Use the SQLITE_CORRUPT_BKPT return code in a couple more places.
[sqlite.git] / src / btree.c
bloba1b125dda89593f39568caf421ac871ae2e0fbdd
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
16 #include "btreeInt.h"
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
28 #if 0
29 int sqlite3BtreeTrace=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable){
90 sqlite3GlobalConfig.sharedCacheEnabled = enable;
91 return SQLITE_OK;
93 #endif
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
113 #endif
115 #ifndef SQLITE_OMIT_SHARED_CACHE
117 #ifdef SQLITE_DEBUG
119 **** This function is only used as part of an assert() statement. ***
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot. Return 1 if it does and 0 if not.
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
140 static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
150 /* If this database is not shareable, or if the client is reading
151 ** and has the read-uncommitted flag set, then no lock is required.
152 ** Return true immediately.
154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
157 return 1;
160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166 return 1;
169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
177 if( pIdx->tnum==(int)iRoot ){
178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
184 iTab = pIdx->pTable->tnum;
187 }else{
188 iTab = iRoot;
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
199 return 1;
203 /* Failed to find the required lock. */
204 return 0;
206 #endif /* SQLITE_DEBUG */
208 #ifdef SQLITE_DEBUG
210 **** This function may be used as part of assert() statements only. ****
212 ** Return true if it would be illegal for pBtree to write into the
213 ** table or index rooted at iRoot because other shared connections are
214 ** simultaneously reading that same table or index.
216 ** It is illegal for pBtree to write if some other Btree object that
217 ** shares the same BtShared object is currently reading or writing
218 ** the iRoot table. Except, if the other Btree object has the
219 ** read-uncommitted flag set, then it is OK for the other object to
220 ** have a read cursor.
222 ** For example, before writing to any part of the table or index
223 ** rooted at page iRoot, one should call:
225 ** assert( !hasReadConflicts(pBtree, iRoot) );
227 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
234 return 1;
237 return 0;
239 #endif /* #ifdef SQLITE_DEBUG */
242 ** Query to see if Btree handle p may obtain a lock of type eLock
243 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
244 ** SQLITE_OK if the lock may be obtained (by calling
245 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
247 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
251 assert( sqlite3BtreeHoldsMutex(p) );
252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
254 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
263 /* This routine is a no-op if the shared-cache is not enabled */
264 if( !p->sharable ){
265 return SQLITE_OK;
268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
292 pBt->btsFlags |= BTS_PENDING;
294 return SQLITE_LOCKED_SHAREDCACHE;
297 return SQLITE_OK;
299 #endif /* !SQLITE_OMIT_SHARED_CACHE */
301 #ifndef SQLITE_OMIT_SHARED_CACHE
303 ** Add a lock on the table with root-page iTable to the shared-btree used
304 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
305 ** WRITE_LOCK.
307 ** This function assumes the following:
309 ** (a) The specified Btree object p is connected to a sharable
310 ** database (one with the BtShared.sharable flag set), and
312 ** (b) No other Btree objects hold a lock that conflicts
313 ** with the requested lock (i.e. querySharedCacheTableLock() has
314 ** already been called and returned SQLITE_OK).
316 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317 ** is returned if a malloc attempt fails.
319 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
324 assert( sqlite3BtreeHoldsMutex(p) );
325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
350 if( !pLock ){
351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
352 if( !pLock ){
353 return SQLITE_NOMEM_BKPT;
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
365 assert( WRITE_LOCK>READ_LOCK );
366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
370 return SQLITE_OK;
372 #endif /* !SQLITE_OMIT_SHARED_CACHE */
374 #ifndef SQLITE_OMIT_SHARED_CACHE
376 ** Release all the table locks (locks obtained via calls to
377 ** the setSharedCacheTableLock() procedure) held by Btree object p.
379 ** This function assumes that Btree p has an open read or write
380 ** transaction. If it does not, then the BTS_PENDING flag
381 ** may be incorrectly cleared.
383 static void clearAllSharedCacheTableLocks(Btree *p){
384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
387 assert( sqlite3BtreeHoldsMutex(p) );
388 assert( p->sharable || 0==*ppIter );
389 assert( p->inTrans>0 );
391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
394 assert( pLock->pBtree->inTrans>=pLock->eLock );
395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
401 }else{
402 ppIter = &pLock->pNext;
406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
410 }else if( pBt->nTransaction==2 ){
411 /* This function is called when Btree p is concluding its
412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
415 ** set the BTS_PENDING flag to 0.
417 ** If there is not currently a writer, then BTS_PENDING must
418 ** be zero already. So this next line is harmless in that case.
420 pBt->btsFlags &= ~BTS_PENDING;
425 ** This function changes all write-locks held by Btree p into read-locks.
427 static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
440 #endif /* SQLITE_OMIT_SHARED_CACHE */
442 static void releasePage(MemPage *pPage); /* Forward reference */
443 static void releasePageOne(MemPage *pPage); /* Forward reference */
444 static void releasePageNotNull(MemPage *pPage); /* Forward reference */
447 ***** This routine is used inside of assert() only ****
449 ** Verify that the cursor holds the mutex on its BtShared
451 #ifdef SQLITE_DEBUG
452 static int cursorHoldsMutex(BtCursor *p){
453 return sqlite3_mutex_held(p->pBt->mutex);
456 /* Verify that the cursor and the BtShared agree about what is the current
457 ** database connetion. This is important in shared-cache mode. If the database
458 ** connection pointers get out-of-sync, it is possible for routines like
459 ** btreeInitPage() to reference an stale connection pointer that references a
460 ** a connection that has already closed. This routine is used inside assert()
461 ** statements only and for the purpose of double-checking that the btree code
462 ** does keep the database connection pointers up-to-date.
464 static int cursorOwnsBtShared(BtCursor *p){
465 assert( cursorHoldsMutex(p) );
466 return (p->pBtree->db==p->pBt->db);
468 #endif
471 ** Invalidate the overflow cache of the cursor passed as the first argument.
472 ** on the shared btree structure pBt.
474 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
477 ** Invalidate the overflow page-list cache for all cursors opened
478 ** on the shared btree structure pBt.
480 static void invalidateAllOverflowCache(BtShared *pBt){
481 BtCursor *p;
482 assert( sqlite3_mutex_held(pBt->mutex) );
483 for(p=pBt->pCursor; p; p=p->pNext){
484 invalidateOverflowCache(p);
488 #ifndef SQLITE_OMIT_INCRBLOB
490 ** This function is called before modifying the contents of a table
491 ** to invalidate any incrblob cursors that are open on the
492 ** row or one of the rows being modified.
494 ** If argument isClearTable is true, then the entire contents of the
495 ** table is about to be deleted. In this case invalidate all incrblob
496 ** cursors open on any row within the table with root-page pgnoRoot.
498 ** Otherwise, if argument isClearTable is false, then the row with
499 ** rowid iRow is being replaced or deleted. In this case invalidate
500 ** only those incrblob cursors open on that specific row.
502 static void invalidateIncrblobCursors(
503 Btree *pBtree, /* The database file to check */
504 Pgno pgnoRoot, /* The table that might be changing */
505 i64 iRow, /* The rowid that might be changing */
506 int isClearTable /* True if all rows are being deleted */
508 BtCursor *p;
509 if( pBtree->hasIncrblobCur==0 ) return;
510 assert( sqlite3BtreeHoldsMutex(pBtree) );
511 pBtree->hasIncrblobCur = 0;
512 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
513 if( (p->curFlags & BTCF_Incrblob)!=0 ){
514 pBtree->hasIncrblobCur = 1;
515 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
516 p->eState = CURSOR_INVALID;
522 #else
523 /* Stub function when INCRBLOB is omitted */
524 #define invalidateIncrblobCursors(w,x,y,z)
525 #endif /* SQLITE_OMIT_INCRBLOB */
528 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
529 ** when a page that previously contained data becomes a free-list leaf
530 ** page.
532 ** The BtShared.pHasContent bitvec exists to work around an obscure
533 ** bug caused by the interaction of two useful IO optimizations surrounding
534 ** free-list leaf pages:
536 ** 1) When all data is deleted from a page and the page becomes
537 ** a free-list leaf page, the page is not written to the database
538 ** (as free-list leaf pages contain no meaningful data). Sometimes
539 ** such a page is not even journalled (as it will not be modified,
540 ** why bother journalling it?).
542 ** 2) When a free-list leaf page is reused, its content is not read
543 ** from the database or written to the journal file (why should it
544 ** be, if it is not at all meaningful?).
546 ** By themselves, these optimizations work fine and provide a handy
547 ** performance boost to bulk delete or insert operations. However, if
548 ** a page is moved to the free-list and then reused within the same
549 ** transaction, a problem comes up. If the page is not journalled when
550 ** it is moved to the free-list and it is also not journalled when it
551 ** is extracted from the free-list and reused, then the original data
552 ** may be lost. In the event of a rollback, it may not be possible
553 ** to restore the database to its original configuration.
555 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
556 ** moved to become a free-list leaf page, the corresponding bit is
557 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
558 ** optimization 2 above is omitted if the corresponding bit is already
559 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
560 ** at the end of every transaction.
562 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
563 int rc = SQLITE_OK;
564 if( !pBt->pHasContent ){
565 assert( pgno<=pBt->nPage );
566 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
567 if( !pBt->pHasContent ){
568 rc = SQLITE_NOMEM_BKPT;
571 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
572 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
574 return rc;
578 ** Query the BtShared.pHasContent vector.
580 ** This function is called when a free-list leaf page is removed from the
581 ** free-list for reuse. It returns false if it is safe to retrieve the
582 ** page from the pager layer with the 'no-content' flag set. True otherwise.
584 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
585 Bitvec *p = pBt->pHasContent;
586 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
590 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
591 ** invoked at the conclusion of each write-transaction.
593 static void btreeClearHasContent(BtShared *pBt){
594 sqlite3BitvecDestroy(pBt->pHasContent);
595 pBt->pHasContent = 0;
599 ** Release all of the apPage[] pages for a cursor.
601 static void btreeReleaseAllCursorPages(BtCursor *pCur){
602 int i;
603 if( pCur->iPage>=0 ){
604 for(i=0; i<pCur->iPage; i++){
605 releasePageNotNull(pCur->apPage[i]);
607 releasePageNotNull(pCur->pPage);
608 pCur->iPage = -1;
613 ** The cursor passed as the only argument must point to a valid entry
614 ** when this function is called (i.e. have eState==CURSOR_VALID). This
615 ** function saves the current cursor key in variables pCur->nKey and
616 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
617 ** code otherwise.
619 ** If the cursor is open on an intkey table, then the integer key
620 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
621 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
622 ** set to point to a malloced buffer pCur->nKey bytes in size containing
623 ** the key.
625 static int saveCursorKey(BtCursor *pCur){
626 int rc = SQLITE_OK;
627 assert( CURSOR_VALID==pCur->eState );
628 assert( 0==pCur->pKey );
629 assert( cursorHoldsMutex(pCur) );
631 if( pCur->curIntKey ){
632 /* Only the rowid is required for a table btree */
633 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
634 }else{
635 /* For an index btree, save the complete key content */
636 void *pKey;
637 pCur->nKey = sqlite3BtreePayloadSize(pCur);
638 pKey = sqlite3Malloc( pCur->nKey );
639 if( pKey ){
640 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
641 if( rc==SQLITE_OK ){
642 pCur->pKey = pKey;
643 }else{
644 sqlite3_free(pKey);
646 }else{
647 rc = SQLITE_NOMEM_BKPT;
650 assert( !pCur->curIntKey || !pCur->pKey );
651 return rc;
655 ** Save the current cursor position in the variables BtCursor.nKey
656 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
658 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
659 ** prior to calling this routine.
661 static int saveCursorPosition(BtCursor *pCur){
662 int rc;
664 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
665 assert( 0==pCur->pKey );
666 assert( cursorHoldsMutex(pCur) );
668 if( pCur->eState==CURSOR_SKIPNEXT ){
669 pCur->eState = CURSOR_VALID;
670 }else{
671 pCur->skipNext = 0;
674 rc = saveCursorKey(pCur);
675 if( rc==SQLITE_OK ){
676 btreeReleaseAllCursorPages(pCur);
677 pCur->eState = CURSOR_REQUIRESEEK;
680 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
681 return rc;
684 /* Forward reference */
685 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
688 ** Save the positions of all cursors (except pExcept) that are open on
689 ** the table with root-page iRoot. "Saving the cursor position" means that
690 ** the location in the btree is remembered in such a way that it can be
691 ** moved back to the same spot after the btree has been modified. This
692 ** routine is called just before cursor pExcept is used to modify the
693 ** table, for example in BtreeDelete() or BtreeInsert().
695 ** If there are two or more cursors on the same btree, then all such
696 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
697 ** routine enforces that rule. This routine only needs to be called in
698 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
700 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
701 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
702 ** pointless call to this routine.
704 ** Implementation note: This routine merely checks to see if any cursors
705 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
706 ** event that cursors are in need to being saved.
708 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
709 BtCursor *p;
710 assert( sqlite3_mutex_held(pBt->mutex) );
711 assert( pExcept==0 || pExcept->pBt==pBt );
712 for(p=pBt->pCursor; p; p=p->pNext){
713 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
715 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
716 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
717 return SQLITE_OK;
720 /* This helper routine to saveAllCursors does the actual work of saving
721 ** the cursors if and when a cursor is found that actually requires saving.
722 ** The common case is that no cursors need to be saved, so this routine is
723 ** broken out from its caller to avoid unnecessary stack pointer movement.
725 static int SQLITE_NOINLINE saveCursorsOnList(
726 BtCursor *p, /* The first cursor that needs saving */
727 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
728 BtCursor *pExcept /* Do not save this cursor */
731 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
732 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
733 int rc = saveCursorPosition(p);
734 if( SQLITE_OK!=rc ){
735 return rc;
737 }else{
738 testcase( p->iPage>=0 );
739 btreeReleaseAllCursorPages(p);
742 p = p->pNext;
743 }while( p );
744 return SQLITE_OK;
748 ** Clear the current cursor position.
750 void sqlite3BtreeClearCursor(BtCursor *pCur){
751 assert( cursorHoldsMutex(pCur) );
752 sqlite3_free(pCur->pKey);
753 pCur->pKey = 0;
754 pCur->eState = CURSOR_INVALID;
758 ** In this version of BtreeMoveto, pKey is a packed index record
759 ** such as is generated by the OP_MakeRecord opcode. Unpack the
760 ** record and then call BtreeMovetoUnpacked() to do the work.
762 static int btreeMoveto(
763 BtCursor *pCur, /* Cursor open on the btree to be searched */
764 const void *pKey, /* Packed key if the btree is an index */
765 i64 nKey, /* Integer key for tables. Size of pKey for indices */
766 int bias, /* Bias search to the high end */
767 int *pRes /* Write search results here */
769 int rc; /* Status code */
770 UnpackedRecord *pIdxKey; /* Unpacked index key */
772 if( pKey ){
773 assert( nKey==(i64)(int)nKey );
774 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
775 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
776 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
777 if( pIdxKey->nField==0 ){
778 rc = SQLITE_CORRUPT_BKPT;
779 goto moveto_done;
781 }else{
782 pIdxKey = 0;
784 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
785 moveto_done:
786 if( pIdxKey ){
787 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
789 return rc;
793 ** Restore the cursor to the position it was in (or as close to as possible)
794 ** when saveCursorPosition() was called. Note that this call deletes the
795 ** saved position info stored by saveCursorPosition(), so there can be
796 ** at most one effective restoreCursorPosition() call after each
797 ** saveCursorPosition().
799 static int btreeRestoreCursorPosition(BtCursor *pCur){
800 int rc;
801 int skipNext;
802 assert( cursorOwnsBtShared(pCur) );
803 assert( pCur->eState>=CURSOR_REQUIRESEEK );
804 if( pCur->eState==CURSOR_FAULT ){
805 return pCur->skipNext;
807 pCur->eState = CURSOR_INVALID;
808 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
809 if( rc==SQLITE_OK ){
810 sqlite3_free(pCur->pKey);
811 pCur->pKey = 0;
812 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
813 pCur->skipNext |= skipNext;
814 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
815 pCur->eState = CURSOR_SKIPNEXT;
818 return rc;
821 #define restoreCursorPosition(p) \
822 (p->eState>=CURSOR_REQUIRESEEK ? \
823 btreeRestoreCursorPosition(p) : \
824 SQLITE_OK)
827 ** Determine whether or not a cursor has moved from the position where
828 ** it was last placed, or has been invalidated for any other reason.
829 ** Cursors can move when the row they are pointing at is deleted out
830 ** from under them, for example. Cursor might also move if a btree
831 ** is rebalanced.
833 ** Calling this routine with a NULL cursor pointer returns false.
835 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
836 ** back to where it ought to be if this routine returns true.
838 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
839 return pCur->eState!=CURSOR_VALID;
843 ** Return a pointer to a fake BtCursor object that will always answer
844 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
845 ** cursor returned must not be used with any other Btree interface.
847 BtCursor *sqlite3BtreeFakeValidCursor(void){
848 static u8 fakeCursor = CURSOR_VALID;
849 assert( offsetof(BtCursor, eState)==0 );
850 return (BtCursor*)&fakeCursor;
854 ** This routine restores a cursor back to its original position after it
855 ** has been moved by some outside activity (such as a btree rebalance or
856 ** a row having been deleted out from under the cursor).
858 ** On success, the *pDifferentRow parameter is false if the cursor is left
859 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
860 ** was pointing to has been deleted, forcing the cursor to point to some
861 ** nearby row.
863 ** This routine should only be called for a cursor that just returned
864 ** TRUE from sqlite3BtreeCursorHasMoved().
866 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
867 int rc;
869 assert( pCur!=0 );
870 assert( pCur->eState!=CURSOR_VALID );
871 rc = restoreCursorPosition(pCur);
872 if( rc ){
873 *pDifferentRow = 1;
874 return rc;
876 if( pCur->eState!=CURSOR_VALID ){
877 *pDifferentRow = 1;
878 }else{
879 assert( pCur->skipNext==0 );
880 *pDifferentRow = 0;
882 return SQLITE_OK;
885 #ifdef SQLITE_ENABLE_CURSOR_HINTS
887 ** Provide hints to the cursor. The particular hint given (and the type
888 ** and number of the varargs parameters) is determined by the eHintType
889 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
891 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
892 /* Used only by system that substitute their own storage engine */
894 #endif
897 ** Provide flag hints to the cursor.
899 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
900 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
901 pCur->hints = x;
905 #ifndef SQLITE_OMIT_AUTOVACUUM
907 ** Given a page number of a regular database page, return the page
908 ** number for the pointer-map page that contains the entry for the
909 ** input page number.
911 ** Return 0 (not a valid page) for pgno==1 since there is
912 ** no pointer map associated with page 1. The integrity_check logic
913 ** requires that ptrmapPageno(*,1)!=1.
915 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
916 int nPagesPerMapPage;
917 Pgno iPtrMap, ret;
918 assert( sqlite3_mutex_held(pBt->mutex) );
919 if( pgno<2 ) return 0;
920 nPagesPerMapPage = (pBt->usableSize/5)+1;
921 iPtrMap = (pgno-2)/nPagesPerMapPage;
922 ret = (iPtrMap*nPagesPerMapPage) + 2;
923 if( ret==PENDING_BYTE_PAGE(pBt) ){
924 ret++;
926 return ret;
930 ** Write an entry into the pointer map.
932 ** This routine updates the pointer map entry for page number 'key'
933 ** so that it maps to type 'eType' and parent page number 'pgno'.
935 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
936 ** a no-op. If an error occurs, the appropriate error code is written
937 ** into *pRC.
939 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
940 DbPage *pDbPage; /* The pointer map page */
941 u8 *pPtrmap; /* The pointer map data */
942 Pgno iPtrmap; /* The pointer map page number */
943 int offset; /* Offset in pointer map page */
944 int rc; /* Return code from subfunctions */
946 if( *pRC ) return;
948 assert( sqlite3_mutex_held(pBt->mutex) );
949 /* The master-journal page number must never be used as a pointer map page */
950 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
952 assert( pBt->autoVacuum );
953 if( key==0 ){
954 *pRC = SQLITE_CORRUPT_BKPT;
955 return;
957 iPtrmap = PTRMAP_PAGENO(pBt, key);
958 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
959 if( rc!=SQLITE_OK ){
960 *pRC = rc;
961 return;
963 offset = PTRMAP_PTROFFSET(iPtrmap, key);
964 if( offset<0 ){
965 *pRC = SQLITE_CORRUPT_BKPT;
966 goto ptrmap_exit;
968 assert( offset <= (int)pBt->usableSize-5 );
969 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
971 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
972 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
973 *pRC= rc = sqlite3PagerWrite(pDbPage);
974 if( rc==SQLITE_OK ){
975 pPtrmap[offset] = eType;
976 put4byte(&pPtrmap[offset+1], parent);
980 ptrmap_exit:
981 sqlite3PagerUnref(pDbPage);
985 ** Read an entry from the pointer map.
987 ** This routine retrieves the pointer map entry for page 'key', writing
988 ** the type and parent page number to *pEType and *pPgno respectively.
989 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
991 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
992 DbPage *pDbPage; /* The pointer map page */
993 int iPtrmap; /* Pointer map page index */
994 u8 *pPtrmap; /* Pointer map page data */
995 int offset; /* Offset of entry in pointer map */
996 int rc;
998 assert( sqlite3_mutex_held(pBt->mutex) );
1000 iPtrmap = PTRMAP_PAGENO(pBt, key);
1001 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1002 if( rc!=0 ){
1003 return rc;
1005 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1007 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1008 if( offset<0 ){
1009 sqlite3PagerUnref(pDbPage);
1010 return SQLITE_CORRUPT_BKPT;
1012 assert( offset <= (int)pBt->usableSize-5 );
1013 assert( pEType!=0 );
1014 *pEType = pPtrmap[offset];
1015 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1017 sqlite3PagerUnref(pDbPage);
1018 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1019 return SQLITE_OK;
1022 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1023 #define ptrmapPut(w,x,y,z,rc)
1024 #define ptrmapGet(w,x,y,z) SQLITE_OK
1025 #define ptrmapPutOvflPtr(x, y, rc)
1026 #endif
1029 ** Given a btree page and a cell index (0 means the first cell on
1030 ** the page, 1 means the second cell, and so forth) return a pointer
1031 ** to the cell content.
1033 ** findCellPastPtr() does the same except it skips past the initial
1034 ** 4-byte child pointer found on interior pages, if there is one.
1036 ** This routine works only for pages that do not contain overflow cells.
1038 #define findCell(P,I) \
1039 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1040 #define findCellPastPtr(P,I) \
1041 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1045 ** This is common tail processing for btreeParseCellPtr() and
1046 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1047 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1048 ** structure.
1050 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1051 MemPage *pPage, /* Page containing the cell */
1052 u8 *pCell, /* Pointer to the cell text. */
1053 CellInfo *pInfo /* Fill in this structure */
1055 /* If the payload will not fit completely on the local page, we have
1056 ** to decide how much to store locally and how much to spill onto
1057 ** overflow pages. The strategy is to minimize the amount of unused
1058 ** space on overflow pages while keeping the amount of local storage
1059 ** in between minLocal and maxLocal.
1061 ** Warning: changing the way overflow payload is distributed in any
1062 ** way will result in an incompatible file format.
1064 int minLocal; /* Minimum amount of payload held locally */
1065 int maxLocal; /* Maximum amount of payload held locally */
1066 int surplus; /* Overflow payload available for local storage */
1068 minLocal = pPage->minLocal;
1069 maxLocal = pPage->maxLocal;
1070 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1071 testcase( surplus==maxLocal );
1072 testcase( surplus==maxLocal+1 );
1073 if( surplus <= maxLocal ){
1074 pInfo->nLocal = (u16)surplus;
1075 }else{
1076 pInfo->nLocal = (u16)minLocal;
1078 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1082 ** The following routines are implementations of the MemPage.xParseCell()
1083 ** method.
1085 ** Parse a cell content block and fill in the CellInfo structure.
1087 ** btreeParseCellPtr() => table btree leaf nodes
1088 ** btreeParseCellNoPayload() => table btree internal nodes
1089 ** btreeParseCellPtrIndex() => index btree nodes
1091 ** There is also a wrapper function btreeParseCell() that works for
1092 ** all MemPage types and that references the cell by index rather than
1093 ** by pointer.
1095 static void btreeParseCellPtrNoPayload(
1096 MemPage *pPage, /* Page containing the cell */
1097 u8 *pCell, /* Pointer to the cell text. */
1098 CellInfo *pInfo /* Fill in this structure */
1100 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1101 assert( pPage->leaf==0 );
1102 assert( pPage->childPtrSize==4 );
1103 #ifndef SQLITE_DEBUG
1104 UNUSED_PARAMETER(pPage);
1105 #endif
1106 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1107 pInfo->nPayload = 0;
1108 pInfo->nLocal = 0;
1109 pInfo->pPayload = 0;
1110 return;
1112 static void btreeParseCellPtr(
1113 MemPage *pPage, /* Page containing the cell */
1114 u8 *pCell, /* Pointer to the cell text. */
1115 CellInfo *pInfo /* Fill in this structure */
1117 u8 *pIter; /* For scanning through pCell */
1118 u32 nPayload; /* Number of bytes of cell payload */
1119 u64 iKey; /* Extracted Key value */
1121 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1122 assert( pPage->leaf==0 || pPage->leaf==1 );
1123 assert( pPage->intKeyLeaf );
1124 assert( pPage->childPtrSize==0 );
1125 pIter = pCell;
1127 /* The next block of code is equivalent to:
1129 ** pIter += getVarint32(pIter, nPayload);
1131 ** The code is inlined to avoid a function call.
1133 nPayload = *pIter;
1134 if( nPayload>=0x80 ){
1135 u8 *pEnd = &pIter[8];
1136 nPayload &= 0x7f;
1138 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1139 }while( (*pIter)>=0x80 && pIter<pEnd );
1141 pIter++;
1143 /* The next block of code is equivalent to:
1145 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1147 ** The code is inlined to avoid a function call.
1149 iKey = *pIter;
1150 if( iKey>=0x80 ){
1151 u8 *pEnd = &pIter[7];
1152 iKey &= 0x7f;
1153 while(1){
1154 iKey = (iKey<<7) | (*++pIter & 0x7f);
1155 if( (*pIter)<0x80 ) break;
1156 if( pIter>=pEnd ){
1157 iKey = (iKey<<8) | *++pIter;
1158 break;
1162 pIter++;
1164 pInfo->nKey = *(i64*)&iKey;
1165 pInfo->nPayload = nPayload;
1166 pInfo->pPayload = pIter;
1167 testcase( nPayload==pPage->maxLocal );
1168 testcase( nPayload==pPage->maxLocal+1 );
1169 if( nPayload<=pPage->maxLocal ){
1170 /* This is the (easy) common case where the entire payload fits
1171 ** on the local page. No overflow is required.
1173 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1174 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1175 pInfo->nLocal = (u16)nPayload;
1176 }else{
1177 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1180 static void btreeParseCellPtrIndex(
1181 MemPage *pPage, /* Page containing the cell */
1182 u8 *pCell, /* Pointer to the cell text. */
1183 CellInfo *pInfo /* Fill in this structure */
1185 u8 *pIter; /* For scanning through pCell */
1186 u32 nPayload; /* Number of bytes of cell payload */
1188 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1189 assert( pPage->leaf==0 || pPage->leaf==1 );
1190 assert( pPage->intKeyLeaf==0 );
1191 pIter = pCell + pPage->childPtrSize;
1192 nPayload = *pIter;
1193 if( nPayload>=0x80 ){
1194 u8 *pEnd = &pIter[8];
1195 nPayload &= 0x7f;
1197 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1198 }while( *(pIter)>=0x80 && pIter<pEnd );
1200 pIter++;
1201 pInfo->nKey = nPayload;
1202 pInfo->nPayload = nPayload;
1203 pInfo->pPayload = pIter;
1204 testcase( nPayload==pPage->maxLocal );
1205 testcase( nPayload==pPage->maxLocal+1 );
1206 if( nPayload<=pPage->maxLocal ){
1207 /* This is the (easy) common case where the entire payload fits
1208 ** on the local page. No overflow is required.
1210 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1211 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1212 pInfo->nLocal = (u16)nPayload;
1213 }else{
1214 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1217 static void btreeParseCell(
1218 MemPage *pPage, /* Page containing the cell */
1219 int iCell, /* The cell index. First cell is 0 */
1220 CellInfo *pInfo /* Fill in this structure */
1222 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1226 ** The following routines are implementations of the MemPage.xCellSize
1227 ** method.
1229 ** Compute the total number of bytes that a Cell needs in the cell
1230 ** data area of the btree-page. The return number includes the cell
1231 ** data header and the local payload, but not any overflow page or
1232 ** the space used by the cell pointer.
1234 ** cellSizePtrNoPayload() => table internal nodes
1235 ** cellSizePtr() => all index nodes & table leaf nodes
1237 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1238 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1239 u8 *pEnd; /* End mark for a varint */
1240 u32 nSize; /* Size value to return */
1242 #ifdef SQLITE_DEBUG
1243 /* The value returned by this function should always be the same as
1244 ** the (CellInfo.nSize) value found by doing a full parse of the
1245 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1246 ** this function verifies that this invariant is not violated. */
1247 CellInfo debuginfo;
1248 pPage->xParseCell(pPage, pCell, &debuginfo);
1249 #endif
1251 nSize = *pIter;
1252 if( nSize>=0x80 ){
1253 pEnd = &pIter[8];
1254 nSize &= 0x7f;
1256 nSize = (nSize<<7) | (*++pIter & 0x7f);
1257 }while( *(pIter)>=0x80 && pIter<pEnd );
1259 pIter++;
1260 if( pPage->intKey ){
1261 /* pIter now points at the 64-bit integer key value, a variable length
1262 ** integer. The following block moves pIter to point at the first byte
1263 ** past the end of the key value. */
1264 pEnd = &pIter[9];
1265 while( (*pIter++)&0x80 && pIter<pEnd );
1267 testcase( nSize==pPage->maxLocal );
1268 testcase( nSize==pPage->maxLocal+1 );
1269 if( nSize<=pPage->maxLocal ){
1270 nSize += (u32)(pIter - pCell);
1271 if( nSize<4 ) nSize = 4;
1272 }else{
1273 int minLocal = pPage->minLocal;
1274 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1275 testcase( nSize==pPage->maxLocal );
1276 testcase( nSize==pPage->maxLocal+1 );
1277 if( nSize>pPage->maxLocal ){
1278 nSize = minLocal;
1280 nSize += 4 + (u16)(pIter - pCell);
1282 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1283 return (u16)nSize;
1285 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1286 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1287 u8 *pEnd; /* End mark for a varint */
1289 #ifdef SQLITE_DEBUG
1290 /* The value returned by this function should always be the same as
1291 ** the (CellInfo.nSize) value found by doing a full parse of the
1292 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1293 ** this function verifies that this invariant is not violated. */
1294 CellInfo debuginfo;
1295 pPage->xParseCell(pPage, pCell, &debuginfo);
1296 #else
1297 UNUSED_PARAMETER(pPage);
1298 #endif
1300 assert( pPage->childPtrSize==4 );
1301 pEnd = pIter + 9;
1302 while( (*pIter++)&0x80 && pIter<pEnd );
1303 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1304 return (u16)(pIter - pCell);
1308 #ifdef SQLITE_DEBUG
1309 /* This variation on cellSizePtr() is used inside of assert() statements
1310 ** only. */
1311 static u16 cellSize(MemPage *pPage, int iCell){
1312 return pPage->xCellSize(pPage, findCell(pPage, iCell));
1314 #endif
1316 #ifndef SQLITE_OMIT_AUTOVACUUM
1318 ** If the cell pCell, part of page pPage contains a pointer
1319 ** to an overflow page, insert an entry into the pointer-map
1320 ** for the overflow page.
1322 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1323 CellInfo info;
1324 if( *pRC ) return;
1325 assert( pCell!=0 );
1326 pPage->xParseCell(pPage, pCell, &info);
1327 if( info.nLocal<info.nPayload ){
1328 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1329 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1332 #endif
1336 ** Defragment the page given. This routine reorganizes cells within the
1337 ** page so that there are no free-blocks on the free-block list.
1339 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1340 ** present in the page after this routine returns.
1342 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1343 ** b-tree page so that there are no freeblocks or fragment bytes, all
1344 ** unused bytes are contained in the unallocated space region, and all
1345 ** cells are packed tightly at the end of the page.
1347 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1348 int i; /* Loop counter */
1349 int pc; /* Address of the i-th cell */
1350 int hdr; /* Offset to the page header */
1351 int size; /* Size of a cell */
1352 int usableSize; /* Number of usable bytes on a page */
1353 int cellOffset; /* Offset to the cell pointer array */
1354 int cbrk; /* Offset to the cell content area */
1355 int nCell; /* Number of cells on the page */
1356 unsigned char *data; /* The page data */
1357 unsigned char *temp; /* Temp area for cell content */
1358 unsigned char *src; /* Source of content */
1359 int iCellFirst; /* First allowable cell index */
1360 int iCellLast; /* Last possible cell index */
1362 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1363 assert( pPage->pBt!=0 );
1364 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1365 assert( pPage->nOverflow==0 );
1366 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1367 temp = 0;
1368 src = data = pPage->aData;
1369 hdr = pPage->hdrOffset;
1370 cellOffset = pPage->cellOffset;
1371 nCell = pPage->nCell;
1372 assert( nCell==get2byte(&data[hdr+3]) );
1373 iCellFirst = cellOffset + 2*nCell;
1374 usableSize = pPage->pBt->usableSize;
1376 /* This block handles pages with two or fewer free blocks and nMaxFrag
1377 ** or fewer fragmented bytes. In this case it is faster to move the
1378 ** two (or one) blocks of cells using memmove() and add the required
1379 ** offsets to each pointer in the cell-pointer array than it is to
1380 ** reconstruct the entire page. */
1381 if( (int)data[hdr+7]<=nMaxFrag ){
1382 int iFree = get2byte(&data[hdr+1]);
1383 if( iFree ){
1384 int iFree2 = get2byte(&data[iFree]);
1386 /* pageFindSlot() has already verified that free blocks are sorted
1387 ** in order of offset within the page, and that no block extends
1388 ** past the end of the page. Provided the two free slots do not
1389 ** overlap, this guarantees that the memmove() calls below will not
1390 ** overwrite the usableSize byte buffer, even if the database page
1391 ** is corrupt. */
1392 assert( iFree2==0 || iFree2>iFree );
1393 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1394 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1396 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1397 u8 *pEnd = &data[cellOffset + nCell*2];
1398 u8 *pAddr;
1399 int sz2 = 0;
1400 int sz = get2byte(&data[iFree+2]);
1401 int top = get2byte(&data[hdr+5]);
1402 if( iFree2 ){
1403 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
1404 sz2 = get2byte(&data[iFree2+2]);
1405 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
1406 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1407 sz += sz2;
1409 cbrk = top+sz;
1410 assert( cbrk+(iFree-top) <= usableSize );
1411 memmove(&data[cbrk], &data[top], iFree-top);
1412 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1413 pc = get2byte(pAddr);
1414 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1415 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1417 goto defragment_out;
1422 cbrk = usableSize;
1423 iCellLast = usableSize - 4;
1424 for(i=0; i<nCell; i++){
1425 u8 *pAddr; /* The i-th cell pointer */
1426 pAddr = &data[cellOffset + i*2];
1427 pc = get2byte(pAddr);
1428 testcase( pc==iCellFirst );
1429 testcase( pc==iCellLast );
1430 /* These conditions have already been verified in btreeInitPage()
1431 ** if PRAGMA cell_size_check=ON.
1433 if( pc<iCellFirst || pc>iCellLast ){
1434 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1436 assert( pc>=iCellFirst && pc<=iCellLast );
1437 size = pPage->xCellSize(pPage, &src[pc]);
1438 cbrk -= size;
1439 if( cbrk<iCellFirst || pc+size>usableSize ){
1440 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1442 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1443 testcase( cbrk+size==usableSize );
1444 testcase( pc+size==usableSize );
1445 put2byte(pAddr, cbrk);
1446 if( temp==0 ){
1447 int x;
1448 if( cbrk==pc ) continue;
1449 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1450 x = get2byte(&data[hdr+5]);
1451 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1452 src = temp;
1454 memcpy(&data[cbrk], &src[pc], size);
1456 data[hdr+7] = 0;
1458 defragment_out:
1459 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1460 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1462 assert( cbrk>=iCellFirst );
1463 put2byte(&data[hdr+5], cbrk);
1464 data[hdr+1] = 0;
1465 data[hdr+2] = 0;
1466 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1467 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1468 return SQLITE_OK;
1472 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1473 ** size. If one can be found, return a pointer to the space and remove it
1474 ** from the free-list.
1476 ** If no suitable space can be found on the free-list, return NULL.
1478 ** This function may detect corruption within pPg. If corruption is
1479 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1481 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1482 ** will be ignored if adding the extra space to the fragmentation count
1483 ** causes the fragmentation count to exceed 60.
