Get writes working on the sqlite_dbpage virtual table. Add a few test cases.
[sqlite.git] / src / vdbeaux.c
blob6ec8b30680ae874423b1e936d95ab62f42712b8a
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 p->pParse = pParse;
36 pParse->pVdbe = p;
37 assert( pParse->aLabel==0 );
38 assert( pParse->nLabel==0 );
39 assert( pParse->nOpAlloc==0 );
40 assert( pParse->szOpAlloc==0 );
41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
42 return p;
46 ** Change the error string stored in Vdbe.zErrMsg
48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
49 va_list ap;
50 sqlite3DbFree(p->db, p->zErrMsg);
51 va_start(ap, zFormat);
52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
53 va_end(ap);
57 ** Remember the SQL string for a prepared statement.
59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
60 if( p==0 ) return;
61 p->prepFlags = prepFlags;
62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
63 p->expmask = 0;
65 assert( p->zSql==0 );
66 p->zSql = sqlite3DbStrNDup(p->db, z, n);
70 ** Swap all content between two VDBE structures.
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73 Vdbe tmp, *pTmp;
74 char *zTmp;
75 assert( pA->db==pB->db );
76 tmp = *pA;
77 *pA = *pB;
78 *pB = tmp;
79 pTmp = pA->pNext;
80 pA->pNext = pB->pNext;
81 pB->pNext = pTmp;
82 pTmp = pA->pPrev;
83 pA->pPrev = pB->pPrev;
84 pB->pPrev = pTmp;
85 zTmp = pA->zSql;
86 pA->zSql = pB->zSql;
87 pB->zSql = zTmp;
88 pB->expmask = pA->expmask;
89 pB->prepFlags = pA->prepFlags;
90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
96 ** than its current size. nOp is guaranteed to be less than or equal
97 ** to 1024/sizeof(Op).
99 ** If an out-of-memory error occurs while resizing the array, return
100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
101 ** unchanged (this is so that any opcodes already allocated can be
102 ** correctly deallocated along with the rest of the Vdbe).
104 static int growOpArray(Vdbe *v, int nOp){
105 VdbeOp *pNew;
106 Parse *p = v->pParse;
108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
109 ** more frequent reallocs and hence provide more opportunities for
110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
112 ** by the minimum* amount required until the size reaches 512. Normal
113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
114 ** size of the op array or add 1KB of space, whichever is smaller. */
115 #ifdef SQLITE_TEST_REALLOC_STRESS
116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
117 #else
118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
119 UNUSED_PARAMETER(nOp);
120 #endif
122 /* Ensure that the size of a VDBE does not grow too large */
123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
124 sqlite3OomFault(p->db);
125 return SQLITE_NOMEM;
128 assert( nOp<=(1024/sizeof(Op)) );
129 assert( nNew>=(p->nOpAlloc+nOp) );
130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
131 if( pNew ){
132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
133 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
134 v->aOp = pNew;
136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
139 #ifdef SQLITE_DEBUG
140 /* This routine is just a convenient place to set a breakpoint that will
141 ** fire after each opcode is inserted and displayed using
142 ** "PRAGMA vdbe_addoptrace=on".
144 static void test_addop_breakpoint(void){
145 static int n = 0;
146 n++;
148 #endif
151 ** Add a new instruction to the list of instructions current in the
152 ** VDBE. Return the address of the new instruction.
154 ** Parameters:
156 ** p Pointer to the VDBE
158 ** op The opcode for this instruction
160 ** p1, p2, p3 Operands
162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
163 ** the sqlite3VdbeChangeP4() function to change the value of the P4
164 ** operand.
166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
167 assert( p->pParse->nOpAlloc<=p->nOp );
168 if( growOpArray(p, 1) ) return 1;
169 assert( p->pParse->nOpAlloc>p->nOp );
170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
173 int i;
174 VdbeOp *pOp;
176 i = p->nOp;
177 assert( p->magic==VDBE_MAGIC_INIT );
178 assert( op>=0 && op<0xff );
179 if( p->pParse->nOpAlloc<=i ){
180 return growOp3(p, op, p1, p2, p3);
182 p->nOp++;
183 pOp = &p->aOp[i];
184 pOp->opcode = (u8)op;
185 pOp->p5 = 0;
186 pOp->p1 = p1;
187 pOp->p2 = p2;
188 pOp->p3 = p3;
189 pOp->p4.p = 0;
190 pOp->p4type = P4_NOTUSED;
191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
192 pOp->zComment = 0;
193 #endif
194 #ifdef SQLITE_DEBUG
195 if( p->db->flags & SQLITE_VdbeAddopTrace ){
196 int jj, kk;
197 Parse *pParse = p->pParse;
198 for(jj=kk=0; jj<pParse->nColCache; jj++){
199 struct yColCache *x = pParse->aColCache + jj;
200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
201 kk++;
203 if( kk ) printf("\n");
204 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
205 test_addop_breakpoint();
207 #endif
208 #ifdef VDBE_PROFILE
209 pOp->cycles = 0;
210 pOp->cnt = 0;
211 #endif
212 #ifdef SQLITE_VDBE_COVERAGE
213 pOp->iSrcLine = 0;
214 #endif
215 return i;
217 int sqlite3VdbeAddOp0(Vdbe *p, int op){
218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
227 /* Generate code for an unconditional jump to instruction iDest
229 int sqlite3VdbeGoto(Vdbe *p, int iDest){
230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
233 /* Generate code to cause the string zStr to be loaded into
234 ** register iDest
236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
241 ** Generate code that initializes multiple registers to string or integer
242 ** constants. The registers begin with iDest and increase consecutively.
243 ** One register is initialized for each characgter in zTypes[]. For each
244 ** "s" character in zTypes[], the register is a string if the argument is
245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
246 ** in zTypes[], the register is initialized to an integer.
248 ** If the input string does not end with "X" then an OP_ResultRow instruction
249 ** is generated for the values inserted.
251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
252 va_list ap;
253 int i;
254 char c;
255 va_start(ap, zTypes);
256 for(i=0; (c = zTypes[i])!=0; i++){
257 if( c=='s' ){
258 const char *z = va_arg(ap, const char*);
259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
260 }else if( c=='i' ){
261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
262 }else{
263 goto skip_op_resultrow;
266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
267 skip_op_resultrow:
268 va_end(ap);
272 ** Add an opcode that includes the p4 value as a pointer.
274 int sqlite3VdbeAddOp4(
275 Vdbe *p, /* Add the opcode to this VM */
276 int op, /* The new opcode */
277 int p1, /* The P1 operand */
278 int p2, /* The P2 operand */
279 int p3, /* The P3 operand */
280 const char *zP4, /* The P4 operand */
281 int p4type /* P4 operand type */
283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
284 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
285 return addr;
289 ** Add an opcode that includes the p4 value with a P4_INT64 or
290 ** P4_REAL type.
292 int sqlite3VdbeAddOp4Dup8(
293 Vdbe *p, /* Add the opcode to this VM */
294 int op, /* The new opcode */
295 int p1, /* The P1 operand */
296 int p2, /* The P2 operand */
297 int p3, /* The P3 operand */
298 const u8 *zP4, /* The P4 operand */
299 int p4type /* P4 operand type */
301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
302 if( p4copy ) memcpy(p4copy, zP4, 8);
303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
307 ** Add an OP_ParseSchema opcode. This routine is broken out from
308 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
309 ** as having been used.
311 ** The zWhere string must have been obtained from sqlite3_malloc().
312 ** This routine will take ownership of the allocated memory.
314 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
315 int j;
316 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
317 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
321 ** Add an opcode that includes the p4 value as an integer.
323 int sqlite3VdbeAddOp4Int(
324 Vdbe *p, /* Add the opcode to this VM */
325 int op, /* The new opcode */
326 int p1, /* The P1 operand */
327 int p2, /* The P2 operand */
328 int p3, /* The P3 operand */
329 int p4 /* The P4 operand as an integer */
331 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
332 if( p->db->mallocFailed==0 ){
333 VdbeOp *pOp = &p->aOp[addr];
334 pOp->p4type = P4_INT32;
335 pOp->p4.i = p4;
337 return addr;
340 /* Insert the end of a co-routine
342 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
343 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
345 /* Clear the temporary register cache, thereby ensuring that each
346 ** co-routine has its own independent set of registers, because co-routines
347 ** might expect their registers to be preserved across an OP_Yield, and
348 ** that could cause problems if two or more co-routines are using the same
349 ** temporary register.
351 v->pParse->nTempReg = 0;
352 v->pParse->nRangeReg = 0;
356 ** Create a new symbolic label for an instruction that has yet to be
357 ** coded. The symbolic label is really just a negative number. The
358 ** label can be used as the P2 value of an operation. Later, when
359 ** the label is resolved to a specific address, the VDBE will scan
360 ** through its operation list and change all values of P2 which match
361 ** the label into the resolved address.
363 ** The VDBE knows that a P2 value is a label because labels are
364 ** always negative and P2 values are suppose to be non-negative.
365 ** Hence, a negative P2 value is a label that has yet to be resolved.
367 ** Zero is returned if a malloc() fails.
369 int sqlite3VdbeMakeLabel(Vdbe *v){
370 Parse *p = v->pParse;
371 int i = p->nLabel++;
372 assert( v->magic==VDBE_MAGIC_INIT );
373 if( (i & (i-1))==0 ){
374 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
375 (i*2+1)*sizeof(p->aLabel[0]));
377 if( p->aLabel ){
378 p->aLabel[i] = -1;
380 return ADDR(i);
384 ** Resolve label "x" to be the address of the next instruction to
385 ** be inserted. The parameter "x" must have been obtained from
386 ** a prior call to sqlite3VdbeMakeLabel().
388 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
389 Parse *p = v->pParse;
390 int j = ADDR(x);
391 assert( v->magic==VDBE_MAGIC_INIT );
392 assert( j<p->nLabel );
393 assert( j>=0 );
394 if( p->aLabel ){
395 p->aLabel[j] = v->nOp;
400 ** Mark the VDBE as one that can only be run one time.
402 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
403 p->runOnlyOnce = 1;
407 ** Mark the VDBE as one that can only be run multiple times.
409 void sqlite3VdbeReusable(Vdbe *p){
410 p->runOnlyOnce = 0;
413 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
416 ** The following type and function are used to iterate through all opcodes
417 ** in a Vdbe main program and each of the sub-programs (triggers) it may
418 ** invoke directly or indirectly. It should be used as follows:
420 ** Op *pOp;
421 ** VdbeOpIter sIter;
423 ** memset(&sIter, 0, sizeof(sIter));
424 ** sIter.v = v; // v is of type Vdbe*
425 ** while( (pOp = opIterNext(&sIter)) ){
426 ** // Do something with pOp
427 ** }
428 ** sqlite3DbFree(v->db, sIter.apSub);
431 typedef struct VdbeOpIter VdbeOpIter;
432 struct VdbeOpIter {
433 Vdbe *v; /* Vdbe to iterate through the opcodes of */
434 SubProgram **apSub; /* Array of subprograms */
435 int nSub; /* Number of entries in apSub */
436 int iAddr; /* Address of next instruction to return */
437 int iSub; /* 0 = main program, 1 = first sub-program etc. */
439 static Op *opIterNext(VdbeOpIter *p){
440 Vdbe *v = p->v;
441 Op *pRet = 0;
442 Op *aOp;
443 int nOp;
445 if( p->iSub<=p->nSub ){
447 if( p->iSub==0 ){
448 aOp = v->aOp;
449 nOp = v->nOp;
450 }else{
451 aOp = p->apSub[p->iSub-1]->aOp;
452 nOp = p->apSub[p->iSub-1]->nOp;
454 assert( p->iAddr<nOp );
456 pRet = &aOp[p->iAddr];
457 p->iAddr++;
458 if( p->iAddr==nOp ){
459 p->iSub++;
460 p->iAddr = 0;
463 if( pRet->p4type==P4_SUBPROGRAM ){
464 int nByte = (p->nSub+1)*sizeof(SubProgram*);
465 int j;
466 for(j=0; j<p->nSub; j++){
467 if( p->apSub[j]==pRet->p4.pProgram ) break;
469 if( j==p->nSub ){
470 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
471 if( !p->apSub ){
472 pRet = 0;
473 }else{
474 p->apSub[p->nSub++] = pRet->p4.pProgram;
480 return pRet;
484 ** Check if the program stored in the VM associated with pParse may
485 ** throw an ABORT exception (causing the statement, but not entire transaction
486 ** to be rolled back). This condition is true if the main program or any
487 ** sub-programs contains any of the following:
489 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
490 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
491 ** * OP_Destroy
492 ** * OP_VUpdate
493 ** * OP_VRename
494 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
495 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
496 ** (for CREATE TABLE AS SELECT ...)
498 ** Then check that the value of Parse.mayAbort is true if an
499 ** ABORT may be thrown, or false otherwise. Return true if it does
500 ** match, or false otherwise. This function is intended to be used as
501 ** part of an assert statement in the compiler. Similar to:
503 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
505 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
506 int hasAbort = 0;
507 int hasFkCounter = 0;
508 int hasCreateTable = 0;
509 int hasInitCoroutine = 0;
510 Op *pOp;
511 VdbeOpIter sIter;
512 memset(&sIter, 0, sizeof(sIter));
513 sIter.v = v;
515 while( (pOp = opIterNext(&sIter))!=0 ){
516 int opcode = pOp->opcode;
517 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
518 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
519 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
521 hasAbort = 1;
522 break;
524 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
525 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
526 #ifndef SQLITE_OMIT_FOREIGN_KEY
527 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
528 hasFkCounter = 1;
530 #endif
532 sqlite3DbFree(v->db, sIter.apSub);
534 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
535 ** If malloc failed, then the while() loop above may not have iterated
536 ** through all opcodes and hasAbort may be set incorrectly. Return
537 ** true for this case to prevent the assert() in the callers frame
538 ** from failing. */
539 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
540 || (hasCreateTable && hasInitCoroutine) );
542 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
545 ** This routine is called after all opcodes have been inserted. It loops
546 ** through all the opcodes and fixes up some details.
548 ** (1) For each jump instruction with a negative P2 value (a label)
549 ** resolve the P2 value to an actual address.
551 ** (2) Compute the maximum number of arguments used by any SQL function
552 ** and store that value in *pMaxFuncArgs.
554 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
555 ** indicate what the prepared statement actually does.
557 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
559 ** (5) Reclaim the memory allocated for storing labels.
561 ** This routine will only function correctly if the mkopcodeh.tcl generator
562 ** script numbers the opcodes correctly. Changes to this routine must be
563 ** coordinated with changes to mkopcodeh.tcl.
565 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
566 int nMaxArgs = *pMaxFuncArgs;
567 Op *pOp;
568 Parse *pParse = p->pParse;
569 int *aLabel = pParse->aLabel;
570 p->readOnly = 1;
571 p->bIsReader = 0;
572 pOp = &p->aOp[p->nOp-1];
573 while(1){
575 /* Only JUMP opcodes and the short list of special opcodes in the switch
576 ** below need to be considered. The mkopcodeh.tcl generator script groups
577 ** all these opcodes together near the front of the opcode list. Skip
578 ** any opcode that does not need processing by virtual of the fact that
579 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
581 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
582 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
583 ** cases from this switch! */
584 switch( pOp->opcode ){
585 case OP_Transaction: {
586 if( pOp->p2!=0 ) p->readOnly = 0;
587 /* fall thru */
589 case OP_AutoCommit:
590 case OP_Savepoint: {
591 p->bIsReader = 1;
592 break;
594 #ifndef SQLITE_OMIT_WAL
595 case OP_Checkpoint:
596 #endif
597 case OP_Vacuum:
598 case OP_JournalMode: {
599 p->readOnly = 0;
600 p->bIsReader = 1;
601 break;
603 case OP_Next:
604 case OP_NextIfOpen:
605 case OP_SorterNext: {
606 pOp->p4.xAdvance = sqlite3BtreeNext;
607 pOp->p4type = P4_ADVANCE;
608 /* The code generator never codes any of these opcodes as a jump
609 ** to a label. They are always coded as a jump backwards to a
610 ** known address */
611 assert( pOp->p2>=0 );
612 break;
614 case OP_Prev:
615 case OP_PrevIfOpen: {
616 pOp->p4.xAdvance = sqlite3BtreePrevious;
617 pOp->p4type = P4_ADVANCE;
618 /* The code generator never codes any of these opcodes as a jump
619 ** to a label. They are always coded as a jump backwards to a
620 ** known address */
621 assert( pOp->p2>=0 );
622 break;
624 #ifndef SQLITE_OMIT_VIRTUALTABLE
625 case OP_VUpdate: {
626 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
627 break;
629 case OP_VFilter: {
630 int n;
631 assert( (pOp - p->aOp) >= 3 );
632 assert( pOp[-1].opcode==OP_Integer );
633 n = pOp[-1].p1;
634 if( n>nMaxArgs ) nMaxArgs = n;
635 /* Fall through into the default case */
637 #endif
638 default: {
639 if( pOp->p2<0 ){
640 /* The mkopcodeh.tcl script has so arranged things that the only
641 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
642 ** have non-negative values for P2. */
643 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
644 assert( ADDR(pOp->p2)<pParse->nLabel );
645 pOp->p2 = aLabel[ADDR(pOp->p2)];
647 break;
650 /* The mkopcodeh.tcl script has so arranged things that the only
651 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
652 ** have non-negative values for P2. */
653 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
655 if( pOp==p->aOp ) break;
656 pOp--;
658 sqlite3DbFree(p->db, pParse->aLabel);
659 pParse->aLabel = 0;
660 pParse->nLabel = 0;
661 *pMaxFuncArgs = nMaxArgs;
662 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
666 ** Return the address of the next instruction to be inserted.
