Attempt to reduce the memory used by VALUES clauses in as many statements as possible...
[sqlite.git] / ext / fts5 / fts5_buffer.c
blob891ef0203aff1c6fb2cf17bc93490ca9b5f24433
1 /*
2 ** 2014 May 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
16 #include "fts5Int.h"
18 int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, u32 nByte){
19 if( (u32)pBuf->nSpace<nByte ){
20 u64 nNew = pBuf->nSpace ? pBuf->nSpace : 64;
21 u8 *pNew;
22 while( nNew<nByte ){
23 nNew = nNew * 2;
25 pNew = sqlite3_realloc64(pBuf->p, nNew);
26 if( pNew==0 ){
27 *pRc = SQLITE_NOMEM;
28 return 1;
29 }else{
30 pBuf->nSpace = (int)nNew;
31 pBuf->p = pNew;
34 return 0;
39 ** Encode value iVal as an SQLite varint and append it to the buffer object
40 ** pBuf. If an OOM error occurs, set the error code in p.
42 void sqlite3Fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
43 if( fts5BufferGrow(pRc, pBuf, 9) ) return;
44 pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iVal);
47 void sqlite3Fts5Put32(u8 *aBuf, int iVal){
48 aBuf[0] = (iVal>>24) & 0x00FF;
49 aBuf[1] = (iVal>>16) & 0x00FF;
50 aBuf[2] = (iVal>> 8) & 0x00FF;
51 aBuf[3] = (iVal>> 0) & 0x00FF;
54 int sqlite3Fts5Get32(const u8 *aBuf){
55 return (int)((((u32)aBuf[0])<<24) + (aBuf[1]<<16) + (aBuf[2]<<8) + aBuf[3]);
59 ** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set
60 ** the error code in p. If an error has already occurred when this function
61 ** is called, it is a no-op.
63 void sqlite3Fts5BufferAppendBlob(
64 int *pRc,
65 Fts5Buffer *pBuf,
66 u32 nData,
67 const u8 *pData
69 if( nData ){
70 if( fts5BufferGrow(pRc, pBuf, nData) ) return;
71 assert( pBuf->p!=0 );
72 memcpy(&pBuf->p[pBuf->n], pData, nData);
73 pBuf->n += nData;
78 ** Append the nul-terminated string zStr to the buffer pBuf. This function
79 ** ensures that the byte following the buffer data is set to 0x00, even
80 ** though this byte is not included in the pBuf->n count.
82 void sqlite3Fts5BufferAppendString(
83 int *pRc,
84 Fts5Buffer *pBuf,
85 const char *zStr
87 int nStr = (int)strlen(zStr);
88 sqlite3Fts5BufferAppendBlob(pRc, pBuf, nStr+1, (const u8*)zStr);
89 pBuf->n--;
93 ** Argument zFmt is a printf() style format string. This function performs
94 ** the printf() style processing, then appends the results to buffer pBuf.
96 ** Like sqlite3Fts5BufferAppendString(), this function ensures that the byte
97 ** following the buffer data is set to 0x00, even though this byte is not
98 ** included in the pBuf->n count.
99 */
100 void sqlite3Fts5BufferAppendPrintf(
101 int *pRc,
102 Fts5Buffer *pBuf,
103 char *zFmt, ...
105 if( *pRc==SQLITE_OK ){
106 char *zTmp;
107 va_list ap;
108 va_start(ap, zFmt);
109 zTmp = sqlite3_vmprintf(zFmt, ap);
110 va_end(ap);
112 if( zTmp==0 ){
113 *pRc = SQLITE_NOMEM;
114 }else{
115 sqlite3Fts5BufferAppendString(pRc, pBuf, zTmp);
116 sqlite3_free(zTmp);
121 char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...){
122 char *zRet = 0;
123 if( *pRc==SQLITE_OK ){
124 va_list ap;
125 va_start(ap, zFmt);
126 zRet = sqlite3_vmprintf(zFmt, ap);
127 va_end(ap);
128 if( zRet==0 ){
129 *pRc = SQLITE_NOMEM;
132 return zRet;
137 ** Free any buffer allocated by pBuf. Zero the structure before returning.
139 void sqlite3Fts5BufferFree(Fts5Buffer *pBuf){
140 sqlite3_free(pBuf->p);
141 memset(pBuf, 0, sizeof(Fts5Buffer));
145 ** Zero the contents of the buffer object. But do not free the associated
146 ** memory allocation.
148 void sqlite3Fts5BufferZero(Fts5Buffer *pBuf){
149 pBuf->n = 0;
153 ** Set the buffer to contain nData/pData. If an OOM error occurs, leave an
154 ** the error code in p. If an error has already occurred when this function
155 ** is called, it is a no-op.