1485 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1486 const int hdr = pPg->hdrOffset;
1487 u8 * const aData = pPg->aData;
1488 int iAddr = hdr + 1;
1489 int pc = get2byte(&aData[iAddr]);
1490 int x;
1491 int usableSize = pPg->pBt->usableSize;
1492 int size; /* Size of the free slot */
1494 assert( pc>0 );
1495 while( pc<=usableSize-4 ){
1496 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1497 ** freeblock form a big-endian integer which is the size of the freeblock
1498 ** in bytes, including the 4-byte header. */
1499 size = get2byte(&aData[pc+2]);
1500 if( (x = size - nByte)>=0 ){
1501 testcase( x==4 );
1502 testcase( x==3 );
1503 if( size+pc > usableSize ){
1504 *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
1505 return 0;
1506 }else if( x<4 ){
1507 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1508 ** number of bytes in fragments may not exceed 60. */
1509 if( aData[hdr+7]>57 ) return 0;
1511 /* Remove the slot from the free-list. Update the number of
1512 ** fragmented bytes within the page. */
1513 memcpy(&aData[iAddr], &aData[pc], 2);
1514 aData[hdr+7] += (u8)x;
1515 }else{
1516 /* The slot remains on the free-list. Reduce its size to account
1517 ** for the portion used by the new allocation. */
1518 put2byte(&aData[pc+2], x);
1520 return &aData[pc + x];
1522 iAddr = pc;
1523 pc = get2byte(&aData[pc]);
1524 if( pc<iAddr+size ) break;
1526 if( pc ){
1527 *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
1530 return 0;
1534 ** Allocate nByte bytes of space from within the B-Tree page passed
1535 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1536 ** of the first byte of allocated space. Return either SQLITE_OK or
1537 ** an error code (usually SQLITE_CORRUPT).
1539 ** The caller guarantees that there is sufficient space to make the
1540 ** allocation. This routine might need to defragment in order to bring
1541 ** all the space together, however. This routine will avoid using
1542 ** the first two bytes past the cell pointer area since presumably this
1543 ** allocation is being made in order to insert a new cell, so we will
1544 ** also end up needing a new cell pointer.
1546 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1547 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1548 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1549 int top; /* First byte of cell content area */
1550 int rc = SQLITE_OK; /* Integer return code */
1551 int gap; /* First byte of gap between cell pointers and cell content */
1553 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1554 assert( pPage->pBt );
1555 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1556 assert( nByte>=0 ); /* Minimum cell size is 4 */
1557 assert( pPage->nFree>=nByte );
1558 assert( pPage->nOverflow==0 );
1559 assert( nByte < (int)(pPage->pBt->usableSize-8) );
1561 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1562 gap = pPage->cellOffset + 2*pPage->nCell;
1563 assert( gap<=65536 );
1564 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1565 ** and the reserved space is zero (the usual value for reserved space)
1566 ** then the cell content offset of an empty page wants to be 65536.
1567 ** However, that integer is too large to be stored in a 2-byte unsigned
1568 ** integer, so a value of 0 is used in its place. */
1569 top = get2byte(&data[hdr+5]);
1570 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1571 if( gap>top ){
1572 if( top==0 && pPage->pBt->usableSize==65536 ){
1573 top = 65536;
1574 }else{
1575 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1579 /* If there is enough space between gap and top for one more cell pointer
1580 ** array entry offset, and if the freelist is not empty, then search the
1581 ** freelist looking for a free slot big enough to satisfy the request.
1583 testcase( gap+2==top );
1584 testcase( gap+1==top );
1585 testcase( gap==top );
1586 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1587 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1588 if( pSpace ){
1589 assert( pSpace>=data && (pSpace - data)<65536 );
1590 *pIdx = (int)(pSpace - data);
1591 return SQLITE_OK;
1592 }else if( rc ){
1593 return rc;
1597 /* The request could not be fulfilled using a freelist slot. Check
1598 ** to see if defragmentation is necessary.
1600 testcase( gap+2+nByte==top );
1601 if( gap+2+nByte>top ){
1602 assert( pPage->nCell>0 || CORRUPT_DB );
1603 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1604 if( rc ) return rc;
1605 top = get2byteNotZero(&data[hdr+5]);
1606 assert( gap+2+nByte<=top );
1610 /* Allocate memory from the gap in between the cell pointer array
1611 ** and the cell content area. The btreeInitPage() call has already
1612 ** validated the freelist. Given that the freelist is valid, there
1613 ** is no way that the allocation can extend off the end of the page.
1614 ** The assert() below verifies the previous sentence.
1616 top -= nByte;
1617 put2byte(&data[hdr+5], top);
1618 assert( top+nByte <= (int)pPage->pBt->usableSize );
1619 *pIdx = top;
1620 return SQLITE_OK;
1624 ** Return a section of the pPage->aData to the freelist.
1625 ** The first byte of the new free block is pPage->aData[iStart]
1626 ** and the size of the block is iSize bytes.
1628 ** Adjacent freeblocks are coalesced.
1630 ** Note that even though the freeblock list was checked by btreeInitPage(),
1631 ** that routine will not detect overlap between cells or freeblocks. Nor
1632 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1633 ** at the end of the page. So do additional corruption checks inside this
1634 ** routine and return SQLITE_CORRUPT if any problems are found.
1636 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1637 u16 iPtr; /* Address of ptr to next freeblock */
1638 u16 iFreeBlk; /* Address of the next freeblock */
1639 u8 hdr; /* Page header size. 0 or 100 */
1640 u8 nFrag = 0; /* Reduction in fragmentation */
1641 u16 iOrigSize = iSize; /* Original value of iSize */
1642 u16 x; /* Offset to cell content area */
1643 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1644 unsigned char *data = pPage->aData; /* Page content */
1646 assert( pPage->pBt!=0 );
1647 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1648 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1649 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1650 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1651 assert( iSize>=4 ); /* Minimum cell size is 4 */
1652 assert( iStart<=pPage->pBt->usableSize-4 );
1654 /* The list of freeblocks must be in ascending order. Find the
1655 ** spot on the list where iStart should be inserted.
1657 hdr = pPage->hdrOffset;
1658 iPtr = hdr + 1;
1659 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1660 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1661 }else{
1662 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1663 if( iFreeBlk<iPtr+4 ){
1664 if( iFreeBlk==0 ) break;
1665 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1667 iPtr = iFreeBlk;
1669 if( iFreeBlk>pPage->pBt->usableSize-4 ){
1670 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1672 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1674 /* At this point:
1675 ** iFreeBlk: First freeblock after iStart, or zero if none
1676 ** iPtr: The address of a pointer to iFreeBlk
1678 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1680 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1681 nFrag = iFreeBlk - iEnd;
1682 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
1683 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1684 if( iEnd > pPage->pBt->usableSize ){
1685 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1687 iSize = iEnd - iStart;
1688 iFreeBlk = get2byte(&data[iFreeBlk]);
1691 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1692 ** pointer in the page header) then check to see if iStart should be
1693 ** coalesced onto the end of iPtr.
1695 if( iPtr>hdr+1 ){
1696 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1697 if( iPtrEnd+3>=iStart ){
1698 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
1699 nFrag += iStart - iPtrEnd;
1700 iSize = iEnd - iPtr;
1701 iStart = iPtr;
1704 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
1705 data[hdr+7] -= nFrag;
1707 x = get2byte(&data[hdr+5]);
1708 if( iStart<=x ){
1709 /* The new freeblock is at the beginning of the cell content area,
1710 ** so just extend the cell content area rather than create another
1711 ** freelist entry */
1712 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
1713 put2byte(&data[hdr+1], iFreeBlk);
1714 put2byte(&data[hdr+5], iEnd);
1715 }else{
1716 /* Insert the new freeblock into the freelist */
1717 put2byte(&data[iPtr], iStart);
1719 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1720 /* Overwrite deleted information with zeros when the secure_delete
1721 ** option is enabled */
1722 memset(&data[iStart], 0, iSize);
1724 put2byte(&data[iStart], iFreeBlk);
1725 put2byte(&data[iStart+2], iSize);
1726 pPage->nFree += iOrigSize;
1727 return SQLITE_OK;
1731 ** Decode the flags byte (the first byte of the header) for a page
1732 ** and initialize fields of the MemPage structure accordingly.
1734 ** Only the following combinations are supported. Anything different
1735 ** indicates a corrupt database files:
1737 ** PTF_ZERODATA
1738 ** PTF_ZERODATA | PTF_LEAF
1739 ** PTF_LEAFDATA | PTF_INTKEY
1740 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1742 static int decodeFlags(MemPage *pPage, int flagByte){
1743 BtShared *pBt; /* A copy of pPage->pBt */
1745 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1746 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1747 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
1748 flagByte &= ~PTF_LEAF;
1749 pPage->childPtrSize = 4-4*pPage->leaf;
1750 pPage->xCellSize = cellSizePtr;
1751 pBt = pPage->pBt;
1752 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1753 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1754 ** interior table b-tree page. */
1755 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1756 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1757 ** leaf table b-tree page. */
1758 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1759 pPage->intKey = 1;
1760 if( pPage->leaf ){
1761 pPage->intKeyLeaf = 1;
1762 pPage->xParseCell = btreeParseCellPtr;
1763 }else{
1764 pPage->intKeyLeaf = 0;
1765 pPage->xCellSize = cellSizePtrNoPayload;
1766 pPage->xParseCell = btreeParseCellPtrNoPayload;
1768 pPage->maxLocal = pBt->maxLeaf;
1769 pPage->minLocal = pBt->minLeaf;
1770 }else if( flagByte==PTF_ZERODATA ){
1771 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1772 ** interior index b-tree page. */
1773 assert( (PTF_ZERODATA)==2 );
1774 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1775 ** leaf index b-tree page. */
1776 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1777 pPage->intKey = 0;
1778 pPage->intKeyLeaf = 0;
1779 pPage->xParseCell = btreeParseCellPtrIndex;
1780 pPage->maxLocal = pBt->maxLocal;
1781 pPage->minLocal = pBt->minLocal;
1782 }else{
1783 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1784 ** an error. */
1785 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1787 pPage->max1bytePayload = pBt->max1bytePayload;
1788 return SQLITE_OK;
1792 ** Initialize the auxiliary information for a disk block.
1794 ** Return SQLITE_OK on success. If we see that the page does
1795 ** not contain a well-formed database page, then return
1796 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1797 ** guarantee that the page is well-formed. It only shows that
1798 ** we failed to detect any corruption.
1800 static int btreeInitPage(MemPage *pPage){
1801 int pc; /* Address of a freeblock within pPage->aData[] */
1802 u8 hdr; /* Offset to beginning of page header */
1803 u8 *data; /* Equal to pPage->aData */
1804 BtShared *pBt; /* The main btree structure */
1805 int usableSize; /* Amount of usable space on each page */
1806 u16 cellOffset; /* Offset from start of page to first cell pointer */
1807 int nFree; /* Number of unused bytes on the page */
1808 int top; /* First byte of the cell content area */
1809 int iCellFirst; /* First allowable cell or freeblock offset */
1810 int iCellLast; /* Last possible cell or freeblock offset */
1812 assert( pPage->pBt!=0 );
1813 assert( pPage->pBt->db!=0 );
1814 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1815 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1816 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1817 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1818 assert( pPage->isInit==0 );
1820 pBt = pPage->pBt;
1821 hdr = pPage->hdrOffset;
1822 data = pPage->aData;
1823 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1824 ** the b-tree page type. */
1825 if( decodeFlags(pPage, data[hdr]) ){
1826 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1828 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1829 pPage->maskPage = (u16)(pBt->pageSize - 1);
1830 pPage->nOverflow = 0;
1831 usableSize = pBt->usableSize;
1832 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1833 pPage->aDataEnd = &data[usableSize];
1834 pPage->aCellIdx = &data[cellOffset];
1835 pPage->aDataOfst = &data[pPage->childPtrSize];
1836 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1837 ** the start of the cell content area. A zero value for this integer is
1838 ** interpreted as 65536. */
1839 top = get2byteNotZero(&data[hdr+5]);
1840 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1841 ** number of cells on the page. */
1842 pPage->nCell = get2byte(&data[hdr+3]);
1843 if( pPage->nCell>MX_CELL(pBt) ){
1844 /* To many cells for a single page. The page must be corrupt */
1845 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1847 testcase( pPage->nCell==MX_CELL(pBt) );
1848 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1849 ** possible for a root page of a table that contains no rows) then the
1850 ** offset to the cell content area will equal the page size minus the
1851 ** bytes of reserved space. */
1852 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1854 /* A malformed database page might cause us to read past the end
1855 ** of page when parsing a cell.
1857 ** The following block of code checks early to see if a cell extends
1858 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1859 ** returned if it does.
1861 iCellFirst = cellOffset + 2*pPage->nCell;
1862 iCellLast = usableSize - 4;
1863 if( pBt->db->flags & SQLITE_CellSizeCk ){
1864 int i; /* Index into the cell pointer array */
1865 int sz; /* Size of a cell */
1867 if( !pPage->leaf ) iCellLast--;
1868 for(i=0; i<pPage->nCell; i++){
1869 pc = get2byteAligned(&data[cellOffset+i*2]);
1870 testcase( pc==iCellFirst );
1871 testcase( pc==iCellLast );
1872 if( pc<iCellFirst || pc>iCellLast ){
1873 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1875 sz = pPage->xCellSize(pPage, &data[pc]);
1876 testcase( pc+sz==usableSize );
1877 if( pc+sz>usableSize ){
1878 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1881 if( !pPage->leaf ) iCellLast++;
1884 /* Compute the total free space on the page
1885 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1886 ** start of the first freeblock on the page, or is zero if there are no
1887 ** freeblocks. */
1888 pc = get2byte(&data[hdr+1]);
1889 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1890 if( pc>0 ){
1891 u32 next, size;
1892 if( pc<iCellFirst ){
1893 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1894 ** always be at least one cell before the first freeblock.
1896 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1898 while( 1 ){
1899 if( pc>iCellLast ){
1900 /* Freeblock off the end of the page */
1901 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1903 next = get2byte(&data[pc]);
1904 size = get2byte(&data[pc+2]);
1905 nFree = nFree + size;
1906 if( next<=pc+size+3 ) break;
1907 pc = next;
1909 if( next>0 ){
1910 /* Freeblock not in ascending order */
1911 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1913 if( pc+size>(unsigned int)usableSize ){
1914 /* Last freeblock extends past page end */
1915 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1919 /* At this point, nFree contains the sum of the offset to the start
1920 ** of the cell-content area plus the number of free bytes within
1921 ** the cell-content area. If this is greater than the usable-size
1922 ** of the page, then the page must be corrupted. This check also
1923 ** serves to verify that the offset to the start of the cell-content
1924 ** area, according to the page header, lies within the page.
1926 if( nFree>usableSize ){
1927 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1929 pPage->nFree = (u16)(nFree - iCellFirst);
1930 pPage->isInit = 1;
1931 return SQLITE_OK;
1935 ** Set up a raw page so that it looks like a database page holding
1936 ** no entries.
1938 static void zeroPage(MemPage *pPage, int flags){
1939 unsigned char *data = pPage->aData;
1940 BtShared *pBt = pPage->pBt;
1941 u8 hdr = pPage->hdrOffset;
1942 u16 first;
1944 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1945 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1946 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1947 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1948 assert( sqlite3_mutex_held(pBt->mutex) );
1949 if( pBt->btsFlags & BTS_FAST_SECURE ){
1950 memset(&data[hdr], 0, pBt->usableSize - hdr);
1952 data[hdr] = (char)flags;
1953 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1954 memset(&data[hdr+1], 0, 4);
1955 data[hdr+7] = 0;
1956 put2byte(&data[hdr+5], pBt->usableSize);
1957 pPage->nFree = (u16)(pBt->usableSize - first);
1958 decodeFlags(pPage, flags);
1959 pPage->cellOffset = first;
1960 pPage->aDataEnd = &data[pBt->usableSize];
1961 pPage->aCellIdx = &data[first];
1962 pPage->aDataOfst = &data[pPage->childPtrSize];
1963 pPage->nOverflow = 0;
1964 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1965 pPage->maskPage = (u16)(pBt->pageSize - 1);
1966 pPage->nCell = 0;
1967 pPage->isInit = 1;
1972 ** Convert a DbPage obtained from the pager into a MemPage used by
1973 ** the btree layer.
1975 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1976 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1977 if( pgno!=pPage->pgno ){
1978 pPage->aData = sqlite3PagerGetData(pDbPage);
1979 pPage->pDbPage = pDbPage;
1980 pPage->pBt = pBt;
1981 pPage->pgno = pgno;
1982 pPage->hdrOffset = pgno==1 ? 100 : 0;
1984 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
1985 return pPage;
1989 ** Get a page from the pager. Initialize the MemPage.pBt and
1990 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
1992 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1993 ** about the content of the page at this time. So do not go to the disk
1994 ** to fetch the content. Just fill in the content with zeros for now.
1995 ** If in the future we call sqlite3PagerWrite() on this page, that
1996 ** means we have started to be concerned about content and the disk
1997 ** read should occur at that point.
1999 static int btreeGetPage(
2000 BtShared *pBt, /* The btree */
2001 Pgno pgno, /* Number of the page to fetch */
2002 MemPage **ppPage, /* Return the page in this parameter */
2003 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2005 int rc;
2006 DbPage *pDbPage;
2008 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2009 assert( sqlite3_mutex_held(pBt->mutex) );
2010 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2011 if( rc ) return rc;
2012 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2013 return SQLITE_OK;
2017 ** Retrieve a page from the pager cache. If the requested page is not
2018 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2019 ** MemPage.aData elements if needed.
2021 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2022 DbPage *pDbPage;
2023 assert( sqlite3_mutex_held(pBt->mutex) );
2024 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2025 if( pDbPage ){
2026 return btreePageFromDbPage(pDbPage, pgno, pBt);
2028 return 0;
2032 ** Return the size of the database file in pages. If there is any kind of
2033 ** error, return ((unsigned int)-1).
2035 static Pgno btreePagecount(BtShared *pBt){
2036 return pBt->nPage;
2038 u32 sqlite3BtreeLastPage(Btree *p){
2039 assert( sqlite3BtreeHoldsMutex(p) );
2040 assert( ((p->pBt->nPage)&0x8000000)==0 );
2041 return btreePagecount(p->pBt);
2045 ** Get a page from the pager and initialize it.
2047 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2048 ** call. Do additional sanity checking on the page in this case.
2049 ** And if the fetch fails, this routine must decrement pCur->iPage.
2051 ** The page is fetched as read-write unless pCur is not NULL and is
2052 ** a read-only cursor.
2054 ** If an error occurs, then *ppPage is undefined. It
2055 ** may remain unchanged, or it may be set to an invalid value.
2057 static int getAndInitPage(
2058 BtShared *pBt, /* The database file */
2059 Pgno pgno, /* Number of the page to get */
2060 MemPage **ppPage, /* Write the page pointer here */
2061 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2062 int bReadOnly /* True for a read-only page */
2064 int rc;
2065 DbPage *pDbPage;
2066 assert( sqlite3_mutex_held(pBt->mutex) );
2067 assert( pCur==0 || ppPage==&pCur->pPage );
2068 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2069 assert( pCur==0 || pCur->iPage>0 );
2071 if( pgno>btreePagecount(pBt) ){
2072 rc = SQLITE_CORRUPT_BKPT;
2073 goto getAndInitPage_error;
2075 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2076 if( rc ){
2077 goto getAndInitPage_error;
2079 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2080 if( (*ppPage)->isInit==0 ){
2081 btreePageFromDbPage(pDbPage, pgno, pBt);
2082 rc = btreeInitPage(*ppPage);
2083 if( rc!=SQLITE_OK ){
2084 releasePage(*ppPage);
2085 goto getAndInitPage_error;
2088 assert( (*ppPage)->pgno==pgno );
2089 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2091 /* If obtaining a child page for a cursor, we must verify that the page is
2092 ** compatible with the root page. */
2093 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2094 rc = SQLITE_CORRUPT_PGNO(pgno);
2095 releasePage(*ppPage);
2096 goto getAndInitPage_error;
2098 return SQLITE_OK;
2100 getAndInitPage_error:
2101 if( pCur ){
2102 pCur->iPage--;
2103 pCur->pPage = pCur->apPage[pCur->iPage];
2105 testcase( pgno==0 );
2106 assert( pgno!=0 || rc==SQLITE_CORRUPT );
2107 return rc;
2111 ** Release a MemPage. This should be called once for each prior
2112 ** call to btreeGetPage.
2114 ** Page1 is a special case and must be released using releasePageOne().
2116 static void releasePageNotNull(MemPage *pPage){
2117 assert( pPage->aData );
2118 assert( pPage->pBt );
2119 assert( pPage->pDbPage!=0 );
2120 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2121 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2122 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2123 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2125 static void releasePage(MemPage *pPage){
2126 if( pPage ) releasePageNotNull(pPage);
2128 static void releasePageOne(MemPage *pPage){
2129 assert( pPage!=0 );
2130 assert( pPage->aData );
2131 assert( pPage->pBt );
2132 assert( pPage->pDbPage!=0 );
2133 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2134 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2135 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2136 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2140 ** Get an unused page.
2142 ** This works just like btreeGetPage() with the addition:
2144 ** * If the page is already in use for some other purpose, immediately
2145 ** release it and return an SQLITE_CURRUPT error.
2146 ** * Make sure the isInit flag is clear
2148 static int btreeGetUnusedPage(
2149 BtShared *pBt, /* The btree */
2150 Pgno pgno, /* Number of the page to fetch */
2151 MemPage **ppPage, /* Return the page in this parameter */
2152 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2154 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2155 if( rc==SQLITE_OK ){
2156 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2157 releasePage(*ppPage);
2158 *ppPage = 0;
2159 return SQLITE_CORRUPT_BKPT;
2161 (*ppPage)->isInit = 0;
2162 }else{
2163 *ppPage = 0;
2165 return rc;
2170 ** During a rollback, when the pager reloads information into the cache
2171 ** so that the cache is restored to its original state at the start of
2172 ** the transaction, for each page restored this routine is called.
2174 ** This routine needs to reset the extra data section at the end of the
2175 ** page to agree with the restored data.
2177 static void pageReinit(DbPage *pData){
2178 MemPage *pPage;
2179 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2180 assert( sqlite3PagerPageRefcount(pData)>0 );
2181 if( pPage->isInit ){
2182 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2183 pPage->isInit = 0;
2184 if( sqlite3PagerPageRefcount(pData)>1 ){
2185 /* pPage might not be a btree page; it might be an overflow page
2186 ** or ptrmap page or a free page. In those cases, the following
2187 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2188 ** But no harm is done by this. And it is very important that
2189 ** btreeInitPage() be called on every btree page so we make
2190 ** the call for every page that comes in for re-initing. */
2191 btreeInitPage(pPage);
2197 ** Invoke the busy handler for a btree.
2199 static int btreeInvokeBusyHandler(void *pArg){
2200 BtShared *pBt = (BtShared*)pArg;
2201 assert( pBt->db );
2202 assert( sqlite3_mutex_held(pBt->db->mutex) );
2203 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2207 ** Open a database file.
2209 ** zFilename is the name of the database file. If zFilename is NULL
2210 ** then an ephemeral database is created. The ephemeral database might
2211 ** be exclusively in memory, or it might use a disk-based memory cache.
2212 ** Either way, the ephemeral database will be automatically deleted
2213 ** when sqlite3BtreeClose() is called.
2215 ** If zFilename is ":memory:" then an in-memory database is created
2216 ** that is automatically destroyed when it is closed.
2218 ** The "flags" parameter is a bitmask that might contain bits like
2219 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2221 ** If the database is already opened in the same database connection
2222 ** and we are in shared cache mode, then the open will fail with an
2223 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2224 ** objects in the same database connection since doing so will lead
2225 ** to problems with locking.
2227 int sqlite3BtreeOpen(
2228 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
2229 const char *zFilename, /* Name of the file containing the BTree database */
2230 sqlite3 *db, /* Associated database handle */
2231 Btree **ppBtree, /* Pointer to new Btree object written here */
2232 int flags, /* Options */
2233 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
2235 BtShared *pBt = 0; /* Shared part of btree structure */
2236 Btree *p; /* Handle to return */
2237 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2238 int rc = SQLITE_OK; /* Result code from this function */
2239 u8 nReserve; /* Byte of unused space on each page */
2240 unsigned char zDbHeader[100]; /* Database header content */
2242 /* True if opening an ephemeral, temporary database */
2243 const int isTempDb = zFilename==0 || zFilename[0]==0;
2245 /* Set the variable isMemdb to true for an in-memory database, or
2246 ** false for a file-based database.
2248 #ifdef SQLITE_OMIT_MEMORYDB
2249 const int isMemdb = 0;
2250 #else
2251 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2252 || (isTempDb && sqlite3TempInMemory(db))
2253 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2254 #endif
2256 assert( db!=0 );
2257 assert( pVfs!=0 );
2258 assert( sqlite3_mutex_held(db->mutex) );
2259 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2261 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2262 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2264 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2265 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2267 if( isMemdb ){
2268 flags |= BTREE_MEMORY;
2270 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2271 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2273 p = sqlite3MallocZero(sizeof(Btree));
2274 if( !p ){
2275 return SQLITE_NOMEM_BKPT;
2277 p->inTrans = TRANS_NONE;
2278 p->db = db;
2279 #ifndef SQLITE_OMIT_SHARED_CACHE
2280 p->lock.pBtree = p;
2281 p->lock.iTable = 1;
2282 #endif
2284 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2286 ** If this Btree is a candidate for shared cache, try to find an
2287 ** existing BtShared object that we can share with
2289 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2290 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2291 int nFilename = sqlite3Strlen30(zFilename)+1;
2292 int nFullPathname = pVfs->mxPathname+1;
2293 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2294 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2296 p->sharable = 1;
2297 if( !zFullPathname ){
2298 sqlite3_free(p);
2299 return SQLITE_NOMEM_BKPT;
2301 if( isMemdb ){
2302 memcpy(zFullPathname, zFilename, nFilename);
2303 }else{
2304 rc = sqlite3OsFullPathname(pVfs, zFilename,
2305 nFullPathname, zFullPathname);
2306 if( rc ){
2307 sqlite3_free(zFullPathname);
2308 sqlite3_free(p);
2309 return rc;
2312 #if SQLITE_THREADSAFE
2313 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2314 sqlite3_mutex_enter(mutexOpen);
2315 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2316 sqlite3_mutex_enter(mutexShared);
2317 #endif
2318 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2319 assert( pBt->nRef>0 );
2320 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2321 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2322 int iDb;
2323 for(iDb=db->nDb-1; iDb>=0; iDb--){
2324 Btree *pExisting = db->aDb[iDb].pBt;
2325 if( pExisting && pExisting->pBt==pBt ){
2326 sqlite3_mutex_leave(mutexShared);
2327 sqlite3_mutex_leave(mutexOpen);
2328 sqlite3_free(zFullPathname);
2329 sqlite3_free(p);
2330 return SQLITE_CONSTRAINT;
2333 p->pBt = pBt;
2334 pBt->nRef++;
2335 break;
2338 sqlite3_mutex_leave(mutexShared);
2339 sqlite3_free(zFullPathname);
2341 #ifdef SQLITE_DEBUG
2342 else{
2343 /* In debug mode, we mark all persistent databases as sharable
2344 ** even when they are not. This exercises the locking code and
2345 ** gives more opportunity for asserts(sqlite3_mutex_held())
2346 ** statements to find locking problems.
2348 p->sharable = 1;
2350 #endif
2352 #endif
2353 if( pBt==0 ){
2355 ** The following asserts make sure that structures used by the btree are
2356 ** the right size. This is to guard against size changes that result
2357 ** when compiling on a different architecture.
2359 assert( sizeof(i64)==8 );
2360 assert( sizeof(u64)==8 );
2361 assert( sizeof(u32)==4 );
2362 assert( sizeof(u16)==2 );
2363 assert( sizeof(Pgno)==4 );
2365 pBt = sqlite3MallocZero( sizeof(*pBt) );
2366 if( pBt==0 ){
2367 rc = SQLITE_NOMEM_BKPT;
2368 goto btree_open_out;
2370 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2371 sizeof(MemPage), flags, vfsFlags, pageReinit);
2372 if( rc==SQLITE_OK ){
2373 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2374 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2376 if( rc!=SQLITE_OK ){
2377 goto btree_open_out;
2379 pBt->openFlags = (u8)flags;
2380 pBt->db = db;
2381 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2382 p->pBt = pBt;
2384 pBt->pCursor = 0;
2385 pBt->pPage1 = 0;
2386 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2387 #if defined(SQLITE_SECURE_DELETE)
2388 pBt->btsFlags |= BTS_SECURE_DELETE;
2389 #elif defined(SQLITE_FAST_SECURE_DELETE)
2390 pBt->btsFlags |= BTS_OVERWRITE;
2391 #endif
2392 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2393 ** determined by the 2-byte integer located at an offset of 16 bytes from
2394 ** the beginning of the database file. */
2395 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2396 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2397 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2398 pBt->pageSize = 0;
2399 #ifndef SQLITE_OMIT_AUTOVACUUM
2400 /* If the magic name ":memory:" will create an in-memory database, then
2401 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2402 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2403 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2404 ** regular file-name. In this case the auto-vacuum applies as per normal.
2406 if( zFilename && !isMemdb ){
2407 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2408 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2410 #endif
2411 nReserve = 0;
2412 }else{
2413 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2414 ** determined by the one-byte unsigned integer found at an offset of 20
2415 ** into the database file header. */
2416 nReserve = zDbHeader[20];
2417 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2418 #ifndef SQLITE_OMIT_AUTOVACUUM
2419 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2420 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2421 #endif
2423 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2424 if( rc ) goto btree_open_out;
2425 pBt->usableSize = pBt->pageSize - nReserve;
2426 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
2428 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2429 /* Add the new BtShared object to the linked list sharable BtShareds.
2431 pBt->nRef = 1;
2432 if( p->sharable ){
2433 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2434 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2435 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2436 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2437 if( pBt->mutex==0 ){
2438 rc = SQLITE_NOMEM_BKPT;
2439 goto btree_open_out;
2442 sqlite3_mutex_enter(mutexShared);
2443 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2444 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2445 sqlite3_mutex_leave(mutexShared);
2447 #endif
2450 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2451 /* If the new Btree uses a sharable pBtShared, then link the new
2452 ** Btree into the list of all sharable Btrees for the same connection.
2453 ** The list is kept in ascending order by pBt address.
2455 if( p->sharable ){
2456 int i;
2457 Btree *pSib;
2458 for(i=0; i<db->nDb; i++){
2459 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2460 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2461 if( (uptr)p->pBt<(uptr)pSib->pBt ){
2462 p->pNext = pSib;
2463 p->pPrev = 0;
2464 pSib->pPrev = p;
2465 }else{
2466 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2467 pSib = pSib->pNext;
2469 p->pNext = pSib->pNext;
2470 p->pPrev = pSib;
2471 if( p->pNext ){
2472 p->pNext->pPrev = p;
2474 pSib->pNext = p;
2476 break;
2480 #endif
2481 *ppBtree = p;
2483 btree_open_out:
2484 if( rc!=SQLITE_OK ){
2485 if( pBt && pBt->pPager ){
2486 sqlite3PagerClose(pBt->pPager, 0);
2488 sqlite3_free(pBt);
2489 sqlite3_free(p);
2490 *ppBtree = 0;
2491 }else{
2492 sqlite3_file *pFile;
2494 /* If the B-Tree was successfully opened, set the pager-cache size to the
2495 ** default value. Except, when opening on an existing shared pager-cache,
2496 ** do not change the pager-cache size.
2498 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2499 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2502 pFile = sqlite3PagerFile(pBt->pPager);
2503 if( pFile->pMethods ){
2504 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2507 if( mutexOpen ){
2508 assert( sqlite3_mutex_held(mutexOpen) );
2509 sqlite3_mutex_leave(mutexOpen);
2511 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2512 return rc;
2516 ** Decrement the BtShared.nRef counter. When it reaches zero,
2517 ** remove the BtShared structure from the sharing list. Return
2518 ** true if the BtShared.nRef counter reaches zero and return
2519 ** false if it is still positive.
2521 static int removeFromSharingList(BtShared *pBt){
2522 #ifndef SQLITE_OMIT_SHARED_CACHE
2523 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2524 BtShared *pList;
2525 int removed = 0;
2527 assert( sqlite3_mutex_notheld(pBt->mutex) );
2528 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2529 sqlite3_mutex_enter(pMaster);
2530 pBt->nRef--;
2531 if( pBt->nRef<=0 ){
2532 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2533 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2534 }else{
2535 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2536 while( ALWAYS(pList) && pList->pNext!=pBt ){
2537 pList=pList->pNext;
2539 if( ALWAYS(pList) ){
2540 pList->pNext = pBt->pNext;
2543 if( SQLITE_THREADSAFE ){
2544 sqlite3_mutex_free(pBt->mutex);
2546 removed = 1;
2548 sqlite3_mutex_leave(pMaster);
2549 return removed;
2550 #else
2551 return 1;
2552 #endif
2556 ** Make sure pBt->pTmpSpace points to an allocation of
2557 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2558 ** pointer.
2560 static void allocateTempSpace(BtShared *pBt){
2561 if( !pBt->pTmpSpace ){
2562 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2564 /* One of the uses of pBt->pTmpSpace is to format cells before
2565 ** inserting them into a leaf page (function fillInCell()). If
2566 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2567 ** by the various routines that manipulate binary cells. Which
2568 ** can mean that fillInCell() only initializes the first 2 or 3
2569 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2570 ** it into a database page. This is not actually a problem, but it
2571 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2572 ** data is passed to system call write(). So to avoid this error,
2573 ** zero the first 4 bytes of temp space here.
2575 ** Also: Provide four bytes of initialized space before the
2576 ** beginning of pTmpSpace as an area available to prepend the
2577 ** left-child pointer to the beginning of a cell.
2579 if( pBt->pTmpSpace ){
2580 memset(pBt->pTmpSpace, 0, 8);
2581 pBt->pTmpSpace += 4;
2587 ** Free the pBt->pTmpSpace allocation
2589 static void freeTempSpace(BtShared *pBt){
2590 if( pBt->pTmpSpace ){
2591 pBt->pTmpSpace -= 4;
2592 sqlite3PageFree(pBt->pTmpSpace);
2593 pBt->pTmpSpace = 0;
2598 ** Close an open database and invalidate all cursors.
2600 int sqlite3BtreeClose(Btree *p){
2601 BtShared *pBt = p->pBt;
2602 BtCursor *pCur;
2604 /* Close all cursors opened via this handle. */
2605 assert( sqlite3_mutex_held(p->db->mutex) );
2606 sqlite3BtreeEnter(p);
2607 pCur = pBt->pCursor;
2608 while( pCur ){
2609 BtCursor *pTmp = pCur;
2610 pCur = pCur->pNext;
2611 if( pTmp->pBtree==p ){
2612 sqlite3BtreeCloseCursor(pTmp);
2616 /* Rollback any active transaction and free the handle structure.
2617 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2618 ** this handle.
2620 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2621 sqlite3BtreeLeave(p);
2623 /* If there are still other outstanding references to the shared-btree
2624 ** structure, return now. The remainder of this procedure cleans
2625 ** up the shared-btree.
2627 assert( p->wantToLock==0 && p->locked==0 );
2628 if( !p->sharable || removeFromSharingList(pBt) ){
2629 /* The pBt is no longer on the sharing list, so we can access
2630 ** it without having to hold the mutex.
2632 ** Clean out and delete the BtShared object.
2634 assert( !pBt->pCursor );
2635 sqlite3PagerClose(pBt->pPager, p->db);
2636 if( pBt->xFreeSchema && pBt->pSchema ){
2637 pBt->xFreeSchema(pBt->pSchema);
2639 sqlite3DbFree(0, pBt->pSchema);
2640 freeTempSpace(pBt);
2641 sqlite3_free(pBt);
2644 #ifndef SQLITE_OMIT_SHARED_CACHE
2645 assert( p->wantToLock==0 );
2646 assert( p->locked==0 );
2647 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2648 if( p->pNext ) p->pNext->pPrev = p->pPrev;
2649 #endif
2651 sqlite3_free(p);
2652 return SQLITE_OK;
2656 ** Change the "soft" limit on the number of pages in the cache.
2657 ** Unused and unmodified pages will be recycled when the number of
2658 ** pages in the cache exceeds this soft limit. But the size of the
2659 ** cache is allowed to grow larger than this limit if it contains
2660 ** dirty pages or pages still in active use.
2662 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2663 BtShared *pBt = p->pBt;
2664 assert( sqlite3_mutex_held(p->db->mutex) );
2665 sqlite3BtreeEnter(p);
2666 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2667 sqlite3BtreeLeave(p);
2668 return SQLITE_OK;
2672 ** Change the "spill" limit on the number of pages in the cache.
2673 ** If the number of pages exceeds this limit during a write transaction,
2674 ** the pager might attempt to "spill" pages to the journal early in
2675 ** order to free up memory.
2677 ** The value returned is the current spill size. If zero is passed
2678 ** as an argument, no changes are made to the spill size setting, so
2679 ** using mxPage of 0 is a way to query the current spill size.
2681 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2682 BtShared *pBt = p->pBt;
2683 int res;
2684 assert( sqlite3_mutex_held(p->db->mutex) );
2685 sqlite3BtreeEnter(p);
2686 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2687 sqlite3BtreeLeave(p);
2688 return res;
2691 #if SQLITE_MAX_MMAP_SIZE>0
2693 ** Change the limit on the amount of the database file that may be
2694 ** memory mapped.
2696 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2697 BtShared *pBt = p->pBt;
2698 assert( sqlite3_mutex_held(p->db->mutex) );
2699 sqlite3BtreeEnter(p);
2700 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2701 sqlite3BtreeLeave(p);
2702 return SQLITE_OK;
2704 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2707 ** Change the way data is synced to disk in order to increase or decrease
2708 ** how well the database resists damage due to OS crashes and power
2709 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2710 ** there is a high probability of damage) Level 2 is the default. There
2711 ** is a very low but non-zero probability of damage. Level 3 reduces the
2712 ** probability of damage to near zero but with a write performance reduction.