668 int sqlite3VdbeCurrentAddr(Vdbe *p){
669 assert( p->magic==VDBE_MAGIC_INIT );
670 return p->nOp;
674 ** Verify that at least N opcode slots are available in p without
675 ** having to malloc for more space (except when compiled using
676 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
677 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
678 ** fail due to a OOM fault and hence that the return value from
679 ** sqlite3VdbeAddOpList() will always be non-NULL.
681 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
682 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
683 assert( p->nOp + N <= p->pParse->nOpAlloc );
685 #endif
688 ** Verify that the VM passed as the only argument does not contain
689 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
690 ** by code in pragma.c to ensure that the implementation of certain
691 ** pragmas comports with the flags specified in the mkpragmatab.tcl
692 ** script.
694 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
695 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
696 int i;
697 for(i=0; i<p->nOp; i++){
698 assert( p->aOp[i].opcode!=OP_ResultRow );
701 #endif
704 ** This function returns a pointer to the array of opcodes associated with
705 ** the Vdbe passed as the first argument. It is the callers responsibility
706 ** to arrange for the returned array to be eventually freed using the
707 ** vdbeFreeOpArray() function.
709 ** Before returning, *pnOp is set to the number of entries in the returned
710 ** array. Also, *pnMaxArg is set to the larger of its current value and
711 ** the number of entries in the Vdbe.apArg[] array required to execute the
712 ** returned program.
714 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
715 VdbeOp *aOp = p->aOp;
716 assert( aOp && !p->db->mallocFailed );
718 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
719 assert( DbMaskAllZero(p->btreeMask) );
721 resolveP2Values(p, pnMaxArg);
722 *pnOp = p->nOp;
723 p->aOp = 0;
724 return aOp;
728 ** Add a whole list of operations to the operation stack. Return a
729 ** pointer to the first operation inserted.
731 ** Non-zero P2 arguments to jump instructions are automatically adjusted
732 ** so that the jump target is relative to the first operation inserted.
734 VdbeOp *sqlite3VdbeAddOpList(
735 Vdbe *p, /* Add opcodes to the prepared statement */
736 int nOp, /* Number of opcodes to add */
737 VdbeOpList const *aOp, /* The opcodes to be added */
738 int iLineno /* Source-file line number of first opcode */
740 int i;
741 VdbeOp *pOut, *pFirst;
742 assert( nOp>0 );
743 assert( p->magic==VDBE_MAGIC_INIT );
744 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
745 return 0;
747 pFirst = pOut = &p->aOp[p->nOp];
748 for(i=0; i<nOp; i++, aOp++, pOut++){
749 pOut->opcode = aOp->opcode;
750 pOut->p1 = aOp->p1;
751 pOut->p2 = aOp->p2;
752 assert( aOp->p2>=0 );
753 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
754 pOut->p2 += p->nOp;
756 pOut->p3 = aOp->p3;
757 pOut->p4type = P4_NOTUSED;
758 pOut->p4.p = 0;
759 pOut->p5 = 0;
760 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
761 pOut->zComment = 0;
762 #endif
763 #ifdef SQLITE_VDBE_COVERAGE
764 pOut->iSrcLine = iLineno+i;
765 #else
766 (void)iLineno;
767 #endif
768 #ifdef SQLITE_DEBUG
769 if( p->db->flags & SQLITE_VdbeAddopTrace ){
770 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
772 #endif
774 p->nOp += nOp;
775 return pFirst;
778 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
780 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
782 void sqlite3VdbeScanStatus(
783 Vdbe *p, /* VM to add scanstatus() to */
784 int addrExplain, /* Address of OP_Explain (or 0) */
785 int addrLoop, /* Address of loop counter */
786 int addrVisit, /* Address of rows visited counter */
787 LogEst nEst, /* Estimated number of output rows */
788 const char *zName /* Name of table or index being scanned */
790 int nByte = (p->nScan+1) * sizeof(ScanStatus);
791 ScanStatus *aNew;
792 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
793 if( aNew ){
794 ScanStatus *pNew = &aNew[p->nScan++];
795 pNew->addrExplain = addrExplain;
796 pNew->addrLoop = addrLoop;
797 pNew->addrVisit = addrVisit;
798 pNew->nEst = nEst;
799 pNew->zName = sqlite3DbStrDup(p->db, zName);
800 p->aScan = aNew;
803 #endif
807 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
808 ** for a specific instruction.
810 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
811 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
813 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
814 sqlite3VdbeGetOp(p,addr)->p1 = val;
816 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
817 sqlite3VdbeGetOp(p,addr)->p2 = val;
819 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
820 sqlite3VdbeGetOp(p,addr)->p3 = val;
822 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
823 assert( p->nOp>0 || p->db->mallocFailed );
824 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
828 ** Change the P2 operand of instruction addr so that it points to
829 ** the address of the next instruction to be coded.
831 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
832 sqlite3VdbeChangeP2(p, addr, p->nOp);
837 ** If the input FuncDef structure is ephemeral, then free it. If
838 ** the FuncDef is not ephermal, then do nothing.
840 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
841 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
842 sqlite3DbFreeNN(db, pDef);
846 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
849 ** Delete a P4 value if necessary.
851 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
852 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
853 sqlite3DbFreeNN(db, p);
855 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
856 freeEphemeralFunction(db, p->pFunc);
857 sqlite3DbFreeNN(db, p);
859 static void freeP4(sqlite3 *db, int p4type, void *p4){
860 assert( db );
861 switch( p4type ){
862 case P4_FUNCCTX: {
863 freeP4FuncCtx(db, (sqlite3_context*)p4);
864 break;
866 case P4_REAL:
867 case P4_INT64:
868 case P4_DYNAMIC:
869 case P4_INTARRAY: {
870 sqlite3DbFree(db, p4);
871 break;
873 case P4_KEYINFO: {
874 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
875 break;
877 #ifdef SQLITE_ENABLE_CURSOR_HINTS
878 case P4_EXPR: {
879 sqlite3ExprDelete(db, (Expr*)p4);
880 break;
882 #endif
883 case P4_FUNCDEF: {
884 freeEphemeralFunction(db, (FuncDef*)p4);
885 break;
887 case P4_MEM: {
888 if( db->pnBytesFreed==0 ){
889 sqlite3ValueFree((sqlite3_value*)p4);
890 }else{
891 freeP4Mem(db, (Mem*)p4);
893 break;
895 case P4_VTAB : {
896 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
897 break;
903 ** Free the space allocated for aOp and any p4 values allocated for the
904 ** opcodes contained within. If aOp is not NULL it is assumed to contain
905 ** nOp entries.
907 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
908 if( aOp ){
909 Op *pOp;
910 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
911 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
912 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
913 sqlite3DbFree(db, pOp->zComment);
914 #endif
916 sqlite3DbFreeNN(db, aOp);
921 ** Link the SubProgram object passed as the second argument into the linked
922 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
923 ** objects when the VM is no longer required.
925 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
926 p->pNext = pVdbe->pProgram;
927 pVdbe->pProgram = p;
931 ** Change the opcode at addr into OP_Noop
933 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
934 VdbeOp *pOp;
935 if( p->db->mallocFailed ) return 0;
936 assert( addr>=0 && addr<p->nOp );
937 pOp = &p->aOp[addr];
938 freeP4(p->db, pOp->p4type, pOp->p4.p);
939 pOp->p4type = P4_NOTUSED;
940 pOp->p4.z = 0;
941 pOp->opcode = OP_Noop;
942 return 1;
946 ** If the last opcode is "op" and it is not a jump destination,
947 ** then remove it. Return true if and only if an opcode was removed.
949 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
950 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
951 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
952 }else{
953 return 0;
958 ** Change the value of the P4 operand for a specific instruction.
959 ** This routine is useful when a large program is loaded from a
960 ** static array using sqlite3VdbeAddOpList but we want to make a
961 ** few minor changes to the program.
963 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
964 ** the string is made into memory obtained from sqlite3_malloc().
965 ** A value of n==0 means copy bytes of zP4 up to and including the
966 ** first null byte. If n>0 then copy n+1 bytes of zP4.
968 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
969 ** to a string or structure that is guaranteed to exist for the lifetime of
970 ** the Vdbe. In these cases we can just copy the pointer.
972 ** If addr<0 then change P4 on the most recently inserted instruction.
974 static void SQLITE_NOINLINE vdbeChangeP4Full(
975 Vdbe *p,
976 Op *pOp,
977 const char *zP4,
978 int n
980 if( pOp->p4type ){
981 freeP4(p->db, pOp->p4type, pOp->p4.p);
982 pOp->p4type = 0;
983 pOp->p4.p = 0;
985 if( n<0 ){
986 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
987 }else{
988 if( n==0 ) n = sqlite3Strlen30(zP4);
989 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
990 pOp->p4type = P4_DYNAMIC;
993 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
994 Op *pOp;
995 sqlite3 *db;
996 assert( p!=0 );
997 db = p->db;
998 assert( p->magic==VDBE_MAGIC_INIT );
999 assert( p->aOp!=0 || db->mallocFailed );
1000 if( db->mallocFailed ){
1001 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1002 return;
1004 assert( p->nOp>0 );
1005 assert( addr<p->nOp );
1006 if( addr<0 ){
1007 addr = p->nOp - 1;
1009 pOp = &p->aOp[addr];
1010 if( n>=0 || pOp->p4type ){
1011 vdbeChangeP4Full(p, pOp, zP4, n);
1012 return;
1014 if( n==P4_INT32 ){
1015 /* Note: this cast is safe, because the origin data point was an int
1016 ** that was cast to a (const char *). */
1017 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1018 pOp->p4type = P4_INT32;
1019 }else if( zP4!=0 ){
1020 assert( n<0 );
1021 pOp->p4.p = (void*)zP4;
1022 pOp->p4type = (signed char)n;
1023 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1028 ** Change the P4 operand of the most recently coded instruction
1029 ** to the value defined by the arguments. This is a high-speed
1030 ** version of sqlite3VdbeChangeP4().
1032 ** The P4 operand must not have been previously defined. And the new
1033 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1034 ** those cases.
1036 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1037 VdbeOp *pOp;
1038 assert( n!=P4_INT32 && n!=P4_VTAB );
1039 assert( n<=0 );
1040 if( p->db->mallocFailed ){
1041 freeP4(p->db, n, pP4);
1042 }else{
1043 assert( pP4!=0 );
1044 assert( p->nOp>0 );
1045 pOp = &p->aOp[p->nOp-1];
1046 assert( pOp->p4type==P4_NOTUSED );
1047 pOp->p4type = n;
1048 pOp->p4.p = pP4;
1053 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1054 ** index given.
1056 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1057 Vdbe *v = pParse->pVdbe;
1058 KeyInfo *pKeyInfo;
1059 assert( v!=0 );
1060 assert( pIdx!=0 );
1061 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1062 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1065 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1067 ** Change the comment on the most recently coded instruction. Or
1068 ** insert a No-op and add the comment to that new instruction. This
1069 ** makes the code easier to read during debugging. None of this happens
1070 ** in a production build.
1072 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1073 assert( p->nOp>0 || p->aOp==0 );
1074 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1075 if( p->nOp ){
1076 assert( p->aOp );
1077 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1078 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1081 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1082 va_list ap;
1083 if( p ){
1084 va_start(ap, zFormat);
1085 vdbeVComment(p, zFormat, ap);
1086 va_end(ap);
1089 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1090 va_list ap;
1091 if( p ){
1092 sqlite3VdbeAddOp0(p, OP_Noop);
1093 va_start(ap, zFormat);
1094 vdbeVComment(p, zFormat, ap);
1095 va_end(ap);
1098 #endif /* NDEBUG */
1100 #ifdef SQLITE_VDBE_COVERAGE
1102 ** Set the value if the iSrcLine field for the previously coded instruction.
1104 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1105 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1107 #endif /* SQLITE_VDBE_COVERAGE */
1110 ** Return the opcode for a given address. If the address is -1, then
1111 ** return the most recently inserted opcode.
1113 ** If a memory allocation error has occurred prior to the calling of this
1114 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1115 ** is readable but not writable, though it is cast to a writable value.
1116 ** The return of a dummy opcode allows the call to continue functioning
1117 ** after an OOM fault without having to check to see if the return from
1118 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1119 ** dummy will never be written to. This is verified by code inspection and
1120 ** by running with Valgrind.
1122 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1123 /* C89 specifies that the constant "dummy" will be initialized to all
1124 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1125 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1126 assert( p->magic==VDBE_MAGIC_INIT );
1127 if( addr<0 ){
1128 addr = p->nOp - 1;
1130 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1131 if( p->db->mallocFailed ){
1132 return (VdbeOp*)&dummy;
1133 }else{
1134 return &p->aOp[addr];
1138 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1140 ** Return an integer value for one of the parameters to the opcode pOp
1141 ** determined by character c.
1143 static int translateP(char c, const Op *pOp){
1144 if( c=='1' ) return pOp->p1;
1145 if( c=='2' ) return pOp->p2;
1146 if( c=='3' ) return pOp->p3;
1147 if( c=='4' ) return pOp->p4.i;
1148 return pOp->p5;
1152 ** Compute a string for the "comment" field of a VDBE opcode listing.
1154 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1155 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1156 ** absence of other comments, this synopsis becomes the comment on the opcode.
1157 ** Some translation occurs:
1159 ** "PX" -> "r[X]"
1160 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1161 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1162 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1164 static int displayComment(
1165 const Op *pOp, /* The opcode to be commented */
1166 const char *zP4, /* Previously obtained value for P4 */
1167 char *zTemp, /* Write result here */
1168 int nTemp /* Space available in zTemp[] */
1170 const char *zOpName;
1171 const char *zSynopsis;
1172 int nOpName;
1173 int ii, jj;
1174 char zAlt[50];
1175 zOpName = sqlite3OpcodeName(pOp->opcode);
1176 nOpName = sqlite3Strlen30(zOpName);
1177 if( zOpName[nOpName+1] ){
1178 int seenCom = 0;
1179 char c;
1180 zSynopsis = zOpName += nOpName + 1;
1181 if( strncmp(zSynopsis,"IF ",3)==0 ){
1182 if( pOp->p5 & SQLITE_STOREP2 ){
1183 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1184 }else{
1185 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1187 zSynopsis = zAlt;
1189 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1190 if( c=='P' ){
1191 c = zSynopsis[++ii];
1192 if( c=='4' ){
1193 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1194 }else if( c=='X' ){
1195 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1196 seenCom = 1;
1197 }else{
1198 int v1 = translateP(c, pOp);
1199 int v2;
1200 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1201 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1202 ii += 3;
1203 jj += sqlite3Strlen30(zTemp+jj);
1204 v2 = translateP(zSynopsis[ii], pOp);
1205 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1206 ii += 2;
1207 v2++;
1209 if( v2>1 ){
1210 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1212 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1213 ii += 4;
1216 jj += sqlite3Strlen30(zTemp+jj);
1217 }else{
1218 zTemp[jj++] = c;
1221 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1222 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1223 jj += sqlite3Strlen30(zTemp+jj);
1225 if( jj<nTemp ) zTemp[jj] = 0;
1226 }else if( pOp->zComment ){
1227 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1228 jj = sqlite3Strlen30(zTemp);
1229 }else{
1230 zTemp[0] = 0;
1231 jj = 0;
1233 return jj;
1235 #endif /* SQLITE_DEBUG */
1237 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1239 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1240 ** that can be displayed in the P4 column of EXPLAIN output.
