
->u
.btree
.pIndex
;
2155 if( pIndex
&& pIndex
->tnum
==0 ){
2156 p
->u
.btree
.pIndex
= 0;
2163 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2164 ** WHERE clause that reference the loop but which are not used by an
2167 ** For every WHERE clause term that is not used by the index
2168 ** and which has a truth probability assigned by one of the likelihood(),
2169 ** likely(), or unlikely() SQL functions, reduce the estimated number
2170 ** of output rows by the probability specified.
2172 ** TUNING: For every WHERE clause term that is not used by the index
2173 ** and which does not have an assigned truth probability, heuristics
2174 ** described below are used to try to estimate the truth probability.
2175 ** TODO --> Perhaps this is something that could be improved by better
2176 ** table statistics.
2178 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2179 ** value corresponds to -1 in LogEst notation, so this means decrement
2180 ** the WhereLoop.nOut field for every such WHERE clause term.
2182 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2183 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2184 ** final output row estimate is no greater than 1/4 of the total number
2185 ** of rows in the table. In other words, assume that x==EXPR will filter
2186 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2187 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2188 ** on the "x" column and so in that case only cap the output row estimate
2189 ** at 1/2 instead of 1/4.
2191 static void whereLoopOutputAdjust(
2192 WhereClause
*pWC
, /* The WHERE clause */
2193 WhereLoop
*pLoop
, /* The loop to adjust downward */
2194 LogEst nRow
/* Number of rows in the entire table */
2196 WhereTerm
*pTerm
, *pX
;
2197 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
2199 LogEst iReduce
= 0; /* pLoop->nOut should not exceed nRow-iReduce */
2201 assert( (pLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2202 for(i
=pWC
->nTerm
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
2203 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) break;
2204 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
2205 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
2206 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
2207 pX
= pLoop
->aLTerm
[j
];
2208 if( pX
==0 ) continue;
2209 if( pX
==pTerm
) break;
2210 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
2213 if( pTerm
->truthProb
<=0 ){
2214 /* If a truth probability is specified using the likelihood() hints,
2215 ** then use the probability provided by the application. */
2216 pLoop
->nOut
+= pTerm
->truthProb
;
2218 /* In the absence of explicit truth probabilities, use heuristics to
2219 ** guess a reasonable truth probability. */
2221 if( pTerm
->eOperator
&(WO_EQ
|WO_IS
) ){
2222 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2223 testcase( pTerm
->pExpr
->op
==TK_IS
);
2224 if( sqlite3ExprIsInteger(pRight
, &k
) && k
>=(-1) && k
<=1 ){
2229 if( iReduce
<k
) iReduce
= k
;
2234 if( pLoop
->nOut
> nRow
-iReduce
) pLoop
->nOut
= nRow
- iReduce
;
2238 ** Term pTerm is a vector range comparison operation. The first comparison
2239 ** in the vector can be optimized using column nEq of the index. This
2240 ** function returns the total number of vector elements that can be used
2241 ** as part of the range comparison.
2243 ** For example, if the query is:
2245 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2249 ** CREATE INDEX ... ON (a, b, c, d, e)
2251 ** then this function would be invoked with nEq=1. The value returned in
2254 static int whereRangeVectorLen(
2255 Parse
*pParse
, /* Parsing context */
2256 int iCur
, /* Cursor open on pIdx */
2257 Index
*pIdx
, /* The index to be used for a inequality constraint */
2258 int nEq
, /* Number of prior equality constraints on same index */
2259 WhereTerm
*pTerm
/* The vector inequality constraint */
2261 int nCmp
= sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
);
2264 nCmp
= MIN(nCmp
, (pIdx
->nColumn
- nEq
));
2265 for(i
=1; i
<nCmp
; i
++){
2266 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2267 ** of the index. If not, exit the loop. */
2268 char aff
; /* Comparison affinity */
2269 char idxaff
= 0; /* Indexed columns affinity */
2270 CollSeq
*pColl
; /* Comparison collation sequence */
2271 Expr
*pLhs
= pTerm
->pExpr
->pLeft
->x
.pList
->a
[i
].pExpr
;
2272 Expr
*pRhs
= pTerm
->pExpr
->pRight
;
2273 if( pRhs
->flags
& EP_xIsSelect
){
2274 pRhs
= pRhs
->x
.pSelect
->pEList
->a
[i
].pExpr
;
2276 pRhs
= pRhs
->x
.pList
->a
[i
].pExpr
;
2279 /* Check that the LHS of the comparison is a column reference to
2280 ** the right column of the right source table. And that the sort
2281 ** order of the index column is the same as the sort order of the
2282 ** leftmost index column. */
2283 if( pLhs
->op
!=TK_COLUMN
2284 || pLhs
->iTable
!=iCur
2285 || pLhs
->iColumn
!=pIdx
->aiColumn
[i
+nEq
]
2286 || pIdx
->aSortOrder
[i
+nEq
]!=pIdx
->aSortOrder
[nEq
]
2291 testcase( pLhs
->iColumn
==XN_ROWID
);
2292 aff
= sqlite3CompareAffinity(pRhs
, sqlite3ExprAffinity(pLhs
));
2293 idxaff
= sqlite3TableColumnAffinity(pIdx
->pTable
, pLhs
->iColumn
);
2294 if( aff
!=idxaff
) break;
2296 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2297 if( pColl
==0 ) break;
2298 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[i
+nEq
]) ) break;
2304 ** Adjust the cost C by the costMult facter T. This only occurs if
2305 ** compiled with -DSQLITE_ENABLE_COSTMULT
2307 #ifdef SQLITE_ENABLE_COSTMULT
2308 # define ApplyCostMultiplier(C,T) C += T
2310 # define ApplyCostMultiplier(C,T)
2314 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2315 ** index pIndex. Try to match one more.
2317 ** When this function is called, pBuilder->pNew->nOut contains the
2318 ** number of rows expected to be visited by filtering using the nEq
2319 ** terms only. If it is modified, this value is restored before this
2320 ** function returns.
2322 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2323 ** INTEGER PRIMARY KEY.
2325 static int whereLoopAddBtreeIndex(
2326 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
2327 struct SrcList_item
*pSrc
, /* FROM clause term being analyzed */
2328 Index
*pProbe
, /* An index on pSrc */
2329 LogEst nInMul
/* log(Number of iterations due to IN) */
2331 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyse context */
2332 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
2333 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
2334 WhereLoop
*pNew
; /* Template WhereLoop under construction */
2335 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
2336 int opMask
; /* Valid operators for constraints */
2337 WhereScan scan
; /* Iterator for WHERE terms */
2338 Bitmask saved_prereq
; /* Original value of pNew->prereq */
2339 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
2340 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
2341 u16 saved_nBtm
; /* Original value of pNew->u.btree.nBtm */
2342 u16 saved_nTop
; /* Original value of pNew->u.btree.nTop */
2343 u16 saved_nSkip
; /* Original value of pNew->nSkip */
2344 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
2345 LogEst saved_nOut
; /* Original value of pNew->nOut */
2346 int rc
= SQLITE_OK
; /* Return code */
2347 LogEst rSize
; /* Number of rows in the table */
2348 LogEst rLogSize
; /* Logarithm of table size */
2349 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
2351 pNew
= pBuilder
->pNew
;
2352 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
2353 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2354 pProbe
->zName
, pNew
->u
.btree
.nEq
));
2356 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2357 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
2358 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
2359 opMask
= WO_LT
|WO_LE
;
2361 assert( pNew
->u
.btree
.nBtm
==0 );
2362 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
|WO_ISNULL
|WO_IS
;
2364 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
2366 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
2368 saved_nEq
= pNew
->u
.btree
.nEq
;
2369 saved_nBtm
= pNew
->u
.btree
.nBtm
;
2370 saved_nTop
= pNew
->u
.btree
.nTop
;
2371 saved_nSkip
= pNew
->nSkip
;
2372 saved_nLTerm
= pNew
->nLTerm
;
2373 saved_wsFlags
= pNew
->wsFlags
;
2374 saved_prereq
= pNew
->prereq
;
2375 saved_nOut
= pNew
->nOut
;
2376 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, saved_nEq
,
2379 rSize
= pProbe
->aiRowLogEst
[0];
2380 rLogSize
= estLog(rSize
);
2381 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
2382 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
2384 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
2386 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2387 int nRecValid
= pBuilder
->nRecValid
;
2389 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
2390 && indexColumnNotNull(pProbe
, saved_nEq
)
2392 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2394 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
2396 /* Do not allow the upper bound of a LIKE optimization range constraint
2397 ** to mix with a lower range bound from some other source */
2398 if( pTerm
->wtFlags
& TERM_LIKEOPT
&& pTerm
->eOperator
==WO_LT
) continue;
2400 /* Do not allow IS constraints from the WHERE clause to be used by the
2401 ** right table of a LEFT JOIN. Only constraints in the ON clause are
2403 if( (pSrc
->fg
.jointype
& JT_LEFT
)!=0
2404 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
2405 && (eOp
& (WO_IS
|WO_ISNULL
))!=0
2407 testcase( eOp
& WO_IS
);
2408 testcase( eOp
& WO_ISNULL
);
2412 if( IsUniqueIndex(pProbe
) && saved_nEq
==pProbe
->nKeyCol
-1 ){
2413 pBuilder
->bldFlags
|= SQLITE_BLDF_UNIQUE
;
2415 pBuilder
->bldFlags
|= SQLITE_BLDF_INDEXED
;
2417 pNew
->wsFlags
= saved_wsFlags
;
2418 pNew
->u
.btree
.nEq
= saved_nEq
;
2419 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2420 pNew
->u
.btree
.nTop
= saved_nTop
;
2421 pNew
->nLTerm
= saved_nLTerm
;
2422 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
2423 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
2424 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
2427 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
2428 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
2429 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
2433 Expr
*pExpr
= pTerm
->pExpr
;
2434 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
2435 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2436 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2438 nIn
= 46; assert( 46==sqlite3LogEst(25) );
2440 /* The expression may actually be of the form (x, y) IN (SELECT...).
2441 ** In this case there is a separate term for each of (x) and (y).