2714 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2715 int sqlite3BtreeSetPagerFlags(
2716 Btree *p, /* The btree to set the safety level on */
2717 unsigned pgFlags /* Various PAGER_* flags */
2719 BtShared *pBt = p->pBt;
2720 assert( sqlite3_mutex_held(p->db->mutex) );
2721 sqlite3BtreeEnter(p);
2722 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2723 sqlite3BtreeLeave(p);
2724 return SQLITE_OK;
2726 #endif
2729 ** Change the default pages size and the number of reserved bytes per page.
2730 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2731 ** without changing anything.
2733 ** The page size must be a power of 2 between 512 and 65536. If the page
2734 ** size supplied does not meet this constraint then the page size is not
2735 ** changed.
2737 ** Page sizes are constrained to be a power of two so that the region
2738 ** of the database file used for locking (beginning at PENDING_BYTE,
2739 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2740 ** at the beginning of a page.
2742 ** If parameter nReserve is less than zero, then the number of reserved
2743 ** bytes per page is left unchanged.
2745 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2746 ** and autovacuum mode can no longer be changed.
2748 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2749 int rc = SQLITE_OK;
2750 BtShared *pBt = p->pBt;
2751 assert( nReserve>=-1 && nReserve<=255 );
2752 sqlite3BtreeEnter(p);
2753 #if SQLITE_HAS_CODEC
2754 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2755 #endif
2756 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2757 sqlite3BtreeLeave(p);
2758 return SQLITE_READONLY;
2760 if( nReserve<0 ){
2761 nReserve = pBt->pageSize - pBt->usableSize;
2763 assert( nReserve>=0 && nReserve<=255 );
2764 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2765 ((pageSize-1)&pageSize)==0 ){
2766 assert( (pageSize & 7)==0 );
2767 assert( !pBt->pCursor );
2768 pBt->pageSize = (u32)pageSize;
2769 freeTempSpace(pBt);
2771 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2772 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2773 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2774 sqlite3BtreeLeave(p);
2775 return rc;
2779 ** Return the currently defined page size
2781 int sqlite3BtreeGetPageSize(Btree *p){
2782 return p->pBt->pageSize;
2786 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2787 ** may only be called if it is guaranteed that the b-tree mutex is already
2788 ** held.
2790 ** This is useful in one special case in the backup API code where it is
2791 ** known that the shared b-tree mutex is held, but the mutex on the
2792 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2793 ** were to be called, it might collide with some other operation on the
2794 ** database handle that owns *p, causing undefined behavior.
2796 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2797 int n;
2798 assert( sqlite3_mutex_held(p->pBt->mutex) );
2799 n = p->pBt->pageSize - p->pBt->usableSize;
2800 return n;
2804 ** Return the number of bytes of space at the end of every page that
2805 ** are intentually left unused. This is the "reserved" space that is
2806 ** sometimes used by extensions.
2808 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2809 ** greater of the current reserved space and the maximum requested
2810 ** reserve space.
2812 int sqlite3BtreeGetOptimalReserve(Btree *p){
2813 int n;
2814 sqlite3BtreeEnter(p);
2815 n = sqlite3BtreeGetReserveNoMutex(p);
2816 #ifdef SQLITE_HAS_CODEC
2817 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2818 #endif
2819 sqlite3BtreeLeave(p);
2820 return n;
2825 ** Set the maximum page count for a database if mxPage is positive.
2826 ** No changes are made if mxPage is 0 or negative.
2827 ** Regardless of the value of mxPage, return the maximum page count.
2829 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2830 int n;
2831 sqlite3BtreeEnter(p);
2832 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2833 sqlite3BtreeLeave(p);
2834 return n;
2838 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2840 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2841 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2842 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2843 ** newFlag==(-1) No changes
2845 ** This routine acts as a query if newFlag is less than zero
2847 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2848 ** freelist leaf pages are not written back to the database. Thus in-page
2849 ** deleted content is cleared, but freelist deleted content is not.
2851 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2852 ** that freelist leaf pages are written back into the database, increasing
2853 ** the amount of disk I/O.
2855 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2856 int b;
2857 if( p==0 ) return 0;
2858 sqlite3BtreeEnter(p);
2859 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2860 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2861 if( newFlag>=0 ){
2862 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2863 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2865 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2866 sqlite3BtreeLeave(p);
2867 return b;
2871 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2872 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2873 ** is disabled. The default value for the auto-vacuum property is
2874 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2876 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2877 #ifdef SQLITE_OMIT_AUTOVACUUM
2878 return SQLITE_READONLY;
2879 #else
2880 BtShared *pBt = p->pBt;
2881 int rc = SQLITE_OK;
2882 u8 av = (u8)autoVacuum;
2884 sqlite3BtreeEnter(p);
2885 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2886 rc = SQLITE_READONLY;
2887 }else{
2888 pBt->autoVacuum = av ?1:0;
2889 pBt->incrVacuum = av==2 ?1:0;
2891 sqlite3BtreeLeave(p);
2892 return rc;
2893 #endif
2897 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2898 ** enabled 1 is returned. Otherwise 0.
2900 int sqlite3BtreeGetAutoVacuum(Btree *p){
2901 #ifdef SQLITE_OMIT_AUTOVACUUM
2902 return BTREE_AUTOVACUUM_NONE;
2903 #else
2904 int rc;
2905 sqlite3BtreeEnter(p);
2906 rc = (
2907 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2908 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2909 BTREE_AUTOVACUUM_INCR
2911 sqlite3BtreeLeave(p);
2912 return rc;
2913 #endif
2917 ** If the user has not set the safety-level for this database connection
2918 ** using "PRAGMA synchronous", and if the safety-level is not already
2919 ** set to the value passed to this function as the second parameter,
2920 ** set it so.
2922 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2923 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2924 sqlite3 *db;
2925 Db *pDb;
2926 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2927 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2928 if( pDb->bSyncSet==0
2929 && pDb->safety_level!=safety_level
2930 && pDb!=&db->aDb[1]
2932 pDb->safety_level = safety_level;
2933 sqlite3PagerSetFlags(pBt->pPager,
2934 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2938 #else
2939 # define setDefaultSyncFlag(pBt,safety_level)
2940 #endif
2943 ** Get a reference to pPage1 of the database file. This will
2944 ** also acquire a readlock on that file.
2946 ** SQLITE_OK is returned on success. If the file is not a
2947 ** well-formed database file, then SQLITE_CORRUPT is returned.
2948 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
2949 ** is returned if we run out of memory.
2951 static int lockBtree(BtShared *pBt){
2952 int rc; /* Result code from subfunctions */
2953 MemPage *pPage1; /* Page 1 of the database file */
2954 int nPage; /* Number of pages in the database */
2955 int nPageFile = 0; /* Number of pages in the database file */
2956 int nPageHeader; /* Number of pages in the database according to hdr */
2958 assert( sqlite3_mutex_held(pBt->mutex) );
2959 assert( pBt->pPage1==0 );
2960 rc = sqlite3PagerSharedLock(pBt->pPager);
2961 if( rc!=SQLITE_OK ) return rc;
2962 rc = btreeGetPage(pBt, 1, &pPage1, 0);
2963 if( rc!=SQLITE_OK ) return rc;
2965 /* Do some checking to help insure the file we opened really is
2966 ** a valid database file.
2968 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2969 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2970 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2971 nPage = nPageFile;
2973 if( nPage>0 ){
2974 u32 pageSize;
2975 u32 usableSize;
2976 u8 *page1 = pPage1->aData;
2977 rc = SQLITE_NOTADB;
2978 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2979 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2980 ** 61 74 20 33 00. */
2981 if( memcmp(page1, zMagicHeader, 16)!=0 ){
2982 goto page1_init_failed;
2985 #ifdef SQLITE_OMIT_WAL
2986 if( page1[18]>1 ){
2987 pBt->btsFlags |= BTS_READ_ONLY;
2989 if( page1[19]>1 ){
2990 goto page1_init_failed;
2992 #else
2993 if( page1[18]>2 ){
2994 pBt->btsFlags |= BTS_READ_ONLY;
2996 if( page1[19]>2 ){
2997 goto page1_init_failed;
3000 /* If the write version is set to 2, this database should be accessed
3001 ** in WAL mode. If the log is not already open, open it now. Then
3002 ** return SQLITE_OK and return without populating BtShared.pPage1.
3003 ** The caller detects this and calls this function again. This is
3004 ** required as the version of page 1 currently in the page1 buffer
3005 ** may not be the latest version - there may be a newer one in the log
3006 ** file.
3008 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3009 int isOpen = 0;
3010 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3011 if( rc!=SQLITE_OK ){
3012 goto page1_init_failed;
3013 }else{
3014 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3015 if( isOpen==0 ){
3016 releasePageOne(pPage1);
3017 return SQLITE_OK;
3020 rc = SQLITE_NOTADB;
3021 }else{
3022 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3024 #endif
3026 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3027 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3029 ** The original design allowed these amounts to vary, but as of
3030 ** version 3.6.0, we require them to be fixed.
3032 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3033 goto page1_init_failed;
3035 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3036 ** determined by the 2-byte integer located at an offset of 16 bytes from
3037 ** the beginning of the database file. */
3038 pageSize = (page1[16]<<8) | (page1[17]<<16);
3039 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3040 ** between 512 and 65536 inclusive. */
3041 if( ((pageSize-1)&pageSize)!=0
3042 || pageSize>SQLITE_MAX_PAGE_SIZE
3043 || pageSize<=256
3045 goto page1_init_failed;
3047 assert( (pageSize & 7)==0 );
3048 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3049 ** integer at offset 20 is the number of bytes of space at the end of
3050 ** each page to reserve for extensions.
3052 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3053 ** determined by the one-byte unsigned integer found at an offset of 20
3054 ** into the database file header. */
3055 usableSize = pageSize - page1[20];
3056 if( (u32)pageSize!=pBt->pageSize ){
3057 /* After reading the first page of the database assuming a page size
3058 ** of BtShared.pageSize, we have discovered that the page-size is
3059 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3060 ** zero and return SQLITE_OK. The caller will call this function
3061 ** again with the correct page-size.
3063 releasePageOne(pPage1);
3064 pBt->usableSize = usableSize;
3065 pBt->pageSize = pageSize;
3066 freeTempSpace(pBt);
3067 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3068 pageSize-usableSize);
3069 return rc;
3071 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
3072 rc = SQLITE_CORRUPT_BKPT;
3073 goto page1_init_failed;
3075 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3076 ** be less than 480. In other words, if the page size is 512, then the
3077 ** reserved space size cannot exceed 32. */
3078 if( usableSize<480 ){
3079 goto page1_init_failed;
3081 pBt->pageSize = pageSize;
3082 pBt->usableSize = usableSize;
3083 #ifndef SQLITE_OMIT_AUTOVACUUM
3084 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3085 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3086 #endif
3089 /* maxLocal is the maximum amount of payload to store locally for
3090 ** a cell. Make sure it is small enough so that at least minFanout
3091 ** cells can will fit on one page. We assume a 10-byte page header.
3092 ** Besides the payload, the cell must store:
3093 ** 2-byte pointer to the cell
3094 ** 4-byte child pointer
3095 ** 9-byte nKey value
3096 ** 4-byte nData value
3097 ** 4-byte overflow page pointer
3098 ** So a cell consists of a 2-byte pointer, a header which is as much as
3099 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3100 ** page pointer.
3102 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3103 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3104 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3105 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3106 if( pBt->maxLocal>127 ){
3107 pBt->max1bytePayload = 127;
3108 }else{
3109 pBt->max1bytePayload = (u8)pBt->maxLocal;
3111 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3112 pBt->pPage1 = pPage1;
3113 pBt->nPage = nPage;
3114 return SQLITE_OK;
3116 page1_init_failed:
3117 releasePageOne(pPage1);
3118 pBt->pPage1 = 0;
3119 return rc;
3122 #ifndef NDEBUG
3124 ** Return the number of cursors open on pBt. This is for use
3125 ** in assert() expressions, so it is only compiled if NDEBUG is not
3126 ** defined.
3128 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3129 ** false then all cursors are counted.
3131 ** For the purposes of this routine, a cursor is any cursor that
3132 ** is capable of reading or writing to the database. Cursors that
3133 ** have been tripped into the CURSOR_FAULT state are not counted.
3135 static int countValidCursors(BtShared *pBt, int wrOnly){
3136 BtCursor *pCur;
3137 int r = 0;
3138 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3139 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3140 && pCur->eState!=CURSOR_FAULT ) r++;
3142 return r;
3144 #endif
3147 ** If there are no outstanding cursors and we are not in the middle
3148 ** of a transaction but there is a read lock on the database, then
3149 ** this routine unrefs the first page of the database file which
3150 ** has the effect of releasing the read lock.
3152 ** If there is a transaction in progress, this routine is a no-op.
3154 static void unlockBtreeIfUnused(BtShared *pBt){
3155 assert( sqlite3_mutex_held(pBt->mutex) );
3156 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3157 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3158 MemPage *pPage1 = pBt->pPage1;
3159 assert( pPage1->aData );
3160 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3161 pBt->pPage1 = 0;
3162 releasePageOne(pPage1);
3167 ** If pBt points to an empty file then convert that empty file
3168 ** into a new empty database by initializing the first page of
3169 ** the database.
3171 static int newDatabase(BtShared *pBt){
3172 MemPage *pP1;
3173 unsigned char *data;
3174 int rc;
3176 assert( sqlite3_mutex_held(pBt->mutex) );
3177 if( pBt->nPage>0 ){
3178 return SQLITE_OK;
3180 pP1 = pBt->pPage1;
3181 assert( pP1!=0 );
3182 data = pP1->aData;
3183 rc = sqlite3PagerWrite(pP1->pDbPage);
3184 if( rc ) return rc;
3185 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3186 assert( sizeof(zMagicHeader)==16 );
3187 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3188 data[17] = (u8)((pBt->pageSize>>16)&0xff);
3189 data[18] = 1;
3190 data[19] = 1;
3191 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3192 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3193 data[21] = 64;
3194 data[22] = 32;
3195 data[23] = 32;
3196 memset(&data[24], 0, 100-24);
3197 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3198 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3199 #ifndef SQLITE_OMIT_AUTOVACUUM
3200 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3201 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3202 put4byte(&data[36 + 4*4], pBt->autoVacuum);
3203 put4byte(&data[36 + 7*4], pBt->incrVacuum);
3204 #endif
3205 pBt->nPage = 1;
3206 data[31] = 1;
3207 return SQLITE_OK;
3211 ** Initialize the first page of the database file (creating a database
3212 ** consisting of a single page and no schema objects). Return SQLITE_OK
3213 ** if successful, or an SQLite error code otherwise.
3215 int sqlite3BtreeNewDb(Btree *p){
3216 int rc;
3217 sqlite3BtreeEnter(p);
3218 p->pBt->nPage = 0;
3219 rc = newDatabase(p->pBt);
3220 sqlite3BtreeLeave(p);
3221 return rc;
3225 ** Attempt to start a new transaction. A write-transaction
3226 ** is started if the second argument is nonzero, otherwise a read-
3227 ** transaction. If the second argument is 2 or more and exclusive
3228 ** transaction is started, meaning that no other process is allowed
3229 ** to access the database. A preexisting transaction may not be
3230 ** upgraded to exclusive by calling this routine a second time - the
3231 ** exclusivity flag only works for a new transaction.
3233 ** A write-transaction must be started before attempting any
3234 ** changes to the database. None of the following routines
3235 ** will work unless a transaction is started first:
3237 ** sqlite3BtreeCreateTable()
3238 ** sqlite3BtreeCreateIndex()
3239 ** sqlite3BtreeClearTable()
3240 ** sqlite3BtreeDropTable()
3241 ** sqlite3BtreeInsert()
3242 ** sqlite3BtreeDelete()
3243 ** sqlite3BtreeUpdateMeta()
3245 ** If an initial attempt to acquire the lock fails because of lock contention
3246 ** and the database was previously unlocked, then invoke the busy handler
3247 ** if there is one. But if there was previously a read-lock, do not
3248 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3249 ** returned when there is already a read-lock in order to avoid a deadlock.
3251 ** Suppose there are two processes A and B. A has a read lock and B has
3252 ** a reserved lock. B tries to promote to exclusive but is blocked because
3253 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3254 ** One or the other of the two processes must give way or there can be
3255 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3256 ** when A already has a read lock, we encourage A to give up and let B
3257 ** proceed.
3259 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3260 BtShared *pBt = p->pBt;
3261 int rc = SQLITE_OK;
3263 sqlite3BtreeEnter(p);
3264 btreeIntegrity(p);
3266 /* If the btree is already in a write-transaction, or it
3267 ** is already in a read-transaction and a read-transaction
3268 ** is requested, this is a no-op.
3270 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3271 goto trans_begun;
3273 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3275 /* Write transactions are not possible on a read-only database */
3276 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3277 rc = SQLITE_READONLY;
3278 goto trans_begun;
3281 #ifndef SQLITE_OMIT_SHARED_CACHE
3283 sqlite3 *pBlock = 0;
3284 /* If another database handle has already opened a write transaction
3285 ** on this shared-btree structure and a second write transaction is
3286 ** requested, return SQLITE_LOCKED.
3288 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3289 || (pBt->btsFlags & BTS_PENDING)!=0
3291 pBlock = pBt->pWriter->db;
3292 }else if( wrflag>1 ){
3293 BtLock *pIter;
3294 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3295 if( pIter->pBtree!=p ){
3296 pBlock = pIter->pBtree->db;
3297 break;
3301 if( pBlock ){
3302 sqlite3ConnectionBlocked(p->db, pBlock);
3303 rc = SQLITE_LOCKED_SHAREDCACHE;
3304 goto trans_begun;
3307 #endif
3309 /* Any read-only or read-write transaction implies a read-lock on
3310 ** page 1. So if some other shared-cache client already has a write-lock
3311 ** on page 1, the transaction cannot be opened. */
3312 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3313 if( SQLITE_OK!=rc ) goto trans_begun;
3315 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3316 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3317 do {
3318 /* Call lockBtree() until either pBt->pPage1 is populated or
3319 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3320 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3321 ** reading page 1 it discovers that the page-size of the database
3322 ** file is not pBt->pageSize. In this case lockBtree() will update
3323 ** pBt->pageSize to the page-size of the file on disk.
3325 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3327 if( rc==SQLITE_OK && wrflag ){
3328 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3329 rc = SQLITE_READONLY;
3330 }else{
3331 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3332 if( rc==SQLITE_OK ){
3333 rc = newDatabase(pBt);
3338 if( rc!=SQLITE_OK ){
3339 unlockBtreeIfUnused(pBt);
3341 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3342 btreeInvokeBusyHandler(pBt) );
3344 if( rc==SQLITE_OK ){
3345 if( p->inTrans==TRANS_NONE ){
3346 pBt->nTransaction++;
3347 #ifndef SQLITE_OMIT_SHARED_CACHE
3348 if( p->sharable ){
3349 assert( p->lock.pBtree==p && p->lock.iTable==1 );
3350 p->lock.eLock = READ_LOCK;
3351 p->lock.pNext = pBt->pLock;
3352 pBt->pLock = &p->lock;
3354 #endif
3356 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3357 if( p->inTrans>pBt->inTransaction ){
3358 pBt->inTransaction = p->inTrans;
3360 if( wrflag ){
3361 MemPage *pPage1 = pBt->pPage1;
3362 #ifndef SQLITE_OMIT_SHARED_CACHE
3363 assert( !pBt->pWriter );
3364 pBt->pWriter = p;
3365 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3366 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3367 #endif
3369 /* If the db-size header field is incorrect (as it may be if an old
3370 ** client has been writing the database file), update it now. Doing
3371 ** this sooner rather than later means the database size can safely
3372 ** re-read the database size from page 1 if a savepoint or transaction
3373 ** rollback occurs within the transaction.
3375 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3376 rc = sqlite3PagerWrite(pPage1->pDbPage);
3377 if( rc==SQLITE_OK ){
3378 put4byte(&pPage1->aData[28], pBt->nPage);
3385 trans_begun:
3386 if( rc==SQLITE_OK && wrflag ){
3387 /* This call makes sure that the pager has the correct number of
3388 ** open savepoints. If the second parameter is greater than 0 and
3389 ** the sub-journal is not already open, then it will be opened here.
3391 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3394 btreeIntegrity(p);
3395 sqlite3BtreeLeave(p);
3396 return rc;
3399 #ifndef SQLITE_OMIT_AUTOVACUUM
3402 ** Set the pointer-map entries for all children of page pPage. Also, if
3403 ** pPage contains cells that point to overflow pages, set the pointer
3404 ** map entries for the overflow pages as well.
3406 static int setChildPtrmaps(MemPage *pPage){
3407 int i; /* Counter variable */
3408 int nCell; /* Number of cells in page pPage */
3409 int rc; /* Return code */
3410 BtShared *pBt = pPage->pBt;
3411 Pgno pgno = pPage->pgno;
3413 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3414 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3415 if( rc!=SQLITE_OK ) return rc;
3416 nCell = pPage->nCell;
3418 for(i=0; i<nCell; i++){
3419 u8 *pCell = findCell(pPage, i);
3421 ptrmapPutOvflPtr(pPage, pCell, &rc);
3423 if( !pPage->leaf ){
3424 Pgno childPgno = get4byte(pCell);
3425 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3429 if( !pPage->leaf ){
3430 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3431 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3434 return rc;
3438 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3439 ** that it points to iTo. Parameter eType describes the type of pointer to
3440 ** be modified, as follows:
3442 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3443 ** page of pPage.
3445 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3446 ** page pointed to by one of the cells on pPage.
3448 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3449 ** overflow page in the list.
3451 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3452 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3453 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3454 if( eType==PTRMAP_OVERFLOW2 ){
3455 /* The pointer is always the first 4 bytes of the page in this case. */
3456 if( get4byte(pPage->aData)!=iFrom ){
3457 return SQLITE_CORRUPT_PGNO(pPage->pgno);
3459 put4byte(pPage->aData, iTo);
3460 }else{
3461 int i;
3462 int nCell;
3463 int rc;
3465 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3466 if( rc ) return rc;
3467 nCell = pPage->nCell;
3469 for(i=0; i<nCell; i++){
3470 u8 *pCell = findCell(pPage, i);
3471 if( eType==PTRMAP_OVERFLOW1 ){
3472 CellInfo info;
3473 pPage->xParseCell(pPage, pCell, &info);
3474 if( info.nLocal<info.nPayload ){
3475 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3476 return SQLITE_CORRUPT_PGNO(pPage->pgno);
3478 if( iFrom==get4byte(pCell+info.nSize-4) ){
3479 put4byte(pCell+info.nSize-4, iTo);
3480 break;
3483 }else{
3484 if( get4byte(pCell)==iFrom ){
3485 put4byte(pCell, iTo);
3486 break;
3491 if( i==nCell ){
3492 if( eType!=PTRMAP_BTREE ||
3493 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3494 return SQLITE_CORRUPT_PGNO(pPage->pgno);
3496 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3499 return SQLITE_OK;
3504 ** Move the open database page pDbPage to location iFreePage in the
3505 ** database. The pDbPage reference remains valid.
3507 ** The isCommit flag indicates that there is no need to remember that
3508 ** the journal needs to be sync()ed before database page pDbPage->pgno
3509 ** can be written to. The caller has already promised not to write to that
3510 ** page.
3512 static int relocatePage(
3513 BtShared *pBt, /* Btree */
3514 MemPage *pDbPage, /* Open page to move */
3515 u8 eType, /* Pointer map 'type' entry for pDbPage */
3516 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
3517 Pgno iFreePage, /* The location to move pDbPage to */
3518 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
3520 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3521 Pgno iDbPage = pDbPage->pgno;
3522 Pager *pPager = pBt->pPager;
3523 int rc;
3525 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3526 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3527 assert( sqlite3_mutex_held(pBt->mutex) );
3528 assert( pDbPage->pBt==pBt );
3530 /* Move page iDbPage from its current location to page number iFreePage */
3531 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3532 iDbPage, iFreePage, iPtrPage, eType));
3533 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3534 if( rc!=SQLITE_OK ){
3535 return rc;
3537 pDbPage->pgno = iFreePage;
3539 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3540 ** that point to overflow pages. The pointer map entries for all these
3541 ** pages need to be changed.
3543 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3544 ** pointer to a subsequent overflow page. If this is the case, then
3545 ** the pointer map needs to be updated for the subsequent overflow page.
3547 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3548 rc = setChildPtrmaps(pDbPage);
3549 if( rc!=SQLITE_OK ){
3550 return rc;
3552 }else{
3553 Pgno nextOvfl = get4byte(pDbPage->aData);
3554 if( nextOvfl!=0 ){
3555 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3556 if( rc!=SQLITE_OK ){
3557 return rc;
3562 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3563 ** that it points at iFreePage. Also fix the pointer map entry for
3564 ** iPtrPage.
3566 if( eType!=PTRMAP_ROOTPAGE ){
3567 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3568 if( rc!=SQLITE_OK ){
3569 return rc;
3571 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3572 if( rc!=SQLITE_OK ){
3573 releasePage(pPtrPage);
3574 return rc;
3576 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3577 releasePage(pPtrPage);
3578 if( rc==SQLITE_OK ){
3579 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3582 return rc;
3585 /* Forward declaration required by incrVacuumStep(). */
3586 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3589 ** Perform a single step of an incremental-vacuum. If successful, return
3590 ** SQLITE_OK. If there is no work to do (and therefore no point in
3591 ** calling this function again), return SQLITE_DONE. Or, if an error
3592 ** occurs, return some other error code.
3594 ** More specifically, this function attempts to re-organize the database so
3595 ** that the last page of the file currently in use is no longer in use.
3597 ** Parameter nFin is the number of pages that this database would contain
3598 ** were this function called until it returns SQLITE_DONE.
3600 ** If the bCommit parameter is non-zero, this function assumes that the
3601 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3602 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3603 ** operation, or false for an incremental vacuum.
3605 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3606 Pgno nFreeList; /* Number of pages still on the free-list */
3607 int rc;
3609 assert( sqlite3_mutex_held(pBt->mutex) );
3610 assert( iLastPg>nFin );
3612 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3613 u8 eType;
3614 Pgno iPtrPage;
3616 nFreeList = get4byte(&pBt->pPage1->aData[36]);
3617 if( nFreeList==0 ){
3618 return SQLITE_DONE;
3621 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3622 if( rc!=SQLITE_OK ){
3623 return rc;
3625 if( eType==PTRMAP_ROOTPAGE ){
3626 return SQLITE_CORRUPT_BKPT;
3629 if( eType==PTRMAP_FREEPAGE ){
3630 if( bCommit==0 ){
3631 /* Remove the page from the files free-list. This is not required
3632 ** if bCommit is non-zero. In that case, the free-list will be
3633 ** truncated to zero after this function returns, so it doesn't
3634 ** matter if it still contains some garbage entries.
3636 Pgno iFreePg;
3637 MemPage *pFreePg;
3638 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3639 if( rc!=SQLITE_OK ){
3640 return rc;
3642 assert( iFreePg==iLastPg );
3643 releasePage(pFreePg);
3645 } else {
3646 Pgno iFreePg; /* Index of free page to move pLastPg to */
3647 MemPage *pLastPg;
3648 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3649 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
3651 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3652 if( rc!=SQLITE_OK ){
3653 return rc;
3656 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3657 ** is swapped with the first free page pulled off the free list.
3659 ** On the other hand, if bCommit is greater than zero, then keep
3660 ** looping until a free-page located within the first nFin pages
3661 ** of the file is found.
3663 if( bCommit==0 ){
3664 eMode = BTALLOC_LE;
3665 iNear = nFin;
3667 do {
3668 MemPage *pFreePg;
3669 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3670 if( rc!=SQLITE_OK ){
3671 releasePage(pLastPg);
3672 return rc;
3674 releasePage(pFreePg);
3675 }while( bCommit && iFreePg>nFin );
3676 assert( iFreePg<iLastPg );
3678 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3679 releasePage(pLastPg);
3680 if( rc!=SQLITE_OK ){
3681 return rc;
3686 if( bCommit==0 ){
3687 do {
3688 iLastPg--;
3689 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3690 pBt->bDoTruncate = 1;
3691 pBt->nPage = iLastPg;
3693 return SQLITE_OK;
3697 ** The database opened by the first argument is an auto-vacuum database
3698 ** nOrig pages in size containing nFree free pages. Return the expected
3699 ** size of the database in pages following an auto-vacuum operation.
3701 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3702 int nEntry; /* Number of entries on one ptrmap page */
3703 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3704 Pgno nFin; /* Return value */
3706 nEntry = pBt->usableSize/5;
3707 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3708 nFin = nOrig - nFree - nPtrmap;
3709 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3710 nFin--;
3712 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3713 nFin--;
3716 return nFin;
3720 ** A write-transaction must be opened before calling this function.
3721 ** It performs a single unit of work towards an incremental vacuum.
3723 ** If the incremental vacuum is finished after this function has run,
3724 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3725 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3727 int sqlite3BtreeIncrVacuum(Btree *p){
3728 int rc;
3729 BtShared *pBt = p->pBt;
3731 sqlite3BtreeEnter(p);
3732 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3733 if( !pBt->autoVacuum ){
3734 rc = SQLITE_DONE;
3735 }else{
3736 Pgno nOrig = btreePagecount(pBt);
3737 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3738 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3740 if( nOrig<nFin ){
3741 rc = SQLITE_CORRUPT_BKPT;
3742 }else if( nFree>0 ){
3743 rc = saveAllCursors(pBt, 0, 0);
3744 if( rc==SQLITE_OK ){
3745 invalidateAllOverflowCache(pBt);
3746 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3748 if( rc==SQLITE_OK ){
3749 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3750 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3752 }else{
3753 rc = SQLITE_DONE;
3756 sqlite3BtreeLeave(p);
3757 return rc;
3761 ** This routine is called prior to sqlite3PagerCommit when a transaction
3762 ** is committed for an auto-vacuum database.
3764 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3765 ** the database file should be truncated to during the commit process.
3766 ** i.e. the database has been reorganized so that only the first *pnTrunc
3767 ** pages are in use.
3769 static int autoVacuumCommit(BtShared *pBt){
3770 int rc = SQLITE_OK;
3771 Pager *pPager = pBt->pPager;
3772 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3774 assert( sqlite3_mutex_held(pBt->mutex) );
3775 invalidateAllOverflowCache(pBt);
3776 assert(pBt->autoVacuum);
3777 if( !pBt->incrVacuum ){
3778 Pgno nFin; /* Number of pages in database after autovacuuming */
3779 Pgno nFree; /* Number of pages on the freelist initially */
3780 Pgno iFree; /* The next page to be freed */
3781 Pgno nOrig; /* Database size before freeing */
3783 nOrig = btreePagecount(pBt);
3784 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3785 /* It is not possible to create a database for which the final page
3786 ** is either a pointer-map page or the pending-byte page. If one
3787 ** is encountered, this indicates corruption.
3789 return SQLITE_CORRUPT_BKPT;
3792 nFree = get4byte(&pBt->pPage1->aData[36]);
3793 nFin = finalDbSize(pBt, nOrig, nFree);
3794 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3795 if( nFin<nOrig ){
3796 rc = saveAllCursors(pBt, 0, 0);
3798 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3799 rc = incrVacuumStep(pBt, nFin, iFree, 1);
3801 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3802 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3803 put4byte(&pBt->pPage1->aData[32], 0);
3804 put4byte(&pBt->pPage1->aData[36], 0);
3805 put4byte(&pBt->pPage1->aData[28], nFin);
3806 pBt->bDoTruncate = 1;
3807 pBt->nPage = nFin;
3809 if( rc!=SQLITE_OK ){
3810 sqlite3PagerRollback(pPager);
3814 assert( nRef>=sqlite3PagerRefcount(pPager) );
3815 return rc;
3818 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3819 # define setChildPtrmaps(x) SQLITE_OK
3820 #endif
3823 ** This routine does the first phase of a two-phase commit. This routine
3824 ** causes a rollback journal to be created (if it does not already exist)
3825 ** and populated with enough information so that if a power loss occurs
3826 ** the database can be restored to its original state by playing back
3827 ** the journal. Then the contents of the journal are flushed out to
3828 ** the disk. After the journal is safely on oxide, the changes to the
3829 ** database are written into the database file and flushed to oxide.
3830 ** At the end of this call, the rollback journal still exists on the
3831 ** disk and we are still holding all locks, so the transaction has not
3832 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3833 ** commit process.
3835 ** This call is a no-op if no write-transaction is currently active on pBt.
3837 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3838 ** the name of a master journal file that should be written into the
3839 ** individual journal file, or is NULL, indicating no master journal file
3840 ** (single database transaction).
3842 ** When this is called, the master journal should already have been
3843 ** created, populated with this journal pointer and synced to disk.
3845 ** Once this is routine has returned, the only thing required to commit
3846 ** the write-transaction for this database file is to delete the journal.
3848 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3849 int rc = SQLITE_OK;
3850 if( p->inTrans==TRANS_WRITE ){
3851 BtShared *pBt = p->pBt;
3852 sqlite3BtreeEnter(p);
3853 #ifndef SQLITE_OMIT_AUTOVACUUM
3854 if( pBt->autoVacuum ){
3855 rc = autoVacuumCommit(pBt);
3856 if( rc!=SQLITE_OK ){
3857 sqlite3BtreeLeave(p);
3858 return rc;
3861 if( pBt->bDoTruncate ){
3862 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3864 #endif
3865 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3866 sqlite3BtreeLeave(p);
3868 return rc;
3872 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3873 ** at the conclusion of a transaction.
3875 static void btreeEndTransaction(Btree *p){
3876 BtShared *pBt = p->pBt;
3877 sqlite3 *db = p->db;
3878 assert( sqlite3BtreeHoldsMutex(p) );
3880 #ifndef SQLITE_OMIT_AUTOVACUUM
3881 pBt->bDoTruncate = 0;
3882 #endif
3883 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3884 /* If there are other active statements that belong to this database
3885 ** handle, downgrade to a read-only transaction. The other statements
3886 ** may still be reading from the database. */
3887 downgradeAllSharedCacheTableLocks(p);
3888 p->inTrans = TRANS_READ;
3889 }else{
3890 /* If the handle had any kind of transaction open, decrement the
3891 ** transaction count of the shared btree. If the transaction count
3892 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3893 ** call below will unlock the pager. */
3894 if( p->inTrans!=TRANS_NONE ){
3895 clearAllSharedCacheTableLocks(p);
3896 pBt->nTransaction--;
3897 if( 0==pBt->nTransaction ){
3898 pBt->inTransaction = TRANS_NONE;
3902 /* Set the current transaction state to TRANS_NONE and unlock the
3903 ** pager if this call closed the only read or write transaction. */
3904 p->inTrans = TRANS_NONE;
3905 unlockBtreeIfUnused(pBt);
3908 btreeIntegrity(p);
3912 ** Commit the transaction currently in progress.
3914 ** This routine implements the second phase of a 2-phase commit. The
3915 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3916 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3917 ** routine did all the work of writing information out to disk and flushing the
3918 ** contents so that they are written onto the disk platter. All this
3919 ** routine has to do is delete or truncate or zero the header in the
3920 ** the rollback journal (which causes the transaction to commit) and
3921 ** drop locks.
3923 ** Normally, if an error occurs while the pager layer is attempting to
3924 ** finalize the underlying journal file, this function returns an error and
3925 ** the upper layer will attempt a rollback. However, if the second argument
3926 ** is non-zero then this b-tree transaction is part of a multi-file
3927 ** transaction. In this case, the transaction has already been committed
3928 ** (by deleting a master journal file) and the caller will ignore this
3929 ** functions return code. So, even if an error occurs in the pager layer,
3930 ** reset the b-tree objects internal state to indicate that the write
3931 ** transaction has been closed. This is quite safe, as the pager will have
3932 ** transitioned to the error state.
3934 ** This will release the write lock on the database file. If there
3935 ** are no active cursors, it also releases the read lock.
3937 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3939 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3940 sqlite3BtreeEnter(p);
3941 btreeIntegrity(p);
3943 /* If the handle has a write-transaction open, commit the shared-btrees
3944 ** transaction and set the shared state to TRANS_READ.
3946 if( p->inTrans==TRANS_WRITE ){
3947 int rc;
3948 BtShared *pBt = p->pBt;
3949 assert( pBt->inTransaction==TRANS_WRITE );
3950 assert( pBt->nTransaction>0 );
3951 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3952 if( rc!=SQLITE_OK && bCleanup==0 ){
3953 sqlite3BtreeLeave(p);
3954 return rc;
3956 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
3957 pBt->inTransaction = TRANS_READ;
3958 btreeClearHasContent(pBt);
3961 btreeEndTransaction(p);
3962 sqlite3BtreeLeave(p);
3963 return SQLITE_OK;
3967 ** Do both phases of a commit.
3969 int sqlite3BtreeCommit(Btree *p){
3970 int rc;
3971 sqlite3BtreeEnter(p);
3972 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3973 if( rc==SQLITE_OK ){
3974 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3976 sqlite3BtreeLeave(p);
3977 return rc;
3981 ** This routine sets the state to CURSOR_FAULT and the error
3982 ** code to errCode for every cursor on any BtShared that pBtree
3983 ** references. Or if the writeOnly flag is set to 1, then only
3984 ** trip write cursors and leave read cursors unchanged.
3986 ** Every cursor is a candidate to be tripped, including cursors
3987 ** that belong to other database connections that happen to be
3988 ** sharing the cache with pBtree.
3990 ** This routine gets called when a rollback occurs. If the writeOnly
3991 ** flag is true, then only write-cursors need be tripped - read-only
3992 ** cursors save their current positions so that they may continue
3993 ** following the rollback. Or, if writeOnly is false, all cursors are
3994 ** tripped. In general, writeOnly is false if the transaction being
3995 ** rolled back modified the database schema. In this case b-tree root
3996 ** pages may be moved or deleted from the database altogether, making
3997 ** it unsafe for read cursors to continue.