1242 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1243 const char *zOp = 0;
1244 switch( pExpr->op ){
1245 case TK_STRING:
1246 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1247 break;
1248 case TK_INTEGER:
1249 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1250 break;
1251 case TK_NULL:
1252 sqlite3XPrintf(p, "NULL");
1253 break;
1254 case TK_REGISTER: {
1255 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1256 break;
1258 case TK_COLUMN: {
1259 if( pExpr->iColumn<0 ){
1260 sqlite3XPrintf(p, "rowid");
1261 }else{
1262 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1264 break;
1266 case TK_LT: zOp = "LT"; break;
1267 case TK_LE: zOp = "LE"; break;
1268 case TK_GT: zOp = "GT"; break;
1269 case TK_GE: zOp = "GE"; break;
1270 case TK_NE: zOp = "NE"; break;
1271 case TK_EQ: zOp = "EQ"; break;
1272 case TK_IS: zOp = "IS"; break;
1273 case TK_ISNOT: zOp = "ISNOT"; break;
1274 case TK_AND: zOp = "AND"; break;
1275 case TK_OR: zOp = "OR"; break;
1276 case TK_PLUS: zOp = "ADD"; break;
1277 case TK_STAR: zOp = "MUL"; break;
1278 case TK_MINUS: zOp = "SUB"; break;
1279 case TK_REM: zOp = "REM"; break;
1280 case TK_BITAND: zOp = "BITAND"; break;
1281 case TK_BITOR: zOp = "BITOR"; break;
1282 case TK_SLASH: zOp = "DIV"; break;
1283 case TK_LSHIFT: zOp = "LSHIFT"; break;
1284 case TK_RSHIFT: zOp = "RSHIFT"; break;
1285 case TK_CONCAT: zOp = "CONCAT"; break;
1286 case TK_UMINUS: zOp = "MINUS"; break;
1287 case TK_UPLUS: zOp = "PLUS"; break;
1288 case TK_BITNOT: zOp = "BITNOT"; break;
1289 case TK_NOT: zOp = "NOT"; break;
1290 case TK_ISNULL: zOp = "ISNULL"; break;
1291 case TK_NOTNULL: zOp = "NOTNULL"; break;
1293 default:
1294 sqlite3XPrintf(p, "%s", "expr");
1295 break;
1298 if( zOp ){
1299 sqlite3XPrintf(p, "%s(", zOp);
1300 displayP4Expr(p, pExpr->pLeft);
1301 if( pExpr->pRight ){
1302 sqlite3StrAccumAppend(p, ",", 1);
1303 displayP4Expr(p, pExpr->pRight);
1305 sqlite3StrAccumAppend(p, ")", 1);
1308 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1311 #if VDBE_DISPLAY_P4
1313 ** Compute a string that describes the P4 parameter for an opcode.
1314 ** Use zTemp for any required temporary buffer space.
1316 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1317 char *zP4 = zTemp;
1318 StrAccum x;
1319 assert( nTemp>=20 );
1320 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1321 switch( pOp->p4type ){
1322 case P4_KEYINFO: {
1323 int j;
1324 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1325 assert( pKeyInfo->aSortOrder!=0 );
1326 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField);
1327 for(j=0; j<pKeyInfo->nKeyField; j++){
1328 CollSeq *pColl = pKeyInfo->aColl[j];
1329 const char *zColl = pColl ? pColl->zName : "";
1330 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1331 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1333 sqlite3StrAccumAppend(&x, ")", 1);
1334 break;
1336 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1337 case P4_EXPR: {
1338 displayP4Expr(&x, pOp->p4.pExpr);
1339 break;
1341 #endif
1342 case P4_COLLSEQ: {
1343 CollSeq *pColl = pOp->p4.pColl;
1344 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1345 break;
1347 case P4_FUNCDEF: {
1348 FuncDef *pDef = pOp->p4.pFunc;
1349 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1350 break;
1352 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1353 case P4_FUNCCTX: {
1354 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1355 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1356 break;
1358 #endif
1359 case P4_INT64: {
1360 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1361 break;
1363 case P4_INT32: {
1364 sqlite3XPrintf(&x, "%d", pOp->p4.i);
1365 break;
1367 case P4_REAL: {
1368 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1369 break;
1371 case P4_MEM: {
1372 Mem *pMem = pOp->p4.pMem;
1373 if( pMem->flags & MEM_Str ){
1374 zP4 = pMem->z;
1375 }else if( pMem->flags & MEM_Int ){
1376 sqlite3XPrintf(&x, "%lld", pMem->u.i);
1377 }else if( pMem->flags & MEM_Real ){
1378 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1379 }else if( pMem->flags & MEM_Null ){
1380 zP4 = "NULL";
1381 }else{
1382 assert( pMem->flags & MEM_Blob );
1383 zP4 = "(blob)";
1385 break;
1387 #ifndef SQLITE_OMIT_VIRTUALTABLE
1388 case P4_VTAB: {
1389 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1390 sqlite3XPrintf(&x, "vtab:%p", pVtab);
1391 break;
1393 #endif
1394 case P4_INTARRAY: {
1395 int i;
1396 int *ai = pOp->p4.ai;
1397 int n = ai[0]; /* The first element of an INTARRAY is always the
1398 ** count of the number of elements to follow */
1399 for(i=1; i<=n; i++){
1400 sqlite3XPrintf(&x, ",%d", ai[i]);
1402 zTemp[0] = '[';
1403 sqlite3StrAccumAppend(&x, "]", 1);
1404 break;
1406 case P4_SUBPROGRAM: {
1407 sqlite3XPrintf(&x, "program");
1408 break;
1410 case P4_ADVANCE: {
1411 zTemp[0] = 0;
1412 break;
1414 case P4_TABLE: {
1415 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1416 break;
1418 default: {
1419 zP4 = pOp->p4.z;
1420 if( zP4==0 ){
1421 zP4 = zTemp;
1422 zTemp[0] = 0;
1426 sqlite3StrAccumFinish(&x);
1427 assert( zP4!=0 );
1428 return zP4;
1430 #endif /* VDBE_DISPLAY_P4 */
1433 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1435 ** The prepared statements need to know in advance the complete set of
1436 ** attached databases that will be use. A mask of these databases
1437 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1438 ** p->btreeMask of databases that will require a lock.
1440 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1441 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1442 assert( i<(int)sizeof(p->btreeMask)*8 );
1443 DbMaskSet(p->btreeMask, i);
1444 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1445 DbMaskSet(p->lockMask, i);
1449 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1451 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1452 ** this routine obtains the mutex associated with each BtShared structure
1453 ** that may be accessed by the VM passed as an argument. In doing so it also
1454 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1455 ** that the correct busy-handler callback is invoked if required.
1457 ** If SQLite is not threadsafe but does support shared-cache mode, then
1458 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1459 ** of all of BtShared structures accessible via the database handle
1460 ** associated with the VM.
1462 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1463 ** function is a no-op.
1465 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1466 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1467 ** corresponding to btrees that use shared cache. Then the runtime of
1468 ** this routine is N*N. But as N is rarely more than 1, this should not
1469 ** be a problem.
1471 void sqlite3VdbeEnter(Vdbe *p){
1472 int i;
1473 sqlite3 *db;
1474 Db *aDb;
1475 int nDb;
1476 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1477 db = p->db;
1478 aDb = db->aDb;
1479 nDb = db->nDb;
1480 for(i=0; i<nDb; i++){
1481 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1482 sqlite3BtreeEnter(aDb[i].pBt);
1486 #endif
1488 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1490 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1492 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1493 int i;
1494 sqlite3 *db;
1495 Db *aDb;
1496 int nDb;
1497 db = p->db;
1498 aDb = db->aDb;
1499 nDb = db->nDb;
1500 for(i=0; i<nDb; i++){
1501 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1502 sqlite3BtreeLeave(aDb[i].pBt);
1506 void sqlite3VdbeLeave(Vdbe *p){
1507 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1508 vdbeLeave(p);
1510 #endif
1512 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1514 ** Print a single opcode. This routine is used for debugging only.
1516 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1517 char *zP4;
1518 char zPtr[50];
1519 char zCom[100];
1520 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1521 if( pOut==0 ) pOut = stdout;
1522 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1523 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1524 displayComment(pOp, zP4, zCom, sizeof(zCom));
1525 #else
1526 zCom[0] = 0;
1527 #endif
1528 /* NB: The sqlite3OpcodeName() function is implemented by code created
1529 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1530 ** information from the vdbe.c source text */
1531 fprintf(pOut, zFormat1, pc,
1532 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1533 zCom
1535 fflush(pOut);
1537 #endif
1540 ** Initialize an array of N Mem element.
1542 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1543 while( (N--)>0 ){
1544 p->db = db;
1545 p->flags = flags;
1546 p->szMalloc = 0;
1547 #ifdef SQLITE_DEBUG
1548 p->pScopyFrom = 0;
1549 #endif
1550 p++;
1555 ** Release an array of N Mem elements
1557 static void releaseMemArray(Mem *p, int N){
1558 if( p && N ){
1559 Mem *pEnd = &p[N];
1560 sqlite3 *db = p->db;
1561 if( db->pnBytesFreed ){
1563 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1564 }while( (++p)<pEnd );
1565 return;
1568 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1569 assert( sqlite3VdbeCheckMemInvariants(p) );
1571 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1572 ** that takes advantage of the fact that the memory cell value is
1573 ** being set to NULL after releasing any dynamic resources.
1575 ** The justification for duplicating code is that according to
1576 ** callgrind, this causes a certain test case to hit the CPU 4.7
1577 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1578 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1579 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1580 ** with no indexes using a single prepared INSERT statement, bind()
1581 ** and reset(). Inserts are grouped into a transaction.
1583 testcase( p->flags & MEM_Agg );
1584 testcase( p->flags & MEM_Dyn );
1585 testcase( p->flags & MEM_Frame );
1586 testcase( p->flags & MEM_RowSet );
1587 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1588 sqlite3VdbeMemRelease(p);
1589 }else if( p->szMalloc ){
1590 sqlite3DbFreeNN(db, p->zMalloc);
1591 p->szMalloc = 0;
1594 p->flags = MEM_Undefined;
1595 }while( (++p)<pEnd );
1600 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1601 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1603 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1604 int i;
1605 Mem *aMem = VdbeFrameMem(p);
1606 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1607 for(i=0; i<p->nChildCsr; i++){
1608 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1610 releaseMemArray(aMem, p->nChildMem);
1611 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1612 sqlite3DbFree(p->v->db, p);
1615 #ifndef SQLITE_OMIT_EXPLAIN
1617 ** Give a listing of the program in the virtual machine.
1619 ** The interface is the same as sqlite3VdbeExec(). But instead of
1620 ** running the code, it invokes the callback once for each instruction.
1621 ** This feature is used to implement "EXPLAIN".
1623 ** When p->explain==1, each instruction is listed. When
1624 ** p->explain==2, only OP_Explain instructions are listed and these
1625 ** are shown in a different format. p->explain==2 is used to implement
1626 ** EXPLAIN QUERY PLAN.
1628 ** When p->explain==1, first the main program is listed, then each of
1629 ** the trigger subprograms are listed one by one.
1631 int sqlite3VdbeList(
1632 Vdbe *p /* The VDBE */
1634 int nRow; /* Stop when row count reaches this */
1635 int nSub = 0; /* Number of sub-vdbes seen so far */
1636 SubProgram **apSub = 0; /* Array of sub-vdbes */
1637 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1638 sqlite3 *db = p->db; /* The database connection */
1639 int i; /* Loop counter */
1640 int rc = SQLITE_OK; /* Return code */
1641 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1643 assert( p->explain );
1644 assert( p->magic==VDBE_MAGIC_RUN );
1645 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1647 /* Even though this opcode does not use dynamic strings for
1648 ** the result, result columns may become dynamic if the user calls
1649 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1651 releaseMemArray(pMem, 8);
1652 p->pResultSet = 0;
1654 if( p->rc==SQLITE_NOMEM_BKPT ){
1655 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1656 ** sqlite3_column_text16() failed. */
1657 sqlite3OomFault(db);
1658 return SQLITE_ERROR;
1661 /* When the number of output rows reaches nRow, that means the
1662 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1663 ** nRow is the sum of the number of rows in the main program, plus
1664 ** the sum of the number of rows in all trigger subprograms encountered
1665 ** so far. The nRow value will increase as new trigger subprograms are
1666 ** encountered, but p->pc will eventually catch up to nRow.
1668 nRow = p->nOp;
1669 if( p->explain==1 ){
1670 /* The first 8 memory cells are used for the result set. So we will
1671 ** commandeer the 9th cell to use as storage for an array of pointers
1672 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1673 ** cells. */
1674 assert( p->nMem>9 );
1675 pSub = &p->aMem[9];
1676 if( pSub->flags&MEM_Blob ){
1677 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1678 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1679 nSub = pSub->n/sizeof(Vdbe*);
1680 apSub = (SubProgram **)pSub->z;
1682 for(i=0; i<nSub; i++){
1683 nRow += apSub[i]->nOp;
1688 i = p->pc++;
1689 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1690 if( i>=nRow ){
1691 p->rc = SQLITE_OK;
1692 rc = SQLITE_DONE;
1693 }else if( db->u1.isInterrupted ){
1694 p->rc = SQLITE_INTERRUPT;
1695 rc = SQLITE_ERROR;
1696 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1697 }else{
1698 char *zP4;
1699 Op *pOp;
1700 if( i<p->nOp ){
1701 /* The output line number is small enough that we are still in the
1702 ** main program. */
1703 pOp = &p->aOp[i];
1704 }else{
1705 /* We are currently listing subprograms. Figure out which one and
1706 ** pick up the appropriate opcode. */
1707 int j;
1708 i -= p->nOp;
1709 for(j=0; i>=apSub[j]->nOp; j++){
1710 i -= apSub[j]->nOp;
1712 pOp = &apSub[j]->aOp[i];
1714 if( p->explain==1 ){
1715 pMem->flags = MEM_Int;
1716 pMem->u.i = i; /* Program counter */
1717 pMem++;
1719 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1720 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1721 assert( pMem->z!=0 );
1722 pMem->n = sqlite3Strlen30(pMem->z);
1723 pMem->enc = SQLITE_UTF8;
1724 pMem++;
1726 /* When an OP_Program opcode is encounter (the only opcode that has
1727 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1728 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1729 ** has not already been seen.
1731 if( pOp->p4type==P4_SUBPROGRAM ){
1732 int nByte = (nSub+1)*sizeof(SubProgram*);
1733 int j;
1734 for(j=0; j<nSub; j++){
1735 if( apSub[j]==pOp->p4.pProgram ) break;
1737 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1738 apSub = (SubProgram **)pSub->z;
1739 apSub[nSub++] = pOp->p4.pProgram;
1740 pSub->flags |= MEM_Blob;
1741 pSub->n = nSub*sizeof(SubProgram*);
1746 pMem->flags = MEM_Int;
1747 pMem->u.i = pOp->p1; /* P1 */
1748 pMem++;
1750 pMem->flags = MEM_Int;
1751 pMem->u.i = pOp->p2; /* P2 */
1752 pMem++;
1754 pMem->flags = MEM_Int;
1755 pMem->u.i = pOp->p3; /* P3 */
1756 pMem++;
1758 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1759 assert( p->db->mallocFailed );
1760 return SQLITE_ERROR;
1762 pMem->flags = MEM_Str|MEM_Term;
1763 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1764 if( zP4!=pMem->z ){
1765 pMem->n = 0;
1766 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1767 }else{
1768 assert( pMem->z!=0 );
1769 pMem->n = sqlite3Strlen30(pMem->z);
1770 pMem->enc = SQLITE_UTF8;
1772 pMem++;
1774 if( p->explain==1 ){
1775 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1776 assert( p->db->mallocFailed );
1777 return SQLITE_ERROR;
1779 pMem->flags = MEM_Str|MEM_Term;
1780 pMem->n = 2;
1781 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1782 pMem->enc = SQLITE_UTF8;
1783 pMem++;
1785 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1786 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1787 assert( p->db->mallocFailed );
1788 return SQLITE_ERROR;
1790 pMem->flags = MEM_Str|MEM_Term;
1791 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1792 pMem->enc = SQLITE_UTF8;
1793 #else
1794 pMem->flags = MEM_Null; /* Comment */
1795 #endif
1798 p->nResColumn = 8 - 4*(p->explain-1);
1799 p->pResultSet = &p->aMem[1];
1800 p->rc = SQLITE_OK;
1801 rc = SQLITE_ROW;
1803 return rc;
1805 #endif /* SQLITE_OMIT_EXPLAIN */
1807 #ifdef SQLITE_DEBUG
1809 ** Print the SQL that was used to generate a VDBE program.
1811 void sqlite3VdbePrintSql(Vdbe *p){
1812 const char *z = 0;
1813 if( p->zSql ){
1814 z = p->zSql;
1815 }else if( p->nOp>=1 ){
1816 const VdbeOp *pOp = &p->aOp[0];
1817 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1818 z = pOp->p4.z;
1819 while( sqlite3Isspace(*z) ) z++;
1822 if( z ) printf("SQL: [%s]\n", z);
1824 #endif
1826 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1828 ** Print an IOTRACE message showing SQL content.
1830 void sqlite3VdbeIOTraceSql(Vdbe *p){
1831 int nOp = p->nOp;
1832 VdbeOp *pOp;
1833 if( sqlite3IoTrace==0 ) return;
1834 if( nOp<1 ) return;
1835 pOp = &p->aOp[0];
1836 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1837 int i, j;
1838 char z[1000];
1839 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1840 for(i=0; sqlite3Isspace(z[i]); i++){}
1841 for(j=0; z[i]; i++){
1842 if( sqlite3Isspace(z[i]) ){
1843 if( z[i-1]!=' ' ){
1844 z[j++] = ' ';
1846 }else{
1847 z[j++] = z[i];
1850 z[j] = 0;
1851 sqlite3IoTrace("SQL %s\n", z);
1854 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1856 /* An instance of this object describes bulk memory available for use
1857 ** by subcomponents of a prepared statement. Space is allocated out
1858 ** of a ReusableSpace object by the allocSpace() routine below.
