4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
107 int sqlite3_found_count
= 0;
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
117 # define UPDATE_MAX_BLOBSIZE(P)
121 ** Invoke the VDBE coverage callback, if that callback is defined. This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
125 ** M is an integer, 2 or 3, that indices how many different ways the
126 ** branch can go. It is usually 2. "I" is the direction the branch
127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the
128 ** second alternative branch is taken.
130 ** iSrcLine is the source code line (from the __LINE__ macro) that
131 ** generated the VDBE instruction. This instrumentation assumes that all
132 ** source code is in a single file (the amalgamation). Special values 1
133 ** and 2 for the iSrcLine parameter mean that this particular branch is
134 ** always taken or never taken, respectively.
136 #if !defined(SQLITE_VDBE_COVERAGE)
137 # define VdbeBranchTaken(I,M)
139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine
, u8 I
, u8 M
){
141 if( iSrcLine
<=2 && ALWAYS(iSrcLine
>0) ){
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M
& I
)==I
);
147 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
155 ** Convert the given register into a string if it isn't one
156 ** already. Return non-zero if a malloc() fails.
158 #define Stringify(P, enc) \
159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
164 ** a pointer to a dynamically allocated string where some other entity
165 ** is responsible for deallocating that string. Because the register
166 ** does not control the string, it might be deleted without the register
169 ** This routine converts an ephemeral string into a dynamically allocated
170 ** string that the register itself controls. In other words, it
171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
173 #define Deephemeralize(P) \
174 if( ((P)->flags&MEM_Ephem)!=0 \
175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
182 ** if we run out of memory.
184 static VdbeCursor
*allocateCursor(
185 Vdbe
*p
, /* The virtual machine */
186 int iCur
, /* Index of the new VdbeCursor */
187 int nField
, /* Number of fields in the table or index */
188 int iDb
, /* Database the cursor belongs to, or -1 */
189 u8 eCurType
/* Type of the new cursor */
191 /* Find the memory cell that will be used to store the blob of memory
192 ** required for this VdbeCursor structure. It is convenient to use a
193 ** vdbe memory cell to manage the memory allocation required for a
194 ** VdbeCursor structure for the following reasons:
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
209 Mem
*pMem
= iCur
>0 ? &p
->aMem
[p
->nMem
-iCur
] : p
->aMem
;
214 ROUND8(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
215 (eCurType
==CURTYPE_BTREE
?sqlite3BtreeCursorSize():0);
217 assert( iCur
>=0 && iCur
<p
->nCursor
);
218 if( p
->apCsr
[iCur
] ){ /*OPTIMIZATION-IF-FALSE*/
219 sqlite3VdbeFreeCursor(p
, p
->apCsr
[iCur
]);
222 if( SQLITE_OK
==sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
223 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->z
;
224 memset(pCx
, 0, offsetof(VdbeCursor
,pAltCursor
));
225 pCx
->eCurType
= eCurType
;
227 pCx
->nField
= nField
;
228 pCx
->aOffset
= &pCx
->aType
[nField
];
229 if( eCurType
==CURTYPE_BTREE
){
230 pCx
->uc
.pCursor
= (BtCursor
*)
231 &pMem
->z
[ROUND8(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
232 sqlite3BtreeCursorZero(pCx
->uc
.pCursor
);
239 ** Try to convert a value into a numeric representation if we can
240 ** do so without loss of information. In other words, if the string
241 ** looks like a number, convert it into a number. If it does not
242 ** look like a number, leave it alone.
244 ** If the bTryForInt flag is true, then extra effort is made to give
245 ** an integer representation. Strings that look like floating point
246 ** values but which have no fractional component (example: '48.00')
247 ** will have a MEM_Int representation when bTryForInt is true.
249 ** If bTryForInt is false, then if the input string contains a decimal
250 ** point or exponential notation, the result is only MEM_Real, even
251 ** if there is an exact integer representation of the quantity.
253 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
257 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
))==MEM_Str
);
258 if( sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec
->z
, &iValue
, pRec
->n
, enc
) ){
261 pRec
->flags
|= MEM_Int
;
264 pRec
->flags
|= MEM_Real
;
265 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
267 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
268 ** string representation after computing a numeric equivalent, because the
269 ** string representation might not be the canonical representation for the
270 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
271 pRec
->flags
&= ~MEM_Str
;
275 ** Processing is determine by the affinity parameter:
277 ** SQLITE_AFF_INTEGER:
279 ** SQLITE_AFF_NUMERIC:
280 ** Try to convert pRec to an integer representation or a
281 ** floating-point representation if an integer representation
282 ** is not possible. Note that the integer representation is
283 ** always preferred, even if the affinity is REAL, because
284 ** an integer representation is more space efficient on disk.
287 ** Convert pRec to a text representation.
290 ** No-op. pRec is unchanged.
292 static void applyAffinity(
293 Mem
*pRec
, /* The value to apply affinity to */
294 char affinity
, /* The affinity to be applied */
295 u8 enc
/* Use this text encoding */
297 if( affinity
>=SQLITE_AFF_NUMERIC
){
298 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
299 || affinity
==SQLITE_AFF_NUMERIC
);
300 if( (pRec
->flags
& MEM_Int
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
301 if( (pRec
->flags
& MEM_Real
)==0 ){
302 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
304 sqlite3VdbeIntegerAffinity(pRec
);
307 }else if( affinity
==SQLITE_AFF_TEXT
){
308 /* Only attempt the conversion to TEXT if there is an integer or real
309 ** representation (blob and NULL do not get converted) but no string
310 ** representation. It would be harmless to repeat the conversion if
311 ** there is already a string rep, but it is pointless to waste those
313 if( 0==(pRec
->flags
&MEM_Str
) ){ /*OPTIMIZATION-IF-FALSE*/
314 if( (pRec
->flags
&(MEM_Real
|MEM_Int
)) ){
315 sqlite3VdbeMemStringify(pRec
, enc
, 1);
318 pRec
->flags
&= ~(MEM_Real
|MEM_Int
);
323 ** Try to convert the type of a function argument or a result column
324 ** into a numeric representation. Use either INTEGER or REAL whichever
325 ** is appropriate. But only do the conversion if it is possible without
326 ** loss of information and return the revised type of the argument.
328 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
329 int eType
= sqlite3_value_type(pVal
);
330 if( eType
==SQLITE_TEXT
){
331 Mem
*pMem
= (Mem
*)pVal
;
332 applyNumericAffinity(pMem
, 0);
333 eType
= sqlite3_value_type(pVal
);
339 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
340 ** not the internal Mem* type.
342 void sqlite3ValueApplyAffinity(
347 applyAffinity((Mem
*)pVal
, affinity
, enc
);
351 ** pMem currently only holds a string type (or maybe a BLOB that we can
352 ** interpret as a string if we want to). Compute its corresponding
353 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
356 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
357 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
))==0 );
358 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
359 if( sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
)==0 ){
362 if( sqlite3Atoi64(pMem
->z
, &pMem
->u
.i
, pMem
->n
, pMem
->enc
)==0 ){
369 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
372 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
373 ** But it does set pMem->u.r and pMem->u.i appropriately.
375 static u16
numericType(Mem
*pMem
){
376 if( pMem
->flags
& (MEM_Int
|MEM_Real
) ){
377 return pMem
->flags
& (MEM_Int
|MEM_Real
);
379 if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
380 return computeNumericType(pMem
);
387 ** Write a nice string representation of the contents of cell pMem
388 ** into buffer zBuf, length nBuf.
390 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, char *zBuf
){
394 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
401 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
402 }else if( f
& MEM_Static
){
404 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
405 }else if( f
& MEM_Ephem
){
407 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
412 sqlite3_snprintf(100, zCsr
, "%d[", pMem
->n
);
413 zCsr
+= sqlite3Strlen30(zCsr
);
414 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
415 sqlite3_snprintf(100, zCsr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
416 zCsr
+= sqlite3Strlen30(zCsr
);
418 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
420 if( z
<32 || z
>126 ) *zCsr
++ = '.';
425 sqlite3_snprintf(100, zCsr
,"+%dz",pMem
->u
.nZero
);
426 zCsr
+= sqlite3Strlen30(zCsr
);
429 }else if( f
& MEM_Str
){
434 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
435 }else if( f
& MEM_Static
){
437 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
438 }else if( f
& MEM_Ephem
){
440 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
445 sqlite3_snprintf(100, &zBuf
[k
], "%d", pMem
->n
);
446 k
+= sqlite3Strlen30(&zBuf
[k
]);
448 for(j
=0; j
<15 && j
<pMem
->n
; j
++){
450 if( c
>=0x20 && c
<0x7f ){
457 sqlite3_snprintf(100,&zBuf
[k
], encnames
[pMem
->enc
]);
458 k
+= sqlite3Strlen30(&zBuf
[k
]);
466 ** Print the value of a register for tracing purposes:
468 static void memTracePrint(Mem
*p
){
469 if( p
->flags
& MEM_Undefined
){
470 printf(" undefined");
471 }else if( p
->flags
& MEM_Null
){
472 printf(p
->flags
& MEM_Zero
? " NULL-nochng" : " NULL");
473 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
474 printf(" si:%lld", p
->u
.i
);
475 }else if( p
->flags
& MEM_Int
){
476 printf(" i:%lld", p
->u
.i
);
477 #ifndef SQLITE_OMIT_FLOATING_POINT
478 }else if( p
->flags
& MEM_Real
){
479 printf(" r:%g", p
->u
.r
);
481 }else if( p
->flags
& MEM_RowSet
){
485 sqlite3VdbeMemPrettyPrint(p
, zBuf
);
488 if( p
->flags
& MEM_Subtype
) printf(" subtype=0x%02x", p
->eSubtype
);
490 static void registerTrace(int iReg
, Mem
*p
){
491 printf("REG[%d] = ", iReg
);
494 sqlite3VdbeCheckMemInvariants(p
);
499 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
501 # define REGISTER_TRACE(R,M)
508 ** hwtime.h contains inline assembler code for implementing
509 ** high-performance timing routines.
517 ** This function is only called from within an assert() expression. It
518 ** checks that the sqlite3.nTransaction variable is correctly set to
519 ** the number of non-transaction savepoints currently in the
520 ** linked list starting at sqlite3.pSavepoint.
524 ** assert( checkSavepointCount(db) );
526 static int checkSavepointCount(sqlite3
*db
){
529 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
530 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
536 ** Return the register of pOp->p2 after first preparing it to be
537 ** overwritten with an integer value.
539 static SQLITE_NOINLINE Mem
*out2PrereleaseWithClear(Mem
*pOut
){
540 sqlite3VdbeMemSetNull(pOut
);
541 pOut
->flags
= MEM_Int
;
544 static Mem
*out2Prerelease(Vdbe
*p
, VdbeOp
*pOp
){
547 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
548 pOut
= &p
->aMem
[pOp
->p2
];
549 memAboutToChange(p
, pOut
);
550 if( VdbeMemDynamic(pOut
) ){ /*OPTIMIZATION-IF-FALSE*/
551 return out2PrereleaseWithClear(pOut
);
553 pOut
->flags
= MEM_Int
;
560 ** Execute as much of a VDBE program as we can.
561 ** This is the core of sqlite3_step().
564 Vdbe
*p
/* The VDBE */
566 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
567 Op
*pOp
= aOp
; /* Current operation */
568 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
569 Op
*pOrigOp
; /* Value of pOp at the top of the loop */
572 int nExtraDelete
= 0; /* Verifies FORDELETE and AUXDELETE flags */
574 int rc
= SQLITE_OK
; /* Value to return */
575 sqlite3
*db
= p
->db
; /* The database */
576 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
577 u8 encoding
= ENC(db
); /* The database encoding */
578 int iCompare
= 0; /* Result of last comparison */
579 unsigned nVmStep
= 0; /* Number of virtual machine steps */
580 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
581 unsigned nProgressLimit
; /* Invoke xProgress() when nVmStep reaches this */
583 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
584 Mem
*pIn1
= 0; /* 1st input operand */
585 Mem
*pIn2
= 0; /* 2nd input operand */
586 Mem
*pIn3
= 0; /* 3rd input operand */
587 Mem
*pOut
= 0; /* Output operand */
589 u64 start
; /* CPU clock count at start of opcode */
591 /*** INSERT STACK UNION HERE ***/
593 assert( p
->magic
==VDBE_MAGIC_RUN
); /* sqlite3_step() verifies this */
595 if( p
->rc
==SQLITE_NOMEM
){
596 /* This happens if a malloc() inside a call to sqlite3_column_text() or
597 ** sqlite3_column_text16() failed. */
600 assert( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_BUSY
);
601 assert( p
->bIsReader
|| p
->readOnly
!=0 );
603 assert( p
->explain
==0 );
605 db
->busyHandler
.nBusy
= 0;
606 if( db
->u1
.isInterrupted
) goto abort_due_to_interrupt
;
607 sqlite3VdbeIOTraceSql(p
);
608 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
610 u32 iPrior
= p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
611 assert( 0 < db
->nProgressOps
);
612 nProgressLimit
= db
->nProgressOps
- (iPrior
% db
->nProgressOps
);
614 nProgressLimit
= 0xffffffff;
618 sqlite3BeginBenignMalloc();
620 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
624 sqlite3VdbePrintSql(p
);
625 if( p
->db
->flags
& SQLITE_VdbeListing
){
626 printf("VDBE Program Listing:\n");
627 for(i
=0; i
<p
->nOp
; i
++){
628 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
631 if( p
->db
->flags
& SQLITE_VdbeEQP
){
632 for(i
=0; i
<p
->nOp
; i
++){
633 if( aOp
[i
].opcode
==OP_Explain
){
634 if( once
) printf("VDBE Query Plan:\n");
635 printf("%s\n", aOp
[i
].p4
.z
);
640 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
642 sqlite3EndBenignMalloc();
644 for(pOp
=&aOp
[p
->pc
]; 1; pOp
++){
645 /* Errors are detected by individual opcodes, with an immediate
646 ** jumps to abort_due_to_error. */
647 assert( rc
==SQLITE_OK
);
649 assert( pOp
>=aOp
&& pOp
<&aOp
[p
->nOp
]);
651 start
= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
654 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
655 if( p
->anExec
) p
->anExec
[(int)(pOp
-aOp
)]++;
658 /* Only allow tracing if SQLITE_DEBUG is defined.
661 if( db
->flags
& SQLITE_VdbeTrace
){
662 sqlite3VdbePrintOp(stdout
, (int)(pOp
- aOp
), pOp
);
667 /* Check to see if we need to simulate an interrupt. This only happens
668 ** if we have a special test build.
671 if( sqlite3_interrupt_count
>0 ){
672 sqlite3_interrupt_count
--;
673 if( sqlite3_interrupt_count
==0 ){
674 sqlite3_interrupt(db
);
679 /* Sanity checking on other operands */
682 u8 opProperty
= sqlite3OpcodeProperty
[pOp
->opcode
];
683 if( (opProperty
& OPFLG_IN1
)!=0 ){
685 assert( pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
686 assert( memIsValid(&aMem
[pOp
->p1
]) );
687 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
688 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
690 if( (opProperty
& OPFLG_IN2
)!=0 ){
692 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
693 assert( memIsValid(&aMem
[pOp
->p2
]) );
694 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
695 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
697 if( (opProperty
& OPFLG_IN3
)!=0 ){
699 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
700 assert( memIsValid(&aMem
[pOp
->p3
]) );
701 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
702 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
704 if( (opProperty
& OPFLG_OUT2
)!=0 ){
706 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
707 memAboutToChange(p
, &aMem
[pOp
->p2
]);
709 if( (opProperty
& OPFLG_OUT3
)!=0 ){
711 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
712 memAboutToChange(p
, &aMem
[pOp
->p3
]);
716 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
720 switch( pOp
->opcode
){
722 /*****************************************************************************
723 ** What follows is a massive switch statement where each case implements a
724 ** separate instruction in the virtual machine. If we follow the usual
725 ** indentation conventions, each case should be indented by 6 spaces. But
726 ** that is a lot of wasted space on the left margin. So the code within
727 ** the switch statement will break with convention and be flush-left. Another
728 ** big comment (similar to this one) will mark the point in the code where
729 ** we transition back to normal indentation.
731 ** The formatting of each case is important. The makefile for SQLite
732 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
733 ** file looking for lines that begin with "case OP_". The opcodes.h files
734 ** will be filled with #defines that give unique integer values to each
735 ** opcode and the opcodes.c file is filled with an array of strings where
736 ** each string is the symbolic name for the corresponding opcode. If the
737 ** case statement is followed by a comment of the form "/# same as ... #/"
738 ** that comment is used to determine the particular value of the opcode.
740 ** Other keywords in the comment that follows each case are used to
741 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
742 ** Keywords include: in1, in2, in3, out2, out3. See
743 ** the mkopcodeh.awk script for additional information.
745 ** Documentation about VDBE opcodes is generated by scanning this file
746 ** for lines of that contain "Opcode:". That line and all subsequent
747 ** comment lines are used in the generation of the opcode.html documentation
752 ** Formatting is important to scripts that scan this file.
753 ** Do not deviate from the formatting style currently in use.
755 *****************************************************************************/
757 /* Opcode: Goto * P2 * * *
759 ** An unconditional jump to address P2.
760 ** The next instruction executed will be
761 ** the one at index P2 from the beginning of
764 ** The P1 parameter is not actually used by this opcode. However, it
765 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
766 ** that this Goto is the bottom of a loop and that the lines from P2 down
767 ** to the current line should be indented for EXPLAIN output.
769 case OP_Goto
: { /* jump */
770 jump_to_p2_and_check_for_interrupt
:
771 pOp
= &aOp
[pOp
->p2
- 1];
773 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
774 ** OP_VNext, or OP_SorterNext) all jump here upon
775 ** completion. Check to see if sqlite3_interrupt() has been called
776 ** or if the progress callback needs to be invoked.
778 ** This code uses unstructured "goto" statements and does not look clean.
779 ** But that is not due to sloppy coding habits. The code is written this
780 ** way for performance, to avoid having to run the interrupt and progress
781 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
782 ** faster according to "valgrind --tool=cachegrind" */
784 if( db
->u1
.isInterrupted
) goto abort_due_to_interrupt
;
785 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
786 /* Call the progress callback if it is configured and the required number
787 ** of VDBE ops have been executed (either since this invocation of
788 ** sqlite3VdbeExec() or since last time the progress callback was called).
789 ** If the progress callback returns non-zero, exit the virtual machine with
790 ** a return code SQLITE_ABORT.
792 if( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
793 assert( db
->nProgressOps
!=0 );
794 nProgressLimit
= nVmStep
+ db
->nProgressOps
- (nVmStep
%db
->nProgressOps
);
795 if( db
->xProgress(db
->pProgressArg
) ){
796 rc
= SQLITE_INTERRUPT
;
797 goto abort_due_to_error
;
805 /* Opcode: Gosub P1 P2 * * *
807 ** Write the current address onto register P1
808 ** and then jump to address P2.
810 case OP_Gosub
: { /* jump */
811 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
812 pIn1
= &aMem
[pOp
->p1
];
813 assert( VdbeMemDynamic(pIn1
)==0 );
814 memAboutToChange(p
, pIn1
);
815 pIn1
->flags
= MEM_Int
;
816 pIn1
->u
.i
= (int)(pOp
-aOp
);
817 REGISTER_TRACE(pOp
->p1
, pIn1
);
819 /* Most jump operations do a goto to this spot in order to update
820 ** the pOp pointer. */
822 pOp
= &aOp
[pOp
->p2
- 1];
826 /* Opcode: Return P1 * * * *
828 ** Jump to the next instruction after the address in register P1. After
829 ** the jump, register P1 becomes undefined.
831 case OP_Return
: { /* in1 */
832 pIn1
= &aMem
[pOp
->p1
];
833 assert( pIn1
->flags
==MEM_Int
);
834 pOp
= &aOp
[pIn1
->u
.i
];
835 pIn1
->flags
= MEM_Undefined
;
839 /* Opcode: InitCoroutine P1 P2 P3 * *
841 ** Set up register P1 so that it will Yield to the coroutine
842 ** located at address P3.
844 ** If P2!=0 then the coroutine implementation immediately follows
845 ** this opcode. So jump over the coroutine implementation to
848 ** See also: EndCoroutine
850 case OP_InitCoroutine
: { /* jump */
851 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
852 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
853 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
854 pOut
= &aMem
[pOp
->p1
];
855 assert( !VdbeMemDynamic(pOut
) );
856 pOut
->u
.i
= pOp
->p3
- 1;
857 pOut
->flags
= MEM_Int
;
858 if( pOp
->p2
) goto jump_to_p2
;
862 /* Opcode: EndCoroutine P1 * * * *
864 ** The instruction at the address in register P1 is a Yield.
865 ** Jump to the P2 parameter of that Yield.
866 ** After the jump, register P1 becomes undefined.
868 ** See also: InitCoroutine
870 case OP_EndCoroutine
: { /* in1 */
872 pIn1
= &aMem
[pOp
->p1
];
873 assert( pIn1
->flags
==MEM_Int
);
874 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
875 pCaller
= &aOp
[pIn1
->u
.i
];
876 assert( pCaller
->opcode
==OP_Yield
);
877 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
878 pOp
= &aOp
[pCaller
->p2
- 1];
879 pIn1
->flags
= MEM_Undefined
;
883 /* Opcode: Yield P1 P2 * * *
885 ** Swap the program counter with the value in register P1. This
886 ** has the effect of yielding to a coroutine.
888 ** If the coroutine that is launched by this instruction ends with
889 ** Yield or Return then continue to the next instruction. But if
890 ** the coroutine launched by this instruction ends with
891 ** EndCoroutine, then jump to P2 rather than continuing with the
894 ** See also: InitCoroutine
896 case OP_Yield
: { /* in1, jump */
898 pIn1
= &aMem
[pOp
->p1
];
899 assert( VdbeMemDynamic(pIn1
)==0 );
900 pIn1
->flags
= MEM_Int
;
901 pcDest
= (int)pIn1
->u
.i
;
902 pIn1
->u
.i
= (int)(pOp
- aOp
);
903 REGISTER_TRACE(pOp
->p1
, pIn1
);
908 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
909 ** Synopsis: if r[P3]=null halt
911 ** Check the value in register P3. If it is NULL then Halt using
912 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
913 ** value in register P3 is not NULL, then this routine is a no-op.
914 ** The P5 parameter should be 1.
916 case OP_HaltIfNull
: { /* in3 */
917 pIn3
= &aMem
[pOp
->p3
];
918 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
919 /* Fall through into OP_Halt */
922 /* Opcode: Halt P1 P2 * P4 P5
924 ** Exit immediately. All open cursors, etc are closed
927 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
928 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
929 ** For errors, it can be some other value. If P1!=0 then P2 will determine
930 ** whether or not to rollback the current transaction. Do not rollback
931 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
932 ** then back out all changes that have occurred during this execution of the
933 ** VDBE, but do not rollback the transaction.
935 ** If P4 is not null then it is an error message string.
937 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
940 ** 1: NOT NULL contraint failed: P4
941 ** 2: UNIQUE constraint failed: P4
942 ** 3: CHECK constraint failed: P4
943 ** 4: FOREIGN KEY constraint failed: P4
945 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
948 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
949 ** every program. So a jump past the last instruction of the program
950 ** is the same as executing Halt.
956 pcx
= (int)(pOp
- aOp
);
957 if( pOp
->p1
==SQLITE_OK
&& p
->pFrame
){
958 /* Halt the sub-program. Return control to the parent frame. */
960 p
->pFrame
= pFrame
->pParent
;
962 sqlite3VdbeSetChanges(db
, p
->nChange
);
963 pcx
= sqlite3VdbeFrameRestore(pFrame
);
964 if( pOp
->p2
==OE_Ignore
){
965 /* Instruction pcx is the OP_Program that invoked the sub-program
966 ** currently being halted. If the p2 instruction of this OP_Halt
967 ** instruction is set to OE_Ignore, then the sub-program is throwing
968 ** an IGNORE exception. In this case jump to the address specified
969 ** as the p2 of the calling OP_Program. */
970 pcx
= p
->aOp
[pcx
].p2
-1;
978 p
->errorAction
= (u8
)pOp
->p2
;
980 assert( pOp
->p5
<=4 );
983 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
985 testcase( pOp
->p5
==1 );
986 testcase( pOp
->p5
==2 );
987 testcase( pOp
->p5
==3 );
988 testcase( pOp
->p5
==4 );
989 sqlite3VdbeError(p
, "%s constraint failed", azType
[pOp
->p5
-1]);
991 p
->zErrMsg
= sqlite3MPrintf(db
, "%z: %s", p
->zErrMsg
, pOp
->p4
.z
);
994 sqlite3VdbeError(p
, "%s", pOp
->p4
.z
);
996 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pcx
, p
->zSql
, p
->zErrMsg
);
998 rc
= sqlite3VdbeHalt(p
);
999 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
1000 if( rc
==SQLITE_BUSY
){
1001 p
->rc
= SQLITE_BUSY
;
1003 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
1004 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
1005 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
1010 /* Opcode: Integer P1 P2 * * *
1011 ** Synopsis: r[P2]=P1
1013 ** The 32-bit integer value P1 is written into register P2.
1015 case OP_Integer
: { /* out2 */
1016 pOut
= out2Prerelease(p
, pOp
);
1017 pOut
->u
.i
= pOp
->p1
;
1021 /* Opcode: Int64 * P2 * P4 *
1022 ** Synopsis: r[P2]=P4
1024 ** P4 is a pointer to a 64-bit integer value.
1025 ** Write that value into register P2.
1027 case OP_Int64
: { /* out2 */
1028 pOut
= out2Prerelease(p
, pOp
);
1029 assert( pOp
->p4
.pI64
!=0 );
1030 pOut
->u
.i
= *pOp
->p4
.pI64
;
1034 #ifndef SQLITE_OMIT_FLOATING_POINT
1035 /* Opcode: Real * P2 * P4 *
1036 ** Synopsis: r[P2]=P4
1038 ** P4 is a pointer to a 64-bit floating point value.
1039 ** Write that value into register P2.
1041 case OP_Real
: { /* same as TK_FLOAT, out2 */
1042 pOut
= out2Prerelease(p
, pOp
);
1043 pOut
->flags
= MEM_Real
;
1044 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1045 pOut
->u
.r
= *pOp
->p4
.pReal
;
1050 /* Opcode: String8 * P2 * P4 *
1051 ** Synopsis: r[P2]='P4'
1053 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1054 ** into a String opcode before it is executed for the first time. During
1055 ** this transformation, the length of string P4 is computed and stored
1056 ** as the P1 parameter.
1058 case OP_String8
: { /* same as TK_STRING, out2 */
1059 assert( pOp
->p4
.z
!=0 );
1060 pOut
= out2Prerelease(p
, pOp
);
1061 pOp
->opcode
= OP_String
;
1062 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1064 #ifndef SQLITE_OMIT_UTF16
1065 if( encoding
!=SQLITE_UTF8
){
1066 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1067 assert( rc
==SQLITE_OK
|| rc
==SQLITE_TOOBIG
);
1068 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1069 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1070 assert( VdbeMemDynamic(pOut
)==0 );
1072 pOut
->flags
|= MEM_Static
;
1073 if( pOp
->p4type
==P4_DYNAMIC
){
1074 sqlite3DbFree(db
, pOp
->p4
.z
);
1076 pOp
->p4type
= P4_DYNAMIC
;
1077 pOp
->p4
.z
= pOut
->z
;
1080 testcase( rc
==SQLITE_TOOBIG
);
1082 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1085 assert( rc
==SQLITE_OK
);
1086 /* Fall through to the next case, OP_String */
1089 /* Opcode: String P1 P2 P3 P4 P5
1090 ** Synopsis: r[P2]='P4' (len=P1)
1092 ** The string value P4 of length P1 (bytes) is stored in register P2.
1094 ** If P3 is not zero and the content of register P3 is equal to P5, then
1095 ** the datatype of the register P2 is converted to BLOB. The content is
1096 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1097 ** of a string, as if it had been CAST. In other words:
1099 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1101 case OP_String
: { /* out2 */
1102 assert( pOp
->p4
.z
!=0 );
1103 pOut
= out2Prerelease(p
, pOp
);
1104 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1105 pOut
->z
= pOp
->p4
.z
;
1107 pOut
->enc
= encoding
;
1108 UPDATE_MAX_BLOBSIZE(pOut
);
1109 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1111 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1112 pIn3
= &aMem
[pOp
->p3
];
1113 assert( pIn3
->flags
& MEM_Int
);
1114 if( pIn3
->u
.i
==pOp
->p5
) pOut
->flags
= MEM_Blob
|MEM_Static
|MEM_Term
;
1120 /* Opcode: Null P1 P2 P3 * *
1121 ** Synopsis: r[P2..P3]=NULL
1123 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1124 ** NULL into register P3 and every register in between P2 and P3. If P3
1125 ** is less than P2 (typically P3 is zero) then only register P2 is
1128 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1129 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1132 case OP_Null
: { /* out2 */
1135 pOut
= out2Prerelease(p
, pOp
);
1136 cnt
= pOp
->p3
-pOp
->p2
;
1137 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1138 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1142 memAboutToChange(p
, pOut
);
1143 sqlite3VdbeMemSetNull(pOut
);
1144 pOut
->flags
= nullFlag
;
1151 /* Opcode: SoftNull P1 * * * *
1152 ** Synopsis: r[P1]=NULL
1154 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1155 ** instruction, but do not free any string or blob memory associated with
1156 ** the register, so that if the value was a string or blob that was
1157 ** previously copied using OP_SCopy, the copies will continue to be valid.