2442 ** However, the nIn multiplier should only be applied once, not once
2443 ** for each such term. The following loop checks that pTerm is the
2444 ** first such term in use, and sets nIn back to 0 if it is not. */
2445 for(i
=0; i
<pNew
->nLTerm
-1; i
++){
2446 if( pNew
->aLTerm
[i
] && pNew
->aLTerm
[i
]->pExpr
==pExpr
) nIn
= 0;
2448 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
2449 /* "x IN (value, value, ...)" */
2450 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
2451 assert( nIn
>0 ); /* RHS always has 2 or more terms... The parser
2452 ** changes "x IN (?)" into "x=?". */
2454 }else if( eOp
& (WO_EQ
|WO_IS
) ){
2455 int iCol
= pProbe
->aiColumn
[saved_nEq
];
2456 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
2457 assert( saved_nEq
==pNew
->u
.btree
.nEq
);
2459 || (iCol
>0 && nInMul
==0 && saved_nEq
==pProbe
->nKeyCol
-1)
2461 if( iCol
>=0 && pProbe
->uniqNotNull
==0 ){
2462 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
2464 pNew
->wsFlags
|= WHERE_ONEROW
;
2467 }else if( eOp
& WO_ISNULL
){
2468 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
2469 }else if( eOp
& (WO_GT
|WO_GE
) ){
2470 testcase( eOp
& WO_GT
);
2471 testcase( eOp
& WO_GE
);
2472 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
2473 pNew
->u
.btree
.nBtm
= whereRangeVectorLen(
2474 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
2478 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
2479 /* Range contraints that come from the LIKE optimization are
2480 ** always used in pairs. */
2482 assert( (pTop
-(pTerm
->pWC
->a
))<pTerm
->pWC
->nTerm
);
2483 assert( pTop
->wtFlags
& TERM_LIKEOPT
);
2484 assert( pTop
->eOperator
==WO_LT
);
2485 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
2486 pNew
->aLTerm
[pNew
->nLTerm
++] = pTop
;
2487 pNew
->wsFlags
|= WHERE_TOP_LIMIT
;
2488 pNew
->u
.btree
.nTop
= 1;
2491 assert( eOp
& (WO_LT
|WO_LE
) );
2492 testcase( eOp
& WO_LT
);
2493 testcase( eOp
& WO_LE
);
2494 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
2495 pNew
->u
.btree
.nTop
= whereRangeVectorLen(
2496 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
2499 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
2500 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
2503 /* At this point pNew->nOut is set to the number of rows expected to
2504 ** be visited by the index scan before considering term pTerm, or the
2505 ** values of nIn and nInMul. In other words, assuming that all
2506 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2507 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2508 assert( pNew
->nOut
==saved_nOut
);
2509 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
2510 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2511 ** data, using some other estimate. */
2512 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
2514 int nEq
= ++pNew
->u
.btree
.nEq
;
2515 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
|WO_IS
) );
2517 assert( pNew
->nOut
==saved_nOut
);
2518 if( pTerm
->truthProb
<=0 && pProbe
->aiColumn
[saved_nEq
]>=0 ){
2519 assert( (eOp
& WO_IN
) || nIn
==0 );
2520 testcase( eOp
& WO_IN
);
2521 pNew
->nOut
+= pTerm
->truthProb
;
2524 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2528 && pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
2529 && ((eOp
& WO_IN
)==0 || !ExprHasProperty(pTerm
->pExpr
, EP_xIsSelect
))
2531 Expr
*pExpr
= pTerm
->pExpr
;
2532 if( (eOp
& (WO_EQ
|WO_ISNULL
|WO_IS
))!=0 ){
2533 testcase( eOp
& WO_EQ
);
2534 testcase( eOp
& WO_IS
);
2535 testcase( eOp
& WO_ISNULL
);
2536 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
2538 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
2540 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
2541 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
2543 pNew
->nOut
= sqlite3LogEst(nOut
);
2544 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
2551 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
2552 if( eOp
& WO_ISNULL
){
2553 /* TUNING: If there is no likelihood() value, assume that a
2554 ** "col IS NULL" expression matches twice as many rows
2562 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2563 ** it to pNew->rRun, which is currently set to the cost of the index
2564 ** seek only. Then, if this is a non-covering index, add the cost of
2565 ** visiting the rows in the main table. */
2566 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
2567 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
2568 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
))==0 ){
2569 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
2571 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
2573 nOutUnadjusted
= pNew
->nOut
;
2574 pNew
->rRun
+= nInMul
+ nIn
;
2575 pNew
->nOut
+= nInMul
+ nIn
;
2576 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
2577 rc
= whereLoopInsert(pBuilder
, pNew
);
2579 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
2580 pNew
->nOut
= saved_nOut
;
2582 pNew
->nOut
= nOutUnadjusted
;
2585 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
2586 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
2588 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
2590 pNew
->nOut
= saved_nOut
;
2591 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2592 pBuilder
->nRecValid
= nRecValid
;
2595 pNew
->prereq
= saved_prereq
;
2596 pNew
->u
.btree
.nEq
= saved_nEq
;
2597 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2598 pNew
->u
.btree
.nTop
= saved_nTop
;
2599 pNew
->nSkip
= saved_nSkip
;
2600 pNew
->wsFlags
= saved_wsFlags
;
2601 pNew
->nOut
= saved_nOut
;
2602 pNew
->nLTerm
= saved_nLTerm
;
2604 /* Consider using a skip-scan if there are no WHERE clause constraints
2605 ** available for the left-most terms of the index, and if the average
2606 ** number of repeats in the left-most terms is at least 18.
2608 ** The magic number 18 is selected on the basis that scanning 17 rows
2609 ** is almost always quicker than an index seek (even though if the index
2610 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2611 ** the code). And, even if it is not, it should not be too much slower.
2612 ** On the other hand, the extra seeks could end up being significantly
2613 ** more expensive. */
2614 assert( 42==sqlite3LogEst(18) );
2615 if( saved_nEq
==saved_nSkip
2616 && saved_nEq
+1<pProbe
->nKeyCol
2617 && pProbe
->noSkipScan
==0
2618 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
2619 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
2622 pNew
->u
.btree
.nEq
++;
2624 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
2625 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
2626 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
2627 pNew
->nOut
-= nIter
;
2628 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2629 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2631 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
2632 pNew
->nOut
= saved_nOut
;
2633 pNew
->u
.btree
.nEq
= saved_nEq
;
2634 pNew
->nSkip
= saved_nSkip
;
2635 pNew
->wsFlags
= saved_wsFlags
;
2638 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2639 pProbe
->zName
, saved_nEq
, rc
));
2644 ** Return True if it is possible that pIndex might be useful in
2645 ** implementing the ORDER BY clause in pBuilder.
2647 ** Return False if pBuilder does not contain an ORDER BY clause or
2648 ** if there is no way for pIndex to be useful in implementing that
2651 static int indexMightHelpWithOrderBy(
2652 WhereLoopBuilder
*pBuilder
,
2660 if( pIndex
->bUnordered
) return 0;
2661 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
2662 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
2663 Expr
*pExpr
= sqlite3ExprSkipCollate(pOB
->a
[ii
].pExpr
);
2664 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iCursor
){
2665 if( pExpr
->iColumn
<0 ) return 1;
2666 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
2667 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
2669 }else if( (aColExpr
= pIndex
->aColExpr
)!=0 ){
2670 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
2671 if( pIndex
->aiColumn
[jj
]!=XN_EXPR
) continue;
2672 if( sqlite3ExprCompareSkip(pExpr
,aColExpr
->a
[jj
].pExpr
,iCursor
)==0 ){
2682 ** Return a bitmask where 1s indicate that the corresponding column of
2683 ** the table is used by an index. Only the first 63 columns are considered.
2685 static Bitmask
columnsInIndex(Index
*pIdx
){
2688 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
2689 int x
= pIdx
->aiColumn
[j
];
2691 testcase( x
==BMS
-1 );
2692 testcase( x
==BMS
-2 );
2693 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
2699 /* Check to see if a partial index with pPartIndexWhere can be used
2700 ** in the current query. Return true if it can be and false if not.
2702 static int whereUsablePartialIndex(int iTab
, WhereClause
*pWC
, Expr
*pWhere
){
2705 Parse
*pParse
= pWC
->pWInfo
->pParse
;
2706 while( pWhere
->op
==TK_AND
){
2707 if( !whereUsablePartialIndex(iTab
,pWC
,pWhere
->pLeft
) ) return 0;
2708 pWhere
= pWhere
->pRight
;
2710 if( pParse
->db
->flags
& SQLITE_EnableQPSG
) pParse
= 0;
2711 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2712 Expr
*pExpr
= pTerm
->pExpr
;
2713 if( (!ExprHasProperty(pExpr
, EP_FromJoin
) || pExpr
->iRightJoinTable
==iTab
)
2714 && sqlite3ExprImpliesExpr(pParse
, pExpr
, pWhere
, iTab
)
2723 ** Add all WhereLoop objects for a single table of the join where the table
2724 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2725 ** a b-tree table, not a virtual table.
2727 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2728 ** are calculated as follows:
2730 ** For a full scan, assuming the table (or index) contains nRow rows:
2732 ** cost = nRow * 3.0 // full-table scan
2733 ** cost = nRow * K // scan of covering index
2734 ** cost = nRow * (K+3.0) // scan of non-covering index
2736 ** where K is a value between 1.1 and 3.0 set based on the relative
2737 ** estimated average size of the index and table records.
2739 ** For an index scan, where nVisit is the number of index rows visited
2740 ** by the scan, and nSeek is the number of seek operations required on
2741 ** the index b-tree:
2743 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2744 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2746 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2747 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2748 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2750 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2751 ** of uncertainty. For this reason, scoring is designed to pick plans that
2752 ** "do the least harm" if the estimates are inaccurate. For example, a
2753 ** log(nRow) factor is omitted from a non-covering index scan in order to
2754 ** bias the scoring in favor of using an index, since the worst-case
2755 ** performance of using an index is far better than the worst-case performance
2756 ** of a full table scan.
2758 static int whereLoopAddBtree(
2759 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
2760 Bitmask mPrereq
/* Extra prerequesites for using this table */
2762 WhereInfo
*pWInfo
; /* WHERE analysis context */
2763 Index
*pProbe
; /* An index we are evaluating */
2764 Index sPk
; /* A fake index object for the primary key */
2765 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
2766 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
2767 SrcList
*pTabList
; /* The FROM clause */
2768 struct SrcList_item
*pSrc
; /* The FROM clause btree term to add */
2769 WhereLoop
*pNew
; /* Template WhereLoop object */
2770 int rc
= SQLITE_OK
; /* Return code */
2771 int iSortIdx
= 1; /* Index number */
2772 int b
; /* A boolean value */
2773 LogEst rSize
; /* number of rows in the table */
2774 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
2775 WhereClause
*pWC
; /* The parsed WHERE clause */
2776 Table
*pTab
; /* Table being queried */
2778 pNew
= pBuilder
->pNew
;
2779 pWInfo
= pBuilder
->pWInfo
;
2780 pTabList
= pWInfo
->pTabList
;
2781 pSrc
= pTabList
->a
+ pNew
->iTab
;
2783 pWC
= pBuilder
->pWC
;
2784 assert( !IsVirtual(pSrc
->pTab
) );
2786 if( pSrc
->pIBIndex
){
2787 /* An INDEXED BY clause specifies a particular index to use */
2788 pProbe
= pSrc
->pIBIndex
;
2789 }else if( !HasRowid(pTab
) ){
2790 pProbe
= pTab
->pIndex
;
2792 /* There is no INDEXED BY clause. Create a fake Index object in local
2793 ** variable sPk to represent the rowid primary key index. Make this
2794 ** fake index the first in a chain of Index objects with all of the real
2795 ** indices to follow */
2796 Index
*pFirst
; /* First of real indices on the table */
2797 memset(&sPk
, 0, sizeof(Index
));
2800 sPk
.aiColumn
= &aiColumnPk
;
2801 sPk
.aiRowLogEst
= aiRowEstPk
;
2802 sPk
.onError
= OE_Replace
;
2804 sPk
.szIdxRow
= pTab
->szTabRow
;
2805 aiRowEstPk
[0] = pTab
->nRowLogEst
;
2807 pFirst
= pSrc
->pTab
->pIndex
;
2808 if( pSrc
->fg
.notIndexed
==0 ){
2809 /* The real indices of the table are only considered if the
2810 ** NOT INDEXED qualifier is omitted from the FROM clause */
2815 rSize
= pTab
->nRowLogEst
;
2816 rLogSize
= estLog(rSize
);
2818 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2819 /* Automatic indexes */
2820 if( !pBuilder
->pOrSet
/* Not part of an OR optimization */
2821 && (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
2822 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
2823 && pSrc
->pIBIndex
==0 /* Has no INDEXED BY clause */
2824 && !pSrc
->fg
.notIndexed
/* Has no NOT INDEXED clause */
2825 && HasRowid(pTab
) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2826 && !pSrc
->fg
.isCorrelated
/* Not a correlated subquery */
2827 && !pSrc
->fg
.isRecursive
/* Not a recursive common table expression. */
2829 /* Generate auto-index WhereLoops */
2831 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
2832 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
2833 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
2834 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
2835 pNew
->u
.btree
.nEq
= 1;
2837 pNew
->u
.btree
.pIndex
= 0;
2839 pNew
->aLTerm
[0] = pTerm
;
2840 /* TUNING: One-time cost for computing the automatic index is
2841 ** estimated to be X*N*log2(N) where N is the number of rows in
2842 ** the table being indexed and where X is 7 (LogEst=28) for normal
2843 ** tables or 1.375 (LogEst=4) for views and subqueries. The value
2844 ** of X is smaller for views and subqueries so that the query planner
2845 ** will be more aggressive about generating automatic indexes for
2846 ** those objects, since there is no opportunity to add schema
2847 ** indexes on subqueries and views. */
2848 pNew
->rSetup
= rLogSize
+ rSize
+ 4;
2849 if( pTab
->pSelect
