4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p
->flags
& (MEM_Int
|MEM_Real
))!=(MEM_Int
|MEM_Real
) );
43 if( p
->flags
& MEM_Null
){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
|MEM_Blob
46 |MEM_RowSet
|MEM_Frame
|MEM_Agg
|MEM_Zero
))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
53 if( (p
->flags
& (MEM_Term
|MEM_Subtype
))==(MEM_Term
|MEM_Subtype
) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
57 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
58 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p
->flags
& ~(MEM_Null
|MEM_Term
|MEM_Subtype
62 |MEM_Dyn
|MEM_Ephem
|MEM_Static
))==0 );
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p
->flags
& MEM_Cleared
)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p
->szMalloc
==0
74 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
86 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
87 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
88 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
89 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
98 ** If pMem is an object with a valid string representation, this routine
99 ** ensures the internal encoding for the string representation is
100 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
102 ** If pMem is not a string object, or the encoding of the string
103 ** representation is already stored using the requested encoding, then this
104 ** routine is a no-op.
106 ** SQLITE_OK is returned if the conversion is successful (or not required).
107 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
110 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
111 #ifndef SQLITE_OMIT_UTF16
114 assert( (pMem
->flags
&MEM_RowSet
)==0 );
115 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
116 || desiredEnc
==SQLITE_UTF16BE
);
117 if( !(pMem
->flags
&MEM_Str
) || pMem
->enc
==desiredEnc
){
120 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
121 #ifdef SQLITE_OMIT_UTF16
125 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
126 ** then the encoding of the value may not have changed.
128 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
129 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
130 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
131 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
137 ** Make sure pMem->z points to a writable allocation of at least
140 ** If the bPreserve argument is true, then copy of the content of
141 ** pMem->z into the new allocation. pMem must be either a string or
142 ** blob if bPreserve is true. If bPreserve is false, any prior content
143 ** in pMem->z is discarded.
145 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
146 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
147 assert( (pMem
->flags
&MEM_RowSet
)==0 );
148 testcase( pMem
->db
==0 );
150 /* If the bPreserve flag is set to true, then the memory cell must already
151 ** contain a valid string or blob value. */
152 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
153 testcase( bPreserve
&& pMem
->z
==0 );
155 assert( pMem
->szMalloc
==0
156 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
) );
158 if( pMem
->szMalloc
>0 && bPreserve
&& pMem
->z
==pMem
->zMalloc
){
159 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
162 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
163 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
165 if( pMem
->zMalloc
==0 ){
166 sqlite3VdbeMemSetNull(pMem
);
169 return SQLITE_NOMEM_BKPT
;
171 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
174 if( bPreserve
&& pMem
->z
){
175 assert( pMem
->z
!=pMem
->zMalloc
);
176 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
178 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
179 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
180 pMem
->xDel((void *)(pMem
->z
));
183 pMem
->z
= pMem
->zMalloc
;
184 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
189 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
190 ** If pMem->zMalloc already meets or exceeds the requested size, this
191 ** routine is a no-op.
193 ** Any prior string or blob content in the pMem object may be discarded.
194 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
195 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
196 ** values are preserved.
198 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
199 ** if unable to complete the resizing.
201 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
203 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
204 if( pMem
->szMalloc
<szNew
){
205 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
207 assert( (pMem
->flags
& MEM_Dyn
)==0 );
208 pMem
->z
= pMem
->zMalloc
;
209 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
);
214 ** It is already known that pMem contains an unterminated string.
215 ** Add the zero terminator.
217 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
218 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+2, 1) ){
219 return SQLITE_NOMEM_BKPT
;
221 pMem
->z
[pMem
->n
] = 0;
222 pMem
->z
[pMem
->n
+1] = 0;
223 pMem
->flags
|= MEM_Term
;
228 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
229 ** MEM.zMalloc, where it can be safely written.
231 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
233 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
234 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
235 assert( (pMem
->flags
&MEM_RowSet
)==0 );
236 if( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 ){
237 if( ExpandBlob(pMem
) ) return SQLITE_NOMEM
;
238 if( pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
){
239 int rc
= vdbeMemAddTerminator(pMem
);
243 pMem
->flags
&= ~MEM_Ephem
;
245 pMem
->pScopyFrom
= 0;
252 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
253 ** blob stored in dynamically allocated space.
255 #ifndef SQLITE_OMIT_INCRBLOB
256 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
258 assert( pMem
->flags
& MEM_Zero
);
259 assert( pMem
->flags
&MEM_Blob
);
260 assert( (pMem
->flags
&MEM_RowSet
)==0 );
261 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
263 /* Set nByte to the number of bytes required to store the expanded blob. */
264 nByte
= pMem
->n
+ pMem
->u
.nZero
;
268 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
269 return SQLITE_NOMEM_BKPT
;
272 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
273 pMem
->n
+= pMem
->u
.nZero
;
274 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
280 ** Make sure the given Mem is \u0000 terminated.
282 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
283 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
284 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
285 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
286 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
287 return SQLITE_OK
; /* Nothing to do */
289 return vdbeMemAddTerminator(pMem
);
294 ** Add MEM_Str to the set of representations for the given Mem. Numbers
295 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
298 ** Existing representations MEM_Int and MEM_Real are invalidated if
299 ** bForce is true but are retained if bForce is false.
301 ** A MEM_Null value will never be passed to this function. This function is
302 ** used for converting values to text for returning to the user (i.e. via
303 ** sqlite3_value_text()), or for ensuring that values to be used as btree
304 ** keys are strings. In the former case a NULL pointer is returned the
305 ** user and the latter is an internal programming error.
307 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
308 int fg
= pMem
->flags
;
309 const int nByte
= 32;
311 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
312 assert( !(fg
&MEM_Zero
) );
313 assert( !(fg
&(MEM_Str
|MEM_Blob
)) );
314 assert( fg
&(MEM_Int
|MEM_Real
) );
315 assert( (pMem
->flags
&MEM_RowSet
)==0 );
316 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
319 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
321 return SQLITE_NOMEM_BKPT
;
324 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
325 ** string representation of the value. Then, if the required encoding
326 ** is UTF-16le or UTF-16be do a translation.
