Get writes working on the sqlite_dbpage virtual table. Add a few test cases.
[sqlite.git] / src / vdbemem.c
blob3c07f5a1a392a7764be14c98ccac184b77ca7126
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg|MEM_Zero))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
98 ** If pMem is an object with a valid string representation, this routine
99 ** ensures the internal encoding for the string representation is
100 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
102 ** If pMem is not a string object, or the encoding of the string
103 ** representation is already stored using the requested encoding, then this
104 ** routine is a no-op.
106 ** SQLITE_OK is returned if the conversion is successful (or not required).
107 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
108 ** between formats.
110 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
111 #ifndef SQLITE_OMIT_UTF16
112 int rc;
113 #endif
114 assert( (pMem->flags&MEM_RowSet)==0 );
115 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
116 || desiredEnc==SQLITE_UTF16BE );
117 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
118 return SQLITE_OK;
120 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
121 #ifdef SQLITE_OMIT_UTF16
122 return SQLITE_ERROR;
123 #else
125 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
126 ** then the encoding of the value may not have changed.
128 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
129 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
130 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
131 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
132 return rc;
133 #endif
137 ** Make sure pMem->z points to a writable allocation of at least
138 ** min(n,32) bytes.
140 ** If the bPreserve argument is true, then copy of the content of
141 ** pMem->z into the new allocation. pMem must be either a string or
142 ** blob if bPreserve is true. If bPreserve is false, any prior content
143 ** in pMem->z is discarded.
145 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
146 assert( sqlite3VdbeCheckMemInvariants(pMem) );
147 assert( (pMem->flags&MEM_RowSet)==0 );
148 testcase( pMem->db==0 );
150 /* If the bPreserve flag is set to true, then the memory cell must already
151 ** contain a valid string or blob value. */
152 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
153 testcase( bPreserve && pMem->z==0 );
155 assert( pMem->szMalloc==0
156 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
157 if( n<32 ) n = 32;
158 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
159 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
160 bPreserve = 0;
161 }else{
162 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
163 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
165 if( pMem->zMalloc==0 ){
166 sqlite3VdbeMemSetNull(pMem);
167 pMem->z = 0;
168 pMem->szMalloc = 0;
169 return SQLITE_NOMEM_BKPT;
170 }else{
171 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
174 if( bPreserve && pMem->z ){
175 assert( pMem->z!=pMem->zMalloc );
176 memcpy(pMem->zMalloc, pMem->z, pMem->n);
178 if( (pMem->flags&MEM_Dyn)!=0 ){
179 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
180 pMem->xDel((void *)(pMem->z));
183 pMem->z = pMem->zMalloc;
184 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
185 return SQLITE_OK;
189 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
190 ** If pMem->zMalloc already meets or exceeds the requested size, this
191 ** routine is a no-op.
193 ** Any prior string or blob content in the pMem object may be discarded.
194 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
195 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
196 ** values are preserved.
198 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
199 ** if unable to complete the resizing.
201 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
202 assert( szNew>0 );
203 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
204 if( pMem->szMalloc<szNew ){
205 return sqlite3VdbeMemGrow(pMem, szNew, 0);
207 assert( (pMem->flags & MEM_Dyn)==0 );
208 pMem->z = pMem->zMalloc;
209 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
210 return SQLITE_OK;
214 ** It is already known that pMem contains an unterminated string.
215 ** Add the zero terminator.
217 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
218 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
219 return SQLITE_NOMEM_BKPT;
221 pMem->z[pMem->n] = 0;
222 pMem->z[pMem->n+1] = 0;
223 pMem->flags |= MEM_Term;
224 return SQLITE_OK;
228 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
229 ** MEM.zMalloc, where it can be safely written.
231 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
233 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
234 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
235 assert( (pMem->flags&MEM_RowSet)==0 );
236 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
237 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
238 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
239 int rc = vdbeMemAddTerminator(pMem);
240 if( rc ) return rc;
243 pMem->flags &= ~MEM_Ephem;
244 #ifdef SQLITE_DEBUG
245 pMem->pScopyFrom = 0;
246 #endif
248 return SQLITE_OK;
252 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
253 ** blob stored in dynamically allocated space.
255 #ifndef SQLITE_OMIT_INCRBLOB
256 int sqlite3VdbeMemExpandBlob(Mem *pMem){
257 int nByte;
258 assert( pMem->flags & MEM_Zero );
259 assert( pMem->flags&MEM_Blob );
260 assert( (pMem->flags&MEM_RowSet)==0 );
261 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
263 /* Set nByte to the number of bytes required to store the expanded blob. */
264 nByte = pMem->n + pMem->u.nZero;
265 if( nByte<=0 ){
266 nByte = 1;
268 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
269 return SQLITE_NOMEM_BKPT;
272 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
273 pMem->n += pMem->u.nZero;
274 pMem->flags &= ~(MEM_Zero|MEM_Term);
275 return SQLITE_OK;
277 #endif
280 ** Make sure the given Mem is \u0000 terminated.
282 int sqlite3VdbeMemNulTerminate(Mem *pMem){
283 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
284 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
285 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
286 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
287 return SQLITE_OK; /* Nothing to do */
288 }else{
289 return vdbeMemAddTerminator(pMem);
294 ** Add MEM_Str to the set of representations for the given Mem. Numbers
295 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
296 ** is a no-op.
298 ** Existing representations MEM_Int and MEM_Real are invalidated if
299 ** bForce is true but are retained if bForce is false.
301 ** A MEM_Null value will never be passed to this function. This function is
302 ** used for converting values to text for returning to the user (i.e. via
303 ** sqlite3_value_text()), or for ensuring that values to be used as btree
304 ** keys are strings. In the former case a NULL pointer is returned the
305 ** user and the latter is an internal programming error.