1160 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1161 pOut
= &aMem
[pOp
->p1
];
1162 pOut
->flags
= (pOut
->flags
&~(MEM_Undefined
|MEM_AffMask
))|MEM_Null
;
1166 /* Opcode: Blob P1 P2 * P4 *
1167 ** Synopsis: r[P2]=P4 (len=P1)
1169 ** P4 points to a blob of data P1 bytes long. Store this
1170 ** blob in register P2.
1172 case OP_Blob
: { /* out2 */
1173 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1174 pOut
= out2Prerelease(p
, pOp
);
1175 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1176 pOut
->enc
= encoding
;
1177 UPDATE_MAX_BLOBSIZE(pOut
);
1181 /* Opcode: Variable P1 P2 * P4 *
1182 ** Synopsis: r[P2]=parameter(P1,P4)
1184 ** Transfer the values of bound parameter P1 into register P2
1186 ** If the parameter is named, then its name appears in P4.
1187 ** The P4 value is used by sqlite3_bind_parameter_name().
1189 case OP_Variable
: { /* out2 */
1190 Mem
*pVar
; /* Value being transferred */
1192 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1193 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==sqlite3VListNumToName(p
->pVList
,pOp
->p1
) );
1194 pVar
= &p
->aVar
[pOp
->p1
- 1];
1195 if( sqlite3VdbeMemTooBig(pVar
) ){
1198 pOut
= &aMem
[pOp
->p2
];
1199 sqlite3VdbeMemShallowCopy(pOut
, pVar
, MEM_Static
);
1200 UPDATE_MAX_BLOBSIZE(pOut
);
1204 /* Opcode: Move P1 P2 P3 * *
1205 ** Synopsis: r[P2@P3]=r[P1@P3]
1207 ** Move the P3 values in register P1..P1+P3-1 over into
1208 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1209 ** left holding a NULL. It is an error for register ranges
1210 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1211 ** for P3 to be less than 1.
1214 int n
; /* Number of registers left to copy */
1215 int p1
; /* Register to copy from */
1216 int p2
; /* Register to copy to */
1221 assert( n
>0 && p1
>0 && p2
>0 );
1222 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1227 assert( pOut
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1228 assert( pIn1
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1229 assert( memIsValid(pIn1
) );
1230 memAboutToChange(p
, pOut
);
1231 sqlite3VdbeMemMove(pOut
, pIn1
);
1233 if( pOut
->pScopyFrom
>=&aMem
[p1
] && pOut
->pScopyFrom
<pOut
){
1234 pOut
->pScopyFrom
+= pOp
->p2
- p1
;
1237 Deephemeralize(pOut
);
1238 REGISTER_TRACE(p2
++, pOut
);
1245 /* Opcode: Copy P1 P2 P3 * *
1246 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1248 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1250 ** This instruction makes a deep copy of the value. A duplicate
1251 ** is made of any string or blob constant. See also OP_SCopy.
1257 pIn1
= &aMem
[pOp
->p1
];
1258 pOut
= &aMem
[pOp
->p2
];
1259 assert( pOut
!=pIn1
);
1261 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1262 Deephemeralize(pOut
);
1264 pOut
->pScopyFrom
= 0;
1266 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1267 if( (n
--)==0 ) break;
1274 /* Opcode: SCopy P1 P2 * * *
1275 ** Synopsis: r[P2]=r[P1]
1277 ** Make a shallow copy of register P1 into register P2.
1279 ** This instruction makes a shallow copy of the value. If the value
1280 ** is a string or blob, then the copy is only a pointer to the
1281 ** original and hence if the original changes so will the copy.
1282 ** Worse, if the original is deallocated, the copy becomes invalid.
1283 ** Thus the program must guarantee that the original will not change
1284 ** during the lifetime of the copy. Use OP_Copy to make a complete
1287 case OP_SCopy
: { /* out2 */
1288 pIn1
= &aMem
[pOp
->p1
];
1289 pOut
= &aMem
[pOp
->p2
];
1290 assert( pOut
!=pIn1
);
1291 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1293 if( pOut
->pScopyFrom
==0 ) pOut
->pScopyFrom
= pIn1
;
1298 /* Opcode: IntCopy P1 P2 * * *
1299 ** Synopsis: r[P2]=r[P1]
1301 ** Transfer the integer value held in register P1 into register P2.
1303 ** This is an optimized version of SCopy that works only for integer
1306 case OP_IntCopy
: { /* out2 */
1307 pIn1
= &aMem
[pOp
->p1
];
1308 assert( (pIn1
->flags
& MEM_Int
)!=0 );
1309 pOut
= &aMem
[pOp
->p2
];
1310 sqlite3VdbeMemSetInt64(pOut
, pIn1
->u
.i
);
1314 /* Opcode: ResultRow P1 P2 * * *
1315 ** Synopsis: output=r[P1@P2]
1317 ** The registers P1 through P1+P2-1 contain a single row of
1318 ** results. This opcode causes the sqlite3_step() call to terminate
1319 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1320 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1323 case OP_ResultRow
: {
1326 assert( p
->nResColumn
==pOp
->p2
);
1327 assert( pOp
->p1
>0 );
1328 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
1330 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1331 /* Run the progress counter just before returning.
1333 if( db
->xProgress
!=0
1334 && nVmStep
>=nProgressLimit
1335 && db
->xProgress(db
->pProgressArg
)!=0
1337 rc
= SQLITE_INTERRUPT
;
1338 goto abort_due_to_error
;
1342 /* If this statement has violated immediate foreign key constraints, do
1343 ** not return the number of rows modified. And do not RELEASE the statement
1344 ** transaction. It needs to be rolled back. */
1345 if( SQLITE_OK
!=(rc
= sqlite3VdbeCheckFk(p
, 0)) ){
1346 assert( db
->flags
&SQLITE_CountRows
);
1347 assert( p
->usesStmtJournal
);
1348 goto abort_due_to_error
;
1351 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1352 ** DML statements invoke this opcode to return the number of rows
1353 ** modified to the user. This is the only way that a VM that
1354 ** opens a statement transaction may invoke this opcode.
1356 ** In case this is such a statement, close any statement transaction
1357 ** opened by this VM before returning control to the user. This is to
1358 ** ensure that statement-transactions are always nested, not overlapping.
1359 ** If the open statement-transaction is not closed here, then the user
1360 ** may step another VM that opens its own statement transaction. This
1361 ** may lead to overlapping statement transactions.
1363 ** The statement transaction is never a top-level transaction. Hence
1364 ** the RELEASE call below can never fail.
1366 assert( p
->iStatement
==0 || db
->flags
&SQLITE_CountRows
);
1367 rc
= sqlite3VdbeCloseStatement(p
, SAVEPOINT_RELEASE
);
1368 assert( rc
==SQLITE_OK
);
1370 /* Invalidate all ephemeral cursor row caches */
1371 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1373 /* Make sure the results of the current row are \000 terminated
1374 ** and have an assigned type. The results are de-ephemeralized as
1377 pMem
= p
->pResultSet
= &aMem
[pOp
->p1
];
1378 for(i
=0; i
<pOp
->p2
; i
++){
1379 assert( memIsValid(&pMem
[i
]) );
1380 Deephemeralize(&pMem
[i
]);
1381 assert( (pMem
[i
].flags
& MEM_Ephem
)==0
1382 || (pMem
[i
].flags
& (MEM_Str
|MEM_Blob
))==0 );
1383 sqlite3VdbeMemNulTerminate(&pMem
[i
]);
1384 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1386 if( db
->mallocFailed
) goto no_mem
;
1388 if( db
->mTrace
& SQLITE_TRACE_ROW
){
1389 db
->xTrace(SQLITE_TRACE_ROW
, db
->pTraceArg
, p
, 0);
1392 /* Return SQLITE_ROW
1394 p
->pc
= (int)(pOp
- aOp
) + 1;
1399 /* Opcode: Concat P1 P2 P3 * *
1400 ** Synopsis: r[P3]=r[P2]+r[P1]
1402 ** Add the text in register P1 onto the end of the text in
1403 ** register P2 and store the result in register P3.
1404 ** If either the P1 or P2 text are NULL then store NULL in P3.
1408 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1409 ** if P3 is the same register as P2, the implementation is able
1410 ** to avoid a memcpy().
1412 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1415 pIn1
= &aMem
[pOp
->p1
];
1416 pIn2
= &aMem
[pOp
->p2
];
1417 pOut
= &aMem
[pOp
->p3
];
1418 assert( pIn1
!=pOut
);
1419 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1420 sqlite3VdbeMemSetNull(pOut
);
1423 if( ExpandBlob(pIn1
) || ExpandBlob(pIn2
) ) goto no_mem
;
1424 Stringify(pIn1
, encoding
);
1425 Stringify(pIn2
, encoding
);
1426 nByte
= pIn1
->n
+ pIn2
->n
;
1427 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1430 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1433 MemSetTypeFlag(pOut
, MEM_Str
);
1435 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1437 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1439 pOut
->z
[nByte
+1] = 0;
1440 pOut
->flags
|= MEM_Term
;
1441 pOut
->n
= (int)nByte
;
1442 pOut
->enc
= encoding
;
1443 UPDATE_MAX_BLOBSIZE(pOut
);
1447 /* Opcode: Add P1 P2 P3 * *
1448 ** Synopsis: r[P3]=r[P1]+r[P2]
1450 ** Add the value in register P1 to the value in register P2
1451 ** and store the result in register P3.
1452 ** If either input is NULL, the result is NULL.
1454 /* Opcode: Multiply P1 P2 P3 * *
1455 ** Synopsis: r[P3]=r[P1]*r[P2]
1458 ** Multiply the value in register P1 by the value in register P2
1459 ** and store the result in register P3.
1460 ** If either input is NULL, the result is NULL.
1462 /* Opcode: Subtract P1 P2 P3 * *
1463 ** Synopsis: r[P3]=r[P2]-r[P1]
1465 ** Subtract the value in register P1 from the value in register P2
1466 ** and store the result in register P3.
1467 ** If either input is NULL, the result is NULL.
1469 /* Opcode: Divide P1 P2 P3 * *
1470 ** Synopsis: r[P3]=r[P2]/r[P1]
1472 ** Divide the value in register P1 by the value in register P2
1473 ** and store the result in register P3 (P3=P2/P1). If the value in
1474 ** register P1 is zero, then the result is NULL. If either input is
1475 ** NULL, the result is NULL.
1477 /* Opcode: Remainder P1 P2 P3 * *
1478 ** Synopsis: r[P3]=r[P2]%r[P1]
1480 ** Compute the remainder after integer register P2 is divided by
1481 ** register P1 and store the result in register P3.
1482 ** If the value in register P1 is zero the result is NULL.
1483 ** If either operand is NULL, the result is NULL.
1485 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1486 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1487 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1488 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1489 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1490 char bIntint
; /* Started out as two integer operands */
1491 u16 flags
; /* Combined MEM_* flags from both inputs */
1492 u16 type1
; /* Numeric type of left operand */
1493 u16 type2
; /* Numeric type of right operand */
1494 i64 iA
; /* Integer value of left operand */
1495 i64 iB
; /* Integer value of right operand */
1496 double rA
; /* Real value of left operand */
1497 double rB
; /* Real value of right operand */
1499 pIn1
= &aMem
[pOp
->p1
];
1500 type1
= numericType(pIn1
);
1501 pIn2
= &aMem
[pOp
->p2
];
1502 type2
= numericType(pIn2
);
1503 pOut
= &aMem
[pOp
->p3
];
1504 flags
= pIn1
->flags
| pIn2
->flags
;
1505 if( (type1
& type2
& MEM_Int
)!=0 ){
1509 switch( pOp
->opcode
){
1510 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1511 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1512 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1514 if( iA
==0 ) goto arithmetic_result_is_null
;
1515 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1520 if( iA
==0 ) goto arithmetic_result_is_null
;
1521 if( iA
==-1 ) iA
= 1;
1527 MemSetTypeFlag(pOut
, MEM_Int
);
1528 }else if( (flags
& MEM_Null
)!=0 ){
1529 goto arithmetic_result_is_null
;
1533 rA
= sqlite3VdbeRealValue(pIn1
);
1534 rB
= sqlite3VdbeRealValue(pIn2
);
1535 switch( pOp
->opcode
){
1536 case OP_Add
: rB
+= rA
; break;
1537 case OP_Subtract
: rB
-= rA
; break;
1538 case OP_Multiply
: rB
*= rA
; break;
1540 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1541 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1548 if( iA
==0 ) goto arithmetic_result_is_null
;
1549 if( iA
==-1 ) iA
= 1;
1550 rB
= (double)(iB
% iA
);
1554 #ifdef SQLITE_OMIT_FLOATING_POINT
1556 MemSetTypeFlag(pOut
, MEM_Int
);
1558 if( sqlite3IsNaN(rB
) ){
1559 goto arithmetic_result_is_null
;
1562 MemSetTypeFlag(pOut
, MEM_Real
);
1563 if( ((type1
|type2
)&MEM_Real
)==0 && !bIntint
){
1564 sqlite3VdbeIntegerAffinity(pOut
);
1570 arithmetic_result_is_null
:
1571 sqlite3VdbeMemSetNull(pOut
);
1575 /* Opcode: CollSeq P1 * * P4
1577 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1578 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1579 ** be returned. This is used by the built-in min(), max() and nullif()
1582 ** If P1 is not zero, then it is a register that a subsequent min() or
1583 ** max() aggregate will set to 1 if the current row is not the minimum or
1584 ** maximum. The P1 register is initialized to 0 by this instruction.
1586 ** The interface used by the implementation of the aforementioned functions
1587 ** to retrieve the collation sequence set by this opcode is not available
1588 ** publicly. Only built-in functions have access to this feature.
1591 assert( pOp
->p4type
==P4_COLLSEQ
);
1593 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1598 /* Opcode: BitAnd P1 P2 P3 * *
1599 ** Synopsis: r[P3]=r[P1]&r[P2]
1601 ** Take the bit-wise AND of the values in register P1 and P2 and
1602 ** store the result in register P3.
1603 ** If either input is NULL, the result is NULL.
1605 /* Opcode: BitOr P1 P2 P3 * *
1606 ** Synopsis: r[P3]=r[P1]|r[P2]
1608 ** Take the bit-wise OR of the values in register P1 and P2 and
1609 ** store the result in register P3.
1610 ** If either input is NULL, the result is NULL.
1612 /* Opcode: ShiftLeft P1 P2 P3 * *
1613 ** Synopsis: r[P3]=r[P2]<<r[P1]
1615 ** Shift the integer value in register P2 to the left by the
1616 ** number of bits specified by the integer in register P1.
1617 ** Store the result in register P3.
1618 ** If either input is NULL, the result is NULL.
1620 /* Opcode: ShiftRight P1 P2 P3 * *
1621 ** Synopsis: r[P3]=r[P2]>>r[P1]
1623 ** Shift the integer value in register P2 to the right by the
1624 ** number of bits specified by the integer in register P1.
1625 ** Store the result in register P3.
1626 ** If either input is NULL, the result is NULL.
1628 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1629 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1630 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1631 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1637 pIn1
= &aMem
[pOp
->p1
];
1638 pIn2
= &aMem
[pOp
->p2
];
1639 pOut
= &aMem
[pOp
->p3
];
1640 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1641 sqlite3VdbeMemSetNull(pOut
);
1644 iA
= sqlite3VdbeIntValue(pIn2
);
1645 iB
= sqlite3VdbeIntValue(pIn1
);
1647 if( op
==OP_BitAnd
){
1649 }else if( op
==OP_BitOr
){
1652 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1654 /* If shifting by a negative amount, shift in the other direction */
1656 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1657 op
= 2*OP_ShiftLeft
+ 1 - op
;
1658 iB
= iB
>(-64) ? -iB
: 64;
1662 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1664 memcpy(&uA
, &iA
, sizeof(uA
));
1665 if( op
==OP_ShiftLeft
){
1669 /* Sign-extend on a right shift of a negative number */
1670 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1672 memcpy(&iA
, &uA
, sizeof(iA
));
1676 MemSetTypeFlag(pOut
, MEM_Int
);
1680 /* Opcode: AddImm P1 P2 * * *
1681 ** Synopsis: r[P1]=r[P1]+P2
1683 ** Add the constant P2 to the value in register P1.
1684 ** The result is always an integer.
1686 ** To force any register to be an integer, just add 0.
1688 case OP_AddImm
: { /* in1 */
1689 pIn1
= &aMem
[pOp
->p1
];
1690 memAboutToChange(p
, pIn1
);
1691 sqlite3VdbeMemIntegerify(pIn1
);
1692 pIn1
->u
.i
+= pOp
->p2
;
1696 /* Opcode: MustBeInt P1 P2 * * *
1698 ** Force the value in register P1 to be an integer. If the value
1699 ** in P1 is not an integer and cannot be converted into an integer
1700 ** without data loss, then jump immediately to P2, or if P2==0
1701 ** raise an SQLITE_MISMATCH exception.
1703 case OP_MustBeInt
: { /* jump, in1 */
1704 pIn1
= &aMem
[pOp
->p1
];
1705 if( (pIn1
->flags
& MEM_Int
)==0 ){
1706 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1707 VdbeBranchTaken((pIn1
->flags
&MEM_Int
)==0, 2);
1708 if( (pIn1
->flags
& MEM_Int
)==0 ){
1710 rc
= SQLITE_MISMATCH
;
1711 goto abort_due_to_error
;
1717 MemSetTypeFlag(pIn1
, MEM_Int
);
1721 #ifndef SQLITE_OMIT_FLOATING_POINT
1722 /* Opcode: RealAffinity P1 * * * *
1724 ** If register P1 holds an integer convert it to a real value.
1726 ** This opcode is used when extracting information from a column that
1727 ** has REAL affinity. Such column values may still be stored as
1728 ** integers, for space efficiency, but after extraction we want them
1729 ** to have only a real value.
1731 case OP_RealAffinity
: { /* in1 */
1732 pIn1
= &aMem
[pOp
->p1
];
1733 if( pIn1
->flags
& MEM_Int
){
1734 sqlite3VdbeMemRealify(pIn1
);
1740 #ifndef SQLITE_OMIT_CAST
1741 /* Opcode: Cast P1 P2 * * *
1742 ** Synopsis: affinity(r[P1])
1744 ** Force the value in register P1 to be the type defined by P2.
1747 ** <li> P2=='A' → BLOB
1748 ** <li> P2=='B' → TEXT
1749 ** <li> P2=='C' → NUMERIC
1750 ** <li> P2=='D' → INTEGER
1751 ** <li> P2=='E' → REAL
1754 ** A NULL value is not changed by this routine. It remains NULL.
1756 case OP_Cast
: { /* in1 */
1757 assert( pOp
->p2
>=SQLITE_AFF_BLOB
&& pOp
->p2
<=SQLITE_AFF_REAL
);
1758 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
1759 testcase( pOp
->p2
==SQLITE_AFF_BLOB
);
1760 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
1761 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
1762 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
1763 pIn1
= &aMem
[pOp
->p1
];
1764 memAboutToChange(p
, pIn1
);
1765 rc
= ExpandBlob(pIn1
);
1766 sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
1767 UPDATE_MAX_BLOBSIZE(pIn1
);
1768 if( rc
) goto abort_due_to_error
;
1771 #endif /* SQLITE_OMIT_CAST */
1773 /* Opcode: Eq P1 P2 P3 P4 P5
1774 ** Synopsis: IF r[P3]==r[P1]
1776 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1777 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1778 ** store the result of comparison in register P2.
1780 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1781 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1782 ** to coerce both inputs according to this affinity before the
1783 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1784 ** affinity is used. Note that the affinity conversions are stored
1785 ** back into the input registers P1 and P3. So this opcode can cause
1786 ** persistent changes to registers P1 and P3.
1788 ** Once any conversions have taken place, and neither value is NULL,
1789 ** the values are compared. If both values are blobs then memcmp() is
1790 ** used to determine the results of the comparison. If both values
1791 ** are text, then the appropriate collating function specified in
1792 ** P4 is used to do the comparison. If P4 is not specified then
1793 ** memcmp() is used to compare text string. If both values are
1794 ** numeric, then a numeric comparison is used. If the two values
1795 ** are of different types, then numbers are considered less than
1796 ** strings and strings are considered less than blobs.
1798 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1799 ** true or false and is never NULL. If both operands are NULL then the result
1800 ** of comparison is true. If either operand is NULL then the result is false.
1801 ** If neither operand is NULL the result is the same as it would be if
1802 ** the SQLITE_NULLEQ flag were omitted from P5.
1804 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1805 ** content of r[P2] is only changed if the new value is NULL or 0 (false).
1806 ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
1808 /* Opcode: Ne P1 P2 P3 P4 P5
1809 ** Synopsis: IF r[P3]!=r[P1]
1811 ** This works just like the Eq opcode except that the jump is taken if
1812 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1813 ** additional information.
1815 ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
1816 ** content of r[P2] is only changed if the new value is NULL or 1 (true).
1817 ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
1819 /* Opcode: Lt P1 P2 P3 P4 P5
1820 ** Synopsis: IF r[P3]<r[P1]
1822 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1823 ** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1824 ** the result of comparison (0 or 1 or NULL) into register P2.
1826 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1827 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
1828 ** bit is clear then fall through if either operand is NULL.
1830 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1831 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1832 ** to coerce both inputs according to this affinity before the
1833 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1834 ** affinity is used. Note that the affinity conversions are stored
1835 ** back into the input registers P1 and P3. So this opcode can cause
1836 ** persistent changes to registers P1 and P3.
1838 ** Once any conversions have taken place, and neither value is NULL,
1839 ** the values are compared. If both values are blobs then memcmp() is
1840 ** used to determine the results of the comparison. If both values
1841 ** are text, then the appropriate collating function specified in
1842 ** P4 is used to do the comparison. If P4 is not specified then
1843 ** memcmp() is used to compare text string. If both values are
1844 ** numeric, then a numeric comparison is used. If the two values
1845 ** are of different types, then numbers are considered less than
1846 ** strings and strings are considered less than blobs.
1848 /* Opcode: Le P1 P2 P3 P4 P5
1849 ** Synopsis: IF r[P3]<=r[P1]
1851 ** This works just like the Lt opcode except that the jump is taken if
1852 ** the content of register P3 is less than or equal to the content of
1853 ** register P1. See the Lt opcode for additional information.
1855 /* Opcode: Gt P1 P2 P3 P4 P5
1856 ** Synopsis: IF r[P3]>r[P1]
1858 ** This works just like the Lt opcode except that the jump is taken if
1859 ** the content of register P3 is greater than the content of
1860 ** register P1. See the Lt opcode for additional information.
1862 /* Opcode: Ge P1 P2 P3 P4 P5
1863 ** Synopsis: IF r[P3]>=r[P1]
1865 ** This works just like the Lt opcode except that the jump is taken if
1866 ** the content of register P3 is greater than or equal to the content of
1867 ** register P1. See the Lt opcode for additional information.
1869 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
1870 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
1871 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
1872 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
1873 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
1874 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
1875 int res
, res2
; /* Result of the comparison of pIn1 against pIn3 */
1876 char affinity
; /* Affinity to use for comparison */
1877 u16 flags1
; /* Copy of initial value of pIn1->flags */
1878 u16 flags3
; /* Copy of initial value of pIn3->flags */
1880 pIn1
= &aMem
[pOp
->p1
];
1881 pIn3
= &aMem
[pOp
->p3
];
1882 flags1
= pIn1
->flags
;
1883 flags3
= pIn3
->flags
;
1884 if( (flags1
| flags3
)&MEM_Null
){
1885 /* One or both operands are NULL */
1886 if( pOp
->p5
& SQLITE_NULLEQ
){
1887 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1888 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1889 ** or not both operands are null.
1891 assert( pOp
->opcode
==OP_Eq
|| pOp
->opcode
==OP_Ne
);
1892 assert( (flags1
& MEM_Cleared
)==0 );
1893 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 );
1894 if( (flags1
&flags3
&MEM_Null
)!=0
1895 && (flags3
&MEM_Cleared
)==0
1897 res
= 0; /* Operands are equal */
1899 res
= 1; /* Operands are not equal */
1902 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1903 ** then the result is always NULL.
1904 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1906 if( pOp
->p5
& SQLITE_STOREP2
){
1907 pOut
= &aMem
[pOp
->p2
];
1908 iCompare
= 1; /* Operands are not equal */
1909 memAboutToChange(p
, pOut
);
1910 MemSetTypeFlag(pOut
, MEM_Null
);
1911 REGISTER_TRACE(pOp
->p2
, pOut
);
1913 VdbeBranchTaken(2,3);
1914 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
1921 /* Neither operand is NULL. Do a comparison. */
1922 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
1923 if( affinity
>=SQLITE_AFF_NUMERIC
){
1924 if( (flags1
| flags3
)&MEM_Str
){
1925 if( (flags1
& (MEM_Int
|MEM_Real
|MEM_Str
))==MEM_Str
){
1926 applyNumericAffinity(pIn1
,0);
1927 testcase( flags3
!=pIn3
->flags
); /* Possible if pIn1==pIn3 */
1928 flags3
= pIn3
->flags
;
1930 if( (flags3
& (MEM_Int
|MEM_Real
|MEM_Str
))==MEM_Str
){
1931 applyNumericAffinity(pIn3
,0);
1934 /* Handle the common case of integer comparison here, as an
1935 ** optimization, to avoid a call to sqlite3MemCompare() */
1936 if( (pIn1
->flags
& pIn3
->flags
& MEM_Int
)!=0 ){
1937 if( pIn3
->u
.i
> pIn1
->u
.i
){ res
= +1; goto compare_op
; }
1938 if( pIn3
->u
.i
< pIn1
->u
.i
){ res
= -1; goto compare_op
; }
1942 }else if( affinity
==SQLITE_AFF_TEXT
){
1943 if( (flags1
& MEM_Str
)==0 && (flags1
& (MEM_Int
|MEM_Real
))!=0 ){
1944 testcase( pIn1
->flags
& MEM_Int
);
1945 testcase( pIn1
->flags
& MEM_Real
);
1946 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
1947 testcase( (flags1
&MEM_Dyn
) != (pIn1
->flags
&MEM_Dyn
) );
1948 flags1
= (pIn1
->flags
& ~MEM_TypeMask
) | (flags1
& MEM_TypeMask
);
1949 assert( pIn1
!=pIn3
);
1951 if( (flags3
& MEM_Str
)==0 && (flags3
& (MEM_Int
|MEM_Real
))!=0 ){
1952 testcase( pIn3
->flags
& MEM_Int
);
1953 testcase( pIn3
->flags
& MEM_Real
);
1954 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
1955 testcase( (flags3
&MEM_Dyn
) != (pIn3
->flags
&MEM_Dyn
) );
1956 flags3
= (pIn3
->flags
& ~MEM_TypeMask
) | (flags3
& MEM_TypeMask
);
1959 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
1960 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
1963 /* At this point, res is negative, zero, or positive if reg[P1] is
1964 ** less than, equal to, or greater than reg[P3], respectively. Compute
1965 ** the answer to this operator in res2, depending on what the comparison
1966 ** operator actually is. The next block of code depends on the fact
1967 ** that the 6 comparison operators are consecutive integers in this
1968 ** order: NE, EQ, GT, LE, LT, GE */
1969 assert( OP_Eq
==OP_Ne
+1 ); assert( OP_Gt
==OP_Ne
+2 ); assert( OP_Le
==OP_Ne
+3 );
1970 assert( OP_Lt
==OP_Ne
+4 ); assert( OP_Ge
==OP_Ne
+5 );
1971 if( res
<0 ){ /* ne, eq, gt, le, lt, ge */
1972 static const unsigned char aLTb
[] = { 1, 0, 0, 1, 1, 0 };
1973 res2
= aLTb
[pOp
->opcode
- OP_Ne
];
1975 static const unsigned char aEQb
[] = { 0, 1, 0, 1, 0, 1 };
1976 res2
= aEQb
[pOp
->opcode
- OP_Ne
];
1978 static const unsigned char aGTb
[] = { 1, 0, 1, 0, 0, 1 };
1979 res2
= aGTb
[pOp
->opcode
- OP_Ne
];
1982 /* Undo any changes made by applyAffinity() to the input registers. */
1983 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
1984 pIn1
->flags
= flags1
;
1985 assert( (pIn3
->flags
& MEM_Dyn
) == (flags3
& MEM_Dyn
) );
1986 pIn3
->flags
= flags3
;
1988 if( pOp
->p5
& SQLITE_STOREP2
){
1989 pOut
= &aMem
[pOp
->p2
];
1991 if( (pOp
->p5
& SQLITE_KEEPNULL
)!=0 ){
1992 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
1993 ** and prevents OP_Ne from overwriting NULL with 0. This flag
1994 ** is only used in contexts where either:
1995 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
1996 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
1997 ** Therefore it is not necessary to check the content of r[P2] for
1999 assert( pOp
->opcode
==OP_Ne
|| pOp
->opcode
==OP_Eq
);
2000 assert( res2
==0 || res2
==1 );
2001 testcase( res2
==0 && pOp
->opcode
==OP_Eq
);
2002 testcase( res2
==1 && pOp
->opcode
==OP_Eq
);
2003 testcase( res2
==0 && pOp
->opcode
==OP_Ne
);
2004 testcase( res2
==1 && pOp
->opcode
==OP_Ne
);
2005 if( (pOp
->opcode
==OP_Eq
)==res2
) break;
2007 memAboutToChange(p
, pOut
);
2008 MemSetTypeFlag(pOut
, MEM_Int
);
2010 REGISTER_TRACE(pOp
->p2
, pOut
);
2012 VdbeBranchTaken(res
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2020 /* Opcode: ElseNotEq * P2 * * *
2022 ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2023 ** If result of an OP_Eq comparison on the same two operands
2024 ** would have be NULL or false (0), then then jump to P2.