328 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
331 sqlite3_snprintf(nByte
, pMem
->z
, "%lld", pMem
->u
.i
);
333 assert( fg
& MEM_Real
);
334 sqlite3_snprintf(nByte
, pMem
->z
, "%!.15g", pMem
->u
.r
);
336 pMem
->n
= sqlite3Strlen30(pMem
->z
);
337 pMem
->enc
= SQLITE_UTF8
;
338 pMem
->flags
|= MEM_Str
|MEM_Term
;
339 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
);
340 sqlite3VdbeChangeEncoding(pMem
, enc
);
345 ** Memory cell pMem contains the context of an aggregate function.
346 ** This routine calls the finalize method for that function. The
347 ** result of the aggregate is stored back into pMem.
349 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
352 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
354 if( ALWAYS(pFunc
&& pFunc
->xFinalize
) ){
357 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
358 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
359 memset(&ctx
, 0, sizeof(ctx
));
360 memset(&t
, 0, sizeof(t
));
366 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
367 assert( (pMem
->flags
& MEM_Dyn
)==0 );
368 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
369 memcpy(pMem
, &t
, sizeof(t
));
376 ** If the memory cell contains a value that must be freed by
377 ** invoking the external callback in Mem.xDel, then this routine
378 ** will free that value. It also sets Mem.flags to MEM_Null.
380 ** This is a helper routine for sqlite3VdbeMemSetNull() and
381 ** for sqlite3VdbeMemRelease(). Use those other routines as the
382 ** entry point for releasing Mem resources.
384 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
385 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
386 assert( VdbeMemDynamic(p
) );
387 if( p
->flags
&MEM_Agg
){
388 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
389 assert( (p
->flags
& MEM_Agg
)==0 );
390 testcase( p
->flags
& MEM_Dyn
);
392 if( p
->flags
&MEM_Dyn
){
393 assert( (p
->flags
&MEM_RowSet
)==0 );
394 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
395 p
->xDel((void *)p
->z
);
396 }else if( p
->flags
&MEM_RowSet
){
397 sqlite3RowSetClear(p
->u
.pRowSet
);
398 }else if( p
->flags
&MEM_Frame
){
399 VdbeFrame
*pFrame
= p
->u
.pFrame
;
400 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
401 pFrame
->v
->pDelFrame
= pFrame
;
407 ** Release memory held by the Mem p, both external memory cleared
408 ** by p->xDel and memory in p->zMalloc.
410 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
411 ** the unusual case where there really is memory in p that needs
414 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
415 if( VdbeMemDynamic(p
) ){
416 vdbeMemClearExternAndSetNull(p
);
419 sqlite3DbFreeNN(p
->db
, p
->zMalloc
);
426 ** Release any memory resources held by the Mem. Both the memory that is
427 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
429 ** Use this routine prior to clean up prior to abandoning a Mem, or to
430 ** reset a Mem back to its minimum memory utilization.
432 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
433 ** prior to inserting new content into the Mem.
435 void sqlite3VdbeMemRelease(Mem
*p
){
436 assert( sqlite3VdbeCheckMemInvariants(p
) );
437 if( VdbeMemDynamic(p
) || p
->szMalloc
){
443 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
444 ** If the double is out of range of a 64-bit signed integer then
445 ** return the closest available 64-bit signed integer.
447 static SQLITE_NOINLINE i64
doubleToInt64(double r
){
448 #ifdef SQLITE_OMIT_FLOATING_POINT
449 /* When floating-point is omitted, double and int64 are the same thing */
453 ** Many compilers we encounter do not define constants for the
454 ** minimum and maximum 64-bit integers, or they define them
455 ** inconsistently. And many do not understand the "LL" notation.
456 ** So we define our own static constants here using nothing
457 ** larger than a 32-bit integer constant.
459 static const i64 maxInt
= LARGEST_INT64
;
460 static const i64 minInt
= SMALLEST_INT64
;
462 if( r
<=(double)minInt
){
464 }else if( r
>=(double)maxInt
){
473 ** Return some kind of integer value which is the best we can do
474 ** at representing the value that *pMem describes as an integer.
475 ** If pMem is an integer, then the value is exact. If pMem is
476 ** a floating-point then the value returned is the integer part.
477 ** If pMem is a string or blob, then we make an attempt to convert
478 ** it into an integer and return that. If pMem represents an
479 ** an SQL-NULL value, return 0.
481 ** If pMem represents a string value, its encoding might be changed.
483 static SQLITE_NOINLINE i64
memIntValue(Mem
*pMem
){
485 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
488 i64
sqlite3VdbeIntValue(Mem
*pMem
){
490 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
491 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
493 if( flags
& MEM_Int
){
495 }else if( flags
& MEM_Real
){
496 return doubleToInt64(pMem
->u
.r
);
497 }else if( flags
& (MEM_Str
|MEM_Blob
) ){
498 assert( pMem
->z
|| pMem
->n
==0 );
499 return memIntValue(pMem
);
506 ** Return the best representation of pMem that we can get into a
507 ** double. If pMem is already a double or an integer, return its
508 ** value. If it is a string or blob, try to convert it to a double.
509 ** If it is a NULL, return 0.0.
511 static SQLITE_NOINLINE
double memRealValue(Mem
*pMem
){
512 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
513 double val
= (double)0;
514 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
517 double sqlite3VdbeRealValue(Mem
*pMem
){
518 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
519 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
520 if( pMem
->flags
& MEM_Real
){
522 }else if( pMem
->flags
& MEM_Int
){
523 return (double)pMem
->u
.i
;
524 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
525 return memRealValue(pMem
);
527 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
533 ** The MEM structure is already a MEM_Real. Try to also make it a
534 ** MEM_Int if we can.