==0 && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
2852 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
2853 if( pNew
->rSetup
<0 ) pNew
->rSetup
= 0;
2854 /* TUNING: Each index lookup yields 20 rows in the table. This
2855 ** is more than the usual guess of 10 rows, since we have no way
2856 ** of knowing how selective the index will ultimately be. It would
2857 ** not be unreasonable to make this value much larger. */
2858 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
2859 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
2860 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
2861 pNew
->prereq
= mPrereq
| pTerm
->prereqRight
;
2862 rc
= whereLoopInsert(pBuilder
, pNew
);
2866 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2868 /* Loop over all indices
2870 for(; rc
==SQLITE_OK
&& pProbe
; pProbe
=pProbe
->pNext
, iSortIdx
++){
2871 if( pProbe
->pPartIdxWhere
!=0
2872 && !whereUsablePartialIndex(pSrc
->iCursor
, pWC
, pProbe
->pPartIdxWhere
) ){
2873 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
2874 continue; /* Partial index inappropriate for this query */
2876 rSize
= pProbe
->aiRowLogEst
[0];
2877 pNew
->u
.btree
.nEq
= 0;
2878 pNew
->u
.btree
.nBtm
= 0;
2879 pNew
->u
.btree
.nTop
= 0;
2884 pNew
->prereq
= mPrereq
;
2886 pNew
->u
.btree
.pIndex
= pProbe
;
2887 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
2888 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2889 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
2890 if( pProbe
->tnum
<=0 ){
2891 /* Integer primary key index */
2892 pNew
->wsFlags
= WHERE_IPK
;
2894 /* Full table scan */
2895 pNew
->iSortIdx
= b
? iSortIdx
: 0;
2896 /* TUNING: Cost of full table scan is (N*3.0). */
2897 pNew
->rRun
= rSize
+ 16;
2898 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
2899 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
2900 rc
= whereLoopInsert(pBuilder
, pNew
);
2905 if( pProbe
->isCovering
){
2906 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
2909 m
= pSrc
->colUsed
& ~columnsInIndex(pProbe
);
2910 pNew
->wsFlags
= (m
==0) ? (WHERE_IDX_ONLY
|WHERE_INDEXED
) : WHERE_INDEXED
;
2913 /* Full scan via index */
2916 || pProbe
->pPartIdxWhere
!=0
2918 && pProbe
->bUnordered
==0
2919 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
2920 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
2921 && sqlite3GlobalConfig
.bUseCis
2922 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
2925 pNew
->iSortIdx
= b
? iSortIdx
: 0;
2927 /* The cost of visiting the index rows is N*K, where K is
2928 ** between 1.1 and 3.0, depending on the relative sizes of the
2929 ** index and table rows. */
2930 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
2932 /* If this is a non-covering index scan, add in the cost of
2933 ** doing table lookups. The cost will be 3x the number of
2934 ** lookups. Take into account WHERE clause terms that can be
2935 ** satisfied using just the index, and that do not require a
2937 LogEst nLookup
= rSize
+ 16; /* Base cost: N*3 */
2939 int iCur
= pSrc
->iCursor
;
2940 WhereClause
*pWC2
= &pWInfo
->sWC
;
2941 for(ii
=0; ii
<pWC2
->nTerm
; ii
++){
2942 WhereTerm
*pTerm
= &pWC2
->a
[ii
];
2943 if( !sqlite3ExprCoveredByIndex(pTerm
->pExpr
, iCur
, pProbe
) ){
2946 /* pTerm can be evaluated using just the index. So reduce
2947 ** the expected number of table lookups accordingly */
2948 if( pTerm
->truthProb
<=0 ){
2949 nLookup
+= pTerm
->truthProb
;
2952 if( pTerm
->eOperator
& (WO_EQ
|WO_IS
) ) nLookup
-= 19;
2956 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, nLookup
);
2958 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
2959 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
2960 rc
= whereLoopInsert(pBuilder
, pNew
);
2966 pBuilder
->bldFlags
= 0;
2967 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
2968 if( pBuilder
->bldFlags
==SQLITE_BLDF_INDEXED
){
2969 /* If a non-unique index is used, or if a prefix of the key for
2970 ** unique index is used (making the index functionally non-unique)
2971 ** then the sqlite_stat1 data becomes important for scoring the
2973 pTab
->tabFlags
|= TF_StatsUsed
;
2975 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2976 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
2977 pBuilder
->nRecValid
= 0;
2981 /* If there was an INDEXED BY clause, then only that one index is
2983 if( pSrc
->pIBIndex
) break;
2988 #ifndef SQLITE_OMIT_VIRTUALTABLE
2991 ** Argument pIdxInfo is already populated with all constraints that may
2992 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2993 ** function marks a subset of those constraints usable, invokes the
2994 ** xBestIndex method and adds the returned plan to pBuilder.
2996 ** A constraint is marked usable if:
2998 ** * Argument mUsable indicates that its prerequisites are available, and
3000 ** * It is not one of the operators specified in the mExclude mask passed
3001 ** as the fourth argument (which in practice is either WO_IN or 0).
3003 ** Argument mPrereq is a mask of tables that must be scanned before the
3004 ** virtual table in question. These are added to the plans prerequisites
3005 ** before it is added to pBuilder.
3007 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3008 ** uses one or more WO_IN terms, or false otherwise.
3010 static int whereLoopAddVirtualOne(
3011 WhereLoopBuilder
*pBuilder
,
3012 Bitmask mPrereq
, /* Mask of tables that must be used. */
3013 Bitmask mUsable
, /* Mask of usable tables */
3014 u16 mExclude
, /* Exclude terms using these operators */
3015 sqlite3_index_info
*pIdxInfo
, /* Populated object for xBestIndex */
3016 u16 mNoOmit
, /* Do not omit these constraints */
3017 int *pbIn
/* OUT: True if plan uses an IN(...) op */
3019 WhereClause
*pWC
= pBuilder
->pWC
;
3020 struct sqlite3_index_constraint
*pIdxCons
;
3021 struct sqlite3_index_constraint_usage
*pUsage
= pIdxInfo
->aConstraintUsage
;
3025 WhereLoop
*pNew
= pBuilder
->pNew
;
3026 Parse
*pParse
= pBuilder
->pWInfo
->pParse
;
3027 struct SrcList_item
*pSrc
= &pBuilder
->pWInfo
->pTabList
->a
[pNew
->iTab
];
3028 int nConstraint
= pIdxInfo
->nConstraint
;
3030 assert( (mUsable
& mPrereq
)==mPrereq
);
3032 pNew
->prereq
= mPrereq
;
3034 /* Set the usable flag on the subset of constraints identified by
3035 ** arguments mUsable and mExclude. */
3036 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3037 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3038 WhereTerm
*pTerm
= &pWC
->a
[pIdxCons
->iTermOffset
];
3039 pIdxCons
->usable
= 0;
3040 if( (pTerm
->prereqRight
& mUsable
)==pTerm
->prereqRight
3041 && (pTerm
->eOperator
& mExclude
)==0
3043 pIdxCons
->usable
= 1;
3047 /* Initialize the output fields of the sqlite3_index_info structure */
3048 memset(pUsage
, 0, sizeof(pUsage
[0])*nConstraint
);
3049 assert( pIdxInfo
->needToFreeIdxStr
==0 );
3050 pIdxInfo
->idxStr
= 0;
3051 pIdxInfo
->idxNum
= 0;
3052 pIdxInfo
->orderByConsumed
= 0;
3053 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
3054 pIdxInfo
->estimatedRows
= 25;
3055 pIdxInfo
->idxFlags
= 0;
3056 pIdxInfo
->colUsed
= (sqlite3_int64
)pSrc
->colUsed
;
3058 /* Invoke the virtual table xBestIndex() method */
3059 rc
= vtabBestIndex(pParse
, pSrc
->pTab
, pIdxInfo
);
3063 assert( pNew
->nLSlot
>=nConstraint
);
3064 for(i
=0; i
<nConstraint
; i
++) pNew
->aLTerm
[i
] = 0;
3065 pNew
->u
.vtab
.omitMask
= 0;
3066 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3067 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3069 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
3071 int j
= pIdxCons
->iTermOffset
;
3072 if( iTerm
>=nConstraint
3075 || pNew
->aLTerm
[iTerm
]!=0
3076 || pIdxCons
->usable
==0
3079 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
3082 testcase( iTerm
==nConstraint
-1 );
3084 testcase( j
==pWC
->nTerm
-1 );
3086 pNew
->prereq
|= pTerm
->prereqRight
;
3087 assert( iTerm
<pNew
->nLSlot
);
3088 pNew
->aLTerm
[iTerm
] = pTerm
;
3089 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
3090 testcase( iTerm
==15 );
3091 testcase( iTerm
==16 );
3092 if( iTerm
<16 && pUsage
[i
].omit
) pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
3093 if( (pTerm
->eOperator
& WO_IN
)!=0 ){
3094 /* A virtual table that is constrained by an IN clause may not
3095 ** consume the ORDER BY clause because (1) the order of IN terms
3096 ** is not necessarily related to the order of output terms and
3097 ** (2) Multiple outputs from a single IN value will not merge
3099 pIdxInfo
->orderByConsumed
= 0;
3100 pIdxInfo
->idxFlags
&= ~SQLITE_INDEX_SCAN_UNIQUE
;
3101 *pbIn
= 1; assert( (mExclude
& WO_IN
)==0 );
3105 pNew
->u
.vtab
.omitMask
&= ~mNoOmit
;
3107 pNew
->nLTerm
= mxTerm
+1;
3108 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
3109 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
3110 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
3111 pIdxInfo
->needToFreeIdxStr
= 0;
3112 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
3113 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
3114 pIdxInfo
->nOrderBy
: 0);
3116 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
3117 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
3119 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3120 ** that the scan will visit at most one row. Clear it otherwise. */
3121 if( pIdxInfo
->idxFlags
& SQLITE_INDEX_SCAN_UNIQUE
){
3122 pNew
->wsFlags
|= WHERE_ONEROW
;
3124 pNew
->wsFlags
&= ~WHERE_ONEROW
;
3126 rc
= whereLoopInsert(pBuilder
, pNew
);
3127 if( pNew
->u
.vtab
.needFree
){
3128 sqlite3_free(pNew
->u
.vtab
.idxStr
);
3129 pNew
->u
.vtab
.needFree
= 0;
3131 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3132 *pbIn
, (sqlite3_uint64
)mPrereq
,
3133 (sqlite3_uint64
)(pNew
->prereq
& ~mPrereq
)));
3140 ** Add all WhereLoop objects for a table of the join identified by
3141 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3143 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3144 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3145 ** entries that occur before the virtual table in the FROM clause and are
3146 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3147 ** mUnusable mask contains all FROM clause entries that occur after the
3148 ** virtual table and are separated from it by at least one LEFT or
3151 ** For example, if the query were:
3153 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3155 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3157 ** All the tables in mPrereq must be scanned before the current virtual
3158 ** table. So any terms for which all prerequisites are satisfied by
3159 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3160 ** Conversely, all tables in mUnusable must be scanned after the current
3161 ** virtual table, so any terms for which the prerequisites overlap with
3162 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3164 static int whereLoopAddVirtual(
3165 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3166 Bitmask mPrereq
, /* Tables that must be scanned before this one */
3167 Bitmask mUnusable
/* Tables that must be scanned after this one */
3169 int rc
= SQLITE_OK
; /* Return code */
3170 WhereInfo
*pWInfo
; /* WHERE analysis context */
3171 Parse
*pParse
; /* The parsing context */
3172 WhereClause
*pWC
; /* The WHERE clause */
3173 struct SrcList_item
*pSrc
; /* The FROM clause term to search */
3174 sqlite3_index_info
*p
; /* Object to pass to xBestIndex() */
3175 int nConstraint
; /* Number of constraints in p */
3176 int bIn
; /* True if plan uses IN(...) operator */
3178 Bitmask mBest
; /* Tables used by best possible plan */
3181 assert( (mPrereq
& mUnusable
)==0 );
3182 pWInfo
= pBuilder
->pWInfo
;
3183 pParse
= pWInfo
->pParse
;
3184 pWC
= pBuilder
->pWC
;
3185 pNew
= pBuilder
->pNew
;
3186 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
3187 assert( IsVirtual(pSrc
->pTab
) );
3188 p
= allocateIndexInfo(pParse
, pWC
, mUnusable
, pSrc
, pBuilder
->pOrderBy
,
3190 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
3192 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
3194 pNew
->u
.vtab
.needFree
= 0;
3195 nConstraint
= p
->nConstraint
;
3196 if( whereLoopResize(pParse
->db
, pNew
, nConstraint
) ){
3197 sqlite3DbFree(pParse
->db
, p
);
3198 return SQLITE_NOMEM_BKPT
;
3201 /* First call xBestIndex() with all constraints usable. */
3202 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3203 rc
= whereLoopAddVirtualOne(pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
);
3205 /* If the call to xBestIndex() with all terms enabled produced a plan
3206 ** that does not require any source tables (IOW: a plan with mBest==0),
3207 ** then there is no point in making any further calls to xBestIndex()
3208 ** since they will all return the same result (if the xBestIndex()
3209 ** implementation is sane). */
3210 if( rc
==SQLITE_OK
&& (mBest
= (pNew
->prereq
& ~mPrereq
))!=0 ){
3211 int seenZero
= 0; /* True if a plan with no prereqs seen */
3212 int seenZeroNoIN
= 0; /* Plan with no prereqs and no IN(...) seen */
3214 Bitmask mBestNoIn
= 0;
3216 /* If the plan produced by the earlier call uses an IN(...) term, call
3217 ** xBestIndex again, this time with IN(...) terms disabled. */
3219 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3220 rc
= whereLoopAddVirtualOne(
3221 pBuilder
, mPrereq
, ALLBITS
, WO_IN
, p
, mNoOmit
, &bIn
);
3223 mBestNoIn
= pNew
->prereq
& ~mPrereq
;
3230 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3231 ** in the set of terms that apply to the current virtual table. */
3232 while( rc
==SQLITE_OK
){
3234 Bitmask mNext
= ALLBITS
;
3236 for(i
=0; i
<nConstraint
; i
++){
3238 pWC
->a
[p
->aConstraint
[i
].iTermOffset
].prereqRight
& ~mPrereq
3240 if( mThis
>mPrev
&& mThis
<mNext
) mNext
= mThis
;
3243 if( mNext
==ALLBITS
) break;
3244 if( mNext
==mBest
|| mNext
==mBestNoIn
) continue;
3245 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3246 (sqlite3_uint64
)mPrev
, (sqlite3_uint64
)mNext
));
3247 rc
= whereLoopAddVirtualOne(
3248 pBuilder
, mPrereq
, mNext
|mPrereq
, 0, p
, mNoOmit
, &bIn
);
3249 if( pNew
->prereq
==mPrereq
){
3251 if( bIn
==0 ) seenZeroNoIN
= 1;
3255 /* If the calls to xBestIndex() in the above loop did not find a plan
3256 ** that requires no source tables at all (i.e. one guaranteed to be
3257 ** usable), make a call here with all source tables disabled */
3258 if( rc
==SQLITE_OK
&& seenZero
==0 ){
3259 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3260 rc
= whereLoopAddVirtualOne(
3261 pBuilder
, mPrereq
, mPrereq
, 0, p
, mNoOmit
, &bIn
);
3262 if( bIn
==0 ) seenZeroNoIN
= 1;
3265 /* If the calls to xBestIndex() have so far failed to find a plan
3266 ** that requires no source tables at all and does not use an IN(...)