307 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
308 int fg = pMem->flags;
309 const int nByte = 32;
311 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
312 assert( !(fg&MEM_Zero) );
313 assert( !(fg&(MEM_Str|MEM_Blob)) );
314 assert( fg&(MEM_Int|MEM_Real) );
315 assert( (pMem->flags&MEM_RowSet)==0 );
316 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
319 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
320 pMem->enc = 0;
321 return SQLITE_NOMEM_BKPT;
324 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
325 ** string representation of the value. Then, if the required encoding
326 ** is UTF-16le or UTF-16be do a translation.
328 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
330 if( fg & MEM_Int ){
331 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
332 }else{
333 assert( fg & MEM_Real );
334 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
336 pMem->n = sqlite3Strlen30(pMem->z);
337 pMem->enc = SQLITE_UTF8;
338 pMem->flags |= MEM_Str|MEM_Term;
339 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
340 sqlite3VdbeChangeEncoding(pMem, enc);
341 return SQLITE_OK;
345 ** Memory cell pMem contains the context of an aggregate function.
346 ** This routine calls the finalize method for that function. The
347 ** result of the aggregate is stored back into pMem.
349 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
350 ** otherwise.
352 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
353 int rc = SQLITE_OK;
354 if( ALWAYS(pFunc && pFunc->xFinalize) ){
355 sqlite3_context ctx;
356 Mem t;
357 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
358 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
359 memset(&ctx, 0, sizeof(ctx));
360 memset(&t, 0, sizeof(t));
361 t.flags = MEM_Null;
362 t.db = pMem->db;
363 ctx.pOut = &t;
364 ctx.pMem = pMem;
365 ctx.pFunc = pFunc;
366 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
367 assert( (pMem->flags & MEM_Dyn)==0 );
368 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
369 memcpy(pMem, &t, sizeof(t));
370 rc = ctx.isError;
372 return rc;
376 ** If the memory cell contains a value that must be freed by
377 ** invoking the external callback in Mem.xDel, then this routine
378 ** will free that value. It also sets Mem.flags to MEM_Null.
380 ** This is a helper routine for sqlite3VdbeMemSetNull() and
381 ** for sqlite3VdbeMemRelease(). Use those other routines as the
382 ** entry point for releasing Mem resources.
384 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
385 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
386 assert( VdbeMemDynamic(p) );
387 if( p->flags&MEM_Agg ){
388 sqlite3VdbeMemFinalize(p, p->u.pDef);
389 assert( (p->flags & MEM_Agg)==0 );
390 testcase( p->flags & MEM_Dyn );
392 if( p->flags&MEM_Dyn ){
393 assert( (p->flags&MEM_RowSet)==0 );
394 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
395 p->xDel((void *)p->z);
396 }else if( p->flags&MEM_RowSet ){
397 sqlite3RowSetClear(p->u.pRowSet);
398 }else if( p->flags&MEM_Frame ){
399 VdbeFrame *pFrame = p->u.pFrame;
400 pFrame->pParent = pFrame->v->pDelFrame;
401 pFrame->v->pDelFrame = pFrame;
403 p->flags = MEM_Null;
407 ** Release memory held by the Mem p, both external memory cleared
408 ** by p->xDel and memory in p->zMalloc.
410 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
411 ** the unusual case where there really is memory in p that needs
412 ** to be freed.
414 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
415 if( VdbeMemDynamic(p) ){
416 vdbeMemClearExternAndSetNull(p);
418 if( p->szMalloc ){
419 sqlite3DbFreeNN(p->db, p->zMalloc);
420 p->szMalloc = 0;
422 p->z = 0;
426 ** Release any memory resources held by the Mem. Both the memory that is
427 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
429 ** Use this routine prior to clean up prior to abandoning a Mem, or to
430 ** reset a Mem back to its minimum memory utilization.
432 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
433 ** prior to inserting new content into the Mem.
435 void sqlite3VdbeMemRelease(Mem *p){
436 assert( sqlite3VdbeCheckMemInvariants(p) );
437 if( VdbeMemDynamic(p) || p->szMalloc ){
438 vdbeMemClear(p);
443 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
444 ** If the double is out of range of a 64-bit signed integer then
445 ** return the closest available 64-bit signed integer.
447 static SQLITE_NOINLINE i64 doubleToInt64(double r){
448 #ifdef SQLITE_OMIT_FLOATING_POINT
449 /* When floating-point is omitted, double and int64 are the same thing */
450 return r;
451 #else
453 ** Many compilers we encounter do not define constants for the
454 ** minimum and maximum 64-bit integers, or they define them
455 ** inconsistently. And many do not understand the "LL" notation.
456 ** So we define our own static constants here using nothing
457 ** larger than a 32-bit integer constant.
459 static const i64 maxInt = LARGEST_INT64;
460 static const i64 minInt = SMALLEST_INT64;
462 if( r<=(double)minInt ){
463 return minInt;
464 }else if( r>=(double)maxInt ){
465 return maxInt;
466 }else{
467 return (i64)r;
469 #endif
473 ** Return some kind of integer value which is the best we can do
474 ** at representing the value that *pMem describes as an integer.
475 ** If pMem is an integer, then the value is exact. If pMem is
476 ** a floating-point then the value returned is the integer part.
477 ** If pMem is a string or blob, then we make an attempt to convert
478 ** it into an integer and return that. If pMem represents an
479 ** an SQL-NULL value, return 0.
481 ** If pMem represents a string value, its encoding might be changed.
483 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
484 i64 value = 0;
485 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
486 return value;
488 i64 sqlite3VdbeIntValue(Mem *pMem){
489 int flags;
490 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
491 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
492 flags = pMem->flags;
493 if( flags & MEM_Int ){
494 return pMem->u.i;
495 }else if( flags & MEM_Real ){
496 return doubleToInt64(pMem->u.r);
497 }else if( flags & (MEM_Str|MEM_Blob) ){
498 assert( pMem->z || pMem->n==0 );
499 return memIntValue(pMem);
500 }else{
501 return 0;
506 ** Return the best representation of pMem that we can get into a
507 ** double. If pMem is already a double or an integer, return its
508 ** value. If it is a string or blob, try to convert it to a double.