536 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
538 assert( pMem
->flags
& MEM_Real
);
539 assert( (pMem
->flags
& MEM_RowSet
)==0 );
540 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
541 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
543 ix
= doubleToInt64(pMem
->u
.r
);
545 /* Only mark the value as an integer if
547 ** (1) the round-trip conversion real->int->real is a no-op, and
548 ** (2) The integer is neither the largest nor the smallest
549 ** possible integer (ticket #3922)
551 ** The second and third terms in the following conditional enforces
552 ** the second condition under the assumption that addition overflow causes
553 ** values to wrap around.
555 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
557 MemSetTypeFlag(pMem
, MEM_Int
);
562 ** Convert pMem to type integer. Invalidate any prior representations.
564 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
565 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
566 assert( (pMem
->flags
& MEM_RowSet
)==0 );
567 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
569 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
570 MemSetTypeFlag(pMem
, MEM_Int
);
575 ** Convert pMem so that it is of type MEM_Real.
576 ** Invalidate any prior representations.
578 int sqlite3VdbeMemRealify(Mem
*pMem
){
579 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
580 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
582 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
583 MemSetTypeFlag(pMem
, MEM_Real
);
588 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
589 ** Invalidate any prior representations.
591 ** Every effort is made to force the conversion, even if the input
592 ** is a string that does not look completely like a number. Convert
593 ** as much of the string as we can and ignore the rest.
595 int sqlite3VdbeMemNumerify(Mem
*pMem
){
596 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))==0 ){
598 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
599 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
600 rc
= sqlite3Atoi64(pMem
->z
, &pMem
->u
.i
, pMem
->n
, pMem
->enc
);
602 MemSetTypeFlag(pMem
, MEM_Int
);
605 sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
606 if( rc
==1 && pMem
->u
.r
==(double)i
){
608 MemSetTypeFlag(pMem
, MEM_Int
);
610 MemSetTypeFlag(pMem
, MEM_Real
);
614 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))!=0 );
615 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
|MEM_Zero
);
620 ** Cast the datatype of the value in pMem according to the affinity
621 ** "aff". Casting is different from applying affinity in that a cast
622 ** is forced. In other words, the value is converted into the desired
623 ** affinity even if that results in loss of data. This routine is
624 ** used (for example) to implement the SQL "cast()" operator.
626 void sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
627 if( pMem
->flags
& MEM_Null
) return;
629 case SQLITE_AFF_BLOB
: { /* Really a cast to BLOB */
630 if( (pMem
->flags
& MEM_Blob
)==0 ){
631 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
632 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
633 if( pMem
->flags
& MEM_Str
) MemSetTypeFlag(pMem
, MEM_Blob
);
635 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
639 case SQLITE_AFF_NUMERIC
: {
640 sqlite3VdbeMemNumerify(pMem
);
643 case SQLITE_AFF_INTEGER
: {
644 sqlite3VdbeMemIntegerify(pMem
);
647 case SQLITE_AFF_REAL
: {
648 sqlite3VdbeMemRealify(pMem
);
652 assert( aff
==SQLITE_AFF_TEXT
);
653 assert( MEM_Str
==(MEM_Blob
>>3) );
654 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
655 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
656 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
657 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_Blob
|MEM_Zero
);
664 ** Initialize bulk memory to be a consistent Mem object.
666 ** The minimum amount of initialization feasible is performed.
668 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
669 assert( (flags
& ~MEM_TypeMask
)==0 );
677 ** Delete any previous value and set the value stored in *pMem to NULL.
679 ** This routine calls the Mem.xDel destructor to dispose of values that
680 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
681 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
682 ** routine to invoke the destructor and deallocates Mem.zMalloc.
684 ** Use this routine to reset the Mem prior to insert a new value.
686 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
688 void sqlite3VdbeMemSetNull(Mem
*pMem
){
689 if( VdbeMemDynamic(pMem
) ){
690 vdbeMemClearExternAndSetNull(pMem
);
692 pMem
->flags
= MEM_Null
;
695 void sqlite3ValueSetNull(sqlite3_value
*p
){
696 sqlite3VdbeMemSetNull((Mem
*)p
);
700 ** Delete any previous value and set the value to be a BLOB of length
701 ** n containing all zeros.
703 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
704 sqlite3VdbeMemRelease(pMem
);
705 pMem
->flags
= MEM_Blob
|MEM_Zero
;
709 pMem
->enc
= SQLITE_UTF8
;
714 ** The pMem is known to contain content that needs to be destroyed prior
715 ** to a value change. So invoke the destructor, then set the value to
718 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
719 sqlite3VdbeMemSetNull(pMem
);
721 pMem
->flags
= MEM_Int
;
725 ** Delete any previous value and set the value stored in *pMem to val,
726 ** manifest type INTEGER.
728 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
729 if( VdbeMemDynamic(pMem
) ){
730 vdbeReleaseAndSetInt64(pMem
, val
);
733 pMem
->flags
= MEM_Int
;
737 /* A no-op destructor */
738 static void sqlite3NoopDestructor(void *p
){ UNUSED_PARAMETER(p
); }
741 ** Set the value stored in *pMem should already be a NULL.
742 ** Also store a pointer to go with it.
744 void sqlite3VdbeMemSetPointer(
748 void (*xDestructor
)(void*)
750 assert( pMem
->flags
==MEM_Null
);
751 pMem
->u
.zPType
= zPType
? zPType
: "";
753 pMem
->flags
= MEM_Null
|MEM_Dyn
|MEM_Subtype
|MEM_Term
;
754 pMem
->eSubtype
= 'p';
755 pMem
->xDel
= xDestructor
? xDestructor
: sqlite3NoopDestructor
;
758 #ifndef SQLITE_OMIT_FLOATING_POINT
760 ** Delete any previous value and set the value stored in *pMem to val,
761 ** manifest type REAL.