3267 ** operator, make a final call to obtain one here. */
3268 if( rc
==SQLITE_OK
&& seenZeroNoIN
==0 ){
3269 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3270 rc
= whereLoopAddVirtualOne(
3271 pBuilder
, mPrereq
, mPrereq
, WO_IN
, p
, mNoOmit
, &bIn
);
3275 if( p
->needToFreeIdxStr
) sqlite3_free(p
->idxStr
);
3276 sqlite3DbFreeNN(pParse
->db
, p
);
3279 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3282 ** Add WhereLoop entries to handle OR terms. This works for either
3283 ** btrees or virtual tables.
3285 static int whereLoopAddOr(
3286 WhereLoopBuilder
*pBuilder
,
3290 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
3293 WhereTerm
*pTerm
, *pWCEnd
;
3297 WhereLoopBuilder sSubBuild
;
3298 WhereOrSet sSum
, sCur
;
3299 struct SrcList_item
*pItem
;
3301 pWC
= pBuilder
->pWC
;
3302 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3303 pNew
= pBuilder
->pNew
;
3304 memset(&sSum
, 0, sizeof(sSum
));
3305 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
3306 iCur
= pItem
->iCursor
;
3308 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
3309 if( (pTerm
->eOperator
& WO_OR
)!=0
3310 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
3312 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
3313 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
3318 sSubBuild
= *pBuilder
;
3319 sSubBuild
.pOrderBy
= 0;
3320 sSubBuild
.pOrSet
= &sCur
;
3322 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm
));
3323 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
3324 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
3325 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
3326 }else if( pOrTerm
->leftCursor
==iCur
){
3327 tempWC
.pWInfo
= pWC
->pWInfo
;
3328 tempWC
.pOuter
= pWC
;
3332 sSubBuild
.pWC
= &tempWC
;
3337 #ifdef WHERETRACE_ENABLED
3338 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3339 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
3340 if( sqlite3WhereTrace
& 0x400 ){
3341 sqlite3WhereClausePrint(sSubBuild
.pWC
);
3344 #ifndef SQLITE_OMIT_VIRTUALTABLE
3345 if( IsVirtual(pItem
->pTab
) ){
3346 rc
= whereLoopAddVirtual(&sSubBuild
, mPrereq
, mUnusable
);
3350 rc
= whereLoopAddBtree(&sSubBuild
, mPrereq
);
3352 if( rc
==SQLITE_OK
){
3353 rc
= whereLoopAddOr(&sSubBuild
, mPrereq
, mUnusable
);
3355 assert( rc
==SQLITE_OK
|| sCur
.n
==0 );
3360 whereOrMove(&sSum
, &sCur
);
3364 whereOrMove(&sPrev
, &sSum
);
3366 for(i
=0; i
<sPrev
.n
; i
++){
3367 for(j
=0; j
<sCur
.n
; j
++){
3368 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
3369 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
3370 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
3376 pNew
->aLTerm
[0] = pTerm
;
3377 pNew
->wsFlags
= WHERE_MULTI_OR
;
3380 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
3381 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
3382 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3383 ** of all sub-scans required by the OR-scan. However, due to rounding
3384 ** errors, it may be that the cost of the OR-scan is equal to its
3385 ** most expensive sub-scan. Add the smallest possible penalty
3386 ** (equivalent to multiplying the cost by 1.07) to ensure that
3387 ** this does not happen. Otherwise, for WHERE clauses such as the
3388 ** following where there is an index on "y":
3390 ** WHERE likelihood(x=?, 0.99) OR y=?
3392 ** the planner may elect to "OR" together a full-table scan and an
3393 ** index lookup. And other similarly odd results. */
3394 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
3395 pNew
->nOut
= sSum
.a
[i
].nOut
;
3396 pNew
->prereq
= sSum
.a
[i
].prereq
;
3397 rc
= whereLoopInsert(pBuilder
, pNew
);
3399 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm
));
3406 ** Add all WhereLoop objects for all tables
3408 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
3409 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
3410 Bitmask mPrereq
= 0;
3413 SrcList
*pTabList
= pWInfo
->pTabList
;
3414 struct SrcList_item
*pItem
;
3415 struct SrcList_item
*pEnd
= &pTabList
->a
[pWInfo
->nLevel
];
3416 sqlite3
*db
= pWInfo
->pParse
->db
;
3419 u8 priorJointype
= 0;
3421 /* Loop over the tables in the join, from left to right */
3422 pNew
= pBuilder
->pNew
;
3423 whereLoopInit(pNew
);
3424 for(iTab
=0, pItem
=pTabList
->a
; pItem
<pEnd
; iTab
++, pItem
++){
3425 Bitmask mUnusable
= 0;
3427 pNew
->maskSelf
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
3428 if( ((pItem
->fg
.jointype
|priorJointype
) & (JT_LEFT
|JT_CROSS
))!=0 ){
3429 /* This condition is true when pItem is the FROM clause term on the
3430 ** right-hand-side of a LEFT or CROSS JOIN. */
3433 priorJointype
= pItem
->fg
.jointype
;
3434 #ifndef SQLITE_OMIT_VIRTUALTABLE
3435 if( IsVirtual(pItem
->pTab
) ){
3436 struct SrcList_item
*p
;
3437 for(p
=&pItem
[1]; p
<pEnd
; p
++){
3438 if( mUnusable
|| (p
->fg
.jointype
& (JT_LEFT
|JT_CROSS
)) ){
3439 mUnusable
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, p
->iCursor
);
3442 rc
= whereLoopAddVirtual(pBuilder
, mPrereq
, mUnusable
);
3444 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3446 rc
= whereLoopAddBtree(pBuilder
, mPrereq
);
3448 if( rc
==SQLITE_OK
){
3449 rc
= whereLoopAddOr(pBuilder
, mPrereq
, mUnusable
);
3451 mPrior
|= pNew
->maskSelf
;
3452 if( rc
|| db
->mallocFailed
) break;
3455 whereLoopClear(db
, pNew
);
3460 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3461 ** parameters) to see if it outputs rows in the requested ORDER BY
3462 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3464 ** N>0: N terms of the ORDER BY clause are satisfied
3465 ** N==0: No terms of the ORDER BY clause are satisfied
3466 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3468 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3469 ** strict. With GROUP BY and DISTINCT the only requirement is that
3470 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3471 ** and DISTINCT do not require rows to appear in any particular order as long
3472 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3473 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3474 ** pOrderBy terms must be matched in strict left-to-right order.
3476 static i8
wherePathSatisfiesOrderBy(
3477 WhereInfo
*pWInfo
, /* The WHERE clause */
3478 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3479 WherePath
*pPath
, /* The WherePath to check */
3480 u16 wctrlFlags
, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3481 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
3482 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
3483 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
3485 u8 revSet
; /* True if rev is known */
3486 u8 rev
; /* Composite sort order */
3487 u8 revIdx
; /* Index sort order */
3488 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
3489 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
3490 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
3491 u16 eqOpMask
; /* Allowed equality operators */
3492 u16 nKeyCol
; /* Number of key columns in pIndex */
3493 u16 nColumn
; /* Total number of ordered columns in the index */
3494 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
3495 int iLoop
; /* Index of WhereLoop in pPath being processed */
3496 int i
, j
; /* Loop counters */
3497 int iCur
; /* Cursor number for current WhereLoop */
3498 int iColumn
; /* A column number within table iCur */
3499 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
3500 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
3501 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
3502 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
3503 Index
*pIndex
; /* The index associated with pLoop */
3504 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
3505 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
3506 Bitmask obDone
; /* Mask of all ORDER BY terms */
3507 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
3508 Bitmask ready
; /* Mask of inner loops */
3511 ** We say the WhereLoop is "one-row" if it generates no more than one
3512 ** row of output. A WhereLoop is one-row if all of the following are true:
3513 ** (a) All index columns match with WHERE_COLUMN_EQ.
3514 ** (b) The index is unique
3515 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3516 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3518 ** We say the WhereLoop is "order-distinct" if the set of columns from
3519 ** that WhereLoop that are in the ORDER BY clause are different for every
3520 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3521 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3522 ** is not order-distinct. To be order-distinct is not quite the same as being
3523 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3524 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3525 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3527 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3528 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3529 ** automatically order-distinct.