3999 ** If the writeOnly flag is true and an error is encountered while
4000 ** saving the current position of a read-only cursor, all cursors,
4001 ** including all read-cursors are tripped.
4003 ** SQLITE_OK is returned if successful, or if an error occurs while
4004 ** saving a cursor position, an SQLite error code.
4006 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4007 BtCursor *p;
4008 int rc = SQLITE_OK;
4010 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4011 if( pBtree ){
4012 sqlite3BtreeEnter(pBtree);
4013 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4014 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4015 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4016 rc = saveCursorPosition(p);
4017 if( rc!=SQLITE_OK ){
4018 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4019 break;
4022 }else{
4023 sqlite3BtreeClearCursor(p);
4024 p->eState = CURSOR_FAULT;
4025 p->skipNext = errCode;
4027 btreeReleaseAllCursorPages(p);
4029 sqlite3BtreeLeave(pBtree);
4031 return rc;
4035 ** Rollback the transaction in progress.
4037 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4038 ** Only write cursors are tripped if writeOnly is true but all cursors are
4039 ** tripped if writeOnly is false. Any attempt to use
4040 ** a tripped cursor will result in an error.
4042 ** This will release the write lock on the database file. If there
4043 ** are no active cursors, it also releases the read lock.
4045 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4046 int rc;
4047 BtShared *pBt = p->pBt;
4048 MemPage *pPage1;
4050 assert( writeOnly==1 || writeOnly==0 );
4051 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4052 sqlite3BtreeEnter(p);
4053 if( tripCode==SQLITE_OK ){
4054 rc = tripCode = saveAllCursors(pBt, 0, 0);
4055 if( rc ) writeOnly = 0;
4056 }else{
4057 rc = SQLITE_OK;
4059 if( tripCode ){
4060 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4061 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4062 if( rc2!=SQLITE_OK ) rc = rc2;
4064 btreeIntegrity(p);
4066 if( p->inTrans==TRANS_WRITE ){
4067 int rc2;
4069 assert( TRANS_WRITE==pBt->inTransaction );
4070 rc2 = sqlite3PagerRollback(pBt->pPager);
4071 if( rc2!=SQLITE_OK ){
4072 rc = rc2;
4075 /* The rollback may have destroyed the pPage1->aData value. So
4076 ** call btreeGetPage() on page 1 again to make
4077 ** sure pPage1->aData is set correctly. */
4078 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4079 int nPage = get4byte(28+(u8*)pPage1->aData);
4080 testcase( nPage==0 );
4081 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4082 testcase( pBt->nPage!=nPage );
4083 pBt->nPage = nPage;
4084 releasePageOne(pPage1);
4086 assert( countValidCursors(pBt, 1)==0 );
4087 pBt->inTransaction = TRANS_READ;
4088 btreeClearHasContent(pBt);
4091 btreeEndTransaction(p);
4092 sqlite3BtreeLeave(p);
4093 return rc;
4097 ** Start a statement subtransaction. The subtransaction can be rolled
4098 ** back independently of the main transaction. You must start a transaction
4099 ** before starting a subtransaction. The subtransaction is ended automatically
4100 ** if the main transaction commits or rolls back.
4102 ** Statement subtransactions are used around individual SQL statements
4103 ** that are contained within a BEGIN...COMMIT block. If a constraint
4104 ** error occurs within the statement, the effect of that one statement
4105 ** can be rolled back without having to rollback the entire transaction.
4107 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4108 ** value passed as the second parameter is the total number of savepoints,
4109 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4110 ** are no active savepoints and no other statement-transactions open,
4111 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4112 ** using the sqlite3BtreeSavepoint() function.
4114 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4115 int rc;
4116 BtShared *pBt = p->pBt;
4117 sqlite3BtreeEnter(p);
4118 assert( p->inTrans==TRANS_WRITE );
4119 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4120 assert( iStatement>0 );
4121 assert( iStatement>p->db->nSavepoint );
4122 assert( pBt->inTransaction==TRANS_WRITE );
4123 /* At the pager level, a statement transaction is a savepoint with
4124 ** an index greater than all savepoints created explicitly using
4125 ** SQL statements. It is illegal to open, release or rollback any
4126 ** such savepoints while the statement transaction savepoint is active.
4128 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4129 sqlite3BtreeLeave(p);
4130 return rc;
4134 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4135 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4136 ** savepoint identified by parameter iSavepoint, depending on the value
4137 ** of op.
4139 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4140 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4141 ** contents of the entire transaction are rolled back. This is different
4142 ** from a normal transaction rollback, as no locks are released and the
4143 ** transaction remains open.
4145 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4146 int rc = SQLITE_OK;
4147 if( p && p->inTrans==TRANS_WRITE ){
4148 BtShared *pBt = p->pBt;
4149 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4150 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4151 sqlite3BtreeEnter(p);
4152 if( op==SAVEPOINT_ROLLBACK ){
4153 rc = saveAllCursors(pBt, 0, 0);
4155 if( rc==SQLITE_OK ){
4156 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4158 if( rc==SQLITE_OK ){
4159 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4160 pBt->nPage = 0;
4162 rc = newDatabase(pBt);
4163 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4165 /* The database size was written into the offset 28 of the header
4166 ** when the transaction started, so we know that the value at offset
4167 ** 28 is nonzero. */
4168 assert( pBt->nPage>0 );
4170 sqlite3BtreeLeave(p);
4172 return rc;
4176 ** Create a new cursor for the BTree whose root is on the page
4177 ** iTable. If a read-only cursor is requested, it is assumed that
4178 ** the caller already has at least a read-only transaction open
4179 ** on the database already. If a write-cursor is requested, then
4180 ** the caller is assumed to have an open write transaction.
4182 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4183 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4184 ** can be used for reading or for writing if other conditions for writing
4185 ** are also met. These are the conditions that must be met in order
4186 ** for writing to be allowed:
4188 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4190 ** 2: Other database connections that share the same pager cache
4191 ** but which are not in the READ_UNCOMMITTED state may not have
4192 ** cursors open with wrFlag==0 on the same table. Otherwise
4193 ** the changes made by this write cursor would be visible to
4194 ** the read cursors in the other database connection.
4196 ** 3: The database must be writable (not on read-only media)
4198 ** 4: There must be an active transaction.
4200 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4201 ** is set. If FORDELETE is set, that is a hint to the implementation that
4202 ** this cursor will only be used to seek to and delete entries of an index
4203 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4204 ** this implementation. But in a hypothetical alternative storage engine
4205 ** in which index entries are automatically deleted when corresponding table
4206 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4207 ** operations on this cursor can be no-ops and all READ operations can
4208 ** return a null row (2-bytes: 0x01 0x00).
4210 ** No checking is done to make sure that page iTable really is the
4211 ** root page of a b-tree. If it is not, then the cursor acquired
4212 ** will not work correctly.
4214 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4215 ** on pCur to initialize the memory space prior to invoking this routine.
4217 static int btreeCursor(
4218 Btree *p, /* The btree */
4219 int iTable, /* Root page of table to open */
4220 int wrFlag, /* 1 to write. 0 read-only */
4221 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4222 BtCursor *pCur /* Space for new cursor */
4224 BtShared *pBt = p->pBt; /* Shared b-tree handle */
4225 BtCursor *pX; /* Looping over other all cursors */
4227 assert( sqlite3BtreeHoldsMutex(p) );
4228 assert( wrFlag==0
4229 || wrFlag==BTREE_WRCSR
4230 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4233 /* The following assert statements verify that if this is a sharable
4234 ** b-tree database, the connection is holding the required table locks,
4235 ** and that no other connection has any open cursor that conflicts with
4236 ** this lock. */
4237 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4238 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4240 /* Assert that the caller has opened the required transaction. */
4241 assert( p->inTrans>TRANS_NONE );
4242 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4243 assert( pBt->pPage1 && pBt->pPage1->aData );
4244 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4246 if( wrFlag ){
4247 allocateTempSpace(pBt);
4248 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4250 if( iTable==1 && btreePagecount(pBt)==0 ){
4251 assert( wrFlag==0 );
4252 iTable = 0;
4255 /* Now that no other errors can occur, finish filling in the BtCursor
4256 ** variables and link the cursor into the BtShared list. */
4257 pCur->pgnoRoot = (Pgno)iTable;
4258 pCur->iPage = -1;
4259 pCur->pKeyInfo = pKeyInfo;
4260 pCur->pBtree = p;
4261 pCur->pBt = pBt;
4262 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4263 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4264 /* If there are two or more cursors on the same btree, then all such
4265 ** cursors *must* have the BTCF_Multiple flag set. */
4266 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4267 if( pX->pgnoRoot==(Pgno)iTable ){
4268 pX->curFlags |= BTCF_Multiple;
4269 pCur->curFlags |= BTCF_Multiple;
4272 pCur->pNext = pBt->pCursor;
4273 pBt->pCursor = pCur;
4274 pCur->eState = CURSOR_INVALID;
4275 return SQLITE_OK;
4277 int sqlite3BtreeCursor(
4278 Btree *p, /* The btree */
4279 int iTable, /* Root page of table to open */
4280 int wrFlag, /* 1 to write. 0 read-only */
4281 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4282 BtCursor *pCur /* Write new cursor here */
4284 int rc;
4285 if( iTable<1 ){
4286 rc = SQLITE_CORRUPT_BKPT;
4287 }else{
4288 sqlite3BtreeEnter(p);
4289 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4290 sqlite3BtreeLeave(p);
4292 return rc;
4296 ** Return the size of a BtCursor object in bytes.
4298 ** This interfaces is needed so that users of cursors can preallocate
4299 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4300 ** to users so they cannot do the sizeof() themselves - they must call
4301 ** this routine.
4303 int sqlite3BtreeCursorSize(void){
4304 return ROUND8(sizeof(BtCursor));
4308 ** Initialize memory that will be converted into a BtCursor object.
4310 ** The simple approach here would be to memset() the entire object
4311 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4312 ** do not need to be zeroed and they are large, so we can save a lot
4313 ** of run-time by skipping the initialization of those elements.
4315 void sqlite3BtreeCursorZero(BtCursor *p){
4316 memset(p, 0, offsetof(BtCursor, iPage));
4320 ** Close a cursor. The read lock on the database file is released
4321 ** when the last cursor is closed.
4323 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4324 Btree *pBtree = pCur->pBtree;
4325 if( pBtree ){
4326 BtShared *pBt = pCur->pBt;
4327 sqlite3BtreeEnter(pBtree);
4328 assert( pBt->pCursor!=0 );
4329 if( pBt->pCursor==pCur ){
4330 pBt->pCursor = pCur->pNext;
4331 }else{
4332 BtCursor *pPrev = pBt->pCursor;
4334 if( pPrev->pNext==pCur ){
4335 pPrev->pNext = pCur->pNext;
4336 break;
4338 pPrev = pPrev->pNext;
4339 }while( ALWAYS(pPrev) );
4341 btreeReleaseAllCursorPages(pCur);
4342 unlockBtreeIfUnused(pBt);
4343 sqlite3_free(pCur->aOverflow);
4344 sqlite3_free(pCur->pKey);
4345 sqlite3BtreeLeave(pBtree);
4347 return SQLITE_OK;
4351 ** Make sure the BtCursor* given in the argument has a valid
4352 ** BtCursor.info structure. If it is not already valid, call
4353 ** btreeParseCell() to fill it in.
4355 ** BtCursor.info is a cache of the information in the current cell.
4356 ** Using this cache reduces the number of calls to btreeParseCell().
4358 #ifndef NDEBUG
4359 static void assertCellInfo(BtCursor *pCur){
4360 CellInfo info;
4361 memset(&info, 0, sizeof(info));
4362 btreeParseCell(pCur->pPage, pCur->ix, &info);
4363 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
4365 #else
4366 #define assertCellInfo(x)
4367 #endif
4368 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4369 if( pCur->info.nSize==0 ){
4370 pCur->curFlags |= BTCF_ValidNKey;
4371 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4372 }else{
4373 assertCellInfo(pCur);
4377 #ifndef NDEBUG /* The next routine used only within assert() statements */
4379 ** Return true if the given BtCursor is valid. A valid cursor is one
4380 ** that is currently pointing to a row in a (non-empty) table.
4381 ** This is a verification routine is used only within assert() statements.
4383 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4384 return pCur && pCur->eState==CURSOR_VALID;
4386 #endif /* NDEBUG */
4387 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4388 assert( pCur!=0 );
4389 return pCur->eState==CURSOR_VALID;
4393 ** Return the value of the integer key or "rowid" for a table btree.
4394 ** This routine is only valid for a cursor that is pointing into a
4395 ** ordinary table btree. If the cursor points to an index btree or
4396 ** is invalid, the result of this routine is undefined.
4398 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4399 assert( cursorHoldsMutex(pCur) );
4400 assert( pCur->eState==CURSOR_VALID );
4401 assert( pCur->curIntKey );
4402 getCellInfo(pCur);
4403 return pCur->info.nKey;
4407 ** Return the number of bytes of payload for the entry that pCur is
4408 ** currently pointing to. For table btrees, this will be the amount
4409 ** of data. For index btrees, this will be the size of the key.
4411 ** The caller must guarantee that the cursor is pointing to a non-NULL
4412 ** valid entry. In other words, the calling procedure must guarantee
4413 ** that the cursor has Cursor.eState==CURSOR_VALID.
4415 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4416 assert( cursorHoldsMutex(pCur) );
4417 assert( pCur->eState==CURSOR_VALID );
4418 getCellInfo(pCur);
4419 return pCur->info.nPayload;
4423 ** Given the page number of an overflow page in the database (parameter
4424 ** ovfl), this function finds the page number of the next page in the
4425 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4426 ** pointer-map data instead of reading the content of page ovfl to do so.
4428 ** If an error occurs an SQLite error code is returned. Otherwise:
4430 ** The page number of the next overflow page in the linked list is
4431 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4432 ** list, *pPgnoNext is set to zero.
4434 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4435 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4436 ** reference. It is the responsibility of the caller to call releasePage()
4437 ** on *ppPage to free the reference. In no reference was obtained (because
4438 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4439 ** *ppPage is set to zero.
4441 static int getOverflowPage(
4442 BtShared *pBt, /* The database file */
4443 Pgno ovfl, /* Current overflow page number */
4444 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
4445 Pgno *pPgnoNext /* OUT: Next overflow page number */
4447 Pgno next = 0;
4448 MemPage *pPage = 0;
4449 int rc = SQLITE_OK;
4451 assert( sqlite3_mutex_held(pBt->mutex) );
4452 assert(pPgnoNext);
4454 #ifndef SQLITE_OMIT_AUTOVACUUM
4455 /* Try to find the next page in the overflow list using the
4456 ** autovacuum pointer-map pages. Guess that the next page in
4457 ** the overflow list is page number (ovfl+1). If that guess turns
4458 ** out to be wrong, fall back to loading the data of page
4459 ** number ovfl to determine the next page number.
4461 if( pBt->autoVacuum ){
4462 Pgno pgno;
4463 Pgno iGuess = ovfl+1;
4464 u8 eType;
4466 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4467 iGuess++;
4470 if( iGuess<=btreePagecount(pBt) ){
4471 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4472 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4473 next = iGuess;
4474 rc = SQLITE_DONE;
4478 #endif
4480 assert( next==0 || rc==SQLITE_DONE );
4481 if( rc==SQLITE_OK ){
4482 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4483 assert( rc==SQLITE_OK || pPage==0 );
4484 if( rc==SQLITE_OK ){
4485 next = get4byte(pPage->aData);
4489 *pPgnoNext = next;
4490 if( ppPage ){
4491 *ppPage = pPage;
4492 }else{
4493 releasePage(pPage);
4495 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4499 ** Copy data from a buffer to a page, or from a page to a buffer.
4501 ** pPayload is a pointer to data stored on database page pDbPage.
4502 ** If argument eOp is false, then nByte bytes of data are copied
4503 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4504 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4505 ** of data are copied from the buffer pBuf to pPayload.
4507 ** SQLITE_OK is returned on success, otherwise an error code.
4509 static int copyPayload(
4510 void *pPayload, /* Pointer to page data */
4511 void *pBuf, /* Pointer to buffer */
4512 int nByte, /* Number of bytes to copy */
4513 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4514 DbPage *pDbPage /* Page containing pPayload */
4516 if( eOp ){
4517 /* Copy data from buffer to page (a write operation) */
4518 int rc = sqlite3PagerWrite(pDbPage);
4519 if( rc!=SQLITE_OK ){
4520 return rc;
4522 memcpy(pPayload, pBuf, nByte);
4523 }else{
4524 /* Copy data from page to buffer (a read operation) */
4525 memcpy(pBuf, pPayload, nByte);
4527 return SQLITE_OK;
4531 ** This function is used to read or overwrite payload information
4532 ** for the entry that the pCur cursor is pointing to. The eOp
4533 ** argument is interpreted as follows:
4535 ** 0: The operation is a read. Populate the overflow cache.
4536 ** 1: The operation is a write. Populate the overflow cache.
4538 ** A total of "amt" bytes are read or written beginning at "offset".
4539 ** Data is read to or from the buffer pBuf.
4541 ** The content being read or written might appear on the main page
4542 ** or be scattered out on multiple overflow pages.
4544 ** If the current cursor entry uses one or more overflow pages
4545 ** this function may allocate space for and lazily populate
4546 ** the overflow page-list cache array (BtCursor.aOverflow).
4547 ** Subsequent calls use this cache to make seeking to the supplied offset
4548 ** more efficient.
4550 ** Once an overflow page-list cache has been allocated, it must be
4551 ** invalidated if some other cursor writes to the same table, or if
4552 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4553 ** mode, the following events may invalidate an overflow page-list cache.
4555 ** * An incremental vacuum,
4556 ** * A commit in auto_vacuum="full" mode,
4557 ** * Creating a table (may require moving an overflow page).
4559 static int accessPayload(
4560 BtCursor *pCur, /* Cursor pointing to entry to read from */
4561 u32 offset, /* Begin reading this far into payload */
4562 u32 amt, /* Read this many bytes */
4563 unsigned char *pBuf, /* Write the bytes into this buffer */
4564 int eOp /* zero to read. non-zero to write. */
4566 unsigned char *aPayload;
4567 int rc = SQLITE_OK;
4568 int iIdx = 0;
4569 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
4570 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4571 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4572 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
4573 #endif
4575 assert( pPage );
4576 assert( eOp==0 || eOp==1 );
4577 assert( pCur->eState==CURSOR_VALID );
4578 assert( pCur->ix<pPage->nCell );
4579 assert( cursorHoldsMutex(pCur) );
4581 getCellInfo(pCur);
4582 aPayload = pCur->info.pPayload;
4583 assert( offset+amt <= pCur->info.nPayload );
4585 assert( aPayload > pPage->aData );
4586 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4587 /* Trying to read or write past the end of the data is an error. The
4588 ** conditional above is really:
4589 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4590 ** but is recast into its current form to avoid integer overflow problems
4592 return SQLITE_CORRUPT_PGNO(pPage->pgno);
4595 /* Check if data must be read/written to/from the btree page itself. */
4596 if( offset<pCur->info.nLocal ){
4597 int a = amt;
4598 if( a+offset>pCur->info.nLocal ){
4599 a = pCur->info.nLocal - offset;
4601 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4602 offset = 0;
4603 pBuf += a;
4604 amt -= a;
4605 }else{
4606 offset -= pCur->info.nLocal;
4610 if( rc==SQLITE_OK && amt>0 ){
4611 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
4612 Pgno nextPage;
4614 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4616 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4618 ** The aOverflow[] array is sized at one entry for each overflow page
4619 ** in the overflow chain. The page number of the first overflow page is
4620 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4621 ** means "not yet known" (the cache is lazily populated).
4623 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4624 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4625 if( nOvfl>pCur->nOvflAlloc ){
4626 Pgno *aNew = (Pgno*)sqlite3Realloc(
4627 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4629 if( aNew==0 ){
4630 return SQLITE_NOMEM_BKPT;
4631 }else{
4632 pCur->nOvflAlloc = nOvfl*2;
4633 pCur->aOverflow = aNew;
4636 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4637 pCur->curFlags |= BTCF_ValidOvfl;
4638 }else{
4639 /* If the overflow page-list cache has been allocated and the
4640 ** entry for the first required overflow page is valid, skip
4641 ** directly to it.
4643 if( pCur->aOverflow[offset/ovflSize] ){
4644 iIdx = (offset/ovflSize);
4645 nextPage = pCur->aOverflow[iIdx];
4646 offset = (offset%ovflSize);
4650 assert( rc==SQLITE_OK && amt>0 );
4651 while( nextPage ){
4652 /* If required, populate the overflow page-list cache. */
4653 assert( pCur->aOverflow[iIdx]==0
4654 || pCur->aOverflow[iIdx]==nextPage
4655 || CORRUPT_DB );
4656 pCur->aOverflow[iIdx] = nextPage;
4658 if( offset>=ovflSize ){
4659 /* The only reason to read this page is to obtain the page
4660 ** number for the next page in the overflow chain. The page
4661 ** data is not required. So first try to lookup the overflow
4662 ** page-list cache, if any, then fall back to the getOverflowPage()
4663 ** function.
4665 assert( pCur->curFlags & BTCF_ValidOvfl );
4666 assert( pCur->pBtree->db==pBt->db );
4667 if( pCur->aOverflow[iIdx+1] ){
4668 nextPage = pCur->aOverflow[iIdx+1];
4669 }else{
4670 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4672 offset -= ovflSize;
4673 }else{
4674 /* Need to read this page properly. It contains some of the
4675 ** range of data that is being read (eOp==0) or written (eOp!=0).
4677 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4678 sqlite3_file *fd; /* File from which to do direct overflow read */
4679 #endif
4680 int a = amt;
4681 if( a + offset > ovflSize ){
4682 a = ovflSize - offset;
4685 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4686 /* If all the following are true:
4688 ** 1) this is a read operation, and
4689 ** 2) data is required from the start of this overflow page, and
4690 ** 3) there is no open write-transaction, and
4691 ** 4) the database is file-backed, and
4692 ** 5) the page is not in the WAL file
4693 ** 6) at least 4 bytes have already been read into the output buffer
4695 ** then data can be read directly from the database file into the
4696 ** output buffer, bypassing the page-cache altogether. This speeds
4697 ** up loading large records that span many overflow pages.
4699 if( eOp==0 /* (1) */
4700 && offset==0 /* (2) */
4701 && pBt->inTransaction==TRANS_READ /* (3) */
4702 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
4703 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
4704 && &pBuf[-4]>=pBufStart /* (6) */
4706 u8 aSave[4];
4707 u8 *aWrite = &pBuf[-4];
4708 assert( aWrite>=pBufStart ); /* due to (6) */
4709 memcpy(aSave, aWrite, 4);
4710 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4711 nextPage = get4byte(aWrite);
4712 memcpy(aWrite, aSave, 4);
4713 }else
4714 #endif
4717 DbPage *pDbPage;
4718 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4719 (eOp==0 ? PAGER_GET_READONLY : 0)
4721 if( rc==SQLITE_OK ){
4722 aPayload = sqlite3PagerGetData(pDbPage);
4723 nextPage = get4byte(aPayload);
4724 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4725 sqlite3PagerUnref(pDbPage);
4726 offset = 0;
4729 amt -= a;
4730 if( amt==0 ) return rc;
4731 pBuf += a;
4733 if( rc ) break;
4734 iIdx++;
4738 if( rc==SQLITE_OK && amt>0 ){
4739 /* Overflow chain ends prematurely */
4740 return SQLITE_CORRUPT_PGNO(pPage->pgno);
4742 return rc;
4746 ** Read part of the payload for the row at which that cursor pCur is currently
4747 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
4748 ** begins at "offset".
4750 ** pCur can be pointing to either a table or an index b-tree.
4751 ** If pointing to a table btree, then the content section is read. If
4752 ** pCur is pointing to an index b-tree then the key section is read.
4754 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4755 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4756 ** cursor might be invalid or might need to be restored before being read.
4758 ** Return SQLITE_OK on success or an error code if anything goes
4759 ** wrong. An error is returned if "offset+amt" is larger than
4760 ** the available payload.
4762 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4763 assert( cursorHoldsMutex(pCur) );
4764 assert( pCur->eState==CURSOR_VALID );
4765 assert( pCur->iPage>=0 && pCur->pPage );
4766 assert( pCur->ix<pCur->pPage->nCell );
4767 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4771 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4772 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4773 ** interface.
4775 #ifndef SQLITE_OMIT_INCRBLOB
4776 static SQLITE_NOINLINE int accessPayloadChecked(
4777 BtCursor *pCur,
4778 u32 offset,
4779 u32 amt,
4780 void *pBuf
4782 int rc;
4783 if ( pCur->eState==CURSOR_INVALID ){
4784 return SQLITE_ABORT;
4786 assert( cursorOwnsBtShared(pCur) );
4787 rc = btreeRestoreCursorPosition(pCur);
4788 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4790 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4791 if( pCur->eState==CURSOR_VALID ){
4792 assert( cursorOwnsBtShared(pCur) );
4793 return accessPayload(pCur, offset, amt, pBuf, 0);
4794 }else{
4795 return accessPayloadChecked(pCur, offset, amt, pBuf);
4798 #endif /* SQLITE_OMIT_INCRBLOB */
4801 ** Return a pointer to payload information from the entry that the
4802 ** pCur cursor is pointing to. The pointer is to the beginning of
4803 ** the key if index btrees (pPage->intKey==0) and is the data for
4804 ** table btrees (pPage->intKey==1). The number of bytes of available
4805 ** key/data is written into *pAmt. If *pAmt==0, then the value
4806 ** returned will not be a valid pointer.
4808 ** This routine is an optimization. It is common for the entire key
4809 ** and data to fit on the local page and for there to be no overflow
4810 ** pages. When that is so, this routine can be used to access the
4811 ** key and data without making a copy. If the key and/or data spills
4812 ** onto overflow pages, then accessPayload() must be used to reassemble
4813 ** the key/data and copy it into a preallocated buffer.
4815 ** The pointer returned by this routine looks directly into the cached
4816 ** page of the database. The data might change or move the next time
4817 ** any btree routine is called.
4819 static const void *fetchPayload(
4820 BtCursor *pCur, /* Cursor pointing to entry to read from */
4821 u32 *pAmt /* Write the number of available bytes here */
4823 u32 amt;
4824 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4825 assert( pCur->eState==CURSOR_VALID );
4826 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4827 assert( cursorOwnsBtShared(pCur) );
4828 assert( pCur->ix<pCur->pPage->nCell );
4829 assert( pCur->info.nSize>0 );
4830 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4831 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
4832 amt = (int)(pCur->pPage->aDataEnd - pCur->info.pPayload);
4833 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4834 *pAmt = amt;
4835 return (void*)pCur->info.pPayload;
4840 ** For the entry that cursor pCur is point to, return as
4841 ** many bytes of the key or data as are available on the local
4842 ** b-tree page. Write the number of available bytes into *pAmt.
4844 ** The pointer returned is ephemeral. The key/data may move
4845 ** or be destroyed on the next call to any Btree routine,
4846 ** including calls from other threads against the same cache.
4847 ** Hence, a mutex on the BtShared should be held prior to calling
4848 ** this routine.
4850 ** These routines is used to get quick access to key and data
4851 ** in the common case where no overflow pages are used.
4853 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4854 return fetchPayload(pCur, pAmt);
4859 ** Move the cursor down to a new child page. The newPgno argument is the
4860 ** page number of the child page to move to.
4862 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4863 ** the new child page does not match the flags field of the parent (i.e.
4864 ** if an intkey page appears to be the parent of a non-intkey page, or
4865 ** vice-versa).
4867 static int moveToChild(BtCursor *pCur, u32 newPgno){
4868 BtShared *pBt = pCur->pBt;
4870 assert( cursorOwnsBtShared(pCur) );
4871 assert( pCur->eState==CURSOR_VALID );
4872 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4873 assert( pCur->iPage>=0 );
4874 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4875 return SQLITE_CORRUPT_BKPT;
4877 pCur->info.nSize = 0;
4878 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4879 pCur->aiIdx[pCur->iPage] = pCur->ix;
4880 pCur->apPage[pCur->iPage] = pCur->pPage;
4881 pCur->ix = 0;
4882 pCur->iPage++;
4883 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
4886 #ifdef SQLITE_DEBUG
4888 ** Page pParent is an internal (non-leaf) tree page. This function
4889 ** asserts that page number iChild is the left-child if the iIdx'th
4890 ** cell in page pParent. Or, if iIdx is equal to the total number of
4891 ** cells in pParent, that page number iChild is the right-child of
4892 ** the page.
4894 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4895 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4896 ** in a corrupt database */
4897 assert( iIdx<=pParent->nCell );
4898 if( iIdx==pParent->nCell ){
4899 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4900 }else{
4901 assert( get4byte(findCell(pParent, iIdx))==iChild );
4904 #else
4905 # define assertParentIndex(x,y,z)
4906 #endif
4909 ** Move the cursor up to the parent page.
4911 ** pCur->idx is set to the cell index that contains the pointer
4912 ** to the page we are coming from. If we are coming from the
4913 ** right-most child page then pCur->idx is set to one more than
4914 ** the largest cell index.
4916 static void moveToParent(BtCursor *pCur){
4917 MemPage *pLeaf;
4918 assert( cursorOwnsBtShared(pCur) );
4919 assert( pCur->eState==CURSOR_VALID );
4920 assert( pCur->iPage>0 );
4921 assert( pCur->pPage );
4922 assertParentIndex(
4923 pCur->apPage[pCur->iPage-1],
4924 pCur->aiIdx[pCur->iPage-1],
4925 pCur->pPage->pgno
4927 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4928 pCur->info.nSize = 0;
4929 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4930 pCur->ix = pCur->aiIdx[pCur->iPage-1];
4931 pLeaf = pCur->pPage;
4932 pCur->pPage = pCur->apPage[--pCur->iPage];
4933 releasePageNotNull(pLeaf);
4937 ** Move the cursor to point to the root page of its b-tree structure.
4939 ** If the table has a virtual root page, then the cursor is moved to point
4940 ** to the virtual root page instead of the actual root page. A table has a
4941 ** virtual root page when the actual root page contains no cells and a
4942 ** single child page. This can only happen with the table rooted at page 1.
4944 ** If the b-tree structure is empty, the cursor state is set to
4945 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
4946 ** the cursor is set to point to the first cell located on the root
4947 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
4949 ** If this function returns successfully, it may be assumed that the
4950 ** page-header flags indicate that the [virtual] root-page is the expected
4951 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4952 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4953 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4954 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4955 ** b-tree).
4957 static int moveToRoot(BtCursor *pCur){
4958 MemPage *pRoot;
4959 int rc = SQLITE_OK;
4961 assert( cursorOwnsBtShared(pCur) );
4962 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4963 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4964 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4965 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
4966 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
4968 if( pCur->iPage>=0 ){
4969 if( pCur->iPage ){
4970 releasePageNotNull(pCur->pPage);
4971 while( --pCur->iPage ){
4972 releasePageNotNull(pCur->apPage[pCur->iPage]);
4974 pCur->pPage = pCur->apPage[0];
4975 goto skip_init;
4977 }else if( pCur->pgnoRoot==0 ){
4978 pCur->eState = CURSOR_INVALID;
4979 return SQLITE_EMPTY;
4980 }else{
4981 assert( pCur->iPage==(-1) );
4982 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4983 if( pCur->eState==CURSOR_FAULT ){
4984 assert( pCur->skipNext!=SQLITE_OK );
4985 return pCur->skipNext;
4987 sqlite3BtreeClearCursor(pCur);
4989 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
4990 0, pCur->curPagerFlags);
4991 if( rc!=SQLITE_OK ){
4992 pCur->eState = CURSOR_INVALID;
4993 return rc;
4995 pCur->iPage = 0;
4996 pCur->curIntKey = pCur->pPage->intKey;
4998 pRoot = pCur->pPage;
4999 assert( pRoot->pgno==pCur->pgnoRoot );
5001 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5002 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5003 ** NULL, the caller expects a table b-tree. If this is not the case,
5004 ** return an SQLITE_CORRUPT error.
5006 ** Earlier versions of SQLite assumed that this test could not fail
5007 ** if the root page was already loaded when this function was called (i.e.
5008 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5009 ** in such a way that page pRoot is linked into a second b-tree table
5010 ** (or the freelist). */
5011 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5012 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5013 return SQLITE_CORRUPT_PGNO(pCur->pPage->pgno);
5016 skip_init:
5017 pCur->ix = 0;
5018 pCur->info.nSize = 0;
5019 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5021 pRoot = pCur->pPage;
5022 if( pRoot->nCell>0 ){
5023 pCur->eState = CURSOR_VALID;
5024 }else if( !pRoot->leaf ){
5025 Pgno subpage;
5026 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5027 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5028 pCur->eState = CURSOR_VALID;
5029 rc = moveToChild(pCur, subpage);
5030 }else{
5031 pCur->eState = CURSOR_INVALID;
5032 rc = SQLITE_EMPTY;
5034 return rc;
5038 ** Move the cursor down to the left-most leaf entry beneath the
5039 ** entry to which it is currently pointing.
5041 ** The left-most leaf is the one with the smallest key - the first
5042 ** in ascending order.
5044 static int moveToLeftmost(BtCursor *pCur){
5045 Pgno pgno;
5046 int rc = SQLITE_OK;
5047 MemPage *pPage;
5049 assert( cursorOwnsBtShared(pCur) );
5050 assert( pCur->eState==CURSOR_VALID );
5051 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5052 assert( pCur->ix<pPage->nCell );
5053 pgno = get4byte(findCell(pPage, pCur->ix));
5054 rc = moveToChild(pCur, pgno);
5056 return rc;
5060 ** Move the cursor down to the right-most leaf entry beneath the
5061 ** page to which it is currently pointing. Notice the difference
5062 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5063 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5064 ** finds the right-most entry beneath the *page*.
5066 ** The right-most entry is the one with the largest key - the last
5067 ** key in ascending order.
5069 static int moveToRightmost(BtCursor *pCur){
5070 Pgno pgno;
5071 int rc = SQLITE_OK;
5072 MemPage *pPage = 0;
5074 assert( cursorOwnsBtShared(pCur) );
5075 assert( pCur->eState==CURSOR_VALID );
5076 while( !(pPage = pCur->pPage)->leaf ){
5077 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5078 pCur->ix = pPage->nCell;
5079 rc = moveToChild(pCur, pgno);
5080 if( rc ) return rc;
5082 pCur->ix = pPage->nCell-1;
5083 assert( pCur->info.nSize==0 );
5084 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5085 return SQLITE_OK;
5088 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5089 ** on success. Set *pRes to 0 if the cursor actually points to something
5090 ** or set *pRes to 1 if the table is empty.
5092 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5093 int rc;
5095 assert( cursorOwnsBtShared(pCur) );
5096 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5097 rc = moveToRoot(pCur);
5098 if( rc==SQLITE_OK ){
5099 assert( pCur->pPage->nCell>0 );
5100 *pRes = 0;
5101 rc = moveToLeftmost(pCur);
5102 }else if( rc==SQLITE_EMPTY ){
5103 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5104 *pRes = 1;
5105 rc = SQLITE_OK;
5107 return rc;
5110 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5111 ** on success. Set *pRes to 0 if the cursor actually points to something
5112 ** or set *pRes to 1 if the table is empty.
5114 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5115 int rc;
5117 assert( cursorOwnsBtShared(pCur) );
5118 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5120 /* If the cursor already points to the last entry, this is a no-op. */
5121 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5122 #ifdef SQLITE_DEBUG
5123 /* This block serves to assert() that the cursor really does point
5124 ** to the last entry in the b-tree. */
5125 int ii;
5126 for(ii=0; ii<pCur->iPage; ii++){
5127 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5129 assert( pCur->ix==pCur->pPage->nCell-1 );
5130 assert( pCur->pPage->leaf );
5131 #endif
5132 return SQLITE_OK;
5135 rc = moveToRoot(pCur);
5136 if( rc==SQLITE_OK ){
5137 assert( pCur->eState==CURSOR_VALID );
5138 *pRes = 0;
5139 rc = moveToRightmost(pCur);
5140 if( rc==SQLITE_OK ){
5141 pCur->curFlags |= BTCF_AtLast;
5142 }else{
5143 pCur->curFlags &= ~BTCF_AtLast;
5145 }else if( rc==SQLITE_EMPTY ){
5146 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5147 *pRes = 1;
5148 rc = SQLITE_OK;
5150 return rc;
5153 /* Move the cursor so that it points to an entry near the key
5154 ** specified by pIdxKey or intKey. Return a success code.
5156 ** For INTKEY tables, the intKey parameter is used. pIdxKey
5157 ** must be NULL. For index tables, pIdxKey is used and intKey
5158 ** is ignored.
5160 ** If an exact match is not found, then the cursor is always
5161 ** left pointing at a leaf page which would hold the entry if it
5162 ** were present. The cursor might point to an entry that comes
5163 ** before or after the key.
5165 ** An integer is written into *pRes which is the result of
5166 ** comparing the key with the entry to which the cursor is
5167 ** pointing. The meaning of the integer written into
5168 ** *pRes is as follows:
5170 ** *pRes<0 The cursor is left pointing at an entry that
5171 ** is smaller than intKey/pIdxKey or if the table is empty
5172 ** and the cursor is therefore left point to nothing.
5174 ** *pRes==0 The cursor is left pointing at an entry that
5175 ** exactly matches intKey/pIdxKey.
5177 ** *pRes>0 The cursor is left pointing at an entry that
5178 ** is larger than intKey/pIdxKey.
5180 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5181 ** exists an entry in the table that exactly matches pIdxKey.