763 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
764 sqlite3VdbeMemSetNull(pMem
);
765 if( !sqlite3IsNaN(val
) ){
767 pMem
->flags
= MEM_Real
;
773 ** Delete any previous value and set the value of pMem to be an
774 ** empty boolean index.
776 void sqlite3VdbeMemSetRowSet(Mem
*pMem
){
777 sqlite3
*db
= pMem
->db
;
779 assert( (pMem
->flags
& MEM_RowSet
)==0 );
780 sqlite3VdbeMemRelease(pMem
);
781 pMem
->zMalloc
= sqlite3DbMallocRawNN(db
, 64);
782 if( db
->mallocFailed
){
783 pMem
->flags
= MEM_Null
;
786 assert( pMem
->zMalloc
);
787 pMem
->szMalloc
= sqlite3DbMallocSize(db
, pMem
->zMalloc
);
788 pMem
->u
.pRowSet
= sqlite3RowSetInit(db
, pMem
->zMalloc
, pMem
->szMalloc
);
789 assert( pMem
->u
.pRowSet
!=0 );
790 pMem
->flags
= MEM_RowSet
;
795 ** Return true if the Mem object contains a TEXT or BLOB that is
796 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
798 int sqlite3VdbeMemTooBig(Mem
*p
){
800 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
802 if( p
->flags
& MEM_Zero
){
805 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
812 ** This routine prepares a memory cell for modification by breaking
813 ** its link to a shallow copy and by marking any current shallow
814 ** copies of this cell as invalid.
816 ** This is used for testing and debugging only - to make sure shallow
817 ** copies are not misused.
819 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
822 for(i
=0, pX
=pVdbe
->aMem
; i
<pVdbe
->nMem
; i
++, pX
++){
823 if( pX
->pScopyFrom
==pMem
){
824 pX
->flags
|= MEM_Undefined
;
828 pMem
->pScopyFrom
= 0;
830 #endif /* SQLITE_DEBUG */
834 ** Make an shallow copy of pFrom into pTo. Prior contents of
835 ** pTo are freed. The pFrom->z field is not duplicated. If
836 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
837 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
839 static SQLITE_NOINLINE
void vdbeClrCopy(Mem
*pTo
, const Mem
*pFrom
, int eType
){
840 vdbeMemClearExternAndSetNull(pTo
);
841 assert( !VdbeMemDynamic(pTo
) );
842 sqlite3VdbeMemShallowCopy(pTo
, pFrom
, eType
);
844 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
845 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
846 assert( pTo
->db
==pFrom
->db
);
847 if( VdbeMemDynamic(pTo
) ){ vdbeClrCopy(pTo
,pFrom
,srcType
); return; }
848 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
849 if( (pFrom
->flags
&MEM_Static
)==0 ){
850 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
851 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
852 pTo
->flags
|= srcType
;
857 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
858 ** freed before the copy is made.
860 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
863 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
864 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
865 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
866 pTo
->flags
&= ~MEM_Dyn
;
867 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
868 if( 0==(pFrom
->flags
&MEM_Static
) ){
869 pTo
->flags
|= MEM_Ephem
;
870 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
878 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
879 ** freed. If pFrom contains ephemeral data, a copy is made.
881 ** pFrom contains an SQL NULL when this routine returns.
883 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
884 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
885 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
886 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
888 sqlite3VdbeMemRelease(pTo
);
889 memcpy(pTo
, pFrom
, sizeof(Mem
));
890 pFrom
->flags
= MEM_Null
;
895 ** Change the value of a Mem to be a string or a BLOB.
897 ** The memory management strategy depends on the value of the xDel
898 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
899 ** string is copied into a (possibly existing) buffer managed by the
900 ** Mem structure. Otherwise, any existing buffer is freed and the
903 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
904 ** size limit) then no memory allocation occurs. If the string can be
905 ** stored without allocating memory, then it is. If a memory allocation
906 ** is required to store the string, then value of pMem is unchanged. In
907 ** either case, SQLITE_TOOBIG is returned.
909 int sqlite3VdbeMemSetStr(
910 Mem
*pMem
, /* Memory cell to set to string value */
911 const char *z
, /* String pointer */
912 int n
, /* Bytes in string, or negative */
913 u8 enc
, /* Encoding of z. 0 for BLOBs */
914 void (*xDel
)(void*) /* Destructor function */
916 int nByte
= n
; /* New value for pMem->n */
917 int iLimit
; /* Maximum allowed string or blob size */
918 u16 flags
= 0; /* New value for pMem->flags */
920 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
921 assert( (pMem
->flags
& MEM_RowSet
)==0 );
923 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
925 sqlite3VdbeMemSetNull(pMem
);
930 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
932 iLimit
= SQLITE_MAX_LENGTH
;
934 flags
= (enc
==0?MEM_Blob
:MEM_Str
);
937 if( enc
==SQLITE_UTF8
){
938 nByte
= 0x7fffffff & (int)strlen(z
);
939 if( nByte
>iLimit
) nByte
= iLimit
+1;
941 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
946 /* The following block sets the new values of Mem.z and Mem.xDel. It
947 ** also sets a flag in local variable "flags" to indicate the memory
948 ** management (one of MEM_Dyn or MEM_Static).
950 if( xDel
==SQLITE_TRANSIENT
){
952 if( flags
&MEM_Term
){
953 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
956 return SQLITE_TOOBIG
;
958 testcase( nAlloc
==0 );
959 testcase( nAlloc
==31 );
960 testcase( nAlloc
==32 );
961 if( sqlite3VdbeMemClearAndResize(pMem
, MAX(nAlloc
,32)) ){
962 return SQLITE_NOMEM_BKPT
;
964 memcpy(pMem
->z
, z
, nAlloc
);
965 }else if( xDel
==SQLITE_DYNAMIC
){
966 sqlite3VdbeMemRelease(pMem
);
967 pMem
->zMalloc
= pMem
->z
= (char *)z
;
968 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
970 sqlite3VdbeMemRelease(pMem
);
973 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
978 pMem
->enc
= (enc
==0 ? SQLITE_UTF8
: enc
);
980 #ifndef SQLITE_OMIT_UTF16
981 if( pMem
->enc
!=SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
982 return SQLITE_NOMEM_BKPT
;
987 return SQLITE_TOOBIG
;
994 ** Move data out of a btree key or data field and into a Mem structure.