3532 assert( pOrderBy
!=0 );
3533 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
3535 nOrderBy
= pOrderBy
->nExpr
;
3536 testcase( nOrderBy
==BMS
-1 );
3537 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3538 isOrderDistinct
= 1;
3539 obDone
= MASKBIT(nOrderBy
)-1;
3540 orderDistinctMask
= 0;
3542 eqOpMask
= WO_EQ
| WO_IS
| WO_ISNULL
;
3543 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) eqOpMask
|= WO_IN
;
3544 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
3545 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
3547 pLoop
= pPath
->aLoop
[iLoop
];
3548 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) continue;
3552 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
3553 if( pLoop
->u
.vtab
.isOrdered
) obSat
= obDone
;
3556 pLoop
->u
.btree
.nIdxCol
= 0;
3558 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
3560 /* Mark off any ORDER BY term X that is a column in the table of
3561 ** the current loop for which there is term in the WHERE
3562 ** clause of the form X IS NULL or X=? that reference only outer
3565 for(i
=0; i
<nOrderBy
; i
++){
3566 if( MASKBIT(i
) & obSat
) continue;
3567 pOBExpr
= sqlite3ExprSkipCollate(pOrderBy
->a
[i
].pExpr
);
3568 if( pOBExpr
->op
!=TK_COLUMN
) continue;
3569 if( pOBExpr
->iTable
!=iCur
) continue;
3570 pTerm
= sqlite3WhereFindTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
3571 ~ready
, eqOpMask
, 0);
3572 if( pTerm
==0 ) continue;
3573 if( pTerm
->eOperator
==WO_IN
){
3574 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3575 ** optimization, and then only if they are actually used
3576 ** by the query plan */
3577 assert( wctrlFlags
& WHERE_ORDERBY_LIMIT
);
3578 for(j
=0; j
<pLoop
->nLTerm
&& pTerm
!=pLoop
->aLTerm
[j
]; j
++){}
3579 if( j
>=pLoop
->nLTerm
) continue;
3581 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0 && pOBExpr
->iColumn
>=0 ){
3582 if( sqlite3ExprCollSeqMatch(pWInfo
->pParse
,
3583 pOrderBy
->a
[i
].pExpr
, pTerm
->pExpr
)==0 ){
3586 testcase( pTerm
->pExpr
->op
==TK_IS
);
3588 obSat
|= MASKBIT(i
);
3591 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
3592 if( pLoop
->wsFlags
& WHERE_IPK
){
3596 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
3599 nKeyCol
= pIndex
->nKeyCol
;
3600 nColumn
= pIndex
->nColumn
;
3601 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
3602 assert( pIndex
->aiColumn
[nColumn
-1]==XN_ROWID
3603 || !HasRowid(pIndex
->pTable
));
3604 isOrderDistinct
= IsUniqueIndex(pIndex
);
3607 /* Loop through all columns of the index and deal with the ones
3608 ** that are not constrained by == or IN.
3611 distinctColumns
= 0;
3612 for(j
=0; j
<nColumn
; j
++){
3613 u8 bOnce
= 1; /* True to run the ORDER BY search loop */
3615 assert( j
>=pLoop
->u
.btree
.nEq
3616 || (pLoop
->aLTerm
[j
]==0)==(j
<pLoop
->nSkip
)
3618 if( j
<pLoop
->u
.btree
.nEq
&& j
>=pLoop
->nSkip
){
3619 u16 eOp
= pLoop
->aLTerm
[j
]->eOperator
;
3621 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3622 ** doing WHERE_ORDERBY_LIMIT processing).
3624 ** If the current term is a column of an ((?,?) IN (SELECT...))
3625 ** expression for which the SELECT returns more than one column,
3626 ** check that it is the only column used by this loop. Otherwise,
3627 ** if it is one of two or more, none of the columns can be
3628 ** considered to match an ORDER BY term. */
3629 if( (eOp
& eqOpMask
)!=0 ){
3630 if( eOp
& WO_ISNULL
){
3631 testcase( isOrderDistinct
);
3632 isOrderDistinct
= 0;
3635 }else if( ALWAYS(eOp
& WO_IN
) ){
3636 /* ALWAYS() justification: eOp is an equality operator due to the
3637 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3638 ** than WO_IN is captured by the previous "if". So this one
3639 ** always has to be WO_IN. */
3640 Expr
*pX
= pLoop
->aLTerm
[j
]->pExpr
;
3641 for(i
=j
+1; i
<pLoop
->u
.btree
.nEq
; i
++){
3642 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
3643 assert( (pLoop
->aLTerm
[i
]->eOperator
& WO_IN
) );
3651 /* Get the column number in the table (iColumn) and sort order
3652 ** (revIdx) for the j-th column of the index.
3655 iColumn
= pIndex
->aiColumn
[j
];
3656 revIdx
= pIndex
->aSortOrder
[j
];
3657 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= XN_ROWID
;
3663 /* An unconstrained column that might be NULL means that this
3664 ** WhereLoop is not well-ordered
3668 && j
>=pLoop
->u
.btree
.nEq
3669 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
3671 isOrderDistinct
= 0;
3674 /* Find the ORDER BY term that corresponds to the j-th column
3675 ** of the index and mark that ORDER BY term off
3678 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
3679 if( MASKBIT(i
) & obSat
) continue;
3680 pOBExpr
= sqlite3ExprSkipCollate(pOrderBy
->a
[i
].pExpr
);
3681 testcase( wctrlFlags
& WHERE_GROUPBY
);
3682 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
3683 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
3684 if( iColumn
>=XN_ROWID
){
3685 if( pOBExpr
->op
!=TK_COLUMN
) continue;
3686 if( pOBExpr
->iTable
!=iCur
) continue;
3687 if( pOBExpr
->iColumn
!=iColumn
) continue;
3689 Expr
*pIdxExpr
= pIndex
->aColExpr
->a
[j
].pExpr
;
3690 if( sqlite3ExprCompareSkip(pOBExpr
, pIdxExpr
, iCur
) ){
3694 if( iColumn
!=XN_ROWID
){
3695 pColl
= sqlite3ExprNNCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
3696 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
3698 pLoop
->u
.btree
.nIdxCol
= j
+1;
3702 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
3703 /* Make sure the sort order is compatible in an ORDER BY clause.
3704 ** Sort order is irrelevant for a GROUP BY clause. */
3706 if( (rev
^ revIdx
)!=pOrderBy
->a
[i
].sortOrder
) isMatch
= 0;
3708 rev
= revIdx
^ pOrderBy
->a
[i
].sortOrder
;
3709 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
3714 if( iColumn
==XN_ROWID
){
3715 testcase( distinctColumns
==0 );
3716 distinctColumns
= 1;
3718 obSat
|= MASKBIT(i
);
3720 /* No match found */
3721 if( j
==0 || j
<nKeyCol
){
3722 testcase( isOrderDistinct
!=0 );
3723 isOrderDistinct
= 0;
3727 } /* end Loop over all index columns */
3728 if( distinctColumns
){
3729 testcase( isOrderDistinct
==0 );
3730 isOrderDistinct
= 1;
3732 } /* end-if not one-row */
3734 /* Mark off any other ORDER BY terms that reference pLoop */
3735 if( isOrderDistinct
){
3736 orderDistinctMask
|= pLoop
->maskSelf
;
3737 for(i
=0; i
<nOrderBy
; i
++){
3740 if( MASKBIT(i
) & obSat
) continue;
3741 p
= pOrderBy
->a
[i
].pExpr
;
3742 mTerm
= sqlite3WhereExprUsage(&pWInfo
->sMaskSet
,p
);
3743 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
3744 if( (mTerm
&~orderDistinctMask
)==0 ){
3745 obSat
|= MASKBIT(i
);
3749 } /* End the loop over all WhereLoops from outer-most down to inner-most */
3750 if( obSat
==obDone
) return (i8
)nOrderBy
;
3751 if( !isOrderDistinct
){
3752 for(i
=nOrderBy
-1; i
>0; i
--){
3753 Bitmask m
= MASKBIT(i
) - 1;
3754 if( (obSat
&m
)==m
) return i
;
3763 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3764 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3765 ** BY clause - and so any order that groups rows as required satisfies the
3768 ** Normally, in this case it is not possible for the caller to determine
3769 ** whether or not the rows are really being delivered in sorted order, or
3770 ** just in some other order that provides the required grouping. However,
3771 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3772 ** this function may be called on the returned WhereInfo object. It returns
3773 ** true if the rows really will be sorted in the specified order, or false
3776 ** For example, assuming:
3778 ** CREATE INDEX i1 ON t1(x, Y);
3782 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
3783 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
3785 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
3786 assert( pWInfo
->wctrlFlags
& WHERE_GROUPBY
);
3787 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
3788 return pWInfo
->sorted
;
3791 #ifdef WHERETRACE_ENABLED
3792 /* For debugging use only: */
3793 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
3794 static char zName
[65];
3796 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
3797 if( pLast
) zName
[i
++] = pLast
->cId
;
3804 ** Return the cost of sorting nRow rows, assuming that the keys have
3805 ** nOrderby columns and that the first nSorted columns are already in
3808 static LogEst
whereSortingCost(
3814 /* TUNING: Estimated cost of a full external sort, where N is
3815 ** the number of rows to sort is:
3817 ** cost = (3.0 * N * log(N)).
3819 ** Or, if the order-by clause has X terms but only the last Y
3820 ** terms are out of order, then block-sorting will reduce the
3823 ** cost = (3.0 * N * log(N)) * (Y/X)
3825 ** The (Y/X) term is implemented using stack variable rScale
3827 LogEst rScale
, rSortCost
;
3828 assert( nOrderBy
>0 && 66==sqlite3LogEst(100) );
3829 rScale
= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
3830 rSortCost
= nRow
+ rScale
+ 16;
3832 /* Multiple by log(M) where M is the number of output rows.
3833 ** Use the LIMIT for M if it is smaller */
3834 if( (pWInfo
->wctrlFlags
& WHERE_USE_LIMIT
)!=0 && pWInfo
->iLimit
<nRow
){
3835 nRow
= pWInfo
->iLimit
;
3837 rSortCost
+= estLog(nRow
);
3842 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3843 ** attempts to find the lowest cost path that visits each WhereLoop
3844 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
3846 ** Assume that the total number of output rows that will need to be sorted
3847 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
3848 ** costs if nRowEst==0.
3850 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3853 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
3854 int mxChoice
; /* Maximum number of simultaneous paths tracked */
3855 int nLoop
; /* Number of terms in the join */
3856 Parse
*pParse
; /* Parsing context */
3857 sqlite3
*db
; /* The database connection */
3858 int iLoop
; /* Loop counter over the terms of the join */
3859 int ii
, jj
; /* Loop counters */
3860 int mxI
= 0; /* Index of next entry to replace */
3861 int nOrderBy
; /* Number of ORDER BY clause terms */
3862 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
3863 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
3864 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
3865 WherePath
*aFrom
; /* All nFrom paths at the previous level */
3866 WherePath
*aTo
; /* The nTo best paths at the current level */
3867 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
3868 WherePath
*pTo
; /* An element of aTo[] that we are working on */
3869 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
3870 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
3871 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
3872 char *pSpace
; /* Temporary memory used by this routine */
3873 int nSpace
; /* Bytes of space allocated at pSpace */
3875 pParse
= pWInfo
->pParse
;
3877 nLoop
= pWInfo
->nLevel
;
3878 /* TUNING: For simple queries, only the best path is tracked.
3879 ** For 2-way joins, the 5 best paths are followed.
3880 ** For joins of 3 or more tables, track the 10 best paths */
3881 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
3882 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
3883 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst
));
3885 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3886 ** case the purpose of this call is to estimate the number of rows returned
3887 ** by the overall query. Once this estimate has been obtained, the caller
3888 ** will invoke this function a second time, passing the estimate as the
3889 ** nRowEst parameter. */
3890 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
3893 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
3896 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3897 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
3898 nSpace
+= sizeof(LogEst
) * nOrderBy
;
3899 pSpace
= sqlite3DbMallocRawNN(db
, nSpace
);
3900 if( pSpace
==0 ) return SQLITE_NOMEM_BKPT
;
3901 aTo
= (WherePath
*)pSpace
;
3902 aFrom
= aTo
+mxChoice
;
3903 memset(aFrom
, 0, sizeof(aFrom
[0]));
3904 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
3905 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
3909 /* If there is an ORDER BY clause and it is not being ignored, set up
3910 ** space for the aSortCost[] array. Each element of the aSortCost array
3911 ** is either zero - meaning it has not yet been initialized - or the
3912 ** cost of sorting nRowEst rows of data where the first X terms of
3913 ** the ORDER BY clause are already in order, where X is the array
3915 aSortCost
= (LogEst
*)pX
;
3916 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
3918 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
3919 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
3921 /* Seed the search with a single WherePath containing zero WhereLoops.