509 ** If it is a NULL, return 0.0.
511 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
512 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
513 double val = (double)0;
514 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
515 return val;
517 double sqlite3VdbeRealValue(Mem *pMem){
518 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
519 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
520 if( pMem->flags & MEM_Real ){
521 return pMem->u.r;
522 }else if( pMem->flags & MEM_Int ){
523 return (double)pMem->u.i;
524 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
525 return memRealValue(pMem);
526 }else{
527 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
528 return (double)0;
533 ** The MEM structure is already a MEM_Real. Try to also make it a
534 ** MEM_Int if we can.
536 void sqlite3VdbeIntegerAffinity(Mem *pMem){
537 i64 ix;
538 assert( pMem->flags & MEM_Real );
539 assert( (pMem->flags & MEM_RowSet)==0 );
540 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
541 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
543 ix = doubleToInt64(pMem->u.r);
545 /* Only mark the value as an integer if
547 ** (1) the round-trip conversion real->int->real is a no-op, and
548 ** (2) The integer is neither the largest nor the smallest
549 ** possible integer (ticket #3922)
551 ** The second and third terms in the following conditional enforces
552 ** the second condition under the assumption that addition overflow causes
553 ** values to wrap around.
555 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
556 pMem->u.i = ix;
557 MemSetTypeFlag(pMem, MEM_Int);
562 ** Convert pMem to type integer. Invalidate any prior representations.
564 int sqlite3VdbeMemIntegerify(Mem *pMem){
565 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
566 assert( (pMem->flags & MEM_RowSet)==0 );
567 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
569 pMem->u.i = sqlite3VdbeIntValue(pMem);
570 MemSetTypeFlag(pMem, MEM_Int);
571 return SQLITE_OK;
575 ** Convert pMem so that it is of type MEM_Real.
576 ** Invalidate any prior representations.
578 int sqlite3VdbeMemRealify(Mem *pMem){
579 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
580 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
582 pMem->u.r = sqlite3VdbeRealValue(pMem);
583 MemSetTypeFlag(pMem, MEM_Real);
584 return SQLITE_OK;
588 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
589 ** Invalidate any prior representations.
591 ** Every effort is made to force the conversion, even if the input
592 ** is a string that does not look completely like a number. Convert
593 ** as much of the string as we can and ignore the rest.
595 int sqlite3VdbeMemNumerify(Mem *pMem){
596 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
597 int rc;
598 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
599 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
600 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
601 if( rc==0 ){
602 MemSetTypeFlag(pMem, MEM_Int);
603 }else{
604 i64 i = pMem->u.i;
605 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
606 if( rc==1 && pMem->u.r==(double)i ){
607 pMem->u.i = i;
608 MemSetTypeFlag(pMem, MEM_Int);
609 }else{
610 MemSetTypeFlag(pMem, MEM_Real);
614 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
615 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
616 return SQLITE_OK;
620 ** Cast the datatype of the value in pMem according to the affinity
621 ** "aff". Casting is different from applying affinity in that a cast
622 ** is forced. In other words, the value is converted into the desired
623 ** affinity even if that results in loss of data. This routine is
624 ** used (for example) to implement the SQL "cast()" operator.
626 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
627 if( pMem->flags & MEM_Null ) return;
628 switch( aff ){
629 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
630 if( (pMem->flags & MEM_Blob)==0 ){
631 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
632 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
633 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
634 }else{
635 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
637 break;
639 case SQLITE_AFF_NUMERIC: {
640 sqlite3VdbeMemNumerify(pMem);
641 break;
643 case SQLITE_AFF_INTEGER: {
644 sqlite3VdbeMemIntegerify(pMem);
645 break;
647 case SQLITE_AFF_REAL: {
648 sqlite3VdbeMemRealify(pMem);
649 break;
651 default: {
652 assert( aff==SQLITE_AFF_TEXT );
653 assert( MEM_Str==(MEM_Blob>>3) );
654 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
655 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
656 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
657 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
658 break;
664 ** Initialize bulk memory to be a consistent Mem object.
666 ** The minimum amount of initialization feasible is performed.
668 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
669 assert( (flags & ~MEM_TypeMask)==0 );
670 pMem->flags = flags;
671 pMem->db = db;
672 pMem->szMalloc = 0;
677 ** Delete any previous value and set the value stored in *pMem to NULL.
679 ** This routine calls the Mem.xDel destructor to dispose of values that
680 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
681 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
682 ** routine to invoke the destructor and deallocates Mem.zMalloc.
684 ** Use this routine to reset the Mem prior to insert a new value.
686 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
688 void sqlite3VdbeMemSetNull(Mem *pMem){
689 if( VdbeMemDynamic(pMem) ){
690 vdbeMemClearExternAndSetNull(pMem);
691 }else{
692 pMem->flags = MEM_Null;
695 void sqlite3ValueSetNull(sqlite3_value *p){
696 sqlite3VdbeMemSetNull((Mem*)p);
700 ** Delete any previous value and set the value to be a BLOB of length
701 ** n containing all zeros.
703 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
704 sqlite3VdbeMemRelease(pMem);
705 pMem->flags = MEM_Blob|MEM_Zero;
706 pMem->n = 0;
707 if( n<0 ) n = 0;
708 pMem->u.nZero = n;
709 pMem->enc = SQLITE_UTF8;
710 pMem->z = 0;
714 ** The pMem is known to contain content that needs to be destroyed prior
715 ** to a value change. So invoke the destructor, then set the value to
716 ** a 64-bit integer.
718 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
719 sqlite3VdbeMemSetNull(pMem);
720 pMem->u.i = val;
721 pMem->flags = MEM_Int;
725 ** Delete any previous value and set the value stored in *pMem to val,
726 ** manifest type INTEGER.
728 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
729 if( VdbeMemDynamic(pMem) ){
730 vdbeReleaseAndSetInt64(pMem, val);
731 }else{
732 pMem->u.i = val;
733 pMem->flags = MEM_Int;
737 /* A no-op destructor */
738 static void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
741 ** Set the value stored in *pMem should already be a NULL.