2025 ** If the result of an OP_Eq comparison on the two previous operands
2026 ** would have been true (1), then fall through.
2028 case OP_ElseNotEq
: { /* same as TK_ESCAPE, jump */
2030 assert( pOp
[-1].opcode
==OP_Lt
|| pOp
[-1].opcode
==OP_Gt
);
2031 assert( pOp
[-1].p5
& SQLITE_STOREP2
);
2032 VdbeBranchTaken(iCompare
!=0, 2);
2033 if( iCompare
!=0 ) goto jump_to_p2
;
2038 /* Opcode: Permutation * * * P4 *
2040 ** Set the permutation used by the OP_Compare operator in the next
2041 ** instruction. The permutation is stored in the P4 operand.
2043 ** The permutation is only valid until the next OP_Compare that has
2044 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2045 ** occur immediately prior to the OP_Compare.
2047 ** The first integer in the P4 integer array is the length of the array
2048 ** and does not become part of the permutation.
2050 case OP_Permutation
: {
2051 assert( pOp
->p4type
==P4_INTARRAY
);
2052 assert( pOp
->p4
.ai
);
2053 assert( pOp
[1].opcode
==OP_Compare
);
2054 assert( pOp
[1].p5
& OPFLAG_PERMUTE
);
2058 /* Opcode: Compare P1 P2 P3 P4 P5
2059 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2061 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2062 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2063 ** the comparison for use by the next OP_Jump instruct.
2065 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2066 ** determined by the most recent OP_Permutation operator. If the
2067 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2070 ** P4 is a KeyInfo structure that defines collating sequences and sort
2071 ** orders for the comparison. The permutation applies to registers
2072 ** only. The KeyInfo elements are used sequentially.
2074 ** The comparison is a sort comparison, so NULLs compare equal,
2075 ** NULLs are less than numbers, numbers are less than strings,
2076 ** and strings are less than blobs.
2083 const KeyInfo
*pKeyInfo
;
2085 CollSeq
*pColl
; /* Collating sequence to use on this term */
2086 int bRev
; /* True for DESCENDING sort order */
2087 int *aPermute
; /* The permutation */
2089 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ){
2093 assert( pOp
[-1].opcode
==OP_Permutation
);
2094 assert( pOp
[-1].p4type
==P4_INTARRAY
);
2095 aPermute
= pOp
[-1].p4
.ai
+ 1;
2096 assert( aPermute
!=0 );
2099 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2101 assert( pKeyInfo
!=0 );
2107 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>mx
) mx
= aPermute
[k
];
2108 assert( p1
>0 && p1
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2109 assert( p2
>0 && p2
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2111 assert( p1
>0 && p1
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2112 assert( p2
>0 && p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2114 #endif /* SQLITE_DEBUG */
2116 idx
= aPermute
? aPermute
[i
] : i
;
2117 assert( memIsValid(&aMem
[p1
+idx
]) );
2118 assert( memIsValid(&aMem
[p2
+idx
]) );
2119 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2120 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2121 assert( i
<pKeyInfo
->nKeyField
);
2122 pColl
= pKeyInfo
->aColl
[i
];
2123 bRev
= pKeyInfo
->aSortOrder
[i
];
2124 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2126 if( bRev
) iCompare
= -iCompare
;
2133 /* Opcode: Jump P1 P2 P3 * *
2135 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2136 ** in the most recent OP_Compare instruction the P1 vector was less than
2137 ** equal to, or greater than the P2 vector, respectively.
2139 case OP_Jump
: { /* jump */
2141 VdbeBranchTaken(0,3); pOp
= &aOp
[pOp
->p1
- 1];
2142 }else if( iCompare
==0 ){
2143 VdbeBranchTaken(1,3); pOp
= &aOp
[pOp
->p2
- 1];
2145 VdbeBranchTaken(2,3); pOp
= &aOp
[pOp
->p3
- 1];
2150 /* Opcode: And P1 P2 P3 * *
2151 ** Synopsis: r[P3]=(r[P1] && r[P2])
2153 ** Take the logical AND of the values in registers P1 and P2 and
2154 ** write the result into register P3.
2156 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2157 ** the other input is NULL. A NULL and true or two NULLs give
2160 /* Opcode: Or P1 P2 P3 * *
2161 ** Synopsis: r[P3]=(r[P1] || r[P2])
2163 ** Take the logical OR of the values in register P1 and P2 and
2164 ** store the answer in register P3.
2166 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2167 ** even if the other input is NULL. A NULL and false or two NULLs
2168 ** give a NULL output.
2170 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2171 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2172 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2173 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2175 v1
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], 2);
2176 v2
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p2
], 2);
2177 if( pOp
->opcode
==OP_And
){
2178 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2179 v1
= and_logic
[v1
*3+v2
];
2181 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2182 v1
= or_logic
[v1
*3+v2
];
2184 pOut
= &aMem
[pOp
->p3
];
2186 MemSetTypeFlag(pOut
, MEM_Null
);
2189 MemSetTypeFlag(pOut
, MEM_Int
);
2194 /* Opcode: IsTrue P1 P2 P3 P4 *
2195 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2197 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2198 ** IS NOT FALSE operators.
2200 ** Interpret the value in register P1 as a boolean value. Store that
2201 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2202 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2205 ** The logic is summarized like this:
2208 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2209 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2210 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2211 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2214 case OP_IsTrue
: { /* in1, out2 */
2215 assert( pOp
->p4type
==P4_INT32
);
2216 assert( pOp
->p4
.i
==0 || pOp
->p4
.i
==1 );
2217 assert( pOp
->p3
==0 || pOp
->p3
==1 );
2218 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p2
],
2219 sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
) ^ pOp
->p4
.i
);
2223 /* Opcode: Not P1 P2 * * *
2224 ** Synopsis: r[P2]= !r[P1]
2226 ** Interpret the value in register P1 as a boolean value. Store the
2227 ** boolean complement in register P2. If the value in register P1 is
2228 ** NULL, then a NULL is stored in P2.
2230 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2231 pIn1
= &aMem
[pOp
->p1
];
2232 pOut
= &aMem
[pOp
->p2
];
2233 if( (pIn1
->flags
& MEM_Null
)==0 ){
2234 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeBooleanValue(pIn1
,0));
2236 sqlite3VdbeMemSetNull(pOut
);
2241 /* Opcode: BitNot P1 P2 * * *
2242 ** Synopsis: r[P1]= ~r[P1]
2244 ** Interpret the content of register P1 as an integer. Store the
2245 ** ones-complement of the P1 value into register P2. If P1 holds
2246 ** a NULL then store a NULL in P2.
2248 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2249 pIn1
= &aMem
[pOp
->p1
];
2250 pOut
= &aMem
[pOp
->p2
];
2251 sqlite3VdbeMemSetNull(pOut
);
2252 if( (pIn1
->flags
& MEM_Null
)==0 ){
2253 pOut
->flags
= MEM_Int
;
2254 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2259 /* Opcode: Once P1 P2 * * *
2261 ** Fall through to the next instruction the first time this opcode is
2262 ** encountered on each invocation of the byte-code program. Jump to P2
2263 ** on the second and all subsequent encounters during the same invocation.
2265 ** Top-level programs determine first invocation by comparing the P1
2266 ** operand against the P1 operand on the OP_Init opcode at the beginning
2267 ** of the program. If the P1 values differ, then fall through and make
2268 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2269 ** the same then take the jump.
2271 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2272 ** whether or not the jump should be taken. The bitmask is necessary
2273 ** because the self-altering code trick does not work for recursive
2276 case OP_Once
: { /* jump */
2277 u32 iAddr
; /* Address of this instruction */
2278 assert( p
->aOp
[0].opcode
==OP_Init
);
2280 iAddr
= (int)(pOp
- p
->aOp
);
2281 if( (p
->pFrame
->aOnce
[iAddr
/8] & (1<<(iAddr
& 7)))!=0 ){
2282 VdbeBranchTaken(1, 2);
2285 p
->pFrame
->aOnce
[iAddr
/8] |= 1<<(iAddr
& 7);
2287 if( p
->aOp
[0].p1
==pOp
->p1
){
2288 VdbeBranchTaken(1, 2);
2292 VdbeBranchTaken(0, 2);
2293 pOp
->p1
= p
->aOp
[0].p1
;
2297 /* Opcode: If P1 P2 P3 * *
2299 ** Jump to P2 if the value in register P1 is true. The value
2300 ** is considered true if it is numeric and non-zero. If the value
2301 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2303 case OP_If
: { /* jump, in1 */
2305 c
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
);
2306 VdbeBranchTaken(c
!=0, 2);
2307 if( c
) goto jump_to_p2
;
2311 /* Opcode: IfNot P1 P2 P3 * *
2313 ** Jump to P2 if the value in register P1 is False. The value
2314 ** is considered false if it has a numeric value of zero. If the value
2315 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2317 case OP_IfNot
: { /* jump, in1 */
2319 c
= !sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], !pOp
->p3
);
2320 VdbeBranchTaken(c
!=0, 2);
2321 if( c
) goto jump_to_p2
;
2325 /* Opcode: IsNull P1 P2 * * *
2326 ** Synopsis: if r[P1]==NULL goto P2
2328 ** Jump to P2 if the value in register P1 is NULL.
2330 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2331 pIn1
= &aMem
[pOp
->p1
];
2332 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2333 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2339 /* Opcode: NotNull P1 P2 * * *
2340 ** Synopsis: if r[P1]!=NULL goto P2
2342 ** Jump to P2 if the value in register P1 is not NULL.
2344 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2345 pIn1
= &aMem
[pOp
->p1
];
2346 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2347 if( (pIn1
->flags
& MEM_Null
)==0 ){
2353 /* Opcode: IfNullRow P1 P2 P3 * *
2354 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2356 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2357 ** If it is, then set register P3 to NULL and jump immediately to P2.
2358 ** If P1 is not on a NULL row, then fall through without making any
2361 case OP_IfNullRow
: { /* jump */
2362 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2363 assert( p
->apCsr
[pOp
->p1
]!=0 );
2364 if( p
->apCsr
[pOp
->p1
]->nullRow
){
2365 sqlite3VdbeMemSetNull(aMem
+ pOp
->p3
);
2371 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2372 /* Opcode: Offset P1 P2 P3 * *
2373 ** Synopsis: r[P3] = sqlite_offset(P1)
2375 ** Store in register r[P3] the byte offset into the database file that is the
2376 ** start of the payload for the record at which that cursor P1 is currently
2379 ** P2 is the column number for the argument to the sqlite_offset() function.
2380 ** This opcode does not use P2 itself, but the P2 value is used by the
2381 ** code generator. The P1, P2, and P3 operands to this opcode are the
2382 ** same as for OP_Column.
2384 ** This opcode is only available if SQLite is compiled with the
2385 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2387 case OP_Offset
: { /* out3 */
2388 VdbeCursor
*pC
; /* The VDBE cursor */
2389 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2390 pC
= p
->apCsr
[pOp
->p1
];
2391 pOut
= &p
->aMem
[pOp
->p3
];
2392 if( NEVER(pC
==0) || pC
->eCurType
!=CURTYPE_BTREE
){
2393 sqlite3VdbeMemSetNull(pOut
);
2395 sqlite3VdbeMemSetInt64(pOut
, sqlite3BtreeOffset(pC
->uc
.pCursor
));
2399 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2401 /* Opcode: Column P1 P2 P3 P4 P5
2402 ** Synopsis: r[P3]=PX
2404 ** Interpret the data that cursor P1 points to as a structure built using
2405 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2406 ** information about the format of the data.) Extract the P2-th column
2407 ** from this record. If there are less that (P2+1)
2408 ** values in the record, extract a NULL.
2410 ** The value extracted is stored in register P3.
2412 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2413 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2416 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2417 ** then the cache of the cursor is reset prior to extracting the column.
2418 ** The first OP_Column against a pseudo-table after the value of the content
2419 ** register has changed should have this bit set.
2421 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
2422 ** the result is guaranteed to only be used as the argument of a length()
2423 ** or typeof() function, respectively. The loading of large blobs can be
2424 ** skipped for length() and all content loading can be skipped for typeof().
2427 int p2
; /* column number to retrieve */
2428 VdbeCursor
*pC
; /* The VDBE cursor */
2429 BtCursor
*pCrsr
; /* The BTree cursor */
2430 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2431 int len
; /* The length of the serialized data for the column */
2432 int i
; /* Loop counter */
2433 Mem
*pDest
; /* Where to write the extracted value */
2434 Mem sMem
; /* For storing the record being decoded */
2435 const u8
*zData
; /* Part of the record being decoded */
2436 const u8
*zHdr
; /* Next unparsed byte of the header */
2437 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2438 u64 offset64
; /* 64-bit offset */
2439 u32 t
; /* A type code from the record header */
2440 Mem
*pReg
; /* PseudoTable input register */
2442 pC
= p
->apCsr
[pOp
->p1
];
2445 /* If the cursor cache is stale (meaning it is not currently point at
2446 ** the correct row) then bring it up-to-date by doing the necessary
2448 rc
= sqlite3VdbeCursorMoveto(&pC
, &p2
);
2449 if( rc
) goto abort_due_to_error
;
2451 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2452 pDest
= &aMem
[pOp
->p3
];
2453 memAboutToChange(p
, pDest
);
2454 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2456 assert( p2
<pC
->nField
);
2457 aOffset
= pC
->aOffset
;
2458 assert( pC
->eCurType
!=CURTYPE_VTAB
);
2459 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
2460 assert( pC
->eCurType
!=CURTYPE_SORTER
);
2462 if( pC
->cacheStatus
!=p
->cacheCtr
){ /*OPTIMIZATION-IF-FALSE*/
2464 if( pC
->eCurType
==CURTYPE_PSEUDO
){
2465 /* For the special case of as pseudo-cursor, the seekResult field
2466 ** identifies the register that holds the record */
2467 assert( pC
->seekResult
>0 );
2468 pReg
= &aMem
[pC
->seekResult
];
2469 assert( pReg
->flags
& MEM_Blob
);
2470 assert( memIsValid(pReg
) );
2471 pC
->payloadSize
= pC
->szRow
= pReg
->n
;
2472 pC
->aRow
= (u8
*)pReg
->z
;
2474 sqlite3VdbeMemSetNull(pDest
);
2478 pCrsr
= pC
->uc
.pCursor
;
2479 assert( pC
->eCurType
==CURTYPE_BTREE
);
2481 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2482 pC
->payloadSize
= sqlite3BtreePayloadSize(pCrsr
);
2483 pC
->aRow
= sqlite3BtreePayloadFetch(pCrsr
, &pC
->szRow
);
2484 assert( pC
->szRow
<=pC
->payloadSize
);
2485 assert( pC
->szRow
<=65536 ); /* Maximum page size is 64KiB */
2486 if( pC
->payloadSize
> (u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2490 pC
->cacheStatus
= p
->cacheCtr
;
2491 pC
->iHdrOffset
= getVarint32(pC
->aRow
, aOffset
[0]);
2495 if( pC
->szRow
<aOffset
[0] ){ /*OPTIMIZATION-IF-FALSE*/
2496 /* pC->aRow does not have to hold the entire row, but it does at least
2497 ** need to cover the header of the record. If pC->aRow does not contain
2498 ** the complete header, then set it to zero, forcing the header to be
2499 ** dynamically allocated. */
2503 /* Make sure a corrupt database has not given us an oversize header.
2504 ** Do this now to avoid an oversize memory allocation.
2506 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2507 ** types use so much data space that there can only be 4096 and 32 of
2508 ** them, respectively. So the maximum header length results from a
2509 ** 3-byte type for each of the maximum of 32768 columns plus three
2510 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2512 if( aOffset
[0] > 98307 || aOffset
[0] > pC
->payloadSize
){
2513 goto op_column_corrupt
;
2516 /* This is an optimization. By skipping over the first few tests
2517 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2518 ** measurable performance gain.
2520 ** This branch is taken even if aOffset[0]==0. Such a record is never
2521 ** generated by SQLite, and could be considered corruption, but we
2522 ** accept it for historical reasons. When aOffset[0]==0, the code this
2523 ** branch jumps to reads past the end of the record, but never more
2524 ** than a few bytes. Even if the record occurs at the end of the page
2525 ** content area, the "page header" comes after the page content and so
2526 ** this overread is harmless. Similar overreads can occur for a corrupt
2530 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
2531 testcase( aOffset
[0]==0 );
2532 goto op_column_read_header
;
2536 /* Make sure at least the first p2+1 entries of the header have been
2537 ** parsed and valid information is in aOffset[] and pC->aType[].
2539 if( pC
->nHdrParsed
<=p2
){
2540 /* If there is more header available for parsing in the record, try
2541 ** to extract additional fields up through the p2+1-th field
2543 if( pC
->iHdrOffset
<aOffset
[0] ){
2544 /* Make sure zData points to enough of the record to cover the header. */
2546 memset(&sMem
, 0, sizeof(sMem
));
2547 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, 0, aOffset
[0], &sMem
);
2548 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2549 zData
= (u8
*)sMem
.z
;
2554 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2555 op_column_read_header
:
2557 offset64
= aOffset
[i
];
2558 zHdr
= zData
+ pC
->iHdrOffset
;
2559 zEndHdr
= zData
+ aOffset
[0];
2560 testcase( zHdr
>=zEndHdr
);
2562 if( (t
= zHdr
[0])<0x80 ){
2564 offset64
+= sqlite3VdbeOneByteSerialTypeLen(t
);
2566 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
2567 offset64
+= sqlite3VdbeSerialTypeLen(t
);
2570 aOffset
[i
] = (u32
)(offset64
& 0xffffffff);
2571 }while( i
<=p2
&& zHdr
<zEndHdr
);
2573 /* The record is corrupt if any of the following are true:
2574 ** (1) the bytes of the header extend past the declared header size
2575 ** (2) the entire header was used but not all data was used
2576 ** (3) the end of the data extends beyond the end of the record.
2578 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset64
!=pC
->payloadSize
))
2579 || (offset64
> pC
->payloadSize
)
2581 if( aOffset
[0]==0 ){
2585 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2586 goto op_column_corrupt
;
2591 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
2592 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2597 /* If after trying to extract new entries from the header, nHdrParsed is
2598 ** still not up to p2, that means that the record has fewer than p2
2599 ** columns. So the result will be either the default value or a NULL.
2601 if( pC
->nHdrParsed
<=p2
){
2602 if( pOp
->p4type
==P4_MEM
){
2603 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2605 sqlite3VdbeMemSetNull(pDest
);
2613 /* Extract the content for the p2+1-th column. Control can only
2614 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2617 assert( p2
<pC
->nHdrParsed
);
2618 assert( rc
==SQLITE_OK
);
2619 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
2620 if( VdbeMemDynamic(pDest
) ){
2621 sqlite3VdbeMemSetNull(pDest
);
2623 assert( t
==pC
->aType
[p2
] );
2624 if( pC
->szRow
>=aOffset
[p2
+1] ){
2625 /* This is the common case where the desired content fits on the original
2626 ** page - where the content is not on an overflow page */
2627 zData
= pC
->aRow
+ aOffset
[p2
];
2629 sqlite3VdbeSerialGet(zData
, t
, pDest
);
2631 /* If the column value is a string, we need a persistent value, not
2632 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2633 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2635 static const u16 aFlag
[] = { MEM_Blob
, MEM_Str
|MEM_Term
};
2636 pDest
->n
= len
= (t
-12)/2;
2637 pDest
->enc
= encoding
;
2638 if( pDest
->szMalloc
< len
+2 ){
2639 pDest
->flags
= MEM_Null
;
2640 if( sqlite3VdbeMemGrow(pDest
, len
+2, 0) ) goto no_mem
;
2642 pDest
->z
= pDest
->zMalloc
;
2644 memcpy(pDest
->z
, zData
, len
);
2646 pDest
->z
[len
+1] = 0;
2647 pDest
->flags
= aFlag
[t
&1];
2650 pDest
->enc
= encoding
;
2651 /* This branch happens only when content is on overflow pages */
2652 if( ((pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
2653 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0))
2654 || (len
= sqlite3VdbeSerialTypeLen(t
))==0
2656 /* Content is irrelevant for
2657 ** 1. the typeof() function,
2658 ** 2. the length(X) function if X is a blob, and
2659 ** 3. if the content length is zero.
2660 ** So we might as well use bogus content rather than reading
2661 ** content from disk.
2663 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2664 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2665 ** read up to 16. So 16 bytes of bogus content is supplied.
2667 static u8 aZero
[16]; /* This is the bogus content */
2668 sqlite3VdbeSerialGet(aZero
, t
, pDest
);
2670 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, aOffset
[p2
], len
, pDest
);
2671 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2672 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
2673 pDest
->flags
&= ~MEM_Ephem
;
2678 UPDATE_MAX_BLOBSIZE(pDest
);
2679 REGISTER_TRACE(pOp
->p3
, pDest
);
2684 pOp
= &aOp
[aOp
[0].p3
-1];
2687 rc
= SQLITE_CORRUPT_BKPT
;
2688 goto abort_due_to_error
;
2692 /* Opcode: Affinity P1 P2 * P4 *
2693 ** Synopsis: affinity(r[P1@P2])
2695 ** Apply affinities to a range of P2 registers starting with P1.
2697 ** P4 is a string that is P2 characters long. The N-th character of the
2698 ** string indicates the column affinity that should be used for the N-th
2699 ** memory cell in the range.
2702 const char *zAffinity
; /* The affinity to be applied */
2704 zAffinity
= pOp
->p4
.z
;
2705 assert( zAffinity
!=0 );
2706 assert( pOp
->p2
>0 );
2707 assert( zAffinity
[pOp
->p2
]==0 );
2708 pIn1
= &aMem
[pOp
->p1
];
2710 assert( pIn1
<= &p
->aMem
[(p
->nMem
+1 - p
->nCursor
)] );
2711 assert( memIsValid(pIn1
) );
2712 applyAffinity(pIn1
, *(zAffinity
++), encoding
);
2714 }while( zAffinity
[0] );
2718 /* Opcode: MakeRecord P1 P2 P3 P4 *
2719 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2721 ** Convert P2 registers beginning with P1 into the [record format]
2722 ** use as a data record in a database table or as a key
2723 ** in an index. The OP_Column opcode can decode the record later.
2725 ** P4 may be a string that is P2 characters long. The N-th character of the
2726 ** string indicates the column affinity that should be used for the N-th
2727 ** field of the index key.
2729 ** The mapping from character to affinity is given by the SQLITE_AFF_
2730 ** macros defined in sqliteInt.h.
2732 ** If P4 is NULL then all index fields have the affinity BLOB.
2734 case OP_MakeRecord
: {
2735 u8
*zNewRecord
; /* A buffer to hold the data for the new record */
2736 Mem
*pRec
; /* The new record */
2737 u64 nData
; /* Number of bytes of data space */
2738 int nHdr
; /* Number of bytes of header space */
2739 i64 nByte
; /* Data space required for this record */
2740 i64 nZero
; /* Number of zero bytes at the end of the record */
2741 int nVarint
; /* Number of bytes in a varint */
2742 u32 serial_type
; /* Type field */
2743 Mem
*pData0
; /* First field to be combined into the record */
2744 Mem
*pLast
; /* Last field of the record */
2745 int nField
; /* Number of fields in the record */
2746 char *zAffinity
; /* The affinity string for the record */
2747 int file_format
; /* File format to use for encoding */
2748 int i
; /* Space used in zNewRecord[] header */
2749 int j
; /* Space used in zNewRecord[] content */
2750 u32 len
; /* Length of a field */
2752 /* Assuming the record contains N fields, the record format looks
2755 ** ------------------------------------------------------------------------
2756 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2757 ** ------------------------------------------------------------------------
2759 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2762 ** Each type field is a varint representing the serial type of the
2763 ** corresponding data element (see sqlite3VdbeSerialType()). The
2764 ** hdr-size field is also a varint which is the offset from the beginning
2765 ** of the record to data0.
2767 nData
= 0; /* Number of bytes of data space */
2768 nHdr
= 0; /* Number of bytes of header space */
2769 nZero
= 0; /* Number of zero bytes at the end of the record */
2771 zAffinity
= pOp
->p4
.z
;
2772 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2773 pData0
= &aMem
[nField
];
2775 pLast
= &pData0
[nField
-1];
2776 file_format
= p
->minWriteFileFormat
;
2778 /* Identify the output register */
2779 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
2780 pOut
= &aMem
[pOp
->p3
];
2781 memAboutToChange(p
, pOut
);
2783 /* Apply the requested affinity to all inputs
2785 assert( pData0
<=pLast
);
2789 applyAffinity(pRec
++, *(zAffinity
++), encoding
);
2790 assert( zAffinity
[0]==0 || pRec
<=pLast
);
2791 }while( zAffinity
[0] );
2794 #ifdef SQLITE_ENABLE_NULL_TRIM
2795 /* NULLs can be safely trimmed from the end of the record, as long as
2796 ** as the schema format is 2 or more and none of the omitted columns
2797 ** have a non-NULL default value. Also, the record must be left with
2798 ** at least one field. If P5>0 then it will be one more than the
2799 ** index of the right-most column with a non-NULL default value */
2801 while( (pLast
->flags
& MEM_Null
)!=0 && nField
>pOp
->p5
){
2808 /* Loop through the elements that will make up the record to figure
2809 ** out how much space is required for the new record.
2813 assert( memIsValid(pRec
) );
2814 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
, &len
);
2815 if( pRec
->flags
& MEM_Zero
){
2816 if( serial_type
==0 ){
2817 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
2818 ** table methods that never invoke sqlite3_result_xxxxx() while
2819 ** computing an unchanging column value in an UPDATE statement.