1860 struct ReusableSpace {
1861 u8 *pSpace; /* Available memory */
1862 int nFree; /* Bytes of available memory */
1863 int nNeeded; /* Total bytes that could not be allocated */
1866 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1867 ** from the ReusableSpace object. Return a pointer to the allocated
1868 ** memory on success. If insufficient memory is available in the
1869 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1870 ** value by the amount needed and return NULL.
1872 ** If pBuf is not initially NULL, that means that the memory has already
1873 ** been allocated by a prior call to this routine, so just return a copy
1874 ** of pBuf and leave ReusableSpace unchanged.
1876 ** This allocator is employed to repurpose unused slots at the end of the
1877 ** opcode array of prepared state for other memory needs of the prepared
1878 ** statement.
1880 static void *allocSpace(
1881 struct ReusableSpace *p, /* Bulk memory available for allocation */
1882 void *pBuf, /* Pointer to a prior allocation */
1883 int nByte /* Bytes of memory needed */
1885 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1886 if( pBuf==0 ){
1887 nByte = ROUND8(nByte);
1888 if( nByte <= p->nFree ){
1889 p->nFree -= nByte;
1890 pBuf = &p->pSpace[p->nFree];
1891 }else{
1892 p->nNeeded += nByte;
1895 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1896 return pBuf;
1900 ** Rewind the VDBE back to the beginning in preparation for
1901 ** running it.
1903 void sqlite3VdbeRewind(Vdbe *p){
1904 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1905 int i;
1906 #endif
1907 assert( p!=0 );
1908 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1910 /* There should be at least one opcode.
1912 assert( p->nOp>0 );
1914 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1915 p->magic = VDBE_MAGIC_RUN;
1917 #ifdef SQLITE_DEBUG
1918 for(i=0; i<p->nMem; i++){
1919 assert( p->aMem[i].db==p->db );
1921 #endif
1922 p->pc = -1;
1923 p->rc = SQLITE_OK;
1924 p->errorAction = OE_Abort;
1925 p->nChange = 0;
1926 p->cacheCtr = 1;
1927 p->minWriteFileFormat = 255;
1928 p->iStatement = 0;
1929 p->nFkConstraint = 0;
1930 #ifdef VDBE_PROFILE
1931 for(i=0; i<p->nOp; i++){
1932 p->aOp[i].cnt = 0;
1933 p->aOp[i].cycles = 0;
1935 #endif
1939 ** Prepare a virtual machine for execution for the first time after
1940 ** creating the virtual machine. This involves things such
1941 ** as allocating registers and initializing the program counter.
1942 ** After the VDBE has be prepped, it can be executed by one or more
1943 ** calls to sqlite3VdbeExec().
1945 ** This function may be called exactly once on each virtual machine.
1946 ** After this routine is called the VM has been "packaged" and is ready
1947 ** to run. After this routine is called, further calls to
1948 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1949 ** the Vdbe from the Parse object that helped generate it so that the
1950 ** the Vdbe becomes an independent entity and the Parse object can be
1951 ** destroyed.
1953 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1954 ** to its initial state after it has been run.
1956 void sqlite3VdbeMakeReady(
1957 Vdbe *p, /* The VDBE */
1958 Parse *pParse /* Parsing context */
1960 sqlite3 *db; /* The database connection */
1961 int nVar; /* Number of parameters */
1962 int nMem; /* Number of VM memory registers */
1963 int nCursor; /* Number of cursors required */
1964 int nArg; /* Number of arguments in subprograms */
1965 int n; /* Loop counter */
1966 struct ReusableSpace x; /* Reusable bulk memory */
1968 assert( p!=0 );
1969 assert( p->nOp>0 );
1970 assert( pParse!=0 );
1971 assert( p->magic==VDBE_MAGIC_INIT );
1972 assert( pParse==p->pParse );
1973 db = p->db;
1974 assert( db->mallocFailed==0 );
1975 nVar = pParse->nVar;
1976 nMem = pParse->nMem;
1977 nCursor = pParse->nTab;
1978 nArg = pParse->nMaxArg;
1980 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1981 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1982 ** space at the end of aMem[] for cursors 1 and greater.
1983 ** See also: allocateCursor().
1985 nMem += nCursor;
1986 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
1988 /* Figure out how much reusable memory is available at the end of the
1989 ** opcode array. This extra memory will be reallocated for other elements
1990 ** of the prepared statement.
1992 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1993 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1994 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1995 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1996 assert( x.nFree>=0 );
1997 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1999 resolveP2Values(p, &nArg);
2000 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2001 if( pParse->explain && nMem<10 ){
2002 nMem = 10;
2004 p->expired = 0;
2006 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2007 ** passes. On the first pass, we try to reuse unused memory at the
2008 ** end of the opcode array. If we are unable to satisfy all memory
2009 ** requirements by reusing the opcode array tail, then the second
2010 ** pass will fill in the remainder using a fresh memory allocation.
2012 ** This two-pass approach that reuses as much memory as possible from
2013 ** the leftover memory at the end of the opcode array. This can significantly
2014 ** reduce the amount of memory held by a prepared statement.
2016 do {
2017 x.nNeeded = 0;
2018 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2019 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2020 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2021 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2022 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2023 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2024 #endif
2025 if( x.nNeeded==0 ) break;
2026 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2027 x.nFree = x.nNeeded;
2028 }while( !db->mallocFailed );
2030 p->pVList = pParse->pVList;
2031 pParse->pVList = 0;
2032 p->explain = pParse->explain;
2033 if( db->mallocFailed ){
2034 p->nVar = 0;
2035 p->nCursor = 0;
2036 p->nMem = 0;
2037 }else{
2038 p->nCursor = nCursor;
2039 p->nVar = (ynVar)nVar;
2040 initMemArray(p->aVar, nVar, db, MEM_Null);
2041 p->nMem = nMem;
2042 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2043 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2044 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2045 memset(p->anExec, 0, p->nOp*sizeof(i64));
2046 #endif
2048 sqlite3VdbeRewind(p);
2052 ** Close a VDBE cursor and release all the resources that cursor
2053 ** happens to hold.
2055 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2056 if( pCx==0 ){
2057 return;
2059 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2060 switch( pCx->eCurType ){
2061 case CURTYPE_SORTER: {
2062 sqlite3VdbeSorterClose(p->db, pCx);
2063 break;
2065 case CURTYPE_BTREE: {
2066 if( pCx->isEphemeral ){
2067 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2068 /* The pCx->pCursor will be close automatically, if it exists, by
2069 ** the call above. */
2070 }else{
2071 assert( pCx->uc.pCursor!=0 );
2072 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2074 break;
2076 #ifndef SQLITE_OMIT_VIRTUALTABLE
2077 case CURTYPE_VTAB: {
2078 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2079 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2080 assert( pVCur->pVtab->nRef>0 );
2081 pVCur->pVtab->nRef--;
2082 pModule->xClose(pVCur);
2083 break;
2085 #endif
2090 ** Close all cursors in the current frame.
2092 static void closeCursorsInFrame(Vdbe *p){
2093 if( p->apCsr ){
2094 int i;
2095 for(i=0; i<p->nCursor; i++){
2096 VdbeCursor *pC = p->apCsr[i];
2097 if( pC ){
2098 sqlite3VdbeFreeCursor(p, pC);
2099 p->apCsr[i] = 0;
2106 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2107 ** is used, for example, when a trigger sub-program is halted to restore
2108 ** control to the main program.
2110 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2111 Vdbe *v = pFrame->v;
2112 closeCursorsInFrame(v);
2113 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2114 v->anExec = pFrame->anExec;
2115 #endif
2116 v->aOp = pFrame->aOp;
2117 v->nOp = pFrame->nOp;
2118 v->aMem = pFrame->aMem;
2119 v->nMem = pFrame->nMem;
2120 v->apCsr = pFrame->apCsr;
2121 v->nCursor = pFrame->nCursor;
2122 v->db->lastRowid = pFrame->lastRowid;
2123 v->nChange = pFrame->nChange;
2124 v->db->nChange = pFrame->nDbChange;
2125 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2126 v->pAuxData = pFrame->pAuxData;
2127 pFrame->pAuxData = 0;
2128 return pFrame->pc;
2132 ** Close all cursors.
2134 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2135 ** cell array. This is necessary as the memory cell array may contain
2136 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2137 ** open cursors.
2139 static void closeAllCursors(Vdbe *p){
2140 if( p->pFrame ){
2141 VdbeFrame *pFrame;
2142 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2143 sqlite3VdbeFrameRestore(pFrame);
2144 p->pFrame = 0;
2145 p->nFrame = 0;
2147 assert( p->nFrame==0 );
2148 closeCursorsInFrame(p);
2149 if( p->aMem ){
2150 releaseMemArray(p->aMem, p->nMem);
2152 while( p->pDelFrame ){
2153 VdbeFrame *pDel = p->pDelFrame;
2154 p->pDelFrame = pDel->pParent;
2155 sqlite3VdbeFrameDelete(pDel);
2158 /* Delete any auxdata allocations made by the VM */
2159 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2160 assert( p->pAuxData==0 );
2164 ** Set the number of result columns that will be returned by this SQL
2165 ** statement. This is now set at compile time, rather than during
2166 ** execution of the vdbe program so that sqlite3_column_count() can
2167 ** be called on an SQL statement before sqlite3_step().
2169 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2170 int n;
2171 sqlite3 *db = p->db;
2173 if( p->nResColumn ){
2174 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2175 sqlite3DbFree(db, p->aColName);
2177 n = nResColumn*COLNAME_N;
2178 p->nResColumn = (u16)nResColumn;
2179 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2180 if( p->aColName==0 ) return;
2181 initMemArray(p->aColName, n, db, MEM_Null);
2185 ** Set the name of the idx'th column to be returned by the SQL statement.
2186 ** zName must be a pointer to a nul terminated string.
2188 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2190 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2191 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2192 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2194 int sqlite3VdbeSetColName(
2195 Vdbe *p, /* Vdbe being configured */
2196 int idx, /* Index of column zName applies to */
2197 int var, /* One of the COLNAME_* constants */
2198 const char *zName, /* Pointer to buffer containing name */
2199 void (*xDel)(void*) /* Memory management strategy for zName */
2201 int rc;
2202 Mem *pColName;
2203 assert( idx<p->nResColumn );
2204 assert( var<COLNAME_N );
2205 if( p->db->mallocFailed ){
2206 assert( !zName || xDel!=SQLITE_DYNAMIC );
2207 return SQLITE_NOMEM_BKPT;
2209 assert( p->aColName!=0 );
2210 pColName = &(p->aColName[idx+var*p->nResColumn]);
2211 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2212 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2213 return rc;
2217 ** A read or write transaction may or may not be active on database handle
2218 ** db. If a transaction is active, commit it. If there is a
2219 ** write-transaction spanning more than one database file, this routine
2220 ** takes care of the master journal trickery.
2222 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2223 int i;
2224 int nTrans = 0; /* Number of databases with an active write-transaction
2225 ** that are candidates for a two-phase commit using a
2226 ** master-journal */
2227 int rc = SQLITE_OK;
2228 int needXcommit = 0;
2230 #ifdef SQLITE_OMIT_VIRTUALTABLE
2231 /* With this option, sqlite3VtabSync() is defined to be simply
2232 ** SQLITE_OK so p is not used.
2234 UNUSED_PARAMETER(p);
2235 #endif
2237 /* Before doing anything else, call the xSync() callback for any
2238 ** virtual module tables written in this transaction. This has to
2239 ** be done before determining whether a master journal file is
2240 ** required, as an xSync() callback may add an attached database
2241 ** to the transaction.
2243 rc = sqlite3VtabSync(db, p);
2245 /* This loop determines (a) if the commit hook should be invoked and
2246 ** (b) how many database files have open write transactions, not
2247 ** including the temp database. (b) is important because if more than
2248 ** one database file has an open write transaction, a master journal
2249 ** file is required for an atomic commit.
2251 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2252 Btree *pBt = db->aDb[i].pBt;
2253 if( sqlite3BtreeIsInTrans(pBt) ){
2254 /* Whether or not a database might need a master journal depends upon
2255 ** its journal mode (among other things). This matrix determines which
2256 ** journal modes use a master journal and which do not */
2257 static const u8 aMJNeeded[] = {
2258 /* DELETE */ 1,
2259 /* PERSIST */ 1,
2260 /* OFF */ 0,
2261 /* TRUNCATE */ 1,
2262 /* MEMORY */ 0,
2263 /* WAL */ 0
2265 Pager *pPager; /* Pager associated with pBt */
2266 needXcommit = 1;
2267 sqlite3BtreeEnter(pBt);
2268 pPager = sqlite3BtreePager(pBt);
2269 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2270 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2272 assert( i!=1 );
2273 nTrans++;
2275 rc = sqlite3PagerExclusiveLock(pPager);
2276 sqlite3BtreeLeave(pBt);
2279 if( rc!=SQLITE_OK ){
2280 return rc;
2283 /* If there are any write-transactions at all, invoke the commit hook */
2284 if( needXcommit && db->xCommitCallback ){
2285 rc = db->xCommitCallback(db->pCommitArg);
2286 if( rc ){
2287 return SQLITE_CONSTRAINT_COMMITHOOK;
2291 /* The simple case - no more than one database file (not counting the
2292 ** TEMP database) has a transaction active. There is no need for the
2293 ** master-journal.
2295 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2296 ** string, it means the main database is :memory: or a temp file. In
2297 ** that case we do not support atomic multi-file commits, so use the
2298 ** simple case then too.
2300 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2301 || nTrans<=1
2303 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2304 Btree *pBt = db->aDb[i].pBt;
2305 if( pBt ){
2306 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2310 /* Do the commit only if all databases successfully complete phase 1.
2311 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2312 ** IO error while deleting or truncating a journal file. It is unlikely,
2313 ** but could happen. In this case abandon processing and return the error.
2315 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2316 Btree *pBt = db->aDb[i].pBt;
2317 if( pBt ){
2318 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2321 if( rc==SQLITE_OK ){
2322 sqlite3VtabCommit(db);
2326 /* The complex case - There is a multi-file write-transaction active.
2327 ** This requires a master journal file to ensure the transaction is
2328 ** committed atomically.
2330 #ifndef SQLITE_OMIT_DISKIO
2331 else{
2332 sqlite3_vfs *pVfs = db->pVfs;
2333 char *zMaster = 0; /* File-name for the master journal */
2334 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2335 sqlite3_file *pMaster = 0;
2336 i64 offset = 0;
2337 int res;
2338 int retryCount = 0;
2339 int nMainFile;
2341 /* Select a master journal file name */
2342 nMainFile = sqlite3Strlen30(zMainFile);
2343 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2344 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2345 do {
2346 u32 iRandom;
2347 if( retryCount ){
2348 if( retryCount>100 ){
2349 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2350 sqlite3OsDelete(pVfs, zMaster, 0);
2351 break;
2352 }else if( retryCount==1 ){
2353 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2356 retryCount++;
2357 sqlite3_randomness(sizeof(iRandom), &iRandom);
2358 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2359 (iRandom>>8)&0xffffff, iRandom&0xff);
2360 /* The antipenultimate character of the master journal name must
2361 ** be "9" to avoid name collisions when using 8+3 filenames. */
2362 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2363 sqlite3FileSuffix3(zMainFile, zMaster);
2364 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2365 }while( rc==SQLITE_OK && res );
2366 if( rc==SQLITE_OK ){
2367 /* Open the master journal. */
2368 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2369 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2370 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2373 if( rc!=SQLITE_OK ){
2374 sqlite3DbFree(db, zMaster);
2375 return rc;
2378 /* Write the name of each database file in the transaction into the new
2379 ** master journal file. If an error occurs at this point close
2380 ** and delete the master journal file. All the individual journal files
2381 ** still have 'null' as the master journal pointer, so they will roll
2382 ** back independently if a failure occurs.
2384 for(i=0; i<db->nDb; i++){
2385 Btree *pBt = db->aDb[i].pBt;
2386 if( sqlite3BtreeIsInTrans(pBt) ){
2387 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2388 if( zFile==0 ){
2389 continue; /* Ignore TEMP and :memory: databases */
2391 assert( zFile[0]!=0 );
2392 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2393 offset += sqlite3Strlen30(zFile)+1;
2394 if( rc!=SQLITE_OK ){
2395 sqlite3OsCloseFree(pMaster);
2396 sqlite3OsDelete(pVfs, zMaster, 0);
2397 sqlite3DbFree(db, zMaster);
2398 return rc;
2403 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2404 ** flag is set this is not required.
