Ensure that sqlite3AuthRead() is only call for TK_COLUMN and TK_TRIGGER
[sqlite.git] / src / vdbemem.c
blob933eee0b535eab0b19949dbab7dc8b93456ddee0
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
96 #ifdef SQLITE_DEBUG
98 ** Check that string value of pMem agrees with its integer or real value.
100 ** A single int or real value always converts to the same strings. But
101 ** many different strings can be converted into the same int or real.
102 ** If a table contains a numeric value and an index is based on the
103 ** corresponding string value, then it is important that the string be
104 ** derived from the numeric value, not the other way around, to ensure
105 ** that the index and table are consistent. See ticket
106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107 ** an example.
109 ** This routine looks at pMem to verify that if it has both a numeric
110 ** representation and a string representation then the string rep has
111 ** been derived from the numeric and not the other way around. It returns
112 ** true if everything is ok and false if there is a problem.
114 ** This routine is for use inside of assert() statements only.
116 int sqlite3VdbeMemConsistentDualRep(Mem *p){
117 char zBuf[100];
118 char *z;
119 int i, j, incr;
120 if( (p->flags & MEM_Str)==0 ) return 1;
121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122 if( p->flags & MEM_Int ){
123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124 }else{
125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
127 z = p->z;
128 i = j = 0;
129 incr = 1;
130 if( p->enc!=SQLITE_UTF8 ){
131 incr = 2;
132 if( p->enc==SQLITE_UTF16BE ) z++;
134 while( zBuf[j] ){
135 if( zBuf[j++]!=z[i] ) return 0;
136 i += incr;
138 return 1;
140 #endif /* SQLITE_DEBUG */
143 ** If pMem is an object with a valid string representation, this routine
144 ** ensures the internal encoding for the string representation is
145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
147 ** If pMem is not a string object, or the encoding of the string
148 ** representation is already stored using the requested encoding, then this
149 ** routine is a no-op.
151 ** SQLITE_OK is returned if the conversion is successful (or not required).
152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153 ** between formats.
155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
156 #ifndef SQLITE_OMIT_UTF16
157 int rc;
158 #endif
159 assert( (pMem->flags&MEM_RowSet)==0 );
160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161 || desiredEnc==SQLITE_UTF16BE );
162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
163 return SQLITE_OK;
165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
166 #ifdef SQLITE_OMIT_UTF16
167 return SQLITE_ERROR;
168 #else
170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171 ** then the encoding of the value may not have changed.
173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
177 return rc;
178 #endif
182 ** Make sure pMem->z points to a writable allocation of at least
183 ** min(n,32) bytes.
185 ** If the bPreserve argument is true, then copy of the content of
186 ** pMem->z into the new allocation. pMem must be either a string or
187 ** blob if bPreserve is true. If bPreserve is false, any prior content
188 ** in pMem->z is discarded.
190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
191 assert( sqlite3VdbeCheckMemInvariants(pMem) );
192 assert( (pMem->flags&MEM_RowSet)==0 );
193 testcase( pMem->db==0 );
195 /* If the bPreserve flag is set to true, then the memory cell must already
196 ** contain a valid string or blob value. */
197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198 testcase( bPreserve && pMem->z==0 );
200 assert( pMem->szMalloc==0
201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
202 if( n<32 ) n = 32;
203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205 bPreserve = 0;
206 }else{
207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
210 if( pMem->zMalloc==0 ){
211 sqlite3VdbeMemSetNull(pMem);
212 pMem->z = 0;
213 pMem->szMalloc = 0;
214 return SQLITE_NOMEM_BKPT;
215 }else{
216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
219 if( bPreserve && pMem->z ){
220 assert( pMem->z!=pMem->zMalloc );
221 memcpy(pMem->zMalloc, pMem->z, pMem->n);
223 if( (pMem->flags&MEM_Dyn)!=0 ){
224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
225 pMem->xDel((void *)(pMem->z));
228 pMem->z = pMem->zMalloc;
229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
230 return SQLITE_OK;
234 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
235 ** If pMem->zMalloc already meets or exceeds the requested size, this
236 ** routine is a no-op.
238 ** Any prior string or blob content in the pMem object may be discarded.
239 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241 ** values are preserved.
243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244 ** if unable to complete the resizing.
246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
247 assert( szNew>0 );
248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
249 if( pMem->szMalloc<szNew ){
250 return sqlite3VdbeMemGrow(pMem, szNew, 0);
252 assert( (pMem->flags & MEM_Dyn)==0 );
253 pMem->z = pMem->zMalloc;
254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
255 return SQLITE_OK;
259 ** It is already known that pMem contains an unterminated string.
260 ** Add the zero terminator.
262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264 return SQLITE_NOMEM_BKPT;
266 pMem->z[pMem->n] = 0;
267 pMem->z[pMem->n+1] = 0;
268 pMem->flags |= MEM_Term;
269 return SQLITE_OK;
273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274 ** MEM.zMalloc, where it can be safely written.
276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
280 assert( (pMem->flags&MEM_RowSet)==0 );
281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
284 int rc = vdbeMemAddTerminator(pMem);
285 if( rc ) return rc;
288 pMem->flags &= ~MEM_Ephem;
289 #ifdef SQLITE_DEBUG
290 pMem->pScopyFrom = 0;
291 #endif
293 return SQLITE_OK;
297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
298 ** blob stored in dynamically allocated space.
300 #ifndef SQLITE_OMIT_INCRBLOB
301 int sqlite3VdbeMemExpandBlob(Mem *pMem){
302 int nByte;
303 assert( pMem->flags & MEM_Zero );
304 assert( pMem->flags&MEM_Blob );
305 assert( (pMem->flags&MEM_RowSet)==0 );
306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
308 /* Set nByte to the number of bytes required to store the expanded blob. */
309 nByte = pMem->n + pMem->u.nZero;
310 if( nByte<=0 ){
311 nByte = 1;
313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314 return SQLITE_NOMEM_BKPT;
317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318 pMem->n += pMem->u.nZero;
319 pMem->flags &= ~(MEM_Zero|MEM_Term);
320 return SQLITE_OK;
322 #endif
325 ** Make sure the given Mem is \u0000 terminated.