2820 ** Give such values a special internal-use-only serial-type of 10
2821 ** so that they can be passed through to xUpdate and have
2822 ** a true sqlite3_value_nochange(). */
2823 assert( pOp
->p5
==OPFLAG_NOCHNG_MAGIC
|| CORRUPT_DB
);
2826 if( sqlite3VdbeMemExpandBlob(pRec
) ) goto no_mem
;
2828 nZero
+= pRec
->u
.nZero
;
2829 len
-= pRec
->u
.nZero
;
2833 testcase( serial_type
==127 );
2834 testcase( serial_type
==128 );
2835 nHdr
+= serial_type
<=127 ? 1 : sqlite3VarintLen(serial_type
);
2836 pRec
->uTemp
= serial_type
;
2837 if( pRec
==pData0
) break;
2841 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2842 ** which determines the total number of bytes in the header. The varint
2843 ** value is the size of the header in bytes including the size varint
2845 testcase( nHdr
==126 );
2846 testcase( nHdr
==127 );
2848 /* The common case */
2851 /* Rare case of a really large header */
2852 nVarint
= sqlite3VarintLen(nHdr
);
2854 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
2857 if( nByte
+nZero
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2861 /* Make sure the output register has a buffer large enough to store
2862 ** the new record. The output register (pOp->p3) is not allowed to
2863 ** be one of the input registers (because the following call to
2864 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2866 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
2869 zNewRecord
= (u8
*)pOut
->z
;
2871 /* Write the record */
2872 i
= putVarint32(zNewRecord
, nHdr
);
2874 assert( pData0
<=pLast
);
2877 serial_type
= pRec
->uTemp
;
2878 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2879 ** additional varints, one per column. */
2880 i
+= putVarint32(&zNewRecord
[i
], serial_type
); /* serial type */
2881 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2882 ** immediately follow the header. */
2883 j
+= sqlite3VdbeSerialPut(&zNewRecord
[j
], pRec
, serial_type
); /* content */
2884 }while( (++pRec
)<=pLast
);
2888 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2889 pOut
->n
= (int)nByte
;
2890 pOut
->flags
= MEM_Blob
;
2892 pOut
->u
.nZero
= nZero
;
2893 pOut
->flags
|= MEM_Zero
;
2895 REGISTER_TRACE(pOp
->p3
, pOut
);
2896 UPDATE_MAX_BLOBSIZE(pOut
);
2900 /* Opcode: Count P1 P2 * * *
2901 ** Synopsis: r[P2]=count()
2903 ** Store the number of entries (an integer value) in the table or index
2904 ** opened by cursor P1 in register P2
2906 #ifndef SQLITE_OMIT_BTREECOUNT
2907 case OP_Count
: { /* out2 */
2911 assert( p
->apCsr
[pOp
->p1
]->eCurType
==CURTYPE_BTREE
);
2912 pCrsr
= p
->apCsr
[pOp
->p1
]->uc
.pCursor
;
2914 nEntry
= 0; /* Not needed. Only used to silence a warning. */
2915 rc
= sqlite3BtreeCount(pCrsr
, &nEntry
);
2916 if( rc
) goto abort_due_to_error
;
2917 pOut
= out2Prerelease(p
, pOp
);
2923 /* Opcode: Savepoint P1 * * P4 *
2925 ** Open, release or rollback the savepoint named by parameter P4, depending
2926 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2927 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2929 case OP_Savepoint
: {
2930 int p1
; /* Value of P1 operand */
2931 char *zName
; /* Name of savepoint */
2934 Savepoint
*pSavepoint
;
2942 /* Assert that the p1 parameter is valid. Also that if there is no open
2943 ** transaction, then there cannot be any savepoints.
2945 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
2946 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
2947 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
2948 assert( checkSavepointCount(db
) );
2949 assert( p
->bIsReader
);
2951 if( p1
==SAVEPOINT_BEGIN
){
2952 if( db
->nVdbeWrite
>0 ){
2953 /* A new savepoint cannot be created if there are active write
2954 ** statements (i.e. open read/write incremental blob handles).
2956 sqlite3VdbeError(p
, "cannot open savepoint - SQL statements in progress");
2959 nName
= sqlite3Strlen30(zName
);
2961 #ifndef SQLITE_OMIT_VIRTUALTABLE
2962 /* This call is Ok even if this savepoint is actually a transaction
2963 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2964 ** If this is a transaction savepoint being opened, it is guaranteed
2965 ** that the db->aVTrans[] array is empty. */
2966 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
2967 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
2968 db
->nStatement
+db
->nSavepoint
);
2969 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2972 /* Create a new savepoint structure. */
2973 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Savepoint
)+nName
+1);
2975 pNew
->zName
= (char *)&pNew
[1];
2976 memcpy(pNew
->zName
, zName
, nName
+1);
2978 /* If there is no open transaction, then mark this as a special
2979 ** "transaction savepoint". */
2980 if( db
->autoCommit
){
2982 db
->isTransactionSavepoint
= 1;
2987 /* Link the new savepoint into the database handle's list. */
2988 pNew
->pNext
= db
->pSavepoint
;
2989 db
->pSavepoint
= pNew
;
2990 pNew
->nDeferredCons
= db
->nDeferredCons
;
2991 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
2997 /* Find the named savepoint. If there is no such savepoint, then an
2998 ** an error is returned to the user. */
3000 pSavepoint
= db
->pSavepoint
;
3001 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
3002 pSavepoint
= pSavepoint
->pNext
3007 sqlite3VdbeError(p
, "no such savepoint: %s", zName
);
3009 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
3010 /* It is not possible to release (commit) a savepoint if there are
3011 ** active write statements.
3013 sqlite3VdbeError(p
, "cannot release savepoint - "
3014 "SQL statements in progress");
3018 /* Determine whether or not this is a transaction savepoint. If so,
3019 ** and this is a RELEASE command, then the current transaction
3022 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
3023 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
3024 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3028 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3029 p
->pc
= (int)(pOp
- aOp
);
3031 p
->rc
= rc
= SQLITE_BUSY
;
3034 db
->isTransactionSavepoint
= 0;
3038 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
3039 if( p1
==SAVEPOINT_ROLLBACK
){
3040 isSchemaChange
= (db
->mDbFlags
& DBFLAG_SchemaChange
)!=0;
3041 for(ii
=0; ii
<db
->nDb
; ii
++){
3042 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
3043 SQLITE_ABORT_ROLLBACK
,
3045 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3050 for(ii
=0; ii
<db
->nDb
; ii
++){
3051 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
3052 if( rc
!=SQLITE_OK
){
3053 goto abort_due_to_error
;
3056 if( isSchemaChange
){
3057 sqlite3ExpirePreparedStatements(db
);
3058 sqlite3ResetAllSchemasOfConnection(db
);
3059 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3063 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3064 ** savepoints nested inside of the savepoint being operated on. */
3065 while( db
->pSavepoint
!=pSavepoint
){
3066 pTmp
= db
->pSavepoint
;
3067 db
->pSavepoint
= pTmp
->pNext
;
3068 sqlite3DbFree(db
, pTmp
);
3072 /* If it is a RELEASE, then destroy the savepoint being operated on
3073 ** too. If it is a ROLLBACK TO, then set the number of deferred
3074 ** constraint violations present in the database to the value stored
3075 ** when the savepoint was created. */
3076 if( p1
==SAVEPOINT_RELEASE
){
3077 assert( pSavepoint
==db
->pSavepoint
);
3078 db
->pSavepoint
= pSavepoint
->pNext
;
3079 sqlite3DbFree(db
, pSavepoint
);
3080 if( !isTransaction
){
3084 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
3085 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
3088 if( !isTransaction
|| p1
==SAVEPOINT_ROLLBACK
){
3089 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
3090 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3094 if( rc
) goto abort_due_to_error
;
3099 /* Opcode: AutoCommit P1 P2 * * *
3101 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3102 ** back any currently active btree transactions. If there are any active
3103 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3104 ** there are active writing VMs or active VMs that use shared cache.
3106 ** This instruction causes the VM to halt.
3108 case OP_AutoCommit
: {
3109 int desiredAutoCommit
;
3112 desiredAutoCommit
= pOp
->p1
;
3113 iRollback
= pOp
->p2
;
3114 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
3115 assert( desiredAutoCommit
==1 || iRollback
==0 );
3116 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
3117 assert( p
->bIsReader
);
3119 if( desiredAutoCommit
!=db
->autoCommit
){
3121 assert( desiredAutoCommit
==1 );
3122 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3124 }else if( desiredAutoCommit
&& db
->nVdbeWrite
>0 ){
3125 /* If this instruction implements a COMMIT and other VMs are writing
3126 ** return an error indicating that the other VMs must complete first.
3128 sqlite3VdbeError(p
, "cannot commit transaction - "
3129 "SQL statements in progress");
3131 goto abort_due_to_error
;
3132 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3135 db
->autoCommit
= (u8
)desiredAutoCommit
;
3137 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3138 p
->pc
= (int)(pOp
- aOp
);
3139 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
3140 p
->rc
= rc
= SQLITE_BUSY
;
3143 assert( db
->nStatement
==0 );
3144 sqlite3CloseSavepoints(db
);
3145 if( p
->rc
==SQLITE_OK
){
3153 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
3154 (iRollback
)?"cannot rollback - no transaction is active":
3155 "cannot commit - no transaction is active"));
3158 goto abort_due_to_error
;
3163 /* Opcode: Transaction P1 P2 P3 P4 P5
3165 ** Begin a transaction on database P1 if a transaction is not already
3167 ** If P2 is non-zero, then a write-transaction is started, or if a
3168 ** read-transaction is already active, it is upgraded to a write-transaction.
3169 ** If P2 is zero, then a read-transaction is started.
3171 ** P1 is the index of the database file on which the transaction is
3172 ** started. Index 0 is the main database file and index 1 is the
3173 ** file used for temporary tables. Indices of 2 or more are used for
3174 ** attached databases.
3176 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3177 ** true (this flag is set if the Vdbe may modify more than one row and may
3178 ** throw an ABORT exception), a statement transaction may also be opened.
3179 ** More specifically, a statement transaction is opened iff the database
3180 ** connection is currently not in autocommit mode, or if there are other
3181 ** active statements. A statement transaction allows the changes made by this
3182 ** VDBE to be rolled back after an error without having to roll back the
3183 ** entire transaction. If no error is encountered, the statement transaction
3184 ** will automatically commit when the VDBE halts.
3186 ** If P5!=0 then this opcode also checks the schema cookie against P3
3187 ** and the schema generation counter against P4.
3188 ** The cookie changes its value whenever the database schema changes.
3189 ** This operation is used to detect when that the cookie has changed
3190 ** and that the current process needs to reread the schema. If the schema
3191 ** cookie in P3 differs from the schema cookie in the database header or
3192 ** if the schema generation counter in P4 differs from the current
3193 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3194 ** halts. The sqlite3_step() wrapper function might then reprepare the
3195 ** statement and rerun it from the beginning.
3197 case OP_Transaction
: {
3202 assert( p
->bIsReader
);
3203 assert( p
->readOnly
==0 || pOp
->p2
==0 );
3204 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3205 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3206 if( pOp
->p2
&& (db
->flags
& SQLITE_QueryOnly
)!=0 ){
3207 rc
= SQLITE_READONLY
;
3208 goto abort_due_to_error
;
3210 pBt
= db
->aDb
[pOp
->p1
].pBt
;
3213 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
);
3214 testcase( rc
==SQLITE_BUSY_SNAPSHOT
);
3215 testcase( rc
==SQLITE_BUSY_RECOVERY
);
3216 if( rc
!=SQLITE_OK
){
3217 if( (rc
&0xff)==SQLITE_BUSY
){
3218 p
->pc
= (int)(pOp
- aOp
);
3222 goto abort_due_to_error
;
3225 if( pOp
->p2
&& p
->usesStmtJournal
3226 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
3228 assert( sqlite3BtreeIsInTrans(pBt
) );
3229 if( p
->iStatement
==0 ){
3230 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
3232 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
3235 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
3236 if( rc
==SQLITE_OK
){
3237 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
3240 /* Store the current value of the database handles deferred constraint
3241 ** counter. If the statement transaction needs to be rolled back,
3242 ** the value of this counter needs to be restored too. */
3243 p
->nStmtDefCons
= db
->nDeferredCons
;
3244 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
3247 /* Gather the schema version number for checking:
3248 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3249 ** version is checked to ensure that the schema has not changed since the
3250 ** SQL statement was prepared.
3252 sqlite3BtreeGetMeta(pBt
, BTREE_SCHEMA_VERSION
, (u32
*)&iMeta
);
3253 iGen
= db
->aDb
[pOp
->p1
].pSchema
->iGeneration
;
3257 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
3258 if( pOp
->p5
&& (iMeta
!=pOp
->p3
|| iGen
!=pOp
->p4
.i
) ){
3259 sqlite3DbFree(db
, p
->zErrMsg
);
3260 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3261 /* If the schema-cookie from the database file matches the cookie
3262 ** stored with the in-memory representation of the schema, do
3263 ** not reload the schema from the database file.
3265 ** If virtual-tables are in use, this is not just an optimization.
3266 ** Often, v-tables store their data in other SQLite tables, which
3267 ** are queried from within xNext() and other v-table methods using
3268 ** prepared queries. If such a query is out-of-date, we do not want to
3269 ** discard the database schema, as the user code implementing the
3270 ** v-table would have to be ready for the sqlite3_vtab structure itself
3271 ** to be invalidated whenever sqlite3_step() is called from within
3272 ** a v-table method.
3274 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3275 sqlite3ResetOneSchema(db
, pOp
->p1
);
3280 if( rc
) goto abort_due_to_error
;
3284 /* Opcode: ReadCookie P1 P2 P3 * *
3286 ** Read cookie number P3 from database P1 and write it into register P2.
3287 ** P3==1 is the schema version. P3==2 is the database format.
3288 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3289 ** the main database file and P1==1 is the database file used to store
3290 ** temporary tables.
3292 ** There must be a read-lock on the database (either a transaction
3293 ** must be started or there must be an open cursor) before
3294 ** executing this instruction.
3296 case OP_ReadCookie
: { /* out2 */
3301 assert( p
->bIsReader
);
3304 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
3305 assert( iDb
>=0 && iDb
<db
->nDb
);
3306 assert( db
->aDb
[iDb
].pBt
!=0 );
3307 assert( DbMaskTest(p
->btreeMask
, iDb
) );
3309 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
3310 pOut
= out2Prerelease(p
, pOp
);
3315 /* Opcode: SetCookie P1 P2 P3 * *
3317 ** Write the integer value P3 into cookie number P2 of database P1.
3318 ** P2==1 is the schema version. P2==2 is the database format.
3319 ** P2==3 is the recommended pager cache
3320 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3321 ** database file used to store temporary tables.
3323 ** A transaction must be started before executing this opcode.
3325 case OP_SetCookie
: {
3327 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
3328 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3329 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3330 assert( p
->readOnly
==0 );
3331 pDb
= &db
->aDb
[pOp
->p1
];
3332 assert( pDb
->pBt
!=0 );
3333 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
3334 /* See note about index shifting on OP_ReadCookie */
3335 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, pOp
->p3
);
3336 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
3337 /* When the schema cookie changes, record the new cookie internally */
3338 pDb
->pSchema
->schema_cookie
= pOp
->p3
;
3339 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3340 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
3341 /* Record changes in the file format */
3342 pDb
->pSchema
->file_format
= pOp
->p3
;
3345 /* Invalidate all prepared statements whenever the TEMP database
3346 ** schema is changed. Ticket #1644 */
3347 sqlite3ExpirePreparedStatements(db
);
3350 if( rc
) goto abort_due_to_error
;
3354 /* Opcode: OpenRead P1 P2 P3 P4 P5
3355 ** Synopsis: root=P2 iDb=P3
3357 ** Open a read-only cursor for the database table whose root page is
3358 ** P2 in a database file. The database file is determined by P3.
3359 ** P3==0 means the main database, P3==1 means the database used for
3360 ** temporary tables, and P3>1 means used the corresponding attached
3361 ** database. Give the new cursor an identifier of P1. The P1
3362 ** values need not be contiguous but all P1 values should be small integers.
3363 ** It is an error for P1 to be negative.
3365 ** If P5!=0 then use the content of register P2 as the root page, not
3366 ** the value of P2 itself.
3368 ** There will be a read lock on the database whenever there is an
3369 ** open cursor. If the database was unlocked prior to this instruction
3370 ** then a read lock is acquired as part of this instruction. A read
3371 ** lock allows other processes to read the database but prohibits
3372 ** any other process from modifying the database. The read lock is
3373 ** released when all cursors are closed. If this instruction attempts
3374 ** to get a read lock but fails, the script terminates with an
3375 ** SQLITE_BUSY error code.
3377 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3378 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3379 ** structure, then said structure defines the content and collating
3380 ** sequence of the index being opened. Otherwise, if P4 is an integer
3381 ** value, it is set to the number of columns in the table.
3383 ** See also: OpenWrite, ReopenIdx
3385 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3386 ** Synopsis: root=P2 iDb=P3
3388 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3389 ** checks to see if the cursor on P1 is already open with a root page
3390 ** number of P2 and if it is this opcode becomes a no-op. In other words,
3391 ** if the cursor is already open, do not reopen it.
3393 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3394 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3395 ** every other ReopenIdx or OpenRead for the same cursor number.
3397 ** See the OpenRead opcode documentation for additional information.
3399 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3400 ** Synopsis: root=P2 iDb=P3
3402 ** Open a read/write cursor named P1 on the table or index whose root
3403 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3406 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3407 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3408 ** structure, then said structure defines the content and collating
3409 ** sequence of the index being opened. Otherwise, if P4 is an integer
3410 ** value, it is set to the number of columns in the table, or to the
3411 ** largest index of any column of the table that is actually used.
3413 ** This instruction works just like OpenRead except that it opens the cursor
3414 ** in read/write mode. For a given table, there can be one or more read-only
3415 ** cursors or a single read/write cursor but not both.
3417 ** See also OpenRead.
3419 case OP_ReopenIdx
: {
3429 assert( pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
3430 assert( pOp
->p4type
==P4_KEYINFO
);
3431 pCur
= p
->apCsr
[pOp
->p1
];
3432 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
3433 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
3434 goto open_cursor_set_hints
;
3436 /* If the cursor is not currently open or is open on a different
3437 ** index, then fall through into OP_OpenRead to force a reopen */
3441 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
3442 assert( p
->bIsReader
);
3443 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
3444 || p
->readOnly
==0 );
3447 rc
= SQLITE_ABORT_ROLLBACK
;
3448 goto abort_due_to_error
;
3455 assert( iDb
>=0 && iDb
<db
->nDb
);
3456 assert( DbMaskTest(p
->btreeMask
, iDb
) );
3457 pDb
= &db
->aDb
[iDb
];
3460 if( pOp
->opcode
==OP_OpenWrite
){
3461 assert( OPFLAG_FORDELETE
==BTREE_FORDELETE
);
3462 wrFlag
= BTREE_WRCSR
| (pOp
->p5
& OPFLAG_FORDELETE
);
3463 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3464 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
3465 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
3470 if( pOp
->p5
& OPFLAG_P2ISREG
){
3472 assert( p2
<=(p
->nMem
+1 - p
->nCursor
) );
3474 assert( memIsValid(pIn2
) );
3475 assert( (pIn2
->flags
& MEM_Int
)!=0 );
3476 sqlite3VdbeMemIntegerify(pIn2
);
3477 p2
= (int)pIn2
->u
.i
;
3478 /* The p2 value always comes from a prior OP_CreateBtree opcode and
3479 ** that opcode will always set the p2 value to 2 or more or else fail.
3480 ** If there were a failure, the prepared statement would have halted
3481 ** before reaching this instruction. */
3484 if( pOp
->p4type
==P4_KEYINFO
){
3485 pKeyInfo
= pOp
->p4
.pKeyInfo
;
3486 assert( pKeyInfo
->enc
==ENC(db
) );
3487 assert( pKeyInfo
->db
==db
);
3488 nField
= pKeyInfo
->nAllField
;
3489 }else if( pOp
->p4type
==P4_INT32
){
3492 assert( pOp
->p1
>=0 );
3493 assert( nField
>=0 );
3494 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3495 pCur
= allocateCursor(p
, pOp
->p1
, nField
, iDb
, CURTYPE_BTREE
);
3496 if( pCur
==0 ) goto no_mem
;
3498 pCur
->isOrdered
= 1;
3499 pCur
->pgnoRoot
= p2
;
3501 pCur
->wrFlag
= wrFlag
;
3503 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->uc
.pCursor
);
3504 pCur
->pKeyInfo
= pKeyInfo
;
3505 /* Set the VdbeCursor.isTable variable. Previous versions of
3506 ** SQLite used to check if the root-page flags were sane at this point
3507 ** and report database corruption if they were not, but this check has
3508 ** since moved into the btree layer. */
3509 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
3511 open_cursor_set_hints
:
3512 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
3513 assert( OPFLAG_SEEKEQ
==BTREE_SEEK_EQ
);
3514 testcase( pOp
->p5
& OPFLAG_BULKCSR
);
3515 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3516 testcase( pOp
->p2
& OPFLAG_SEEKEQ
);
3518 sqlite3BtreeCursorHintFlags(pCur
->uc
.pCursor
,
3519 (pOp
->p5
& (OPFLAG_BULKCSR
|OPFLAG_SEEKEQ
)));
3520 if( rc
) goto abort_due_to_error
;
3524 /* Opcode: OpenDup P1 P2 * * *
3526 ** Open a new cursor P1 that points to the same ephemeral table as
3527 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
3528 ** opcode. Only ephemeral cursors may be duplicated.
3530 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
3533 VdbeCursor
*pOrig
; /* The original cursor to be duplicated */
3534 VdbeCursor
*pCx
; /* The new cursor */
3536 pOrig
= p
->apCsr
[pOp
->p2
];
3537 assert( pOrig
->pBtx
!=0 ); /* Only ephemeral cursors can be duplicated */
3539 pCx
= allocateCursor(p
, pOp
->p1
, pOrig
->nField
, -1, CURTYPE_BTREE
);
3540 if( pCx
==0 ) goto no_mem
;
3542 pCx
->isEphemeral
= 1;
3543 pCx
->pKeyInfo
= pOrig
->pKeyInfo
;
3544 pCx
->isTable
= pOrig
->isTable
;
3545 rc
= sqlite3BtreeCursor(pOrig
->pBtx
, MASTER_ROOT
, BTREE_WRCSR
,
3546 pCx
->pKeyInfo
, pCx
->uc
.pCursor
);
3547 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3548 ** opened for a database. Since there is already an open cursor when this
3549 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3550 assert( rc
==SQLITE_OK
);
3555 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3556 ** Synopsis: nColumn=P2
3558 ** Open a new cursor P1 to a transient table.
3559 ** The cursor is always opened read/write even if
3560 ** the main database is read-only. The ephemeral
3561 ** table is deleted automatically when the cursor is closed.
3563 ** P2 is the number of columns in the ephemeral table.
3564 ** The cursor points to a BTree table if P4==0 and to a BTree index
3565 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3566 ** that defines the format of keys in the index.
3568 ** The P5 parameter can be a mask of the BTREE_* flags defined
3569 ** in btree.h. These flags control aspects of the operation of
3570 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3571 ** added automatically.
3573 /* Opcode: OpenAutoindex P1 P2 * P4 *
3574 ** Synopsis: nColumn=P2
3576 ** This opcode works the same as OP_OpenEphemeral. It has a
3577 ** different name to distinguish its use. Tables created using
3578 ** by this opcode will be used for automatically created transient
3579 ** indices in joins.
3581 case OP_OpenAutoindex
:
3582 case OP_OpenEphemeral
: {
3586 static const int vfsFlags
=
3587 SQLITE_OPEN_READWRITE
|
3588 SQLITE_OPEN_CREATE
|
3589 SQLITE_OPEN_EXCLUSIVE
|
3590 SQLITE_OPEN_DELETEONCLOSE
|
3591 SQLITE_OPEN_TRANSIENT_DB
;
3592 assert( pOp
->p1
>=0 );
3593 assert( pOp
->p2
>=0 );
3594 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, CURTYPE_BTREE
);
3595 if( pCx
==0 ) goto no_mem
;
3597 pCx
->isEphemeral
= 1;
3598 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->pBtx
,
3599 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
, vfsFlags
);
3600 if( rc
==SQLITE_OK
){
3601 rc
= sqlite3BtreeBeginTrans(pCx
->pBtx
, 1);
3603 if( rc
==SQLITE_OK
){
3604 /* If a transient index is required, create it by calling
3605 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3606 ** opening it. If a transient table is required, just use the
3607 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3609 if( (pCx
->pKeyInfo
= pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
3611 assert( pOp
->p4type
==P4_KEYINFO
);
3612 rc
= sqlite3BtreeCreateTable(pCx
->pBtx
, &pgno
, BTREE_BLOBKEY
| pOp
->p5
);
3613 if( rc
==SQLITE_OK
){
3614 assert( pgno
==MASTER_ROOT
+1 );
3615 assert( pKeyInfo
->db
==db
);
3616 assert( pKeyInfo
->enc
==ENC(db
) );
3617 rc
= sqlite3BtreeCursor(pCx
->pBtx
, pgno
, BTREE_WRCSR
,
3618 pKeyInfo
, pCx
->uc
.pCursor
);
3622 rc
= sqlite3BtreeCursor(pCx
->pBtx
, MASTER_ROOT
, BTREE_WRCSR
,
3623 0, pCx
->uc
.pCursor
);
3627 if( rc
) goto abort_due_to_error
;
3628 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
3632 /* Opcode: SorterOpen P1 P2 P3 P4 *
3634 ** This opcode works like OP_OpenEphemeral except that it opens
3635 ** a transient index that is specifically designed to sort large
3636 ** tables using an external merge-sort algorithm.
3638 ** If argument P3 is non-zero, then it indicates that the sorter may
3639 ** assume that a stable sort considering the first P3 fields of each
3640 ** key is sufficient to produce the required results.
3642 case OP_SorterOpen
: {
3645 assert( pOp
->p1
>=0 );
3646 assert( pOp
->p2
>=0 );
3647 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, CURTYPE_SORTER
);
3648 if( pCx
==0 ) goto no_mem
;
3649 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3650 assert( pCx
->pKeyInfo
->db
==db
);
3651 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
3652 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
3653 if( rc
) goto abort_due_to_error
;
3657 /* Opcode: SequenceTest P1 P2 * * *
3658 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3660 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3661 ** to P2. Regardless of whether or not the jump is taken, increment the
3662 ** the sequence value.
3664 case OP_SequenceTest
: {
3666 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3667 pC
= p
->apCsr
[pOp
->p1
];
3668 assert( isSorter(pC
) );
3669 if( (pC
->seqCount
++)==0 ){
3675 /* Opcode: OpenPseudo P1 P2 P3 * *
3676 ** Synopsis: P3 columns in r[P2]
3678 ** Open a new cursor that points to a fake table that contains a single
3679 ** row of data. The content of that one row is the content of memory
3680 ** register P2. In other words, cursor P1 becomes an alias for the
3681 ** MEM_Blob content contained in register P2.
3683 ** A pseudo-table created by this opcode is used to hold a single
3684 ** row output from the sorter so that the row can be decomposed into
3685 ** individual columns using the OP_Column opcode. The OP_Column opcode
3686 ** is the only cursor opcode that works with a pseudo-table.
3688 ** P3 is the number of fields in the records that will be stored by
3689 ** the pseudo-table.
3691 case OP_OpenPseudo
: {
3694 assert( pOp
->p1
>=0 );
3695 assert( pOp
->p3
>=0 );
3696 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, -1, CURTYPE_PSEUDO
);
3697 if( pCx
==0 ) goto no_mem
;
3699 pCx
->seekResult
= pOp
->p2
;
3701 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3702 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
3703 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3704 ** which is a performance optimization */
3705 pCx
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
3706 assert( pOp
->p5
==0 );
3710 /* Opcode: Close P1 * * * *
3712 ** Close a cursor previously opened as P1. If P1 is not
3713 ** currently open, this instruction is a no-op.
3716 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3717 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
3718 p
->apCsr
[pOp
->p1
] = 0;
3722 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3723 /* Opcode: ColumnsUsed P1 * * P4 *
3725 ** This opcode (which only exists if SQLite was compiled with
3726 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3727 ** table or index for cursor P1 are used. P4 is a 64-bit integer
3728 ** (P4_INT64) in which the first 63 bits are one for each of the
3729 ** first 63 columns of the table or index that are actually used
3730 ** by the cursor. The high-order bit is set if any column after
3731 ** the 64th is used.
3733 case OP_ColumnsUsed
: {
3735 pC
= p
->apCsr
[pOp
->p1
];
3736 assert( pC
->eCurType
==CURTYPE_BTREE
);
3737 pC
->maskUsed
= *(u64
*)pOp
->p4
.pI64
;
3742 /* Opcode: SeekGE P1 P2 P3 P4 *
3743 ** Synopsis: key=r[P3@P4]
3745 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3746 ** use the value in register P3 as the key. If cursor P1 refers
3747 ** to an SQL index, then P3 is the first in an array of P4 registers
3748 ** that are used as an unpacked index key.
3750 ** Reposition cursor P1 so that it points to the smallest entry that
3751 ** is greater than or equal to the key value. If there are no records
3752 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3754 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3755 ** opcode will always land on a record that equally equals the key, or
3756 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3757 ** opcode must be followed by an IdxLE opcode with the same arguments.
3758 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3759 ** IdxLE opcode will be used on subsequent loop iterations.
3761 ** This opcode leaves the cursor configured to move in forward order,
3762 ** from the beginning toward the end. In other words, the cursor is
3763 ** configured to use Next, not Prev.
3765 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3767 /* Opcode: SeekGT P1 P2 P3 P4 *
3768 ** Synopsis: key=r[P3@P4]
3770 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3771 ** use the value in register P3 as a key. If cursor P1 refers
3772 ** to an SQL index, then P3 is the first in an array of P4 registers
3773 ** that are used as an unpacked index key.
3775 ** Reposition cursor P1 so that it points to the smallest entry that
3776 ** is greater than the key value. If there are no records greater than
3777 ** the key and P2 is not zero, then jump to P2.
3779 ** This opcode leaves the cursor configured to move in forward order,
3780 ** from the beginning toward the end. In other words, the cursor is
3781 ** configured to use Next, not Prev.
3783 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3785 /* Opcode: SeekLT P1 P2 P3 P4 *
3786 ** Synopsis: key=r[P3@P4]
3788 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3789 ** use the value in register P3 as a key. If cursor P1 refers
3790 ** to an SQL index, then P3 is the first in an array of P4 registers
3791 ** that are used as an unpacked index key.
3793 ** Reposition cursor P1 so that it points to the largest entry that
3794 ** is less than the key value. If there are no records less than
3795 ** the key and P2 is not zero, then jump to P2.
3797 ** This opcode leaves the cursor configured to move in reverse order,
3798 ** from the end toward the beginning. In other words, the cursor is
3799 ** configured to use Prev, not Next.
3801 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3803 /* Opcode: SeekLE P1 P2 P3 P4 *
3804 ** Synopsis: key=r[P3@P4]
3806 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3807 ** use the value in register P3 as a key. If cursor P1 refers
3808 ** to an SQL index, then P3 is the first in an array of P4 registers
3809 ** that are used as an unpacked index key.
3811 ** Reposition cursor P1 so that it points to the largest entry that
3812 ** is less than or equal to the key value. If there are no records
3813 ** less than or equal to the key and P2 is not zero, then jump to P2.
3815 ** This opcode leaves the cursor configured to move in reverse order,
3816 ** from the end toward the beginning. In other words, the cursor is
3817 ** configured to use Prev, not Next.
3819 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3820 ** opcode will always land on a record that equally equals the key, or
3821 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3822 ** opcode must be followed by an IdxGE opcode with the same arguments.
3823 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3824 ** IdxGE opcode will be used on subsequent loop iterations.
3826 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3828 case OP_SeekLT
: /* jump, in3 */
3829 case OP_SeekLE
: /* jump, in3 */
3830 case OP_SeekGE
: /* jump, in3 */
3831 case OP_SeekGT
: { /* jump, in3 */
3832 int res
; /* Comparison result */
3833 int oc
; /* Opcode */
3834 VdbeCursor
*pC
; /* The cursor to seek */
3835 UnpackedRecord r
; /* The key to seek for */
3836 int nField
; /* Number of columns or fields in the key */
3837 i64 iKey
; /* The rowid we are to seek to */
3838 int eqOnly
; /* Only interested in == results */
3840 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3841 assert( pOp
->p2
!=0 );
3842 pC
= p
->apCsr
[pOp
->p1
];
3844 assert( pC
->eCurType
==CURTYPE_BTREE
);
3845 assert( OP_SeekLE
== OP_SeekLT
+1 );
3846 assert( OP_SeekGE
== OP_SeekLT
+2 );
3847 assert( OP_SeekGT
== OP_SeekLT
+3 );
3848 assert( pC
->isOrdered
);
3849 assert( pC
->uc
.pCursor
!=0 );
3854 pC
->seekOp
= pOp
->opcode
;
3858 /* The BTREE_SEEK_EQ flag is only set on index cursors */
3859 assert( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
)==0
3862 /* The input value in P3 might be of any type: integer, real, string,
3863 ** blob, or NULL. But it needs to be an integer before we can do
3864 ** the seek, so convert it. */
3865 pIn3
= &aMem
[pOp
->p3
];
3866 if( (pIn3
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
))==MEM_Str
){
3867 applyNumericAffinity(pIn3
, 0);
3869 iKey
= sqlite3VdbeIntValue(pIn3
);
3871 /* If the P3 value could not be converted into an integer without
3872 ** loss of information, then special processing is required... */
3873 if( (pIn3
->flags
& MEM_Int
)==0 ){
3874 if( (pIn3
->flags
& MEM_Real
)==0 ){
3875 /* If the P3 value cannot be converted into any kind of a number,
3876 ** then the seek is not possible, so jump to P2 */
3877 VdbeBranchTaken(1,2); goto jump_to_p2
;
3881 /* If the approximation iKey is larger than the actual real search
3882 ** term, substitute >= for > and < for <=. e.g. if the search term
3883 ** is 4.9 and the integer approximation 5:
3885 ** (x > 4.9) -> (x >= 5)
3886 ** (x <= 4.9) -> (x < 5)
3888 if( pIn3
->u
.r
<(double)iKey
){
3889 assert( OP_SeekGE
==(OP_SeekGT
-1) );
3890 assert( OP_SeekLT
==(OP_SeekLE
-1) );
3891 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
3892 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
3895 /* If the approximation iKey is smaller than the actual real search
3896 ** term, substitute <= for < and > for >=. */
3897 else if( pIn3
->u
.r
>(double)iKey
){
3898 assert( OP_SeekLE
==(OP_SeekLT
+1) );
3899 assert( OP_SeekGT
==(OP_SeekGE
+1) );
3900 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
3901 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
3904 rc
= sqlite3BtreeMovetoUnpacked(pC
->uc
.pCursor
, 0, (u64
)iKey
, 0, &res
);
3905 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
3906 if( rc
!=SQLITE_OK
){
3907 goto abort_due_to_error
;
3910 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3911 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3912 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3914 if( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
) ){
3916 assert( pOp
->opcode
==OP_SeekGE
|| pOp
->opcode
==OP_SeekLE
);
3917 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
3918 assert( pOp
[1].p1
==pOp
[0].p1
);
3919 assert( pOp
[1].p2
==pOp
[0].p2
);
3920 assert( pOp
[1].p3
==pOp
[0].p3
);
3921 assert( pOp
[1].p4
.i
==pOp
[0].p4
.i
);
3925 assert( pOp
->p4type
==P4_INT32
);
3927 r
.pKeyInfo
= pC
->pKeyInfo
;
3928 r
.nField
= (u16
)nField
;
3930 /* The next line of code computes as follows, only faster:
3931 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3932 ** r.default_rc = -1;
3934 ** r.default_rc = +1;
3937 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
3938 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
3939 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
3940 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
3941 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
3943 r
.aMem
= &aMem
[pOp
->p3
];
3945 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3948 rc
= sqlite3BtreeMovetoUnpacked(pC
->uc
.pCursor
, &r
, 0, 0, &res
);
3949 if( rc
!=SQLITE_OK
){
3950 goto abort_due_to_error
;
3952 if( eqOnly
&& r
.eqSeen
==0 ){
3954 goto seek_not_found
;
3957 pC
->deferredMoveto
= 0;
3958 pC
->cacheStatus
= CACHE_STALE
;
3960 sqlite3_search_count
++;
3962 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
3963 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
3965 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
3966 if( rc
!=SQLITE_OK
){
3967 if( rc
==SQLITE_DONE
){
3971 goto abort_due_to_error
;
3978 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
3979 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
3981 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, 0);
3982 if( rc
!=SQLITE_OK
){
3983 if( rc
==SQLITE_DONE
){
3987 goto abort_due_to_error
;
3991 /* res might be negative because the table is empty. Check to
3992 ** see if this is the case.
3994 res
= sqlite3BtreeEof(pC
->uc
.pCursor
);
3998 assert( pOp
->p2
>0 );
3999 VdbeBranchTaken(res
!=0,2);
4003 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4004 pOp
++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4009 /* Opcode: Found P1 P2 P3 P4 *
4010 ** Synopsis: key=r[P3@P4]
4012 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4013 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4016 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4017 ** is a prefix of any entry in P1 then a jump is made to P2 and
4018 ** P1 is left pointing at the matching entry.
4020 ** This operation leaves the cursor in a state where it can be
4021 ** advanced in the forward direction. The Next instruction will work,
4022 ** but not the Prev instruction.
4024 ** See also: NotFound, NoConflict, NotExists. SeekGe
4026 /* Opcode: NotFound P1 P2 P3 P4 *
4027 ** Synopsis: key=r[P3@P4]
4029 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4030 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4033 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4034 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
4035 ** does contain an entry whose prefix matches the P3/P4 record then control
4036 ** falls through to the next instruction and P1 is left pointing at the
4039 ** This operation leaves the cursor in a state where it cannot be
4040 ** advanced in either direction. In other words, the Next and Prev
4041 ** opcodes do not work after this operation.
4043 ** See also: Found, NotExists, NoConflict
4045 /* Opcode: NoConflict P1 P2 P3 P4 *
4046 ** Synopsis: key=r[P3@P4]
4048 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4049 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
4052 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
4053 ** contains any NULL value, jump immediately to P2. If all terms of the
4054 ** record are not-NULL then a check is done to determine if any row in the
4055 ** P1 index btree has a matching key prefix. If there are no matches, jump
4056 ** immediately to P2. If there is a match, fall through and leave the P1
4057 ** cursor pointing to the matching row.
4059 ** This opcode is similar to OP_NotFound with the exceptions that the
4060 ** branch is always taken if any part of the search key input is NULL.
4062 ** This operation leaves the cursor in a state where it cannot be
4063 ** advanced in either direction. In other words, the Next and Prev
4064 ** opcodes do not work after this operation.
4066 ** See also: NotFound, Found, NotExists
4068 case OP_NoConflict
: /* jump, in3 */
4069 case OP_NotFound
: /* jump, in3 */
4070 case OP_Found
: { /* jump, in3 */
4076 UnpackedRecord
*pFree
;
4077 UnpackedRecord
*pIdxKey
;
4081 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
4084 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4085 assert( pOp
->p4type
==P4_INT32
);
4086 pC
= p
->apCsr
[pOp
->p1
];
4089 pC
->seekOp
= pOp
->opcode
;
4091 pIn3
= &aMem
[pOp
->p3
];
4092 assert( pC
->eCurType
==CURTYPE_BTREE
);
4093 assert( pC
->uc
.pCursor
!=0 );
4094 assert( pC
->isTable
==0 );
4096 r
.pKeyInfo
= pC
->pKeyInfo
;
4097 r
.nField
= (u16
)pOp
->p4
.i
;
4100 for(ii
=0; ii
<r
.nField
; ii
++){
4101 assert( memIsValid(&r
.aMem
[ii
]) );
4102 assert( (r
.aMem
[ii
].flags
& MEM_Zero
)==0 || r
.aMem
[ii
].n
==0 );
4103 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
4109 assert( pIn3
->flags
& MEM_Blob
);
4110 rc
= ExpandBlob(pIn3
);
4111 assert( rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
4112 if( rc
) goto no_mem
;
4113 pFree
= pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pC
->pKeyInfo
);
4114 if( pIdxKey
==0 ) goto no_mem
;
4115 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, pIn3
->n
, pIn3
->z
, pIdxKey
);
4117 pIdxKey
->default_rc
= 0;
4119 if( pOp
->opcode
==OP_NoConflict
){
4120 /* For the OP_NoConflict opcode, take the jump if any of the
4121 ** input fields are NULL, since any key with a NULL will not
4123 for(ii
=0; ii
<pIdxKey
->nField
; ii
++){
4124 if( pIdxKey
->aMem
[ii
].flags
& MEM_Null
){
4130 rc
= sqlite3BtreeMovetoUnpacked(pC
->uc
.pCursor
, pIdxKey
, 0, 0, &res
);
4131 if( pFree
) sqlite3DbFreeNN(db
, pFree
);
4132 if( rc
!=SQLITE_OK
){
4133 goto abort_due_to_error
;
4135 pC
->seekResult
= res
;
4136 alreadyExists
= (res
==0);
4137 pC
->nullRow
= 1-alreadyExists
;
4138 pC
->deferredMoveto
= 0;
4139 pC
->cacheStatus
= CACHE_STALE
;
4140 if( pOp
->opcode
==OP_Found
){
4141 VdbeBranchTaken(alreadyExists
!=0,2);
4142 if( alreadyExists
) goto jump_to_p2
;
4144 VdbeBranchTaken(takeJump
||alreadyExists
==0,2);
4145 if( takeJump
|| !alreadyExists
) goto jump_to_p2
;
4150 /* Opcode: SeekRowid P1 P2 P3 * *
4151 ** Synopsis: intkey=r[P3]
4153 ** P1 is the index of a cursor open on an SQL table btree (with integer
4154 ** keys). If register P3 does not contain an integer or if P1 does not
4155 ** contain a record with rowid P3 then jump immediately to P2.
4156 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4157 ** a record with rowid P3 then
4158 ** leave the cursor pointing at that record and fall through to the next
4161 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4162 ** the P3 register must be guaranteed to contain an integer value. With this
4163 ** opcode, register P3 might not contain an integer.
4165 ** The OP_NotFound opcode performs the same operation on index btrees
4166 ** (with arbitrary multi-value keys).
4168 ** This opcode leaves the cursor in a state where it cannot be advanced
4169 ** in either direction. In other words, the Next and Prev opcodes will
4170 ** not work following this opcode.
4172 ** See also: Found, NotFound, NoConflict, SeekRowid
4174 /* Opcode: NotExists P1 P2 P3 * *
4175 ** Synopsis: intkey=r[P3]
4177 ** P1 is the index of a cursor open on an SQL table btree (with integer
4178 ** keys). P3 is an integer rowid. If P1 does not contain a record with
4179 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4180 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4181 ** leave the cursor pointing at that record and fall through to the next
4184 ** The OP_SeekRowid opcode performs the same operation but also allows the
4185 ** P3 register to contain a non-integer value, in which case the jump is
4186 ** always taken. This opcode requires that P3 always contain an integer.
4188 ** The OP_NotFound opcode performs the same operation on index btrees
4189 ** (with arbitrary multi-value keys).
4191 ** This opcode leaves the cursor in a state where it cannot be advanced
4192 ** in either direction. In other words, the Next and Prev opcodes will
4193 ** not work following this opcode.
4195 ** See also: Found, NotFound, NoConflict, SeekRowid
4197 case OP_SeekRowid
: { /* jump, in3 */
4203 pIn3
= &aMem
[pOp
->p3
];
4204 if( (pIn3
->flags
& MEM_Int
)==0 ){
4205 applyAffinity(pIn3
, SQLITE_AFF_NUMERIC
, encoding
);
4206 if( (pIn3
->flags
& MEM_Int
)==0 ) goto jump_to_p2
;
4208 /* Fall through into OP_NotExists */
4209 case OP_NotExists
: /* jump, in3 */
4210 pIn3
= &aMem
[pOp
->p3
];
4211 assert( pIn3
->flags
& MEM_Int
);
4212 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4213 pC
= p
->apCsr
[pOp
->p1
];
4218 assert( pC
->isTable
);
4219 assert( pC
->eCurType
==CURTYPE_BTREE
);
4220 pCrsr
= pC
->uc
.pCursor
;
4224 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, 0, iKey
, 0, &res
);
4225 assert( rc
==SQLITE_OK
|| res
==0 );
4226 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
4228 pC
->cacheStatus
= CACHE_STALE
;
4229 pC
->deferredMoveto
= 0;
4230 VdbeBranchTaken(res
!=0,2);
4231 pC
->seekResult
= res
;
4233 assert( rc
==SQLITE_OK
);
4235 rc
= SQLITE_CORRUPT_BKPT
;
4240 if( rc
) goto abort_due_to_error
;
4244 /* Opcode: Sequence P1 P2 * * *
4245 ** Synopsis: r[P2]=cursor[P1].ctr++
4247 ** Find the next available sequence number for cursor P1.
4248 ** Write the sequence number into register P2.
4249 ** The sequence number on the cursor is incremented after this
4252 case OP_Sequence
: { /* out2 */
4253 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4254 assert( p
->apCsr
[pOp
->p1
]!=0 );
4255 assert( p
->apCsr
[pOp
->p1
]->eCurType
!=CURTYPE_VTAB
);
4256 pOut
= out2Prerelease(p
, pOp
);
4257 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
4262 /* Opcode: NewRowid P1 P2 P3 * *
4263 ** Synopsis: r[P2]=rowid
4265 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4266 ** The record number is not previously used as a key in the database
4267 ** table that cursor P1 points to. The new record number is written
4268 ** written to register P2.
4270 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4271 ** the largest previously generated record number. No new record numbers are
4272 ** allowed to be less than this value. When this value reaches its maximum,
4273 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4274 ** generated record number. This P3 mechanism is used to help implement the
4275 ** AUTOINCREMENT feature.
4277 case OP_NewRowid
: { /* out2 */
4278 i64 v
; /* The new rowid */
4279 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
4280 int res
; /* Result of an sqlite3BtreeLast() */
4281 int cnt
; /* Counter to limit the number of searches */
4282 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
4283 VdbeFrame
*pFrame
; /* Root frame of VDBE */
4287 pOut
= out2Prerelease(p
, pOp
);
4288 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4289 pC
= p
->apCsr
[pOp
->p1
];
4291 rc
= SQLITE_CORRUPT_BKPT
;
4292 goto abort_due_to_error
;
4295 assert( pC
->eCurType
==CURTYPE_BTREE
);
4296 assert( pC
->uc
.pCursor
!=0 );
4298 /* The next rowid or record number (different terms for the same
4299 ** thing) is obtained in a two-step algorithm.
4301 ** First we attempt to find the largest existing rowid and add one
4302 ** to that. But if the largest existing rowid is already the maximum
4303 ** positive integer, we have to fall through to the second
4304 ** probabilistic algorithm
4306 ** The second algorithm is to select a rowid at random and see if
4307 ** it already exists in the table. If it does not exist, we have
4308 ** succeeded. If the random rowid does exist, we select a new one
4309 ** and try again, up to 100 times.
4311 assert( pC
->isTable
);
4313 #ifdef SQLITE_32BIT_ROWID
4314 # define MAX_ROWID 0x7fffffff
4316 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4317 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4318 ** to provide the constant while making all compilers happy.
4320 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4323 if( !pC
->useRandomRowid
){
4324 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
4325 if( rc
!=SQLITE_OK
){
4326 goto abort_due_to_error
;
4329 v
= 1; /* IMP: R-61914-48074 */
4331 assert( sqlite3BtreeCursorIsValid(pC
->uc
.pCursor
) );
4332 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
4334 pC
->useRandomRowid
= 1;
4336 v
++; /* IMP: R-29538-34987 */
4341 #ifndef SQLITE_OMIT_AUTOINCREMENT
4343 /* Assert that P3 is a valid memory cell. */
4344 assert( pOp
->p3
>0 );
4346 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
4347 /* Assert that P3 is a valid memory cell. */
4348 assert( pOp
->p3
<=pFrame
->nMem
);
4349 pMem
= &pFrame
->aMem
[pOp
->p3
];
4351 /* Assert that P3 is a valid memory cell. */
4352 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
4353 pMem
= &aMem
[pOp
->p3
];
4354 memAboutToChange(p
, pMem
);
4356 assert( memIsValid(pMem
) );
4358 REGISTER_TRACE(pOp
->p3
, pMem
);
4359 sqlite3VdbeMemIntegerify(pMem
);
4360 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
4361 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
4362 rc
= SQLITE_FULL
; /* IMP: R-17817-00630 */
4363 goto abort_due_to_error
;
4365 if( v
<pMem
->u
.i
+1 ){
4371 if( pC
->useRandomRowid
){
4372 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4373 ** largest possible integer (9223372036854775807) then the database
4374 ** engine starts picking positive candidate ROWIDs at random until
4375 ** it finds one that is not previously used. */
4376 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
4377 ** an AUTOINCREMENT table. */
4380 sqlite3_randomness(sizeof(v
), &v
);
4381 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
4382 }while( ((rc
= sqlite3BtreeMovetoUnpacked(pC
->uc
.pCursor
, 0, (u64
)v
,
4383 0, &res
))==SQLITE_OK
)
4386 if( rc
) goto abort_due_to_error
;
4388 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
4389 goto abort_due_to_error
;
4391 assert( v
>0 ); /* EV: R-40812-03570 */
4393 pC
->deferredMoveto
= 0;
4394 pC
->cacheStatus
= CACHE_STALE
;
4400 /* Opcode: Insert P1 P2 P3 P4 P5
4401 ** Synopsis: intkey=r[P3] data=r[P2]
4403 ** Write an entry into the table of cursor P1. A new entry is
4404 ** created if it doesn't already exist or the data for an existing
4405 ** entry is overwritten. The data is the value MEM_Blob stored in register
4406 ** number P2. The key is stored in register P3. The key must
4409 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4410 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4411 ** then rowid is stored for subsequent return by the
4412 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4414 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4415 ** run faster by avoiding an unnecessary seek on cursor P1. However,
4416 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4417 ** seeks on the cursor or if the most recent seek used a key equal to P3.
4419 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4420 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4421 ** is part of an INSERT operation. The difference is only important to
4424 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4425 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4426 ** following a successful insert.
4428 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4429 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4430 ** and register P2 becomes ephemeral. If the cursor is changed, the
4431 ** value of register P2 will then change. Make sure this does not
4432 ** cause any problems.)
4434 ** This instruction only works on tables. The equivalent instruction
4435 ** for indices is OP_IdxInsert.
4437 /* Opcode: InsertInt P1 P2 P3 P4 P5
4438 ** Synopsis: intkey=P3 data=r[P2]
4440 ** This works exactly like OP_Insert except that the key is the
4441 ** integer value P3, not the value of the integer stored in register P3.
4444 case OP_InsertInt
: {
4445 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
4446 Mem
*pKey
; /* MEM cell holding key for the record */
4447 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
4448 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4449 const char *zDb
; /* database name - used by the update hook */
4450 Table
*pTab
; /* Table structure - used by update and pre-update hooks */
4451 BtreePayload x
; /* Payload to be inserted */
4453 pData
= &aMem
[pOp
->p2
];
4454 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4455 assert( memIsValid(pData
) );
4456 pC
= p
->apCsr
[pOp
->p1
];
4458 assert( pC
->eCurType
==CURTYPE_BTREE
);
4459 assert( pC
->uc
.pCursor
!=0 );
4460 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || pC
->isTable
);
4461 assert( pOp
->p4type
==P4_TABLE
|| pOp
->p4type
>=P4_STATIC
);
4462 REGISTER_TRACE(pOp
->p2
, pData
);
4464 if( pOp
->opcode
==OP_Insert
){
4465 pKey
= &aMem
[pOp
->p3
];
4466 assert( pKey
->flags
& MEM_Int
);
4467 assert( memIsValid(pKey
) );
4468 REGISTER_TRACE(pOp
->p3
, pKey
);
4471 assert( pOp
->opcode
==OP_InsertInt
);
4475 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
4476 assert( pC
->iDb
>=0 );
4477 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
4478 pTab
= pOp
->p4
.pTab
;
4479 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || HasRowid(pTab
) );
4482 zDb
= 0; /* Not needed. Silence a compiler warning. */
4485 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4486 /* Invoke the pre-update hook, if any */
4488 if( db
->xPreUpdateCallback
&& !(pOp
->p5
& OPFLAG_ISUPDATE
) ){
4489 sqlite3VdbePreUpdateHook(p
, pC
, SQLITE_INSERT
, zDb
, pTab
, x
.nKey
,pOp
->p2
);
4491 if( db
->xUpdateCallback
==0 || pTab
->aCol
==0 ){
4492 /* Prevent post-update hook from running in cases when it should not */
4496 if( pOp
->p5
& OPFLAG_ISNOOP
) break;
4499 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
4500 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= x
.nKey
;
4501 assert( pData
->flags
& (MEM_Blob
|MEM_Str
) );
4504 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
4505 if( pData
->flags
& MEM_Zero
){
4506 x
.nZero
= pData
->u
.nZero
;
4511 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
4512 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
)), seekResult
4514 pC
->deferredMoveto
= 0;
4515 pC
->cacheStatus
= CACHE_STALE
;
4517 /* Invoke the update-hook if required. */
4518 if( rc
) goto abort_due_to_error
;
4520 assert( db
->xUpdateCallback
!=0 );
4521 assert( pTab
->aCol
!=0 );
4522 db
->xUpdateCallback(db
->pUpdateArg
,
4523 (pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
,
4524 zDb
, pTab
->zName
, x
.nKey
);
4529 /* Opcode: Delete P1 P2 P3 P4 P5
4531 ** Delete the record at which the P1 cursor is currently pointing.
4533 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4534 ** the cursor will be left pointing at either the next or the previous
4535 ** record in the table. If it is left pointing at the next record, then
4536 ** the next Next instruction will be a no-op. As a result, in this case
4537 ** it is ok to delete a record from within a Next loop. If
4538 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4539 ** left in an undefined state.
4541 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4542 ** delete one of several associated with deleting a table row and all its
4543 ** associated index entries. Exactly one of those deletes is the "primary"
4544 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4545 ** marked with the AUXDELETE flag.
4547 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4548 ** change count is incremented (otherwise not).
4550 ** P1 must not be pseudo-table. It has to be a real table with
4553 ** If P4 is not NULL then it points to a Table object. In this case either
4554 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4555 ** have been positioned using OP_NotFound prior to invoking this opcode in
4556 ** this case. Specifically, if one is configured, the pre-update hook is
4557 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4558 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4560 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4561 ** of the memory cell that contains the value that the rowid of the row will
4562 ** be set to by the update.
4571 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4572 pC
= p
->apCsr
[pOp
->p1
];
4574 assert( pC
->eCurType
==CURTYPE_BTREE
);
4575 assert( pC
->uc
.pCursor
!=0 );
4576 assert( pC
->deferredMoveto
==0 );
4579 if( pOp
->p4type
==P4_TABLE
&& HasRowid(pOp
->p4
.pTab
) && pOp
->p5
==0 ){
4580 /* If p5 is zero, the seek operation that positioned the cursor prior to
4581 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4582 ** the row that is being deleted */
4583 i64 iKey
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
4584 assert( pC
->movetoTarget
==iKey
);
4588 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4589 ** the name of the db to pass as to it. Also set local pTab to a copy
4590 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4591 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4592 ** VdbeCursor.movetoTarget to the current rowid. */
4593 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
4594 assert( pC
->iDb
>=0 );
4595 assert( pOp
->p4
.pTab
!=0 );
4596 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
4597 pTab
= pOp
->p4
.pTab
;
4598 if( (pOp
->p5
& OPFLAG_SAVEPOSITION
)!=0 && pC
->isTable
){
4599 pC
->movetoTarget
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
4602 zDb
= 0; /* Not needed. Silence a compiler warning. */
4603 pTab
= 0; /* Not needed. Silence a compiler warning. */
4606 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4607 /* Invoke the pre-update-hook if required. */
4608 if( db
->xPreUpdateCallback
&& pOp
->p4
.pTab
){
4609 assert( !(opflags
& OPFLAG_ISUPDATE
)
4610 || HasRowid(pTab
)==0
4611 || (aMem
[pOp
->p3
].flags
& MEM_Int
)
4613 sqlite3VdbePreUpdateHook(p
, pC
,
4614 (opflags
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_DELETE
,
4615 zDb
, pTab
, pC
->movetoTarget
,
4619 if( opflags
& OPFLAG_ISNOOP
) break;
4622 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4623 assert( (pOp
->p5
& ~(OPFLAG_SAVEPOSITION
|OPFLAG_AUXDELETE
))==0 );
4624 assert( OPFLAG_SAVEPOSITION
==BTREE_SAVEPOSITION
);
4625 assert( OPFLAG_AUXDELETE
==BTREE_AUXDELETE
);
4629 if( pC
->isEphemeral
==0
4630 && (pOp
->p5
& OPFLAG_AUXDELETE
)==0
4631 && (pC
->wrFlag
& OPFLAG_FORDELETE
)==0
4635 if( pOp
->p2
& OPFLAG_NCHANGE
){
4641 rc
= sqlite3BtreeDelete(pC
->uc
.pCursor
, pOp
->p5
);
4642 pC
->cacheStatus
= CACHE_STALE
;
4644 if( rc
) goto abort_due_to_error
;
4646 /* Invoke the update-hook if required. */
4647 if( opflags
& OPFLAG_NCHANGE
){
4649 if( db
->xUpdateCallback
&& HasRowid(pTab
) ){
4650 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, pTab
->zName
,
4652 assert( pC
->iDb
>=0 );
4658 /* Opcode: ResetCount * * * * *
4660 ** The value of the change counter is copied to the database handle
4661 ** change counter (returned by subsequent calls to sqlite3_changes()).
4662 ** Then the VMs internal change counter resets to 0.
4663 ** This is used by trigger programs.
4665 case OP_ResetCount
: {
4666 sqlite3VdbeSetChanges(db
, p
->nChange
);
4671 /* Opcode: SorterCompare P1 P2 P3 P4
4672 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4674 ** P1 is a sorter cursor. This instruction compares a prefix of the
4675 ** record blob in register P3 against a prefix of the entry that
4676 ** the sorter cursor currently points to. Only the first P4 fields
4677 ** of r[P3] and the sorter record are compared.
4679 ** If either P3 or the sorter contains a NULL in one of their significant
4680 ** fields (not counting the P4 fields at the end which are ignored) then
4681 ** the comparison is assumed to be equal.
4683 ** Fall through to next instruction if the two records compare equal to
4684 ** each other. Jump to P2 if they are different.
4686 case OP_SorterCompare
: {
4691 pC
= p
->apCsr
[pOp
->p1
];
4692 assert( isSorter(pC
) );
4693 assert( pOp
->p4type
==P4_INT32
);
4694 pIn3
= &aMem
[pOp
->p3
];
4695 nKeyCol
= pOp
->p4
.i
;
4697 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
4698 VdbeBranchTaken(res
!=0,2);
4699 if( rc
) goto abort_due_to_error
;
4700 if( res
) goto jump_to_p2
;
4704 /* Opcode: SorterData P1 P2 P3 * *
4705 ** Synopsis: r[P2]=data
4707 ** Write into register P2 the current sorter data for sorter cursor P1.
4708 ** Then clear the column header cache on cursor P3.
4710 ** This opcode is normally use to move a record out of the sorter and into
4711 ** a register that is the source for a pseudo-table cursor created using
4712 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
4713 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
4714 ** us from having to issue a separate NullRow instruction to clear that cache.
4716 case OP_SorterData
: {
4719 pOut
= &aMem
[pOp
->p2
];
4720 pC
= p
->apCsr
[pOp
->p1
];
4721 assert( isSorter(pC
) );
4722 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
4723 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
4724 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4725 if( rc
) goto abort_due_to_error
;
4726 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
4730 /* Opcode: RowData P1 P2 P3 * *
4731 ** Synopsis: r[P2]=data
4733 ** Write into register P2 the complete row content for the row at
4734 ** which cursor P1 is currently pointing.
4735 ** There is no interpretation of the data.
4736 ** It is just copied onto the P2 register exactly as
4737 ** it is found in the database file.
4739 ** If cursor P1 is an index, then the content is the key of the row.
4740 ** If cursor P2 is a table, then the content extracted is the data.
4742 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4743 ** of a real table, not a pseudo-table.
4745 ** If P3!=0 then this opcode is allowed to make an ephermeral pointer
4746 ** into the database page. That means that the content of the output
4747 ** register will be invalidated as soon as the cursor moves - including
4748 ** moves caused by other cursors that "save" the the current cursors
4749 ** position in order that they can write to the same table. If P3==0
4750 ** then a copy of the data is made into memory. P3!=0 is faster, but
4753 ** If P3!=0 then the content of the P2 register is unsuitable for use
4754 ** in OP_Result and any OP_Result will invalidate the P2 register content.
4755 ** The P2 register content is invalidated by opcodes like OP_Function or
4756 ** by any use of another cursor pointing to the same table.
4763 pOut
= out2Prerelease(p
, pOp
);
4765 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4766 pC
= p
->apCsr
[pOp
->p1
];
4768 assert( pC
->eCurType
==CURTYPE_BTREE
);
4769 assert( isSorter(pC
)==0 );
4770 assert( pC
->nullRow
==0 );
4771 assert( pC
->uc
.pCursor
!=0 );
4772 pCrsr
= pC
->uc
.pCursor
;
4774 /* The OP_RowData opcodes always follow OP_NotExists or
4775 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4776 ** that might invalidate the cursor.
4777 ** If this where not the case, on of the following assert()s
4778 ** would fail. Should this ever change (because of changes in the code
4779 ** generator) then the fix would be to insert a call to
4780 ** sqlite3VdbeCursorMoveto().
4782 assert( pC
->deferredMoveto
==0 );
4783 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
4784 #if 0 /* Not required due to the previous to assert() statements */
4785 rc
= sqlite3VdbeCursorMoveto(pC
);
4786 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4789 n
= sqlite3BtreePayloadSize(pCrsr
);
4790 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4794 rc
= sqlite3VdbeMemFromBtree(pCrsr
, 0, n
, pOut
);
4795 if( rc
) goto abort_due_to_error
;
4796 if( !pOp
->p3
) Deephemeralize(pOut
);
4797 UPDATE_MAX_BLOBSIZE(pOut
);
4798 REGISTER_TRACE(pOp
->p2
, pOut
);
4802 /* Opcode: Rowid P1 P2 * * *
4803 ** Synopsis: r[P2]=rowid
4805 ** Store in register P2 an integer which is the key of the table entry that
4806 ** P1 is currently point to.
4808 ** P1 can be either an ordinary table or a virtual table. There used to
4809 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4810 ** one opcode now works for both table types.
4812 case OP_Rowid
: { /* out2 */
4815 sqlite3_vtab
*pVtab
;
4816 const sqlite3_module
*pModule
;
4818 pOut
= out2Prerelease(p
, pOp
);
4819 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4820 pC
= p
->apCsr
[pOp
->p1
];
4822 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
4824 pOut
->flags
= MEM_Null
;
4826 }else if( pC
->deferredMoveto
){
4827 v
= pC
->movetoTarget
;
4828 #ifndef SQLITE_OMIT_VIRTUALTABLE
4829 }else if( pC
->eCurType
==CURTYPE_VTAB
){
4830 assert( pC
->uc
.pVCur
!=0 );
4831 pVtab
= pC
->uc
.pVCur
->pVtab
;
4832 pModule
= pVtab
->pModule
;
4833 assert( pModule
->xRowid
);
4834 rc
= pModule
->xRowid(pC
->uc
.pVCur
, &v
);
4835 sqlite3VtabImportErrmsg(p
, pVtab
);
4836 if( rc
) goto abort_due_to_error
;
4837 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4839 assert( pC
->eCurType
==CURTYPE_BTREE
);
4840 assert( pC
->uc
.pCursor
!=0 );
4841 rc
= sqlite3VdbeCursorRestore(pC
);
4842 if( rc
) goto abort_due_to_error
;
4844 pOut
->flags
= MEM_Null
;
4847 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
4853 /* Opcode: NullRow P1 * * * *
4855 ** Move the cursor P1 to a null row. Any OP_Column operations
4856 ** that occur while the cursor is on the null row will always
4862 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4863 pC
= p
->apCsr
[pOp
->p1
];
4866 pC
->cacheStatus
= CACHE_STALE
;
4867 if( pC
->eCurType
==CURTYPE_BTREE
){
4868 assert( pC
->uc
.pCursor
!=0 );
4869 sqlite3BtreeClearCursor(pC
->uc
.pCursor
);
4874 /* Opcode: SeekEnd P1 * * * *
4876 ** Position cursor P1 at the end of the btree for the purpose of
4877 ** appending a new entry onto the btree.
4879 ** It is assumed that the cursor is used only for appending and so
4880 ** if the cursor is valid, then the cursor must already be pointing
4881 ** at the end of the btree and so no changes are made to
4884 /* Opcode: Last P1 P2 * * *
4886 ** The next use of the Rowid or Column or Prev instruction for P1
4887 ** will refer to the last entry in the database table or index.
4888 ** If the table or index is empty and P2>0, then jump immediately to P2.
4889 ** If P2 is 0 or if the table or index is not empty, fall through
4890 ** to the following instruction.
4892 ** This opcode leaves the cursor configured to move in reverse order,
4893 ** from the end toward the beginning. In other words, the cursor is
4894 ** configured to use Prev, not Next.
4897 case OP_Last
: { /* jump */
4902 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4903 pC
= p
->apCsr
[pOp
->p1
];
4905 assert( pC
->eCurType
==CURTYPE_BTREE
);
4906 pCrsr
= pC
->uc
.pCursor
;
4910 pC
->seekOp
= pOp
->opcode
;
4912 if( pOp
->opcode
==OP_SeekEnd
){
4913 assert( pOp
->p2
==0 );
4914 pC
->seekResult
= -1;
4915 if( sqlite3BtreeCursorIsValidNN(pCrsr
) ){
4919 rc
= sqlite3BtreeLast(pCrsr
, &res
);
4920 pC
->nullRow
= (u8
)res
;
4921 pC
->deferredMoveto
= 0;
4922 pC
->cacheStatus
= CACHE_STALE
;
4923 if( rc
) goto abort_due_to_error
;
4925 VdbeBranchTaken(res
!=0,2);
4926 if( res
) goto jump_to_p2
;
4931 /* Opcode: IfSmaller P1 P2 P3 * *
4933 ** Estimate the number of rows in the table P1. Jump to P2 if that
4934 ** estimate is less than approximately 2**(0.1*P3).
4936 case OP_IfSmaller
: { /* jump */
4942 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4943 pC
= p
->apCsr
[pOp
->p1
];
4945 pCrsr
= pC
->uc
.pCursor
;
4947 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
4948 if( rc
) goto abort_due_to_error
;
4950 sz
= sqlite3BtreeRowCountEst(pCrsr
);
4951 if( ALWAYS(sz
>=0) && sqlite3LogEst((u64
)sz
)<pOp
->p3
) res
= 1;
4953 VdbeBranchTaken(res
!=0,2);
4954 if( res
) goto jump_to_p2
;
4959 /* Opcode: SorterSort P1 P2 * * *
4961 ** After all records have been inserted into the Sorter object
4962 ** identified by P1, invoke this opcode to actually do the sorting.
4963 ** Jump to P2 if there are no records to be sorted.
4965 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
4966 ** for Sorter objects.
4968 /* Opcode: Sort P1 P2 * * *
4970 ** This opcode does exactly the same thing as OP_Rewind except that
4971 ** it increments an undocumented global variable used for testing.
4973 ** Sorting is accomplished by writing records into a sorting index,
4974 ** then rewinding that index and playing it back from beginning to
4975 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4976 ** rewinding so that the global variable will be incremented and
4977 ** regression tests can determine whether or not the optimizer is
4978 ** correctly optimizing out sorts.
4980 case OP_SorterSort
: /* jump */
4981 case OP_Sort
: { /* jump */
4983 sqlite3_sort_count
++;
4984 sqlite3_search_count
--;
4986 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
4987 /* Fall through into OP_Rewind */
4989 /* Opcode: Rewind P1 P2 * * *
4991 ** The next use of the Rowid or Column or Next instruction for P1
4992 ** will refer to the first entry in the database table or index.
4993 ** If the table or index is empty, jump immediately to P2.
4994 ** If the table or index is not empty, fall through to the following
4997 ** This opcode leaves the cursor configured to move in forward order,
4998 ** from the beginning toward the end. In other words, the cursor is
4999 ** configured to use Next, not Prev.
5001 case OP_Rewind
: { /* jump */
5006 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5007 pC
= p
->apCsr
[pOp
->p1
];
5009 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
5012 pC
->seekOp
= OP_Rewind
;
5015 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
5017 assert( pC
->eCurType
==CURTYPE_BTREE
);
5018 pCrsr
= pC
->uc
.pCursor
;
5020 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
5021 pC
->deferredMoveto
= 0;
5022 pC
->cacheStatus
= CACHE_STALE
;
5024 if( rc
) goto abort_due_to_error
;
5025 pC
->nullRow
= (u8
)res
;
5026 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
5027 VdbeBranchTaken(res
!=0,2);
5028 if( res
) goto jump_to_p2
;
5032 /* Opcode: Next P1 P2 P3 P4 P5
5034 ** Advance cursor P1 so that it points to the next key/data pair in its
5035 ** table or index. If there are no more key/value pairs then fall through
5036 ** to the following instruction. But if the cursor advance was successful,
5037 ** jump immediately to P2.
5039 ** The Next opcode is only valid following an SeekGT, SeekGE, or
5040 ** OP_Rewind opcode used to position the cursor. Next is not allowed
5041 ** to follow SeekLT, SeekLE, or OP_Last.
5043 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
5044 ** been opened prior to this opcode or the program will segfault.
5046 ** The P3 value is a hint to the btree implementation. If P3==1, that
5047 ** means P1 is an SQL index and that this instruction could have been
5048 ** omitted if that index had been unique. P3 is usually 0. P3 is
5049 ** always either 0 or 1.
5051 ** P4 is always of type P4_ADVANCE. The function pointer points to
5052 ** sqlite3BtreeNext().
5054 ** If P5 is positive and the jump is taken, then event counter
5055 ** number P5-1 in the prepared statement is incremented.
5057 ** See also: Prev, NextIfOpen
5059 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
5061 ** This opcode works just like Next except that if cursor P1 is not
5062 ** open it behaves a no-op.
5064 /* Opcode: Prev P1 P2 P3 P4 P5
5066 ** Back up cursor P1 so that it points to the previous key/data pair in its
5067 ** table or index. If there is no previous key/value pairs then fall through
5068 ** to the following instruction. But if the cursor backup was successful,
5069 ** jump immediately to P2.
5072 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
5073 ** OP_Last opcode used to position the cursor. Prev is not allowed
5074 ** to follow SeekGT, SeekGE, or OP_Rewind.
5076 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
5077 ** not open then the behavior is undefined.
5079 ** The P3 value is a hint to the btree implementation. If P3==1, that
5080 ** means P1 is an SQL index and that this instruction could have been
5081 ** omitted if that index had been unique. P3 is usually 0. P3 is
5082 ** always either 0 or 1.
5084 ** P4 is always of type P4_ADVANCE. The function pointer points to
5085 ** sqlite3BtreePrevious().
5087 ** If P5 is positive and the jump is taken, then event counter
5088 ** number P5-1 in the prepared statement is incremented.
5090 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
5092 ** This opcode works just like Prev except that if cursor P1 is not
5093 ** open it behaves a no-op.
5095 /* Opcode: SorterNext P1 P2 * * P5
5097 ** This opcode works just like OP_Next except that P1 must be a
5098 ** sorter object for which the OP_SorterSort opcode has been
5099 ** invoked. This opcode advances the cursor to the next sorted
5100 ** record, or jumps to P2 if there are no more sorted records.
5102 case OP_SorterNext
: { /* jump */
5105 pC
= p
->apCsr
[pOp
->p1
];
5106 assert( isSorter(pC
) );
5107 rc
= sqlite3VdbeSorterNext(db
, pC
);
5109 case OP_PrevIfOpen
: /* jump */
5110 case OP_NextIfOpen
: /* jump */
5111 if( p
->apCsr
[pOp
->p1
]==0 ) break;
5113 case OP_Prev
: /* jump */
5114 case OP_Next
: /* jump */
5115 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5116 assert( pOp
->p5
<ArraySize(p
->aCounter
) );
5117 pC
= p
->apCsr
[pOp
->p1
];
5119 assert( pC
->deferredMoveto
==0 );
5120 assert( pC
->eCurType
==CURTYPE_BTREE
);
5121 assert( pOp
->opcode
!=OP_Next
|| pOp
->p4
.xAdvance
==sqlite3BtreeNext
);
5122 assert( pOp
->opcode
!=OP_Prev
|| pOp
->p4
.xAdvance
==sqlite3BtreePrevious
);
5123 assert( pOp
->opcode
!=OP_NextIfOpen
|| pOp
->p4
.xAdvance
==sqlite3BtreeNext
);
5124 assert( pOp
->opcode
!=OP_PrevIfOpen
|| pOp
->p4
.xAdvance
==sqlite3BtreePrevious
);
5126 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
5127 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5128 assert( pOp
->opcode
!=OP_Next
|| pOp
->opcode
!=OP_NextIfOpen
5129 || pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
5130 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
);
5131 assert( pOp
->opcode
!=OP_Prev
|| pOp
->opcode
!=OP_PrevIfOpen
5132 || pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
5133 || pC
->seekOp
==OP_Last
);
5135 rc
= pOp
->p4
.xAdvance(pC
->uc
.pCursor
, pOp
->p3
);
5137 pC
->cacheStatus
= CACHE_STALE
;
5138 VdbeBranchTaken(rc
==SQLITE_OK
,2);
5139 if( rc
==SQLITE_OK
){
5141 p
->aCounter
[pOp
->p5
]++;
5143 sqlite3_search_count
++;
5145 goto jump_to_p2_and_check_for_interrupt
;
5147 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
5150 goto check_for_interrupt
;
5153 /* Opcode: IdxInsert P1 P2 P3 P4 P5
5154 ** Synopsis: key=r[P2]
5156 ** Register P2 holds an SQL index key made using the
5157 ** MakeRecord instructions. This opcode writes that key
5158 ** into the index P1. Data for the entry is nil.
5160 ** If P4 is not zero, then it is the number of values in the unpacked
5161 ** key of reg(P2). In that case, P3 is the index of the first register
5162 ** for the unpacked key. The availability of the unpacked key can sometimes
5163 ** be an optimization.
5165 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5166 ** that this insert is likely to be an append.
5168 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5169 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5170 ** then the change counter is unchanged.
5172 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5173 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5174 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5175 ** seeks on the cursor or if the most recent seek used a key equivalent
5178 ** This instruction only works for indices. The equivalent instruction
5179 ** for tables is OP_Insert.
5181 /* Opcode: SorterInsert P1 P2 * * *
5182 ** Synopsis: key=r[P2]
5184 ** Register P2 holds an SQL index key made using the
5185 ** MakeRecord instructions. This opcode writes that key
5186 ** into the sorter P1. Data for the entry is nil.
5188 case OP_SorterInsert
: /* in2 */
5189 case OP_IdxInsert
: { /* in2 */
5193 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5194 pC
= p
->apCsr
[pOp
->p1
];
5196 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterInsert
) );
5197 pIn2
= &aMem
[pOp
->p2
];
5198 assert( pIn2
->flags
& MEM_Blob
);
5199 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
5200 assert( pC
->eCurType
==CURTYPE_BTREE
|| pOp
->opcode
==OP_SorterInsert
);
5201 assert( pC
->isTable
==0 );
5202 rc
= ExpandBlob(pIn2
);
5203 if( rc
) goto abort_due_to_error
;
5204 if( pOp
->opcode
==OP_SorterInsert
){
5205 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
5209 x
.aMem
= aMem
+ pOp
->p3
;
5210 x
.nMem
= (u16
)pOp
->p4
.i
;
5211 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
5212 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
)),
5213 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
5215 assert( pC
->deferredMoveto
==0 );
5216 pC
->cacheStatus
= CACHE_STALE
;
5218 if( rc
) goto abort_due_to_error
;
5222 /* Opcode: IdxDelete P1 P2 P3 * *
5223 ** Synopsis: key=r[P2@P3]
5225 ** The content of P3 registers starting at register P2 form
5226 ** an unpacked index key. This opcode removes that entry from the
5227 ** index opened by cursor P1.
5229 case OP_IdxDelete
: {
5235 assert( pOp
->p3
>0 );
5236 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)+1 );
5237 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5238 pC
= p
->apCsr
[pOp
->p1
];
5240 assert( pC
->eCurType
==CURTYPE_BTREE
);
5241 pCrsr
= pC
->uc
.pCursor
;
5243 assert( pOp
->p5
==0 );
5244 r
.pKeyInfo
= pC
->pKeyInfo
;
5245 r
.nField
= (u16
)pOp
->p3
;
5247 r
.aMem
= &aMem
[pOp
->p2
];
5248 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &res
);
5249 if( rc
) goto abort_due_to_error
;
5251 rc
= sqlite3BtreeDelete(pCrsr
, BTREE_AUXDELETE
);
5252 if( rc
) goto abort_due_to_error
;
5254 assert( pC
->deferredMoveto
==0 );
5255 pC
->cacheStatus
= CACHE_STALE
;
5260 /* Opcode: DeferredSeek P1 * P3 P4 *
5261 ** Synopsis: Move P3 to P1.rowid if needed
5263 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5264 ** table. This opcode does a deferred seek of the P3 table cursor
5265 ** to the row that corresponds to the current row of P1.
5267 ** This is a deferred seek. Nothing actually happens until
5268 ** the cursor is used to read a record. That way, if no reads
5269 ** occur, no unnecessary I/O happens.
5271 ** P4 may be an array of integers (type P4_INTARRAY) containing
5272 ** one entry for each column in the P3 table. If array entry a(i)
5273 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5274 ** equivalent to performing the deferred seek and then reading column i
5275 ** from P1. This information is stored in P3 and used to redirect
5276 ** reads against P3 over to P1, thus possibly avoiding the need to
5277 ** seek and read cursor P3.
5279 /* Opcode: IdxRowid P1 P2 * * *
5280 ** Synopsis: r[P2]=rowid
5282 ** Write into register P2 an integer which is the last entry in the record at
5283 ** the end of the index key pointed to by cursor P1. This integer should be
5284 ** the rowid of the table entry to which this index entry points.
5286 ** See also: Rowid, MakeRecord.
5288 case OP_DeferredSeek
:
5289 case OP_IdxRowid
: { /* out2 */
5290 VdbeCursor
*pC
; /* The P1 index cursor */
5291 VdbeCursor
*pTabCur
; /* The P2 table cursor (OP_DeferredSeek only) */
5292 i64 rowid
; /* Rowid that P1 current points to */
5294 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5295 pC
= p
->apCsr
[pOp
->p1
];
5297 assert( pC
->eCurType
==CURTYPE_BTREE
);
5298 assert( pC
->uc
.pCursor
!=0 );
5299 assert( pC
->isTable
==0 );
5300 assert( pC
->deferredMoveto
==0 );
5301 assert( !pC
->nullRow
|| pOp
->opcode
==OP_IdxRowid
);
5303 /* The IdxRowid and Seek opcodes are combined because of the commonality
5304 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5305 rc
= sqlite3VdbeCursorRestore(pC
);
5307 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5308 ** out from under the cursor. That will never happens for an IdxRowid
5309 ** or Seek opcode */
5310 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
5313 rowid
= 0; /* Not needed. Only used to silence a warning. */
5314 rc
= sqlite3VdbeIdxRowid(db
, pC
->uc
.pCursor
, &rowid
);
5315 if( rc
!=SQLITE_OK
){
5316 goto abort_due_to_error
;
5318 if( pOp
->opcode
==OP_DeferredSeek
){
5319 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nCursor
);
5320 pTabCur
= p
->apCsr
[pOp
->p3
];
5321 assert( pTabCur
!=0 );
5322 assert( pTabCur
->eCurType
==CURTYPE_BTREE
);
5323 assert( pTabCur
->uc
.pCursor
!=0 );
5324 assert( pTabCur
->isTable
);
5325 pTabCur
->nullRow
= 0;
5326 pTabCur
->movetoTarget
= rowid
;
5327 pTabCur
->deferredMoveto
= 1;
5328 assert( pOp
->p4type
==P4_INTARRAY
|| pOp
->p4
.ai
==0 );
5329 pTabCur
->aAltMap
= pOp
->p4
.ai
;
5330 pTabCur
->pAltCursor
= pC
;
5332 pOut
= out2Prerelease(p
, pOp
);
5336 assert( pOp
->opcode
==OP_IdxRowid
);
5337 sqlite3VdbeMemSetNull(&aMem
[pOp
->p2
]);
5342 /* Opcode: IdxGE P1 P2 P3 P4 P5
5343 ** Synopsis: key=r[P3@P4]
5345 ** The P4 register values beginning with P3 form an unpacked index
5346 ** key that omits the PRIMARY KEY. Compare this key value against the index
5347 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5348 ** fields at the end.
5350 ** If the P1 index entry is greater than or equal to the key value
5351 ** then jump to P2. Otherwise fall through to the next instruction.
5353 /* Opcode: IdxGT P1 P2 P3 P4 P5
5354 ** Synopsis: key=r[P3@P4]
5356 ** The P4 register values beginning with P3 form an unpacked index
5357 ** key that omits the PRIMARY KEY. Compare this key value against the index
5358 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5359 ** fields at the end.
5361 ** If the P1 index entry is greater than the key value
5362 ** then jump to P2. Otherwise fall through to the next instruction.
5364 /* Opcode: IdxLT P1 P2 P3 P4 P5
5365 ** Synopsis: key=r[P3@P4]
5367 ** The P4 register values beginning with P3 form an unpacked index
5368 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5369 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5370 ** ROWID on the P1 index.
5372 ** If the P1 index entry is less than the key value then jump to P2.
5373 ** Otherwise fall through to the next instruction.
5375 /* Opcode: IdxLE P1 P2 P3 P4 P5
5376 ** Synopsis: key=r[P3@P4]
5378 ** The P4 register values beginning with P3 form an unpacked index
5379 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5380 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5381 ** ROWID on the P1 index.
5383 ** If the P1 index entry is less than or equal to the key value then jump
5384 ** to P2. Otherwise fall through to the next instruction.
5386 case OP_IdxLE
: /* jump */
5387 case OP_IdxGT
: /* jump */
5388 case OP_IdxLT
: /* jump */
5389 case OP_IdxGE
: { /* jump */
5394 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5395 pC
= p
->apCsr
[pOp
->p1
];
5397 assert( pC
->isOrdered
);
5398 assert( pC
->eCurType
==CURTYPE_BTREE
);
5399 assert( pC
->uc
.pCursor
!=0);
5400 assert( pC
->deferredMoveto
==0 );
5401 assert( pOp
->p5
==0 || pOp
->p5
==1 );
5402 assert( pOp
->p4type
==P4_INT32
);
5403 r
.pKeyInfo
= pC
->pKeyInfo
;
5404 r
.nField
= (u16
)pOp
->p4
.i
;
5405 if( pOp
->opcode
<OP_IdxLT
){
5406 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
5409 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
5412 r
.aMem
= &aMem
[pOp
->p3
];
5414 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
5416 res
= 0; /* Not needed. Only used to silence a warning. */
5417 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
5418 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
5419 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
5420 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
5423 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
5426 VdbeBranchTaken(res
>0,2);
5427 if( rc
) goto abort_due_to_error
;
5428 if( res
>0 ) goto jump_to_p2
;
5432 /* Opcode: Destroy P1 P2 P3 * *
5434 ** Delete an entire database table or index whose root page in the database
5435 ** file is given by P1.
5437 ** The table being destroyed is in the main database file if P3==0. If
5438 ** P3==1 then the table to be clear is in the auxiliary database file
5439 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5441 ** If AUTOVACUUM is enabled then it is possible that another root page
5442 ** might be moved into the newly deleted root page in order to keep all
5443 ** root pages contiguous at the beginning of the database. The former
5444 ** value of the root page that moved - its value before the move occurred -
5445 ** is stored in register P2. If no page movement was required (because the
5446 ** table being dropped was already the last one in the database) then a
5447 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
5448 ** is stored in register P2.
5450 ** This opcode throws an error if there are any active reader VMs when
5451 ** it is invoked. This is done to avoid the difficulty associated with
5452 ** updating existing cursors when a root page is moved in an AUTOVACUUM
5453 ** database. This error is thrown even if the database is not an AUTOVACUUM
5454 ** db in order to avoid introducing an incompatibility between autovacuum
5455 ** and non-autovacuum modes.
5459 case OP_Destroy
: { /* out2 */
5463 assert( p
->readOnly
==0 );
5464 assert( pOp
->p1
>1 );
5465 pOut
= out2Prerelease(p
, pOp
);
5466 pOut
->flags
= MEM_Null
;
5467 if( db
->nVdbeRead
> db
->nVDestroy
+1 ){
5469 p
->errorAction
= OE_Abort
;
5470 goto abort_due_to_error
;
5473 assert( DbMaskTest(p
->btreeMask
, iDb
) );
5474 iMoved
= 0; /* Not needed. Only to silence a warning. */
5475 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
5476 pOut
->flags
= MEM_Int
;
5478 if( rc
) goto abort_due_to_error
;
5479 #ifndef SQLITE_OMIT_AUTOVACUUM
5481 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
5482 /* All OP_Destroy operations occur on the same btree */
5483 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
5484 resetSchemaOnFault
= iDb
+1;
5491 /* Opcode: Clear P1 P2 P3
5493 ** Delete all contents of the database table or index whose root page
5494 ** in the database file is given by P1. But, unlike Destroy, do not
5495 ** remove the table or index from the database file.
5497 ** The table being clear is in the main database file if P2==0. If
5498 ** P2==1 then the table to be clear is in the auxiliary database file
5499 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5501 ** If the P3 value is non-zero, then the table referred to must be an
5502 ** intkey table (an SQL table, not an index). In this case the row change
5503 ** count is incremented by the number of rows in the table being cleared.
5504 ** If P3 is greater than zero, then the value stored in register P3 is
5505 ** also incremented by the number of rows in the table being cleared.
5507 ** See also: Destroy
5513 assert( p
->readOnly
==0 );
5514 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
5515 rc
= sqlite3BtreeClearTable(
5516 db
->aDb
[pOp
->p2
].pBt
, pOp
->p1
, (pOp
->p3
? &nChange
: 0)
5519 p
->nChange
+= nChange
;
5521 assert( memIsValid(&aMem
[pOp
->p3
]) );
5522 memAboutToChange(p
, &aMem
[pOp
->p3
]);
5523 aMem
[pOp
->p3
].u
.i
+= nChange
;
5526 if( rc
) goto abort_due_to_error
;
5530 /* Opcode: ResetSorter P1 * * * *
5532 ** Delete all contents from the ephemeral table or sorter
5533 ** that is open on cursor P1.
5535 ** This opcode only works for cursors used for sorting and
5536 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5538 case OP_ResetSorter
: {
5541 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5542 pC
= p
->apCsr
[pOp
->p1
];
5545 sqlite3VdbeSorterReset(db
, pC
->uc
.pSorter
);
5547 assert( pC
->eCurType
==CURTYPE_BTREE
);
5548 assert( pC
->isEphemeral
);
5549 rc
= sqlite3BtreeClearTableOfCursor(pC
->uc
.pCursor
);
5550 if( rc
) goto abort_due_to_error
;
5555 /* Opcode: CreateBtree P1 P2 P3 * *
5556 ** Synopsis: r[P2]=root iDb=P1 flags=P3
5558 ** Allocate a new b-tree in the main database file if P1==0 or in the
5559 ** TEMP database file if P1==1 or in an attached database if
5560 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
5561 ** it must be 2 (BTREE_BLOBKEY) for a index or WITHOUT ROWID table.
5562 ** The root page number of the new b-tree is stored in register P2.
5564 case OP_CreateBtree
: { /* out2 */
5568 pOut
= out2Prerelease(p
, pOp
);
5570 assert( pOp
->p3
==BTREE_INTKEY
|| pOp
->p3
==BTREE_BLOBKEY
);
5571 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5572 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
5573 assert( p
->readOnly
==0 );
5574 pDb
= &db
->aDb
[pOp
->p1
];
5575 assert( pDb
->pBt
!=0 );
5576 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, pOp
->p3
);
5577 if( rc
) goto abort_due_to_error
;
5582 /* Opcode: SqlExec * * * P4 *
5584 ** Run the SQL statement or statements specified in the P4 string.
5588 rc
= sqlite3_exec(db
, pOp
->p4
.z
, 0, 0, 0);
5590 if( rc
) goto abort_due_to_error
;
5594 /* Opcode: ParseSchema P1 * * P4 *
5596 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5597 ** that match the WHERE clause P4.
5599 ** This opcode invokes the parser to create a new virtual machine,
5600 ** then runs the new virtual machine. It is thus a re-entrant opcode.
5602 case OP_ParseSchema
: {
5604 const char *zMaster
;
5608 /* Any prepared statement that invokes this opcode will hold mutexes
5609 ** on every btree. This is a prerequisite for invoking
5610 ** sqlite3InitCallback().
5613 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
5614 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
5619 assert( iDb
>=0 && iDb
<db
->nDb
);
5620 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
) );
5621 /* Used to be a conditional */ {
5622 zMaster
= MASTER_NAME
;
5624 initData
.iDb
= pOp
->p1
;
5625 initData
.pzErrMsg
= &p
->zErrMsg
;
5626 zSql
= sqlite3MPrintf(db
,
5627 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5628 db
->aDb
[iDb
].zDbSName
, zMaster
, pOp
->p4
.z
);
5630 rc
= SQLITE_NOMEM_BKPT
;
5632 assert( db
->init
.busy
==0 );
5634 initData
.rc
= SQLITE_OK
;
5635 assert( !db
->mallocFailed
);
5636 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
5637 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
5638 sqlite3DbFreeNN(db
, zSql
);
5643 sqlite3ResetAllSchemasOfConnection(db
);
5644 if( rc
==SQLITE_NOMEM
){
5647 goto abort_due_to_error
;
5652 #if !defined(SQLITE_OMIT_ANALYZE)
5653 /* Opcode: LoadAnalysis P1 * * * *
5655 ** Read the sqlite_stat1 table for database P1 and load the content
5656 ** of that table into the internal index hash table. This will cause
5657 ** the analysis to be used when preparing all subsequent queries.
5659 case OP_LoadAnalysis
: {
5660 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5661 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
5662 if( rc
) goto abort_due_to_error
;
5665 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5667 /* Opcode: DropTable P1 * * P4 *
5669 ** Remove the internal (in-memory) data structures that describe
5670 ** the table named P4 in database P1. This is called after a table
5671 ** is dropped from disk (using the Destroy opcode) in order to keep
5672 ** the internal representation of the
5673 ** schema consistent with what is on disk.
5675 case OP_DropTable
: {
5676 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
5680 /* Opcode: DropIndex P1 * * P4 *
5682 ** Remove the internal (in-memory) data structures that describe
5683 ** the index named P4 in database P1. This is called after an index
5684 ** is dropped from disk (using the Destroy opcode)
5685 ** in order to keep the internal representation of the
5686 ** schema consistent with what is on disk.
5688 case OP_DropIndex
: {
5689 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
5693 /* Opcode: DropTrigger P1 * * P4 *
5695 ** Remove the internal (in-memory) data structures that describe
5696 ** the trigger named P4 in database P1. This is called after a trigger
5697 ** is dropped from disk (using the Destroy opcode) in order to keep
5698 ** the internal representation of the
5699 ** schema consistent with what is on disk.
5701 case OP_DropTrigger
: {
5702 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
5707 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5708 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5710 ** Do an analysis of the currently open database. Store in
5711 ** register P1 the text of an error message describing any problems.
5712 ** If no problems are found, store a NULL in register P1.
5714 ** The register P3 contains one less than the maximum number of allowed errors.
5715 ** At most reg(P3) errors will be reported.
5716 ** In other words, the analysis stops as soon as reg(P1) errors are
5717 ** seen. Reg(P1) is updated with the number of errors remaining.
5719 ** The root page numbers of all tables in the database are integers
5720 ** stored in P4_INTARRAY argument.
5722 ** If P5 is not zero, the check is done on the auxiliary database
5723 ** file, not the main database file.
5725 ** This opcode is used to implement the integrity_check pragma.
5727 case OP_IntegrityCk
: {
5728 int nRoot
; /* Number of tables to check. (Number of root pages.) */
5729 int *aRoot
; /* Array of rootpage numbers for tables to be checked */
5730 int nErr
; /* Number of errors reported */
5731 char *z
; /* Text of the error report */
5732 Mem
*pnErr
; /* Register keeping track of errors remaining */
5734 assert( p
->bIsReader
);
5738 assert( aRoot
[0]==nRoot
);
5739 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
5740 pnErr
= &aMem
[pOp
->p3
];
5741 assert( (pnErr
->flags
& MEM_Int
)!=0 );
5742 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
5743 pIn1
= &aMem
[pOp
->p1
];
5744 assert( pOp
->p5
<db
->nDb
);
5745 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
5746 z
= sqlite3BtreeIntegrityCheck(db
->aDb
[pOp
->p5
].pBt
, &aRoot
[1], nRoot
,
5747 (int)pnErr
->u
.i
+1, &nErr
);
5748 sqlite3VdbeMemSetNull(pIn1
);
5754 pnErr
->u
.i
-= nErr
-1;
5755 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
5757 UPDATE_MAX_BLOBSIZE(pIn1
);
5758 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
5761 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5763 /* Opcode: RowSetAdd P1 P2 * * *
5764 ** Synopsis: rowset(P1)=r[P2]
5766 ** Insert the integer value held by register P2 into a RowSet object
5767 ** held in register P1.
5769 ** An assertion fails if P2 is not an integer.
5771 case OP_RowSetAdd
: { /* in1, in2 */
5772 pIn1
= &aMem
[pOp
->p1
];
5773 pIn2
= &aMem
[pOp
->p2
];
5774 assert( (pIn2
->flags
& MEM_Int
)!=0 );
5775 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5776 sqlite3VdbeMemSetRowSet(pIn1
);
5777 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5779 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn2
->u
.i
);
5783 /* Opcode: RowSetRead P1 P2 P3 * *
5784 ** Synopsis: r[P3]=rowset(P1)
5786 ** Extract the smallest value from the RowSet object in P1
5787 ** and put that value into register P3.
5788 ** Or, if RowSet object P1 is initially empty, leave P3
5789 ** unchanged and jump to instruction P2.
5791 case OP_RowSetRead
: { /* jump, in1, out3 */
5794 pIn1
= &aMem
[pOp
->p1
];
5795 if( (pIn1
->flags
& MEM_RowSet
)==0
5796 || sqlite3RowSetNext(pIn1
->u
.pRowSet
, &val
)==0
5798 /* The boolean index is empty */
5799 sqlite3VdbeMemSetNull(pIn1
);
5800 VdbeBranchTaken(1,2);
5801 goto jump_to_p2_and_check_for_interrupt
;
5803 /* A value was pulled from the index */
5804 VdbeBranchTaken(0,2);
5805 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
5807 goto check_for_interrupt
;
5810 /* Opcode: RowSetTest P1 P2 P3 P4
5811 ** Synopsis: if r[P3] in rowset(P1) goto P2
5813 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5814 ** contains a RowSet object and that RowSet object contains
5815 ** the value held in P3, jump to register P2. Otherwise, insert the
5816 ** integer in P3 into the RowSet and continue on to the
5819 ** The RowSet object is optimized for the case where sets of integers
5820 ** are inserted in distinct phases, which each set contains no duplicates.
5821 ** Each set is identified by a unique P4 value. The first set
5822 ** must have P4==0, the final set must have P4==-1, and for all other sets
5825 ** This allows optimizations: (a) when P4==0 there is no need to test
5826 ** the RowSet object for P3, as it is guaranteed not to contain it,
5827 ** (b) when P4==-1 there is no need to insert the value, as it will
5828 ** never be tested for, and (c) when a value that is part of set X is
5829 ** inserted, there is no need to search to see if the same value was
5830 ** previously inserted as part of set X (only if it was previously
5831 ** inserted as part of some other set).
5833 case OP_RowSetTest
: { /* jump, in1, in3 */
5837 pIn1
= &aMem
[pOp
->p1
];
5838 pIn3
= &aMem
[pOp
->p3
];
5840 assert( pIn3
->flags
&MEM_Int
);
5842 /* If there is anything other than a rowset object in memory cell P1,
5843 ** delete it now and initialize P1 with an empty rowset
5845 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5846 sqlite3VdbeMemSetRowSet(pIn1
);
5847 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5850 assert( pOp
->p4type
==P4_INT32
);
5851 assert( iSet
==-1 || iSet
>=0 );
5853 exists
= sqlite3RowSetTest(pIn1
->u
.pRowSet
, iSet
, pIn3
->u
.i
);
5854 VdbeBranchTaken(exists
!=0,2);
5855 if( exists
) goto jump_to_p2
;
5858 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn3
->u
.i
);
5864 #ifndef SQLITE_OMIT_TRIGGER
5866 /* Opcode: Program P1 P2 P3 P4 P5
5868 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5870 ** P1 contains the address of the memory cell that contains the first memory
5871 ** cell in an array of values used as arguments to the sub-program. P2
5872 ** contains the address to jump to if the sub-program throws an IGNORE
5873 ** exception using the RAISE() function. Register P3 contains the address
5874 ** of a memory cell in this (the parent) VM that is used to allocate the
5875 ** memory required by the sub-vdbe at runtime.
5877 ** P4 is a pointer to the VM containing the trigger program.
5879 ** If P5 is non-zero, then recursive program invocation is enabled.
5881 case OP_Program
: { /* jump */
5882 int nMem
; /* Number of memory registers for sub-program */
5883 int nByte
; /* Bytes of runtime space required for sub-program */
5884 Mem
*pRt
; /* Register to allocate runtime space */
5885 Mem
*pMem
; /* Used to iterate through memory cells */
5886 Mem
*pEnd
; /* Last memory cell in new array */
5887 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
5888 SubProgram
*pProgram
; /* Sub-program to execute */
5889 void *t
; /* Token identifying trigger */
5891 pProgram
= pOp
->p4
.pProgram
;
5892 pRt
= &aMem
[pOp
->p3
];
5893 assert( pProgram
->nOp
>0 );
5895 /* If the p5 flag is clear, then recursive invocation of triggers is
5896 ** disabled for backwards compatibility (p5 is set if this sub-program
5897 ** is really a trigger, not a foreign key action, and the flag set
5898 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5900 ** It is recursive invocation of triggers, at the SQL level, that is
5901 ** disabled. In some cases a single trigger may generate more than one
5902 ** SubProgram (if the trigger may be executed with more than one different
5903 ** ON CONFLICT algorithm). SubProgram structures associated with a
5904 ** single trigger all have the same value for the SubProgram.token
5907 t
= pProgram
->token
;
5908 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
5912 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
5914 sqlite3VdbeError(p
, "too many levels of trigger recursion");
5915 goto abort_due_to_error
;
5918 /* Register pRt is used to store the memory required to save the state
5919 ** of the current program, and the memory required at runtime to execute
5920 ** the trigger program. If this trigger has been fired before, then pRt
5921 ** is already allocated. Otherwise, it must be initialized. */
5922 if( (pRt
->flags
&MEM_Frame
)==0 ){
5923 /* SubProgram.nMem is set to the number of memory cells used by the
5924 ** program stored in SubProgram.aOp. As well as these, one memory
5925 ** cell is required for each cursor used by the program. Set local
5926 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5928 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
5930 if( pProgram
->nCsr
==0 ) nMem
++;
5931 nByte
= ROUND8(sizeof(VdbeFrame
))
5932 + nMem
* sizeof(Mem
)
5933 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
5934 + (pProgram
->nOp
+ 7)/8;
5935 pFrame
= sqlite3DbMallocZero(db
, nByte
);
5939 sqlite3VdbeMemRelease(pRt
);
5940 pRt
->flags
= MEM_Frame
;
5941 pRt
->u
.pFrame
= pFrame
;
5944 pFrame
->nChildMem
= nMem
;
5945 pFrame
->nChildCsr
= pProgram
->nCsr
;
5946 pFrame
->pc
= (int)(pOp
- aOp
);
5947 pFrame
->aMem
= p
->aMem
;
5948 pFrame
->nMem
= p
->nMem
;
5949 pFrame
->apCsr
= p
->apCsr
;
5950 pFrame
->nCursor
= p
->nCursor
;
5951 pFrame
->aOp
= p
->aOp
;
5952 pFrame
->nOp
= p
->nOp
;
5953 pFrame
->token
= pProgram
->token
;
5954 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5955 pFrame
->anExec
= p
->anExec
;
5958 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
5959 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
5960 pMem
->flags
= MEM_Undefined
;
5964 pFrame
= pRt
->u
.pFrame
;
5965 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
5966 || (pProgram
->nCsr
==0 && pProgram
->nMem
+1==pFrame
->nChildMem
) );
5967 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
5968 assert( (int)(pOp
- aOp
)==pFrame
->pc
);
5972 pFrame
->pParent
= p
->pFrame
;
5973 pFrame
->lastRowid
= db
->lastRowid
;
5974 pFrame
->nChange
= p
->nChange
;
5975 pFrame
->nDbChange
= p
->db
->nChange
;
5976 assert( pFrame
->pAuxData
==0 );
5977 pFrame
->pAuxData
= p
->pAuxData
;
5981 p
->aMem
= aMem
= VdbeFrameMem(pFrame
);
5982 p
->nMem
= pFrame
->nChildMem
;
5983 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
5984 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
];
5985 pFrame
->aOnce
= (u8
*)&p
->apCsr
[pProgram
->nCsr
];
5986 memset(pFrame
->aOnce
, 0, (pProgram
->nOp
+ 7)/8);
5987 p
->aOp
= aOp
= pProgram
->aOp
;
5988 p
->nOp
= pProgram
->nOp
;
5989 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5997 /* Opcode: Param P1 P2 * * *
5999 ** This opcode is only ever present in sub-programs called via the
6000 ** OP_Program instruction. Copy a value currently stored in a memory
6001 ** cell of the calling (parent) frame to cell P2 in the current frames
6002 ** address space. This is used by trigger programs to access the new.*
6003 ** and old.* values.
6005 ** The address of the cell in the parent frame is determined by adding
6006 ** the value of the P1 argument to the value of the P1 argument to the
6007 ** calling OP_Program instruction.
6009 case OP_Param
: { /* out2 */
6012 pOut
= out2Prerelease(p
, pOp
);
6014 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
6015 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
6019 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
6021 #ifndef SQLITE_OMIT_FOREIGN_KEY
6022 /* Opcode: FkCounter P1 P2 * * *
6023 ** Synopsis: fkctr[P1]+=P2
6025 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6026 ** If P1 is non-zero, the database constraint counter is incremented
6027 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
6028 ** statement counter is incremented (immediate foreign key constraints).
6030 case OP_FkCounter
: {
6031 if( db
->flags
& SQLITE_DeferFKs
){
6032 db
->nDeferredImmCons
+= pOp
->p2
;
6033 }else if( pOp
->p1
){
6034 db
->nDeferredCons
+= pOp
->p2
;
6036 p
->nFkConstraint
+= pOp
->p2
;
6041 /* Opcode: FkIfZero P1 P2 * * *
6042 ** Synopsis: if fkctr[P1]==0 goto P2
6044 ** This opcode tests if a foreign key constraint-counter is currently zero.
6045 ** If so, jump to instruction P2. Otherwise, fall through to the next
6048 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
6049 ** is zero (the one that counts deferred constraint violations). If P1 is
6050 ** zero, the jump is taken if the statement constraint-counter is zero
6051 ** (immediate foreign key constraint violations).
6053 case OP_FkIfZero
: { /* jump */
6055 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
6056 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
6058 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
6059 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
6063 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6065 #ifndef SQLITE_OMIT_AUTOINCREMENT
6066 /* Opcode: MemMax P1 P2 * * *
6067 ** Synopsis: r[P1]=max(r[P1],r[P2])
6069 ** P1 is a register in the root frame of this VM (the root frame is
6070 ** different from the current frame if this instruction is being executed
6071 ** within a sub-program). Set the value of register P1 to the maximum of
6072 ** its current value and the value in register P2.
6074 ** This instruction throws an error if the memory cell is not initially
6077 case OP_MemMax
: { /* in2 */
6080 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
6081 pIn1
= &pFrame
->aMem
[pOp
->p1
];
6083 pIn1
= &aMem
[pOp
->p1
];
6085 assert( memIsValid(pIn1
) );
6086 sqlite3VdbeMemIntegerify(pIn1
);
6087 pIn2
= &aMem
[pOp
->p2
];
6088 sqlite3VdbeMemIntegerify(pIn2
);
6089 if( pIn1
->u
.i
<pIn2
->u
.i
){
6090 pIn1
->u
.i
= pIn2
->u
.i
;
6094 #endif /* SQLITE_OMIT_AUTOINCREMENT */
6096 /* Opcode: IfPos P1 P2 P3 * *
6097 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
6099 ** Register P1 must contain an integer.
6100 ** If the value of register P1 is 1 or greater, subtract P3 from the
6101 ** value in P1 and jump to P2.
6103 ** If the initial value of register P1 is less than 1, then the
6104 ** value is unchanged and control passes through to the next instruction.
6106 case OP_IfPos
: { /* jump, in1 */
6107 pIn1
= &aMem
[pOp
->p1
];
6108 assert( pIn1
->flags
&MEM_Int
);
6109 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
6111 pIn1
->u
.i
-= pOp
->p3
;
6117 /* Opcode: OffsetLimit P1 P2 P3 * *
6118 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
6120 ** This opcode performs a commonly used computation associated with
6121 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
6122 ** holds the offset counter. The opcode computes the combined value
6123 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
6124 ** value computed is the total number of rows that will need to be
6125 ** visited in order to complete the query.
6127 ** If r[P3] is zero or negative, that means there is no OFFSET
6128 ** and r[P2] is set to be the value of the LIMIT, r[P1].
6130 ** if r[P1] is zero or negative, that means there is no LIMIT
6131 ** and r[P2] is set to -1.
6133 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
6135 case OP_OffsetLimit
: { /* in1, out2, in3 */
6137 pIn1
= &aMem
[pOp
->p1
];
6138 pIn3
= &aMem
[pOp
->p3
];
6139 pOut
= out2Prerelease(p
, pOp
);
6140 assert( pIn1
->flags
& MEM_Int
);
6141 assert( pIn3
->flags
& MEM_Int
);
6143 if( x
<=0 || sqlite3AddInt64(&x
, pIn3
->u
.i
>0?pIn3
->u
.i
:0) ){
6144 /* If the LIMIT is less than or equal to zero, loop forever. This
6145 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
6146 ** also loop forever. This is undocumented. In fact, one could argue
6147 ** that the loop should terminate. But assuming 1 billion iterations
6148 ** per second (far exceeding the capabilities of any current hardware)
6149 ** it would take nearly 300 years to actually reach the limit. So
6150 ** looping forever is a reasonable approximation. */
6158 /* Opcode: IfNotZero P1 P2 * * *
6159 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
6161 ** Register P1 must contain an integer. If the content of register P1 is
6162 ** initially greater than zero, then decrement the value in register P1.
6163 ** If it is non-zero (negative or positive) and then also jump to P2.
6164 ** If register P1 is initially zero, leave it unchanged and fall through.
6166 case OP_IfNotZero
: { /* jump, in1 */
6167 pIn1
= &aMem
[pOp
->p1
];
6168 assert( pIn1
->flags
&MEM_Int
);
6169 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
6171 if( pIn1
->u
.i
>0 ) pIn1
->u
.i
--;
6177 /* Opcode: DecrJumpZero P1 P2 * * *
6178 ** Synopsis: if (--r[P1])==0 goto P2
6180 ** Register P1 must hold an integer. Decrement the value in P1
6181 ** and jump to P2 if the new value is exactly zero.
6183 case OP_DecrJumpZero
: { /* jump, in1 */
6184 pIn1
= &aMem
[pOp
->p1
];
6185 assert( pIn1
->flags
&MEM_Int
);
6186 if( pIn1
->u
.i
>SMALLEST_INT64
) pIn1
->u
.i
--;
6187 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
6188 if( pIn1
->u
.i
==0 ) goto jump_to_p2
;
6193 /* Opcode: AggStep0 * P2 P3 P4 P5
6194 ** Synopsis: accum=r[P3] step(r[P2@P5])
6196 ** Execute the step function for an aggregate. The
6197 ** function has P5 arguments. P4 is a pointer to the FuncDef
6198 ** structure that specifies the function. Register P3 is the
6201 ** The P5 arguments are taken from register P2 and its
6204 /* Opcode: AggStep * P2 P3 P4 P5
6205 ** Synopsis: accum=r[P3] step(r[P2@P5])
6207 ** Execute the step function for an aggregate. The
6208 ** function has P5 arguments. P4 is a pointer to an sqlite3_context
6209 ** object that is used to run the function. Register P3 is
6210 ** as the accumulator.
6212 ** The P5 arguments are taken from register P2 and its
6215 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
6216 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6217 ** the opcode is changed. In this way, the initialization of the
6218 ** sqlite3_context only happens once, instead of on each call to the
6223 sqlite3_context
*pCtx
;
6225 assert( pOp
->p4type
==P4_FUNCDEF
);
6227 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
6228 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
6229 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
6230 pCtx
= sqlite3DbMallocRawNN(db
, n
*sizeof(sqlite3_value
*) +
6231 (sizeof(pCtx
[0]) + sizeof(Mem
) - sizeof(sqlite3_value
*)));
6232 if( pCtx
==0 ) goto no_mem
;
6234 pCtx
->pOut
= (Mem
*)&(pCtx
->argv
[n
]);
6235 sqlite3VdbeMemInit(pCtx
->pOut
, db
, MEM_Null
);
6236 pCtx
->pFunc
= pOp
->p4
.pFunc
;
6237 pCtx
->iOp
= (int)(pOp
- aOp
);
6242 pOp
->p4type
= P4_FUNCCTX
;
6243 pOp
->p4
.pCtx
= pCtx
;
6244 pOp
->opcode
= OP_AggStep
;
6245 /* Fall through into OP_AggStep */
6249 sqlite3_context
*pCtx
;
6252 assert( pOp
->p4type
==P4_FUNCCTX
);
6253 pCtx
= pOp
->p4
.pCtx
;
6254 pMem
= &aMem
[pOp
->p3
];
6256 /* If this function is inside of a trigger, the register array in aMem[]
6257 ** might change from one evaluation to the next. The next block of code
6258 ** checks to see if the register array has changed, and if so it
6259 ** reinitializes the relavant parts of the sqlite3_context object */
6260 if( pCtx
->pMem
!= pMem
){
6262 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
6266 for(i
=0; i
<pCtx
->argc
; i
++){
6267 assert( memIsValid(pCtx
->argv
[i
]) );
6268 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
6273 assert( pCtx
->pOut
->flags
==MEM_Null
);
6274 assert( pCtx
->isError
==0 );
6275 assert( pCtx
->skipFlag
==0 );
6276 (pCtx
->pFunc
->xSFunc
)(pCtx
,pCtx
->argc
,pCtx
->argv
); /* IMP: R-24505-23230 */
6277 if( pCtx
->isError
){
6278 if( pCtx
->isError
>0 ){
6279 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pCtx
->pOut
));
6282 if( pCtx
->skipFlag
){
6283 assert( pOp
[-1].opcode
==OP_CollSeq
);
6285 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
6288 sqlite3VdbeMemRelease(pCtx
->pOut
);
6289 pCtx
->pOut
->flags
= MEM_Null
;
6291 if( rc
) goto abort_due_to_error
;
6293 assert( pCtx
->pOut
->flags
==MEM_Null
);
6294 assert( pCtx
->skipFlag
==0 );
6298 /* Opcode: AggFinal P1 P2 * P4 *
6299 ** Synopsis: accum=r[P1] N=P2
6301 ** Execute the finalizer function for an aggregate. P1 is
6302 ** the memory location that is the accumulator for the aggregate.
6304 ** P2 is the number of arguments that the step function takes and
6305 ** P4 is a pointer to the FuncDef for this function. The P2
6306 ** argument is not used by this opcode. It is only there to disambiguate
6307 ** functions that can take varying numbers of arguments. The
6308 ** P4 argument is only needed for the degenerate case where
6309 ** the step function was not previously called.
6313 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
6314 pMem
= &aMem
[pOp
->p1
];
6315 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
6316 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
6318 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pMem
));
6319 goto abort_due_to_error
;
6321 sqlite3VdbeChangeEncoding(pMem
, encoding
);
6322 UPDATE_MAX_BLOBSIZE(pMem
);
6323 if( sqlite3VdbeMemTooBig(pMem
) ){
6329 #ifndef SQLITE_OMIT_WAL
6330 /* Opcode: Checkpoint P1 P2 P3 * *
6332 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6333 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6334 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
6335 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
6336 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6337 ** in the WAL that have been checkpointed after the checkpoint
6338 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
6339 ** mem[P3+2] are initialized to -1.
6341 case OP_Checkpoint
: {
6342 int i
; /* Loop counter */
6343 int aRes
[3]; /* Results */
6344 Mem
*pMem
; /* Write results here */
6346 assert( p
->readOnly
==0 );
6348 aRes
[1] = aRes
[2] = -1;
6349 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
6350 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
6351 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
6352 || pOp
->p2
==SQLITE_CHECKPOINT_TRUNCATE
6354 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
6356 if( rc
!=SQLITE_BUSY
) goto abort_due_to_error
;
6360 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
6361 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
6367 #ifndef SQLITE_OMIT_PRAGMA
6368 /* Opcode: JournalMode P1 P2 P3 * *
6370 ** Change the journal mode of database P1 to P3. P3 must be one of the
6371 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6372 ** modes (delete, truncate, persist, off and memory), this is a simple
6373 ** operation. No IO is required.
6375 ** If changing into or out of WAL mode the procedure is more complicated.
6377 ** Write a string containing the final journal-mode to register P2.
6379 case OP_JournalMode
: { /* out2 */
6380 Btree
*pBt
; /* Btree to change journal mode of */
6381 Pager
*pPager
; /* Pager associated with pBt */
6382 int eNew
; /* New journal mode */
6383 int eOld
; /* The old journal mode */
6384 #ifndef SQLITE_OMIT_WAL
6385 const char *zFilename
; /* Name of database file for pPager */
6388 pOut
= out2Prerelease(p
, pOp
);
6390 assert( eNew
==PAGER_JOURNALMODE_DELETE
6391 || eNew
==PAGER_JOURNALMODE_TRUNCATE
6392 || eNew
==PAGER_JOURNALMODE_PERSIST
6393 || eNew
==PAGER_JOURNALMODE_OFF
6394 || eNew
==PAGER_JOURNALMODE_MEMORY
6395 || eNew
==PAGER_JOURNALMODE_WAL
6396 || eNew
==PAGER_JOURNALMODE_QUERY
6398 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6399 assert( p
->readOnly
==0 );
6401 pBt
= db
->aDb
[pOp
->p1
].pBt
;
6402 pPager
= sqlite3BtreePager(pBt
);
6403 eOld
= sqlite3PagerGetJournalMode(pPager
);
6404 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
6405 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
6407 #ifndef SQLITE_OMIT_WAL
6408 zFilename
= sqlite3PagerFilename(pPager
, 1);
6410 /* Do not allow a transition to journal_mode=WAL for a database
6411 ** in temporary storage or if the VFS does not support shared memory
6413 if( eNew
==PAGER_JOURNALMODE_WAL
6414 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
6415 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
6421 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
6423 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
6426 "cannot change %s wal mode from within a transaction",
6427 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
6429 goto abort_due_to_error
;
6432 if( eOld
==PAGER_JOURNALMODE_WAL
){
6433 /* If leaving WAL mode, close the log file. If successful, the call
6434 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6435 ** file. An EXCLUSIVE lock may still be held on the database file
6436 ** after a successful return.