995 ** The data is payload from the entry that pCur is currently pointing
996 ** to. offset and amt determine what portion of the data or key to retrieve.
997 ** The result is written into the pMem element.
999 ** The pMem object must have been initialized. This routine will use
1000 ** pMem->zMalloc to hold the content from the btree, if possible. New
1001 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1002 ** is responsible for making sure that the pMem object is eventually
1005 ** If this routine fails for any reason (malloc returns NULL or unable
1006 ** to read from the disk) then the pMem is left in an inconsistent state.
1008 static SQLITE_NOINLINE
int vdbeMemFromBtreeResize(
1009 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1010 u32 offset
, /* Offset from the start of data to return bytes from. */
1011 u32 amt
, /* Number of bytes to return. */
1012 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1015 pMem
->flags
= MEM_Null
;
1016 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+1)) ){
1017 rc
= sqlite3BtreePayload(pCur
, offset
, amt
, pMem
->z
);
1018 if( rc
==SQLITE_OK
){
1019 pMem
->z
[amt
] = 0; /* Overrun area used when reading malformed records */
1020 pMem
->flags
= MEM_Blob
;
1023 sqlite3VdbeMemRelease(pMem
);
1028 int sqlite3VdbeMemFromBtree(
1029 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1030 u32 offset
, /* Offset from the start of data to return bytes from. */
1031 u32 amt
, /* Number of bytes to return. */
1032 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1034 char *zData
; /* Data from the btree layer */
1035 u32 available
= 0; /* Number of bytes available on the local btree page */
1036 int rc
= SQLITE_OK
; /* Return code */
1038 assert( sqlite3BtreeCursorIsValid(pCur
) );
1039 assert( !VdbeMemDynamic(pMem
) );
1041 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1042 ** that both the BtShared and database handle mutexes are held. */
1043 assert( (pMem
->flags
& MEM_RowSet
)==0 );
1044 zData
= (char *)sqlite3BtreePayloadFetch(pCur
, &available
);
1047 if( offset
+amt
<=available
){
1048 pMem
->z
= &zData
[offset
];
1049 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
1052 rc
= vdbeMemFromBtreeResize(pCur
, offset
, amt
, pMem
);
1059 ** The pVal argument is known to be a value other than NULL.
1060 ** Convert it into a string with encoding enc and return a pointer
1061 ** to a zero-terminated version of that string.
1063 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1065 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1066 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1067 assert( (pVal
->flags
& MEM_RowSet
)==0 );
1068 assert( (pVal
->flags
& (MEM_Null
))==0 );
1069 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1070 if( ExpandBlob(pVal
) ) return 0;
1071 pVal
->flags
|= MEM_Str
;
1072 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1073 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1075 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1076 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1077 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1081 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1083 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1084 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1086 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1087 || pVal
->db
->mallocFailed
);
1088 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1095 /* This function is only available internally, it is not part of the
1096 ** external API. It works in a similar way to sqlite3_value_text(),
1097 ** except the data returned is in the encoding specified by the second
1098 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1101 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1102 ** If that is the case, then the result must be aligned on an even byte
1105 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1106 if( !pVal
) return 0;
1107 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1108 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1109 assert( (pVal
->flags
& MEM_RowSet
)==0 );
1110 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1113 if( pVal
->flags
&MEM_Null
){
1116 return valueToText(pVal
, enc
);
1120 ** Create a new sqlite3_value object.
1122 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1123 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1125 p
->flags
= MEM_Null
;
1132 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1133 ** valueNew(). See comments above valueNew() for details.
1135 struct ValueNewStat4Ctx
{
1138 UnpackedRecord
**ppRec
;
1143 ** Allocate and return a pointer to a new sqlite3_value object. If
1144 ** the second argument to this function is NULL, the object is allocated
1145 ** by calling sqlite3ValueNew().
1147 ** Otherwise, if the second argument is non-zero, then this function is
1148 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1149 ** already been allocated, allocate the UnpackedRecord structure that
1150 ** that function will return to its caller here. Then return a pointer to
1151 ** an sqlite3_value within the UnpackedRecord.a[] array.
1153 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1154 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1156 UnpackedRecord
*pRec
= p
->ppRec
[0];
1159 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1160 int nByte
; /* Bytes of space to allocate */
1161 int i
; /* Counter variable */
1162 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1164 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1165 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1167 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1168 if( pRec
->pKeyInfo
){
1169 assert( pRec
->pKeyInfo
->nAllField
==nCol
);
1170 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1171 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1172 for(i
=0; i
<nCol
; i
++){
1173 pRec
->aMem
[i
].flags
= MEM_Null
;
1174 pRec
->aMem
[i
].db
= db
;
1177 sqlite3DbFreeNN(db
, pRec
);
1181 if( pRec
==0 ) return 0;
1185 pRec
->nField
= p
->iVal
+1;
1186 return &pRec
->aMem
[p
->iVal
];
1189 UNUSED_PARAMETER(p
);
1190 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1191 return sqlite3ValueNew(db
);
1195 ** The expression object indicated by the second argument is guaranteed
1196 ** to be a scalar SQL function. If
1198 ** * all function arguments are SQL literals,
1199 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1200 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1202 ** then this routine attempts to invoke the SQL function. Assuming no
1203 ** error occurs, output parameter (*ppVal) is set to point to a value
1204 ** object containing the result before returning SQLITE_OK.
1206 ** Affinity aff is applied to the result of the function before returning.