5183 int sqlite3BtreeMovetoUnpacked(
5184 BtCursor *pCur, /* The cursor to be moved */
5185 UnpackedRecord *pIdxKey, /* Unpacked index key */
5186 i64 intKey, /* The table key */
5187 int biasRight, /* If true, bias the search to the high end */
5188 int *pRes /* Write search results here */
5190 int rc;
5191 RecordCompare xRecordCompare;
5193 assert( cursorOwnsBtShared(pCur) );
5194 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5195 assert( pRes );
5196 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5197 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5199 /* If the cursor is already positioned at the point we are trying
5200 ** to move to, then just return without doing any work */
5201 if( pIdxKey==0
5202 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5204 if( pCur->info.nKey==intKey ){
5205 *pRes = 0;
5206 return SQLITE_OK;
5208 if( pCur->info.nKey<intKey ){
5209 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5210 *pRes = -1;
5211 return SQLITE_OK;
5213 /* If the requested key is one more than the previous key, then
5214 ** try to get there using sqlite3BtreeNext() rather than a full
5215 ** binary search. This is an optimization only. The correct answer
5216 ** is still obtained without this case, only a little more slowely */
5217 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5218 *pRes = 0;
5219 rc = sqlite3BtreeNext(pCur, 0);
5220 if( rc==SQLITE_OK ){
5221 getCellInfo(pCur);
5222 if( pCur->info.nKey==intKey ){
5223 return SQLITE_OK;
5225 }else if( rc==SQLITE_DONE ){
5226 rc = SQLITE_OK;
5227 }else{
5228 return rc;
5234 if( pIdxKey ){
5235 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5236 pIdxKey->errCode = 0;
5237 assert( pIdxKey->default_rc==1
5238 || pIdxKey->default_rc==0
5239 || pIdxKey->default_rc==-1
5241 }else{
5242 xRecordCompare = 0; /* All keys are integers */
5245 rc = moveToRoot(pCur);
5246 if( rc ){
5247 if( rc==SQLITE_EMPTY ){
5248 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5249 *pRes = -1;
5250 return SQLITE_OK;
5252 return rc;
5254 assert( pCur->pPage );
5255 assert( pCur->pPage->isInit );
5256 assert( pCur->eState==CURSOR_VALID );
5257 assert( pCur->pPage->nCell > 0 );
5258 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5259 assert( pCur->curIntKey || pIdxKey );
5260 for(;;){
5261 int lwr, upr, idx, c;
5262 Pgno chldPg;
5263 MemPage *pPage = pCur->pPage;
5264 u8 *pCell; /* Pointer to current cell in pPage */
5266 /* pPage->nCell must be greater than zero. If this is the root-page
5267 ** the cursor would have been INVALID above and this for(;;) loop
5268 ** not run. If this is not the root-page, then the moveToChild() routine
5269 ** would have already detected db corruption. Similarly, pPage must
5270 ** be the right kind (index or table) of b-tree page. Otherwise
5271 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5272 assert( pPage->nCell>0 );
5273 assert( pPage->intKey==(pIdxKey==0) );
5274 lwr = 0;
5275 upr = pPage->nCell-1;
5276 assert( biasRight==0 || biasRight==1 );
5277 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5278 pCur->ix = (u16)idx;
5279 if( xRecordCompare==0 ){
5280 for(;;){
5281 i64 nCellKey;
5282 pCell = findCellPastPtr(pPage, idx);
5283 if( pPage->intKeyLeaf ){
5284 while( 0x80 <= *(pCell++) ){
5285 if( pCell>=pPage->aDataEnd ){
5286 return SQLITE_CORRUPT_PGNO(pPage->pgno);
5290 getVarint(pCell, (u64*)&nCellKey);
5291 if( nCellKey<intKey ){
5292 lwr = idx+1;
5293 if( lwr>upr ){ c = -1; break; }
5294 }else if( nCellKey>intKey ){
5295 upr = idx-1;
5296 if( lwr>upr ){ c = +1; break; }
5297 }else{
5298 assert( nCellKey==intKey );
5299 pCur->ix = (u16)idx;
5300 if( !pPage->leaf ){
5301 lwr = idx;
5302 goto moveto_next_layer;
5303 }else{
5304 pCur->curFlags |= BTCF_ValidNKey;
5305 pCur->info.nKey = nCellKey;
5306 pCur->info.nSize = 0;
5307 *pRes = 0;
5308 return SQLITE_OK;
5311 assert( lwr+upr>=0 );
5312 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5314 }else{
5315 for(;;){
5316 int nCell; /* Size of the pCell cell in bytes */
5317 pCell = findCellPastPtr(pPage, idx);
5319 /* The maximum supported page-size is 65536 bytes. This means that
5320 ** the maximum number of record bytes stored on an index B-Tree
5321 ** page is less than 16384 bytes and may be stored as a 2-byte
5322 ** varint. This information is used to attempt to avoid parsing
5323 ** the entire cell by checking for the cases where the record is
5324 ** stored entirely within the b-tree page by inspecting the first
5325 ** 2 bytes of the cell.
5327 nCell = pCell[0];
5328 if( nCell<=pPage->max1bytePayload ){
5329 /* This branch runs if the record-size field of the cell is a
5330 ** single byte varint and the record fits entirely on the main
5331 ** b-tree page. */
5332 testcase( pCell+nCell+1==pPage->aDataEnd );
5333 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5334 }else if( !(pCell[1] & 0x80)
5335 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5337 /* The record-size field is a 2 byte varint and the record
5338 ** fits entirely on the main b-tree page. */
5339 testcase( pCell+nCell+2==pPage->aDataEnd );
5340 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5341 }else{
5342 /* The record flows over onto one or more overflow pages. In
5343 ** this case the whole cell needs to be parsed, a buffer allocated
5344 ** and accessPayload() used to retrieve the record into the
5345 ** buffer before VdbeRecordCompare() can be called.
5347 ** If the record is corrupt, the xRecordCompare routine may read
5348 ** up to two varints past the end of the buffer. An extra 18
5349 ** bytes of padding is allocated at the end of the buffer in
5350 ** case this happens. */
5351 void *pCellKey;
5352 u8 * const pCellBody = pCell - pPage->childPtrSize;
5353 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5354 nCell = (int)pCur->info.nKey;
5355 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5356 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5357 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5358 testcase( nCell==2 ); /* Minimum legal index key size */
5359 if( nCell<2 ){
5360 rc = SQLITE_CORRUPT_PGNO(pPage->pgno);
5361 goto moveto_finish;
5363 pCellKey = sqlite3Malloc( nCell+18 );
5364 if( pCellKey==0 ){
5365 rc = SQLITE_NOMEM_BKPT;
5366 goto moveto_finish;
5368 pCur->ix = (u16)idx;
5369 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5370 pCur->curFlags &= ~BTCF_ValidOvfl;
5371 if( rc ){
5372 sqlite3_free(pCellKey);
5373 goto moveto_finish;
5375 c = xRecordCompare(nCell, pCellKey, pIdxKey);
5376 sqlite3_free(pCellKey);
5378 assert(
5379 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5380 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5382 if( c<0 ){
5383 lwr = idx+1;
5384 }else if( c>0 ){
5385 upr = idx-1;
5386 }else{
5387 assert( c==0 );
5388 *pRes = 0;
5389 rc = SQLITE_OK;
5390 pCur->ix = (u16)idx;
5391 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5392 goto moveto_finish;
5394 if( lwr>upr ) break;
5395 assert( lwr+upr>=0 );
5396 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
5399 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5400 assert( pPage->isInit );
5401 if( pPage->leaf ){
5402 assert( pCur->ix<pCur->pPage->nCell );
5403 pCur->ix = (u16)idx;
5404 *pRes = c;
5405 rc = SQLITE_OK;
5406 goto moveto_finish;
5408 moveto_next_layer:
5409 if( lwr>=pPage->nCell ){
5410 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5411 }else{
5412 chldPg = get4byte(findCell(pPage, lwr));
5414 pCur->ix = (u16)lwr;
5415 rc = moveToChild(pCur, chldPg);
5416 if( rc ) break;
5418 moveto_finish:
5419 pCur->info.nSize = 0;
5420 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5421 return rc;
5426 ** Return TRUE if the cursor is not pointing at an entry of the table.
5428 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5429 ** past the last entry in the table or sqlite3BtreePrev() moves past
5430 ** the first entry. TRUE is also returned if the table is empty.
5432 int sqlite3BtreeEof(BtCursor *pCur){
5433 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5434 ** have been deleted? This API will need to change to return an error code
5435 ** as well as the boolean result value.
5437 return (CURSOR_VALID!=pCur->eState);
5441 ** Return an estimate for the number of rows in the table that pCur is
5442 ** pointing to. Return a negative number if no estimate is currently
5443 ** available.
5445 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5446 i64 n;
5447 u8 i;
5449 assert( cursorOwnsBtShared(pCur) );
5450 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5452 /* Currently this interface is only called by the OP_IfSmaller
5453 ** opcode, and it that case the cursor will always be valid and
5454 ** will always point to a leaf node. */
5455 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5456 if( NEVER(pCur->pPage->leaf==0) ) return -1;
5458 n = pCur->pPage->nCell;
5459 for(i=0; i<pCur->iPage; i++){
5460 n *= pCur->apPage[i]->nCell;
5462 return n;
5466 ** Advance the cursor to the next entry in the database.
5467 ** Return value:
5469 ** SQLITE_OK success
5470 ** SQLITE_DONE cursor is already pointing at the last element
5471 ** otherwise some kind of error occurred
5473 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5474 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5475 ** to the next cell on the current page. The (slower) btreeNext() helper
5476 ** routine is called when it is necessary to move to a different page or
5477 ** to restore the cursor.
5479 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5480 ** cursor corresponds to an SQL index and this routine could have been
5481 ** skipped if the SQL index had been a unique index. The F argument
5482 ** is a hint to the implement. SQLite btree implementation does not use
5483 ** this hint, but COMDB2 does.
5485 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5486 int rc;
5487 int idx;
5488 MemPage *pPage;
5490 assert( cursorOwnsBtShared(pCur) );
5491 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5492 if( pCur->eState!=CURSOR_VALID ){
5493 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5494 rc = restoreCursorPosition(pCur);
5495 if( rc!=SQLITE_OK ){
5496 return rc;
5498 if( CURSOR_INVALID==pCur->eState ){
5499 return SQLITE_DONE;
5501 if( pCur->skipNext ){
5502 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5503 pCur->eState = CURSOR_VALID;
5504 if( pCur->skipNext>0 ){
5505 pCur->skipNext = 0;
5506 return SQLITE_OK;
5508 pCur->skipNext = 0;
5512 pPage = pCur->pPage;
5513 idx = ++pCur->ix;
5514 assert( pPage->isInit );
5516 /* If the database file is corrupt, it is possible for the value of idx
5517 ** to be invalid here. This can only occur if a second cursor modifies
5518 ** the page while cursor pCur is holding a reference to it. Which can
5519 ** only happen if the database is corrupt in such a way as to link the
5520 ** page into more than one b-tree structure. */
5521 testcase( idx>pPage->nCell );
5523 if( idx>=pPage->nCell ){
5524 if( !pPage->leaf ){
5525 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5526 if( rc ) return rc;
5527 return moveToLeftmost(pCur);
5530 if( pCur->iPage==0 ){
5531 pCur->eState = CURSOR_INVALID;
5532 return SQLITE_DONE;
5534 moveToParent(pCur);
5535 pPage = pCur->pPage;
5536 }while( pCur->ix>=pPage->nCell );
5537 if( pPage->intKey ){
5538 return sqlite3BtreeNext(pCur, 0);
5539 }else{
5540 return SQLITE_OK;
5543 if( pPage->leaf ){
5544 return SQLITE_OK;
5545 }else{
5546 return moveToLeftmost(pCur);
5549 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5550 MemPage *pPage;
5551 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5552 assert( cursorOwnsBtShared(pCur) );
5553 assert( flags==0 || flags==1 );
5554 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5555 pCur->info.nSize = 0;
5556 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5557 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5558 pPage = pCur->pPage;
5559 if( (++pCur->ix)>=pPage->nCell ){
5560 pCur->ix--;
5561 return btreeNext(pCur);
5563 if( pPage->leaf ){
5564 return SQLITE_OK;
5565 }else{
5566 return moveToLeftmost(pCur);
5571 ** Step the cursor to the back to the previous entry in the database.
5572 ** Return values:
5574 ** SQLITE_OK success
5575 ** SQLITE_DONE the cursor is already on the first element of the table
5576 ** otherwise some kind of error occurred
5578 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5579 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5580 ** to the previous cell on the current page. The (slower) btreePrevious()
5581 ** helper routine is called when it is necessary to move to a different page
5582 ** or to restore the cursor.
5584 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5585 ** the cursor corresponds to an SQL index and this routine could have been
5586 ** skipped if the SQL index had been a unique index. The F argument is a
5587 ** hint to the implement. The native SQLite btree implementation does not
5588 ** use this hint, but COMDB2 does.
5590 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5591 int rc;
5592 MemPage *pPage;
5594 assert( cursorOwnsBtShared(pCur) );
5595 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5596 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5597 assert( pCur->info.nSize==0 );
5598 if( pCur->eState!=CURSOR_VALID ){
5599 rc = restoreCursorPosition(pCur);
5600 if( rc!=SQLITE_OK ){
5601 return rc;
5603 if( CURSOR_INVALID==pCur->eState ){
5604 return SQLITE_DONE;
5606 if( pCur->skipNext ){
5607 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5608 pCur->eState = CURSOR_VALID;
5609 if( pCur->skipNext<0 ){
5610 pCur->skipNext = 0;
5611 return SQLITE_OK;
5613 pCur->skipNext = 0;
5617 pPage = pCur->pPage;
5618 assert( pPage->isInit );
5619 if( !pPage->leaf ){
5620 int idx = pCur->ix;
5621 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5622 if( rc ) return rc;
5623 rc = moveToRightmost(pCur);
5624 }else{
5625 while( pCur->ix==0 ){
5626 if( pCur->iPage==0 ){
5627 pCur->eState = CURSOR_INVALID;
5628 return SQLITE_DONE;
5630 moveToParent(pCur);
5632 assert( pCur->info.nSize==0 );
5633 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5635 pCur->ix--;
5636 pPage = pCur->pPage;
5637 if( pPage->intKey && !pPage->leaf ){
5638 rc = sqlite3BtreePrevious(pCur, 0);
5639 }else{
5640 rc = SQLITE_OK;
5643 return rc;
5645 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5646 assert( cursorOwnsBtShared(pCur) );
5647 assert( flags==0 || flags==1 );
5648 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5649 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5650 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5651 pCur->info.nSize = 0;
5652 if( pCur->eState!=CURSOR_VALID
5653 || pCur->ix==0
5654 || pCur->pPage->leaf==0
5656 return btreePrevious(pCur);
5658 pCur->ix--;
5659 return SQLITE_OK;
5663 ** Allocate a new page from the database file.
5665 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5666 ** has already been called on the new page.) The new page has also
5667 ** been referenced and the calling routine is responsible for calling
5668 ** sqlite3PagerUnref() on the new page when it is done.
5670 ** SQLITE_OK is returned on success. Any other return value indicates
5671 ** an error. *ppPage is set to NULL in the event of an error.
5673 ** If the "nearby" parameter is not 0, then an effort is made to
5674 ** locate a page close to the page number "nearby". This can be used in an
5675 ** attempt to keep related pages close to each other in the database file,
5676 ** which in turn can make database access faster.
5678 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5679 ** anywhere on the free-list, then it is guaranteed to be returned. If
5680 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5681 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5682 ** are no restrictions on which page is returned.
5684 static int allocateBtreePage(
5685 BtShared *pBt, /* The btree */
5686 MemPage **ppPage, /* Store pointer to the allocated page here */
5687 Pgno *pPgno, /* Store the page number here */
5688 Pgno nearby, /* Search for a page near this one */
5689 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5691 MemPage *pPage1;
5692 int rc;
5693 u32 n; /* Number of pages on the freelist */
5694 u32 k; /* Number of leaves on the trunk of the freelist */
5695 MemPage *pTrunk = 0;
5696 MemPage *pPrevTrunk = 0;
5697 Pgno mxPage; /* Total size of the database file */
5699 assert( sqlite3_mutex_held(pBt->mutex) );
5700 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5701 pPage1 = pBt->pPage1;
5702 mxPage = btreePagecount(pBt);
5703 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5704 ** stores stores the total number of pages on the freelist. */
5705 n = get4byte(&pPage1->aData[36]);
5706 testcase( n==mxPage-1 );
5707 if( n>=mxPage ){
5708 return SQLITE_CORRUPT_BKPT;
5710 if( n>0 ){
5711 /* There are pages on the freelist. Reuse one of those pages. */
5712 Pgno iTrunk;
5713 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5714 u32 nSearch = 0; /* Count of the number of search attempts */
5716 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5717 ** shows that the page 'nearby' is somewhere on the free-list, then
5718 ** the entire-list will be searched for that page.
5720 #ifndef SQLITE_OMIT_AUTOVACUUM
5721 if( eMode==BTALLOC_EXACT ){
5722 if( nearby<=mxPage ){
5723 u8 eType;
5724 assert( nearby>0 );
5725 assert( pBt->autoVacuum );
5726 rc = ptrmapGet(pBt, nearby, &eType, 0);
5727 if( rc ) return rc;
5728 if( eType==PTRMAP_FREEPAGE ){
5729 searchList = 1;
5732 }else if( eMode==BTALLOC_LE ){
5733 searchList = 1;
5735 #endif
5737 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5738 ** first free-list trunk page. iPrevTrunk is initially 1.
5740 rc = sqlite3PagerWrite(pPage1->pDbPage);
5741 if( rc ) return rc;
5742 put4byte(&pPage1->aData[36], n-1);
5744 /* The code within this loop is run only once if the 'searchList' variable
5745 ** is not true. Otherwise, it runs once for each trunk-page on the
5746 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5747 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5749 do {
5750 pPrevTrunk = pTrunk;
5751 if( pPrevTrunk ){
5752 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5753 ** is the page number of the next freelist trunk page in the list or
5754 ** zero if this is the last freelist trunk page. */
5755 iTrunk = get4byte(&pPrevTrunk->aData[0]);
5756 }else{
5757 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5758 ** stores the page number of the first page of the freelist, or zero if
5759 ** the freelist is empty. */
5760 iTrunk = get4byte(&pPage1->aData[32]);
5762 testcase( iTrunk==mxPage );
5763 if( iTrunk>mxPage || nSearch++ > n ){
5764 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5765 }else{
5766 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5768 if( rc ){
5769 pTrunk = 0;
5770 goto end_allocate_page;
5772 assert( pTrunk!=0 );
5773 assert( pTrunk->aData!=0 );
5774 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5775 ** is the number of leaf page pointers to follow. */
5776 k = get4byte(&pTrunk->aData[4]);
5777 if( k==0 && !searchList ){
5778 /* The trunk has no leaves and the list is not being searched.
5779 ** So extract the trunk page itself and use it as the newly
5780 ** allocated page */
5781 assert( pPrevTrunk==0 );
5782 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5783 if( rc ){
5784 goto end_allocate_page;
5786 *pPgno = iTrunk;
5787 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5788 *ppPage = pTrunk;
5789 pTrunk = 0;
5790 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5791 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5792 /* Value of k is out of range. Database corruption */
5793 rc = SQLITE_CORRUPT_PGNO(iTrunk);
5794 goto end_allocate_page;
5795 #ifndef SQLITE_OMIT_AUTOVACUUM
5796 }else if( searchList
5797 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5799 /* The list is being searched and this trunk page is the page
5800 ** to allocate, regardless of whether it has leaves.
5802 *pPgno = iTrunk;
5803 *ppPage = pTrunk;
5804 searchList = 0;
5805 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5806 if( rc ){
5807 goto end_allocate_page;
5809 if( k==0 ){
5810 if( !pPrevTrunk ){
5811 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5812 }else{
5813 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5814 if( rc!=SQLITE_OK ){
5815 goto end_allocate_page;
5817 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5819 }else{
5820 /* The trunk page is required by the caller but it contains
5821 ** pointers to free-list leaves. The first leaf becomes a trunk
5822 ** page in this case.
5824 MemPage *pNewTrunk;
5825 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5826 if( iNewTrunk>mxPage ){
5827 rc = SQLITE_CORRUPT_PGNO(iTrunk);
5828 goto end_allocate_page;
5830 testcase( iNewTrunk==mxPage );
5831 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5832 if( rc!=SQLITE_OK ){
5833 goto end_allocate_page;
5835 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5836 if( rc!=SQLITE_OK ){
5837 releasePage(pNewTrunk);
5838 goto end_allocate_page;
5840 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5841 put4byte(&pNewTrunk->aData[4], k-1);
5842 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5843 releasePage(pNewTrunk);
5844 if( !pPrevTrunk ){
5845 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5846 put4byte(&pPage1->aData[32], iNewTrunk);
5847 }else{
5848 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5849 if( rc ){
5850 goto end_allocate_page;
5852 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5855 pTrunk = 0;
5856 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5857 #endif
5858 }else if( k>0 ){
5859 /* Extract a leaf from the trunk */
5860 u32 closest;
5861 Pgno iPage;
5862 unsigned char *aData = pTrunk->aData;
5863 if( nearby>0 ){
5864 u32 i;
5865 closest = 0;
5866 if( eMode==BTALLOC_LE ){
5867 for(i=0; i<k; i++){
5868 iPage = get4byte(&aData[8+i*4]);
5869 if( iPage<=nearby ){
5870 closest = i;
5871 break;
5874 }else{
5875 int dist;
5876 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5877 for(i=1; i<k; i++){
5878 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5879 if( d2<dist ){
5880 closest = i;
5881 dist = d2;
5885 }else{
5886 closest = 0;
5889 iPage = get4byte(&aData[8+closest*4]);
5890 testcase( iPage==mxPage );
5891 if( iPage>mxPage ){
5892 rc = SQLITE_CORRUPT_PGNO(iTrunk);
5893 goto end_allocate_page;
5895 testcase( iPage==mxPage );
5896 if( !searchList
5897 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5899 int noContent;
5900 *pPgno = iPage;
5901 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5902 ": %d more free pages\n",
5903 *pPgno, closest+1, k, pTrunk->pgno, n-1));
5904 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5905 if( rc ) goto end_allocate_page;
5906 if( closest<k-1 ){
5907 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5909 put4byte(&aData[4], k-1);
5910 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5911 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5912 if( rc==SQLITE_OK ){
5913 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5914 if( rc!=SQLITE_OK ){
5915 releasePage(*ppPage);
5916 *ppPage = 0;
5919 searchList = 0;
5922 releasePage(pPrevTrunk);
5923 pPrevTrunk = 0;
5924 }while( searchList );
5925 }else{
5926 /* There are no pages on the freelist, so append a new page to the
5927 ** database image.
5929 ** Normally, new pages allocated by this block can be requested from the
5930 ** pager layer with the 'no-content' flag set. This prevents the pager
5931 ** from trying to read the pages content from disk. However, if the
5932 ** current transaction has already run one or more incremental-vacuum
5933 ** steps, then the page we are about to allocate may contain content
5934 ** that is required in the event of a rollback. In this case, do
5935 ** not set the no-content flag. This causes the pager to load and journal
5936 ** the current page content before overwriting it.
5938 ** Note that the pager will not actually attempt to load or journal
5939 ** content for any page that really does lie past the end of the database
5940 ** file on disk. So the effects of disabling the no-content optimization
5941 ** here are confined to those pages that lie between the end of the
5942 ** database image and the end of the database file.
5944 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5946 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5947 if( rc ) return rc;
5948 pBt->nPage++;
5949 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5951 #ifndef SQLITE_OMIT_AUTOVACUUM
5952 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5953 /* If *pPgno refers to a pointer-map page, allocate two new pages
5954 ** at the end of the file instead of one. The first allocated page
5955 ** becomes a new pointer-map page, the second is used by the caller.
5957 MemPage *pPg = 0;
5958 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5959 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5960 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
5961 if( rc==SQLITE_OK ){
5962 rc = sqlite3PagerWrite(pPg->pDbPage);
5963 releasePage(pPg);
5965 if( rc ) return rc;
5966 pBt->nPage++;
5967 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5969 #endif
5970 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5971 *pPgno = pBt->nPage;
5973 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5974 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
5975 if( rc ) return rc;
5976 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5977 if( rc!=SQLITE_OK ){
5978 releasePage(*ppPage);
5979 *ppPage = 0;
5981 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5984 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5986 end_allocate_page:
5987 releasePage(pTrunk);
5988 releasePage(pPrevTrunk);
5989 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5990 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
5991 return rc;
5995 ** This function is used to add page iPage to the database file free-list.
5996 ** It is assumed that the page is not already a part of the free-list.
5998 ** The value passed as the second argument to this function is optional.
5999 ** If the caller happens to have a pointer to the MemPage object
6000 ** corresponding to page iPage handy, it may pass it as the second value.
6001 ** Otherwise, it may pass NULL.
6003 ** If a pointer to a MemPage object is passed as the second argument,
6004 ** its reference count is not altered by this function.
6006 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6007 MemPage *pTrunk = 0; /* Free-list trunk page */
6008 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6009 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6010 MemPage *pPage; /* Page being freed. May be NULL. */
6011 int rc; /* Return Code */
6012 int nFree; /* Initial number of pages on free-list */
6014 assert( sqlite3_mutex_held(pBt->mutex) );
6015 assert( CORRUPT_DB || iPage>1 );
6016 assert( !pMemPage || pMemPage->pgno==iPage );
6018 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
6019 if( pMemPage ){
6020 pPage = pMemPage;
6021 sqlite3PagerRef(pPage->pDbPage);
6022 }else{
6023 pPage = btreePageLookup(pBt, iPage);
6026 /* Increment the free page count on pPage1 */
6027 rc = sqlite3PagerWrite(pPage1->pDbPage);
6028 if( rc ) goto freepage_out;
6029 nFree = get4byte(&pPage1->aData[36]);
6030 put4byte(&pPage1->aData[36], nFree+1);
6032 if( pBt->btsFlags & BTS_SECURE_DELETE ){
6033 /* If the secure_delete option is enabled, then
6034 ** always fully overwrite deleted information with zeros.
6036 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6037 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6039 goto freepage_out;
6041 memset(pPage->aData, 0, pPage->pBt->pageSize);
6044 /* If the database supports auto-vacuum, write an entry in the pointer-map
6045 ** to indicate that the page is free.
6047 if( ISAUTOVACUUM ){
6048 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6049 if( rc ) goto freepage_out;
6052 /* Now manipulate the actual database free-list structure. There are two
6053 ** possibilities. If the free-list is currently empty, or if the first
6054 ** trunk page in the free-list is full, then this page will become a
6055 ** new free-list trunk page. Otherwise, it will become a leaf of the
6056 ** first trunk page in the current free-list. This block tests if it
6057 ** is possible to add the page as a new free-list leaf.
6059 if( nFree!=0 ){
6060 u32 nLeaf; /* Initial number of leaf cells on trunk page */
6062 iTrunk = get4byte(&pPage1->aData[32]);
6063 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6064 if( rc!=SQLITE_OK ){
6065 goto freepage_out;
6068 nLeaf = get4byte(&pTrunk->aData[4]);
6069 assert( pBt->usableSize>32 );
6070 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6071 rc = SQLITE_CORRUPT_BKPT;
6072 goto freepage_out;
6074 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6075 /* In this case there is room on the trunk page to insert the page
6076 ** being freed as a new leaf.
6078 ** Note that the trunk page is not really full until it contains
6079 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6080 ** coded. But due to a coding error in versions of SQLite prior to
6081 ** 3.6.0, databases with freelist trunk pages holding more than
6082 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6083 ** to maintain backwards compatibility with older versions of SQLite,
6084 ** we will continue to restrict the number of entries to usableSize/4 - 8
6085 ** for now. At some point in the future (once everyone has upgraded
6086 ** to 3.6.0 or later) we should consider fixing the conditional above
6087 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6089 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6090 ** avoid using the last six entries in the freelist trunk page array in
6091 ** order that database files created by newer versions of SQLite can be
6092 ** read by older versions of SQLite.
6094 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6095 if( rc==SQLITE_OK ){
6096 put4byte(&pTrunk->aData[4], nLeaf+1);
6097 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6098 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6099 sqlite3PagerDontWrite(pPage->pDbPage);
6101 rc = btreeSetHasContent(pBt, iPage);
6103 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6104 goto freepage_out;
6108 /* If control flows to this point, then it was not possible to add the
6109 ** the page being freed as a leaf page of the first trunk in the free-list.
6110 ** Possibly because the free-list is empty, or possibly because the
6111 ** first trunk in the free-list is full. Either way, the page being freed
6112 ** will become the new first trunk page in the free-list.
6114 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6115 goto freepage_out;
6117 rc = sqlite3PagerWrite(pPage->pDbPage);
6118 if( rc!=SQLITE_OK ){
6119 goto freepage_out;
6121 put4byte(pPage->aData, iTrunk);
6122 put4byte(&pPage->aData[4], 0);
6123 put4byte(&pPage1->aData[32], iPage);
6124 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6126 freepage_out:
6127 if( pPage ){
6128 pPage->isInit = 0;
6130 releasePage(pPage);
6131 releasePage(pTrunk);
6132 return rc;
6134 static void freePage(MemPage *pPage, int *pRC){
6135 if( (*pRC)==SQLITE_OK ){
6136 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6141 ** Free any overflow pages associated with the given Cell. Write the
6142 ** local Cell size (the number of bytes on the original page, omitting
6143 ** overflow) into *pnSize.
6145 static int clearCell(
6146 MemPage *pPage, /* The page that contains the Cell */
6147 unsigned char *pCell, /* First byte of the Cell */
6148 CellInfo *pInfo /* Size information about the cell */
6150 BtShared *pBt;
6151 Pgno ovflPgno;
6152 int rc;
6153 int nOvfl;
6154 u32 ovflPageSize;
6156 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6157 pPage->xParseCell(pPage, pCell, pInfo);
6158 if( pInfo->nLocal==pInfo->nPayload ){
6159 return SQLITE_OK; /* No overflow pages. Return without doing anything */
6161 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
6162 /* Cell extends past end of page */
6163 return SQLITE_CORRUPT_PGNO(pPage->pgno);
6165 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6166 pBt = pPage->pBt;
6167 assert( pBt->usableSize > 4 );
6168 ovflPageSize = pBt->usableSize - 4;
6169 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6170 assert( nOvfl>0 ||
6171 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6173 while( nOvfl-- ){
6174 Pgno iNext = 0;
6175 MemPage *pOvfl = 0;
6176 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6177 /* 0 is not a legal page number and page 1 cannot be an
6178 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6179 ** file the database must be corrupt. */
6180 return SQLITE_CORRUPT_BKPT;
6182 if( nOvfl ){
6183 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6184 if( rc ) return rc;
6187 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6188 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6190 /* There is no reason any cursor should have an outstanding reference
6191 ** to an overflow page belonging to a cell that is being deleted/updated.
6192 ** So if there exists more than one reference to this page, then it
6193 ** must not really be an overflow page and the database must be corrupt.
6194 ** It is helpful to detect this before calling freePage2(), as
6195 ** freePage2() may zero the page contents if secure-delete mode is
6196 ** enabled. If this 'overflow' page happens to be a page that the
6197 ** caller is iterating through or using in some other way, this
6198 ** can be problematic.
6200 rc = SQLITE_CORRUPT_BKPT;
6201 }else{
6202 rc = freePage2(pBt, pOvfl, ovflPgno);
6205 if( pOvfl ){
6206 sqlite3PagerUnref(pOvfl->pDbPage);
6208 if( rc ) return rc;
6209 ovflPgno = iNext;
6211 return SQLITE_OK;
6215 ** Create the byte sequence used to represent a cell on page pPage
6216 ** and write that byte sequence into pCell[]. Overflow pages are
6217 ** allocated and filled in as necessary. The calling procedure
6218 ** is responsible for making sure sufficient space has been allocated
6219 ** for pCell[].
6221 ** Note that pCell does not necessary need to point to the pPage->aData
6222 ** area. pCell might point to some temporary storage. The cell will
6223 ** be constructed in this temporary area then copied into pPage->aData
6224 ** later.
6226 static int fillInCell(
6227 MemPage *pPage, /* The page that contains the cell */
6228 unsigned char *pCell, /* Complete text of the cell */
6229 const BtreePayload *pX, /* Payload with which to construct the cell */
6230 int *pnSize /* Write cell size here */
6232 int nPayload;
6233 const u8 *pSrc;
6234 int nSrc, n, rc, mn;
6235 int spaceLeft;
6236 MemPage *pToRelease;
6237 unsigned char *pPrior;
6238 unsigned char *pPayload;
6239 BtShared *pBt;
6240 Pgno pgnoOvfl;
6241 int nHeader;
6243 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6245 /* pPage is not necessarily writeable since pCell might be auxiliary
6246 ** buffer space that is separate from the pPage buffer area */
6247 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6248 || sqlite3PagerIswriteable(pPage->pDbPage) );
6250 /* Fill in the header. */
6251 nHeader = pPage->childPtrSize;
6252 if( pPage->intKey ){
6253 nPayload = pX->nData + pX->nZero;
6254 pSrc = pX->pData;
6255 nSrc = pX->nData;
6256 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6257 nHeader += putVarint32(&pCell[nHeader], nPayload);
6258 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6259 }else{
6260 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6261 nSrc = nPayload = (int)pX->nKey;
6262 pSrc = pX->pKey;
6263 nHeader += putVarint32(&pCell[nHeader], nPayload);
6266 /* Fill in the payload */
6267 pPayload = &pCell[nHeader];
6268 if( nPayload<=pPage->maxLocal ){
6269 /* This is the common case where everything fits on the btree page
6270 ** and no overflow pages are required. */
6271 n = nHeader + nPayload;
6272 testcase( n==3 );
6273 testcase( n==4 );
6274 if( n<4 ) n = 4;
6275 *pnSize = n;
6276 assert( nSrc<=nPayload );
6277 testcase( nSrc<nPayload );
6278 memcpy(pPayload, pSrc, nSrc);
6279 memset(pPayload+nSrc, 0, nPayload-nSrc);
6280 return SQLITE_OK;
6283 /* If we reach this point, it means that some of the content will need
6284 ** to spill onto overflow pages.
6286 mn = pPage->minLocal;
6287 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6288 testcase( n==pPage->maxLocal );
6289 testcase( n==pPage->maxLocal+1 );
6290 if( n > pPage->maxLocal ) n = mn;
6291 spaceLeft = n;
6292 *pnSize = n + nHeader + 4;
6293 pPrior = &pCell[nHeader+n];
6294 pToRelease = 0;
6295 pgnoOvfl = 0;
6296 pBt = pPage->pBt;
6298 /* At this point variables should be set as follows:
6300 ** nPayload Total payload size in bytes
6301 ** pPayload Begin writing payload here
6302 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6303 ** that means content must spill into overflow pages.
6304 ** *pnSize Size of the local cell (not counting overflow pages)
6305 ** pPrior Where to write the pgno of the first overflow page
6307 ** Use a call to btreeParseCellPtr() to verify that the values above
6308 ** were computed correctly.
6310 #ifdef SQLITE_DEBUG
6312 CellInfo info;
6313 pPage->xParseCell(pPage, pCell, &info);
6314 assert( nHeader==(int)(info.pPayload - pCell) );
6315 assert( info.nKey==pX->nKey );
6316 assert( *pnSize == info.nSize );
6317 assert( spaceLeft == info.nLocal );
6319 #endif
6321 /* Write the payload into the local Cell and any extra into overflow pages */
6322 while( 1 ){
6323 n = nPayload;
6324 if( n>spaceLeft ) n = spaceLeft;
6326 /* If pToRelease is not zero than pPayload points into the data area
6327 ** of pToRelease. Make sure pToRelease is still writeable. */
6328 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6330 /* If pPayload is part of the data area of pPage, then make sure pPage
6331 ** is still writeable */
6332 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6333 || sqlite3PagerIswriteable(pPage->pDbPage) );
6335 if( nSrc>=n ){
6336 memcpy(pPayload, pSrc, n);
6337 }else if( nSrc>0 ){
6338 n = nSrc;
6339 memcpy(pPayload, pSrc, n);
6340 }else{
6341 memset(pPayload, 0, n);
6343 nPayload -= n;
6344 if( nPayload<=0 ) break;
6345 pPayload += n;
6346 pSrc += n;
6347 nSrc -= n;
6348 spaceLeft -= n;
6349 if( spaceLeft==0 ){
6350 MemPage *pOvfl = 0;
6351 #ifndef SQLITE_OMIT_AUTOVACUUM
6352 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6353 if( pBt->autoVacuum ){
6355 pgnoOvfl++;
6356 } while(
6357 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6360 #endif
6361 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6362 #ifndef SQLITE_OMIT_AUTOVACUUM
6363 /* If the database supports auto-vacuum, and the second or subsequent
6364 ** overflow page is being allocated, add an entry to the pointer-map
6365 ** for that page now.
6367 ** If this is the first overflow page, then write a partial entry
6368 ** to the pointer-map. If we write nothing to this pointer-map slot,
6369 ** then the optimistic overflow chain processing in clearCell()
6370 ** may misinterpret the uninitialized values and delete the
6371 ** wrong pages from the database.
6373 if( pBt->autoVacuum && rc==SQLITE_OK ){
6374 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6375 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6376 if( rc ){
6377 releasePage(pOvfl);
6380 #endif
6381 if( rc ){
6382 releasePage(pToRelease);
6383 return rc;
6386 /* If pToRelease is not zero than pPrior points into the data area
6387 ** of pToRelease. Make sure pToRelease is still writeable. */
6388 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6390 /* If pPrior is part of the data area of pPage, then make sure pPage
6391 ** is still writeable */
6392 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6393 || sqlite3PagerIswriteable(pPage->pDbPage) );
6395 put4byte(pPrior, pgnoOvfl);
6396 releasePage(pToRelease);
6397 pToRelease = pOvfl;
6398 pPrior = pOvfl->aData;
6399 put4byte(pPrior, 0);
6400 pPayload = &pOvfl->aData[4];
6401 spaceLeft = pBt->usableSize - 4;
6404 releasePage(pToRelease);
6405 return SQLITE_OK;
6409 ** Remove the i-th cell from pPage. This routine effects pPage only.