327 int sqlite3VdbeMemNulTerminate(Mem *pMem){
328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332 return SQLITE_OK; /* Nothing to do */
333 }else{
334 return vdbeMemAddTerminator(pMem);
339 ** Add MEM_Str to the set of representations for the given Mem. Numbers
340 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
341 ** is a no-op.
343 ** Existing representations MEM_Int and MEM_Real are invalidated if
344 ** bForce is true but are retained if bForce is false.
346 ** A MEM_Null value will never be passed to this function. This function is
347 ** used for converting values to text for returning to the user (i.e. via
348 ** sqlite3_value_text()), or for ensuring that values to be used as btree
349 ** keys are strings. In the former case a NULL pointer is returned the
350 ** user and the latter is an internal programming error.
352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
353 int fg = pMem->flags;
354 const int nByte = 32;
356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
357 assert( !(fg&MEM_Zero) );
358 assert( !(fg&(MEM_Str|MEM_Blob)) );
359 assert( fg&(MEM_Int|MEM_Real) );
360 assert( (pMem->flags&MEM_RowSet)==0 );
361 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
365 pMem->enc = 0;
366 return SQLITE_NOMEM_BKPT;
369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
370 ** string representation of the value. Then, if the required encoding
371 ** is UTF-16le or UTF-16be do a translation.
373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
375 if( fg & MEM_Int ){
376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
377 }else{
378 assert( fg & MEM_Real );
379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
381 pMem->n = sqlite3Strlen30(pMem->z);
382 pMem->enc = SQLITE_UTF8;
383 pMem->flags |= MEM_Str|MEM_Term;
384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
385 sqlite3VdbeChangeEncoding(pMem, enc);
386 return SQLITE_OK;
390 ** Memory cell pMem contains the context of an aggregate function.
391 ** This routine calls the finalize method for that function. The
392 ** result of the aggregate is stored back into pMem.
394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395 ** otherwise.
397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
419 ** If the memory cell contains a value that must be freed by
420 ** invoking the external callback in Mem.xDel, then this routine
421 ** will free that value. It also sets Mem.flags to MEM_Null.
423 ** This is a helper routine for sqlite3VdbeMemSetNull() and
424 ** for sqlite3VdbeMemRelease(). Use those other routines as the
425 ** entry point for releasing Mem resources.
427 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
428 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
429 assert( VdbeMemDynamic(p) );
430 if( p->flags&MEM_Agg ){
431 sqlite3VdbeMemFinalize(p, p->u.pDef);
432 assert( (p->flags & MEM_Agg)==0 );
433 testcase( p->flags & MEM_Dyn );
435 if( p->flags&MEM_Dyn ){
436 assert( (p->flags&MEM_RowSet)==0 );
437 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
438 p->xDel((void *)p->z);
439 }else if( p->flags&MEM_RowSet ){
440 sqlite3RowSetClear(p->u.pRowSet);
441 }else if( p->flags&MEM_Frame ){
442 VdbeFrame *pFrame = p->u.pFrame;
443 pFrame->pParent = pFrame->v->pDelFrame;
444 pFrame->v->pDelFrame = pFrame;
446 p->flags = MEM_Null;
450 ** Release memory held by the Mem p, both external memory cleared
451 ** by p->xDel and memory in p->zMalloc.
453 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
454 ** the unusual case where there really is memory in p that needs
455 ** to be freed.
457 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
458 if( VdbeMemDynamic(p) ){
459 vdbeMemClearExternAndSetNull(p);
461 if( p->szMalloc ){
462 sqlite3DbFreeNN(p->db, p->zMalloc);
463 p->szMalloc = 0;
465 p->z = 0;
469 ** Release any memory resources held by the Mem. Both the memory that is
470 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
472 ** Use this routine prior to clean up prior to abandoning a Mem, or to
473 ** reset a Mem back to its minimum memory utilization.
475 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
476 ** prior to inserting new content into the Mem.
478 void sqlite3VdbeMemRelease(Mem *p){
479 assert( sqlite3VdbeCheckMemInvariants(p) );
480 if( VdbeMemDynamic(p) || p->szMalloc ){
481 vdbeMemClear(p);
486 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
487 ** If the double is out of range of a 64-bit signed integer then
488 ** return the closest available 64-bit signed integer.
490 static SQLITE_NOINLINE i64 doubleToInt64(double r){
491 #ifdef SQLITE_OMIT_FLOATING_POINT
492 /* When floating-point is omitted, double and int64 are the same thing */
493 return r;
494 #else
496 ** Many compilers we encounter do not define constants for the
497 ** minimum and maximum 64-bit integers, or they define them
498 ** inconsistently. And many do not understand the "LL" notation.
499 ** So we define our own static constants here using nothing
500 ** larger than a 32-bit integer constant.
502 static const i64 maxInt = LARGEST_INT64;
503 static const i64 minInt = SMALLEST_INT64;
505 if( r<=(double)minInt ){
506 return minInt;
507 }else if( r>=(double)maxInt ){
508 return maxInt;
509 }else{
510 return (i64)r;
512 #endif
516 ** Return some kind of integer value which is the best we can do
517 ** at representing the value that *pMem describes as an integer.
518 ** If pMem is an integer, then the value is exact. If pMem is
519 ** a floating-point then the value returned is the integer part.
520 ** If pMem is a string or blob, then we make an attempt to convert
521 ** it into an integer and return that. If pMem represents an
522 ** an SQL-NULL value, return 0.
524 ** If pMem represents a string value, its encoding might be changed.
526 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
527 i64 value = 0;
528 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
529 return value;
531 i64 sqlite3VdbeIntValue(Mem *pMem){
532 int flags;
533 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
534 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
535 flags = pMem->flags;
536 if( flags & MEM_Int ){
537 return pMem->u.i;
538 }else if( flags & MEM_Real ){
539 return doubleToInt64(pMem->u.r);
540 }else if( flags & (MEM_Str|MEM_Blob) ){
541 assert( pMem->z || pMem->n==0 );
542 return memIntValue(pMem);
543 }else{
544 return 0;
549 ** Return the best representation of pMem that we can get into a
550 ** double. If pMem is already a double or an integer, return its
551 ** value. If it is a string or blob, try to convert it to a double.