1207 ** If the result is a text value, the sqlite3_value object uses encoding
1210 ** If the conditions above are not met, this function returns SQLITE_OK
1211 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1212 ** NULL and an SQLite error code returned.
1214 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1215 static int valueFromFunction(
1216 sqlite3
*db
, /* The database connection */
1217 Expr
*p
, /* The expression to evaluate */
1218 u8 enc
, /* Encoding to use */
1219 u8 aff
, /* Affinity to use */
1220 sqlite3_value
**ppVal
, /* Write the new value here */
1221 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1223 sqlite3_context ctx
; /* Context object for function invocation */
1224 sqlite3_value
**apVal
= 0; /* Function arguments */
1225 int nVal
= 0; /* Size of apVal[] array */
1226 FuncDef
*pFunc
= 0; /* Function definition */
1227 sqlite3_value
*pVal
= 0; /* New value */
1228 int rc
= SQLITE_OK
; /* Return code */
1229 ExprList
*pList
= 0; /* Function arguments */
1230 int i
; /* Iterator variable */
1233 assert( (p
->flags
& EP_TokenOnly
)==0 );
1235 if( pList
) nVal
= pList
->nExpr
;
1236 pFunc
= sqlite3FindFunction(db
, p
->u
.zToken
, nVal
, enc
, 0);
1238 if( (pFunc
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
1239 || (pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
1245 apVal
= (sqlite3_value
**)sqlite3DbMallocZero(db
, sizeof(apVal
[0]) * nVal
);
1247 rc
= SQLITE_NOMEM_BKPT
;
1248 goto value_from_function_out
;
1250 for(i
=0; i
<nVal
; i
++){
1251 rc
= sqlite3ValueFromExpr(db
, pList
->a
[i
].pExpr
, enc
, aff
, &apVal
[i
]);
1252 if( apVal
[i
]==0 || rc
!=SQLITE_OK
) goto value_from_function_out
;
1256 pVal
= valueNew(db
, pCtx
);
1258 rc
= SQLITE_NOMEM_BKPT
;
1259 goto value_from_function_out
;
1262 assert( pCtx
->pParse
->rc
==SQLITE_OK
);
1263 memset(&ctx
, 0, sizeof(ctx
));
1266 pFunc
->xSFunc(&ctx
, nVal
, apVal
);
1269 sqlite3ErrorMsg(pCtx
->pParse
, "%s", sqlite3_value_text(pVal
));
1271 sqlite3ValueApplyAffinity(pVal
, aff
, SQLITE_UTF8
);
1272 assert( rc
==SQLITE_OK
);
1273 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1274 if( rc
==SQLITE_OK
&& sqlite3VdbeMemTooBig(pVal
) ){
1276 pCtx
->pParse
->nErr
++;
1279 pCtx
->pParse
->rc
= rc
;
1281 value_from_function_out
:
1282 if( rc
!=SQLITE_OK
){
1286 for(i
=0; i
<nVal
; i
++){
1287 sqlite3ValueFree(apVal
[i
]);
1289 sqlite3DbFreeNN(db
, apVal
);
1296 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1297 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1300 ** Extract a value from the supplied expression in the manner described
1301 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1302 ** using valueNew().
1304 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1305 ** has been allocated, it is freed before returning. Or, if pCtx is not
1306 ** NULL, it is assumed that the caller will free any allocated object
1309 static int valueFromExpr(
1310 sqlite3
*db
, /* The database connection */
1311 Expr
*pExpr
, /* The expression to evaluate */
1312 u8 enc
, /* Encoding to use */
1313 u8 affinity
, /* Affinity to use */
1314 sqlite3_value
**ppVal
, /* Write the new value here */
1315 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1319 sqlite3_value
*pVal
= 0;
1321 const char *zNeg
= "";
1325 while( (op
= pExpr
->op
)==TK_UPLUS
|| op
==TK_SPAN
) pExpr
= pExpr
->pLeft
;
1326 if( NEVER(op
==TK_REGISTER
) ) op
= pExpr
->op2
;
1328 /* Compressed expressions only appear when parsing the DEFAULT clause
1329 ** on a table column definition, and hence only when pCtx==0. This
1330 ** check ensures that an EP_TokenOnly expression is never passed down
1331 ** into valueFromFunction(). */
1332 assert( (pExpr
->flags
& EP_TokenOnly
)==0 || pCtx
==0 );
1335 u8 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1336 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1337 testcase( rc
!=SQLITE_OK
);
1339 sqlite3VdbeMemCast(*ppVal
, aff
, SQLITE_UTF8
);
1340 sqlite3ValueApplyAffinity(*ppVal
, affinity
, SQLITE_UTF8
);
1345 /* Handle negative integers in a single step. This is needed in the
1346 ** case when the value is -9223372036854775808.
1349 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1350 pExpr
= pExpr
->pLeft
;
1356 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1357 pVal
= valueNew(db
, pCtx
);
1358 if( pVal
==0 ) goto no_mem
;
1359 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1360 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1362 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1363 if( zVal
==0 ) goto no_mem
;
1364 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1366 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_BLOB
){
1367 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1369 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1371 if( pVal
->flags
& (MEM_Int
|MEM_Real
) ) pVal
->flags
&= ~MEM_Str
;
1372 if( enc
!=SQLITE_UTF8
){
1373 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1375 }else if( op
==TK_UMINUS
) {
1376 /* This branch happens for multiple negative signs. Ex: -(-5) */
1377 if( SQLITE_OK
==valueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
,pCtx
)
1380 sqlite3VdbeMemNumerify(pVal
);
1381 if( pVal
->flags
& MEM_Real
){
1382 pVal
->u
.r
= -pVal
->u
.r
;
1383 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1384 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1385 MemSetTypeFlag(pVal
, MEM_Real
);
1387 pVal
->u
.i
= -pVal
->u
.i
;
1389 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1391 }else if( op
==TK_NULL
){
1392 pVal
= valueNew(db
, pCtx
);
1393 if( pVal
==0 ) goto no_mem
;
1394 sqlite3VdbeMemNumerify(pVal
);
1396 #ifndef SQLITE_OMIT_BLOB_LITERAL
1397 else if( op
==TK_BLOB
){
1399 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1400 assert( pExpr
->u
.zToken
[1]=='\'' );
1401 pVal
= valueNew(db
, pCtx
);
1402 if( !pVal
) goto no_mem
;
1403 zVal
= &pExpr
->u
.zToken
[2];
1404 nVal
= sqlite3Strlen30(zVal
)-1;
1405 assert( zVal
[nVal
]=='\'' );
1406 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1411 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1412 else if( op
==TK_FUNCTION
&& pCtx
!=0 ){
1413 rc
= valueFromFunction(db
, pExpr
, enc
, affinity
, &pVal
, pCtx
);
1421 sqlite3OomFault(db
);
1422 sqlite3DbFree(db
, zVal
);
1423 assert( *ppVal
==0 );
1424 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1425 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1427 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1429 return SQLITE_NOMEM_BKPT
;
1433 ** Create a new sqlite3_value object, containing the value of pExpr.