742 ** Also store a pointer to go with it.
744 void sqlite3VdbeMemSetPointer(
745 Mem *pMem,
746 void *pPtr,
747 const char *zPType,
748 void (*xDestructor)(void*)
750 assert( pMem->flags==MEM_Null );
751 pMem->u.zPType = zPType ? zPType : "";
752 pMem->z = pPtr;
753 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
754 pMem->eSubtype = 'p';
755 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
758 #ifndef SQLITE_OMIT_FLOATING_POINT
760 ** Delete any previous value and set the value stored in *pMem to val,
761 ** manifest type REAL.
763 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
764 sqlite3VdbeMemSetNull(pMem);
765 if( !sqlite3IsNaN(val) ){
766 pMem->u.r = val;
767 pMem->flags = MEM_Real;
770 #endif
773 ** Delete any previous value and set the value of pMem to be an
774 ** empty boolean index.
776 void sqlite3VdbeMemSetRowSet(Mem *pMem){
777 sqlite3 *db = pMem->db;
778 assert( db!=0 );
779 assert( (pMem->flags & MEM_RowSet)==0 );
780 sqlite3VdbeMemRelease(pMem);
781 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
782 if( db->mallocFailed ){
783 pMem->flags = MEM_Null;
784 pMem->szMalloc = 0;
785 }else{
786 assert( pMem->zMalloc );
787 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
788 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
789 assert( pMem->u.pRowSet!=0 );
790 pMem->flags = MEM_RowSet;
795 ** Return true if the Mem object contains a TEXT or BLOB that is
796 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
798 int sqlite3VdbeMemTooBig(Mem *p){
799 assert( p->db!=0 );
800 if( p->flags & (MEM_Str|MEM_Blob) ){
801 int n = p->n;
802 if( p->flags & MEM_Zero ){
803 n += p->u.nZero;
805 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
807 return 0;
810 #ifdef SQLITE_DEBUG
812 ** This routine prepares a memory cell for modification by breaking
813 ** its link to a shallow copy and by marking any current shallow
814 ** copies of this cell as invalid.
816 ** This is used for testing and debugging only - to make sure shallow
817 ** copies are not misused.
819 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
820 int i;
821 Mem *pX;
822 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
823 if( pX->pScopyFrom==pMem ){
824 pX->flags |= MEM_Undefined;
825 pX->pScopyFrom = 0;
828 pMem->pScopyFrom = 0;
830 #endif /* SQLITE_DEBUG */
834 ** Make an shallow copy of pFrom into pTo. Prior contents of
835 ** pTo are freed. The pFrom->z field is not duplicated. If
836 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
837 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
839 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
840 vdbeMemClearExternAndSetNull(pTo);
841 assert( !VdbeMemDynamic(pTo) );
842 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
844 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
845 assert( (pFrom->flags & MEM_RowSet)==0 );
846 assert( pTo->db==pFrom->db );
847 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
848 memcpy(pTo, pFrom, MEMCELLSIZE);
849 if( (pFrom->flags&MEM_Static)==0 ){
850 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
851 assert( srcType==MEM_Ephem || srcType==MEM_Static );
852 pTo->flags |= srcType;
857 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
858 ** freed before the copy is made.
860 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
861 int rc = SQLITE_OK;
863 assert( (pFrom->flags & MEM_RowSet)==0 );
864 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
865 memcpy(pTo, pFrom, MEMCELLSIZE);
866 pTo->flags &= ~MEM_Dyn;
867 if( pTo->flags&(MEM_Str|MEM_Blob) ){
868 if( 0==(pFrom->flags&MEM_Static) ){
869 pTo->flags |= MEM_Ephem;
870 rc = sqlite3VdbeMemMakeWriteable(pTo);
874 return rc;
878 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
879 ** freed. If pFrom contains ephemeral data, a copy is made.
881 ** pFrom contains an SQL NULL when this routine returns.
883 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
884 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
885 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
886 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
888 sqlite3VdbeMemRelease(pTo);
889 memcpy(pTo, pFrom, sizeof(Mem));
890 pFrom->flags = MEM_Null;
891 pFrom->szMalloc = 0;
895 ** Change the value of a Mem to be a string or a BLOB.
897 ** The memory management strategy depends on the value of the xDel
898 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
899 ** string is copied into a (possibly existing) buffer managed by the
900 ** Mem structure. Otherwise, any existing buffer is freed and the
901 ** pointer copied.
903 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
904 ** size limit) then no memory allocation occurs. If the string can be
905 ** stored without allocating memory, then it is. If a memory allocation
906 ** is required to store the string, then value of pMem is unchanged. In
907 ** either case, SQLITE_TOOBIG is returned.
909 int sqlite3VdbeMemSetStr(
910 Mem *pMem, /* Memory cell to set to string value */
911 const char *z, /* String pointer */
912 int n, /* Bytes in string, or negative */
913 u8 enc, /* Encoding of z. 0 for BLOBs */
914 void (*xDel)(void*) /* Destructor function */
916 int nByte = n; /* New value for pMem->n */
917 int iLimit; /* Maximum allowed string or blob size */
918 u16 flags = 0; /* New value for pMem->flags */
920 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
921 assert( (pMem->flags & MEM_RowSet)==0 );
923 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
924 if( !z ){
925 sqlite3VdbeMemSetNull(pMem);
926 return SQLITE_OK;
929 if( pMem->db ){
930 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
931 }else{
932 iLimit = SQLITE_MAX_LENGTH;
934 flags = (enc==0?MEM_Blob:MEM_Str);
935 if( nByte<0 ){
936 assert( enc!=0 );
937 if( enc==SQLITE_UTF8 ){
938 nByte = 0x7fffffff & (int)strlen(z);
939 if( nByte>iLimit ) nByte = iLimit+1;
940 }else{
941 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
943 flags |= MEM_Term;
946 /* The following block sets the new values of Mem.z and Mem.xDel. It
947 ** also sets a flag in local variable "flags" to indicate the memory
948 ** management (one of MEM_Dyn or MEM_Static).