3923 ** TUNING: Do not let the number of iterations go above 28. If the cost
3924 ** of computing an automatic index is not paid back within the first 28
3925 ** rows, then do not use the automatic index. */
3926 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 48); assert( 48==sqlite3LogEst(28) );
3928 assert( aFrom
[0].isOrdered
==0 );
3930 /* If nLoop is zero, then there are no FROM terms in the query. Since
3931 ** in this case the query may return a maximum of one row, the results
3932 ** are already in the requested order. Set isOrdered to nOrderBy to
3933 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3934 ** -1, indicating that the result set may or may not be ordered,
3935 ** depending on the loops added to the current plan. */
3936 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
3939 /* Compute successively longer WherePaths using the previous generation
3940 ** of WherePaths as the basis for the next. Keep track of the mxChoice
3941 ** best paths at each generation */
3942 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
3944 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
3945 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
3946 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
3947 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
3948 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
3949 i8 isOrdered
= pFrom
->isOrdered
; /* isOrdered for (pFrom+pWLoop) */
3950 Bitmask maskNew
; /* Mask of src visited by (..) */
3951 Bitmask revMask
= 0; /* Mask of rev-order loops for (..) */
3953 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
3954 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
3955 if( (pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && pFrom
->nRow
<10 ){
3956 /* Do not use an automatic index if the this loop is expected
3957 ** to run less than 2 times. */
3958 assert( 10==sqlite3LogEst(2) );
3961 /* At this point, pWLoop is a candidate to be the next loop.
3962 ** Compute its cost */
3963 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
3964 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
3965 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
3966 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
3968 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
3969 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
3970 iLoop
, pWLoop
, &revMask
);
3972 revMask
= pFrom
->revLoop
;
3974 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
3975 if( aSortCost
[isOrdered
]==0 ){
3976 aSortCost
[isOrdered
] = whereSortingCost(
3977 pWInfo
, nRowEst
, nOrderBy
, isOrdered
3980 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]);
3983 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3984 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
3988 rUnsorted
-= 2; /* TUNING: Slight bias in favor of no-sort plans */
3991 /* Check to see if pWLoop should be added to the set of
3992 ** mxChoice best-so-far paths.
3994 ** First look for an existing path among best-so-far paths
3995 ** that covers the same set of loops and has the same isOrdered
3996 ** setting as the current path candidate.
3998 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3999 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4000 ** of legal values for isOrdered, -1..64.
4002 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
4003 if( pTo
->maskLoop
==maskNew
4004 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
4006 testcase( jj
==nTo
-1 );
4011 /* None of the existing best-so-far paths match the candidate. */
4013 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
4015 /* The current candidate is no better than any of the mxChoice
4016 ** paths currently in the best-so-far buffer. So discard
4017 ** this candidate as not viable. */
4018 #ifdef WHERETRACE_ENABLED /* 0x4 */
4019 if( sqlite3WhereTrace
&0x4 ){
4020 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4021 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4022 isOrdered
>=0 ? isOrdered
+'0' : '?');
4027 /* If we reach this points it means that the new candidate path
4028 ** needs to be added to the set of best-so-far paths. */
4030 /* Increase the size of the aTo set by one */
4033 /* New path replaces the prior worst to keep count below mxChoice */
4037 #ifdef WHERETRACE_ENABLED /* 0x4 */
4038 if( sqlite3WhereTrace
&0x4 ){
4039 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4040 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4041 isOrdered
>=0 ? isOrdered
+'0' : '?');
4045 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4046 ** same set of loops and has the same isOrdered setting as the
4047 ** candidate path. Check to see if the candidate should replace
4048 ** pTo or if the candidate should be skipped.
4050 ** The conditional is an expanded vector comparison equivalent to:
4051 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4053 if( pTo
->rCost
<rCost
4054 || (pTo
->rCost
==rCost
4056 || (pTo
->nRow
==nOut
&& pTo
->rUnsorted
<=rUnsorted
)
4060 #ifdef WHERETRACE_ENABLED /* 0x4 */
4061 if( sqlite3WhereTrace
&0x4 ){
4063 "Skip %s cost=%-3d,%3d,%3d order=%c",
4064 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4065 isOrdered
>=0 ? isOrdered
+'0' : '?');
4066 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4067 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4068 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
4071 /* Discard the candidate path from further consideration */
4072 testcase( pTo
->rCost
==rCost
);
4075 testcase( pTo
->rCost
==rCost
+1 );
4076 /* Control reaches here if the candidate path is better than the
4077 ** pTo path. Replace pTo with the candidate. */
4078 #ifdef WHERETRACE_ENABLED /* 0x4 */
4079 if( sqlite3WhereTrace
&0x4 ){
4081 "Update %s cost=%-3d,%3d,%3d order=%c",
4082 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4083 isOrdered
>=0 ? isOrdered
+'0' : '?');
4084 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4085 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4086 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
4090 /* pWLoop is a winner. Add it to the set of best so far */
4091 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
4092 pTo
->revLoop
= revMask
;
4095 pTo
->rUnsorted
= rUnsorted
;
4096 pTo
->isOrdered
= isOrdered
;
4097 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
4098 pTo
->aLoop
[iLoop
] = pWLoop
;
4099 if( nTo
>=mxChoice
){
4101 mxCost
= aTo
[0].rCost
;
4102 mxUnsorted
= aTo
[0].nRow
;
4103 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
4104 if( pTo
->rCost
>mxCost
4105 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
4107 mxCost
= pTo
->rCost
;
4108 mxUnsorted
= pTo
->rUnsorted
;
4116 #ifdef WHERETRACE_ENABLED /* >=2 */
4117 if( sqlite3WhereTrace
& 0x02 ){
4118 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
4119 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
4120 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4121 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4122 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
4123 if( pTo
->isOrdered
>0 ){
4124 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
4126 sqlite3DebugPrintf("\n");
4132 /* Swap the roles of aFrom and aTo for the next generation */
4140 sqlite3ErrorMsg(pParse
, "no query solution");
4141 sqlite3DbFreeNN(db
, pSpace
);
4142 return SQLITE_ERROR
;
4145 /* Find the lowest cost path. pFrom will be left pointing to that path */
4147 for(ii
=1; ii
<nFrom
; ii
++){
4148 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
4150 assert( pWInfo
->nLevel
==nLoop
);
4151 /* Load the lowest cost path into pWInfo */
4152 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
4153 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
4154 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
4155 pLevel
->iFrom
= pWLoop
->iTab
;
4156 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
4158 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
4159 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
4160 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
4164 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
4165 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
4166 if( rc
==pWInfo
->pResultSet
->nExpr
){
4167 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
4170 if( pWInfo
->pOrderBy
){
4171 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
4172 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
4173 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
4176 pWInfo
->nOBSat
= pFrom
->isOrdered
;
4177 pWInfo
->revMask
= pFrom
->revLoop
;
4178 if( pWInfo
->nOBSat
<=0 ){
4181 u32 wsFlags
= pFrom
->aLoop
[nLoop
-1]->wsFlags
;
4182 if( (wsFlags
& WHERE_ONEROW
)==0
4183 && (wsFlags
&(WHERE_IPK
|WHERE_COLUMN_IN
))!=(WHERE_IPK
|WHERE_COLUMN_IN
)
4186 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
, pFrom
,
4187 WHERE_ORDERBY_LIMIT
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &m
);
4188 testcase( wsFlags
& WHERE_IPK
);
4189 testcase( wsFlags
& WHERE_COLUMN_IN
);
4190 if( rc
==pWInfo
->pOrderBy
->nExpr
){
4191 pWInfo
->bOrderedInnerLoop
= 1;
4192 pWInfo
->revMask
= m
;
4198 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
4199 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
&& nLoop
>0
4201 Bitmask revMask
= 0;
4202 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
4203 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
4205 assert( pWInfo
->sorted
==0 );
4206 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
4208 pWInfo
->revMask
= revMask
;
4214 pWInfo
->nRowOut
= pFrom
->nRow
;
4216 /* Free temporary memory and return success */
4217 sqlite3DbFreeNN(db
, pSpace
);
4222 ** Most queries use only a single table (they are not joins) and have
4223 ** simple == constraints against indexed fields. This routine attempts
4224 ** to plan those simple cases using much less ceremony than the
4225 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4226 ** times for the common case.
4228 ** Return non-zero on success, if this query can be handled by this
4229 ** no-frills query planner. Return zero if this query needs the
4230 ** general-purpose query planner.
4232 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
4234 struct SrcList_item
*pItem
;
4243 pWInfo
= pBuilder
->pWInfo
;
4244 if( pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
) return 0;
4245 assert( pWInfo
->pTabList
->nSrc
>=1 );
4246 pItem
= pWInfo
->pTabList
->a
;
4248 if( IsVirtual(pTab
) ) return 0;
4249 if( pItem
->fg
.isIndexedBy
) return 0;
4250 iCur
= pItem
->iCursor
;
4252 pLoop
= pBuilder
->pNew
;
4255 pTerm
= sqlite3WhereFindTerm(pWC
, iCur
, -1, 0, WO_EQ
|WO_IS
, 0);
4257 testcase( pTerm
->eOperator
& WO_IS
);
4258 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
4259 pLoop
->aLTerm
[0] = pTerm
;
4261 pLoop
->u
.btree
.nEq
= 1;
4262 /* TUNING: Cost of a rowid lookup is 10 */
4263 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
4265 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
4267 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
4268 if( !IsUniqueIndex(pIdx
)
4269 || pIdx
->pPartIdxWhere
!=0
4270 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
4272 opMask
= pIdx
->uniqNotNull
? (WO_EQ
|WO_IS
) : WO_EQ
;
4273 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
4274 pTerm
= sqlite3WhereFindTerm(pWC
, iCur
, j
, 0, opMask
, pIdx
);
4275 if( pTerm
==0 ) break;
4276 testcase( pTerm
->eOperator
& WO_IS
);
4277 pLoop
->aLTerm
[j
] = pTerm
;
4279 if( j
!=pIdx
->nKeyCol
) continue;
4280 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
4281 if( pIdx
->isCovering
|| (pItem
->colUsed
& ~columnsInIndex(pIdx
))==0 ){
4282 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
4285 pLoop
->u
.btree
.nEq
= j
;
4286 pLoop
->u
.btree
.pIndex
= pIdx
;
4287 /* TUNING: Cost of a unique index lookup is 15 */
4288 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
4292 if( pLoop
->wsFlags
){
4293 pLoop
->nOut
= (LogEst
)1;
4294 pWInfo
->a
[0].pWLoop
= pLoop
;
4295 assert( pWInfo
->sMaskSet
.n
==1 && iCur
==pWInfo
->sMaskSet
.ix
[0] );
4296 pLoop
->maskSelf
= 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4297 pWInfo
->a
[0].iTabCur
= iCur
;
4298 pWInfo
->nRowOut
= 1;
4299 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
4300 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
4301 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4312 ** Helper function for exprIsDeterministic().
4314 static int exprNodeIsDeterministic(Walker
*pWalker
, Expr
*pExpr
){
4315 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_ConstFunc
)==0 ){
4319 return WRC_Continue
;
4323 ** Return true if the expression contains no non-deterministic SQL
4324 ** functions. Do not consider non-deterministic SQL functions that are
4325 ** part of sub-select statements.
4327 static int exprIsDeterministic(Expr
*p
){
4329 memset(&w
, 0, sizeof(w
));
4331 w
.xExprCallback
= exprNodeIsDeterministic
;
4332 w
.xSelectCallback
= sqlite3SelectWalkFail
;
4333 sqlite3WalkExpr(&w
, p
);
4338 ** Generate the beginning of the loop used for WHERE clause processing.
4339 ** The return value is a pointer to an opaque structure that contains
4340 ** information needed to terminate the loop. Later, the calling routine
4341 ** should invoke sqlite3WhereEnd() with the return value of this function
4342 ** in order to complete the WHERE clause processing.
4344 ** If an error occurs, this routine returns NULL.