552 ** If it is a NULL, return 0.0.
554 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
555 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
556 double val = (double)0;
557 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
558 return val;
560 double sqlite3VdbeRealValue(Mem *pMem){
561 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
562 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
563 if( pMem->flags & MEM_Real ){
564 return pMem->u.r;
565 }else if( pMem->flags & MEM_Int ){
566 return (double)pMem->u.i;
567 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
568 return memRealValue(pMem);
569 }else{
570 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
571 return (double)0;
576 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
577 ** Return the value ifNull if pMem is NULL.
579 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
580 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
581 if( pMem->flags & MEM_Null ) return ifNull;
582 return sqlite3VdbeRealValue(pMem)!=0.0;
586 ** The MEM structure is already a MEM_Real. Try to also make it a
587 ** MEM_Int if we can.
589 void sqlite3VdbeIntegerAffinity(Mem *pMem){
590 i64 ix;
591 assert( pMem->flags & MEM_Real );
592 assert( (pMem->flags & MEM_RowSet)==0 );
593 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
594 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
596 ix = doubleToInt64(pMem->u.r);
598 /* Only mark the value as an integer if
600 ** (1) the round-trip conversion real->int->real is a no-op, and
601 ** (2) The integer is neither the largest nor the smallest
602 ** possible integer (ticket #3922)
604 ** The second and third terms in the following conditional enforces
605 ** the second condition under the assumption that addition overflow causes
606 ** values to wrap around.
608 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
609 pMem->u.i = ix;
610 MemSetTypeFlag(pMem, MEM_Int);
615 ** Convert pMem to type integer. Invalidate any prior representations.
617 int sqlite3VdbeMemIntegerify(Mem *pMem){
618 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
619 assert( (pMem->flags & MEM_RowSet)==0 );
620 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
622 pMem->u.i = sqlite3VdbeIntValue(pMem);
623 MemSetTypeFlag(pMem, MEM_Int);
624 return SQLITE_OK;
628 ** Convert pMem so that it is of type MEM_Real.
629 ** Invalidate any prior representations.
631 int sqlite3VdbeMemRealify(Mem *pMem){
632 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
633 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
635 pMem->u.r = sqlite3VdbeRealValue(pMem);
636 MemSetTypeFlag(pMem, MEM_Real);
637 return SQLITE_OK;
640 /* Compare a floating point value to an integer. Return true if the two
641 ** values are the same within the precision of the floating point value.
643 ** For some versions of GCC on 32-bit machines, if you do the more obvious
644 ** comparison of "r1==(double)i" you sometimes get an answer of false even
645 ** though the r1 and (double)i values are bit-for-bit the same.
647 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
648 double r2 = (double)i;
649 return memcmp(&r1, &r2, sizeof(r1))==0;
653 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
654 ** Invalidate any prior representations.
656 ** Every effort is made to force the conversion, even if the input
657 ** is a string that does not look completely like a number. Convert
658 ** as much of the string as we can and ignore the rest.
660 int sqlite3VdbeMemNumerify(Mem *pMem){
661 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
662 int rc;
663 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
664 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
665 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
666 if( rc==0 ){
667 MemSetTypeFlag(pMem, MEM_Int);
668 }else{
669 i64 i = pMem->u.i;
670 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
671 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
672 pMem->u.i = i;
673 MemSetTypeFlag(pMem, MEM_Int);
674 }else{
675 MemSetTypeFlag(pMem, MEM_Real);
679 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
680 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
681 return SQLITE_OK;
685 ** Cast the datatype of the value in pMem according to the affinity
686 ** "aff". Casting is different from applying affinity in that a cast
687 ** is forced. In other words, the value is converted into the desired
688 ** affinity even if that results in loss of data. This routine is
689 ** used (for example) to implement the SQL "cast()" operator.
691 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
692 if( pMem->flags & MEM_Null ) return;
693 switch( aff ){
694 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
695 if( (pMem->flags & MEM_Blob)==0 ){
696 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
697 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
698 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
699 }else{
700 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
702 break;
704 case SQLITE_AFF_NUMERIC: {
705 sqlite3VdbeMemNumerify(pMem);
706 break;
708 case SQLITE_AFF_INTEGER: {
709 sqlite3VdbeMemIntegerify(pMem);
710 break;
712 case SQLITE_AFF_REAL: {
713 sqlite3VdbeMemRealify(pMem);
714 break;
716 default: {
717 assert( aff==SQLITE_AFF_TEXT );
718 assert( MEM_Str==(MEM_Blob>>3) );
719 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
720 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
721 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
722 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
723 break;
729 ** Initialize bulk memory to be a consistent Mem object.
731 ** The minimum amount of initialization feasible is performed.
733 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
734 assert( (flags & ~MEM_TypeMask)==0 );
735 pMem->flags = flags;
736 pMem->db = db;
737 pMem->szMalloc = 0;
742 ** Delete any previous value and set the value stored in *pMem to NULL.
744 ** This routine calls the Mem.xDel destructor to dispose of values that
745 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
746 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
747 ** routine to invoke the destructor and deallocates Mem.zMalloc.
749 ** Use this routine to reset the Mem prior to insert a new value.
751 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
753 void sqlite3VdbeMemSetNull(Mem *pMem){
754 if( VdbeMemDynamic(pMem) ){
755 vdbeMemClearExternAndSetNull(pMem);
756 }else{
757 pMem->flags = MEM_Null;
760 void sqlite3ValueSetNull(sqlite3_value *p){
761 sqlite3VdbeMemSetNull((Mem*)p);
765 ** Delete any previous value and set the value to be a BLOB of length
766 ** n containing all zeros.
768 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
769 sqlite3VdbeMemRelease(pMem);
770 pMem->flags = MEM_Blob|MEM_Zero;
771 pMem->n = 0;
772 if( n<0 ) n = 0;
773 pMem->u.nZero = n;
774 pMem->enc = SQLITE_UTF8;
775 pMem->z = 0;
779 ** The pMem is known to contain content that needs to be destroyed prior
780 ** to a value change. So invoke the destructor, then set the value to
781 ** a 64-bit integer.