950 if( xDel==SQLITE_TRANSIENT ){
951 int nAlloc = nByte;
952 if( flags&MEM_Term ){
953 nAlloc += (enc==SQLITE_UTF8?1:2);
955 if( nByte>iLimit ){
956 return SQLITE_TOOBIG;
958 testcase( nAlloc==0 );
959 testcase( nAlloc==31 );
960 testcase( nAlloc==32 );
961 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
962 return SQLITE_NOMEM_BKPT;
964 memcpy(pMem->z, z, nAlloc);
965 }else if( xDel==SQLITE_DYNAMIC ){
966 sqlite3VdbeMemRelease(pMem);
967 pMem->zMalloc = pMem->z = (char *)z;
968 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
969 }else{
970 sqlite3VdbeMemRelease(pMem);
971 pMem->z = (char *)z;
972 pMem->xDel = xDel;
973 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
976 pMem->n = nByte;
977 pMem->flags = flags;
978 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
980 #ifndef SQLITE_OMIT_UTF16
981 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
982 return SQLITE_NOMEM_BKPT;
984 #endif
986 if( nByte>iLimit ){
987 return SQLITE_TOOBIG;
990 return SQLITE_OK;
994 ** Move data out of a btree key or data field and into a Mem structure.
995 ** The data is payload from the entry that pCur is currently pointing
996 ** to. offset and amt determine what portion of the data or key to retrieve.
997 ** The result is written into the pMem element.
999 ** The pMem object must have been initialized. This routine will use
1000 ** pMem->zMalloc to hold the content from the btree, if possible. New
1001 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1002 ** is responsible for making sure that the pMem object is eventually
1003 ** destroyed.
1005 ** If this routine fails for any reason (malloc returns NULL or unable
1006 ** to read from the disk) then the pMem is left in an inconsistent state.
1008 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1009 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1010 u32 offset, /* Offset from the start of data to return bytes from. */
1011 u32 amt, /* Number of bytes to return. */
1012 Mem *pMem /* OUT: Return data in this Mem structure. */
1014 int rc;
1015 pMem->flags = MEM_Null;
1016 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1017 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1018 if( rc==SQLITE_OK ){
1019 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1020 pMem->flags = MEM_Blob;
1021 pMem->n = (int)amt;
1022 }else{
1023 sqlite3VdbeMemRelease(pMem);
1026 return rc;
1028 int sqlite3VdbeMemFromBtree(
1029 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1030 u32 offset, /* Offset from the start of data to return bytes from. */
1031 u32 amt, /* Number of bytes to return. */
1032 Mem *pMem /* OUT: Return data in this Mem structure. */
1034 char *zData; /* Data from the btree layer */
1035 u32 available = 0; /* Number of bytes available on the local btree page */
1036 int rc = SQLITE_OK; /* Return code */
1038 assert( sqlite3BtreeCursorIsValid(pCur) );
1039 assert( !VdbeMemDynamic(pMem) );
1041 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1042 ** that both the BtShared and database handle mutexes are held. */
1043 assert( (pMem->flags & MEM_RowSet)==0 );
1044 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1045 assert( zData!=0 );
1047 if( offset+amt<=available ){
1048 pMem->z = &zData[offset];
1049 pMem->flags = MEM_Blob|MEM_Ephem;
1050 pMem->n = (int)amt;
1051 }else{
1052 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1055 return rc;
1059 ** The pVal argument is known to be a value other than NULL.
1060 ** Convert it into a string with encoding enc and return a pointer
1061 ** to a zero-terminated version of that string.
1063 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1064 assert( pVal!=0 );
1065 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1066 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1067 assert( (pVal->flags & MEM_RowSet)==0 );
1068 assert( (pVal->flags & (MEM_Null))==0 );
1069 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1070 if( ExpandBlob(pVal) ) return 0;
1071 pVal->flags |= MEM_Str;
1072 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1073 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1075 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1076 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1077 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1078 return 0;
1081 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1082 }else{
1083 sqlite3VdbeMemStringify(pVal, enc, 0);
1084 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1086 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1087 || pVal->db->mallocFailed );
1088 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1089 return pVal->z;
1090 }else{
1091 return 0;
1095 /* This function is only available internally, it is not part of the
1096 ** external API. It works in a similar way to sqlite3_value_text(),
1097 ** except the data returned is in the encoding specified by the second
1098 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1099 ** SQLITE_UTF8.
1101 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1102 ** If that is the case, then the result must be aligned on an even byte
1103 ** boundary.
1105 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1106 if( !pVal ) return 0;
1107 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1108 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1109 assert( (pVal->flags & MEM_RowSet)==0 );
1110 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1111 return pVal->z;
1113 if( pVal->flags&MEM_Null ){
1114 return 0;
1116 return valueToText(pVal, enc);
1120 ** Create a new sqlite3_value object.
1122 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1123 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1124 if( p ){
1125 p->flags = MEM_Null;
1126 p->db = db;
1128 return p;
1132 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1133 ** valueNew(). See comments above valueNew() for details.
1135 struct ValueNewStat4Ctx {
1136 Parse *pParse;
1137 Index *pIdx;
1138 UnpackedRecord **ppRec;
1139 int iVal;
1143 ** Allocate and return a pointer to a new sqlite3_value object. If
1144 ** the second argument to this function is NULL, the object is allocated
1145 ** by calling sqlite3ValueNew().
1147 ** Otherwise, if the second argument is non-zero, then this function is
1148 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1149 ** already been allocated, allocate the UnpackedRecord structure that
1150 ** that function will return to its caller here. Then return a pointer to
1151 ** an sqlite3_value within the UnpackedRecord.a[] array.