6410 ** The cell content is not freed or deallocated. It is assumed that
6411 ** the cell content has been copied someplace else. This routine just
6412 ** removes the reference to the cell from pPage.
6414 ** "sz" must be the number of bytes in the cell.
6416 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6417 u32 pc; /* Offset to cell content of cell being deleted */
6418 u8 *data; /* pPage->aData */
6419 u8 *ptr; /* Used to move bytes around within data[] */
6420 int rc; /* The return code */
6421 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
6423 if( *pRC ) return;
6424 assert( idx>=0 && idx<pPage->nCell );
6425 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6426 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6427 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6428 data = pPage->aData;
6429 ptr = &pPage->aCellIdx[2*idx];
6430 pc = get2byte(ptr);
6431 hdr = pPage->hdrOffset;
6432 testcase( pc==get2byte(&data[hdr+5]) );
6433 testcase( pc+sz==pPage->pBt->usableSize );
6434 if( pc+sz > pPage->pBt->usableSize ){
6435 *pRC = SQLITE_CORRUPT_BKPT;
6436 return;
6438 rc = freeSpace(pPage, pc, sz);
6439 if( rc ){
6440 *pRC = rc;
6441 return;
6443 pPage->nCell--;
6444 if( pPage->nCell==0 ){
6445 memset(&data[hdr+1], 0, 4);
6446 data[hdr+7] = 0;
6447 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6448 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6449 - pPage->childPtrSize - 8;
6450 }else{
6451 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6452 put2byte(&data[hdr+3], pPage->nCell);
6453 pPage->nFree += 2;
6458 ** Insert a new cell on pPage at cell index "i". pCell points to the
6459 ** content of the cell.
6461 ** If the cell content will fit on the page, then put it there. If it
6462 ** will not fit, then make a copy of the cell content into pTemp if
6463 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6464 ** in pPage->apOvfl[] and make it point to the cell content (either
6465 ** in pTemp or the original pCell) and also record its index.
6466 ** Allocating a new entry in pPage->aCell[] implies that
6467 ** pPage->nOverflow is incremented.
6469 ** *pRC must be SQLITE_OK when this routine is called.
6471 static void insertCell(
6472 MemPage *pPage, /* Page into which we are copying */
6473 int i, /* New cell becomes the i-th cell of the page */
6474 u8 *pCell, /* Content of the new cell */
6475 int sz, /* Bytes of content in pCell */
6476 u8 *pTemp, /* Temp storage space for pCell, if needed */
6477 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6478 int *pRC /* Read and write return code from here */
6480 int idx = 0; /* Where to write new cell content in data[] */
6481 int j; /* Loop counter */
6482 u8 *data; /* The content of the whole page */
6483 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
6485 assert( *pRC==SQLITE_OK );
6486 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6487 assert( MX_CELL(pPage->pBt)<=10921 );
6488 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6489 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6490 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6491 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6492 /* The cell should normally be sized correctly. However, when moving a
6493 ** malformed cell from a leaf page to an interior page, if the cell size
6494 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6495 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6496 ** the term after the || in the following assert(). */
6497 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6498 if( pPage->nOverflow || sz+2>pPage->nFree ){
6499 if( pTemp ){
6500 memcpy(pTemp, pCell, sz);
6501 pCell = pTemp;
6503 if( iChild ){
6504 put4byte(pCell, iChild);
6506 j = pPage->nOverflow++;
6507 /* Comparison against ArraySize-1 since we hold back one extra slot
6508 ** as a contingency. In other words, never need more than 3 overflow
6509 ** slots but 4 are allocated, just to be safe. */
6510 assert( j < ArraySize(pPage->apOvfl)-1 );
6511 pPage->apOvfl[j] = pCell;
6512 pPage->aiOvfl[j] = (u16)i;
6514 /* When multiple overflows occur, they are always sequential and in
6515 ** sorted order. This invariants arise because multiple overflows can
6516 ** only occur when inserting divider cells into the parent page during
6517 ** balancing, and the dividers are adjacent and sorted.
6519 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6520 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
6521 }else{
6522 int rc = sqlite3PagerWrite(pPage->pDbPage);
6523 if( rc!=SQLITE_OK ){
6524 *pRC = rc;
6525 return;
6527 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6528 data = pPage->aData;
6529 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6530 rc = allocateSpace(pPage, sz, &idx);
6531 if( rc ){ *pRC = rc; return; }
6532 /* The allocateSpace() routine guarantees the following properties
6533 ** if it returns successfully */
6534 assert( idx >= 0 );
6535 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6536 assert( idx+sz <= (int)pPage->pBt->usableSize );
6537 pPage->nFree -= (u16)(2 + sz);
6538 memcpy(&data[idx], pCell, sz);
6539 if( iChild ){
6540 put4byte(&data[idx], iChild);
6542 pIns = pPage->aCellIdx + i*2;
6543 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6544 put2byte(pIns, idx);
6545 pPage->nCell++;
6546 /* increment the cell count */
6547 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6548 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6549 #ifndef SQLITE_OMIT_AUTOVACUUM
6550 if( pPage->pBt->autoVacuum ){
6551 /* The cell may contain a pointer to an overflow page. If so, write
6552 ** the entry for the overflow page into the pointer map.
6554 ptrmapPutOvflPtr(pPage, pCell, pRC);
6556 #endif
6561 ** A CellArray object contains a cache of pointers and sizes for a
6562 ** consecutive sequence of cells that might be held on multiple pages.
6564 typedef struct CellArray CellArray;
6565 struct CellArray {
6566 int nCell; /* Number of cells in apCell[] */
6567 MemPage *pRef; /* Reference page */
6568 u8 **apCell; /* All cells begin balanced */
6569 u16 *szCell; /* Local size of all cells in apCell[] */
6573 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6574 ** computed.
6576 static void populateCellCache(CellArray *p, int idx, int N){
6577 assert( idx>=0 && idx+N<=p->nCell );
6578 while( N>0 ){
6579 assert( p->apCell[idx]!=0 );
6580 if( p->szCell[idx]==0 ){
6581 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6582 }else{
6583 assert( CORRUPT_DB ||
6584 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6586 idx++;
6587 N--;
6592 ** Return the size of the Nth element of the cell array
6594 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6595 assert( N>=0 && N<p->nCell );
6596 assert( p->szCell[N]==0 );
6597 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6598 return p->szCell[N];
6600 static u16 cachedCellSize(CellArray *p, int N){
6601 assert( N>=0 && N<p->nCell );
6602 if( p->szCell[N] ) return p->szCell[N];
6603 return computeCellSize(p, N);
6607 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6608 ** szCell[] array contains the size in bytes of each cell. This function
6609 ** replaces the current contents of page pPg with the contents of the cell
6610 ** array.
6612 ** Some of the cells in apCell[] may currently be stored in pPg. This
6613 ** function works around problems caused by this by making a copy of any
6614 ** such cells before overwriting the page data.
6616 ** The MemPage.nFree field is invalidated by this function. It is the
6617 ** responsibility of the caller to set it correctly.
6619 static int rebuildPage(
6620 MemPage *pPg, /* Edit this page */
6621 int nCell, /* Final number of cells on page */
6622 u8 **apCell, /* Array of cells */
6623 u16 *szCell /* Array of cell sizes */
6625 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6626 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6627 const int usableSize = pPg->pBt->usableSize;
6628 u8 * const pEnd = &aData[usableSize];
6629 int i;
6630 u8 *pCellptr = pPg->aCellIdx;
6631 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6632 u8 *pData;
6634 i = get2byte(&aData[hdr+5]);
6635 memcpy(&pTmp[i], &aData[i], usableSize - i);
6637 pData = pEnd;
6638 for(i=0; i<nCell; i++){
6639 u8 *pCell = apCell[i];
6640 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6641 pCell = &pTmp[pCell - aData];
6643 pData -= szCell[i];
6644 put2byte(pCellptr, (pData - aData));
6645 pCellptr += 2;
6646 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6647 memcpy(pData, pCell, szCell[i]);
6648 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6649 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6652 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6653 pPg->nCell = nCell;
6654 pPg->nOverflow = 0;
6656 put2byte(&aData[hdr+1], 0);
6657 put2byte(&aData[hdr+3], pPg->nCell);
6658 put2byte(&aData[hdr+5], pData - aData);
6659 aData[hdr+7] = 0x00;
6660 return SQLITE_OK;
6664 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6665 ** contains the size in bytes of each such cell. This function attempts to
6666 ** add the cells stored in the array to page pPg. If it cannot (because
6667 ** the page needs to be defragmented before the cells will fit), non-zero
6668 ** is returned. Otherwise, if the cells are added successfully, zero is
6669 ** returned.
6671 ** Argument pCellptr points to the first entry in the cell-pointer array
6672 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6673 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6674 ** cell in the array. It is the responsibility of the caller to ensure
6675 ** that it is safe to overwrite this part of the cell-pointer array.
6677 ** When this function is called, *ppData points to the start of the
6678 ** content area on page pPg. If the size of the content area is extended,
6679 ** *ppData is updated to point to the new start of the content area
6680 ** before returning.
6682 ** Finally, argument pBegin points to the byte immediately following the
6683 ** end of the space required by this page for the cell-pointer area (for
6684 ** all cells - not just those inserted by the current call). If the content
6685 ** area must be extended to before this point in order to accomodate all
6686 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6688 static int pageInsertArray(
6689 MemPage *pPg, /* Page to add cells to */
6690 u8 *pBegin, /* End of cell-pointer array */
6691 u8 **ppData, /* IN/OUT: Page content -area pointer */
6692 u8 *pCellptr, /* Pointer to cell-pointer area */
6693 int iFirst, /* Index of first cell to add */
6694 int nCell, /* Number of cells to add to pPg */
6695 CellArray *pCArray /* Array of cells */
6697 int i;
6698 u8 *aData = pPg->aData;
6699 u8 *pData = *ppData;
6700 int iEnd = iFirst + nCell;
6701 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
6702 for(i=iFirst; i<iEnd; i++){
6703 int sz, rc;
6704 u8 *pSlot;
6705 sz = cachedCellSize(pCArray, i);
6706 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6707 if( (pData - pBegin)<sz ) return 1;
6708 pData -= sz;
6709 pSlot = pData;
6711 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6712 ** database. But they might for a corrupt database. Hence use memmove()
6713 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6714 assert( (pSlot+sz)<=pCArray->apCell[i]
6715 || pSlot>=(pCArray->apCell[i]+sz)
6716 || CORRUPT_DB );
6717 memmove(pSlot, pCArray->apCell[i], sz);
6718 put2byte(pCellptr, (pSlot - aData));
6719 pCellptr += 2;
6721 *ppData = pData;
6722 return 0;
6726 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6727 ** contains the size in bytes of each such cell. This function adds the
6728 ** space associated with each cell in the array that is currently stored
6729 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6730 ** fields of the page are not updated.
6732 ** This function returns the total number of cells added to the free-list.
6734 static int pageFreeArray(
6735 MemPage *pPg, /* Page to edit */
6736 int iFirst, /* First cell to delete */
6737 int nCell, /* Cells to delete */
6738 CellArray *pCArray /* Array of cells */
6740 u8 * const aData = pPg->aData;
6741 u8 * const pEnd = &aData[pPg->pBt->usableSize];
6742 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6743 int nRet = 0;
6744 int i;
6745 int iEnd = iFirst + nCell;
6746 u8 *pFree = 0;
6747 int szFree = 0;
6749 for(i=iFirst; i<iEnd; i++){
6750 u8 *pCell = pCArray->apCell[i];
6751 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6752 int sz;
6753 /* No need to use cachedCellSize() here. The sizes of all cells that
6754 ** are to be freed have already been computing while deciding which
6755 ** cells need freeing */
6756 sz = pCArray->szCell[i]; assert( sz>0 );
6757 if( pFree!=(pCell + sz) ){
6758 if( pFree ){
6759 assert( pFree>aData && (pFree - aData)<65536 );
6760 freeSpace(pPg, (u16)(pFree - aData), szFree);
6762 pFree = pCell;
6763 szFree = sz;
6764 if( pFree+sz>pEnd ) return 0;
6765 }else{
6766 pFree = pCell;
6767 szFree += sz;
6769 nRet++;
6772 if( pFree ){
6773 assert( pFree>aData && (pFree - aData)<65536 );
6774 freeSpace(pPg, (u16)(pFree - aData), szFree);
6776 return nRet;
6780 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6781 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6782 ** with apCell[iOld]. After balancing, this page should hold nNew cells
6783 ** starting at apCell[iNew].
6785 ** This routine makes the necessary adjustments to pPg so that it contains
6786 ** the correct cells after being balanced.
6788 ** The pPg->nFree field is invalid when this function returns. It is the
6789 ** responsibility of the caller to set it correctly.
6791 static int editPage(
6792 MemPage *pPg, /* Edit this page */
6793 int iOld, /* Index of first cell currently on page */
6794 int iNew, /* Index of new first cell on page */
6795 int nNew, /* Final number of cells on page */
6796 CellArray *pCArray /* Array of cells and sizes */
6798 u8 * const aData = pPg->aData;
6799 const int hdr = pPg->hdrOffset;
6800 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6801 int nCell = pPg->nCell; /* Cells stored on pPg */
6802 u8 *pData;
6803 u8 *pCellptr;
6804 int i;
6805 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6806 int iNewEnd = iNew + nNew;
6808 #ifdef SQLITE_DEBUG
6809 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6810 memcpy(pTmp, aData, pPg->pBt->usableSize);
6811 #endif
6813 /* Remove cells from the start and end of the page */
6814 if( iOld<iNew ){
6815 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6816 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6817 nCell -= nShift;
6819 if( iNewEnd < iOldEnd ){
6820 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6823 pData = &aData[get2byteNotZero(&aData[hdr+5])];
6824 if( pData<pBegin ) goto editpage_fail;
6826 /* Add cells to the start of the page */
6827 if( iNew<iOld ){
6828 int nAdd = MIN(nNew,iOld-iNew);
6829 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6830 pCellptr = pPg->aCellIdx;
6831 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6832 if( pageInsertArray(
6833 pPg, pBegin, &pData, pCellptr,
6834 iNew, nAdd, pCArray
6835 ) ) goto editpage_fail;
6836 nCell += nAdd;
6839 /* Add any overflow cells */
6840 for(i=0; i<pPg->nOverflow; i++){
6841 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6842 if( iCell>=0 && iCell<nNew ){
6843 pCellptr = &pPg->aCellIdx[iCell * 2];
6844 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6845 nCell++;
6846 if( pageInsertArray(
6847 pPg, pBegin, &pData, pCellptr,
6848 iCell+iNew, 1, pCArray
6849 ) ) goto editpage_fail;
6853 /* Append cells to the end of the page */
6854 pCellptr = &pPg->aCellIdx[nCell*2];
6855 if( pageInsertArray(
6856 pPg, pBegin, &pData, pCellptr,
6857 iNew+nCell, nNew-nCell, pCArray
6858 ) ) goto editpage_fail;
6860 pPg->nCell = nNew;
6861 pPg->nOverflow = 0;
6863 put2byte(&aData[hdr+3], pPg->nCell);
6864 put2byte(&aData[hdr+5], pData - aData);
6866 #ifdef SQLITE_DEBUG
6867 for(i=0; i<nNew && !CORRUPT_DB; i++){
6868 u8 *pCell = pCArray->apCell[i+iNew];
6869 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6870 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6871 pCell = &pTmp[pCell - aData];
6873 assert( 0==memcmp(pCell, &aData[iOff],
6874 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6876 #endif
6878 return SQLITE_OK;
6879 editpage_fail:
6880 /* Unable to edit this page. Rebuild it from scratch instead. */
6881 populateCellCache(pCArray, iNew, nNew);
6882 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6886 ** The following parameters determine how many adjacent pages get involved
6887 ** in a balancing operation. NN is the number of neighbors on either side
6888 ** of the page that participate in the balancing operation. NB is the
6889 ** total number of pages that participate, including the target page and
6890 ** NN neighbors on either side.
6892 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6893 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6894 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6895 ** The value of NN appears to give the best results overall.
6897 #define NN 1 /* Number of neighbors on either side of pPage */
6898 #define NB (NN*2+1) /* Total pages involved in the balance */
6901 #ifndef SQLITE_OMIT_QUICKBALANCE
6903 ** This version of balance() handles the common special case where
6904 ** a new entry is being inserted on the extreme right-end of the
6905 ** tree, in other words, when the new entry will become the largest
6906 ** entry in the tree.
6908 ** Instead of trying to balance the 3 right-most leaf pages, just add
6909 ** a new page to the right-hand side and put the one new entry in
6910 ** that page. This leaves the right side of the tree somewhat
6911 ** unbalanced. But odds are that we will be inserting new entries
6912 ** at the end soon afterwards so the nearly empty page will quickly
6913 ** fill up. On average.
6915 ** pPage is the leaf page which is the right-most page in the tree.
6916 ** pParent is its parent. pPage must have a single overflow entry
6917 ** which is also the right-most entry on the page.
6919 ** The pSpace buffer is used to store a temporary copy of the divider
6920 ** cell that will be inserted into pParent. Such a cell consists of a 4
6921 ** byte page number followed by a variable length integer. In other
6922 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6923 ** least 13 bytes in size.
6925 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6926 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
6927 MemPage *pNew; /* Newly allocated page */
6928 int rc; /* Return Code */
6929 Pgno pgnoNew; /* Page number of pNew */
6931 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6932 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6933 assert( pPage->nOverflow==1 );
6935 /* This error condition is now caught prior to reaching this function */
6936 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6938 /* Allocate a new page. This page will become the right-sibling of
6939 ** pPage. Make the parent page writable, so that the new divider cell
6940 ** may be inserted. If both these operations are successful, proceed.
6942 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6944 if( rc==SQLITE_OK ){
6946 u8 *pOut = &pSpace[4];
6947 u8 *pCell = pPage->apOvfl[0];
6948 u16 szCell = pPage->xCellSize(pPage, pCell);
6949 u8 *pStop;
6951 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6952 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6953 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6954 rc = rebuildPage(pNew, 1, &pCell, &szCell);
6955 if( NEVER(rc) ) return rc;
6956 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
6958 /* If this is an auto-vacuum database, update the pointer map
6959 ** with entries for the new page, and any pointer from the
6960 ** cell on the page to an overflow page. If either of these
6961 ** operations fails, the return code is set, but the contents
6962 ** of the parent page are still manipulated by thh code below.
6963 ** That is Ok, at this point the parent page is guaranteed to
6964 ** be marked as dirty. Returning an error code will cause a
6965 ** rollback, undoing any changes made to the parent page.
6967 if( ISAUTOVACUUM ){
6968 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6969 if( szCell>pNew->minLocal ){
6970 ptrmapPutOvflPtr(pNew, pCell, &rc);
6974 /* Create a divider cell to insert into pParent. The divider cell
6975 ** consists of a 4-byte page number (the page number of pPage) and
6976 ** a variable length key value (which must be the same value as the
6977 ** largest key on pPage).
6979 ** To find the largest key value on pPage, first find the right-most
6980 ** cell on pPage. The first two fields of this cell are the
6981 ** record-length (a variable length integer at most 32-bits in size)
6982 ** and the key value (a variable length integer, may have any value).
6983 ** The first of the while(...) loops below skips over the record-length
6984 ** field. The second while(...) loop copies the key value from the
6985 ** cell on pPage into the pSpace buffer.
6987 pCell = findCell(pPage, pPage->nCell-1);
6988 pStop = &pCell[9];
6989 while( (*(pCell++)&0x80) && pCell<pStop );
6990 pStop = &pCell[9];
6991 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6993 /* Insert the new divider cell into pParent. */
6994 if( rc==SQLITE_OK ){
6995 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6996 0, pPage->pgno, &rc);
6999 /* Set the right-child pointer of pParent to point to the new page. */
7000 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7002 /* Release the reference to the new page. */
7003 releasePage(pNew);
7006 return rc;
7008 #endif /* SQLITE_OMIT_QUICKBALANCE */
7010 #if 0
7012 ** This function does not contribute anything to the operation of SQLite.
7013 ** it is sometimes activated temporarily while debugging code responsible
7014 ** for setting pointer-map entries.
7016 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7017 int i, j;
7018 for(i=0; i<nPage; i++){
7019 Pgno n;
7020 u8 e;
7021 MemPage *pPage = apPage[i];
7022 BtShared *pBt = pPage->pBt;
7023 assert( pPage->isInit );
7025 for(j=0; j<pPage->nCell; j++){
7026 CellInfo info;
7027 u8 *z;
7029 z = findCell(pPage, j);
7030 pPage->xParseCell(pPage, z, &info);
7031 if( info.nLocal<info.nPayload ){
7032 Pgno ovfl = get4byte(&z[info.nSize-4]);
7033 ptrmapGet(pBt, ovfl, &e, &n);
7034 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7036 if( !pPage->leaf ){
7037 Pgno child = get4byte(z);
7038 ptrmapGet(pBt, child, &e, &n);
7039 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7042 if( !pPage->leaf ){
7043 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7044 ptrmapGet(pBt, child, &e, &n);
7045 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7048 return 1;
7050 #endif
7053 ** This function is used to copy the contents of the b-tree node stored
7054 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7055 ** the pointer-map entries for each child page are updated so that the
7056 ** parent page stored in the pointer map is page pTo. If pFrom contained
7057 ** any cells with overflow page pointers, then the corresponding pointer
7058 ** map entries are also updated so that the parent page is page pTo.
7060 ** If pFrom is currently carrying any overflow cells (entries in the
7061 ** MemPage.apOvfl[] array), they are not copied to pTo.
7063 ** Before returning, page pTo is reinitialized using btreeInitPage().
7065 ** The performance of this function is not critical. It is only used by
7066 ** the balance_shallower() and balance_deeper() procedures, neither of
7067 ** which are called often under normal circumstances.
7069 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7070 if( (*pRC)==SQLITE_OK ){
7071 BtShared * const pBt = pFrom->pBt;
7072 u8 * const aFrom = pFrom->aData;
7073 u8 * const aTo = pTo->aData;
7074 int const iFromHdr = pFrom->hdrOffset;
7075 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7076 int rc;
7077 int iData;
7080 assert( pFrom->isInit );
7081 assert( pFrom->nFree>=iToHdr );
7082 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7084 /* Copy the b-tree node content from page pFrom to page pTo. */
7085 iData = get2byte(&aFrom[iFromHdr+5]);
7086 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7087 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7089 /* Reinitialize page pTo so that the contents of the MemPage structure
7090 ** match the new data. The initialization of pTo can actually fail under
7091 ** fairly obscure circumstances, even though it is a copy of initialized
7092 ** page pFrom.
7094 pTo->isInit = 0;
7095 rc = btreeInitPage(pTo);
7096 if( rc!=SQLITE_OK ){
7097 *pRC = rc;
7098 return;
7101 /* If this is an auto-vacuum database, update the pointer-map entries
7102 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7104 if( ISAUTOVACUUM ){
7105 *pRC = setChildPtrmaps(pTo);
7111 ** This routine redistributes cells on the iParentIdx'th child of pParent
7112 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7113 ** same amount of free space. Usually a single sibling on either side of the
7114 ** page are used in the balancing, though both siblings might come from one
7115 ** side if the page is the first or last child of its parent. If the page
7116 ** has fewer than 2 siblings (something which can only happen if the page
7117 ** is a root page or a child of a root page) then all available siblings
7118 ** participate in the balancing.
7120 ** The number of siblings of the page might be increased or decreased by
7121 ** one or two in an effort to keep pages nearly full but not over full.
7123 ** Note that when this routine is called, some of the cells on the page
7124 ** might not actually be stored in MemPage.aData[]. This can happen
7125 ** if the page is overfull. This routine ensures that all cells allocated
7126 ** to the page and its siblings fit into MemPage.aData[] before returning.
7128 ** In the course of balancing the page and its siblings, cells may be
7129 ** inserted into or removed from the parent page (pParent). Doing so
7130 ** may cause the parent page to become overfull or underfull. If this
7131 ** happens, it is the responsibility of the caller to invoke the correct
7132 ** balancing routine to fix this problem (see the balance() routine).
7134 ** If this routine fails for any reason, it might leave the database
7135 ** in a corrupted state. So if this routine fails, the database should
7136 ** be rolled back.
7138 ** The third argument to this function, aOvflSpace, is a pointer to a
7139 ** buffer big enough to hold one page. If while inserting cells into the parent
7140 ** page (pParent) the parent page becomes overfull, this buffer is
7141 ** used to store the parent's overflow cells. Because this function inserts
7142 ** a maximum of four divider cells into the parent page, and the maximum
7143 ** size of a cell stored within an internal node is always less than 1/4
7144 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7145 ** enough for all overflow cells.
7147 ** If aOvflSpace is set to a null pointer, this function returns
7148 ** SQLITE_NOMEM.
7150 static int balance_nonroot(
7151 MemPage *pParent, /* Parent page of siblings being balanced */
7152 int iParentIdx, /* Index of "the page" in pParent */
7153 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
7154 int isRoot, /* True if pParent is a root-page */
7155 int bBulk /* True if this call is part of a bulk load */
7157 BtShared *pBt; /* The whole database */
7158 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
7159 int nNew = 0; /* Number of pages in apNew[] */
7160 int nOld; /* Number of pages in apOld[] */
7161 int i, j, k; /* Loop counters */
7162 int nxDiv; /* Next divider slot in pParent->aCell[] */
7163 int rc = SQLITE_OK; /* The return code */
7164 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
7165 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
7166 int usableSpace; /* Bytes in pPage beyond the header */
7167 int pageFlags; /* Value of pPage->aData[0] */
7168 int iSpace1 = 0; /* First unused byte of aSpace1[] */
7169 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
7170 int szScratch; /* Size of scratch memory requested */
7171 MemPage *apOld[NB]; /* pPage and up to two siblings */
7172 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
7173 u8 *pRight; /* Location in parent of right-sibling pointer */
7174 u8 *apDiv[NB-1]; /* Divider cells in pParent */
7175 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7176 int cntOld[NB+2]; /* Old index in b.apCell[] */
7177 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
7178 u8 *aSpace1; /* Space for copies of dividers cells */
7179 Pgno pgno; /* Temp var to store a page number in */
7180 u8 abDone[NB+2]; /* True after i'th new page is populated */
7181 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
7182 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
7183 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
7184 CellArray b; /* Parsed information on cells being balanced */
7186 memset(abDone, 0, sizeof(abDone));
7187 b.nCell = 0;
7188 b.apCell = 0;
7189 pBt = pParent->pBt;
7190 assert( sqlite3_mutex_held(pBt->mutex) );
7191 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7193 #if 0
7194 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7195 #endif
7197 /* At this point pParent may have at most one overflow cell. And if
7198 ** this overflow cell is present, it must be the cell with
7199 ** index iParentIdx. This scenario comes about when this function
7200 ** is called (indirectly) from sqlite3BtreeDelete().
7202 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7203 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7205 if( !aOvflSpace ){
7206 return SQLITE_NOMEM_BKPT;
7209 /* Find the sibling pages to balance. Also locate the cells in pParent
7210 ** that divide the siblings. An attempt is made to find NN siblings on
7211 ** either side of pPage. More siblings are taken from one side, however,
7212 ** if there are fewer than NN siblings on the other side. If pParent
7213 ** has NB or fewer children then all children of pParent are taken.
7215 ** This loop also drops the divider cells from the parent page. This
7216 ** way, the remainder of the function does not have to deal with any
7217 ** overflow cells in the parent page, since if any existed they will
7218 ** have already been removed.
7220 i = pParent->nOverflow + pParent->nCell;
7221 if( i<2 ){
7222 nxDiv = 0;
7223 }else{
7224 assert( bBulk==0 || bBulk==1 );
7225 if( iParentIdx==0 ){
7226 nxDiv = 0;
7227 }else if( iParentIdx==i ){
7228 nxDiv = i-2+bBulk;
7229 }else{
7230 nxDiv = iParentIdx-1;
7232 i = 2-bBulk;
7234 nOld = i+1;
7235 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7236 pRight = &pParent->aData[pParent->hdrOffset+8];
7237 }else{
7238 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7240 pgno = get4byte(pRight);
7241 while( 1 ){
7242 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7243 if( rc ){
7244 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7245 goto balance_cleanup;
7247 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7248 if( (i--)==0 ) break;
7250 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7251 apDiv[i] = pParent->apOvfl[0];
7252 pgno = get4byte(apDiv[i]);
7253 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7254 pParent->nOverflow = 0;
7255 }else{
7256 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7257 pgno = get4byte(apDiv[i]);
7258 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7260 /* Drop the cell from the parent page. apDiv[i] still points to
7261 ** the cell within the parent, even though it has been dropped.
7262 ** This is safe because dropping a cell only overwrites the first
7263 ** four bytes of it, and this function does not need the first
7264 ** four bytes of the divider cell. So the pointer is safe to use
7265 ** later on.
7267 ** But not if we are in secure-delete mode. In secure-delete mode,
7268 ** the dropCell() routine will overwrite the entire cell with zeroes.
7269 ** In this case, temporarily copy the cell into the aOvflSpace[]
7270 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7271 ** is allocated. */
7272 if( pBt->btsFlags & BTS_FAST_SECURE ){
7273 int iOff;
7275 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7276 if( (iOff+szNew[i])>(int)pBt->usableSize ){
7277 rc = SQLITE_CORRUPT_BKPT;
7278 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7279 goto balance_cleanup;
7280 }else{
7281 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7282 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7285 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7289 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7290 ** alignment */
7291 nMaxCells = (nMaxCells + 3)&~3;
7294 ** Allocate space for memory structures
7296 szScratch =
7297 nMaxCells*sizeof(u8*) /* b.apCell */
7298 + nMaxCells*sizeof(u16) /* b.szCell */
7299 + pBt->pageSize; /* aSpace1 */
7301 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7302 ** that is more than 6 times the database page size. */
7303 assert( szScratch<=6*(int)pBt->pageSize );
7304 b.apCell = sqlite3StackAllocRaw(0, szScratch );
7305 if( b.apCell==0 ){
7306 rc = SQLITE_NOMEM_BKPT;
7307 goto balance_cleanup;
7309 b.szCell = (u16*)&b.apCell[nMaxCells];
7310 aSpace1 = (u8*)&b.szCell[nMaxCells];
7311 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7314 ** Load pointers to all cells on sibling pages and the divider cells
7315 ** into the local b.apCell[] array. Make copies of the divider cells
7316 ** into space obtained from aSpace1[]. The divider cells have already
7317 ** been removed from pParent.
7319 ** If the siblings are on leaf pages, then the child pointers of the
7320 ** divider cells are stripped from the cells before they are copied
7321 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7322 ** child pointers. If siblings are not leaves, then all cell in
7323 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7324 ** are alike.
7326 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7327 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7329 b.pRef = apOld[0];
7330 leafCorrection = b.pRef->leaf*4;
7331 leafData = b.pRef->intKeyLeaf;
7332 for(i=0; i<nOld; i++){
7333 MemPage *pOld = apOld[i];
7334 int limit = pOld->nCell;
7335 u8 *aData = pOld->aData;
7336 u16 maskPage = pOld->maskPage;
7337 u8 *piCell = aData + pOld->cellOffset;
7338 u8 *piEnd;
7340 /* Verify that all sibling pages are of the same "type" (table-leaf,
7341 ** table-interior, index-leaf, or index-interior).
7343 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7344 rc = SQLITE_CORRUPT_BKPT;
7345 goto balance_cleanup;
7348 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7349 ** constains overflow cells, include them in the b.apCell[] array
7350 ** in the correct spot.
7352 ** Note that when there are multiple overflow cells, it is always the
7353 ** case that they are sequential and adjacent. This invariant arises
7354 ** because multiple overflows can only occurs when inserting divider
7355 ** cells into a parent on a prior balance, and divider cells are always
7356 ** adjacent and are inserted in order. There is an assert() tagged
7357 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7358 ** invariant.
7360 ** This must be done in advance. Once the balance starts, the cell
7361 ** offset section of the btree page will be overwritten and we will no
7362 ** long be able to find the cells if a pointer to each cell is not saved
7363 ** first.
7365 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7366 if( pOld->nOverflow>0 ){
7367 limit = pOld->aiOvfl[0];
7368 for(j=0; j<limit; j++){
7369 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7370 piCell += 2;
7371 b.nCell++;
7373 for(k=0; k<pOld->nOverflow; k++){
7374 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7375 b.apCell[b.nCell] = pOld->apOvfl[k];
7376 b.nCell++;
7379 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7380 while( piCell<piEnd ){
7381 assert( b.nCell<nMaxCells );
7382 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7383 piCell += 2;
7384 b.nCell++;
7387 cntOld[i] = b.nCell;
7388 if( i<nOld-1 && !leafData){
7389 u16 sz = (u16)szNew[i];
7390 u8 *pTemp;
7391 assert( b.nCell<nMaxCells );
7392 b.szCell[b.nCell] = sz;
7393 pTemp = &aSpace1[iSpace1];
7394 iSpace1 += sz;
7395 assert( sz<=pBt->maxLocal+23 );
7396 assert( iSpace1 <= (int)pBt->pageSize );
7397 memcpy(pTemp, apDiv[i], sz);
7398 b.apCell[b.nCell] = pTemp+leafCorrection;
7399 assert( leafCorrection==0 || leafCorrection==4 );
7400 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7401 if( !pOld->leaf ){
7402 assert( leafCorrection==0 );
7403 assert( pOld->hdrOffset==0 );
7404 /* The right pointer of the child page pOld becomes the left
7405 ** pointer of the divider cell */
7406 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7407 }else{
7408 assert( leafCorrection==4 );
7409 while( b.szCell[b.nCell]<4 ){
7410 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7411 ** does exist, pad it with 0x00 bytes. */
7412 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7413 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7414 aSpace1[iSpace1++] = 0x00;
7415 b.szCell[b.nCell]++;
7418 b.nCell++;
7423 ** Figure out the number of pages needed to hold all b.nCell cells.
7424 ** Store this number in "k". Also compute szNew[] which is the total
7425 ** size of all cells on the i-th page and cntNew[] which is the index
7426 ** in b.apCell[] of the cell that divides page i from page i+1.
7427 ** cntNew[k] should equal b.nCell.
7429 ** Values computed by this block:
7431 ** k: The total number of sibling pages
7432 ** szNew[i]: Spaced used on the i-th sibling page.
7433 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7434 ** the right of the i-th sibling page.
7435 ** usableSpace: Number of bytes of space available on each sibling.
7438 usableSpace = pBt->usableSize - 12 + leafCorrection;
7439 for(i=0; i<nOld; i++){
7440 MemPage *p = apOld[i];
7441 szNew[i] = usableSpace - p->nFree;
7442 for(j=0; j<p->nOverflow; j++){
7443 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7445 cntNew[i] = cntOld[i];
7447 k = nOld;
7448 for(i=0; i<k; i++){
7449 int sz;
7450 while( szNew[i]>usableSpace ){
7451 if( i+1>=k ){
7452 k = i+2;
7453 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7454 szNew[k-1] = 0;
7455 cntNew[k-1] = b.nCell;
7457 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7458 szNew[i] -= sz;
7459 if( !leafData ){
7460 if( cntNew[i]<b.nCell ){
7461 sz = 2 + cachedCellSize(&b, cntNew[i]);
7462 }else{
7463 sz = 0;
7466 szNew[i+1] += sz;
7467 cntNew[i]--;
7469 while( cntNew[i]<b.nCell ){
7470 sz = 2 + cachedCellSize(&b, cntNew[i]);
7471 if( szNew[i]+sz>usableSpace ) break;
7472 szNew[i] += sz;
7473 cntNew[i]++;
7474 if( !leafData ){
7475 if( cntNew[i]<b.nCell ){
7476 sz = 2 + cachedCellSize(&b, cntNew[i]);
7477 }else{
7478 sz = 0;
7481 szNew[i+1] -= sz;
7483 if( cntNew[i]>=b.nCell ){
7484 k = i+1;
7485 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7486 rc = SQLITE_CORRUPT_BKPT;
7487 goto balance_cleanup;
7492 ** The packing computed by the previous block is biased toward the siblings
7493 ** on the left side (siblings with smaller keys). The left siblings are
7494 ** always nearly full, while the right-most sibling might be nearly empty.
7495 ** The next block of code attempts to adjust the packing of siblings to
7496 ** get a better balance.
7498 ** This adjustment is more than an optimization. The packing above might
7499 ** be so out of balance as to be illegal. For example, the right-most
7500 ** sibling might be completely empty. This adjustment is not optional.
7502 for(i=k-1; i>0; i--){
7503 int szRight = szNew[i]; /* Size of sibling on the right */
7504 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7505 int r; /* Index of right-most cell in left sibling */
7506 int d; /* Index of first cell to the left of right sibling */
7508 r = cntNew[i-1] - 1;
7509 d = r + 1 - leafData;
7510 (void)cachedCellSize(&b, d);
7512 assert( d<nMaxCells );
7513 assert( r<nMaxCells );
7514 (void)cachedCellSize(&b, r);
7515 if( szRight!=0
7516 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7517 break;
7519 szRight += b.szCell[d] + 2;
7520 szLeft -= b.szCell[r] + 2;
7521 cntNew[i-1] = r;
7522 r--;
7523 d--;
7524 }while( r>=0 );
7525 szNew[i] = szRight;
7526 szNew[i-1] = szLeft;
7527 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7528 rc = SQLITE_CORRUPT_BKPT;
7529 goto balance_cleanup;
7533 /* Sanity check: For a non-corrupt database file one of the follwing
7534 ** must be true:
7535 ** (1) We found one or more cells (cntNew[0])>0), or
7536 ** (2) pPage is a virtual root page. A virtual root page is when
7537 ** the real root page is page 1 and we are the only child of
7538 ** that page.