2406 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2407 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2409 sqlite3OsCloseFree(pMaster);
2410 sqlite3OsDelete(pVfs, zMaster, 0);
2411 sqlite3DbFree(db, zMaster);
2412 return rc;
2415 /* Sync all the db files involved in the transaction. The same call
2416 ** sets the master journal pointer in each individual journal. If
2417 ** an error occurs here, do not delete the master journal file.
2419 ** If the error occurs during the first call to
2420 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2421 ** master journal file will be orphaned. But we cannot delete it,
2422 ** in case the master journal file name was written into the journal
2423 ** file before the failure occurred.
2425 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2426 Btree *pBt = db->aDb[i].pBt;
2427 if( pBt ){
2428 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2431 sqlite3OsCloseFree(pMaster);
2432 assert( rc!=SQLITE_BUSY );
2433 if( rc!=SQLITE_OK ){
2434 sqlite3DbFree(db, zMaster);
2435 return rc;
2438 /* Delete the master journal file. This commits the transaction. After
2439 ** doing this the directory is synced again before any individual
2440 ** transaction files are deleted.
2442 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2443 sqlite3DbFree(db, zMaster);
2444 zMaster = 0;
2445 if( rc ){
2446 return rc;
2449 /* All files and directories have already been synced, so the following
2450 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2451 ** deleting or truncating journals. If something goes wrong while
2452 ** this is happening we don't really care. The integrity of the
2453 ** transaction is already guaranteed, but some stray 'cold' journals
2454 ** may be lying around. Returning an error code won't help matters.
2456 disable_simulated_io_errors();
2457 sqlite3BeginBenignMalloc();
2458 for(i=0; i<db->nDb; i++){
2459 Btree *pBt = db->aDb[i].pBt;
2460 if( pBt ){
2461 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2464 sqlite3EndBenignMalloc();
2465 enable_simulated_io_errors();
2467 sqlite3VtabCommit(db);
2469 #endif
2471 return rc;
2475 ** This routine checks that the sqlite3.nVdbeActive count variable
2476 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2477 ** currently active. An assertion fails if the two counts do not match.
2478 ** This is an internal self-check only - it is not an essential processing
2479 ** step.
2481 ** This is a no-op if NDEBUG is defined.
2483 #ifndef NDEBUG
2484 static void checkActiveVdbeCnt(sqlite3 *db){
2485 Vdbe *p;
2486 int cnt = 0;
2487 int nWrite = 0;
2488 int nRead = 0;
2489 p = db->pVdbe;
2490 while( p ){
2491 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2492 cnt++;
2493 if( p->readOnly==0 ) nWrite++;
2494 if( p->bIsReader ) nRead++;
2496 p = p->pNext;
2498 assert( cnt==db->nVdbeActive );
2499 assert( nWrite==db->nVdbeWrite );
2500 assert( nRead==db->nVdbeRead );
2502 #else
2503 #define checkActiveVdbeCnt(x)
2504 #endif
2507 ** If the Vdbe passed as the first argument opened a statement-transaction,
2508 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2509 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2510 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2511 ** statement transaction is committed.
2513 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2514 ** Otherwise SQLITE_OK.
2516 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2517 sqlite3 *const db = p->db;
2518 int rc = SQLITE_OK;
2519 int i;
2520 const int iSavepoint = p->iStatement-1;
2522 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2523 assert( db->nStatement>0 );
2524 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2526 for(i=0; i<db->nDb; i++){
2527 int rc2 = SQLITE_OK;
2528 Btree *pBt = db->aDb[i].pBt;
2529 if( pBt ){
2530 if( eOp==SAVEPOINT_ROLLBACK ){
2531 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2533 if( rc2==SQLITE_OK ){
2534 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2536 if( rc==SQLITE_OK ){
2537 rc = rc2;
2541 db->nStatement--;
2542 p->iStatement = 0;
2544 if( rc==SQLITE_OK ){
2545 if( eOp==SAVEPOINT_ROLLBACK ){
2546 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2548 if( rc==SQLITE_OK ){
2549 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2553 /* If the statement transaction is being rolled back, also restore the
2554 ** database handles deferred constraint counter to the value it had when
2555 ** the statement transaction was opened. */
2556 if( eOp==SAVEPOINT_ROLLBACK ){
2557 db->nDeferredCons = p->nStmtDefCons;
2558 db->nDeferredImmCons = p->nStmtDefImmCons;
2560 return rc;
2562 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2563 if( p->db->nStatement && p->iStatement ){
2564 return vdbeCloseStatement(p, eOp);
2566 return SQLITE_OK;
2571 ** This function is called when a transaction opened by the database
2572 ** handle associated with the VM passed as an argument is about to be
2573 ** committed. If there are outstanding deferred foreign key constraint
2574 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2576 ** If there are outstanding FK violations and this function returns
2577 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2578 ** and write an error message to it. Then return SQLITE_ERROR.
2580 #ifndef SQLITE_OMIT_FOREIGN_KEY
2581 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2582 sqlite3 *db = p->db;
2583 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2584 || (!deferred && p->nFkConstraint>0)
2586 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2587 p->errorAction = OE_Abort;
2588 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2589 return SQLITE_ERROR;
2591 return SQLITE_OK;
2593 #endif
2596 ** This routine is called the when a VDBE tries to halt. If the VDBE
2597 ** has made changes and is in autocommit mode, then commit those
2598 ** changes. If a rollback is needed, then do the rollback.
2600 ** This routine is the only way to move the state of a VM from
2601 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2602 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2604 ** Return an error code. If the commit could not complete because of
2605 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2606 ** means the close did not happen and needs to be repeated.
2608 int sqlite3VdbeHalt(Vdbe *p){
2609 int rc; /* Used to store transient return codes */
2610 sqlite3 *db = p->db;
2612 /* This function contains the logic that determines if a statement or
2613 ** transaction will be committed or rolled back as a result of the
2614 ** execution of this virtual machine.
2616 ** If any of the following errors occur:
2618 ** SQLITE_NOMEM
2619 ** SQLITE_IOERR
2620 ** SQLITE_FULL
2621 ** SQLITE_INTERRUPT
2623 ** Then the internal cache might have been left in an inconsistent
2624 ** state. We need to rollback the statement transaction, if there is
2625 ** one, or the complete transaction if there is no statement transaction.
2628 if( p->magic!=VDBE_MAGIC_RUN ){
2629 return SQLITE_OK;
2631 if( db->mallocFailed ){
2632 p->rc = SQLITE_NOMEM_BKPT;
2634 closeAllCursors(p);
2635 checkActiveVdbeCnt(db);
2637 /* No commit or rollback needed if the program never started or if the
2638 ** SQL statement does not read or write a database file. */
2639 if( p->pc>=0 && p->bIsReader ){
2640 int mrc; /* Primary error code from p->rc */
2641 int eStatementOp = 0;
2642 int isSpecialError; /* Set to true if a 'special' error */
2644 /* Lock all btrees used by the statement */
2645 sqlite3VdbeEnter(p);
2647 /* Check for one of the special errors */
2648 mrc = p->rc & 0xff;
2649 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2650 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2651 if( isSpecialError ){
2652 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2653 ** no rollback is necessary. Otherwise, at least a savepoint
2654 ** transaction must be rolled back to restore the database to a
2655 ** consistent state.
2657 ** Even if the statement is read-only, it is important to perform
2658 ** a statement or transaction rollback operation. If the error
2659 ** occurred while writing to the journal, sub-journal or database
2660 ** file as part of an effort to free up cache space (see function
2661 ** pagerStress() in pager.c), the rollback is required to restore
2662 ** the pager to a consistent state.
2664 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2665 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2666 eStatementOp = SAVEPOINT_ROLLBACK;
2667 }else{
2668 /* We are forced to roll back the active transaction. Before doing
2669 ** so, abort any other statements this handle currently has active.
2671 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2672 sqlite3CloseSavepoints(db);
2673 db->autoCommit = 1;
2674 p->nChange = 0;
2679 /* Check for immediate foreign key violations. */
2680 if( p->rc==SQLITE_OK ){
2681 sqlite3VdbeCheckFk(p, 0);
2684 /* If the auto-commit flag is set and this is the only active writer
2685 ** VM, then we do either a commit or rollback of the current transaction.
2687 ** Note: This block also runs if one of the special errors handled
2688 ** above has occurred.
2690 if( !sqlite3VtabInSync(db)
2691 && db->autoCommit
2692 && db->nVdbeWrite==(p->readOnly==0)
2694 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2695 rc = sqlite3VdbeCheckFk(p, 1);
2696 if( rc!=SQLITE_OK ){
2697 if( NEVER(p->readOnly) ){
2698 sqlite3VdbeLeave(p);
2699 return SQLITE_ERROR;
2701 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2702 }else{
2703 /* The auto-commit flag is true, the vdbe program was successful
2704 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2705 ** key constraints to hold up the transaction. This means a commit
2706 ** is required. */
2707 rc = vdbeCommit(db, p);
2709 if( rc==SQLITE_BUSY && p->readOnly ){
2710 sqlite3VdbeLeave(p);
2711 return SQLITE_BUSY;
2712 }else if( rc!=SQLITE_OK ){
2713 p->rc = rc;
2714 sqlite3RollbackAll(db, SQLITE_OK);
2715 p->nChange = 0;
2716 }else{
2717 db->nDeferredCons = 0;
2718 db->nDeferredImmCons = 0;
2719 db->flags &= ~SQLITE_DeferFKs;
2720 sqlite3CommitInternalChanges(db);
2722 }else{
2723 sqlite3RollbackAll(db, SQLITE_OK);
2724 p->nChange = 0;
2726 db->nStatement = 0;
2727 }else if( eStatementOp==0 ){
2728 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2729 eStatementOp = SAVEPOINT_RELEASE;
2730 }else if( p->errorAction==OE_Abort ){
2731 eStatementOp = SAVEPOINT_ROLLBACK;
2732 }else{
2733 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2734 sqlite3CloseSavepoints(db);
2735 db->autoCommit = 1;
2736 p->nChange = 0;
2740 /* If eStatementOp is non-zero, then a statement transaction needs to
2741 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2742 ** do so. If this operation returns an error, and the current statement
2743 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2744 ** current statement error code.
2746 if( eStatementOp ){
2747 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2748 if( rc ){
2749 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2750 p->rc = rc;
2751 sqlite3DbFree(db, p->zErrMsg);
2752 p->zErrMsg = 0;
2754 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2755 sqlite3CloseSavepoints(db);
2756 db->autoCommit = 1;
2757 p->nChange = 0;
2761 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2762 ** has been rolled back, update the database connection change-counter.
2764 if( p->changeCntOn ){
2765 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2766 sqlite3VdbeSetChanges(db, p->nChange);
2767 }else{
2768 sqlite3VdbeSetChanges(db, 0);
2770 p->nChange = 0;
2773 /* Release the locks */
2774 sqlite3VdbeLeave(p);
2777 /* We have successfully halted and closed the VM. Record this fact. */
2778 if( p->pc>=0 ){
2779 db->nVdbeActive--;
2780 if( !p->readOnly ) db->nVdbeWrite--;
2781 if( p->bIsReader ) db->nVdbeRead--;
2782 assert( db->nVdbeActive>=db->nVdbeRead );
2783 assert( db->nVdbeRead>=db->nVdbeWrite );
2784 assert( db->nVdbeWrite>=0 );
2786 p->magic = VDBE_MAGIC_HALT;
2787 checkActiveVdbeCnt(db);
2788 if( db->mallocFailed ){
2789 p->rc = SQLITE_NOMEM_BKPT;
2792 /* If the auto-commit flag is set to true, then any locks that were held
2793 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2794 ** to invoke any required unlock-notify callbacks.
2796 if( db->autoCommit ){
2797 sqlite3ConnectionUnlocked(db);
2800 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2801 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2806 ** Each VDBE holds the result of the most recent sqlite3_step() call
2807 ** in p->rc. This routine sets that result back to SQLITE_OK.
2809 void sqlite3VdbeResetStepResult(Vdbe *p){
2810 p->rc = SQLITE_OK;
2814 ** Copy the error code and error message belonging to the VDBE passed
2815 ** as the first argument to its database handle (so that they will be
2816 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2818 ** This function does not clear the VDBE error code or message, just
2819 ** copies them to the database handle.
2821 int sqlite3VdbeTransferError(Vdbe *p){
2822 sqlite3 *db = p->db;
2823 int rc = p->rc;
2824 if( p->zErrMsg ){
2825 db->bBenignMalloc++;
2826 sqlite3BeginBenignMalloc();
2827 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2828 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2829 sqlite3EndBenignMalloc();
2830 db->bBenignMalloc--;
2831 }else if( db->pErr ){
2832 sqlite3ValueSetNull(db->pErr);
2834 db->errCode = rc;
2835 return rc;
2838 #ifdef SQLITE_ENABLE_SQLLOG
2840 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2841 ** invoke it.
2843 static void vdbeInvokeSqllog(Vdbe *v){
2844 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2845 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2846 assert( v->db->init.busy==0 );
2847 if( zExpanded ){
2848 sqlite3GlobalConfig.xSqllog(
2849 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2851 sqlite3DbFree(v->db, zExpanded);
2855 #else
2856 # define vdbeInvokeSqllog(x)
2857 #endif
2860 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2861 ** Write any error messages into *pzErrMsg. Return the result code.
2863 ** After this routine is run, the VDBE should be ready to be executed
2864 ** again.
2866 ** To look at it another way, this routine resets the state of the
2867 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2868 ** VDBE_MAGIC_INIT.
2870 int sqlite3VdbeReset(Vdbe *p){
2871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2872 int i;
2873 #endif
2875 sqlite3 *db;
2876 db = p->db;
2878 /* If the VM did not run to completion or if it encountered an
2879 ** error, then it might not have been halted properly. So halt
2880 ** it now.
2882 sqlite3VdbeHalt(p);
2884 /* If the VDBE has be run even partially, then transfer the error code
2885 ** and error message from the VDBE into the main database structure. But
2886 ** if the VDBE has just been set to run but has not actually executed any
2887 ** instructions yet, leave the main database error information unchanged.
2889 if( p->pc>=0 ){
2890 vdbeInvokeSqllog(p);
2891 sqlite3VdbeTransferError(p);
2892 if( p->runOnlyOnce ) p->expired = 1;
2893 }else if( p->rc && p->expired ){
2894 /* The expired flag was set on the VDBE before the first call
2895 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2896 ** called), set the database error in this case as well.
2898 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2901 /* Reset register contents and reclaim error message memory.
2903 #ifdef SQLITE_DEBUG
2904 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2905 ** Vdbe.aMem[] arrays have already been cleaned up. */
2906 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2907 if( p->aMem ){
2908 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2910 #endif
2911 sqlite3DbFree(db, p->zErrMsg);
2912 p->zErrMsg = 0;
2913 p->pResultSet = 0;
2915 /* Save profiling information from this VDBE run.
2917 #ifdef VDBE_PROFILE
2919 FILE *out = fopen("vdbe_profile.out", "a");
2920 if( out ){
2921 fprintf(out, "---- ");
2922 for(i=0; i<p->nOp; i++){
2923 fprintf(out, "%02x", p->aOp[i].opcode);
2925 fprintf(out, "\n");
2926 if( p->zSql ){
2927 char c, pc = 0;
2928 fprintf(out, "-- ");
2929 for(i=0; (c = p->zSql[i])!=0; i++){
2930 if( pc=='\n' ) fprintf(out, "-- ");
2931 putc(c, out);
2932 pc = c;
2934 if( pc!='\n' ) fprintf(out, "\n");
2936 for(i=0; i<p->nOp; i++){
2937 char zHdr[100];
2938 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2939 p->aOp[i].cnt,
2940 p->aOp[i].cycles,
2941 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2943 fprintf(out, "%s", zHdr);
2944 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2946 fclose(out);
2949 #endif
2950 p->magic = VDBE_MAGIC_RESET;
2951 return p->rc & db->errMask;
2955 ** Clean up and delete a VDBE after execution. Return an integer which is
2956 ** the result code. Write any error message text into *pzErrMsg.
2958 int sqlite3VdbeFinalize(Vdbe *p){
2959 int rc = SQLITE_OK;
2960 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2961 rc = sqlite3VdbeReset(p);
2962 assert( (rc & p->db->errMask)==rc );
2964 sqlite3VdbeDelete(p);
2965 return rc;
2969 ** If parameter iOp is less than zero, then invoke the destructor for
2970 ** all auxiliary data pointers currently cached by the VM passed as
2971 ** the first argument.
2973 ** Or, if iOp is greater than or equal to zero, then the destructor is
2974 ** only invoked for those auxiliary data pointers created by the user
2975 ** function invoked by the OP_Function opcode at instruction iOp of
2976 ** VM pVdbe, and only then if:
2978 ** * the associated function parameter is the 32nd or later (counting
2979 ** from left to right), or
2981 ** * the corresponding bit in argument mask is clear (where the first
2982 ** function parameter corresponds to bit 0 etc.).