1153 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1154 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1155 if( p ){
1156 UnpackedRecord *pRec = p->ppRec[0];
1158 if( pRec==0 ){
1159 Index *pIdx = p->pIdx; /* Index being probed */
1160 int nByte; /* Bytes of space to allocate */
1161 int i; /* Counter variable */
1162 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1164 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1165 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1166 if( pRec ){
1167 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1168 if( pRec->pKeyInfo ){
1169 assert( pRec->pKeyInfo->nAllField==nCol );
1170 assert( pRec->pKeyInfo->enc==ENC(db) );
1171 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1172 for(i=0; i<nCol; i++){
1173 pRec->aMem[i].flags = MEM_Null;
1174 pRec->aMem[i].db = db;
1176 }else{
1177 sqlite3DbFreeNN(db, pRec);
1178 pRec = 0;
1181 if( pRec==0 ) return 0;
1182 p->ppRec[0] = pRec;
1185 pRec->nField = p->iVal+1;
1186 return &pRec->aMem[p->iVal];
1188 #else
1189 UNUSED_PARAMETER(p);
1190 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1191 return sqlite3ValueNew(db);
1195 ** The expression object indicated by the second argument is guaranteed
1196 ** to be a scalar SQL function. If
1198 ** * all function arguments are SQL literals,
1199 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1200 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1202 ** then this routine attempts to invoke the SQL function. Assuming no
1203 ** error occurs, output parameter (*ppVal) is set to point to a value
1204 ** object containing the result before returning SQLITE_OK.
1206 ** Affinity aff is applied to the result of the function before returning.
1207 ** If the result is a text value, the sqlite3_value object uses encoding
1208 ** enc.
1210 ** If the conditions above are not met, this function returns SQLITE_OK
1211 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1212 ** NULL and an SQLite error code returned.
1214 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1215 static int valueFromFunction(
1216 sqlite3 *db, /* The database connection */
1217 Expr *p, /* The expression to evaluate */
1218 u8 enc, /* Encoding to use */
1219 u8 aff, /* Affinity to use */
1220 sqlite3_value **ppVal, /* Write the new value here */
1221 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1223 sqlite3_context ctx; /* Context object for function invocation */
1224 sqlite3_value **apVal = 0; /* Function arguments */
1225 int nVal = 0; /* Size of apVal[] array */
1226 FuncDef *pFunc = 0; /* Function definition */
1227 sqlite3_value *pVal = 0; /* New value */
1228 int rc = SQLITE_OK; /* Return code */
1229 ExprList *pList = 0; /* Function arguments */
1230 int i; /* Iterator variable */
1232 assert( pCtx!=0 );
1233 assert( (p->flags & EP_TokenOnly)==0 );
1234 pList = p->x.pList;
1235 if( pList ) nVal = pList->nExpr;
1236 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1237 assert( pFunc );
1238 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1239 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1241 return SQLITE_OK;
1244 if( pList ){
1245 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1246 if( apVal==0 ){
1247 rc = SQLITE_NOMEM_BKPT;
1248 goto value_from_function_out;
1250 for(i=0; i<nVal; i++){
1251 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1252 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1256 pVal = valueNew(db, pCtx);
1257 if( pVal==0 ){
1258 rc = SQLITE_NOMEM_BKPT;
1259 goto value_from_function_out;
1262 assert( pCtx->pParse->rc==SQLITE_OK );
1263 memset(&ctx, 0, sizeof(ctx));
1264 ctx.pOut = pVal;
1265 ctx.pFunc = pFunc;
1266 pFunc->xSFunc(&ctx, nVal, apVal);
1267 if( ctx.isError ){
1268 rc = ctx.isError;
1269 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1270 }else{
1271 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1272 assert( rc==SQLITE_OK );
1273 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1274 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1275 rc = SQLITE_TOOBIG;
1276 pCtx->pParse->nErr++;
1279 pCtx->pParse->rc = rc;
1281 value_from_function_out:
1282 if( rc!=SQLITE_OK ){
1283 pVal = 0;
1285 if( apVal ){
1286 for(i=0; i<nVal; i++){
1287 sqlite3ValueFree(apVal[i]);
1289 sqlite3DbFreeNN(db, apVal);
1292 *ppVal = pVal;
1293 return rc;
1295 #else
1296 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1297 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1300 ** Extract a value from the supplied expression in the manner described
1301 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1302 ** using valueNew().
1304 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1305 ** has been allocated, it is freed before returning. Or, if pCtx is not
1306 ** NULL, it is assumed that the caller will free any allocated object
1307 ** in all cases.
1309 static int valueFromExpr(
1310 sqlite3 *db, /* The database connection */
1311 Expr *pExpr, /* The expression to evaluate */
1312 u8 enc, /* Encoding to use */
1313 u8 affinity, /* Affinity to use */
1314 sqlite3_value **ppVal, /* Write the new value here */
1315 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1317 int op;
1318 char *zVal = 0;
1319 sqlite3_value *pVal = 0;
1320 int negInt = 1;
1321 const char *zNeg = "";
1322 int rc = SQLITE_OK;
1324 assert( pExpr!=0 );
1325 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1326 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1328 /* Compressed expressions only appear when parsing the DEFAULT clause
1329 ** on a table column definition, and hence only when pCtx==0. This
1330 ** check ensures that an EP_TokenOnly expression is never passed down
1331 ** into valueFromFunction(). */
1332 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1334 if( op==TK_CAST ){
1335 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1336 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1337 testcase( rc!=SQLITE_OK );
1338 if( *ppVal ){
1339 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1340 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1342 return rc;
1345 /* Handle negative integers in a single step. This is needed in the
1346 ** case when the value is -9223372036854775808.