1435 ** This only works for very simple expressions that consist of one constant
1436 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1437 ** be converted directly into a value, then the value is allocated and
1438 ** a pointer written to *ppVal. The caller is responsible for deallocating
1439 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1440 ** cannot be converted to a value, then *ppVal is set to NULL.
1442 int sqlite3ValueFromExpr(
1443 sqlite3
*db
, /* The database connection */
1444 Expr
*pExpr
, /* The expression to evaluate */
1445 u8 enc
, /* Encoding to use */
1446 u8 affinity
, /* Affinity to use */
1447 sqlite3_value
**ppVal
/* Write the new value here */
1449 return pExpr
? valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0) : 0;
1452 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1454 ** The implementation of the sqlite_record() function. This function accepts
1455 ** a single argument of any type. The return value is a formatted database
1456 ** record (a blob) containing the argument value.
1458 ** This is used to convert the value stored in the 'sample' column of the
1459 ** sqlite_stat3 table to the record format SQLite uses internally.
1461 static void recordFunc(
1462 sqlite3_context
*context
,
1464 sqlite3_value
**argv
1466 const int file_format
= 1;
1467 u32 iSerial
; /* Serial type */
1468 int nSerial
; /* Bytes of space for iSerial as varint */
1469 u32 nVal
; /* Bytes of space required for argv[0] */
1474 UNUSED_PARAMETER( argc
);
1475 iSerial
= sqlite3VdbeSerialType(argv
[0], file_format
, &nVal
);
1476 nSerial
= sqlite3VarintLen(iSerial
);
1477 db
= sqlite3_context_db_handle(context
);
1479 nRet
= 1 + nSerial
+ nVal
;
1480 aRet
= sqlite3DbMallocRawNN(db
, nRet
);
1482 sqlite3_result_error_nomem(context
);
1484 aRet
[0] = nSerial
+1;
1485 putVarint32(&aRet
[1], iSerial
);
1486 sqlite3VdbeSerialPut(&aRet
[1+nSerial
], argv
[0], iSerial
);
1487 sqlite3_result_blob(context
, aRet
, nRet
, SQLITE_TRANSIENT
);
1488 sqlite3DbFreeNN(db
, aRet
);
1493 ** Register built-in functions used to help read ANALYZE data.
1495 void sqlite3AnalyzeFunctions(void){
1496 static FuncDef aAnalyzeTableFuncs
[] = {
1497 FUNCTION(sqlite_record
, 1, 0, 0, recordFunc
),
1499 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs
, ArraySize(aAnalyzeTableFuncs
));
1503 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1505 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1506 ** pAlloc if one does not exist and the new value is added to the
1507 ** UnpackedRecord object.
1509 ** A value is extracted in the following cases:
1511 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1513 ** * The expression is a bound variable, and this is a reprepare, or
1515 ** * The expression is a literal value.
1517 ** On success, *ppVal is made to point to the extracted value. The caller
1518 ** is responsible for ensuring that the value is eventually freed.
1520 static int stat4ValueFromExpr(
1521 Parse
*pParse
, /* Parse context */
1522 Expr
*pExpr
, /* The expression to extract a value from */
1523 u8 affinity
, /* Affinity to use */
1524 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1525 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1528 sqlite3_value
*pVal
= 0;
1529 sqlite3
*db
= pParse
->db
;
1531 /* Skip over any TK_COLLATE nodes */
1532 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1534 assert( pExpr
==0 || pExpr
->op
!=TK_REGISTER
|| pExpr
->op2
!=TK_VARIABLE
);
1536 pVal
= valueNew(db
, pAlloc
);
1538 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1540 }else if( pExpr
->op
==TK_VARIABLE
&& (db
->flags
& SQLITE_EnableQPSG
)==0 ){
1542 int iBindVar
= pExpr
->iColumn
;
1543 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1544 if( (v
= pParse
->pReprepare
)!=0 ){
1545 pVal
= valueNew(db
, pAlloc
);
1547 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1548 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1549 pVal
->db
= pParse
->db
;
1553 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1556 assert( pVal
==0 || pVal
->db
==db
);
1562 ** This function is used to allocate and populate UnpackedRecord
1563 ** structures intended to be compared against sample index keys stored
1564 ** in the sqlite_stat4 table.
1566 ** A single call to this function populates zero or more fields of the
1567 ** record starting with field iVal (fields are numbered from left to
1568 ** right starting with 0). A single field is populated if:
1570 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1572 ** * The expression is a bound variable, and this is a reprepare, or
1574 ** * The sqlite3ValueFromExpr() function is able to extract a value
1575 ** from the expression (i.e. the expression is a literal value).