783 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
784 sqlite3VdbeMemSetNull(pMem);
785 pMem->u.i = val;
786 pMem->flags = MEM_Int;
790 ** Delete any previous value and set the value stored in *pMem to val,
791 ** manifest type INTEGER.
793 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
794 if( VdbeMemDynamic(pMem) ){
795 vdbeReleaseAndSetInt64(pMem, val);
796 }else{
797 pMem->u.i = val;
798 pMem->flags = MEM_Int;
802 /* A no-op destructor */
803 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
806 ** Set the value stored in *pMem should already be a NULL.
807 ** Also store a pointer to go with it.
809 void sqlite3VdbeMemSetPointer(
810 Mem *pMem,
811 void *pPtr,
812 const char *zPType,
813 void (*xDestructor)(void*)
815 assert( pMem->flags==MEM_Null );
816 pMem->u.zPType = zPType ? zPType : "";
817 pMem->z = pPtr;
818 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
819 pMem->eSubtype = 'p';
820 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
823 #ifndef SQLITE_OMIT_FLOATING_POINT
825 ** Delete any previous value and set the value stored in *pMem to val,
826 ** manifest type REAL.
828 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
829 sqlite3VdbeMemSetNull(pMem);
830 if( !sqlite3IsNaN(val) ){
831 pMem->u.r = val;
832 pMem->flags = MEM_Real;
835 #endif
838 ** Delete any previous value and set the value of pMem to be an
839 ** empty boolean index.
841 void sqlite3VdbeMemSetRowSet(Mem *pMem){
842 sqlite3 *db = pMem->db;
843 assert( db!=0 );
844 assert( (pMem->flags & MEM_RowSet)==0 );
845 sqlite3VdbeMemRelease(pMem);
846 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
847 if( db->mallocFailed ){
848 pMem->flags = MEM_Null;
849 pMem->szMalloc = 0;
850 }else{
851 assert( pMem->zMalloc );
852 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
853 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
854 assert( pMem->u.pRowSet!=0 );
855 pMem->flags = MEM_RowSet;
860 ** Return true if the Mem object contains a TEXT or BLOB that is
861 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
863 int sqlite3VdbeMemTooBig(Mem *p){
864 assert( p->db!=0 );
865 if( p->flags & (MEM_Str|MEM_Blob) ){
866 int n = p->n;
867 if( p->flags & MEM_Zero ){
868 n += p->u.nZero;
870 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
872 return 0;
875 #ifdef SQLITE_DEBUG
877 ** This routine prepares a memory cell for modification by breaking
878 ** its link to a shallow copy and by marking any current shallow
879 ** copies of this cell as invalid.
881 ** This is used for testing and debugging only - to make sure shallow
882 ** copies are not misused.
884 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
885 int i;
886 Mem *pX;
887 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
888 if( pX->pScopyFrom==pMem ){
889 pX->flags |= MEM_Undefined;
890 pX->pScopyFrom = 0;
893 pMem->pScopyFrom = 0;
895 #endif /* SQLITE_DEBUG */
899 ** Make an shallow copy of pFrom into pTo. Prior contents of
900 ** pTo are freed. The pFrom->z field is not duplicated. If
901 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
902 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
904 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
905 vdbeMemClearExternAndSetNull(pTo);
906 assert( !VdbeMemDynamic(pTo) );
907 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
909 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
910 assert( (pFrom->flags & MEM_RowSet)==0 );
911 assert( pTo->db==pFrom->db );
912 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
913 memcpy(pTo, pFrom, MEMCELLSIZE);
914 if( (pFrom->flags&MEM_Static)==0 ){
915 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
916 assert( srcType==MEM_Ephem || srcType==MEM_Static );
917 pTo->flags |= srcType;
922 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
923 ** freed before the copy is made.
925 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
926 int rc = SQLITE_OK;
928 assert( (pFrom->flags & MEM_RowSet)==0 );
929 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
930 memcpy(pTo, pFrom, MEMCELLSIZE);
931 pTo->flags &= ~MEM_Dyn;
932 if( pTo->flags&(MEM_Str|MEM_Blob) ){
933 if( 0==(pFrom->flags&MEM_Static) ){
934 pTo->flags |= MEM_Ephem;
935 rc = sqlite3VdbeMemMakeWriteable(pTo);
939 return rc;
943 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
944 ** freed. If pFrom contains ephemeral data, a copy is made.
946 ** pFrom contains an SQL NULL when this routine returns.
948 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
949 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
950 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
951 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
953 sqlite3VdbeMemRelease(pTo);
954 memcpy(pTo, pFrom, sizeof(Mem));
955 pFrom->flags = MEM_Null;
956 pFrom->szMalloc = 0;
960 ** Change the value of a Mem to be a string or a BLOB.
962 ** The memory management strategy depends on the value of the xDel
963 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
964 ** string is copied into a (possibly existing) buffer managed by the
965 ** Mem structure. Otherwise, any existing buffer is freed and the
966 ** pointer copied.
968 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
969 ** size limit) then no memory allocation occurs. If the string can be
970 ** stored without allocating memory, then it is. If a memory allocation
971 ** is required to store the string, then value of pMem is unchanged. In
972 ** either case, SQLITE_TOOBIG is returned.
974 int sqlite3VdbeMemSetStr(
975 Mem *pMem, /* Memory cell to set to string value */
976 const char *z, /* String pointer */
977 int n, /* Bytes in string, or negative */
978 u8 enc, /* Encoding of z. 0 for BLOBs */
979 void (*xDel)(void*) /* Destructor function */
981 int nByte = n; /* New value for pMem->n */
982 int iLimit; /* Maximum allowed string or blob size */
983 u16 flags = 0; /* New value for pMem->flags */
985 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
986 assert( (pMem->flags & MEM_RowSet)==0 );
988 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
989 if( !z ){
990 sqlite3VdbeMemSetNull(pMem);
991 return SQLITE_OK;
994 if( pMem->db ){
995 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
996 }else{
997 iLimit = SQLITE_MAX_LENGTH;
999 flags = (enc==0?MEM_Blob:MEM_Str);
1000 if( nByte<0 ){
1001 assert( enc!=0 );
1002 if( enc==SQLITE_UTF8 ){
1003 nByte = 0x7fffffff & (int)strlen(z);
1004 if( nByte>iLimit ) nByte = iLimit+1;
1005 }else{
1006 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1008 flags |= MEM_Term;
1011 /* The following block sets the new values of Mem.z and Mem.xDel. It
1012 ** also sets a flag in local variable "flags" to indicate the memory
1013 ** management (one of MEM_Dyn or MEM_Static).