1348 if( op==TK_UMINUS
1349 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1350 pExpr = pExpr->pLeft;
1351 op = pExpr->op;
1352 negInt = -1;
1353 zNeg = "-";
1356 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1357 pVal = valueNew(db, pCtx);
1358 if( pVal==0 ) goto no_mem;
1359 if( ExprHasProperty(pExpr, EP_IntValue) ){
1360 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1361 }else{
1362 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1363 if( zVal==0 ) goto no_mem;
1364 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1366 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1367 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1368 }else{
1369 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1371 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1372 if( enc!=SQLITE_UTF8 ){
1373 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1375 }else if( op==TK_UMINUS ) {
1376 /* This branch happens for multiple negative signs. Ex: -(-5) */
1377 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1378 && pVal!=0
1380 sqlite3VdbeMemNumerify(pVal);
1381 if( pVal->flags & MEM_Real ){
1382 pVal->u.r = -pVal->u.r;
1383 }else if( pVal->u.i==SMALLEST_INT64 ){
1384 pVal->u.r = -(double)SMALLEST_INT64;
1385 MemSetTypeFlag(pVal, MEM_Real);
1386 }else{
1387 pVal->u.i = -pVal->u.i;
1389 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1391 }else if( op==TK_NULL ){
1392 pVal = valueNew(db, pCtx);
1393 if( pVal==0 ) goto no_mem;
1394 sqlite3VdbeMemNumerify(pVal);
1396 #ifndef SQLITE_OMIT_BLOB_LITERAL
1397 else if( op==TK_BLOB ){
1398 int nVal;
1399 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1400 assert( pExpr->u.zToken[1]=='\'' );
1401 pVal = valueNew(db, pCtx);
1402 if( !pVal ) goto no_mem;
1403 zVal = &pExpr->u.zToken[2];
1404 nVal = sqlite3Strlen30(zVal)-1;
1405 assert( zVal[nVal]=='\'' );
1406 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1407 0, SQLITE_DYNAMIC);
1409 #endif
1411 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1412 else if( op==TK_FUNCTION && pCtx!=0 ){
1413 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1415 #endif
1417 *ppVal = pVal;
1418 return rc;
1420 no_mem:
1421 sqlite3OomFault(db);
1422 sqlite3DbFree(db, zVal);
1423 assert( *ppVal==0 );
1424 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1425 if( pCtx==0 ) sqlite3ValueFree(pVal);
1426 #else
1427 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1428 #endif
1429 return SQLITE_NOMEM_BKPT;
1433 ** Create a new sqlite3_value object, containing the value of pExpr.
1435 ** This only works for very simple expressions that consist of one constant
1436 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1437 ** be converted directly into a value, then the value is allocated and
1438 ** a pointer written to *ppVal. The caller is responsible for deallocating
1439 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1440 ** cannot be converted to a value, then *ppVal is set to NULL.
1442 int sqlite3ValueFromExpr(
1443 sqlite3 *db, /* The database connection */
1444 Expr *pExpr, /* The expression to evaluate */
1445 u8 enc, /* Encoding to use */
1446 u8 affinity, /* Affinity to use */
1447 sqlite3_value **ppVal /* Write the new value here */
1449 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1452 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1454 ** The implementation of the sqlite_record() function. This function accepts
1455 ** a single argument of any type. The return value is a formatted database
1456 ** record (a blob) containing the argument value.
1458 ** This is used to convert the value stored in the 'sample' column of the
1459 ** sqlite_stat3 table to the record format SQLite uses internally.
1461 static void recordFunc(
1462 sqlite3_context *context,
1463 int argc,
1464 sqlite3_value **argv
1466 const int file_format = 1;
1467 u32 iSerial; /* Serial type */
1468 int nSerial; /* Bytes of space for iSerial as varint */
1469 u32 nVal; /* Bytes of space required for argv[0] */
1470 int nRet;
1471 sqlite3 *db;
1472 u8 *aRet;
1474 UNUSED_PARAMETER( argc );
1475 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1476 nSerial = sqlite3VarintLen(iSerial);
1477 db = sqlite3_context_db_handle(context);
1479 nRet = 1 + nSerial + nVal;
1480 aRet = sqlite3DbMallocRawNN(db, nRet);
1481 if( aRet==0 ){
1482 sqlite3_result_error_nomem(context);
1483 }else{
1484 aRet[0] = nSerial+1;
1485 putVarint32(&aRet[1], iSerial);
1486 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1487 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1488 sqlite3DbFreeNN(db, aRet);
1493 ** Register built-in functions used to help read ANALYZE data.
1495 void sqlite3AnalyzeFunctions(void){
1496 static FuncDef aAnalyzeTableFuncs[] = {
1497 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1499 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1503 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1505 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1506 ** pAlloc if one does not exist and the new value is added to the
1507 ** UnpackedRecord object.
1509 ** A value is extracted in the following cases:
1511 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1513 ** * The expression is a bound variable, and this is a reprepare, or
1515 ** * The expression is a literal value.
1517 ** On success, *ppVal is made to point to the extracted value. The caller
1518 ** is responsible for ensuring that the value is eventually freed.
1520 static int stat4ValueFromExpr(
1521 Parse *pParse, /* Parse context */
1522 Expr *pExpr, /* The expression to extract a value from */
1523 u8 affinity, /* Affinity to use */
1524 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1525 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1527 int rc = SQLITE_OK;
1528 sqlite3_value *pVal = 0;
1529 sqlite3 *db = pParse->db;
1531 /* Skip over any TK_COLLATE nodes */
1532 pExpr = sqlite3ExprSkipCollate(pExpr);
1534 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1535 if( !pExpr ){
1536 pVal = valueNew(db, pAlloc);
1537 if( pVal ){
1538 sqlite3VdbeMemSetNull((Mem*)pVal);
1540 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1541 Vdbe *v;
1542 int iBindVar = pExpr->iColumn;
1543 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1544 if( (v = pParse->pReprepare)!=0 ){
1545 pVal = valueNew(db, pAlloc);
1546 if( pVal ){
1547 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1548 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1549 pVal->db = pParse->db;
1552 }else{
1553 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1556 assert( pVal==0 || pVal->db==db );
1557 *ppVal = pVal;
1558 return rc;
1562 ** This function is used to allocate and populate UnpackedRecord
1563 ** structures intended to be compared against sample index keys stored
1564 ** in the sqlite_stat4 table.