1577 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1578 ** vector components that match either of the two latter criteria listed
1581 ** Before any value is appended to the record, the affinity of the
1582 ** corresponding column within index pIdx is applied to it. Before
1583 ** this function returns, output parameter *pnExtract is set to the
1584 ** number of values appended to the record.
1586 ** When this function is called, *ppRec must either point to an object
1587 ** allocated by an earlier call to this function, or must be NULL. If it
1588 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1589 ** is allocated (and *ppRec set to point to it) before returning.
1591 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1592 ** error if a value cannot be extracted from pExpr. If an error does
1593 ** occur, an SQLite error code is returned.
1595 int sqlite3Stat4ProbeSetValue(
1596 Parse
*pParse
, /* Parse context */
1597 Index
*pIdx
, /* Index being probed */
1598 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1599 Expr
*pExpr
, /* The expression to extract a value from */
1600 int nElem
, /* Maximum number of values to append */
1601 int iVal
, /* Array element to populate */
1602 int *pnExtract
/* OUT: Values appended to the record */
1607 if( pExpr
==0 || pExpr
->op
!=TK_SELECT
){
1609 struct ValueNewStat4Ctx alloc
;
1611 alloc
.pParse
= pParse
;
1613 alloc
.ppRec
= ppRec
;
1615 for(i
=0; i
<nElem
; i
++){
1616 sqlite3_value
*pVal
= 0;
1617 Expr
*pElem
= (pExpr
? sqlite3VectorFieldSubexpr(pExpr
, i
) : 0);
1618 u8 aff
= sqlite3IndexColumnAffinity(pParse
->db
, pIdx
, iVal
+i
);
1619 alloc
.iVal
= iVal
+i
;
1620 rc
= stat4ValueFromExpr(pParse
, pElem
, aff
, &alloc
, &pVal
);
1626 *pnExtract
= nExtract
;
1631 ** Attempt to extract a value from expression pExpr using the methods
1632 ** as described for sqlite3Stat4ProbeSetValue() above.
1634 ** If successful, set *ppVal to point to a new value object and return
1635 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1636 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1637 ** does occur, return an SQLite error code. The final value of *ppVal
1638 ** is undefined in this case.
1640 int sqlite3Stat4ValueFromExpr(
1641 Parse
*pParse
, /* Parse context */
1642 Expr
*pExpr
, /* The expression to extract a value from */
1643 u8 affinity
, /* Affinity to use */
1644 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1646 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1650 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1651 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1652 ** sqlite3_value object is allocated.
1654 ** If *ppVal is initially NULL then the caller is responsible for
1655 ** ensuring that the value written into *ppVal is eventually freed.
1657 int sqlite3Stat4Column(
1658 sqlite3
*db
, /* Database handle */
1659 const void *pRec
, /* Pointer to buffer containing record */
1660 int nRec
, /* Size of buffer pRec in bytes */
1661 int iCol
, /* Column to extract */
1662 sqlite3_value
**ppVal
/* OUT: Extracted value */
1664 u32 t
; /* a column type code */
1665 int nHdr
; /* Size of the header in the record */
1666 int iHdr
; /* Next unread header byte */
1667 int iField
; /* Next unread data byte */
1668 int szField
; /* Size of the current data field */
1669 int i
; /* Column index */
1670 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1671 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1674 iHdr
= getVarint32(a
, nHdr
);
1675 if( nHdr
>nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1677 for(i
=0; i
<=iCol
; i
++){
1678 iHdr
+= getVarint32(&a
[iHdr
], t
);
1679 testcase( iHdr
==nHdr
);
1680 testcase( iHdr
==nHdr
+1 );
1681 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1682 szField
= sqlite3VdbeSerialTypeLen(t
);
1685 testcase( iField
==nRec
);
1686 testcase( iField
==nRec
+1 );
1687 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1689 pMem
= *ppVal
= sqlite3ValueNew(db
);
1690 if( pMem
==0 ) return SQLITE_NOMEM_BKPT
;
1692 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1693 pMem
->enc
= ENC(db
);
1698 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1699 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1702 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1705 int nCol
= pRec
->pKeyInfo
->nAllField
;
1706 Mem
*aMem
= pRec
->aMem
;
1707 sqlite3
*db
= aMem
[0].db
;
1708 for(i
=0; i
<nCol
; i
++){
1709 sqlite3VdbeMemRelease(&aMem
[i
]);
1711 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1712 sqlite3DbFreeNN(db
, pRec
);
1715 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1718 ** Change the string value of an sqlite3_value object
1720 void sqlite3ValueSetStr(
1721 sqlite3_value
*v
, /* Value to be set */
1722 int n
, /* Length of string z */
1723 const void *z
, /* Text of the new string */
1724 u8 enc
, /* Encoding to use */
1725 void (*xDel
)(void*) /* Destructor for the string */
1727 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1731 ** Free an sqlite3_value object
1733 void sqlite3ValueFree(sqlite3_value
*v
){
1735 sqlite3VdbeMemRelease((Mem
*)v
);
1736 sqlite3DbFreeNN(((Mem
*)v
)->db
, v
);
1740 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1741 ** sqlite3_value object assuming that it uses the encoding "enc".
1742 ** The valueBytes() routine is a helper function.
1744 static SQLITE_NOINLINE
int valueBytes(sqlite3_value
*pVal
, u8 enc
){
1745 return valueToText(pVal
, enc
)!=0 ? pVal
->n
: 0;
1747 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1748 Mem
*p
= (Mem
*)pVal
;
1749 assert( (p
->flags
& MEM_Null
)==0 || (p
->flags
& (MEM_Str
|MEM_Blob
))==0 );
1750 if( (p
->flags
& MEM_Str
)!=0 && pVal
->enc
==enc
){
1753 if( (p
->flags
& MEM_Blob
)!=0 ){
1754 if( p
->flags
& MEM_Zero
){
1755 return p
->n
+ p
->u
.nZero
;
1760 if( p
->flags
& MEM_Null
) return 0;
1761 return valueBytes(pVal
, enc
);