1015 if( xDel==SQLITE_TRANSIENT ){
1016 int nAlloc = nByte;
1017 if( flags&MEM_Term ){
1018 nAlloc += (enc==SQLITE_UTF8?1:2);
1020 if( nByte>iLimit ){
1021 return SQLITE_TOOBIG;
1023 testcase( nAlloc==0 );
1024 testcase( nAlloc==31 );
1025 testcase( nAlloc==32 );
1026 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
1027 return SQLITE_NOMEM_BKPT;
1029 memcpy(pMem->z, z, nAlloc);
1030 }else if( xDel==SQLITE_DYNAMIC ){
1031 sqlite3VdbeMemRelease(pMem);
1032 pMem->zMalloc = pMem->z = (char *)z;
1033 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1034 }else{
1035 sqlite3VdbeMemRelease(pMem);
1036 pMem->z = (char *)z;
1037 pMem->xDel = xDel;
1038 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1041 pMem->n = nByte;
1042 pMem->flags = flags;
1043 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1045 #ifndef SQLITE_OMIT_UTF16
1046 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1047 return SQLITE_NOMEM_BKPT;
1049 #endif
1051 if( nByte>iLimit ){
1052 return SQLITE_TOOBIG;
1055 return SQLITE_OK;
1059 ** Move data out of a btree key or data field and into a Mem structure.
1060 ** The data is payload from the entry that pCur is currently pointing
1061 ** to. offset and amt determine what portion of the data or key to retrieve.
1062 ** The result is written into the pMem element.
1064 ** The pMem object must have been initialized. This routine will use
1065 ** pMem->zMalloc to hold the content from the btree, if possible. New
1066 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1067 ** is responsible for making sure that the pMem object is eventually
1068 ** destroyed.
1070 ** If this routine fails for any reason (malloc returns NULL or unable
1071 ** to read from the disk) then the pMem is left in an inconsistent state.
1073 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1074 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1075 u32 offset, /* Offset from the start of data to return bytes from. */
1076 u32 amt, /* Number of bytes to return. */
1077 Mem *pMem /* OUT: Return data in this Mem structure. */
1079 int rc;
1080 pMem->flags = MEM_Null;
1081 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1082 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1083 if( rc==SQLITE_OK ){
1084 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1085 pMem->flags = MEM_Blob;
1086 pMem->n = (int)amt;
1087 }else{
1088 sqlite3VdbeMemRelease(pMem);
1091 return rc;
1093 int sqlite3VdbeMemFromBtree(
1094 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1095 u32 offset, /* Offset from the start of data to return bytes from. */
1096 u32 amt, /* Number of bytes to return. */
1097 Mem *pMem /* OUT: Return data in this Mem structure. */
1099 char *zData; /* Data from the btree layer */
1100 u32 available = 0; /* Number of bytes available on the local btree page */
1101 int rc = SQLITE_OK; /* Return code */
1103 assert( sqlite3BtreeCursorIsValid(pCur) );
1104 assert( !VdbeMemDynamic(pMem) );
1106 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1107 ** that both the BtShared and database handle mutexes are held. */
1108 assert( (pMem->flags & MEM_RowSet)==0 );
1109 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1110 assert( zData!=0 );
1112 if( offset+amt<=available ){
1113 pMem->z = &zData[offset];
1114 pMem->flags = MEM_Blob|MEM_Ephem;
1115 pMem->n = (int)amt;
1116 }else{
1117 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1120 return rc;
1124 ** The pVal argument is known to be a value other than NULL.
1125 ** Convert it into a string with encoding enc and return a pointer
1126 ** to a zero-terminated version of that string.
1128 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1129 assert( pVal!=0 );
1130 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1131 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1132 assert( (pVal->flags & MEM_RowSet)==0 );
1133 assert( (pVal->flags & (MEM_Null))==0 );
1134 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1135 if( ExpandBlob(pVal) ) return 0;
1136 pVal->flags |= MEM_Str;
1137 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1138 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1140 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1141 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1142 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1143 return 0;
1146 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1147 }else{
1148 sqlite3VdbeMemStringify(pVal, enc, 0);
1149 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1151 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1152 || pVal->db->mallocFailed );
1153 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1154 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1155 return pVal->z;
1156 }else{
1157 return 0;
1161 /* This function is only available internally, it is not part of the
1162 ** external API. It works in a similar way to sqlite3_value_text(),
1163 ** except the data returned is in the encoding specified by the second
1164 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1165 ** SQLITE_UTF8.
1167 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1168 ** If that is the case, then the result must be aligned on an even byte
1169 ** boundary.
1171 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1172 if( !pVal ) return 0;
1173 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1174 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1175 assert( (pVal->flags & MEM_RowSet)==0 );
1176 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1177 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1178 return pVal->z;
1180 if( pVal->flags&MEM_Null ){
1181 return 0;
1183 return valueToText(pVal, enc);
1187 ** Create a new sqlite3_value object.
1189 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1190 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1191 if( p ){
1192 p->flags = MEM_Null;
1193 p->db = db;
1195 return p;
1199 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1200 ** valueNew(). See comments above valueNew() for details.
1202 struct ValueNewStat4Ctx {
1203 Parse *pParse;
1204 Index *pIdx;
1205 UnpackedRecord **ppRec;
1206 int iVal;
1210 ** Allocate and return a pointer to a new sqlite3_value object. If
1211 ** the second argument to this function is NULL, the object is allocated
1212 ** by calling sqlite3ValueNew().
1214 ** Otherwise, if the second argument is non-zero, then this function is
1215 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1216 ** already been allocated, allocate the UnpackedRecord structure that
1217 ** that function will return to its caller here. Then return a pointer to
1218 ** an sqlite3_value within the UnpackedRecord.a[] array.