4346 ** The basic idea is to do a nested loop, one loop for each table in
4347 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4348 ** same as a SELECT with only a single table in the FROM clause.) For
4349 ** example, if the SQL is this:
4351 ** SELECT * FROM t1, t2, t3 WHERE ...;
4353 ** Then the code generated is conceptually like the following:
4355 ** foreach row1 in t1 do \ Code generated
4356 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4357 ** foreach row3 in t3 do /
4359 ** end \ Code generated
4360 ** end |-- by sqlite3WhereEnd()
4363 ** Note that the loops might not be nested in the order in which they
4364 ** appear in the FROM clause if a different order is better able to make
4365 ** use of indices. Note also that when the IN operator appears in
4366 ** the WHERE clause, it might result in additional nested loops for
4367 ** scanning through all values on the right-hand side of the IN.
4369 ** There are Btree cursors associated with each table. t1 uses cursor
4370 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4371 ** And so forth. This routine generates code to open those VDBE cursors
4372 ** and sqlite3WhereEnd() generates the code to close them.
4374 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4375 ** in pTabList pointing at their appropriate entries. The [...] code
4376 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4377 ** data from the various tables of the loop.
4379 ** If the WHERE clause is empty, the foreach loops must each scan their
4380 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4381 ** the tables have indices and there are terms in the WHERE clause that
4382 ** refer to those indices, a complete table scan can be avoided and the
4383 ** code will run much faster. Most of the work of this routine is checking
4384 ** to see if there are indices that can be used to speed up the loop.
4386 ** Terms of the WHERE clause are also used to limit which rows actually
4387 ** make it to the "..." in the middle of the loop. After each "foreach",
4388 ** terms of the WHERE clause that use only terms in that loop and outer
4389 ** loops are evaluated and if false a jump is made around all subsequent
4390 ** inner loops (or around the "..." if the test occurs within the inner-
4395 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4397 ** foreach row1 in t1 do
4399 ** foreach row2 in t2 do
4405 ** move the row2 cursor to a null row
4410 ** ORDER BY CLAUSE PROCESSING
4412 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4413 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4414 ** if there is one. If there is no ORDER BY clause or if this routine
4415 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4417 ** The iIdxCur parameter is the cursor number of an index. If
4418 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4419 ** to use for OR clause processing. The WHERE clause should use this
4420 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4421 ** the first cursor in an array of cursors for all indices. iIdxCur should
4422 ** be used to compute the appropriate cursor depending on which index is
4425 WhereInfo
*sqlite3WhereBegin(
4426 Parse
*pParse
, /* The parser context */
4427 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
4428 Expr
*pWhere
, /* The WHERE clause */
4429 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
4430 ExprList
*pResultSet
, /* Query result set. Req'd for DISTINCT */
4431 u16 wctrlFlags
, /* The WHERE_* flags defined in sqliteInt.h */
4432 int iAuxArg
/* If WHERE_OR_SUBCLAUSE is set, index cursor number
4433 ** If WHERE_USE_LIMIT, then the limit amount */
4435 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
4436 int nTabList
; /* Number of elements in pTabList */
4437 WhereInfo
*pWInfo
; /* Will become the return value of this function */
4438 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
4439 Bitmask notReady
; /* Cursors that are not yet positioned */
4440 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
4441 WhereMaskSet
*pMaskSet
; /* The expression mask set */
4442 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
4443 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
4444 int ii
; /* Loop counter */
4445 sqlite3
*db
; /* Database connection */
4446 int rc
; /* Return code */
4447 u8 bFordelete
= 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4449 assert( (wctrlFlags
& WHERE_ONEPASS_MULTIROW
)==0 || (
4450 (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
4451 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
4454 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4455 assert( (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
4456 || (wctrlFlags
& WHERE_USE_LIMIT
)==0 );
4458 /* Variable initialization */
4460 memset(&sWLB
, 0, sizeof(sWLB
));
4462 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4463 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
4464 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
) pOrderBy
= 0;
4465 sWLB
.pOrderBy
= pOrderBy
;
4467 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4468 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4469 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
4470 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
4473 /* The number of tables in the FROM clause is limited by the number of
4474 ** bits in a Bitmask
4476 testcase( pTabList
->nSrc
==BMS
);
4477 if( pTabList
->nSrc
>BMS
){
4478 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
4482 /* This function normally generates a nested loop for all tables in
4483 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4484 ** only generate code for the first table in pTabList and assume that
4485 ** any cursors associated with subsequent tables are uninitialized.
4487 nTabList
= (wctrlFlags
& WHERE_OR_SUBCLAUSE
) ? 1 : pTabList
->nSrc
;
4489 /* Allocate and initialize the WhereInfo structure that will become the
4490 ** return value. A single allocation is used to store the WhereInfo
4491 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4492 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4493 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4494 ** some architectures. Hence the ROUND8() below.
4496 nByteWInfo
= ROUND8(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
4497 pWInfo
= sqlite3DbMallocRawNN(db
, nByteWInfo
+ sizeof(WhereLoop
));
4498 if( db
->mallocFailed
){
4499 sqlite3DbFree(db
, pWInfo
);
4501 goto whereBeginError
;
4503 pWInfo
->pParse
= pParse
;
4504 pWInfo
->pTabList
= pTabList
;
4505 pWInfo
->pOrderBy
= pOrderBy
;
4506 pWInfo
->pWhere
= pWhere
;
4507 pWInfo
->pResultSet
= pResultSet
;
4508 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
4509 pWInfo
->nLevel
= nTabList
;
4510 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(v
);
4511 pWInfo
->wctrlFlags
= wctrlFlags
;
4512 pWInfo
->iLimit
= iAuxArg
;
4513 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
4514 memset(&pWInfo
->nOBSat
, 0,
4515 offsetof(WhereInfo
,sWC
) - offsetof(WhereInfo
,nOBSat
));
4516 memset(&pWInfo
->a
[0], 0, sizeof(WhereLoop
)+nTabList
*sizeof(WhereLevel
));
4517 assert( pWInfo
->eOnePass
==ONEPASS_OFF
); /* ONEPASS defaults to OFF */
4518 pMaskSet
= &pWInfo
->sMaskSet
;
4519 sWLB
.pWInfo
= pWInfo
;
4520 sWLB
.pWC
= &pWInfo
->sWC
;
4521 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
4522 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
4523 whereLoopInit(sWLB
.pNew
);
4525 sWLB
.pNew
->cId
= '*';
4528 /* Split the WHERE clause into separate subexpressions where each
4529 ** subexpression is separated by an AND operator.
4531 initMaskSet(pMaskSet
);
4532 sqlite3WhereClauseInit(&pWInfo
->sWC
, pWInfo
);
4533 sqlite3WhereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
4535 /* Special case: No FROM clause
4538 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
4539 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
4540 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4543 /* Assign a bit from the bitmask to every term in the FROM clause.
4545 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4547 ** The rule of the previous sentence ensures thta if X is the bitmask for
4548 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4549 ** Knowing the bitmask for all tables to the left of a left join is
4550 ** important. Ticket #3015.
4552 ** Note that bitmasks are created for all pTabList->nSrc tables in
4553 ** pTabList, not just the first nTabList tables. nTabList is normally
4554 ** equal to pTabList->nSrc but might be shortened to 1 if the
4555 ** WHERE_OR_SUBCLAUSE flag is set.
4559 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
4560 sqlite3WhereTabFuncArgs(pParse
, &pTabList
->a
[ii
], &pWInfo
->sWC
);
4561 }while( (++ii
)<pTabList
->nSrc
);
4565 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
4566 Bitmask m
= sqlite3WhereGetMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
4574 /* Analyze all of the subexpressions. */
4575 sqlite3WhereExprAnalyze(pTabList
, &pWInfo
->sWC
);
4576 if( db
->mallocFailed
) goto whereBeginError
;
4578 /* Special case: WHERE terms that do not refer to any tables in the join
4579 ** (constant expressions). Evaluate each such term, and jump over all the
4580 ** generated code if the result is not true.
4582 ** Do not do this if the expression contains non-deterministic functions
4583 ** that are not within a sub-select. This is not strictly required, but
4584 ** preserves SQLite's legacy behaviour in the following two cases:
4586 ** FROM ... WHERE random()>0; -- eval random() once per row
4587 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4589 for(ii
=0; ii
<sWLB
.pWC
->nTerm
; ii
++){
4590 WhereTerm
*pT
= &sWLB
.pWC
->a
[ii
];
4591 if( pT
->prereqAll
==0 && (nTabList
==0 || exprIsDeterministic(pT
->pExpr
)) ){
4592 sqlite3ExprIfFalse(pParse
, pT
->pExpr
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
4593 pT
->wtFlags
|= TERM_CODED
;
4597 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
4598 if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
4599 /* The DISTINCT marking is pointless. Ignore it. */
4600 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
4601 }else if( pOrderBy
==0 ){
4602 /* Try to ORDER BY the result set to make distinct processing easier */
4603 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
4604 pWInfo
->pOrderBy
= pResultSet
;
4608 /* Construct the WhereLoop objects */
4609 #if defined(WHERETRACE_ENABLED)
4610 if( sqlite3WhereTrace
& 0xffff ){
4611 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags
);
4612 if( wctrlFlags
& WHERE_USE_LIMIT
){
4613 sqlite3DebugPrintf(", limit: %d", iAuxArg
);
4615 sqlite3DebugPrintf(")\n");
4617 if( sqlite3WhereTrace
& 0x100 ){ /* Display all terms of the WHERE clause */
4618 sqlite3WhereClausePrint(sWLB
.pWC
);
4622 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
4623 rc
= whereLoopAddAll(&sWLB
);
4624 if( rc
) goto whereBeginError
;
4626 #ifdef WHERETRACE_ENABLED
4627 if( sqlite3WhereTrace
){ /* Display all of the WhereLoop objects */
4630 static const char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4631 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4632 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
4633 p
->cId
= zLabel
[i
%(sizeof(zLabel
)-1)];
4634 whereLoopPrint(p
, sWLB
.pWC
);
4639 wherePathSolver(pWInfo
, 0);
4640 if( db
->mallocFailed
) goto whereBeginError
;
4641 if( pWInfo
->pOrderBy
){
4642 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
4643 if( db
->mallocFailed
) goto whereBeginError
;
4646 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
4647 pWInfo
->revMask
= ALLBITS
;
4649 if( pParse
->nErr
|| NEVER(db
->mallocFailed
) ){
4650 goto whereBeginError
;
4652 #ifdef WHERETRACE_ENABLED
4653 if( sqlite3WhereTrace
){
4654 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
4655 if( pWInfo
->nOBSat
>0 ){
4656 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
4658 switch( pWInfo
->eDistinct
){
4659 case WHERE_DISTINCT_UNIQUE
: {
4660 sqlite3DebugPrintf(" DISTINCT=unique");
4663 case WHERE_DISTINCT_ORDERED
: {
4664 sqlite3DebugPrintf(" DISTINCT=ordered");
4667 case WHERE_DISTINCT_UNORDERED
: {
4668 sqlite3DebugPrintf(" DISTINCT=unordered");
4672 sqlite3DebugPrintf("\n");
4673 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
4674 whereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
4678 /* Attempt to omit tables from the join that do not effect the result */
4679 if( pWInfo
->nLevel
>=2
4681 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
4683 Bitmask tabUsed
= sqlite3WhereExprListUsage(pMaskSet
, pResultSet
);
4684 if( sWLB
.pOrderBy
){
4685 tabUsed
|= sqlite3WhereExprListUsage(pMaskSet
, sWLB
.pOrderBy
);
4687 while( pWInfo
->nLevel
>=2 ){
4688 WhereTerm
*pTerm
, *pEnd
;
4689 pLoop
= pWInfo
->a
[pWInfo
->nLevel
-1].pWLoop
;
4690 if( (pWInfo
->pTabList
->a
[pLoop
->iTab
].fg
.jointype
& JT_LEFT
)==0 ) break;
4691 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)==0
4692 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
4696 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) break;
4697 pEnd
= sWLB
.pWC
->a
+ sWLB
.pWC
->nTerm
;
4698 for(pTerm
=sWLB
.pWC
->a
; pTerm
<pEnd
; pTerm
++){
4699 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0
4700 && !ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
)
4705 if( pTerm
<pEnd
) break;
4706 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop
->cId
));
4711 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4712 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
4714 /* If the caller is an UPDATE or DELETE statement that is requesting
4715 ** to use a one-pass algorithm, determine if this is appropriate.