7540 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7541 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7542 apOld[0]->pgno, apOld[0]->nCell,
7543 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7544 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7548 ** Allocate k new pages. Reuse old pages where possible.
7550 pageFlags = apOld[0]->aData[0];
7551 for(i=0; i<k; i++){
7552 MemPage *pNew;
7553 if( i<nOld ){
7554 pNew = apNew[i] = apOld[i];
7555 apOld[i] = 0;
7556 rc = sqlite3PagerWrite(pNew->pDbPage);
7557 nNew++;
7558 if( rc ) goto balance_cleanup;
7559 }else{
7560 assert( i>0 );
7561 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7562 if( rc ) goto balance_cleanup;
7563 zeroPage(pNew, pageFlags);
7564 apNew[i] = pNew;
7565 nNew++;
7566 cntOld[i] = b.nCell;
7568 /* Set the pointer-map entry for the new sibling page. */
7569 if( ISAUTOVACUUM ){
7570 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7571 if( rc!=SQLITE_OK ){
7572 goto balance_cleanup;
7579 ** Reassign page numbers so that the new pages are in ascending order.
7580 ** This helps to keep entries in the disk file in order so that a scan
7581 ** of the table is closer to a linear scan through the file. That in turn
7582 ** helps the operating system to deliver pages from the disk more rapidly.
7584 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7585 ** than (NB+2) (a small constant), that should not be a problem.
7587 ** When NB==3, this one optimization makes the database about 25% faster
7588 ** for large insertions and deletions.
7590 for(i=0; i<nNew; i++){
7591 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7592 aPgFlags[i] = apNew[i]->pDbPage->flags;
7593 for(j=0; j<i; j++){
7594 if( aPgno[j]==aPgno[i] ){
7595 /* This branch is taken if the set of sibling pages somehow contains
7596 ** duplicate entries. This can happen if the database is corrupt.
7597 ** It would be simpler to detect this as part of the loop below, but
7598 ** we do the detection here in order to avoid populating the pager
7599 ** cache with two separate objects associated with the same
7600 ** page number. */
7601 assert( CORRUPT_DB );
7602 rc = SQLITE_CORRUPT_BKPT;
7603 goto balance_cleanup;
7607 for(i=0; i<nNew; i++){
7608 int iBest = 0; /* aPgno[] index of page number to use */
7609 for(j=1; j<nNew; j++){
7610 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7612 pgno = aPgOrder[iBest];
7613 aPgOrder[iBest] = 0xffffffff;
7614 if( iBest!=i ){
7615 if( iBest>i ){
7616 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7618 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7619 apNew[i]->pgno = pgno;
7623 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7624 "%d(%d nc=%d) %d(%d nc=%d)\n",
7625 apNew[0]->pgno, szNew[0], cntNew[0],
7626 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7627 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7628 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7629 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7630 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7631 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7632 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7633 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7636 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7637 put4byte(pRight, apNew[nNew-1]->pgno);
7639 /* If the sibling pages are not leaves, ensure that the right-child pointer
7640 ** of the right-most new sibling page is set to the value that was
7641 ** originally in the same field of the right-most old sibling page. */
7642 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7643 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7644 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7647 /* Make any required updates to pointer map entries associated with
7648 ** cells stored on sibling pages following the balance operation. Pointer
7649 ** map entries associated with divider cells are set by the insertCell()
7650 ** routine. The associated pointer map entries are:
7652 ** a) if the cell contains a reference to an overflow chain, the
7653 ** entry associated with the first page in the overflow chain, and
7655 ** b) if the sibling pages are not leaves, the child page associated
7656 ** with the cell.
7658 ** If the sibling pages are not leaves, then the pointer map entry
7659 ** associated with the right-child of each sibling may also need to be
7660 ** updated. This happens below, after the sibling pages have been
7661 ** populated, not here.
7663 if( ISAUTOVACUUM ){
7664 MemPage *pNew = apNew[0];
7665 u8 *aOld = pNew->aData;
7666 int cntOldNext = pNew->nCell + pNew->nOverflow;
7667 int usableSize = pBt->usableSize;
7668 int iNew = 0;
7669 int iOld = 0;
7671 for(i=0; i<b.nCell; i++){
7672 u8 *pCell = b.apCell[i];
7673 if( i==cntOldNext ){
7674 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7675 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7676 aOld = pOld->aData;
7678 if( i==cntNew[iNew] ){
7679 pNew = apNew[++iNew];
7680 if( !leafData ) continue;
7683 /* Cell pCell is destined for new sibling page pNew. Originally, it
7684 ** was either part of sibling page iOld (possibly an overflow cell),
7685 ** or else the divider cell to the left of sibling page iOld. So,
7686 ** if sibling page iOld had the same page number as pNew, and if
7687 ** pCell really was a part of sibling page iOld (not a divider or
7688 ** overflow cell), we can skip updating the pointer map entries. */
7689 if( iOld>=nNew
7690 || pNew->pgno!=aPgno[iOld]
7691 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7693 if( !leafCorrection ){
7694 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7696 if( cachedCellSize(&b,i)>pNew->minLocal ){
7697 ptrmapPutOvflPtr(pNew, pCell, &rc);
7699 if( rc ) goto balance_cleanup;
7704 /* Insert new divider cells into pParent. */
7705 for(i=0; i<nNew-1; i++){
7706 u8 *pCell;
7707 u8 *pTemp;
7708 int sz;
7709 MemPage *pNew = apNew[i];
7710 j = cntNew[i];
7712 assert( j<nMaxCells );
7713 assert( b.apCell[j]!=0 );
7714 pCell = b.apCell[j];
7715 sz = b.szCell[j] + leafCorrection;
7716 pTemp = &aOvflSpace[iOvflSpace];
7717 if( !pNew->leaf ){
7718 memcpy(&pNew->aData[8], pCell, 4);
7719 }else if( leafData ){
7720 /* If the tree is a leaf-data tree, and the siblings are leaves,
7721 ** then there is no divider cell in b.apCell[]. Instead, the divider
7722 ** cell consists of the integer key for the right-most cell of
7723 ** the sibling-page assembled above only.
7725 CellInfo info;
7726 j--;
7727 pNew->xParseCell(pNew, b.apCell[j], &info);
7728 pCell = pTemp;
7729 sz = 4 + putVarint(&pCell[4], info.nKey);
7730 pTemp = 0;
7731 }else{
7732 pCell -= 4;
7733 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7734 ** previously stored on a leaf node, and its reported size was 4
7735 ** bytes, then it may actually be smaller than this
7736 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7737 ** any cell). But it is important to pass the correct size to
7738 ** insertCell(), so reparse the cell now.
7740 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7741 ** and WITHOUT ROWID tables with exactly one column which is the
7742 ** primary key.
7744 if( b.szCell[j]==4 ){
7745 assert(leafCorrection==4);
7746 sz = pParent->xCellSize(pParent, pCell);
7749 iOvflSpace += sz;
7750 assert( sz<=pBt->maxLocal+23 );
7751 assert( iOvflSpace <= (int)pBt->pageSize );
7752 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7753 if( rc!=SQLITE_OK ) goto balance_cleanup;
7754 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7757 /* Now update the actual sibling pages. The order in which they are updated
7758 ** is important, as this code needs to avoid disrupting any page from which
7759 ** cells may still to be read. In practice, this means:
7761 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7762 ** then it is not safe to update page apNew[iPg] until after
7763 ** the left-hand sibling apNew[iPg-1] has been updated.
7765 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7766 ** then it is not safe to update page apNew[iPg] until after
7767 ** the right-hand sibling apNew[iPg+1] has been updated.
7769 ** If neither of the above apply, the page is safe to update.
7771 ** The iPg value in the following loop starts at nNew-1 goes down
7772 ** to 0, then back up to nNew-1 again, thus making two passes over
7773 ** the pages. On the initial downward pass, only condition (1) above
7774 ** needs to be tested because (2) will always be true from the previous
7775 ** step. On the upward pass, both conditions are always true, so the
7776 ** upwards pass simply processes pages that were missed on the downward
7777 ** pass.
7779 for(i=1-nNew; i<nNew; i++){
7780 int iPg = i<0 ? -i : i;
7781 assert( iPg>=0 && iPg<nNew );
7782 if( abDone[iPg] ) continue; /* Skip pages already processed */
7783 if( i>=0 /* On the upwards pass, or... */
7784 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
7786 int iNew;
7787 int iOld;
7788 int nNewCell;
7790 /* Verify condition (1): If cells are moving left, update iPg
7791 ** only after iPg-1 has already been updated. */
7792 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7794 /* Verify condition (2): If cells are moving right, update iPg
7795 ** only after iPg+1 has already been updated. */
7796 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7798 if( iPg==0 ){
7799 iNew = iOld = 0;
7800 nNewCell = cntNew[0];
7801 }else{
7802 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7803 iNew = cntNew[iPg-1] + !leafData;
7804 nNewCell = cntNew[iPg] - iNew;
7807 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7808 if( rc ) goto balance_cleanup;
7809 abDone[iPg]++;
7810 apNew[iPg]->nFree = usableSpace-szNew[iPg];
7811 assert( apNew[iPg]->nOverflow==0 );
7812 assert( apNew[iPg]->nCell==nNewCell );
7816 /* All pages have been processed exactly once */
7817 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7819 assert( nOld>0 );
7820 assert( nNew>0 );
7822 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7823 /* The root page of the b-tree now contains no cells. The only sibling
7824 ** page is the right-child of the parent. Copy the contents of the
7825 ** child page into the parent, decreasing the overall height of the
7826 ** b-tree structure by one. This is described as the "balance-shallower"
7827 ** sub-algorithm in some documentation.
7829 ** If this is an auto-vacuum database, the call to copyNodeContent()
7830 ** sets all pointer-map entries corresponding to database image pages
7831 ** for which the pointer is stored within the content being copied.
7833 ** It is critical that the child page be defragmented before being
7834 ** copied into the parent, because if the parent is page 1 then it will
7835 ** by smaller than the child due to the database header, and so all the
7836 ** free space needs to be up front.
7838 assert( nNew==1 || CORRUPT_DB );
7839 rc = defragmentPage(apNew[0], -1);
7840 testcase( rc!=SQLITE_OK );
7841 assert( apNew[0]->nFree ==
7842 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7843 || rc!=SQLITE_OK
7845 copyNodeContent(apNew[0], pParent, &rc);
7846 freePage(apNew[0], &rc);
7847 }else if( ISAUTOVACUUM && !leafCorrection ){
7848 /* Fix the pointer map entries associated with the right-child of each
7849 ** sibling page. All other pointer map entries have already been taken
7850 ** care of. */
7851 for(i=0; i<nNew; i++){
7852 u32 key = get4byte(&apNew[i]->aData[8]);
7853 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7857 assert( pParent->isInit );
7858 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7859 nOld, nNew, b.nCell));
7861 /* Free any old pages that were not reused as new pages.
7863 for(i=nNew; i<nOld; i++){
7864 freePage(apOld[i], &rc);
7867 #if 0
7868 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7869 /* The ptrmapCheckPages() contains assert() statements that verify that
7870 ** all pointer map pages are set correctly. This is helpful while
7871 ** debugging. This is usually disabled because a corrupt database may
7872 ** cause an assert() statement to fail. */
7873 ptrmapCheckPages(apNew, nNew);
7874 ptrmapCheckPages(&pParent, 1);
7876 #endif
7879 ** Cleanup before returning.
7881 balance_cleanup:
7882 sqlite3StackFree(0, b.apCell);
7883 for(i=0; i<nOld; i++){
7884 releasePage(apOld[i]);
7886 for(i=0; i<nNew; i++){
7887 releasePage(apNew[i]);
7890 return rc;
7895 ** This function is called when the root page of a b-tree structure is
7896 ** overfull (has one or more overflow pages).
7898 ** A new child page is allocated and the contents of the current root
7899 ** page, including overflow cells, are copied into the child. The root
7900 ** page is then overwritten to make it an empty page with the right-child
7901 ** pointer pointing to the new page.
7903 ** Before returning, all pointer-map entries corresponding to pages
7904 ** that the new child-page now contains pointers to are updated. The
7905 ** entry corresponding to the new right-child pointer of the root
7906 ** page is also updated.
7908 ** If successful, *ppChild is set to contain a reference to the child
7909 ** page and SQLITE_OK is returned. In this case the caller is required
7910 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7911 ** an error code is returned and *ppChild is set to 0.
7913 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7914 int rc; /* Return value from subprocedures */
7915 MemPage *pChild = 0; /* Pointer to a new child page */
7916 Pgno pgnoChild = 0; /* Page number of the new child page */
7917 BtShared *pBt = pRoot->pBt; /* The BTree */
7919 assert( pRoot->nOverflow>0 );
7920 assert( sqlite3_mutex_held(pBt->mutex) );
7922 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7923 ** page that will become the new right-child of pPage. Copy the contents
7924 ** of the node stored on pRoot into the new child page.
7926 rc = sqlite3PagerWrite(pRoot->pDbPage);
7927 if( rc==SQLITE_OK ){
7928 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7929 copyNodeContent(pRoot, pChild, &rc);
7930 if( ISAUTOVACUUM ){
7931 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7934 if( rc ){
7935 *ppChild = 0;
7936 releasePage(pChild);
7937 return rc;
7939 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7940 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7941 assert( pChild->nCell==pRoot->nCell );
7943 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7945 /* Copy the overflow cells from pRoot to pChild */
7946 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7947 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7948 memcpy(pChild->apOvfl, pRoot->apOvfl,
7949 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
7950 pChild->nOverflow = pRoot->nOverflow;
7952 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7953 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7954 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7956 *ppChild = pChild;
7957 return SQLITE_OK;
7961 ** The page that pCur currently points to has just been modified in
7962 ** some way. This function figures out if this modification means the
7963 ** tree needs to be balanced, and if so calls the appropriate balancing
7964 ** routine. Balancing routines are:
7966 ** balance_quick()
7967 ** balance_deeper()
7968 ** balance_nonroot()
7970 static int balance(BtCursor *pCur){
7971 int rc = SQLITE_OK;
7972 const int nMin = pCur->pBt->usableSize * 2 / 3;
7973 u8 aBalanceQuickSpace[13];
7974 u8 *pFree = 0;
7976 VVA_ONLY( int balance_quick_called = 0 );
7977 VVA_ONLY( int balance_deeper_called = 0 );
7979 do {
7980 int iPage = pCur->iPage;
7981 MemPage *pPage = pCur->pPage;
7983 if( iPage==0 ){
7984 if( pPage->nOverflow ){
7985 /* The root page of the b-tree is overfull. In this case call the
7986 ** balance_deeper() function to create a new child for the root-page
7987 ** and copy the current contents of the root-page to it. The
7988 ** next iteration of the do-loop will balance the child page.
7990 assert( balance_deeper_called==0 );
7991 VVA_ONLY( balance_deeper_called++ );
7992 rc = balance_deeper(pPage, &pCur->apPage[1]);
7993 if( rc==SQLITE_OK ){
7994 pCur->iPage = 1;
7995 pCur->ix = 0;
7996 pCur->aiIdx[0] = 0;
7997 pCur->apPage[0] = pPage;
7998 pCur->pPage = pCur->apPage[1];
7999 assert( pCur->pPage->nOverflow );
8001 }else{
8002 break;
8004 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8005 break;
8006 }else{
8007 MemPage * const pParent = pCur->apPage[iPage-1];
8008 int const iIdx = pCur->aiIdx[iPage-1];
8010 rc = sqlite3PagerWrite(pParent->pDbPage);
8011 if( rc==SQLITE_OK ){
8012 #ifndef SQLITE_OMIT_QUICKBALANCE
8013 if( pPage->intKeyLeaf
8014 && pPage->nOverflow==1
8015 && pPage->aiOvfl[0]==pPage->nCell
8016 && pParent->pgno!=1
8017 && pParent->nCell==iIdx
8019 /* Call balance_quick() to create a new sibling of pPage on which
8020 ** to store the overflow cell. balance_quick() inserts a new cell
8021 ** into pParent, which may cause pParent overflow. If this
8022 ** happens, the next iteration of the do-loop will balance pParent
8023 ** use either balance_nonroot() or balance_deeper(). Until this
8024 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8025 ** buffer.
8027 ** The purpose of the following assert() is to check that only a
8028 ** single call to balance_quick() is made for each call to this
8029 ** function. If this were not verified, a subtle bug involving reuse
8030 ** of the aBalanceQuickSpace[] might sneak in.
8032 assert( balance_quick_called==0 );
8033 VVA_ONLY( balance_quick_called++ );
8034 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8035 }else
8036 #endif
8038 /* In this case, call balance_nonroot() to redistribute cells
8039 ** between pPage and up to 2 of its sibling pages. This involves
8040 ** modifying the contents of pParent, which may cause pParent to
8041 ** become overfull or underfull. The next iteration of the do-loop
8042 ** will balance the parent page to correct this.
8044 ** If the parent page becomes overfull, the overflow cell or cells
8045 ** are stored in the pSpace buffer allocated immediately below.
8046 ** A subsequent iteration of the do-loop will deal with this by
8047 ** calling balance_nonroot() (balance_deeper() may be called first,
8048 ** but it doesn't deal with overflow cells - just moves them to a
8049 ** different page). Once this subsequent call to balance_nonroot()
8050 ** has completed, it is safe to release the pSpace buffer used by
8051 ** the previous call, as the overflow cell data will have been
8052 ** copied either into the body of a database page or into the new
8053 ** pSpace buffer passed to the latter call to balance_nonroot().
8055 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8056 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8057 pCur->hints&BTREE_BULKLOAD);
8058 if( pFree ){
8059 /* If pFree is not NULL, it points to the pSpace buffer used
8060 ** by a previous call to balance_nonroot(). Its contents are
8061 ** now stored either on real database pages or within the
8062 ** new pSpace buffer, so it may be safely freed here. */
8063 sqlite3PageFree(pFree);
8066 /* The pSpace buffer will be freed after the next call to
8067 ** balance_nonroot(), or just before this function returns, whichever
8068 ** comes first. */
8069 pFree = pSpace;
8073 pPage->nOverflow = 0;
8075 /* The next iteration of the do-loop balances the parent page. */
8076 releasePage(pPage);
8077 pCur->iPage--;
8078 assert( pCur->iPage>=0 );
8079 pCur->pPage = pCur->apPage[pCur->iPage];
8081 }while( rc==SQLITE_OK );
8083 if( pFree ){
8084 sqlite3PageFree(pFree);
8086 return rc;
8091 ** Insert a new record into the BTree. The content of the new record
8092 ** is described by the pX object. The pCur cursor is used only to
8093 ** define what table the record should be inserted into, and is left
8094 ** pointing at a random location.
8096 ** For a table btree (used for rowid tables), only the pX.nKey value of
8097 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8098 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8099 ** hold the content of the row.
8101 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8102 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8103 ** pX.pData,nData,nZero fields must be zero.
8105 ** If the seekResult parameter is non-zero, then a successful call to
8106 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8107 ** been performed. In other words, if seekResult!=0 then the cursor
8108 ** is currently pointing to a cell that will be adjacent to the cell
8109 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8110 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8111 ** that is larger than (pKey,nKey).
8113 ** If seekResult==0, that means pCur is pointing at some unknown location.
8114 ** In that case, this routine must seek the cursor to the correct insertion
8115 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8116 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8117 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8118 ** to decode the key.
8120 int sqlite3BtreeInsert(
8121 BtCursor *pCur, /* Insert data into the table of this cursor */
8122 const BtreePayload *pX, /* Content of the row to be inserted */
8123 int flags, /* True if this is likely an append */
8124 int seekResult /* Result of prior MovetoUnpacked() call */
8126 int rc;
8127 int loc = seekResult; /* -1: before desired location +1: after */
8128 int szNew = 0;
8129 int idx;
8130 MemPage *pPage;
8131 Btree *p = pCur->pBtree;
8132 BtShared *pBt = p->pBt;
8133 unsigned char *oldCell;
8134 unsigned char *newCell = 0;
8136 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8138 if( pCur->eState==CURSOR_FAULT ){
8139 assert( pCur->skipNext!=SQLITE_OK );
8140 return pCur->skipNext;
8143 assert( cursorOwnsBtShared(pCur) );
8144 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8145 && pBt->inTransaction==TRANS_WRITE
8146 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8147 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8149 /* Assert that the caller has been consistent. If this cursor was opened
8150 ** expecting an index b-tree, then the caller should be inserting blob
8151 ** keys with no associated data. If the cursor was opened expecting an
8152 ** intkey table, the caller should be inserting integer keys with a
8153 ** blob of associated data. */
8154 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8156 /* Save the positions of any other cursors open on this table.
8158 ** In some cases, the call to btreeMoveto() below is a no-op. For
8159 ** example, when inserting data into a table with auto-generated integer
8160 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8161 ** integer key to use. It then calls this function to actually insert the
8162 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8163 ** that the cursor is already where it needs to be and returns without
8164 ** doing any work. To avoid thwarting these optimizations, it is important
8165 ** not to clear the cursor here.
8167 if( pCur->curFlags & BTCF_Multiple ){
8168 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8169 if( rc ) return rc;
8172 if( pCur->pKeyInfo==0 ){
8173 assert( pX->pKey==0 );
8174 /* If this is an insert into a table b-tree, invalidate any incrblob
8175 ** cursors open on the row being replaced */
8176 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8178 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8179 ** to a row with the same key as the new entry being inserted. */
8180 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8181 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8183 /* If the cursor is currently on the last row and we are appending a
8184 ** new row onto the end, set the "loc" to avoid an unnecessary
8185 ** btreeMoveto() call */
8186 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8187 loc = 0;
8188 }else if( loc==0 ){
8189 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8190 if( rc ) return rc;
8192 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8193 if( pX->nMem ){
8194 UnpackedRecord r;
8195 r.pKeyInfo = pCur->pKeyInfo;
8196 r.aMem = pX->aMem;
8197 r.nField = pX->nMem;
8198 r.default_rc = 0;
8199 r.errCode = 0;
8200 r.r1 = 0;
8201 r.r2 = 0;
8202 r.eqSeen = 0;
8203 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8204 }else{
8205 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8207 if( rc ) return rc;
8209 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8211 pPage = pCur->pPage;
8212 assert( pPage->intKey || pX->nKey>=0 );
8213 assert( pPage->leaf || !pPage->intKey );
8215 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8216 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8217 loc==0 ? "overwrite" : "new entry"));
8218 assert( pPage->isInit );
8219 newCell = pBt->pTmpSpace;
8220 assert( newCell!=0 );
8221 rc = fillInCell(pPage, newCell, pX, &szNew);
8222 if( rc ) goto end_insert;
8223 assert( szNew==pPage->xCellSize(pPage, newCell) );
8224 assert( szNew <= MX_CELL_SIZE(pBt) );
8225 idx = pCur->ix;
8226 if( loc==0 ){
8227 CellInfo info;
8228 assert( idx<pPage->nCell );
8229 rc = sqlite3PagerWrite(pPage->pDbPage);
8230 if( rc ){
8231 goto end_insert;
8233 oldCell = findCell(pPage, idx);
8234 if( !pPage->leaf ){
8235 memcpy(newCell, oldCell, 4);
8237 rc = clearCell(pPage, oldCell, &info);
8238 if( info.nSize==szNew && info.nLocal==info.nPayload
8239 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8241 /* Overwrite the old cell with the new if they are the same size.
8242 ** We could also try to do this if the old cell is smaller, then add
8243 ** the leftover space to the free list. But experiments show that
8244 ** doing that is no faster then skipping this optimization and just
8245 ** calling dropCell() and insertCell().
8247 ** This optimization cannot be used on an autovacuum database if the
8248 ** new entry uses overflow pages, as the insertCell() call below is
8249 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
8250 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8251 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
8252 memcpy(oldCell, newCell, szNew);
8253 return SQLITE_OK;
8255 dropCell(pPage, idx, info.nSize, &rc);
8256 if( rc ) goto end_insert;
8257 }else if( loc<0 && pPage->nCell>0 ){
8258 assert( pPage->leaf );
8259 idx = ++pCur->ix;
8260 pCur->curFlags &= ~BTCF_ValidNKey;
8261 }else{
8262 assert( pPage->leaf );
8264 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8265 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8266 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8268 /* If no error has occurred and pPage has an overflow cell, call balance()
8269 ** to redistribute the cells within the tree. Since balance() may move
8270 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8271 ** variables.
8273 ** Previous versions of SQLite called moveToRoot() to move the cursor
8274 ** back to the root page as balance() used to invalidate the contents
8275 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8276 ** set the cursor state to "invalid". This makes common insert operations
8277 ** slightly faster.
8279 ** There is a subtle but important optimization here too. When inserting
8280 ** multiple records into an intkey b-tree using a single cursor (as can
8281 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8282 ** is advantageous to leave the cursor pointing to the last entry in
8283 ** the b-tree if possible. If the cursor is left pointing to the last
8284 ** entry in the table, and the next row inserted has an integer key
8285 ** larger than the largest existing key, it is possible to insert the
8286 ** row without seeking the cursor. This can be a big performance boost.
8288 pCur->info.nSize = 0;
8289 if( pPage->nOverflow ){
8290 assert( rc==SQLITE_OK );
8291 pCur->curFlags &= ~(BTCF_ValidNKey);
8292 rc = balance(pCur);
8294 /* Must make sure nOverflow is reset to zero even if the balance()
8295 ** fails. Internal data structure corruption will result otherwise.
8296 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8297 ** from trying to save the current position of the cursor. */
8298 pCur->pPage->nOverflow = 0;
8299 pCur->eState = CURSOR_INVALID;
8300 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8301 btreeReleaseAllCursorPages(pCur);
8302 if( pCur->pKeyInfo ){
8303 assert( pCur->pKey==0 );
8304 pCur->pKey = sqlite3Malloc( pX->nKey );
8305 if( pCur->pKey==0 ){
8306 rc = SQLITE_NOMEM;
8307 }else{
8308 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8311 pCur->eState = CURSOR_REQUIRESEEK;
8312 pCur->nKey = pX->nKey;
8315 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8317 end_insert:
8318 return rc;
8322 ** Delete the entry that the cursor is pointing to.
8324 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8325 ** the cursor is left pointing at an arbitrary location after the delete.
8326 ** But if that bit is set, then the cursor is left in a state such that
8327 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8328 ** as it would have been on if the call to BtreeDelete() had been omitted.
8330 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8331 ** associated with a single table entry and its indexes. Only one of those
8332 ** deletes is considered the "primary" delete. The primary delete occurs
8333 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8334 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8335 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8336 ** but which might be used by alternative storage engines.
8338 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8339 Btree *p = pCur->pBtree;
8340 BtShared *pBt = p->pBt;
8341 int rc; /* Return code */
8342 MemPage *pPage; /* Page to delete cell from */
8343 unsigned char *pCell; /* Pointer to cell to delete */
8344 int iCellIdx; /* Index of cell to delete */
8345 int iCellDepth; /* Depth of node containing pCell */
8346 CellInfo info; /* Size of the cell being deleted */
8347 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
8348 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
8350 assert( cursorOwnsBtShared(pCur) );
8351 assert( pBt->inTransaction==TRANS_WRITE );
8352 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8353 assert( pCur->curFlags & BTCF_WriteFlag );
8354 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8355 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8356 assert( pCur->ix<pCur->pPage->nCell );
8357 assert( pCur->eState==CURSOR_VALID );
8358 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8360 iCellDepth = pCur->iPage;
8361 iCellIdx = pCur->ix;
8362 pPage = pCur->pPage;
8363 pCell = findCell(pPage, iCellIdx);
8365 /* If the bPreserve flag is set to true, then the cursor position must
8366 ** be preserved following this delete operation. If the current delete
8367 ** will cause a b-tree rebalance, then this is done by saving the cursor
8368 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8369 ** returning.
8371 ** Or, if the current delete will not cause a rebalance, then the cursor
8372 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8373 ** before or after the deleted entry. In this case set bSkipnext to true. */
8374 if( bPreserve ){
8375 if( !pPage->leaf
8376 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8378 /* A b-tree rebalance will be required after deleting this entry.
8379 ** Save the cursor key. */
8380 rc = saveCursorKey(pCur);
8381 if( rc ) return rc;
8382 }else{
8383 bSkipnext = 1;
8387 /* If the page containing the entry to delete is not a leaf page, move
8388 ** the cursor to the largest entry in the tree that is smaller than
8389 ** the entry being deleted. This cell will replace the cell being deleted
8390 ** from the internal node. The 'previous' entry is used for this instead
8391 ** of the 'next' entry, as the previous entry is always a part of the
8392 ** sub-tree headed by the child page of the cell being deleted. This makes
8393 ** balancing the tree following the delete operation easier. */
8394 if( !pPage->leaf ){
8395 rc = sqlite3BtreePrevious(pCur, 0);
8396 assert( rc!=SQLITE_DONE );
8397 if( rc ) return rc;
8400 /* Save the positions of any other cursors open on this table before
8401 ** making any modifications. */
8402 if( pCur->curFlags & BTCF_Multiple ){
8403 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8404 if( rc ) return rc;
8407 /* If this is a delete operation to remove a row from a table b-tree,
8408 ** invalidate any incrblob cursors open on the row being deleted. */
8409 if( pCur->pKeyInfo==0 ){
8410 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8413 /* Make the page containing the entry to be deleted writable. Then free any
8414 ** overflow pages associated with the entry and finally remove the cell
8415 ** itself from within the page. */
8416 rc = sqlite3PagerWrite(pPage->pDbPage);
8417 if( rc ) return rc;
8418 rc = clearCell(pPage, pCell, &info);
8419 dropCell(pPage, iCellIdx, info.nSize, &rc);
8420 if( rc ) return rc;
8422 /* If the cell deleted was not located on a leaf page, then the cursor
8423 ** is currently pointing to the largest entry in the sub-tree headed
8424 ** by the child-page of the cell that was just deleted from an internal
8425 ** node. The cell from the leaf node needs to be moved to the internal
8426 ** node to replace the deleted cell. */
8427 if( !pPage->leaf ){
8428 MemPage *pLeaf = pCur->pPage;
8429 int nCell;
8430 Pgno n;
8431 unsigned char *pTmp;
8433 if( iCellDepth<pCur->iPage-1 ){
8434 n = pCur->apPage[iCellDepth+1]->pgno;
8435 }else{
8436 n = pCur->pPage->pgno;
8438 pCell = findCell(pLeaf, pLeaf->nCell-1);
8439 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8440 nCell = pLeaf->xCellSize(pLeaf, pCell);
8441 assert( MX_CELL_SIZE(pBt) >= nCell );
8442 pTmp = pBt->pTmpSpace;
8443 assert( pTmp!=0 );
8444 rc = sqlite3PagerWrite(pLeaf->pDbPage);
8445 if( rc==SQLITE_OK ){
8446 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8448 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8449 if( rc ) return rc;
8452 /* Balance the tree. If the entry deleted was located on a leaf page,
8453 ** then the cursor still points to that page. In this case the first
8454 ** call to balance() repairs the tree, and the if(...) condition is
8455 ** never true.
8457 ** Otherwise, if the entry deleted was on an internal node page, then
8458 ** pCur is pointing to the leaf page from which a cell was removed to
8459 ** replace the cell deleted from the internal node. This is slightly
8460 ** tricky as the leaf node may be underfull, and the internal node may
8461 ** be either under or overfull. In this case run the balancing algorithm
8462 ** on the leaf node first. If the balance proceeds far enough up the
8463 ** tree that we can be sure that any problem in the internal node has
8464 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8465 ** walk the cursor up the tree to the internal node and balance it as
8466 ** well. */
8467 rc = balance(pCur);
8468 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8469 releasePageNotNull(pCur->pPage);
8470 pCur->iPage--;
8471 while( pCur->iPage>iCellDepth ){
8472 releasePage(pCur->apPage[pCur->iPage--]);
8474 pCur->pPage = pCur->apPage[pCur->iPage];
8475 rc = balance(pCur);
8478 if( rc==SQLITE_OK ){
8479 if( bSkipnext ){
8480 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8481 assert( pPage==pCur->pPage || CORRUPT_DB );
8482 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8483 pCur->eState = CURSOR_SKIPNEXT;
8484 if( iCellIdx>=pPage->nCell ){
8485 pCur->skipNext = -1;
8486 pCur->ix = pPage->nCell-1;
8487 }else{
8488 pCur->skipNext = 1;
8490 }else{
8491 rc = moveToRoot(pCur);
8492 if( bPreserve ){
8493 btreeReleaseAllCursorPages(pCur);
8494 pCur->eState = CURSOR_REQUIRESEEK;
8496 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8499 return rc;
8503 ** Create a new BTree table. Write into *piTable the page
8504 ** number for the root page of the new table.
8506 ** The type of type is determined by the flags parameter. Only the
8507 ** following values of flags are currently in use. Other values for
8508 ** flags might not work:
8510 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8511 ** BTREE_ZERODATA Used for SQL indices
8513 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8514 BtShared *pBt = p->pBt;
8515 MemPage *pRoot;
8516 Pgno pgnoRoot;
8517 int rc;
8518 int ptfFlags; /* Page-type flage for the root page of new table */
8520 assert( sqlite3BtreeHoldsMutex(p) );
8521 assert( pBt->inTransaction==TRANS_WRITE );
8522 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8524 #ifdef SQLITE_OMIT_AUTOVACUUM
8525 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8526 if( rc ){
8527 return rc;
8529 #else
8530 if( pBt->autoVacuum ){
8531 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8532 MemPage *pPageMove; /* The page to move to. */
8534 /* Creating a new table may probably require moving an existing database
8535 ** to make room for the new tables root page. In case this page turns
8536 ** out to be an overflow page, delete all overflow page-map caches
8537 ** held by open cursors.
8539 invalidateAllOverflowCache(pBt);
8541 /* Read the value of meta[3] from the database to determine where the
8542 ** root page of the new table should go. meta[3] is the largest root-page
8543 ** created so far, so the new root-page is (meta[3]+1).
8545 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8546 pgnoRoot++;
8548 /* The new root-page may not be allocated on a pointer-map page, or the
8549 ** PENDING_BYTE page.
8551 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8552 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8553 pgnoRoot++;
8555 assert( pgnoRoot>=3 || CORRUPT_DB );
8556 testcase( pgnoRoot<3 );
8558 /* Allocate a page. The page that currently resides at pgnoRoot will
8559 ** be moved to the allocated page (unless the allocated page happens
8560 ** to reside at pgnoRoot).
8562 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8563 if( rc!=SQLITE_OK ){
8564 return rc;
8567 if( pgnoMove!=pgnoRoot ){
8568 /* pgnoRoot is the page that will be used for the root-page of
8569 ** the new table (assuming an error did not occur). But we were
8570 ** allocated pgnoMove. If required (i.e. if it was not allocated
8571 ** by extending the file), the current page at position pgnoMove
8572 ** is already journaled.
8574 u8 eType = 0;
8575 Pgno iPtrPage = 0;
8577 /* Save the positions of any open cursors. This is required in
8578 ** case they are holding a reference to an xFetch reference
8579 ** corresponding to page pgnoRoot. */
8580 rc = saveAllCursors(pBt, 0, 0);
8581 releasePage(pPageMove);
8582 if( rc!=SQLITE_OK ){
8583 return rc;
8586 /* Move the page currently at pgnoRoot to pgnoMove. */
8587 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8588 if( rc!=SQLITE_OK ){
8589 return rc;
8591 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8592 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8593 rc = SQLITE_CORRUPT_BKPT;
8595 if( rc!=SQLITE_OK ){
8596 releasePage(pRoot);
8597 return rc;
8599 assert( eType!=PTRMAP_ROOTPAGE );
8600 assert( eType!=PTRMAP_FREEPAGE );
8601 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8602 releasePage(pRoot);
8604 /* Obtain the page at pgnoRoot */
8605 if( rc!=SQLITE_OK ){
8606 return rc;
8608 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8609 if( rc!=SQLITE_OK ){
8610 return rc;
8612 rc = sqlite3PagerWrite(pRoot->pDbPage);
8613 if( rc!=SQLITE_OK ){
8614 releasePage(pRoot);
8615 return rc;
8617 }else{
8618 pRoot = pPageMove;
8621 /* Update the pointer-map and meta-data with the new root-page number. */
8622 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8623 if( rc ){
8624 releasePage(pRoot);
8625 return rc;
8628 /* When the new root page was allocated, page 1 was made writable in
8629 ** order either to increase the database filesize, or to decrement the
8630 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8632 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8633 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8634 if( NEVER(rc) ){
8635 releasePage(pRoot);
8636 return rc;
8639 }else{
8640 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8641 if( rc ) return rc;
8643 #endif
8644 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8645 if( createTabFlags & BTREE_INTKEY ){
8646 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8647 }else{
8648 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8650 zeroPage(pRoot, ptfFlags);
8651 sqlite3PagerUnref(pRoot->pDbPage);
8652 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8653 *piTable = (int)pgnoRoot;
8654 return SQLITE_OK;
8656 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8657 int rc;
8658 sqlite3BtreeEnter(p);
8659 rc = btreeCreateTable(p, piTable, flags);
8660 sqlite3BtreeLeave(p);
8661 return rc;
8665 ** Erase the given database page and all its children. Return
8666 ** the page to the freelist.