1220 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1221 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1222 if( p ){
1223 UnpackedRecord *pRec = p->ppRec[0];
1225 if( pRec==0 ){
1226 Index *pIdx = p->pIdx; /* Index being probed */
1227 int nByte; /* Bytes of space to allocate */
1228 int i; /* Counter variable */
1229 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1231 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1232 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1233 if( pRec ){
1234 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1235 if( pRec->pKeyInfo ){
1236 assert( pRec->pKeyInfo->nAllField==nCol );
1237 assert( pRec->pKeyInfo->enc==ENC(db) );
1238 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1239 for(i=0; i<nCol; i++){
1240 pRec->aMem[i].flags = MEM_Null;
1241 pRec->aMem[i].db = db;
1243 }else{
1244 sqlite3DbFreeNN(db, pRec);
1245 pRec = 0;
1248 if( pRec==0 ) return 0;
1249 p->ppRec[0] = pRec;
1252 pRec->nField = p->iVal+1;
1253 return &pRec->aMem[p->iVal];
1255 #else
1256 UNUSED_PARAMETER(p);
1257 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1258 return sqlite3ValueNew(db);
1262 ** The expression object indicated by the second argument is guaranteed
1263 ** to be a scalar SQL function. If
1265 ** * all function arguments are SQL literals,
1266 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1267 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1269 ** then this routine attempts to invoke the SQL function. Assuming no
1270 ** error occurs, output parameter (*ppVal) is set to point to a value
1271 ** object containing the result before returning SQLITE_OK.
1273 ** Affinity aff is applied to the result of the function before returning.
1274 ** If the result is a text value, the sqlite3_value object uses encoding
1275 ** enc.
1277 ** If the conditions above are not met, this function returns SQLITE_OK
1278 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1279 ** NULL and an SQLite error code returned.
1281 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1282 static int valueFromFunction(
1283 sqlite3 *db, /* The database connection */
1284 Expr *p, /* The expression to evaluate */
1285 u8 enc, /* Encoding to use */
1286 u8 aff, /* Affinity to use */
1287 sqlite3_value **ppVal, /* Write the new value here */
1288 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1290 sqlite3_context ctx; /* Context object for function invocation */
1291 sqlite3_value **apVal = 0; /* Function arguments */
1292 int nVal = 0; /* Size of apVal[] array */
1293 FuncDef *pFunc = 0; /* Function definition */
1294 sqlite3_value *pVal = 0; /* New value */
1295 int rc = SQLITE_OK; /* Return code */
1296 ExprList *pList = 0; /* Function arguments */
1297 int i; /* Iterator variable */
1299 assert( pCtx!=0 );
1300 assert( (p->flags & EP_TokenOnly)==0 );
1301 pList = p->x.pList;
1302 if( pList ) nVal = pList->nExpr;
1303 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1304 assert( pFunc );
1305 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1306 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1308 return SQLITE_OK;
1311 if( pList ){
1312 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1313 if( apVal==0 ){
1314 rc = SQLITE_NOMEM_BKPT;
1315 goto value_from_function_out;
1317 for(i=0; i<nVal; i++){
1318 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1319 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1323 pVal = valueNew(db, pCtx);
1324 if( pVal==0 ){
1325 rc = SQLITE_NOMEM_BKPT;
1326 goto value_from_function_out;
1329 assert( pCtx->pParse->rc==SQLITE_OK );
1330 memset(&ctx, 0, sizeof(ctx));
1331 ctx.pOut = pVal;
1332 ctx.pFunc = pFunc;
1333 pFunc->xSFunc(&ctx, nVal, apVal);
1334 if( ctx.isError ){
1335 rc = ctx.isError;
1336 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1337 }else{
1338 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1339 assert( rc==SQLITE_OK );
1340 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1341 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1342 rc = SQLITE_TOOBIG;
1343 pCtx->pParse->nErr++;
1346 pCtx->pParse->rc = rc;
1348 value_from_function_out:
1349 if( rc!=SQLITE_OK ){
1350 pVal = 0;
1352 if( apVal ){
1353 for(i=0; i<nVal; i++){
1354 sqlite3ValueFree(apVal[i]);
1356 sqlite3DbFreeNN(db, apVal);
1359 *ppVal = pVal;
1360 return rc;
1362 #else
1363 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1364 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1367 ** Extract a value from the supplied expression in the manner described
1368 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1369 ** using valueNew().
1371 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1372 ** has been allocated, it is freed before returning. Or, if pCtx is not
1373 ** NULL, it is assumed that the caller will free any allocated object
1374 ** in all cases.
1376 static int valueFromExpr(
1377 sqlite3 *db, /* The database connection */
1378 Expr *pExpr, /* The expression to evaluate */
1379 u8 enc, /* Encoding to use */
1380 u8 affinity, /* Affinity to use */
1381 sqlite3_value **ppVal, /* Write the new value here */
1382 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1384 int op;
1385 char *zVal = 0;
1386 sqlite3_value *pVal = 0;
1387 int negInt = 1;
1388 const char *zNeg = "";
1389 int rc = SQLITE_OK;
1391 assert( pExpr!=0 );
1392 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1393 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1394 if( op==TK_REGISTER ) op = pExpr->op2;
1395 #else
1396 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1397 #endif
1399 /* Compressed expressions only appear when parsing the DEFAULT clause
1400 ** on a table column definition, and hence only when pCtx==0. This
1401 ** check ensures that an EP_TokenOnly expression is never passed down
1402 ** into valueFromFunction(). */
1403 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1405 if( op==TK_CAST ){
1406 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1407 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1408 testcase( rc!=SQLITE_OK );
1409 if( *ppVal ){
1410 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1411 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1413 return rc;
1416 /* Handle negative integers in a single step. This is needed in the
1417 ** case when the value is -9223372036854775808.