2984 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2985 while( *pp ){
2986 AuxData *pAux = *pp;
2987 if( (iOp<0)
2988 || (pAux->iAuxOp==iOp
2989 && pAux->iAuxArg>=0
2990 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
2992 testcase( pAux->iAuxArg==31 );
2993 if( pAux->xDeleteAux ){
2994 pAux->xDeleteAux(pAux->pAux);
2996 *pp = pAux->pNextAux;
2997 sqlite3DbFree(db, pAux);
2998 }else{
2999 pp= &pAux->pNextAux;
3005 ** Free all memory associated with the Vdbe passed as the second argument,
3006 ** except for object itself, which is preserved.
3008 ** The difference between this function and sqlite3VdbeDelete() is that
3009 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3010 ** the database connection and frees the object itself.
3012 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3013 SubProgram *pSub, *pNext;
3014 assert( p->db==0 || p->db==db );
3015 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3016 for(pSub=p->pProgram; pSub; pSub=pNext){
3017 pNext = pSub->pNext;
3018 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3019 sqlite3DbFree(db, pSub);
3021 if( p->magic!=VDBE_MAGIC_INIT ){
3022 releaseMemArray(p->aVar, p->nVar);
3023 sqlite3DbFree(db, p->pVList);
3024 sqlite3DbFree(db, p->pFree);
3026 vdbeFreeOpArray(db, p->aOp, p->nOp);
3027 sqlite3DbFree(db, p->aColName);
3028 sqlite3DbFree(db, p->zSql);
3029 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3031 int i;
3032 for(i=0; i<p->nScan; i++){
3033 sqlite3DbFree(db, p->aScan[i].zName);
3035 sqlite3DbFree(db, p->aScan);
3037 #endif
3041 ** Delete an entire VDBE.
3043 void sqlite3VdbeDelete(Vdbe *p){
3044 sqlite3 *db;
3046 if( NEVER(p==0) ) return;
3047 db = p->db;
3048 assert( sqlite3_mutex_held(db->mutex) );
3049 sqlite3VdbeClearObject(db, p);
3050 if( p->pPrev ){
3051 p->pPrev->pNext = p->pNext;
3052 }else{
3053 assert( db->pVdbe==p );
3054 db->pVdbe = p->pNext;
3056 if( p->pNext ){
3057 p->pNext->pPrev = p->pPrev;
3059 p->magic = VDBE_MAGIC_DEAD;
3060 p->db = 0;
3061 sqlite3DbFreeNN(db, p);
3065 ** The cursor "p" has a pending seek operation that has not yet been
3066 ** carried out. Seek the cursor now. If an error occurs, return
3067 ** the appropriate error code.
3069 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3070 int res, rc;
3071 #ifdef SQLITE_TEST
3072 extern int sqlite3_search_count;
3073 #endif
3074 assert( p->deferredMoveto );
3075 assert( p->isTable );
3076 assert( p->eCurType==CURTYPE_BTREE );
3077 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3078 if( rc ) return rc;
3079 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3080 #ifdef SQLITE_TEST
3081 sqlite3_search_count++;
3082 #endif
3083 p->deferredMoveto = 0;
3084 p->cacheStatus = CACHE_STALE;
3085 return SQLITE_OK;
3089 ** Something has moved cursor "p" out of place. Maybe the row it was
3090 ** pointed to was deleted out from under it. Or maybe the btree was
3091 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3092 ** is supposed to be pointing. If the row was deleted out from under the
3093 ** cursor, set the cursor to point to a NULL row.
3095 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3096 int isDifferentRow, rc;
3097 assert( p->eCurType==CURTYPE_BTREE );
3098 assert( p->uc.pCursor!=0 );
3099 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3100 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3101 p->cacheStatus = CACHE_STALE;
3102 if( isDifferentRow ) p->nullRow = 1;
3103 return rc;
3107 ** Check to ensure that the cursor is valid. Restore the cursor
3108 ** if need be. Return any I/O error from the restore operation.
3110 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3111 assert( p->eCurType==CURTYPE_BTREE );
3112 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3113 return handleMovedCursor(p);
3115 return SQLITE_OK;
3119 ** Make sure the cursor p is ready to read or write the row to which it
3120 ** was last positioned. Return an error code if an OOM fault or I/O error
3121 ** prevents us from positioning the cursor to its correct position.
3123 ** If a MoveTo operation is pending on the given cursor, then do that
3124 ** MoveTo now. If no move is pending, check to see if the row has been
3125 ** deleted out from under the cursor and if it has, mark the row as
3126 ** a NULL row.
3128 ** If the cursor is already pointing to the correct row and that row has
3129 ** not been deleted out from under the cursor, then this routine is a no-op.
3131 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3132 VdbeCursor *p = *pp;
3133 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3134 if( p->deferredMoveto ){
3135 int iMap;
3136 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3137 *pp = p->pAltCursor;
3138 *piCol = iMap - 1;
3139 return SQLITE_OK;
3141 return handleDeferredMoveto(p);
3143 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3144 return handleMovedCursor(p);
3146 return SQLITE_OK;
3150 ** The following functions:
3152 ** sqlite3VdbeSerialType()
3153 ** sqlite3VdbeSerialTypeLen()
3154 ** sqlite3VdbeSerialLen()
3155 ** sqlite3VdbeSerialPut()
3156 ** sqlite3VdbeSerialGet()
3158 ** encapsulate the code that serializes values for storage in SQLite
3159 ** data and index records. Each serialized value consists of a
3160 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3161 ** integer, stored as a varint.
3163 ** In an SQLite index record, the serial type is stored directly before
3164 ** the blob of data that it corresponds to. In a table record, all serial
3165 ** types are stored at the start of the record, and the blobs of data at
3166 ** the end. Hence these functions allow the caller to handle the
3167 ** serial-type and data blob separately.
3169 ** The following table describes the various storage classes for data:
3171 ** serial type bytes of data type
3172 ** -------------- --------------- ---------------
3173 ** 0 0 NULL
3174 ** 1 1 signed integer
3175 ** 2 2 signed integer
3176 ** 3 3 signed integer
3177 ** 4 4 signed integer
3178 ** 5 6 signed integer
3179 ** 6 8 signed integer
3180 ** 7 8 IEEE float
3181 ** 8 0 Integer constant 0
3182 ** 9 0 Integer constant 1
3183 ** 10,11 reserved for expansion
3184 ** N>=12 and even (N-12)/2 BLOB
3185 ** N>=13 and odd (N-13)/2 text
3187 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3188 ** of SQLite will not understand those serial types.
3192 ** Return the serial-type for the value stored in pMem.
3194 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3195 int flags = pMem->flags;
3196 u32 n;
3198 assert( pLen!=0 );
3199 if( flags&MEM_Null ){
3200 *pLen = 0;
3201 return 0;
3203 if( flags&MEM_Int ){
3204 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3205 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3206 i64 i = pMem->u.i;
3207 u64 u;
3208 if( i<0 ){
3209 u = ~i;
3210 }else{
3211 u = i;
3213 if( u<=127 ){
3214 if( (i&1)==i && file_format>=4 ){
3215 *pLen = 0;
3216 return 8+(u32)u;
3217 }else{
3218 *pLen = 1;
3219 return 1;
3222 if( u<=32767 ){ *pLen = 2; return 2; }
3223 if( u<=8388607 ){ *pLen = 3; return 3; }
3224 if( u<=2147483647 ){ *pLen = 4; return 4; }
3225 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3226 *pLen = 8;
3227 return 6;
3229 if( flags&MEM_Real ){
3230 *pLen = 8;
3231 return 7;
3233 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3234 assert( pMem->n>=0 );
3235 n = (u32)pMem->n;
3236 if( flags & MEM_Zero ){
3237 n += pMem->u.nZero;
3239 *pLen = n;
3240 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3244 ** The sizes for serial types less than 128
3246 static const u8 sqlite3SmallTypeSizes[] = {
3247 /* 0 1 2 3 4 5 6 7 8 9 */
3248 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3249 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3250 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3251 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3252 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3253 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3254 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3255 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3256 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3257 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3258 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3259 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3260 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3264 ** Return the length of the data corresponding to the supplied serial-type.
3266 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3267 if( serial_type>=128 ){
3268 return (serial_type-12)/2;
3269 }else{
3270 assert( serial_type<12
3271 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3272 return sqlite3SmallTypeSizes[serial_type];
3275 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3276 assert( serial_type<128 );
3277 return sqlite3SmallTypeSizes[serial_type];
3281 ** If we are on an architecture with mixed-endian floating
3282 ** points (ex: ARM7) then swap the lower 4 bytes with the
3283 ** upper 4 bytes. Return the result.
3285 ** For most architectures, this is a no-op.
3287 ** (later): It is reported to me that the mixed-endian problem
3288 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3289 ** that early versions of GCC stored the two words of a 64-bit
3290 ** float in the wrong order. And that error has been propagated
3291 ** ever since. The blame is not necessarily with GCC, though.
3292 ** GCC might have just copying the problem from a prior compiler.
3293 ** I am also told that newer versions of GCC that follow a different
3294 ** ABI get the byte order right.
3296 ** Developers using SQLite on an ARM7 should compile and run their
3297 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3298 ** enabled, some asserts below will ensure that the byte order of
3299 ** floating point values is correct.
3301 ** (2007-08-30) Frank van Vugt has studied this problem closely
3302 ** and has send his findings to the SQLite developers. Frank
3303 ** writes that some Linux kernels offer floating point hardware
3304 ** emulation that uses only 32-bit mantissas instead of a full
3305 ** 48-bits as required by the IEEE standard. (This is the
3306 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3307 ** byte swapping becomes very complicated. To avoid problems,
3308 ** the necessary byte swapping is carried out using a 64-bit integer
3309 ** rather than a 64-bit float. Frank assures us that the code here
3310 ** works for him. We, the developers, have no way to independently
3311 ** verify this, but Frank seems to know what he is talking about
3312 ** so we trust him.
3314 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3315 static u64 floatSwap(u64 in){
3316 union {
3317 u64 r;
3318 u32 i[2];
3319 } u;
3320 u32 t;
3322 u.r = in;
3323 t = u.i[0];
3324 u.i[0] = u.i[1];
3325 u.i[1] = t;
3326 return u.r;
3328 # define swapMixedEndianFloat(X) X = floatSwap(X)
3329 #else
3330 # define swapMixedEndianFloat(X)
3331 #endif
3334 ** Write the serialized data blob for the value stored in pMem into
3335 ** buf. It is assumed that the caller has allocated sufficient space.
3336 ** Return the number of bytes written.
3338 ** nBuf is the amount of space left in buf[]. The caller is responsible
3339 ** for allocating enough space to buf[] to hold the entire field, exclusive
3340 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3342 ** Return the number of bytes actually written into buf[]. The number
3343 ** of bytes in the zero-filled tail is included in the return value only
3344 ** if those bytes were zeroed in buf[].
3346 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3347 u32 len;
3349 /* Integer and Real */
3350 if( serial_type<=7 && serial_type>0 ){
3351 u64 v;
3352 u32 i;
3353 if( serial_type==7 ){
3354 assert( sizeof(v)==sizeof(pMem->u.r) );
3355 memcpy(&v, &pMem->u.r, sizeof(v));
3356 swapMixedEndianFloat(v);
3357 }else{
3358 v = pMem->u.i;
3360 len = i = sqlite3SmallTypeSizes[serial_type];
3361 assert( i>0 );
3363 buf[--i] = (u8)(v&0xFF);
3364 v >>= 8;
3365 }while( i );
3366 return len;
3369 /* String or blob */
3370 if( serial_type>=12 ){
3371 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3372 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3373 len = pMem->n;
3374 if( len>0 ) memcpy(buf, pMem->z, len);
3375 return len;
3378 /* NULL or constants 0 or 1 */
3379 return 0;
3382 /* Input "x" is a sequence of unsigned characters that represent a
3383 ** big-endian integer. Return the equivalent native integer
3385 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3386 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3387 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3388 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3389 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3392 ** Deserialize the data blob pointed to by buf as serial type serial_type
3393 ** and store the result in pMem. Return the number of bytes read.
3395 ** This function is implemented as two separate routines for performance.
3396 ** The few cases that require local variables are broken out into a separate
3397 ** routine so that in most cases the overhead of moving the stack pointer
3398 ** is avoided.
3400 static u32 SQLITE_NOINLINE serialGet(
3401 const unsigned char *buf, /* Buffer to deserialize from */
3402 u32 serial_type, /* Serial type to deserialize */
3403 Mem *pMem /* Memory cell to write value into */
3405 u64 x = FOUR_BYTE_UINT(buf);
3406 u32 y = FOUR_BYTE_UINT(buf+4);
3407 x = (x<<32) + y;
3408 if( serial_type==6 ){
3409 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3410 ** twos-complement integer. */
3411 pMem->u.i = *(i64*)&x;
3412 pMem->flags = MEM_Int;
3413 testcase( pMem->u.i<0 );
3414 }else{
3415 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3416 ** floating point number. */
3417 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3418 /* Verify that integers and floating point values use the same
3419 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3420 ** defined that 64-bit floating point values really are mixed
3421 ** endian.
3423 static const u64 t1 = ((u64)0x3ff00000)<<32;
3424 static const double r1 = 1.0;
3425 u64 t2 = t1;
3426 swapMixedEndianFloat(t2);
3427 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3428 #endif
3429 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3430 swapMixedEndianFloat(x);
3431 memcpy(&pMem->u.r, &x, sizeof(x));
3432 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3434 return 8;
3436 u32 sqlite3VdbeSerialGet(
3437 const unsigned char *buf, /* Buffer to deserialize from */
3438 u32 serial_type, /* Serial type to deserialize */
3439 Mem *pMem /* Memory cell to write value into */
3441 switch( serial_type ){
3442 case 10: /* Reserved for future use */
3443 case 11: /* Reserved for future use */
3444 case 0: { /* Null */
3445 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3446 pMem->flags = MEM_Null;
3447 break;
3449 case 1: {
3450 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3451 ** integer. */
3452 pMem->u.i = ONE_BYTE_INT(buf);
3453 pMem->flags = MEM_Int;
3454 testcase( pMem->u.i<0 );
3455 return 1;
3457 case 2: { /* 2-byte signed integer */
3458 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3459 ** twos-complement integer. */
3460 pMem->u.i = TWO_BYTE_INT(buf);
3461 pMem->flags = MEM_Int;
3462 testcase( pMem->u.i<0 );
3463 return 2;
3465 case 3: { /* 3-byte signed integer */
3466 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3467 ** twos-complement integer. */
3468 pMem->u.i = THREE_BYTE_INT(buf);
3469 pMem->flags = MEM_Int;
3470 testcase( pMem->u.i<0 );
3471 return 3;
3473 case 4: { /* 4-byte signed integer */
3474 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3475 ** twos-complement integer. */
3476 pMem->u.i = FOUR_BYTE_INT(buf);
3477 #ifdef __HP_cc
3478 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3479 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3480 #endif
3481 pMem->flags = MEM_Int;
3482 testcase( pMem->u.i<0 );
3483 return 4;
3485 case 5: { /* 6-byte signed integer */
3486 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3487 ** twos-complement integer. */
3488 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3489 pMem->flags = MEM_Int;
3490 testcase( pMem->u.i<0 );
3491 return 6;
3493 case 6: /* 8-byte signed integer */
3494 case 7: { /* IEEE floating point */
3495 /* These use local variables, so do them in a separate routine
3496 ** to avoid having to move the frame pointer in the common case */
3497 return serialGet(buf,serial_type,pMem);
3499 case 8: /* Integer 0 */
3500 case 9: { /* Integer 1 */
3501 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3502 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3503 pMem->u.i = serial_type-8;
3504 pMem->flags = MEM_Int;
3505 return 0;
3507 default: {
3508 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3509 ** length.
3510 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3511 ** (N-13)/2 bytes in length. */
3512 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3513 pMem->z = (char *)buf;
3514 pMem->n = (serial_type-12)/2;
3515 pMem->flags = aFlag[serial_type&1];
3516 return pMem->n;
3519 return 0;
3522 ** This routine is used to allocate sufficient space for an UnpackedRecord
3523 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3524 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3526 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3527 ** the unaligned buffer passed via the second and third arguments (presumably
3528 ** stack space). If the former, then *ppFree is set to a pointer that should
3529 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3530 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3531 ** before returning.
3533 ** If an OOM error occurs, NULL is returned.
3535 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3536 KeyInfo *pKeyInfo /* Description of the record */
3538 UnpackedRecord *p; /* Unpacked record to return */
3539 int nByte; /* Number of bytes required for *p */
3540 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3541 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3542 if( !p ) return 0;
3543 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3544 assert( pKeyInfo->aSortOrder!=0 );
3545 p->pKeyInfo = pKeyInfo;
3546 p->nField = pKeyInfo->nKeyField + 1;
3547 return p;
3551 ** Given the nKey-byte encoding of a record in pKey[], populate the
3552 ** UnpackedRecord structure indicated by the fourth argument with the
3553 ** contents of the decoded record.