8668 static int clearDatabasePage(
8669 BtShared *pBt, /* The BTree that contains the table */
8670 Pgno pgno, /* Page number to clear */
8671 int freePageFlag, /* Deallocate page if true */
8672 int *pnChange /* Add number of Cells freed to this counter */
8674 MemPage *pPage;
8675 int rc;
8676 unsigned char *pCell;
8677 int i;
8678 int hdr;
8679 CellInfo info;
8681 assert( sqlite3_mutex_held(pBt->mutex) );
8682 if( pgno>btreePagecount(pBt) ){
8683 return SQLITE_CORRUPT_BKPT;
8685 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8686 if( rc ) return rc;
8687 if( pPage->bBusy ){
8688 rc = SQLITE_CORRUPT_BKPT;
8689 goto cleardatabasepage_out;
8691 pPage->bBusy = 1;
8692 hdr = pPage->hdrOffset;
8693 for(i=0; i<pPage->nCell; i++){
8694 pCell = findCell(pPage, i);
8695 if( !pPage->leaf ){
8696 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8697 if( rc ) goto cleardatabasepage_out;
8699 rc = clearCell(pPage, pCell, &info);
8700 if( rc ) goto cleardatabasepage_out;
8702 if( !pPage->leaf ){
8703 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8704 if( rc ) goto cleardatabasepage_out;
8705 }else if( pnChange ){
8706 assert( pPage->intKey || CORRUPT_DB );
8707 testcase( !pPage->intKey );
8708 *pnChange += pPage->nCell;
8710 if( freePageFlag ){
8711 freePage(pPage, &rc);
8712 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8713 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8716 cleardatabasepage_out:
8717 pPage->bBusy = 0;
8718 releasePage(pPage);
8719 return rc;
8723 ** Delete all information from a single table in the database. iTable is
8724 ** the page number of the root of the table. After this routine returns,
8725 ** the root page is empty, but still exists.
8727 ** This routine will fail with SQLITE_LOCKED if there are any open
8728 ** read cursors on the table. Open write cursors are moved to the
8729 ** root of the table.
8731 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8732 ** integer value pointed to by pnChange is incremented by the number of
8733 ** entries in the table.
8735 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8736 int rc;
8737 BtShared *pBt = p->pBt;
8738 sqlite3BtreeEnter(p);
8739 assert( p->inTrans==TRANS_WRITE );
8741 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8743 if( SQLITE_OK==rc ){
8744 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8745 ** is the root of a table b-tree - if it is not, the following call is
8746 ** a no-op). */
8747 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
8748 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8750 sqlite3BtreeLeave(p);
8751 return rc;
8755 ** Delete all information from the single table that pCur is open on.
8757 ** This routine only work for pCur on an ephemeral table.
8759 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8760 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8764 ** Erase all information in a table and add the root of the table to
8765 ** the freelist. Except, the root of the principle table (the one on
8766 ** page 1) is never added to the freelist.
8768 ** This routine will fail with SQLITE_LOCKED if there are any open
8769 ** cursors on the table.
8771 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8772 ** root page in the database file, then the last root page
8773 ** in the database file is moved into the slot formerly occupied by
8774 ** iTable and that last slot formerly occupied by the last root page
8775 ** is added to the freelist instead of iTable. In this say, all
8776 ** root pages are kept at the beginning of the database file, which
8777 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8778 ** page number that used to be the last root page in the file before
8779 ** the move. If no page gets moved, *piMoved is set to 0.
8780 ** The last root page is recorded in meta[3] and the value of
8781 ** meta[3] is updated by this procedure.
8783 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8784 int rc;
8785 MemPage *pPage = 0;
8786 BtShared *pBt = p->pBt;
8788 assert( sqlite3BtreeHoldsMutex(p) );
8789 assert( p->inTrans==TRANS_WRITE );
8790 assert( iTable>=2 );
8792 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8793 if( rc ) return rc;
8794 rc = sqlite3BtreeClearTable(p, iTable, 0);
8795 if( rc ){
8796 releasePage(pPage);
8797 return rc;
8800 *piMoved = 0;
8802 #ifdef SQLITE_OMIT_AUTOVACUUM
8803 freePage(pPage, &rc);
8804 releasePage(pPage);
8805 #else
8806 if( pBt->autoVacuum ){
8807 Pgno maxRootPgno;
8808 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8810 if( iTable==maxRootPgno ){
8811 /* If the table being dropped is the table with the largest root-page
8812 ** number in the database, put the root page on the free list.
8814 freePage(pPage, &rc);
8815 releasePage(pPage);
8816 if( rc!=SQLITE_OK ){
8817 return rc;
8819 }else{
8820 /* The table being dropped does not have the largest root-page
8821 ** number in the database. So move the page that does into the
8822 ** gap left by the deleted root-page.
8824 MemPage *pMove;
8825 releasePage(pPage);
8826 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8827 if( rc!=SQLITE_OK ){
8828 return rc;
8830 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8831 releasePage(pMove);
8832 if( rc!=SQLITE_OK ){
8833 return rc;
8835 pMove = 0;
8836 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8837 freePage(pMove, &rc);
8838 releasePage(pMove);
8839 if( rc!=SQLITE_OK ){
8840 return rc;
8842 *piMoved = maxRootPgno;
8845 /* Set the new 'max-root-page' value in the database header. This
8846 ** is the old value less one, less one more if that happens to
8847 ** be a root-page number, less one again if that is the
8848 ** PENDING_BYTE_PAGE.
8850 maxRootPgno--;
8851 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8852 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8853 maxRootPgno--;
8855 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8857 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8858 }else{
8859 freePage(pPage, &rc);
8860 releasePage(pPage);
8862 #endif
8863 return rc;
8865 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8866 int rc;
8867 sqlite3BtreeEnter(p);
8868 rc = btreeDropTable(p, iTable, piMoved);
8869 sqlite3BtreeLeave(p);
8870 return rc;
8875 ** This function may only be called if the b-tree connection already
8876 ** has a read or write transaction open on the database.
8878 ** Read the meta-information out of a database file. Meta[0]
8879 ** is the number of free pages currently in the database. Meta[1]
8880 ** through meta[15] are available for use by higher layers. Meta[0]
8881 ** is read-only, the others are read/write.
8883 ** The schema layer numbers meta values differently. At the schema
8884 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8885 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
8887 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8888 ** of reading the value out of the header, it instead loads the "DataVersion"
8889 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8890 ** database file. It is a number computed by the pager. But its access
8891 ** pattern is the same as header meta values, and so it is convenient to
8892 ** read it from this routine.
8894 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8895 BtShared *pBt = p->pBt;
8897 sqlite3BtreeEnter(p);
8898 assert( p->inTrans>TRANS_NONE );
8899 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8900 assert( pBt->pPage1 );
8901 assert( idx>=0 && idx<=15 );
8903 if( idx==BTREE_DATA_VERSION ){
8904 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8905 }else{
8906 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8909 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8910 ** database, mark the database as read-only. */
8911 #ifdef SQLITE_OMIT_AUTOVACUUM
8912 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8913 pBt->btsFlags |= BTS_READ_ONLY;
8915 #endif
8917 sqlite3BtreeLeave(p);
8921 ** Write meta-information back into the database. Meta[0] is
8922 ** read-only and may not be written.
8924 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8925 BtShared *pBt = p->pBt;
8926 unsigned char *pP1;
8927 int rc;
8928 assert( idx>=1 && idx<=15 );
8929 sqlite3BtreeEnter(p);
8930 assert( p->inTrans==TRANS_WRITE );
8931 assert( pBt->pPage1!=0 );
8932 pP1 = pBt->pPage1->aData;
8933 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8934 if( rc==SQLITE_OK ){
8935 put4byte(&pP1[36 + idx*4], iMeta);
8936 #ifndef SQLITE_OMIT_AUTOVACUUM
8937 if( idx==BTREE_INCR_VACUUM ){
8938 assert( pBt->autoVacuum || iMeta==0 );
8939 assert( iMeta==0 || iMeta==1 );
8940 pBt->incrVacuum = (u8)iMeta;
8942 #endif
8944 sqlite3BtreeLeave(p);
8945 return rc;
8948 #ifndef SQLITE_OMIT_BTREECOUNT
8950 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
8951 ** number of entries in the b-tree and write the result to *pnEntry.
8953 ** SQLITE_OK is returned if the operation is successfully executed.
8954 ** Otherwise, if an error is encountered (i.e. an IO error or database
8955 ** corruption) an SQLite error code is returned.
8957 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8958 i64 nEntry = 0; /* Value to return in *pnEntry */
8959 int rc; /* Return code */
8961 rc = moveToRoot(pCur);
8962 if( rc==SQLITE_EMPTY ){
8963 *pnEntry = 0;
8964 return SQLITE_OK;
8967 /* Unless an error occurs, the following loop runs one iteration for each
8968 ** page in the B-Tree structure (not including overflow pages).
8970 while( rc==SQLITE_OK ){
8971 int iIdx; /* Index of child node in parent */
8972 MemPage *pPage; /* Current page of the b-tree */
8974 /* If this is a leaf page or the tree is not an int-key tree, then
8975 ** this page contains countable entries. Increment the entry counter
8976 ** accordingly.
8978 pPage = pCur->pPage;
8979 if( pPage->leaf || !pPage->intKey ){
8980 nEntry += pPage->nCell;
8983 /* pPage is a leaf node. This loop navigates the cursor so that it
8984 ** points to the first interior cell that it points to the parent of
8985 ** the next page in the tree that has not yet been visited. The
8986 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8987 ** of the page, or to the number of cells in the page if the next page
8988 ** to visit is the right-child of its parent.
8990 ** If all pages in the tree have been visited, return SQLITE_OK to the
8991 ** caller.
8993 if( pPage->leaf ){
8994 do {
8995 if( pCur->iPage==0 ){
8996 /* All pages of the b-tree have been visited. Return successfully. */
8997 *pnEntry = nEntry;
8998 return moveToRoot(pCur);
9000 moveToParent(pCur);
9001 }while ( pCur->ix>=pCur->pPage->nCell );
9003 pCur->ix++;
9004 pPage = pCur->pPage;
9007 /* Descend to the child node of the cell that the cursor currently
9008 ** points at. This is the right-child if (iIdx==pPage->nCell).
9010 iIdx = pCur->ix;
9011 if( iIdx==pPage->nCell ){
9012 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9013 }else{
9014 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9018 /* An error has occurred. Return an error code. */
9019 return rc;
9021 #endif
9024 ** Return the pager associated with a BTree. This routine is used for
9025 ** testing and debugging only.
9027 Pager *sqlite3BtreePager(Btree *p){
9028 return p->pBt->pPager;
9031 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9033 ** Append a message to the error message string.
9035 static void checkAppendMsg(
9036 IntegrityCk *pCheck,
9037 const char *zFormat,
9040 va_list ap;
9041 if( !pCheck->mxErr ) return;
9042 pCheck->mxErr--;
9043 pCheck->nErr++;
9044 va_start(ap, zFormat);
9045 if( pCheck->errMsg.nChar ){
9046 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
9048 if( pCheck->zPfx ){
9049 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9051 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
9052 va_end(ap);
9053 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
9054 pCheck->mallocFailed = 1;
9057 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9059 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9062 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9063 ** corresponds to page iPg is already set.
9065 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9066 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9067 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9071 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9073 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9074 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9075 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9080 ** Add 1 to the reference count for page iPage. If this is the second
9081 ** reference to the page, add an error message to pCheck->zErrMsg.
9082 ** Return 1 if there are 2 or more references to the page and 0 if
9083 ** if this is the first reference to the page.
9085 ** Also check that the page number is in bounds.
9087 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9088 if( iPage==0 ) return 1;
9089 if( iPage>pCheck->nPage ){
9090 checkAppendMsg(pCheck, "invalid page number %d", iPage);
9091 return 1;
9093 if( getPageReferenced(pCheck, iPage) ){
9094 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9095 return 1;
9097 setPageReferenced(pCheck, iPage);
9098 return 0;
9101 #ifndef SQLITE_OMIT_AUTOVACUUM
9103 ** Check that the entry in the pointer-map for page iChild maps to
9104 ** page iParent, pointer type ptrType. If not, append an error message
9105 ** to pCheck.
9107 static void checkPtrmap(
9108 IntegrityCk *pCheck, /* Integrity check context */
9109 Pgno iChild, /* Child page number */
9110 u8 eType, /* Expected pointer map type */
9111 Pgno iParent /* Expected pointer map parent page number */
9113 int rc;
9114 u8 ePtrmapType;
9115 Pgno iPtrmapParent;
9117 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9118 if( rc!=SQLITE_OK ){
9119 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9120 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9121 return;
9124 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9125 checkAppendMsg(pCheck,
9126 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9127 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9130 #endif
9133 ** Check the integrity of the freelist or of an overflow page list.
9134 ** Verify that the number of pages on the list is N.
9136 static void checkList(
9137 IntegrityCk *pCheck, /* Integrity checking context */
9138 int isFreeList, /* True for a freelist. False for overflow page list */
9139 int iPage, /* Page number for first page in the list */
9140 int N /* Expected number of pages in the list */
9142 int i;
9143 int expected = N;
9144 int iFirst = iPage;
9145 while( N-- > 0 && pCheck->mxErr ){
9146 DbPage *pOvflPage;
9147 unsigned char *pOvflData;
9148 if( iPage<1 ){
9149 checkAppendMsg(pCheck,
9150 "%d of %d pages missing from overflow list starting at %d",
9151 N+1, expected, iFirst);
9152 break;
9154 if( checkRef(pCheck, iPage) ) break;
9155 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9156 checkAppendMsg(pCheck, "failed to get page %d", iPage);
9157 break;
9159 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9160 if( isFreeList ){
9161 int n = get4byte(&pOvflData[4]);
9162 #ifndef SQLITE_OMIT_AUTOVACUUM
9163 if( pCheck->pBt->autoVacuum ){
9164 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9166 #endif
9167 if( n>(int)pCheck->pBt->usableSize/4-2 ){
9168 checkAppendMsg(pCheck,
9169 "freelist leaf count too big on page %d", iPage);
9170 N--;
9171 }else{
9172 for(i=0; i<n; i++){
9173 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9174 #ifndef SQLITE_OMIT_AUTOVACUUM
9175 if( pCheck->pBt->autoVacuum ){
9176 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9178 #endif
9179 checkRef(pCheck, iFreePage);
9181 N -= n;
9184 #ifndef SQLITE_OMIT_AUTOVACUUM
9185 else{
9186 /* If this database supports auto-vacuum and iPage is not the last
9187 ** page in this overflow list, check that the pointer-map entry for
9188 ** the following page matches iPage.
9190 if( pCheck->pBt->autoVacuum && N>0 ){
9191 i = get4byte(pOvflData);
9192 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9195 #endif
9196 iPage = get4byte(pOvflData);
9197 sqlite3PagerUnref(pOvflPage);
9199 if( isFreeList && N<(iPage!=0) ){
9200 checkAppendMsg(pCheck, "free-page count in header is too small");
9204 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9207 ** An implementation of a min-heap.
9209 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
9210 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
9211 ** and aHeap[N*2+1].
9213 ** The heap property is this: Every node is less than or equal to both
9214 ** of its daughter nodes. A consequence of the heap property is that the
9215 ** root node aHeap[1] is always the minimum value currently in the heap.
9217 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9218 ** the heap, preserving the heap property. The btreeHeapPull() routine
9219 ** removes the root element from the heap (the minimum value in the heap)
9220 ** and then moves other nodes around as necessary to preserve the heap
9221 ** property.
9223 ** This heap is used for cell overlap and coverage testing. Each u32
9224 ** entry represents the span of a cell or freeblock on a btree page.
9225 ** The upper 16 bits are the index of the first byte of a range and the
9226 ** lower 16 bits are the index of the last byte of that range.
9228 static void btreeHeapInsert(u32 *aHeap, u32 x){
9229 u32 j, i = ++aHeap[0];
9230 aHeap[i] = x;
9231 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9232 x = aHeap[j];
9233 aHeap[j] = aHeap[i];
9234 aHeap[i] = x;
9235 i = j;
9238 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9239 u32 j, i, x;
9240 if( (x = aHeap[0])==0 ) return 0;
9241 *pOut = aHeap[1];
9242 aHeap[1] = aHeap[x];
9243 aHeap[x] = 0xffffffff;
9244 aHeap[0]--;
9245 i = 1;
9246 while( (j = i*2)<=aHeap[0] ){
9247 if( aHeap[j]>aHeap[j+1] ) j++;
9248 if( aHeap[i]<aHeap[j] ) break;
9249 x = aHeap[i];
9250 aHeap[i] = aHeap[j];
9251 aHeap[j] = x;
9252 i = j;
9254 return 1;
9257 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9259 ** Do various sanity checks on a single page of a tree. Return
9260 ** the tree depth. Root pages return 0. Parents of root pages
9261 ** return 1, and so forth.
9263 ** These checks are done:
9265 ** 1. Make sure that cells and freeblocks do not overlap
9266 ** but combine to completely cover the page.
9267 ** 2. Make sure integer cell keys are in order.
9268 ** 3. Check the integrity of overflow pages.
9269 ** 4. Recursively call checkTreePage on all children.
9270 ** 5. Verify that the depth of all children is the same.
9272 static int checkTreePage(
9273 IntegrityCk *pCheck, /* Context for the sanity check */
9274 int iPage, /* Page number of the page to check */
9275 i64 *piMinKey, /* Write minimum integer primary key here */
9276 i64 maxKey /* Error if integer primary key greater than this */
9278 MemPage *pPage = 0; /* The page being analyzed */
9279 int i; /* Loop counter */
9280 int rc; /* Result code from subroutine call */
9281 int depth = -1, d2; /* Depth of a subtree */
9282 int pgno; /* Page number */
9283 int nFrag; /* Number of fragmented bytes on the page */
9284 int hdr; /* Offset to the page header */
9285 int cellStart; /* Offset to the start of the cell pointer array */
9286 int nCell; /* Number of cells */
9287 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9288 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9289 ** False if IPK must be strictly less than maxKey */
9290 u8 *data; /* Page content */
9291 u8 *pCell; /* Cell content */
9292 u8 *pCellIdx; /* Next element of the cell pointer array */
9293 BtShared *pBt; /* The BtShared object that owns pPage */
9294 u32 pc; /* Address of a cell */
9295 u32 usableSize; /* Usable size of the page */
9296 u32 contentOffset; /* Offset to the start of the cell content area */
9297 u32 *heap = 0; /* Min-heap used for checking cell coverage */
9298 u32 x, prev = 0; /* Next and previous entry on the min-heap */
9299 const char *saved_zPfx = pCheck->zPfx;
9300 int saved_v1 = pCheck->v1;
9301 int saved_v2 = pCheck->v2;
9302 u8 savedIsInit = 0;
9304 /* Check that the page exists
9306 pBt = pCheck->pBt;
9307 usableSize = pBt->usableSize;
9308 if( iPage==0 ) return 0;
9309 if( checkRef(pCheck, iPage) ) return 0;
9310 pCheck->zPfx = "Page %d: ";
9311 pCheck->v1 = iPage;
9312 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9313 checkAppendMsg(pCheck,
9314 "unable to get the page. error code=%d", rc);
9315 goto end_of_check;
9318 /* Clear MemPage.isInit to make sure the corruption detection code in
9319 ** btreeInitPage() is executed. */
9320 savedIsInit = pPage->isInit;
9321 pPage->isInit = 0;
9322 if( (rc = btreeInitPage(pPage))!=0 ){
9323 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
9324 checkAppendMsg(pCheck,
9325 "btreeInitPage() returns error code %d", rc);
9326 goto end_of_check;
9328 data = pPage->aData;
9329 hdr = pPage->hdrOffset;
9331 /* Set up for cell analysis */
9332 pCheck->zPfx = "On tree page %d cell %d: ";
9333 contentOffset = get2byteNotZero(&data[hdr+5]);
9334 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9336 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9337 ** number of cells on the page. */
9338 nCell = get2byte(&data[hdr+3]);
9339 assert( pPage->nCell==nCell );
9341 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9342 ** immediately follows the b-tree page header. */
9343 cellStart = hdr + 12 - 4*pPage->leaf;
9344 assert( pPage->aCellIdx==&data[cellStart] );
9345 pCellIdx = &data[cellStart + 2*(nCell-1)];
9347 if( !pPage->leaf ){
9348 /* Analyze the right-child page of internal pages */
9349 pgno = get4byte(&data[hdr+8]);
9350 #ifndef SQLITE_OMIT_AUTOVACUUM
9351 if( pBt->autoVacuum ){
9352 pCheck->zPfx = "On page %d at right child: ";
9353 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9355 #endif
9356 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9357 keyCanBeEqual = 0;
9358 }else{
9359 /* For leaf pages, the coverage check will occur in the same loop
9360 ** as the other cell checks, so initialize the heap. */
9361 heap = pCheck->heap;
9362 heap[0] = 0;
9365 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9366 ** integer offsets to the cell contents. */
9367 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9368 CellInfo info;
9370 /* Check cell size */
9371 pCheck->v2 = i;
9372 assert( pCellIdx==&data[cellStart + i*2] );
9373 pc = get2byteAligned(pCellIdx);
9374 pCellIdx -= 2;
9375 if( pc<contentOffset || pc>usableSize-4 ){
9376 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9377 pc, contentOffset, usableSize-4);
9378 doCoverageCheck = 0;
9379 continue;
9381 pCell = &data[pc];
9382 pPage->xParseCell(pPage, pCell, &info);
9383 if( pc+info.nSize>usableSize ){
9384 checkAppendMsg(pCheck, "Extends off end of page");
9385 doCoverageCheck = 0;
9386 continue;
9389 /* Check for integer primary key out of range */
9390 if( pPage->intKey ){
9391 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9392 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9394 maxKey = info.nKey;
9395 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
9398 /* Check the content overflow list */
9399 if( info.nPayload>info.nLocal ){
9400 int nPage; /* Number of pages on the overflow chain */
9401 Pgno pgnoOvfl; /* First page of the overflow chain */
9402 assert( pc + info.nSize - 4 <= usableSize );
9403 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9404 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9405 #ifndef SQLITE_OMIT_AUTOVACUUM
9406 if( pBt->autoVacuum ){
9407 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9409 #endif
9410 checkList(pCheck, 0, pgnoOvfl, nPage);
9413 if( !pPage->leaf ){
9414 /* Check sanity of left child page for internal pages */
9415 pgno = get4byte(pCell);
9416 #ifndef SQLITE_OMIT_AUTOVACUUM
9417 if( pBt->autoVacuum ){
9418 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9420 #endif
9421 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9422 keyCanBeEqual = 0;
9423 if( d2!=depth ){
9424 checkAppendMsg(pCheck, "Child page depth differs");
9425 depth = d2;
9427 }else{
9428 /* Populate the coverage-checking heap for leaf pages */
9429 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9432 *piMinKey = maxKey;
9434 /* Check for complete coverage of the page
9436 pCheck->zPfx = 0;
9437 if( doCoverageCheck && pCheck->mxErr>0 ){
9438 /* For leaf pages, the min-heap has already been initialized and the
9439 ** cells have already been inserted. But for internal pages, that has
9440 ** not yet been done, so do it now */
9441 if( !pPage->leaf ){
9442 heap = pCheck->heap;
9443 heap[0] = 0;
9444 for(i=nCell-1; i>=0; i--){
9445 u32 size;
9446 pc = get2byteAligned(&data[cellStart+i*2]);
9447 size = pPage->xCellSize(pPage, &data[pc]);
9448 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9451 /* Add the freeblocks to the min-heap
9453 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9454 ** is the offset of the first freeblock, or zero if there are no
9455 ** freeblocks on the page.
9457 i = get2byte(&data[hdr+1]);
9458 while( i>0 ){
9459 int size, j;
9460 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
9461 size = get2byte(&data[i+2]);
9462 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
9463 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9464 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9465 ** big-endian integer which is the offset in the b-tree page of the next
9466 ** freeblock in the chain, or zero if the freeblock is the last on the
9467 ** chain. */
9468 j = get2byte(&data[i]);
9469 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9470 ** increasing offset. */
9471 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
9472 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
9473 i = j;
9475 /* Analyze the min-heap looking for overlap between cells and/or
9476 ** freeblocks, and counting the number of untracked bytes in nFrag.
9478 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9479 ** There is an implied first entry the covers the page header, the cell
9480 ** pointer index, and the gap between the cell pointer index and the start
9481 ** of cell content.
9483 ** The loop below pulls entries from the min-heap in order and compares
9484 ** the start_address against the previous end_address. If there is an
9485 ** overlap, that means bytes are used multiple times. If there is a gap,
9486 ** that gap is added to the fragmentation count.
9488 nFrag = 0;
9489 prev = contentOffset - 1; /* Implied first min-heap entry */
9490 while( btreeHeapPull(heap,&x) ){
9491 if( (prev&0xffff)>=(x>>16) ){
9492 checkAppendMsg(pCheck,
9493 "Multiple uses for byte %u of page %d", x>>16, iPage);
9494 break;
9495 }else{
9496 nFrag += (x>>16) - (prev&0xffff) - 1;
9497 prev = x;
9500 nFrag += usableSize - (prev&0xffff) - 1;
9501 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9502 ** is stored in the fifth field of the b-tree page header.
9503 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9504 ** number of fragmented free bytes within the cell content area.
9506 if( heap[0]==0 && nFrag!=data[hdr+7] ){
9507 checkAppendMsg(pCheck,
9508 "Fragmentation of %d bytes reported as %d on page %d",
9509 nFrag, data[hdr+7], iPage);
9513 end_of_check:
9514 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9515 releasePage(pPage);
9516 pCheck->zPfx = saved_zPfx;
9517 pCheck->v1 = saved_v1;
9518 pCheck->v2 = saved_v2;
9519 return depth+1;
9521 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9523 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9525 ** This routine does a complete check of the given BTree file. aRoot[] is
9526 ** an array of pages numbers were each page number is the root page of
9527 ** a table. nRoot is the number of entries in aRoot.
9529 ** A read-only or read-write transaction must be opened before calling
9530 ** this function.
9532 ** Write the number of error seen in *pnErr. Except for some memory
9533 ** allocation errors, an error message held in memory obtained from
9534 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
9535 ** returned. If a memory allocation error occurs, NULL is returned.
9537 char *sqlite3BtreeIntegrityCheck(
9538 Btree *p, /* The btree to be checked */
9539 int *aRoot, /* An array of root pages numbers for individual trees */
9540 int nRoot, /* Number of entries in aRoot[] */
9541 int mxErr, /* Stop reporting errors after this many */
9542 int *pnErr /* Write number of errors seen to this variable */
9544 Pgno i;
9545 IntegrityCk sCheck;
9546 BtShared *pBt = p->pBt;
9547 int savedDbFlags = pBt->db->flags;
9548 char zErr[100];
9549 VVA_ONLY( int nRef );
9551 sqlite3BtreeEnter(p);
9552 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9553 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9554 assert( nRef>=0 );
9555 sCheck.pBt = pBt;
9556 sCheck.pPager = pBt->pPager;
9557 sCheck.nPage = btreePagecount(sCheck.pBt);
9558 sCheck.mxErr = mxErr;
9559 sCheck.nErr = 0;
9560 sCheck.mallocFailed = 0;
9561 sCheck.zPfx = 0;
9562 sCheck.v1 = 0;
9563 sCheck.v2 = 0;
9564 sCheck.aPgRef = 0;
9565 sCheck.heap = 0;
9566 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9567 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9568 if( sCheck.nPage==0 ){
9569 goto integrity_ck_cleanup;
9572 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9573 if( !sCheck.aPgRef ){
9574 sCheck.mallocFailed = 1;
9575 goto integrity_ck_cleanup;
9577 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9578 if( sCheck.heap==0 ){
9579 sCheck.mallocFailed = 1;
9580 goto integrity_ck_cleanup;
9583 i = PENDING_BYTE_PAGE(pBt);
9584 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9586 /* Check the integrity of the freelist
9588 sCheck.zPfx = "Main freelist: ";
9589 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9590 get4byte(&pBt->pPage1->aData[36]));
9591 sCheck.zPfx = 0;
9593 /* Check all the tables.
9595 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9596 pBt->db->flags &= ~SQLITE_CellSizeCk;
9597 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9598 i64 notUsed;
9599 if( aRoot[i]==0 ) continue;
9600 #ifndef SQLITE_OMIT_AUTOVACUUM
9601 if( pBt->autoVacuum && aRoot[i]>1 ){
9602 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9604 #endif
9605 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9607 pBt->db->flags = savedDbFlags;
9609 /* Make sure every page in the file is referenced
9611 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9612 #ifdef SQLITE_OMIT_AUTOVACUUM
9613 if( getPageReferenced(&sCheck, i)==0 ){
9614 checkAppendMsg(&sCheck, "Page %d is never used", i);
9616 #else
9617 /* If the database supports auto-vacuum, make sure no tables contain
9618 ** references to pointer-map pages.
9620 if( getPageReferenced(&sCheck, i)==0 &&
9621 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9622 checkAppendMsg(&sCheck, "Page %d is never used", i);
9624 if( getPageReferenced(&sCheck, i)!=0 &&
9625 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9626 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9628 #endif
9631 /* Clean up and report errors.
9633 integrity_ck_cleanup:
9634 sqlite3PageFree(sCheck.heap);
9635 sqlite3_free(sCheck.aPgRef);
9636 if( sCheck.mallocFailed ){
9637 sqlite3StrAccumReset(&sCheck.errMsg);
9638 sCheck.nErr++;
9640 *pnErr = sCheck.nErr;
9641 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9642 /* Make sure this analysis did not leave any unref() pages. */
9643 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9644 sqlite3BtreeLeave(p);
9645 return sqlite3StrAccumFinish(&sCheck.errMsg);
9647 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9650 ** Return the full pathname of the underlying database file. Return
9651 ** an empty string if the database is in-memory or a TEMP database.
9653 ** The pager filename is invariant as long as the pager is
9654 ** open so it is safe to access without the BtShared mutex.
9656 const char *sqlite3BtreeGetFilename(Btree *p){
9657 assert( p->pBt->pPager!=0 );
9658 return sqlite3PagerFilename(p->pBt->pPager, 1);
9662 ** Return the pathname of the journal file for this database. The return
9663 ** value of this routine is the same regardless of whether the journal file
9664 ** has been created or not.
9666 ** The pager journal filename is invariant as long as the pager is
9667 ** open so it is safe to access without the BtShared mutex.
9669 const char *sqlite3BtreeGetJournalname(Btree *p){
9670 assert( p->pBt->pPager!=0 );
9671 return sqlite3PagerJournalname(p->pBt->pPager);
9675 ** Return non-zero if a transaction is active.
9677 int sqlite3BtreeIsInTrans(Btree *p){
9678 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9679 return (p && (p->inTrans==TRANS_WRITE));
9682 #ifndef SQLITE_OMIT_WAL
9684 ** Run a checkpoint on the Btree passed as the first argument.
9686 ** Return SQLITE_LOCKED if this or any other connection has an open
9687 ** transaction on the shared-cache the argument Btree is connected to.
9689 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9691 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9692 int rc = SQLITE_OK;
9693 if( p ){
9694 BtShared *pBt = p->pBt;
9695 sqlite3BtreeEnter(p);
9696 if( pBt->inTransaction!=TRANS_NONE ){
9697 rc = SQLITE_LOCKED;
9698 }else{
9699 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
9701 sqlite3BtreeLeave(p);
9703 return rc;
9705 #endif
9708 ** Return non-zero if a read (or write) transaction is active.
9710 int sqlite3BtreeIsInReadTrans(Btree *p){
9711 assert( p );
9712 assert( sqlite3_mutex_held(p->db->mutex) );
9713 return p->inTrans!=TRANS_NONE;
9716 int sqlite3BtreeIsInBackup(Btree *p){
9717 assert( p );
9718 assert( sqlite3_mutex_held(p->db->mutex) );
9719 return p->nBackup!=0;
9723 ** This function returns a pointer to a blob of memory associated with
9724 ** a single shared-btree. The memory is used by client code for its own
9725 ** purposes (for example, to store a high-level schema associated with
9726 ** the shared-btree). The btree layer manages reference counting issues.
9728 ** The first time this is called on a shared-btree, nBytes bytes of memory
9729 ** are allocated, zeroed, and returned to the caller. For each subsequent
9730 ** call the nBytes parameter is ignored and a pointer to the same blob
9731 ** of memory returned.
9733 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9734 ** allocated, a null pointer is returned. If the blob has already been
9735 ** allocated, it is returned as normal.
9737 ** Just before the shared-btree is closed, the function passed as the
9738 ** xFree argument when the memory allocation was made is invoked on the
9739 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9740 ** on the memory, the btree layer does that.
9742 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9743 BtShared *pBt = p->pBt;
9744 sqlite3BtreeEnter(p);
9745 if( !pBt->pSchema && nBytes ){
9746 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9747 pBt->xFreeSchema = xFree;
9749 sqlite3BtreeLeave(p);
9750 return pBt->pSchema;
9754 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9755 ** btree as the argument handle holds an exclusive lock on the
9756 ** sqlite_master table. Otherwise SQLITE_OK.
9758 int sqlite3BtreeSchemaLocked(Btree *p){
9759 int rc;
9760 assert( sqlite3_mutex_held(p->db->mutex) );
9761 sqlite3BtreeEnter(p);
9762 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9763 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9764 sqlite3BtreeLeave(p);
9765 return rc;
9769 #ifndef SQLITE_OMIT_SHARED_CACHE
9771 ** Obtain a lock on the table whose root page is iTab. The
9772 ** lock is a write lock if isWritelock is true or a read lock
9773 ** if it is false.
9775 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9776 int rc = SQLITE_OK;
9777 assert( p->inTrans!=TRANS_NONE );
9778 if( p->sharable ){
9779 u8 lockType = READ_LOCK + isWriteLock;
9780 assert( READ_LOCK+1==WRITE_LOCK );
9781 assert( isWriteLock==0 || isWriteLock==1 );
9783 sqlite3BtreeEnter(p);
9784 rc = querySharedCacheTableLock(p, iTab, lockType);
9785 if( rc==SQLITE_OK ){
9786 rc = setSharedCacheTableLock(p, iTab, lockType);
9788 sqlite3BtreeLeave(p);
9790 return rc;
9792 #endif
9794 #ifndef SQLITE_OMIT_INCRBLOB
9796 ** Argument pCsr must be a cursor opened for writing on an
9797 ** INTKEY table currently pointing at a valid table entry.
9798 ** This function modifies the data stored as part of that entry.
9800 ** Only the data content may only be modified, it is not possible to
9801 ** change the length of the data stored. If this function is called with
9802 ** parameters that attempt to write past the end of the existing data,
9803 ** no modifications are made and SQLITE_CORRUPT is returned.
9805 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9806 int rc;
9807 assert( cursorOwnsBtShared(pCsr) );
9808 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9809 assert( pCsr->curFlags & BTCF_Incrblob );
9811 rc = restoreCursorPosition(pCsr);
9812 if( rc!=SQLITE_OK ){
9813 return rc;
9815 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9816 if( pCsr->eState!=CURSOR_VALID ){
9817 return SQLITE_ABORT;
9820 /* Save the positions of all other cursors open on this table. This is
9821 ** required in case any of them are holding references to an xFetch
9822 ** version of the b-tree page modified by the accessPayload call below.
9824 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9825 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9826 ** saveAllCursors can only return SQLITE_OK.
9828 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9829 assert( rc==SQLITE_OK );
9831 /* Check some assumptions:
9832 ** (a) the cursor is open for writing,
9833 ** (b) there is a read/write transaction open,
9834 ** (c) the connection holds a write-lock on the table (if required),
9835 ** (d) there are no conflicting read-locks, and
9836 ** (e) the cursor points at a valid row of an intKey table.
9838 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9839 return SQLITE_READONLY;
9841 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9842 && pCsr->pBt->inTransaction==TRANS_WRITE );
9843 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9844 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9845 assert( pCsr->pPage->intKey );
9847 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9851 ** Mark this cursor as an incremental blob cursor.
9853 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9854 pCur->curFlags |= BTCF_Incrblob;
9855 pCur->pBtree->hasIncrblobCur = 1;
9857 #endif
9860 ** Set both the "read version" (single byte at byte offset 18) and
9861 ** "write version" (single byte at byte offset 19) fields in the database
9862 ** header to iVersion.
9864 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9865 BtShared *pBt = pBtree->pBt;
9866 int rc; /* Return code */
9868 assert( iVersion==1 || iVersion==2 );
9870 /* If setting the version fields to 1, do not automatically open the
9871 ** WAL connection, even if the version fields are currently set to 2.
9873 pBt->btsFlags &= ~BTS_NO_WAL;
9874 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9876 rc = sqlite3BtreeBeginTrans(pBtree, 0);
9877 if( rc==SQLITE_OK ){
9878 u8 *aData = pBt->pPage1->aData;
9879 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9880 rc = sqlite3BtreeBeginTrans(pBtree, 2);
9881 if( rc==SQLITE_OK ){
9882 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9883 if( rc==SQLITE_OK ){
9884 aData[18] = (u8)iVersion;
9885 aData[19] = (u8)iVersion;
9891 pBt->btsFlags &= ~BTS_NO_WAL;
9892 return rc;
9896 ** Return true if the cursor has a hint specified. This routine is
9897 ** only used from within assert() statements
9899 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9900 return (pCsr->hints & mask)!=0;
9904 ** Return true if the given Btree is read-only.
9906 int sqlite3BtreeIsReadonly(Btree *p){
9907 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9911 ** Return the size of the header added to each page by this module.
9913 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9915 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9917 ** Return true if the Btree passed as the only argument is sharable.
9919 int sqlite3BtreeSharable(Btree *p){
9920 return p->sharable;
9924 ** Return the number of connections to the BtShared object accessed by
9925 ** the Btree handle passed as the only argument. For private caches
9926 ** this is always 1. For shared caches it may be 1 or greater.
9928 int sqlite3BtreeConnectionCount(Btree *p){
9929 testcase( p->sharable );
9930 return p->pBt->nRef;
9932 #endif