1566 ** A single call to this function populates zero or more fields of the
1567 ** record starting with field iVal (fields are numbered from left to
1568 ** right starting with 0). A single field is populated if:
1570 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1572 ** * The expression is a bound variable, and this is a reprepare, or
1574 ** * The sqlite3ValueFromExpr() function is able to extract a value
1575 ** from the expression (i.e. the expression is a literal value).
1577 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1578 ** vector components that match either of the two latter criteria listed
1579 ** above.
1581 ** Before any value is appended to the record, the affinity of the
1582 ** corresponding column within index pIdx is applied to it. Before
1583 ** this function returns, output parameter *pnExtract is set to the
1584 ** number of values appended to the record.
1586 ** When this function is called, *ppRec must either point to an object
1587 ** allocated by an earlier call to this function, or must be NULL. If it
1588 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1589 ** is allocated (and *ppRec set to point to it) before returning.
1591 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1592 ** error if a value cannot be extracted from pExpr. If an error does
1593 ** occur, an SQLite error code is returned.
1595 int sqlite3Stat4ProbeSetValue(
1596 Parse *pParse, /* Parse context */
1597 Index *pIdx, /* Index being probed */
1598 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1599 Expr *pExpr, /* The expression to extract a value from */
1600 int nElem, /* Maximum number of values to append */
1601 int iVal, /* Array element to populate */
1602 int *pnExtract /* OUT: Values appended to the record */
1604 int rc = SQLITE_OK;
1605 int nExtract = 0;
1607 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1608 int i;
1609 struct ValueNewStat4Ctx alloc;
1611 alloc.pParse = pParse;
1612 alloc.pIdx = pIdx;
1613 alloc.ppRec = ppRec;
1615 for(i=0; i<nElem; i++){
1616 sqlite3_value *pVal = 0;
1617 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1618 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1619 alloc.iVal = iVal+i;
1620 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1621 if( !pVal ) break;
1622 nExtract++;
1626 *pnExtract = nExtract;
1627 return rc;
1631 ** Attempt to extract a value from expression pExpr using the methods
1632 ** as described for sqlite3Stat4ProbeSetValue() above.
1634 ** If successful, set *ppVal to point to a new value object and return
1635 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1636 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1637 ** does occur, return an SQLite error code. The final value of *ppVal
1638 ** is undefined in this case.
1640 int sqlite3Stat4ValueFromExpr(
1641 Parse *pParse, /* Parse context */
1642 Expr *pExpr, /* The expression to extract a value from */
1643 u8 affinity, /* Affinity to use */
1644 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1646 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1650 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1651 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1652 ** sqlite3_value object is allocated.
1654 ** If *ppVal is initially NULL then the caller is responsible for
1655 ** ensuring that the value written into *ppVal is eventually freed.
1657 int sqlite3Stat4Column(
1658 sqlite3 *db, /* Database handle */
1659 const void *pRec, /* Pointer to buffer containing record */
1660 int nRec, /* Size of buffer pRec in bytes */
1661 int iCol, /* Column to extract */
1662 sqlite3_value **ppVal /* OUT: Extracted value */
1664 u32 t; /* a column type code */
1665 int nHdr; /* Size of the header in the record */
1666 int iHdr; /* Next unread header byte */
1667 int iField; /* Next unread data byte */
1668 int szField; /* Size of the current data field */
1669 int i; /* Column index */
1670 u8 *a = (u8*)pRec; /* Typecast byte array */
1671 Mem *pMem = *ppVal; /* Write result into this Mem object */
1673 assert( iCol>0 );
1674 iHdr = getVarint32(a, nHdr);
1675 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1676 iField = nHdr;
1677 for(i=0; i<=iCol; i++){
1678 iHdr += getVarint32(&a[iHdr], t);
1679 testcase( iHdr==nHdr );
1680 testcase( iHdr==nHdr+1 );
1681 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1682 szField = sqlite3VdbeSerialTypeLen(t);
1683 iField += szField;
1685 testcase( iField==nRec );
1686 testcase( iField==nRec+1 );
1687 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1688 if( pMem==0 ){
1689 pMem = *ppVal = sqlite3ValueNew(db);
1690 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1692 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1693 pMem->enc = ENC(db);
1694 return SQLITE_OK;
1698 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1699 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1700 ** the object.
1702 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1703 if( pRec ){
1704 int i;
1705 int nCol = pRec->pKeyInfo->nAllField;
1706 Mem *aMem = pRec->aMem;
1707 sqlite3 *db = aMem[0].db;
1708 for(i=0; i<nCol; i++){
1709 sqlite3VdbeMemRelease(&aMem[i]);
1711 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1712 sqlite3DbFreeNN(db, pRec);
1715 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1718 ** Change the string value of an sqlite3_value object
1720 void sqlite3ValueSetStr(
1721 sqlite3_value *v, /* Value to be set */
1722 int n, /* Length of string z */
1723 const void *z, /* Text of the new string */
1724 u8 enc, /* Encoding to use */
1725 void (*xDel)(void*) /* Destructor for the string */
1727 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1731 ** Free an sqlite3_value object
1733 void sqlite3ValueFree(sqlite3_value *v){
1734 if( !v ) return;
1735 sqlite3VdbeMemRelease((Mem *)v);
1736 sqlite3DbFreeNN(((Mem*)v)->db, v);
1740 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1741 ** sqlite3_value object assuming that it uses the encoding "enc".
1742 ** The valueBytes() routine is a helper function.
1744 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1745 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1747 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1748 Mem *p = (Mem*)pVal;
1749 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1750 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1751 return p->n;
1753 if( (p->flags & MEM_Blob)!=0 ){
1754 if( p->flags & MEM_Zero ){
1755 return p->n + p->u.nZero;
1756 }else{
1757 return p->n;
1760 if( p->flags & MEM_Null ) return 0;
1761 return valueBytes(pVal, enc);