3555 void sqlite3VdbeRecordUnpack(
3556 KeyInfo *pKeyInfo, /* Information about the record format */
3557 int nKey, /* Size of the binary record */
3558 const void *pKey, /* The binary record */
3559 UnpackedRecord *p /* Populate this structure before returning. */
3561 const unsigned char *aKey = (const unsigned char *)pKey;
3562 int d;
3563 u32 idx; /* Offset in aKey[] to read from */
3564 u16 u; /* Unsigned loop counter */
3565 u32 szHdr;
3566 Mem *pMem = p->aMem;
3568 p->default_rc = 0;
3569 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3570 idx = getVarint32(aKey, szHdr);
3571 d = szHdr;
3572 u = 0;
3573 while( idx<szHdr && d<=nKey ){
3574 u32 serial_type;
3576 idx += getVarint32(&aKey[idx], serial_type);
3577 pMem->enc = pKeyInfo->enc;
3578 pMem->db = pKeyInfo->db;
3579 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3580 pMem->szMalloc = 0;
3581 pMem->z = 0;
3582 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3583 pMem++;
3584 if( (++u)>=p->nField ) break;
3586 assert( u<=pKeyInfo->nKeyField + 1 );
3587 p->nField = u;
3590 #ifdef SQLITE_DEBUG
3592 ** This function compares two index or table record keys in the same way
3593 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3594 ** this function deserializes and compares values using the
3595 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3596 ** in assert() statements to ensure that the optimized code in
3597 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3599 ** Return true if the result of comparison is equivalent to desiredResult.
3600 ** Return false if there is a disagreement.
3602 static int vdbeRecordCompareDebug(
3603 int nKey1, const void *pKey1, /* Left key */
3604 const UnpackedRecord *pPKey2, /* Right key */
3605 int desiredResult /* Correct answer */
3607 u32 d1; /* Offset into aKey[] of next data element */
3608 u32 idx1; /* Offset into aKey[] of next header element */
3609 u32 szHdr1; /* Number of bytes in header */
3610 int i = 0;
3611 int rc = 0;
3612 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3613 KeyInfo *pKeyInfo;
3614 Mem mem1;
3616 pKeyInfo = pPKey2->pKeyInfo;
3617 if( pKeyInfo->db==0 ) return 1;
3618 mem1.enc = pKeyInfo->enc;
3619 mem1.db = pKeyInfo->db;
3620 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3621 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3623 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3624 ** We could initialize it, as shown here, to silence those complaints.
3625 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3626 ** the unnecessary initialization has a measurable negative performance
3627 ** impact, since this routine is a very high runner. And so, we choose
3628 ** to ignore the compiler warnings and leave this variable uninitialized.
3630 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3632 idx1 = getVarint32(aKey1, szHdr1);
3633 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3634 d1 = szHdr1;
3635 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3636 assert( pKeyInfo->aSortOrder!=0 );
3637 assert( pKeyInfo->nKeyField>0 );
3638 assert( idx1<=szHdr1 || CORRUPT_DB );
3640 u32 serial_type1;
3642 /* Read the serial types for the next element in each key. */
3643 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3645 /* Verify that there is enough key space remaining to avoid
3646 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3647 ** always be greater than or equal to the amount of required key space.
3648 ** Use that approximation to avoid the more expensive call to
3649 ** sqlite3VdbeSerialTypeLen() in the common case.
3651 if( d1+serial_type1+2>(u32)nKey1
3652 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3654 break;
3657 /* Extract the values to be compared.
3659 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3661 /* Do the comparison
3663 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3664 if( rc!=0 ){
3665 assert( mem1.szMalloc==0 ); /* See comment below */
3666 if( pKeyInfo->aSortOrder[i] ){
3667 rc = -rc; /* Invert the result for DESC sort order. */
3669 goto debugCompareEnd;
3671 i++;
3672 }while( idx1<szHdr1 && i<pPKey2->nField );
3674 /* No memory allocation is ever used on mem1. Prove this using
3675 ** the following assert(). If the assert() fails, it indicates a
3676 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3678 assert( mem1.szMalloc==0 );
3680 /* rc==0 here means that one of the keys ran out of fields and
3681 ** all the fields up to that point were equal. Return the default_rc
3682 ** value. */
3683 rc = pPKey2->default_rc;
3685 debugCompareEnd:
3686 if( desiredResult==0 && rc==0 ) return 1;
3687 if( desiredResult<0 && rc<0 ) return 1;
3688 if( desiredResult>0 && rc>0 ) return 1;
3689 if( CORRUPT_DB ) return 1;
3690 if( pKeyInfo->db->mallocFailed ) return 1;
3691 return 0;
3693 #endif
3695 #ifdef SQLITE_DEBUG
3697 ** Count the number of fields (a.k.a. columns) in the record given by
3698 ** pKey,nKey. The verify that this count is less than or equal to the
3699 ** limit given by pKeyInfo->nAllField.
3701 ** If this constraint is not satisfied, it means that the high-speed
3702 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3703 ** not work correctly. If this assert() ever fires, it probably means
3704 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
3705 ** incorrectly.
3707 static void vdbeAssertFieldCountWithinLimits(
3708 int nKey, const void *pKey, /* The record to verify */
3709 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3711 int nField = 0;
3712 u32 szHdr;
3713 u32 idx;
3714 u32 notUsed;
3715 const unsigned char *aKey = (const unsigned char*)pKey;
3717 if( CORRUPT_DB ) return;
3718 idx = getVarint32(aKey, szHdr);
3719 assert( nKey>=0 );
3720 assert( szHdr<=(u32)nKey );
3721 while( idx<szHdr ){
3722 idx += getVarint32(aKey+idx, notUsed);
3723 nField++;
3725 assert( nField <= pKeyInfo->nAllField );
3727 #else
3728 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3729 #endif
3732 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3733 ** using the collation sequence pColl. As usual, return a negative , zero
3734 ** or positive value if *pMem1 is less than, equal to or greater than
3735 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3737 static int vdbeCompareMemString(
3738 const Mem *pMem1,
3739 const Mem *pMem2,
3740 const CollSeq *pColl,
3741 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3743 if( pMem1->enc==pColl->enc ){
3744 /* The strings are already in the correct encoding. Call the
3745 ** comparison function directly */
3746 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3747 }else{
3748 int rc;
3749 const void *v1, *v2;
3750 Mem c1;
3751 Mem c2;
3752 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3753 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3754 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3755 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3756 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3757 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3758 if( (v1==0 || v2==0) ){
3759 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3760 rc = 0;
3761 }else{
3762 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
3764 sqlite3VdbeMemRelease(&c1);
3765 sqlite3VdbeMemRelease(&c2);
3766 return rc;
3771 ** The input pBlob is guaranteed to be a Blob that is not marked
3772 ** with MEM_Zero. Return true if it could be a zero-blob.
3774 static int isAllZero(const char *z, int n){
3775 int i;
3776 for(i=0; i<n; i++){
3777 if( z[i] ) return 0;
3779 return 1;
3783 ** Compare two blobs. Return negative, zero, or positive if the first
3784 ** is less than, equal to, or greater than the second, respectively.
3785 ** If one blob is a prefix of the other, then the shorter is the lessor.
3787 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3788 int c;
3789 int n1 = pB1->n;
3790 int n2 = pB2->n;
3792 /* It is possible to have a Blob value that has some non-zero content
3793 ** followed by zero content. But that only comes up for Blobs formed
3794 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3795 ** sqlite3MemCompare(). */
3796 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3797 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3799 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3800 if( pB1->flags & pB2->flags & MEM_Zero ){
3801 return pB1->u.nZero - pB2->u.nZero;
3802 }else if( pB1->flags & MEM_Zero ){
3803 if( !isAllZero(pB2->z, pB2->n) ) return -1;
3804 return pB1->u.nZero - n2;
3805 }else{
3806 if( !isAllZero(pB1->z, pB1->n) ) return +1;
3807 return n1 - pB2->u.nZero;
3810 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3811 if( c ) return c;
3812 return n1 - n2;
3816 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3817 ** number. Return negative, zero, or positive if the first (i64) is less than,
3818 ** equal to, or greater than the second (double).
3820 static int sqlite3IntFloatCompare(i64 i, double r){
3821 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3822 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3823 if( x<r ) return -1;
3824 if( x>r ) return +1;
3825 return 0;
3826 }else{
3827 i64 y;
3828 double s;
3829 if( r<-9223372036854775808.0 ) return +1;
3830 if( r>9223372036854775807.0 ) return -1;
3831 y = (i64)r;
3832 if( i<y ) return -1;
3833 if( i>y ){
3834 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3835 return +1;
3837 s = (double)i;
3838 if( s<r ) return -1;
3839 if( s>r ) return +1;
3840 return 0;
3845 ** Compare the values contained by the two memory cells, returning
3846 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3847 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3848 ** and reals) sorted numerically, followed by text ordered by the collating
3849 ** sequence pColl and finally blob's ordered by memcmp().
3851 ** Two NULL values are considered equal by this function.
3853 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3854 int f1, f2;
3855 int combined_flags;
3857 f1 = pMem1->flags;
3858 f2 = pMem2->flags;
3859 combined_flags = f1|f2;
3860 assert( (combined_flags & MEM_RowSet)==0 );
3862 /* If one value is NULL, it is less than the other. If both values
3863 ** are NULL, return 0.
3865 if( combined_flags&MEM_Null ){
3866 return (f2&MEM_Null) - (f1&MEM_Null);
3869 /* At least one of the two values is a number
3871 if( combined_flags&(MEM_Int|MEM_Real) ){
3872 if( (f1 & f2 & MEM_Int)!=0 ){
3873 if( pMem1->u.i < pMem2->u.i ) return -1;
3874 if( pMem1->u.i > pMem2->u.i ) return +1;
3875 return 0;
3877 if( (f1 & f2 & MEM_Real)!=0 ){
3878 if( pMem1->u.r < pMem2->u.r ) return -1;
3879 if( pMem1->u.r > pMem2->u.r ) return +1;
3880 return 0;
3882 if( (f1&MEM_Int)!=0 ){
3883 if( (f2&MEM_Real)!=0 ){
3884 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3885 }else{
3886 return -1;
3889 if( (f1&MEM_Real)!=0 ){
3890 if( (f2&MEM_Int)!=0 ){
3891 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3892 }else{
3893 return -1;
3896 return +1;
3899 /* If one value is a string and the other is a blob, the string is less.
3900 ** If both are strings, compare using the collating functions.
3902 if( combined_flags&MEM_Str ){
3903 if( (f1 & MEM_Str)==0 ){
3904 return 1;
3906 if( (f2 & MEM_Str)==0 ){
3907 return -1;
3910 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3911 assert( pMem1->enc==SQLITE_UTF8 ||
3912 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3914 /* The collation sequence must be defined at this point, even if
3915 ** the user deletes the collation sequence after the vdbe program is
3916 ** compiled (this was not always the case).
3918 assert( !pColl || pColl->xCmp );
3920 if( pColl ){
3921 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3923 /* If a NULL pointer was passed as the collate function, fall through
3924 ** to the blob case and use memcmp(). */
3927 /* Both values must be blobs. Compare using memcmp(). */
3928 return sqlite3BlobCompare(pMem1, pMem2);
3933 ** The first argument passed to this function is a serial-type that
3934 ** corresponds to an integer - all values between 1 and 9 inclusive
3935 ** except 7. The second points to a buffer containing an integer value
3936 ** serialized according to serial_type. This function deserializes
3937 ** and returns the value.
3939 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3940 u32 y;
3941 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3942 switch( serial_type ){
3943 case 0:
3944 case 1:
3945 testcase( aKey[0]&0x80 );
3946 return ONE_BYTE_INT(aKey);
3947 case 2:
3948 testcase( aKey[0]&0x80 );
3949 return TWO_BYTE_INT(aKey);
3950 case 3:
3951 testcase( aKey[0]&0x80 );
3952 return THREE_BYTE_INT(aKey);
3953 case 4: {
3954 testcase( aKey[0]&0x80 );
3955 y = FOUR_BYTE_UINT(aKey);
3956 return (i64)*(int*)&y;
3958 case 5: {
3959 testcase( aKey[0]&0x80 );
3960 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3962 case 6: {
3963 u64 x = FOUR_BYTE_UINT(aKey);
3964 testcase( aKey[0]&0x80 );
3965 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3966 return (i64)*(i64*)&x;
3970 return (serial_type - 8);
3974 ** This function compares the two table rows or index records
3975 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3976 ** or positive integer if key1 is less than, equal to or
3977 ** greater than key2. The {nKey1, pKey1} key must be a blob
3978 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3979 ** key must be a parsed key such as obtained from
3980 ** sqlite3VdbeParseRecord.
3982 ** If argument bSkip is non-zero, it is assumed that the caller has already
3983 ** determined that the first fields of the keys are equal.
3985 ** Key1 and Key2 do not have to contain the same number of fields. If all
3986 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3987 ** returned.
3989 ** If database corruption is discovered, set pPKey2->errCode to
3990 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3991 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3992 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3994 int sqlite3VdbeRecordCompareWithSkip(
3995 int nKey1, const void *pKey1, /* Left key */
3996 UnpackedRecord *pPKey2, /* Right key */
3997 int bSkip /* If true, skip the first field */
3999 u32 d1; /* Offset into aKey[] of next data element */
4000 int i; /* Index of next field to compare */
4001 u32 szHdr1; /* Size of record header in bytes */
4002 u32 idx1; /* Offset of first type in header */
4003 int rc = 0; /* Return value */
4004 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4005 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
4006 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4007 Mem mem1;
4009 /* If bSkip is true, then the caller has already determined that the first
4010 ** two elements in the keys are equal. Fix the various stack variables so
4011 ** that this routine begins comparing at the second field. */
4012 if( bSkip ){
4013 u32 s1;
4014 idx1 = 1 + getVarint32(&aKey1[1], s1);
4015 szHdr1 = aKey1[0];
4016 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4017 i = 1;
4018 pRhs++;
4019 }else{
4020 idx1 = getVarint32(aKey1, szHdr1);
4021 d1 = szHdr1;
4022 if( d1>(unsigned)nKey1 ){
4023 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4024 return 0; /* Corruption */
4026 i = 0;
4029 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4030 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4031 || CORRUPT_DB );
4032 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4033 assert( pPKey2->pKeyInfo->nKeyField>0 );
4034 assert( idx1<=szHdr1 || CORRUPT_DB );
4036 u32 serial_type;
4038 /* RHS is an integer */
4039 if( pRhs->flags & MEM_Int ){
4040 serial_type = aKey1[idx1];
4041 testcase( serial_type==12 );
4042 if( serial_type>=10 ){
4043 rc = +1;
4044 }else if( serial_type==0 ){
4045 rc = -1;
4046 }else if( serial_type==7 ){
4047 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4048 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4049 }else{
4050 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4051 i64 rhs = pRhs->u.i;
4052 if( lhs<rhs ){
4053 rc = -1;
4054 }else if( lhs>rhs ){
4055 rc = +1;
4060 /* RHS is real */
4061 else if( pRhs->flags & MEM_Real ){
4062 serial_type = aKey1[idx1];
4063 if( serial_type>=10 ){
4064 /* Serial types 12 or greater are strings and blobs (greater than
4065 ** numbers). Types 10 and 11 are currently "reserved for future
4066 ** use", so it doesn't really matter what the results of comparing
4067 ** them to numberic values are. */
4068 rc = +1;
4069 }else if( serial_type==0 ){
4070 rc = -1;
4071 }else{
4072 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4073 if( serial_type==7 ){
4074 if( mem1.u.r<pRhs->u.r ){
4075 rc = -1;
4076 }else if( mem1.u.r>pRhs->u.r ){
4077 rc = +1;
4079 }else{
4080 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4085 /* RHS is a string */
4086 else if( pRhs->flags & MEM_Str ){
4087 getVarint32(&aKey1[idx1], serial_type);
4088 testcase( serial_type==12 );
4089 if( serial_type<12 ){
4090 rc = -1;
4091 }else if( !(serial_type & 0x01) ){
4092 rc = +1;
4093 }else{
4094 mem1.n = (serial_type - 12) / 2;
4095 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4096 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4097 if( (d1+mem1.n) > (unsigned)nKey1 ){
4098 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4099 return 0; /* Corruption */
4100 }else if( pKeyInfo->aColl[i] ){
4101 mem1.enc = pKeyInfo->enc;
4102 mem1.db = pKeyInfo->db;
4103 mem1.flags = MEM_Str;
4104 mem1.z = (char*)&aKey1[d1];
4105 rc = vdbeCompareMemString(
4106 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4108 }else{
4109 int nCmp = MIN(mem1.n, pRhs->n);
4110 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4111 if( rc==0 ) rc = mem1.n - pRhs->n;
4116 /* RHS is a blob */
4117 else if( pRhs->flags & MEM_Blob ){
4118 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4119 getVarint32(&aKey1[idx1], serial_type);
4120 testcase( serial_type==12 );
4121 if( serial_type<12 || (serial_type & 0x01) ){
4122 rc = -1;
4123 }else{
4124 int nStr = (serial_type - 12) / 2;
4125 testcase( (d1+nStr)==(unsigned)nKey1 );
4126 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4127 if( (d1+nStr) > (unsigned)nKey1 ){
4128 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4129 return 0; /* Corruption */
4130 }else if( pRhs->flags & MEM_Zero ){
4131 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4132 rc = 1;
4133 }else{
4134 rc = nStr - pRhs->u.nZero;
4136 }else{
4137 int nCmp = MIN(nStr, pRhs->n);
4138 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4139 if( rc==0 ) rc = nStr - pRhs->n;
4144 /* RHS is null */
4145 else{
4146 serial_type = aKey1[idx1];
4147 rc = (serial_type!=0);
4150 if( rc!=0 ){
4151 if( pKeyInfo->aSortOrder[i] ){
4152 rc = -rc;
4154 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4155 assert( mem1.szMalloc==0 ); /* See comment below */
4156 return rc;
4159 i++;
4160 pRhs++;
4161 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4162 idx1 += sqlite3VarintLen(serial_type);
4163 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4165 /* No memory allocation is ever used on mem1. Prove this using
4166 ** the following assert(). If the assert() fails, it indicates a
4167 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4168 assert( mem1.szMalloc==0 );
4170 /* rc==0 here means that one or both of the keys ran out of fields and
4171 ** all the fields up to that point were equal. Return the default_rc
4172 ** value. */
4173 assert( CORRUPT_DB
4174 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4175 || pKeyInfo->db->mallocFailed
4177 pPKey2->eqSeen = 1;
4178 return pPKey2->default_rc;
4180 int sqlite3VdbeRecordCompare(
4181 int nKey1, const void *pKey1, /* Left key */
4182 UnpackedRecord *pPKey2 /* Right key */
4184 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4189 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4190 ** that (a) the first field of pPKey2 is an integer, and (b) the
4191 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4192 ** byte (i.e. is less than 128).