4717 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
4718 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 ){
4719 int wsFlags
= pWInfo
->a
[0].pWLoop
->wsFlags
;
4720 int bOnerow
= (wsFlags
& WHERE_ONEROW
)!=0;
4722 || ((wctrlFlags
& WHERE_ONEPASS_MULTIROW
)!=0
4723 && 0==(wsFlags
& WHERE_VIRTUALTABLE
))
4725 pWInfo
->eOnePass
= bOnerow
? ONEPASS_SINGLE
: ONEPASS_MULTI
;
4726 if( HasRowid(pTabList
->a
[0].pTab
) && (wsFlags
& WHERE_IDX_ONLY
) ){
4727 if( wctrlFlags
& WHERE_ONEPASS_MULTIROW
){
4728 bFordelete
= OPFLAG_FORDELETE
;
4730 pWInfo
->a
[0].pWLoop
->wsFlags
= (wsFlags
& ~WHERE_IDX_ONLY
);
4735 /* Open all tables in the pTabList and any indices selected for
4736 ** searching those tables.
4738 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
4739 Table
*pTab
; /* Table to open */
4740 int iDb
; /* Index of database containing table/index */
4741 struct SrcList_item
*pTabItem
;
4743 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
4744 pTab
= pTabItem
->pTab
;
4745 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4746 pLoop
= pLevel
->pWLoop
;
4747 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || pTab
->pSelect
){
4750 #ifndef SQLITE_OMIT_VIRTUALTABLE
4751 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
4752 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
4753 int iCur
= pTabItem
->iCursor
;
4754 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
4755 }else if( IsVirtual(pTab
) ){
4759 if( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
4760 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0 ){
4761 int op
= OP_OpenRead
;
4762 if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
4764 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
4766 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
4767 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
4768 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
-1 );
4769 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
);
4770 if( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
<BMS
&& HasRowid(pTab
) ){
4771 Bitmask b
= pTabItem
->colUsed
;
4773 for(; b
; b
=b
>>1, n
++){}
4774 sqlite3VdbeChangeP4(v
, -1, SQLITE_INT_TO_PTR(n
), P4_INT32
);
4775 assert( n
<=pTab
->nCol
);
4777 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4778 if( pLoop
->u
.btree
.pIndex
!=0 ){
4779 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
|bFordelete
);
4783 sqlite3VdbeChangeP5(v
, bFordelete
);
4785 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4786 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, pTabItem
->iCursor
, 0, 0,
4787 (const u8
*)&pTabItem
->colUsed
, P4_INT64
);
4790 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
4792 if( pLoop
->wsFlags
& WHERE_INDEXED
){
4793 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
4795 int op
= OP_OpenRead
;
4796 /* iAuxArg is always set to a positive value if ONEPASS is possible */
4797 assert( iAuxArg
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
4798 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
4799 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0
4801 /* This is one term of an OR-optimization using the PRIMARY KEY of a
4802 ** WITHOUT ROWID table. No need for a separate index */
4803 iIndexCur
= pLevel
->iTabCur
;
4805 }else if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
4806 Index
*pJ
= pTabItem
->pTab
->pIndex
;
4807 iIndexCur
= iAuxArg
;
4808 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
4809 while( ALWAYS(pJ
) && pJ
!=pIx
){
4814 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
4815 }else if( iAuxArg
&& (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 ){
4816 iIndexCur
= iAuxArg
;
4819 iIndexCur
= pParse
->nTab
++;
4821 pLevel
->iIdxCur
= iIndexCur
;
4822 assert( pIx
->pSchema
==pTab
->pSchema
);
4823 assert( iIndexCur
>=0 );
4825 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
4826 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
4827 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)!=0
4828 && (pLoop
->wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_SKIPSCAN
))==0
4829 && (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0
4830 && pWInfo
->eDistinct
!=WHERE_DISTINCT_ORDERED
4832 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
); /* Hint to COMDB2 */
4834 VdbeComment((v
, "%s", pIx
->zName
));
4835 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4839 for(ii
=0; ii
<pIx
->nColumn
; ii
++){
4840 jj
= pIx
->aiColumn
[ii
];
4841 if( jj
<0 ) continue;
4842 if( jj
>63 ) jj
= 63;
4843 if( (pTabItem
->colUsed
& MASKBIT(jj
))==0 ) continue;
4844 colUsed
|= ((u64
)1)<<(ii
<63 ? ii
: 63);
4846 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, iIndexCur
, 0, 0,
4847 (u8
*)&colUsed
, P4_INT64
);
4849 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4852 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
4854 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
4855 if( db
->mallocFailed
) goto whereBeginError
;
4857 /* Generate the code to do the search. Each iteration of the for
4858 ** loop below generates code for a single nested loop of the VM
4861 notReady
= ~(Bitmask
)0;
4862 for(ii
=0; ii
<nTabList
; ii
++){
4865 pLevel
= &pWInfo
->a
[ii
];
4866 wsFlags
= pLevel
->pWLoop
->wsFlags
;
4867 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4868 if( (pLevel
->pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
4869 constructAutomaticIndex(pParse
, &pWInfo
->sWC
,
4870 &pTabList
->a
[pLevel
->iFrom
], notReady
, pLevel
);
4871 if( db
->mallocFailed
) goto whereBeginError
;
4874 addrExplain
= sqlite3WhereExplainOneScan(
4875 pParse
, pTabList
, pLevel
, ii
, pLevel
->iFrom
, wctrlFlags
4877 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
4878 notReady
= sqlite3WhereCodeOneLoopStart(pWInfo
, ii
, notReady
);
4879 pWInfo
->iContinue
= pLevel
->addrCont
;
4880 if( (wsFlags
&WHERE_MULTI_OR
)==0 && (wctrlFlags
&WHERE_OR_SUBCLAUSE
)==0 ){
4881 sqlite3WhereAddScanStatus(v
, pTabList
, pLevel
, addrExplain
);
4886 VdbeModuleComment((v
, "Begin WHERE-core"));
4889 /* Jump here if malloc fails */
4892 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
4893 whereInfoFree(db
, pWInfo
);
4899 ** Generate the end of the WHERE loop. See comments on
4900 ** sqlite3WhereBegin() for additional information.
4902 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
4903 Parse
*pParse
= pWInfo
->pParse
;
4904 Vdbe
*v
= pParse
->pVdbe
;
4908 SrcList
*pTabList
= pWInfo
->pTabList
;
4909 sqlite3
*db
= pParse
->db
;
4911 /* Generate loop termination code.
4913 VdbeModuleComment((v
, "End WHERE-core"));
4914 sqlite3ExprCacheClear(pParse
);
4915 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
4917 pLevel
= &pWInfo
->a
[i
];
4918 pLoop
= pLevel
->pWLoop
;
4919 if( pLevel
->op
!=OP_Noop
){
4920 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4924 if( pWInfo
->eDistinct
==WHERE_DISTINCT_ORDERED
4925 && (pLoop
->wsFlags
& WHERE_INDEXED
)!=0
4926 && (pIdx
= pLoop
->u
.btree
.pIndex
)->hasStat1
4927 && (n
= pLoop
->u
.btree
.nIdxCol
)>0
4928 && pIdx
->aiRowLogEst
[n
]>=36
4930 int r1
= pParse
->nMem
+1;
4933 sqlite3VdbeAddOp3(v
, OP_Column
, pLevel
->iIdxCur
, j
, r1
+j
);
4935 pParse
->nMem
+= n
+1;
4936 op
= pLevel
->op
==OP_Prev
? OP_SeekLT
: OP_SeekGT
;
4937 addrSeek
= sqlite3VdbeAddOp4Int(v
, op
, pLevel
->iIdxCur
, 0, r1
, n
);
4938 VdbeCoverageIf(v
, op
==OP_SeekLT
);
4939 VdbeCoverageIf(v
, op
==OP_SeekGT
);
4940 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, pLevel
->p2
);
4942 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
4943 /* The common case: Advance to the next row */
4944 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
4945 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
4946 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
4948 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
4949 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
4950 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
4951 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4952 if( addrSeek
) sqlite3VdbeJumpHere(v
, addrSeek
);
4955 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
4957 if( pLoop
->wsFlags
& WHERE_IN_ABLE
&& pLevel
->u
.in
.nIn
>0 ){
4960 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
4961 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
4962 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
4963 if( pIn
->eEndLoopOp
!=OP_Noop
){
4964 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
4966 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_PrevIfOpen
);
4967 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_NextIfOpen
);
4969 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
4972 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
4973 if( pLevel
->addrSkip
){
4974 sqlite3VdbeGoto(v
, pLevel
->addrSkip
);
4975 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
4976 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
4977 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
4979 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
4980 if( pLevel
->addrLikeRep
){
4981 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, (int)(pLevel
->iLikeRepCntr
>>1),
4982 pLevel
->addrLikeRep
);
4986 if( pLevel
->iLeftJoin
){
4987 int ws
= pLoop
->wsFlags
;
4988 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
4989 assert( (ws
& WHERE_IDX_ONLY
)==0 || (ws
& WHERE_INDEXED
)!=0 );
4990 if( (ws
& WHERE_IDX_ONLY
)==0 ){
4991 sqlite3VdbeAddOp1(v
, OP_NullRow
, pTabList
->a
[i
].iCursor
);
4993 if( (ws
& WHERE_INDEXED
)
4994 || ((ws
& WHERE_MULTI_OR
) && pLevel
->u
.pCovidx
)
4996 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
4998 if( pLevel
->op
==OP_Return
){
4999 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
5001 sqlite3VdbeGoto(v
, pLevel
->addrFirst
);
5003 sqlite3VdbeJumpHere(v
, addr
);
5005 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
5006 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
5009 /* The "break" point is here, just past the end of the outer loop.
5012 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
5014 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
5015 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
5019 struct SrcList_item
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5020 Table
*pTab
= pTabItem
->pTab
;
5022 pLoop
= pLevel
->pWLoop
;
5024 /* For a co-routine, change all OP_Column references to the table of
5025 ** the co-routine into OP_Copy of result contained in a register.
5026 ** OP_Rowid becomes OP_Null.
5028 if( pTabItem
->fg
.viaCoroutine
){
5029 testcase( pParse
->db
->mallocFailed
);
5030 translateColumnToCopy(pParse
, pLevel
->addrBody
, pLevel
->iTabCur
,
5031 pTabItem
->regResult
, 0);
5035 /* If this scan uses an index, make VDBE code substitutions to read data
5036 ** from the index instead of from the table where possible. In some cases
5037 ** this optimization prevents the table from ever being read, which can
5038 ** yield a significant performance boost.
5040 ** Calls to the code generator in between sqlite3WhereBegin and
5041 ** sqlite3WhereEnd will have created code that references the table
5042 ** directly. This loop scans all that code looking for opcodes
5043 ** that reference the table and converts them into opcodes that
5044 ** reference the index.
5046 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
5047 pIdx
= pLoop
->u
.btree
.pIndex
;
5048 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
5049 pIdx
= pLevel
->u
.pCovidx
;
5052 && (pWInfo
->eOnePass
==ONEPASS_OFF
|| !HasRowid(pIdx
->pTable
))
5053 && !db
->mallocFailed
5055 last
= sqlite3VdbeCurrentAddr(v
);
5056 k
= pLevel
->addrBody
;
5057 pOp
= sqlite3VdbeGetOp(v
, k
);
5058 for(; k
<last
; k
++, pOp
++){
5059 if( pOp
->p1
!=pLevel
->iTabCur
) continue;
5060 if( pOp
->opcode
==OP_Column
){
5062 assert( pIdx
->pTable
==pTab
);
5063 if( !HasRowid(pTab
) ){
5064 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
5065 x
= pPk
->aiColumn
[x
];
5068 x
= sqlite3ColumnOfIndex(pIdx
, x
);
5071 pOp
->p1
= pLevel
->iIdxCur
;
5073 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0 || x
>=0
5074 || pWInfo
->eOnePass
);
5075 }else if( pOp
->opcode
==OP_Rowid
){
5076 pOp
->p1
= pLevel
->iIdxCur
;
5077 pOp
->opcode
= OP_IdxRowid
;
5078 }else if( pOp
->opcode
==OP_IfNullRow
){
5079 pOp
->p1
= pLevel
->iIdxCur
;
5087 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5088 whereInfoFree(db
, pWInfo
);