6438 rc
= sqlite3PagerCloseWal(pPager
, db
);
6439 if( rc
==SQLITE_OK
){
6440 sqlite3PagerSetJournalMode(pPager
, eNew
);
6442 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
6443 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6444 ** as an intermediate */
6445 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
6448 /* Open a transaction on the database file. Regardless of the journal
6449 ** mode, this transaction always uses a rollback journal.
6451 assert( sqlite3BtreeIsInTrans(pBt
)==0 );
6452 if( rc
==SQLITE_OK
){
6453 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
6457 #endif /* ifndef SQLITE_OMIT_WAL */
6459 if( rc
) eNew
= eOld
;
6460 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
6462 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
6463 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
6464 pOut
->n
= sqlite3Strlen30(pOut
->z
);
6465 pOut
->enc
= SQLITE_UTF8
;
6466 sqlite3VdbeChangeEncoding(pOut
, encoding
);
6467 if( rc
) goto abort_due_to_error
;
6470 #endif /* SQLITE_OMIT_PRAGMA */
6472 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6473 /* Opcode: Vacuum P1 * * * *
6475 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
6476 ** for an attached database. The "temp" database may not be vacuumed.
6479 assert( p
->readOnly
==0 );
6480 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
, pOp
->p1
);
6481 if( rc
) goto abort_due_to_error
;
6486 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6487 /* Opcode: IncrVacuum P1 P2 * * *
6489 ** Perform a single step of the incremental vacuum procedure on
6490 ** the P1 database. If the vacuum has finished, jump to instruction
6491 ** P2. Otherwise, fall through to the next instruction.
6493 case OP_IncrVacuum
: { /* jump */
6496 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6497 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
6498 assert( p
->readOnly
==0 );
6499 pBt
= db
->aDb
[pOp
->p1
].pBt
;
6500 rc
= sqlite3BtreeIncrVacuum(pBt
);
6501 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
6503 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
6511 /* Opcode: Expire P1 * * * *
6513 ** Cause precompiled statements to expire. When an expired statement
6514 ** is executed using sqlite3_step() it will either automatically
6515 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6516 ** or it will fail with SQLITE_SCHEMA.
6518 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6519 ** then only the currently executing statement is expired.
6523 sqlite3ExpirePreparedStatements(db
);
6530 #ifndef SQLITE_OMIT_SHARED_CACHE
6531 /* Opcode: TableLock P1 P2 P3 P4 *
6532 ** Synopsis: iDb=P1 root=P2 write=P3
6534 ** Obtain a lock on a particular table. This instruction is only used when
6535 ** the shared-cache feature is enabled.
6537 ** P1 is the index of the database in sqlite3.aDb[] of the database
6538 ** on which the lock is acquired. A readlock is obtained if P3==0 or
6539 ** a write lock if P3==1.
6541 ** P2 contains the root-page of the table to lock.
6543 ** P4 contains a pointer to the name of the table being locked. This is only
6544 ** used to generate an error message if the lock cannot be obtained.
6546 case OP_TableLock
: {
6547 u8 isWriteLock
= (u8
)pOp
->p3
;
6548 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommit
) ){
6550 assert( p1
>=0 && p1
<db
->nDb
);
6551 assert( DbMaskTest(p
->btreeMask
, p1
) );
6552 assert( isWriteLock
==0 || isWriteLock
==1 );
6553 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
6555 if( (rc
&0xFF)==SQLITE_LOCKED
){
6556 const char *z
= pOp
->p4
.z
;
6557 sqlite3VdbeError(p
, "database table is locked: %s", z
);
6559 goto abort_due_to_error
;
6564 #endif /* SQLITE_OMIT_SHARED_CACHE */
6566 #ifndef SQLITE_OMIT_VIRTUALTABLE
6567 /* Opcode: VBegin * * * P4 *
6569 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6570 ** xBegin method for that table.
6572 ** Also, whether or not P4 is set, check that this is not being called from
6573 ** within a callback to a virtual table xSync() method. If it is, the error
6574 ** code will be set to SQLITE_LOCKED.
6578 pVTab
= pOp
->p4
.pVtab
;
6579 rc
= sqlite3VtabBegin(db
, pVTab
);
6580 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
6581 if( rc
) goto abort_due_to_error
;
6584 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6586 #ifndef SQLITE_OMIT_VIRTUALTABLE
6587 /* Opcode: VCreate P1 P2 * * *
6589 ** P2 is a register that holds the name of a virtual table in database
6590 ** P1. Call the xCreate method for that table.
6593 Mem sMem
; /* For storing the record being decoded */
6594 const char *zTab
; /* Name of the virtual table */
6596 memset(&sMem
, 0, sizeof(sMem
));
6598 /* Because P2 is always a static string, it is impossible for the
6599 ** sqlite3VdbeMemCopy() to fail */
6600 assert( (aMem
[pOp
->p2
].flags
& MEM_Str
)!=0 );
6601 assert( (aMem
[pOp
->p2
].flags
& MEM_Static
)!=0 );
6602 rc
= sqlite3VdbeMemCopy(&sMem
, &aMem
[pOp
->p2
]);
6603 assert( rc
==SQLITE_OK
);
6604 zTab
= (const char*)sqlite3_value_text(&sMem
);
6605 assert( zTab
|| db
->mallocFailed
);
6607 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, zTab
, &p
->zErrMsg
);
6609 sqlite3VdbeMemRelease(&sMem
);
6610 if( rc
) goto abort_due_to_error
;
6613 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6615 #ifndef SQLITE_OMIT_VIRTUALTABLE
6616 /* Opcode: VDestroy P1 * * P4 *
6618 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
6623 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
6625 if( rc
) goto abort_due_to_error
;
6628 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6630 #ifndef SQLITE_OMIT_VIRTUALTABLE
6631 /* Opcode: VOpen P1 * * P4 *
6633 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6634 ** P1 is a cursor number. This opcode opens a cursor to the virtual
6635 ** table and stores that cursor in P1.
6639 sqlite3_vtab_cursor
*pVCur
;
6640 sqlite3_vtab
*pVtab
;
6641 const sqlite3_module
*pModule
;
6643 assert( p
->bIsReader
);
6646 pVtab
= pOp
->p4
.pVtab
->pVtab
;
6647 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
6649 goto abort_due_to_error
;
6651 pModule
= pVtab
->pModule
;
6652 rc
= pModule
->xOpen(pVtab
, &pVCur
);
6653 sqlite3VtabImportErrmsg(p
, pVtab
);
6654 if( rc
) goto abort_due_to_error
;
6656 /* Initialize sqlite3_vtab_cursor base class */
6657 pVCur
->pVtab
= pVtab
;
6659 /* Initialize vdbe cursor object */
6660 pCur
= allocateCursor(p
, pOp
->p1
, 0, -1, CURTYPE_VTAB
);
6662 pCur
->uc
.pVCur
= pVCur
;
6665 assert( db
->mallocFailed
);
6666 pModule
->xClose(pVCur
);
6671 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6673 #ifndef SQLITE_OMIT_VIRTUALTABLE
6674 /* Opcode: VFilter P1 P2 P3 P4 *
6675 ** Synopsis: iplan=r[P3] zplan='P4'
6677 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6678 ** the filtered result set is empty.
6680 ** P4 is either NULL or a string that was generated by the xBestIndex
6681 ** method of the module. The interpretation of the P4 string is left
6682 ** to the module implementation.
6684 ** This opcode invokes the xFilter method on the virtual table specified
6685 ** by P1. The integer query plan parameter to xFilter is stored in register
6686 ** P3. Register P3+1 stores the argc parameter to be passed to the
6687 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6688 ** additional parameters which are passed to
6689 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6691 ** A jump is made to P2 if the result set after filtering would be empty.
6693 case OP_VFilter
: { /* jump */
6696 const sqlite3_module
*pModule
;
6699 sqlite3_vtab_cursor
*pVCur
;
6700 sqlite3_vtab
*pVtab
;
6706 pQuery
= &aMem
[pOp
->p3
];
6708 pCur
= p
->apCsr
[pOp
->p1
];
6709 assert( memIsValid(pQuery
) );
6710 REGISTER_TRACE(pOp
->p3
, pQuery
);
6711 assert( pCur
->eCurType
==CURTYPE_VTAB
);
6712 pVCur
= pCur
->uc
.pVCur
;
6713 pVtab
= pVCur
->pVtab
;
6714 pModule
= pVtab
->pModule
;
6716 /* Grab the index number and argc parameters */
6717 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
6718 nArg
= (int)pArgc
->u
.i
;
6719 iQuery
= (int)pQuery
->u
.i
;
6721 /* Invoke the xFilter method */
6724 for(i
= 0; i
<nArg
; i
++){
6725 apArg
[i
] = &pArgc
[i
+1];
6727 rc
= pModule
->xFilter(pVCur
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
6728 sqlite3VtabImportErrmsg(p
, pVtab
);
6729 if( rc
) goto abort_due_to_error
;
6730 res
= pModule
->xEof(pVCur
);
6732 VdbeBranchTaken(res
!=0,2);
6733 if( res
) goto jump_to_p2
;
6736 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6738 #ifndef SQLITE_OMIT_VIRTUALTABLE
6739 /* Opcode: VColumn P1 P2 P3 * P5
6740 ** Synopsis: r[P3]=vcolumn(P2)
6742 ** Store in register P3 the value of the P2-th column of
6743 ** the current row of the virtual-table of cursor P1.
6745 ** If the VColumn opcode is being used to fetch the value of
6746 ** an unchanging column during an UPDATE operation, then the P5
6747 ** value is 1. Otherwise, P5 is 0. The P5 value is returned
6748 ** by sqlite3_vtab_nochange() routine can can be used
6749 ** by virtual table implementations to return special "no-change"
6750 ** marks which can be more efficient, depending on the virtual table.
6753 sqlite3_vtab
*pVtab
;
6754 const sqlite3_module
*pModule
;
6756 sqlite3_context sContext
;
6758 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
6759 assert( pCur
->eCurType
==CURTYPE_VTAB
);
6760 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
6761 pDest
= &aMem
[pOp
->p3
];
6762 memAboutToChange(p
, pDest
);
6763 if( pCur
->nullRow
){
6764 sqlite3VdbeMemSetNull(pDest
);
6767 pVtab
= pCur
->uc
.pVCur
->pVtab
;
6768 pModule
= pVtab
->pModule
;
6769 assert( pModule
->xColumn
);
6770 memset(&sContext
, 0, sizeof(sContext
));
6771 sContext
.pOut
= pDest
;
6773 sqlite3VdbeMemSetNull(pDest
);
6774 pDest
->flags
= MEM_Null
|MEM_Zero
;
6777 MemSetTypeFlag(pDest
, MEM_Null
);
6779 rc
= pModule
->xColumn(pCur
->uc
.pVCur
, &sContext
, pOp
->p2
);
6780 sqlite3VtabImportErrmsg(p
, pVtab
);
6781 if( sContext
.isError
>0 ){
6782 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pDest
));
6783 rc
= sContext
.isError
;
6785 sqlite3VdbeChangeEncoding(pDest
, encoding
);
6786 REGISTER_TRACE(pOp
->p3
, pDest
);
6787 UPDATE_MAX_BLOBSIZE(pDest
);
6789 if( sqlite3VdbeMemTooBig(pDest
) ){
6792 if( rc
) goto abort_due_to_error
;
6795 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6797 #ifndef SQLITE_OMIT_VIRTUALTABLE
6798 /* Opcode: VNext P1 P2 * * *
6800 ** Advance virtual table P1 to the next row in its result set and
6801 ** jump to instruction P2. Or, if the virtual table has reached
6802 ** the end of its result set, then fall through to the next instruction.
6804 case OP_VNext
: { /* jump */
6805 sqlite3_vtab
*pVtab
;
6806 const sqlite3_module
*pModule
;
6811 pCur
= p
->apCsr
[pOp
->p1
];
6812 assert( pCur
->eCurType
==CURTYPE_VTAB
);
6813 if( pCur
->nullRow
){
6816 pVtab
= pCur
->uc
.pVCur
->pVtab
;
6817 pModule
= pVtab
->pModule
;
6818 assert( pModule
->xNext
);
6820 /* Invoke the xNext() method of the module. There is no way for the
6821 ** underlying implementation to return an error if one occurs during
6822 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6823 ** data is available) and the error code returned when xColumn or
6824 ** some other method is next invoked on the save virtual table cursor.
6826 rc
= pModule
->xNext(pCur
->uc
.pVCur
);
6827 sqlite3VtabImportErrmsg(p
, pVtab
);
6828 if( rc
) goto abort_due_to_error
;
6829 res
= pModule
->xEof(pCur
->uc
.pVCur
);
6830 VdbeBranchTaken(!res
,2);
6832 /* If there is data, jump to P2 */
6833 goto jump_to_p2_and_check_for_interrupt
;
6835 goto check_for_interrupt
;
6837 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6839 #ifndef SQLITE_OMIT_VIRTUALTABLE
6840 /* Opcode: VRename P1 * * P4 *
6842 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6843 ** This opcode invokes the corresponding xRename method. The value
6844 ** in register P1 is passed as the zName argument to the xRename method.
6847 sqlite3_vtab
*pVtab
;
6850 pVtab
= pOp
->p4
.pVtab
->pVtab
;
6851 pName
= &aMem
[pOp
->p1
];
6852 assert( pVtab
->pModule
->xRename
);
6853 assert( memIsValid(pName
) );
6854 assert( p
->readOnly
==0 );
6855 REGISTER_TRACE(pOp
->p1
, pName
);
6856 assert( pName
->flags
& MEM_Str
);
6857 testcase( pName
->enc
==SQLITE_UTF8
);
6858 testcase( pName
->enc
==SQLITE_UTF16BE
);
6859 testcase( pName
->enc
==SQLITE_UTF16LE
);
6860 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
6861 if( rc
) goto abort_due_to_error
;
6862 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
6863 sqlite3VtabImportErrmsg(p
, pVtab
);
6865 if( rc
) goto abort_due_to_error
;
6870 #ifndef SQLITE_OMIT_VIRTUALTABLE
6871 /* Opcode: VUpdate P1 P2 P3 P4 P5
6872 ** Synopsis: data=r[P3@P2]
6874 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6875 ** This opcode invokes the corresponding xUpdate method. P2 values
6876 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6877 ** invocation. The value in register (P3+P2-1) corresponds to the
6878 ** p2th element of the argv array passed to xUpdate.
6880 ** The xUpdate method will do a DELETE or an INSERT or both.
6881 ** The argv[0] element (which corresponds to memory cell P3)
6882 ** is the rowid of a row to delete. If argv[0] is NULL then no
6883 ** deletion occurs. The argv[1] element is the rowid of the new
6884 ** row. This can be NULL to have the virtual table select the new
6885 ** rowid for itself. The subsequent elements in the array are
6886 ** the values of columns in the new row.
6888 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6891 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6892 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6893 ** is set to the value of the rowid for the row just inserted.
6895 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6896 ** apply in the case of a constraint failure on an insert or update.
6899 sqlite3_vtab
*pVtab
;
6900 const sqlite3_module
*pModule
;
6907 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
6908 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
6910 assert( p
->readOnly
==0 );
6911 pVtab
= pOp
->p4
.pVtab
->pVtab
;
6912 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
6914 goto abort_due_to_error
;
6916 pModule
= pVtab
->pModule
;
6918 assert( pOp
->p4type
==P4_VTAB
);
6919 if( ALWAYS(pModule
->xUpdate
) ){
6920 u8 vtabOnConflict
= db
->vtabOnConflict
;
6922 pX
= &aMem
[pOp
->p3
];
6923 for(i
=0; i
<nArg
; i
++){
6924 assert( memIsValid(pX
) );
6925 memAboutToChange(p
, pX
);
6929 db
->vtabOnConflict
= pOp
->p5
;
6930 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
6931 db
->vtabOnConflict
= vtabOnConflict
;
6932 sqlite3VtabImportErrmsg(p
, pVtab
);
6933 if( rc
==SQLITE_OK
&& pOp
->p1
){
6934 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
6935 db
->lastRowid
= rowid
;
6937 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
6938 if( pOp
->p5
==OE_Ignore
){
6941 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
6946 if( rc
) goto abort_due_to_error
;
6950 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6952 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6953 /* Opcode: Pagecount P1 P2 * * *
6955 ** Write the current number of pages in database P1 to memory cell P2.
6957 case OP_Pagecount
: { /* out2 */
6958 pOut
= out2Prerelease(p
, pOp
);
6959 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
6965 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6966 /* Opcode: MaxPgcnt P1 P2 P3 * *
6968 ** Try to set the maximum page count for database P1 to the value in P3.
6969 ** Do not let the maximum page count fall below the current page count and
6970 ** do not change the maximum page count value if P3==0.
6972 ** Store the maximum page count after the change in register P2.
6974 case OP_MaxPgcnt
: { /* out2 */
6975 unsigned int newMax
;
6978 pOut
= out2Prerelease(p
, pOp
);
6979 pBt
= db
->aDb
[pOp
->p1
].pBt
;
6982 newMax
= sqlite3BtreeLastPage(pBt
);
6983 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
6985 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
6990 /* Opcode: Function0 P1 P2 P3 P4 P5
6991 ** Synopsis: r[P3]=func(r[P2@P5])
6993 ** Invoke a user function (P4 is a pointer to a FuncDef object that
6994 ** defines the function) with P5 arguments taken from register P2 and
6995 ** successors. The result of the function is stored in register P3.
6996 ** Register P3 must not be one of the function inputs.
6998 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
6999 ** function was determined to be constant at compile time. If the first
7000 ** argument was constant then bit 0 of P1 is set. This is used to determine
7001 ** whether meta data associated with a user function argument using the
7002 ** sqlite3_set_auxdata() API may be safely retained until the next
7003 ** invocation of this opcode.
7005 ** See also: Function, AggStep, AggFinal
7007 /* Opcode: Function P1 P2 P3 P4 P5
7008 ** Synopsis: r[P3]=func(r[P2@P5])
7010 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7011 ** contains a pointer to the function to be run) with P5 arguments taken
7012 ** from register P2 and successors. The result of the function is stored
7013 ** in register P3. Register P3 must not be one of the function inputs.
7015 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
7016 ** function was determined to be constant at compile time. If the first
7017 ** argument was constant then bit 0 of P1 is set. This is used to determine
7018 ** whether meta data associated with a user function argument using the
7019 ** sqlite3_set_auxdata() API may be safely retained until the next
7020 ** invocation of this opcode.
7022 ** SQL functions are initially coded as OP_Function0 with P4 pointing
7023 ** to a FuncDef object. But on first evaluation, the P4 operand is
7024 ** automatically converted into an sqlite3_context object and the operation
7025 ** changed to this OP_Function opcode. In this way, the initialization of
7026 ** the sqlite3_context object occurs only once, rather than once for each
7027 ** evaluation of the function.
7029 ** See also: Function0, AggStep, AggFinal
7032 case OP_Function0
: {
7034 sqlite3_context
*pCtx
;
7036 assert( pOp
->p4type
==P4_FUNCDEF
);
7038 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7039 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
7040 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
7041 pCtx
= sqlite3DbMallocRawNN(db
, sizeof(*pCtx
) + (n
-1)*sizeof(sqlite3_value
*));
7042 if( pCtx
==0 ) goto no_mem
;
7044 pCtx
->pFunc
= pOp
->p4
.pFunc
;
7045 pCtx
->iOp
= (int)(pOp
- aOp
);
7049 pOp
->p4type
= P4_FUNCCTX
;
7050 pOp
->p4
.pCtx
= pCtx
;
7051 assert( OP_PureFunc
== OP_PureFunc0
+2 );
7052 assert( OP_Function
== OP_Function0
+2 );
7054 /* Fall through into OP_Function */
7059 sqlite3_context
*pCtx
;
7061 assert( pOp
->p4type
==P4_FUNCCTX
);
7062 pCtx
= pOp
->p4
.pCtx
;
7064 /* If this function is inside of a trigger, the register array in aMem[]
7065 ** might change from one evaluation to the next. The next block of code
7066 ** checks to see if the register array has changed, and if so it
7067 ** reinitializes the relavant parts of the sqlite3_context object */
7068 pOut
= &aMem
[pOp
->p3
];
7069 if( pCtx
->pOut
!= pOut
){
7071 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
7074 memAboutToChange(p
, pOut
);
7076 for(i
=0; i
<pCtx
->argc
; i
++){
7077 assert( memIsValid(pCtx
->argv
[i
]) );
7078 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
7081 MemSetTypeFlag(pOut
, MEM_Null
);
7082 assert( pCtx
->isError
==0 );
7083 (*pCtx
->pFunc
->xSFunc
)(pCtx
, pCtx
->argc
, pCtx
->argv
);/* IMP: R-24505-23230 */
7085 /* If the function returned an error, throw an exception */
7086 if( pCtx
->isError
){
7087 if( pCtx
->isError
>0 ){
7088 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pOut
));
7091 sqlite3VdbeDeleteAuxData(db
, &p
->pAuxData
, pCtx
->iOp
, pOp
->p1
);
7093 if( rc
) goto abort_due_to_error
;
7096 /* Copy the result of the function into register P3 */
7097 if( pOut
->flags
& (MEM_Str
|MEM_Blob
) ){
7098 sqlite3VdbeChangeEncoding(pOut
, encoding
);
7099 if( sqlite3VdbeMemTooBig(pOut
) ) goto too_big
;
7102 REGISTER_TRACE(pOp
->p3
, pOut
);
7103 UPDATE_MAX_BLOBSIZE(pOut
);
7107 /* Opcode: Trace P1 P2 * P4 *
7109 ** Write P4 on the statement trace output if statement tracing is
7112 ** Operand P1 must be 0x7fffffff and P2 must positive.
7114 /* Opcode: Init P1 P2 P3 P4 *
7115 ** Synopsis: Start at P2
7117 ** Programs contain a single instance of this opcode as the very first
7120 ** If tracing is enabled (by the sqlite3_trace()) interface, then
7121 ** the UTF-8 string contained in P4 is emitted on the trace callback.
7122 ** Or if P4 is blank, use the string returned by sqlite3_sql().
7124 ** If P2 is not zero, jump to instruction P2.
7126 ** Increment the value of P1 so that OP_Once opcodes will jump the
7127 ** first time they are evaluated for this run.
7129 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7130 ** error is encountered.
7133 case OP_Init
: { /* jump */
7135 #ifndef SQLITE_OMIT_TRACE
7139 /* If the P4 argument is not NULL, then it must be an SQL comment string.
7140 ** The "--" string is broken up to prevent false-positives with srcck1.c.
7142 ** This assert() provides evidence for:
7143 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7144 ** would have been returned by the legacy sqlite3_trace() interface by
7145 ** using the X argument when X begins with "--" and invoking
7146 ** sqlite3_expanded_sql(P) otherwise.
7148 assert( pOp
->p4
.z
==0 || strncmp(pOp
->p4
.z
, "-" "- ", 3)==0 );
7150 /* OP_Init is always instruction 0 */
7151 assert( pOp
==p
->aOp
|| pOp
->opcode
==OP_Trace
);
7153 #ifndef SQLITE_OMIT_TRACE
7154 if( (db
->mTrace
& (SQLITE_TRACE_STMT
|SQLITE_TRACE_LEGACY
))!=0
7156 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
7158 #ifndef SQLITE_OMIT_DEPRECATED
7159 if( db
->mTrace
& SQLITE_TRACE_LEGACY
){
7160 void (*x
)(void*,const char*) = (void(*)(void*,const char*))db
->xTrace
;
7161 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
7162 x(db
->pTraceArg
, z
);
7166 if( db
->nVdbeExec
>1 ){
7167 char *z
= sqlite3MPrintf(db
, "-- %s", zTrace
);
7168 (void)db
->xTrace(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, z
);
7169 sqlite3DbFree(db
, z
);
7171 (void)db
->xTrace(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, zTrace
);
7174 #ifdef SQLITE_USE_FCNTL_TRACE
7175 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
7178 for(j
=0; j
<db
->nDb
; j
++){
7179 if( DbMaskTest(p
->btreeMask
, j
)==0 ) continue;
7180 sqlite3_file_control(db
, db
->aDb
[j
].zDbSName
, SQLITE_FCNTL_TRACE
, zTrace
);
7183 #endif /* SQLITE_USE_FCNTL_TRACE */
7185 if( (db
->flags
& SQLITE_SqlTrace
)!=0
7186 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
7188 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
7190 #endif /* SQLITE_DEBUG */
7191 #endif /* SQLITE_OMIT_TRACE */
7192 assert( pOp
->p2
>0 );
7193 if( pOp
->p1
>=sqlite3GlobalConfig
.iOnceResetThreshold
){
7194 if( pOp
->opcode
==OP_Trace
) break;
7195 for(i
=1; i
<p
->nOp
; i
++){
7196 if( p
->aOp
[i
].opcode
==OP_Once
) p
->aOp
[i
].p1
= 0;
7201 p
->aCounter
[SQLITE_STMTSTATUS_RUN
]++;
7205 #ifdef SQLITE_ENABLE_CURSOR_HINTS
7206 /* Opcode: CursorHint P1 * * P4 *
7208 ** Provide a hint to cursor P1 that it only needs to return rows that
7209 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
7210 ** to values currently held in registers. TK_COLUMN terms in the P4
7211 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
7213 case OP_CursorHint
: {
7216 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7217 assert( pOp
->p4type
==P4_EXPR
);
7218 pC
= p
->apCsr
[pOp
->p1
];
7220 assert( pC
->eCurType
==CURTYPE_BTREE
);
7221 sqlite3BtreeCursorHint(pC
->uc
.pCursor
, BTREE_HINT_RANGE
,
7222 pOp
->p4
.pExpr
, aMem
);
7226 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
7228 /* Opcode: Noop * * * * *
7230 ** Do nothing. This instruction is often useful as a jump
7234 ** The magic Explain opcode are only inserted when explain==2 (which
7235 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7236 ** This opcode records information from the optimizer. It is the
7237 ** the same as a no-op. This opcodesnever appears in a real VM program.
7239 default: { /* This is really OP_Noop and OP_Explain */
7240 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
7244 /*****************************************************************************
7245 ** The cases of the switch statement above this line should all be indented
7246 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
7247 ** readability. From this point on down, the normal indentation rules are
7249 *****************************************************************************/
7254 u64 endTime
= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
7255 if( endTime
>start
) pOrigOp
->cycles
+= endTime
- start
;
7260 /* The following code adds nothing to the actual functionality
7261 ** of the program. It is only here for testing and debugging.
7262 ** On the other hand, it does burn CPU cycles every time through
7263 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
7266 assert( pOp
>=&aOp
[-1] && pOp
<&aOp
[p
->nOp
-1] );
7269 if( db
->flags
& SQLITE_VdbeTrace
){
7270 u8 opProperty
= sqlite3OpcodeProperty
[pOrigOp
->opcode
];
7271 if( rc
!=0 ) printf("rc=%d\n",rc
);
7272 if( opProperty
& (OPFLG_OUT2
) ){
7273 registerTrace(pOrigOp
->p2
, &aMem
[pOrigOp
->p2
]);
7275 if( opProperty
& OPFLG_OUT3
){
7276 registerTrace(pOrigOp
->p3
, &aMem
[pOrigOp
->p3
]);
7279 #endif /* SQLITE_DEBUG */
7281 } /* The end of the for(;;) loop the loops through opcodes */
7283 /* If we reach this point, it means that execution is finished with
7284 ** an error of some kind.
7287 if( db
->mallocFailed
) rc
= SQLITE_NOMEM_BKPT
;
7289 if( p
->zErrMsg
==0 && rc
!=SQLITE_IOERR_NOMEM
){
7290 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
7293 sqlite3SystemError(db
, rc
);
7294 testcase( sqlite3GlobalConfig
.xLog
!=0 );
7295 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
7296 (int)(pOp
- aOp
), p
->zSql
, p
->zErrMsg
);
7298 if( rc
==SQLITE_IOERR_NOMEM
) sqlite3OomFault(db
);
7300 if( resetSchemaOnFault
>0 ){
7301 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
7304 /* This is the only way out of this procedure. We have to
7305 ** release the mutexes on btrees that were acquired at the
7308 testcase( nVmStep
>0 );
7309 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
7310 sqlite3VdbeLeave(p
);
7311 assert( rc
!=SQLITE_OK
|| nExtraDelete
==0
7312 || sqlite3_strlike("DELETE%",p
->zSql
,0)!=0
7316 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7320 sqlite3VdbeError(p
, "string or blob too big");
7322 goto abort_due_to_error
;
7324 /* Jump to here if a malloc() fails.
7327 sqlite3OomFault(db
);
7328 sqlite3VdbeError(p
, "out of memory");
7329 rc
= SQLITE_NOMEM_BKPT
;
7330 goto abort_due_to_error
;
7332 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
7335 abort_due_to_interrupt
:
7336 assert( db
->u1
.isInterrupted
);
7337 rc
= db
->mallocFailed
? SQLITE_NOMEM_BKPT
: SQLITE_INTERRUPT
;
7339 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
7340 goto abort_due_to_error
;