4194 ** To avoid concerns about buffer overreads, this routine is only used
4195 ** on schemas where the maximum valid header size is 63 bytes or less.
4197 static int vdbeRecordCompareInt(
4198 int nKey1, const void *pKey1, /* Left key */
4199 UnpackedRecord *pPKey2 /* Right key */
4201 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4202 int serial_type = ((const u8*)pKey1)[1];
4203 int res;
4204 u32 y;
4205 u64 x;
4206 i64 v;
4207 i64 lhs;
4209 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4210 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4211 switch( serial_type ){
4212 case 1: { /* 1-byte signed integer */
4213 lhs = ONE_BYTE_INT(aKey);
4214 testcase( lhs<0 );
4215 break;
4217 case 2: { /* 2-byte signed integer */
4218 lhs = TWO_BYTE_INT(aKey);
4219 testcase( lhs<0 );
4220 break;
4222 case 3: { /* 3-byte signed integer */
4223 lhs = THREE_BYTE_INT(aKey);
4224 testcase( lhs<0 );
4225 break;
4227 case 4: { /* 4-byte signed integer */
4228 y = FOUR_BYTE_UINT(aKey);
4229 lhs = (i64)*(int*)&y;
4230 testcase( lhs<0 );
4231 break;
4233 case 5: { /* 6-byte signed integer */
4234 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4235 testcase( lhs<0 );
4236 break;
4238 case 6: { /* 8-byte signed integer */
4239 x = FOUR_BYTE_UINT(aKey);
4240 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4241 lhs = *(i64*)&x;
4242 testcase( lhs<0 );
4243 break;
4245 case 8:
4246 lhs = 0;
4247 break;
4248 case 9:
4249 lhs = 1;
4250 break;
4252 /* This case could be removed without changing the results of running
4253 ** this code. Including it causes gcc to generate a faster switch
4254 ** statement (since the range of switch targets now starts at zero and
4255 ** is contiguous) but does not cause any duplicate code to be generated
4256 ** (as gcc is clever enough to combine the two like cases). Other
4257 ** compilers might be similar. */
4258 case 0: case 7:
4259 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4261 default:
4262 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4265 v = pPKey2->aMem[0].u.i;
4266 if( v>lhs ){
4267 res = pPKey2->r1;
4268 }else if( v<lhs ){
4269 res = pPKey2->r2;
4270 }else if( pPKey2->nField>1 ){
4271 /* The first fields of the two keys are equal. Compare the trailing
4272 ** fields. */
4273 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4274 }else{
4275 /* The first fields of the two keys are equal and there are no trailing
4276 ** fields. Return pPKey2->default_rc in this case. */
4277 res = pPKey2->default_rc;
4278 pPKey2->eqSeen = 1;
4281 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4282 return res;
4286 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4287 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4288 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4289 ** at the start of (pKey1/nKey1) fits in a single byte.
4291 static int vdbeRecordCompareString(
4292 int nKey1, const void *pKey1, /* Left key */
4293 UnpackedRecord *pPKey2 /* Right key */
4295 const u8 *aKey1 = (const u8*)pKey1;
4296 int serial_type;
4297 int res;
4299 assert( pPKey2->aMem[0].flags & MEM_Str );
4300 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4301 getVarint32(&aKey1[1], serial_type);
4302 if( serial_type<12 ){
4303 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4304 }else if( !(serial_type & 0x01) ){
4305 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4306 }else{
4307 int nCmp;
4308 int nStr;
4309 int szHdr = aKey1[0];
4311 nStr = (serial_type-12) / 2;
4312 if( (szHdr + nStr) > nKey1 ){
4313 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4314 return 0; /* Corruption */
4316 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4317 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4319 if( res==0 ){
4320 res = nStr - pPKey2->aMem[0].n;
4321 if( res==0 ){
4322 if( pPKey2->nField>1 ){
4323 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4324 }else{
4325 res = pPKey2->default_rc;
4326 pPKey2->eqSeen = 1;
4328 }else if( res>0 ){
4329 res = pPKey2->r2;
4330 }else{
4331 res = pPKey2->r1;
4333 }else if( res>0 ){
4334 res = pPKey2->r2;
4335 }else{
4336 res = pPKey2->r1;
4340 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4341 || CORRUPT_DB
4342 || pPKey2->pKeyInfo->db->mallocFailed
4344 return res;
4348 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4349 ** suitable for comparing serialized records to the unpacked record passed
4350 ** as the only argument.
4352 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4353 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4354 ** that the size-of-header varint that occurs at the start of each record
4355 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4356 ** also assumes that it is safe to overread a buffer by at least the
4357 ** maximum possible legal header size plus 8 bytes. Because there is
4358 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4359 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4360 ** limit the size of the header to 64 bytes in cases where the first field
4361 ** is an integer.
4363 ** The easiest way to enforce this limit is to consider only records with
4364 ** 13 fields or less. If the first field is an integer, the maximum legal
4365 ** header size is (12*5 + 1 + 1) bytes. */
4366 if( p->pKeyInfo->nAllField<=13 ){
4367 int flags = p->aMem[0].flags;
4368 if( p->pKeyInfo->aSortOrder[0] ){
4369 p->r1 = 1;
4370 p->r2 = -1;
4371 }else{
4372 p->r1 = -1;
4373 p->r2 = 1;
4375 if( (flags & MEM_Int) ){
4376 return vdbeRecordCompareInt;
4378 testcase( flags & MEM_Real );
4379 testcase( flags & MEM_Null );
4380 testcase( flags & MEM_Blob );
4381 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4382 assert( flags & MEM_Str );
4383 return vdbeRecordCompareString;
4387 return sqlite3VdbeRecordCompare;
4391 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4392 ** Read the rowid (the last field in the record) and store it in *rowid.
4393 ** Return SQLITE_OK if everything works, or an error code otherwise.
4395 ** pCur might be pointing to text obtained from a corrupt database file.
4396 ** So the content cannot be trusted. Do appropriate checks on the content.
4398 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4399 i64 nCellKey = 0;
4400 int rc;
4401 u32 szHdr; /* Size of the header */
4402 u32 typeRowid; /* Serial type of the rowid */
4403 u32 lenRowid; /* Size of the rowid */
4404 Mem m, v;
4406 /* Get the size of the index entry. Only indices entries of less
4407 ** than 2GiB are support - anything large must be database corruption.
4408 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4409 ** this code can safely assume that nCellKey is 32-bits
4411 assert( sqlite3BtreeCursorIsValid(pCur) );
4412 nCellKey = sqlite3BtreePayloadSize(pCur);
4413 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4415 /* Read in the complete content of the index entry */
4416 sqlite3VdbeMemInit(&m, db, 0);
4417 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4418 if( rc ){
4419 return rc;
4422 /* The index entry must begin with a header size */
4423 (void)getVarint32((u8*)m.z, szHdr);
4424 testcase( szHdr==3 );
4425 testcase( szHdr==m.n );
4426 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4427 goto idx_rowid_corruption;
4430 /* The last field of the index should be an integer - the ROWID.
4431 ** Verify that the last entry really is an integer. */
4432 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4433 testcase( typeRowid==1 );
4434 testcase( typeRowid==2 );
4435 testcase( typeRowid==3 );
4436 testcase( typeRowid==4 );
4437 testcase( typeRowid==5 );
4438 testcase( typeRowid==6 );
4439 testcase( typeRowid==8 );
4440 testcase( typeRowid==9 );
4441 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4442 goto idx_rowid_corruption;
4444 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4445 testcase( (u32)m.n==szHdr+lenRowid );
4446 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4447 goto idx_rowid_corruption;
4450 /* Fetch the integer off the end of the index record */
4451 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4452 *rowid = v.u.i;
4453 sqlite3VdbeMemRelease(&m);
4454 return SQLITE_OK;
4456 /* Jump here if database corruption is detected after m has been
4457 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4458 idx_rowid_corruption:
4459 testcase( m.szMalloc!=0 );
4460 sqlite3VdbeMemRelease(&m);
4461 return SQLITE_CORRUPT_BKPT;
4465 ** Compare the key of the index entry that cursor pC is pointing to against
4466 ** the key string in pUnpacked. Write into *pRes a number
4467 ** that is negative, zero, or positive if pC is less than, equal to,
4468 ** or greater than pUnpacked. Return SQLITE_OK on success.
4470 ** pUnpacked is either created without a rowid or is truncated so that it
4471 ** omits the rowid at the end. The rowid at the end of the index entry
4472 ** is ignored as well. Hence, this routine only compares the prefixes
4473 ** of the keys prior to the final rowid, not the entire key.
4475 int sqlite3VdbeIdxKeyCompare(
4476 sqlite3 *db, /* Database connection */
4477 VdbeCursor *pC, /* The cursor to compare against */
4478 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4479 int *res /* Write the comparison result here */
4481 i64 nCellKey = 0;
4482 int rc;
4483 BtCursor *pCur;
4484 Mem m;
4486 assert( pC->eCurType==CURTYPE_BTREE );
4487 pCur = pC->uc.pCursor;
4488 assert( sqlite3BtreeCursorIsValid(pCur) );
4489 nCellKey = sqlite3BtreePayloadSize(pCur);
4490 /* nCellKey will always be between 0 and 0xffffffff because of the way
4491 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4492 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4493 *res = 0;
4494 return SQLITE_CORRUPT_BKPT;
4496 sqlite3VdbeMemInit(&m, db, 0);
4497 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4498 if( rc ){
4499 return rc;
4501 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4502 sqlite3VdbeMemRelease(&m);
4503 return SQLITE_OK;
4507 ** This routine sets the value to be returned by subsequent calls to
4508 ** sqlite3_changes() on the database handle 'db'.
4510 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4511 assert( sqlite3_mutex_held(db->mutex) );
4512 db->nChange = nChange;
4513 db->nTotalChange += nChange;
4517 ** Set a flag in the vdbe to update the change counter when it is finalised
4518 ** or reset.
4520 void sqlite3VdbeCountChanges(Vdbe *v){
4521 v->changeCntOn = 1;
4525 ** Mark every prepared statement associated with a database connection
4526 ** as expired.
4528 ** An expired statement means that recompilation of the statement is
4529 ** recommend. Statements expire when things happen that make their
4530 ** programs obsolete. Removing user-defined functions or collating
4531 ** sequences, or changing an authorization function are the types of
4532 ** things that make prepared statements obsolete.
4534 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4535 Vdbe *p;
4536 for(p = db->pVdbe; p; p=p->pNext){
4537 p->expired = 1;
4542 ** Return the database associated with the Vdbe.
4544 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4545 return v->db;
4549 ** Return the SQLITE_PREPARE flags for a Vdbe.
4551 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4552 return v->prepFlags;
4556 ** Return a pointer to an sqlite3_value structure containing the value bound
4557 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4558 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4559 ** constants) to the value before returning it.
4561 ** The returned value must be freed by the caller using sqlite3ValueFree().
4563 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4564 assert( iVar>0 );
4565 if( v ){
4566 Mem *pMem = &v->aVar[iVar-1];
4567 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4568 if( 0==(pMem->flags & MEM_Null) ){
4569 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4570 if( pRet ){
4571 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4572 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4574 return pRet;
4577 return 0;
4581 ** Configure SQL variable iVar so that binding a new value to it signals
4582 ** to sqlite3_reoptimize() that re-preparing the statement may result
4583 ** in a better query plan.
4585 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4586 assert( iVar>0 );
4587 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4588 if( iVar>=32 ){
4589 v->expmask |= 0x80000000;
4590 }else{
4591 v->expmask |= ((u32)1 << (iVar-1));
4596 ** Cause a function to throw an error if it was call from OP_PureFunc
4597 ** rather than OP_Function.
4599 ** OP_PureFunc means that the function must be deterministic, and should
4600 ** throw an error if it is given inputs that would make it non-deterministic.
4601 ** This routine is invoked by date/time functions that use non-deterministic
4602 ** features such as 'now'.
4604 int sqlite3NotPureFunc(sqlite3_context *pCtx){
4605 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4606 if( pCtx->pVdbe==0 ) return 1;
4607 #endif
4608 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
4609 sqlite3_result_error(pCtx,
4610 "non-deterministic function in index expression or CHECK constraint",
4611 -1);
4612 return 0;
4614 return 1;
4617 #ifndef SQLITE_OMIT_VIRTUALTABLE
4619 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4620 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4621 ** in memory obtained from sqlite3DbMalloc).
4623 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4624 if( pVtab->zErrMsg ){
4625 sqlite3 *db = p->db;
4626 sqlite3DbFree(db, p->zErrMsg);
4627 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4628 sqlite3_free(pVtab->zErrMsg);
4629 pVtab->zErrMsg = 0;
4632 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4634 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4637 ** If the second argument is not NULL, release any allocations associated
4638 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4639 ** structure itself, using sqlite3DbFree().
4641 ** This function is used to free UnpackedRecord structures allocated by
4642 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4644 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4645 if( p ){
4646 int i;
4647 for(i=0; i<nField; i++){
4648 Mem *pMem = &p->aMem[i];
4649 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4651 sqlite3DbFreeNN(db, p);
4654 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4656 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4658 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4659 ** then cursor passed as the second argument should point to the row about
4660 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4661 ** the required value will be read from the row the cursor points to.
4663 void sqlite3VdbePreUpdateHook(
4664 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4665 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4666 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4667 const char *zDb, /* Database name */
4668 Table *pTab, /* Modified table */
4669 i64 iKey1, /* Initial key value */
4670 int iReg /* Register for new.* record */
4672 sqlite3 *db = v->db;
4673 i64 iKey2;
4674 PreUpdate preupdate;
4675 const char *zTbl = pTab->zName;
4676 static const u8 fakeSortOrder = 0;
4678 assert( db->pPreUpdate==0 );
4679 memset(&preupdate, 0, sizeof(PreUpdate));
4680 if( HasRowid(pTab)==0 ){
4681 iKey1 = iKey2 = 0;
4682 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4683 }else{
4684 if( op==SQLITE_UPDATE ){
4685 iKey2 = v->aMem[iReg].u.i;
4686 }else{
4687 iKey2 = iKey1;
4691 assert( pCsr->nField==pTab->nCol
4692 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4695 preupdate.v = v;
4696 preupdate.pCsr = pCsr;
4697 preupdate.op = op;
4698 preupdate.iNewReg = iReg;
4699 preupdate.keyinfo.db = db;
4700 preupdate.keyinfo.enc = ENC(db);
4701 preupdate.keyinfo.nKeyField = pTab->nCol;
4702 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4703 preupdate.iKey1 = iKey1;
4704 preupdate.iKey2 = iKey2;
4705 preupdate.pTab = pTab;
4707 db->pPreUpdate = &preupdate;
4708 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4709 db->pPreUpdate = 0;
4710 sqlite3DbFree(db, preupdate.aRecord);
4711 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
4712 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
4713 if( preupdate.aNew ){
4714 int i;
4715 for(i=0; i<pCsr->nField; i++){
4716 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4718 sqlite3DbFreeNN(db, preupdate.aNew);
4721 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */