4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement mutexes for pthreads
14 #include "sqliteInt.h"
17 ** The code in this file is only used if we are compiling threadsafe
18 ** under unix with pthreads.
20 ** Note that this implementation requires a version of pthreads that
21 ** supports recursive mutexes.
23 #ifdef SQLITE_MUTEX_PTHREADS
28 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
29 ** are necessary under two condidtions: (1) Debug builds and (2) using
30 ** home-grown mutexes. Encapsulate these conditions into a single #define.
32 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
33 # define SQLITE_MUTEX_NREF 1
35 # define SQLITE_MUTEX_NREF 0
39 ** Each recursive mutex is an instance of the following structure.
41 struct sqlite3_mutex
{
42 pthread_mutex_t mutex
; /* Mutex controlling the lock */
43 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
44 int id
; /* Mutex type */
47 volatile int nRef
; /* Number of entrances */
48 volatile pthread_t owner
; /* Thread that is within this mutex */
49 int trace
; /* True to trace changes */
53 # define SQLITE3_MUTEX_INITIALIZER(id) \
54 {PTHREAD_MUTEX_INITIALIZER,id,0,(pthread_t)0,0}
55 #elif defined(SQLITE_ENABLE_API_ARMOR)
56 # define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER, id }
58 #define SQLITE3_MUTEX_INITIALIZER(id) { PTHREAD_MUTEX_INITIALIZER }
62 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
63 ** intended for use only inside assert() statements. On some platforms,
64 ** there might be race conditions that can cause these routines to
65 ** deliver incorrect results. In particular, if pthread_equal() is
66 ** not an atomic operation, then these routines might delivery
67 ** incorrect results. On most platforms, pthread_equal() is a
68 ** comparison of two integers and is therefore atomic. But we are
69 ** told that HPUX is not such a platform. If so, then these routines
70 ** will not always work correctly on HPUX.
72 ** On those platforms where pthread_equal() is not atomic, SQLite
73 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
74 ** make sure no assert() statements are evaluated and hence these
75 ** routines are never called.
77 #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
78 static int pthreadMutexHeld(sqlite3_mutex
*p
){
79 return (p
->nRef
!=0 && pthread_equal(p
->owner
, pthread_self()));
81 static int pthreadMutexNotheld(sqlite3_mutex
*p
){
82 return p
->nRef
==0 || pthread_equal(p
->owner
, pthread_self())==0;
87 ** Try to provide a memory barrier operation, needed for initialization
88 ** and also for the implementation of xShmBarrier in the VFS in cases
89 ** where SQLite is compiled without mutexes.
91 void sqlite3MemoryBarrier(void){
92 #if defined(SQLITE_MEMORY_BARRIER)
93 SQLITE_MEMORY_BARRIER
;
94 #elif defined(__GNUC__) && GCC_VERSION>=4001000
100 ** Initialize and deinitialize the mutex subsystem.
102 static int pthreadMutexInit(void){ return SQLITE_OK
; }
103 static int pthreadMutexEnd(void){ return SQLITE_OK
; }
106 ** The sqlite3_mutex_alloc() routine allocates a new
107 ** mutex and returns a pointer to it. If it returns NULL
108 ** that means that a mutex could not be allocated. SQLite
109 ** will unwind its stack and return an error. The argument
110 ** to sqlite3_mutex_alloc() is one of these integer constants:
113 ** <li> SQLITE_MUTEX_FAST
114 ** <li> SQLITE_MUTEX_RECURSIVE
115 ** <li> SQLITE_MUTEX_STATIC_MASTER
116 ** <li> SQLITE_MUTEX_STATIC_MEM
117 ** <li> SQLITE_MUTEX_STATIC_OPEN
118 ** <li> SQLITE_MUTEX_STATIC_PRNG
119 ** <li> SQLITE_MUTEX_STATIC_LRU
120 ** <li> SQLITE_MUTEX_STATIC_PMEM
121 ** <li> SQLITE_MUTEX_STATIC_APP1
122 ** <li> SQLITE_MUTEX_STATIC_APP2
123 ** <li> SQLITE_MUTEX_STATIC_APP3
124 ** <li> SQLITE_MUTEX_STATIC_VFS1
125 ** <li> SQLITE_MUTEX_STATIC_VFS2
126 ** <li> SQLITE_MUTEX_STATIC_VFS3
129 ** The first two constants cause sqlite3_mutex_alloc() to create
130 ** a new mutex. The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
131 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
132 ** The mutex implementation does not need to make a distinction
133 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
134 ** not want to. But SQLite will only request a recursive mutex in
135 ** cases where it really needs one. If a faster non-recursive mutex
136 ** implementation is available on the host platform, the mutex subsystem
137 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
139 ** The other allowed parameters to sqlite3_mutex_alloc() each return
140 ** a pointer to a static preexisting mutex. Six static mutexes are
141 ** used by the current version of SQLite. Future versions of SQLite
142 ** may add additional static mutexes. Static mutexes are for internal
143 ** use by SQLite only. Applications that use SQLite mutexes should
144 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
145 ** SQLITE_MUTEX_RECURSIVE.