1419 if( op==TK_UMINUS
1420 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1421 pExpr = pExpr->pLeft;
1422 op = pExpr->op;
1423 negInt = -1;
1424 zNeg = "-";
1427 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1428 pVal = valueNew(db, pCtx);
1429 if( pVal==0 ) goto no_mem;
1430 if( ExprHasProperty(pExpr, EP_IntValue) ){
1431 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1432 }else{
1433 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1434 if( zVal==0 ) goto no_mem;
1435 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1437 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1438 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1439 }else{
1440 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1442 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1443 if( enc!=SQLITE_UTF8 ){
1444 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1446 }else if( op==TK_UMINUS ) {
1447 /* This branch happens for multiple negative signs. Ex: -(-5) */
1448 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1449 && pVal!=0
1451 sqlite3VdbeMemNumerify(pVal);
1452 if( pVal->flags & MEM_Real ){
1453 pVal->u.r = -pVal->u.r;
1454 }else if( pVal->u.i==SMALLEST_INT64 ){
1455 pVal->u.r = -(double)SMALLEST_INT64;
1456 MemSetTypeFlag(pVal, MEM_Real);
1457 }else{
1458 pVal->u.i = -pVal->u.i;
1460 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1462 }else if( op==TK_NULL ){
1463 pVal = valueNew(db, pCtx);
1464 if( pVal==0 ) goto no_mem;
1465 sqlite3VdbeMemNumerify(pVal);
1467 #ifndef SQLITE_OMIT_BLOB_LITERAL
1468 else if( op==TK_BLOB ){
1469 int nVal;
1470 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1471 assert( pExpr->u.zToken[1]=='\'' );
1472 pVal = valueNew(db, pCtx);
1473 if( !pVal ) goto no_mem;
1474 zVal = &pExpr->u.zToken[2];
1475 nVal = sqlite3Strlen30(zVal)-1;
1476 assert( zVal[nVal]=='\'' );
1477 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1478 0, SQLITE_DYNAMIC);
1480 #endif
1481 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1482 else if( op==TK_FUNCTION && pCtx!=0 ){
1483 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1485 #endif
1486 else if( op==TK_TRUEFALSE ){
1487 pVal = valueNew(db, pCtx);
1488 pVal->flags = MEM_Int;
1489 pVal->u.i = pExpr->u.zToken[4]==0;
1492 *ppVal = pVal;
1493 return rc;
1495 no_mem:
1496 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1497 if( pCtx==0 || pCtx->pParse->nErr==0 )
1498 #endif
1499 sqlite3OomFault(db);
1500 sqlite3DbFree(db, zVal);
1501 assert( *ppVal==0 );
1502 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1503 if( pCtx==0 ) sqlite3ValueFree(pVal);
1504 #else
1505 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1506 #endif
1507 return SQLITE_NOMEM_BKPT;
1511 ** Create a new sqlite3_value object, containing the value of pExpr.
1513 ** This only works for very simple expressions that consist of one constant
1514 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1515 ** be converted directly into a value, then the value is allocated and
1516 ** a pointer written to *ppVal. The caller is responsible for deallocating
1517 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1518 ** cannot be converted to a value, then *ppVal is set to NULL.
1520 int sqlite3ValueFromExpr(
1521 sqlite3 *db, /* The database connection */
1522 Expr *pExpr, /* The expression to evaluate */
1523 u8 enc, /* Encoding to use */
1524 u8 affinity, /* Affinity to use */
1525 sqlite3_value **ppVal /* Write the new value here */
1527 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1530 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1532 ** The implementation of the sqlite_record() function. This function accepts
1533 ** a single argument of any type. The return value is a formatted database
1534 ** record (a blob) containing the argument value.
1536 ** This is used to convert the value stored in the 'sample' column of the
1537 ** sqlite_stat3 table to the record format SQLite uses internally.
1539 static void recordFunc(
1540 sqlite3_context *context,
1541 int argc,
1542 sqlite3_value **argv
1544 const int file_format = 1;
1545 u32 iSerial; /* Serial type */
1546 int nSerial; /* Bytes of space for iSerial as varint */
1547 u32 nVal; /* Bytes of space required for argv[0] */
1548 int nRet;
1549 sqlite3 *db;
1550 u8 *aRet;
1552 UNUSED_PARAMETER( argc );
1553 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1554 nSerial = sqlite3VarintLen(iSerial);
1555 db = sqlite3_context_db_handle(context);
1557 nRet = 1 + nSerial + nVal;
1558 aRet = sqlite3DbMallocRawNN(db, nRet);
1559 if( aRet==0 ){
1560 sqlite3_result_error_nomem(context);
1561 }else{
1562 aRet[0] = nSerial+1;
1563 putVarint32(&aRet[1], iSerial);
1564 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1565 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1566 sqlite3DbFreeNN(db, aRet);
1571 ** Register built-in functions used to help read ANALYZE data.
1573 void sqlite3AnalyzeFunctions(void){
1574 static FuncDef aAnalyzeTableFuncs[] = {
1575 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1577 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1581 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1583 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1584 ** pAlloc if one does not exist and the new value is added to the
1585 ** UnpackedRecord object.
1587 ** A value is extracted in the following cases:
1589 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1591 ** * The expression is a bound variable, and this is a reprepare, or
1593 ** * The expression is a literal value.
1595 ** On success, *ppVal is made to point to the extracted value. The caller
1596 ** is responsible for ensuring that the value is eventually freed.
1598 static int stat4ValueFromExpr(
1599 Parse *pParse, /* Parse context */
1600 Expr *pExpr, /* The expression to extract a value from */
1601 u8 affinity, /* Affinity to use */
1602 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1603 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1605 int rc = SQLITE_OK;
1606 sqlite3_value *pVal = 0;
1607 sqlite3 *db = pParse->db;
1609 /* Skip over any TK_COLLATE nodes */
1610 pExpr = sqlite3ExprSkipCollate(pExpr);
1612 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1613 if( !pExpr ){
1614 pVal = valueNew(db, pAlloc);
1615 if( pVal ){
1616 sqlite3VdbeMemSetNull((Mem*)pVal);
1618 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1619 Vdbe *v;
1620 int iBindVar = pExpr->iColumn;
1621 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1622 if( (v = pParse->pReprepare)!=0 ){
1623 pVal = valueNew(db, pAlloc);
1624 if( pVal ){
1625 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1626 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1627 pVal->db = pParse->db;
1630 }else{
1631 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1634 assert( pVal==0 || pVal->db==db );
1635 *ppVal = pVal;
1636 return rc;
1640 ** This function is used to allocate and populate UnpackedRecord
1641 ** structures intended to be compared against sample index keys stored
1642 ** in the sqlite_stat4 table.
1644 ** A single call to this function populates zero or more fields of the
1645 ** record starting with field iVal (fields are numbered from left to
1646 ** right starting with 0). A single field is populated if:
1648 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1650 ** * The expression is a bound variable, and this is a reprepare, or
1652 ** * The sqlite3ValueFromExpr() function is able to extract a value
1653 ** from the expression (i.e. the expression is a literal value).
1655 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1656 ** vector components that match either of the two latter criteria listed
1657 ** above.
1659 ** Before any value is appended to the record, the affinity of the
1660 ** corresponding column within index pIdx is applied to it. Before
1661 ** this function returns, output parameter *pnExtract is set to the
1662 ** number of values appended to the record.
1664 ** When this function is called, *ppRec must either point to an object
1665 ** allocated by an earlier call to this function, or must be NULL. If it
1666 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1667 ** is allocated (and *ppRec set to point to it) before returning.
1669 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1670 ** error if a value cannot be extracted from pExpr. If an error does
1671 ** occur, an SQLite error code is returned.
1673 int sqlite3Stat4ProbeSetValue(
1674 Parse *pParse, /* Parse context */
1675 Index *pIdx, /* Index being probed */
1676 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1677 Expr *pExpr, /* The expression to extract a value from */
1678 int nElem, /* Maximum number of values to append */
1679 int iVal, /* Array element to populate */
1680 int *pnExtract /* OUT: Values appended to the record */
1682 int rc = SQLITE_OK;
1683 int nExtract = 0;
1685 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1686 int i;
1687 struct ValueNewStat4Ctx alloc;
1689 alloc.pParse = pParse;
1690 alloc.pIdx = pIdx;
1691 alloc.ppRec = ppRec;
1693 for(i=0; i<nElem; i++){
1694 sqlite3_value *pVal = 0;
1695 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1696 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1697 alloc.iVal = iVal+i;
1698 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1699 if( !pVal ) break;
1700 nExtract++;
1704 *pnExtract = nExtract;
1705 return rc;
1709 ** Attempt to extract a value from expression pExpr using the methods
1710 ** as described for sqlite3Stat4ProbeSetValue() above.
1712 ** If successful, set *ppVal to point to a new value object and return
1713 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1714 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1715 ** does occur, return an SQLite error code. The final value of *ppVal
1716 ** is undefined in this case.
1718 int sqlite3Stat4ValueFromExpr(
1719 Parse *pParse, /* Parse context */
1720 Expr *pExpr, /* The expression to extract a value from */
1721 u8 affinity, /* Affinity to use */
1722 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1724 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1728 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1729 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1730 ** sqlite3_value object is allocated.
1732 ** If *ppVal is initially NULL then the caller is responsible for
1733 ** ensuring that the value written into *ppVal is eventually freed.
1735 int sqlite3Stat4Column(
1736 sqlite3 *db, /* Database handle */
1737 const void *pRec, /* Pointer to buffer containing record */
1738 int nRec, /* Size of buffer pRec in bytes */
1739 int iCol, /* Column to extract */
1740 sqlite3_value **ppVal /* OUT: Extracted value */
1742 u32 t; /* a column type code */
1743 int nHdr; /* Size of the header in the record */
1744 int iHdr; /* Next unread header byte */
1745 int iField; /* Next unread data byte */
1746 int szField; /* Size of the current data field */
1747 int i; /* Column index */
1748 u8 *a = (u8*)pRec; /* Typecast byte array */
1749 Mem *pMem = *ppVal; /* Write result into this Mem object */
1751 assert( iCol>0 );
1752 iHdr = getVarint32(a, nHdr);
1753 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1754 iField = nHdr;
1755 for(i=0; i<=iCol; i++){
1756 iHdr += getVarint32(&a[iHdr], t);
1757 testcase( iHdr==nHdr );
1758 testcase( iHdr==nHdr+1 );
1759 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1760 szField = sqlite3VdbeSerialTypeLen(t);
1761 iField += szField;
1763 testcase( iField==nRec );
1764 testcase( iField==nRec+1 );
1765 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1766 if( pMem==0 ){
1767 pMem = *ppVal = sqlite3ValueNew(db);
1768 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1770 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1771 pMem->enc = ENC(db);
1772 return SQLITE_OK;
1776 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1777 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1778 ** the object.
1780 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1781 if( pRec ){
1782 int i;
1783 int nCol = pRec->pKeyInfo->nAllField;
1784 Mem *aMem = pRec->aMem;
1785 sqlite3 *db = aMem[0].db;
1786 for(i=0; i<nCol; i++){
1787 sqlite3VdbeMemRelease(&aMem[i]);
1789 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1790 sqlite3DbFreeNN(db, pRec);
1793 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1796 ** Change the string value of an sqlite3_value object
1798 void sqlite3ValueSetStr(
1799 sqlite3_value *v, /* Value to be set */
1800 int n, /* Length of string z */
1801 const void *z, /* Text of the new string */
1802 u8 enc, /* Encoding to use */
1803 void (*xDel)(void*) /* Destructor for the string */
1805 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1809 ** Free an sqlite3_value object
1811 void sqlite3ValueFree(sqlite3_value *v){
1812 if( !v ) return;
1813 sqlite3VdbeMemRelease((Mem *)v);
1814 sqlite3DbFreeNN(((Mem*)v)->db, v);
1818 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1819 ** sqlite3_value object assuming that it uses the encoding "enc".
1820 ** The valueBytes() routine is a helper function.
1822 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1823 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1825 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1826 Mem *p = (Mem*)pVal;
1827 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1828 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1829 return p->n;
1831 if( (p->flags & MEM_Blob)!=0 ){
1832 if( p->flags & MEM_Zero ){
1833 return p->n + p->u.nZero;
1834 }else{
1835 return p->n;
1838 if( p->flags & MEM_Null ) return 0;
1839 return valueBytes(pVal, enc);