147 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
148 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
149 ** returns a different mutex on every call. But for the static
150 ** mutex types, the same mutex is returned on every call that has
151 ** the same type number.
153 static sqlite3_mutex
*pthreadMutexAlloc(int iType
){
154 static sqlite3_mutex staticMutexes
[] = {
155 SQLITE3_MUTEX_INITIALIZER(2),
156 SQLITE3_MUTEX_INITIALIZER(3),
157 SQLITE3_MUTEX_INITIALIZER(4),
158 SQLITE3_MUTEX_INITIALIZER(5),
159 SQLITE3_MUTEX_INITIALIZER(6),
160 SQLITE3_MUTEX_INITIALIZER(7),
161 SQLITE3_MUTEX_INITIALIZER(8),
162 SQLITE3_MUTEX_INITIALIZER(9),
163 SQLITE3_MUTEX_INITIALIZER(10),
164 SQLITE3_MUTEX_INITIALIZER(11),
165 SQLITE3_MUTEX_INITIALIZER(12),
166 SQLITE3_MUTEX_INITIALIZER(13)
170 case SQLITE_MUTEX_RECURSIVE
: {
171 p
= sqlite3MallocZero( sizeof(*p
) );
173 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
174 /* If recursive mutexes are not available, we will have to
175 ** build our own. See below. */
176 pthread_mutex_init(&p
->mutex
, 0);
178 /* Use a recursive mutex if it is available */
179 pthread_mutexattr_t recursiveAttr
;
180 pthread_mutexattr_init(&recursiveAttr
);
181 pthread_mutexattr_settype(&recursiveAttr
, PTHREAD_MUTEX_RECURSIVE
);
182 pthread_mutex_init(&p
->mutex
, &recursiveAttr
);
183 pthread_mutexattr_destroy(&recursiveAttr
);
185 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
186 p
->id
= SQLITE_MUTEX_RECURSIVE
;
191 case SQLITE_MUTEX_FAST
: {
192 p
= sqlite3MallocZero( sizeof(*p
) );
194 pthread_mutex_init(&p
->mutex
, 0);
195 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
196 p
->id
= SQLITE_MUTEX_FAST
;
202 #ifdef SQLITE_ENABLE_API_ARMOR
203 if( iType
-2<0 || iType
-2>=ArraySize(staticMutexes
) ){
204 (void)SQLITE_MISUSE_BKPT
;
208 p
= &staticMutexes
[iType
-2];
212 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
213 assert( p
==0 || p
->id
==iType
);
220 ** This routine deallocates a previously
221 ** allocated mutex. SQLite is careful to deallocate every
222 ** mutex that it allocates.
224 static void pthreadMutexFree(sqlite3_mutex
*p
){
225 assert( p
->nRef
==0 );
226 #if SQLITE_ENABLE_API_ARMOR
227 if( p
->id
==SQLITE_MUTEX_FAST
|| p
->id
==SQLITE_MUTEX_RECURSIVE
)
230 pthread_mutex_destroy(&p
->mutex
);
233 #ifdef SQLITE_ENABLE_API_ARMOR
235 (void)SQLITE_MISUSE_BKPT
;
241 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
242 ** to enter a mutex. If another thread is already within the mutex,
243 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
244 ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK
245 ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can
246 ** be entered multiple times by the same thread. In such cases the,
247 ** mutex must be exited an equal number of times before another thread
248 ** can enter. If the same thread tries to enter any other kind of mutex
249 ** more than once, the behavior is undefined.
251 static void pthreadMutexEnter(sqlite3_mutex
*p
){
252 assert( p
->id
==SQLITE_MUTEX_RECURSIVE
|| pthreadMutexNotheld(p
) );
254 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
255 /* If recursive mutexes are not available, then we have to grow
256 ** our own. This implementation assumes that pthread_equal()
257 ** is atomic - that it cannot be deceived into thinking self
258 ** and p->owner are equal if p->owner changes between two values
259 ** that are not equal to self while the comparison is taking place.
260 ** This implementation also assumes a coherent cache - that
261 ** separate processes cannot read different values from the same
262 ** address at the same time. If either of these two conditions
263 ** are not met, then the mutexes will fail and problems will result.
266 pthread_t self
= pthread_self();
267 if( p
->nRef
>0 && pthread_equal(p
->owner
, self
) ){
270 pthread_mutex_lock(&p
->mutex
);
271 assert( p
->nRef
==0 );
277 /* Use the built-in recursive mutexes if they are available.
279 pthread_mutex_lock(&p
->mutex
);
280 #if SQLITE_MUTEX_NREF
281 assert( p
->nRef
>0 || p
->owner
==0 );
282 p
->owner
= pthread_self();
289 printf("enter mutex %p (%d) with nRef=%d\n", p
, p
->trace
, p
->nRef
);
293 static int pthreadMutexTry(sqlite3_mutex
*p
){
295 assert( p
->id
==SQLITE_MUTEX_RECURSIVE
|| pthreadMutexNotheld(p
) );
297 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
298 /* If recursive mutexes are not available, then we have to grow
299 ** our own. This implementation assumes that pthread_equal()
300 ** is atomic - that it cannot be deceived into thinking self
301 ** and p->owner are equal if p->owner changes between two values
302 ** that are not equal to self while the comparison is taking place.
303 ** This implementation also assumes a coherent cache - that
304 ** separate processes cannot read different values from the same
305 ** address at the same time. If either of these two conditions
306 ** are not met, then the mutexes will fail and problems will result.
309 pthread_t self
= pthread_self();
310 if( p
->nRef
>0 && pthread_equal(p
->owner
, self
) ){
313 }else if( pthread_mutex_trylock(&p
->mutex
)==0 ){
314 assert( p
->nRef
==0 );
323 /* Use the built-in recursive mutexes if they are available.
325 if( pthread_mutex_trylock(&p
->mutex
)==0 ){
326 #if SQLITE_MUTEX_NREF
327 p
->owner
= pthread_self();
337 if( rc
==SQLITE_OK
&& p
->trace
){
338 printf("enter mutex %p (%d) with nRef=%d\n", p
, p
->trace
, p
->nRef
);
345 ** The sqlite3_mutex_leave() routine exits a mutex that was
346 ** previously entered by the same thread. The behavior
347 ** is undefined if the mutex is not currently entered or
348 ** is not currently allocated. SQLite will never do either.
350 static void pthreadMutexLeave(sqlite3_mutex
*p
){
351 assert( pthreadMutexHeld(p
) );
352 #if SQLITE_MUTEX_NREF
354 if( p
->nRef
==0 ) p
->owner
= 0;
356 assert( p
->nRef
==0 || p
->id
==SQLITE_MUTEX_RECURSIVE
);
358 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
360 pthread_mutex_unlock(&p
->mutex
);
363 pthread_mutex_unlock(&p
->mutex
);
368 printf("leave mutex %p (%d) with nRef=%d\n", p
, p
->trace
, p
->nRef
);
373 sqlite3_mutex_methods
const *sqlite3DefaultMutex(void){
374 static const sqlite3_mutex_methods sMutex
= {
394 #endif /* SQLITE_MUTEX_PTHREADS */