157 void sqlite3Fts5BufferSet(
158 int *pRc,
159 Fts5Buffer *pBuf,
160 int nData,
161 const u8 *pData
163 pBuf->n = 0;
164 sqlite3Fts5BufferAppendBlob(pRc, pBuf, nData, pData);
167 int sqlite3Fts5PoslistNext64(
168 const u8 *a, int n, /* Buffer containing poslist */
169 int *pi, /* IN/OUT: Offset within a[] */
170 i64 *piOff /* IN/OUT: Current offset */
172 int i = *pi;
173 assert( a!=0 || i==0 );
174 if( i>=n ){
175 /* EOF */
176 *piOff = -1;
177 return 1;
178 }else{
179 i64 iOff = *piOff;
180 u32 iVal;
181 assert( a!=0 );
182 fts5FastGetVarint32(a, i, iVal);
183 if( iVal<=1 ){
184 if( iVal==0 ){
185 *pi = i;
186 return 0;
188 fts5FastGetVarint32(a, i, iVal);
189 iOff = ((i64)iVal) << 32;
190 assert( iOff>=0 );
191 fts5FastGetVarint32(a, i, iVal);
192 if( iVal<2 ){
193 /* This is a corrupt record. So stop parsing it here. */
194 *piOff = -1;
195 return 1;
197 *piOff = iOff + ((iVal-2) & 0x7FFFFFFF);
198 }else{
199 *piOff = (iOff & (i64)0x7FFFFFFF<<32)+((iOff + (iVal-2)) & 0x7FFFFFFF);
201 *pi = i;
202 assert_nc( *piOff>=iOff );
203 return 0;
209 ** Advance the iterator object passed as the only argument. Return true
210 ** if the iterator reaches EOF, or false otherwise.
212 int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader *pIter){
213 if( sqlite3Fts5PoslistNext64(pIter->a, pIter->n, &pIter->i, &pIter->iPos) ){
214 pIter->bEof = 1;
216 return pIter->bEof;
219 int sqlite3Fts5PoslistReaderInit(
220 const u8 *a, int n, /* Poslist buffer to iterate through */
221 Fts5PoslistReader *pIter /* Iterator object to initialize */
223 memset(pIter, 0, sizeof(*pIter));
224 pIter->a = a;
225 pIter->n = n;
226 sqlite3Fts5PoslistReaderNext(pIter);
227 return pIter->bEof;
231 ** Append position iPos to the position list being accumulated in buffer
232 ** pBuf, which must be already be large enough to hold the new data.
233 ** The previous position written to this list is *piPrev. *piPrev is set
234 ** to iPos before returning.
236 void sqlite3Fts5PoslistSafeAppend(
237 Fts5Buffer *pBuf,
238 i64 *piPrev,
239 i64 iPos
241 if( iPos>=*piPrev ){
242 static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
243 if( (iPos & colmask) != (*piPrev & colmask) ){
244 pBuf->p[pBuf->n++] = 1;
245 pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
246 *piPrev = (iPos & colmask);
248 pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-*piPrev)+2);
249 *piPrev = iPos;
253 int sqlite3Fts5PoslistWriterAppend(
254 Fts5Buffer *pBuf,
255 Fts5PoslistWriter *pWriter,
256 i64 iPos
258 int rc = 0; /* Initialized only to suppress erroneous warning from Clang */
259 if( fts5BufferGrow(&rc, pBuf, 5+5+5) ) return rc;
260 sqlite3Fts5PoslistSafeAppend(pBuf, &pWriter->iPrev, iPos);
261 return SQLITE_OK;
264 void *sqlite3Fts5MallocZero(int *pRc, sqlite3_int64 nByte){
265 void *pRet = 0;
266 if( *pRc==SQLITE_OK ){
267 pRet = sqlite3_malloc64(nByte);
268 if( pRet==0 ){
269 if( nByte>0 ) *pRc = SQLITE_NOMEM;
270 }else{
271 memset(pRet, 0, (size_t)nByte);
274 return pRet;
278 ** Return a nul-terminated copy of the string indicated by pIn. If nIn
279 ** is non-negative, then it is the length of the string in bytes. Otherwise,
280 ** the length of the string is determined using strlen().
282 ** It is the responsibility of the caller to eventually free the returned
283 ** buffer using sqlite3_free(). If an OOM error occurs, NULL is returned.
285 char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn){
286 char *zRet = 0;
287 if( *pRc==SQLITE_OK ){
288 if( nIn<0 ){
289 nIn = (int)strlen(pIn);
291 zRet = (char*)sqlite3_malloc(nIn+1);
292 if( zRet ){
293 memcpy(zRet, pIn, nIn);
294 zRet[nIn] = '\0';
295 }else{
296 *pRc = SQLITE_NOMEM;
299 return zRet;
304 ** Return true if character 't' may be part of an FTS5 bareword, or false
305 ** otherwise. Characters that may be part of barewords:
307 ** * All non-ASCII characters,
308 ** * The 52 upper and lower case ASCII characters, and
309 ** * The 10 integer ASCII characters.
310 ** * The underscore character "_" (0x5F).
311 ** * The unicode "subsitute" character (0x1A).
313 int sqlite3Fts5IsBareword(char t){
314 u8 aBareword[128] = {
315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 .. 0x0F */
316 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, /* 0x10 .. 0x1F */
317 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 .. 0x2F */
318 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 0x30 .. 0x3F */
319 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 .. 0x4F */
320 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 0x50 .. 0x5F */
321 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 .. 0x6F */
322 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 /* 0x70 .. 0x7F */
325 return (t & 0x80) || aBareword[(int)t];
329 /*************************************************************************
331 typedef struct Fts5TermsetEntry Fts5TermsetEntry;
332 struct Fts5TermsetEntry {
333 char *pTerm;
334 int nTerm;
335 int iIdx; /* Index (main or aPrefix[] entry) */
336 Fts5TermsetEntry *pNext;
339 struct Fts5Termset {
340 Fts5TermsetEntry *apHash[512];
343 int sqlite3Fts5TermsetNew(Fts5Termset **pp){
344 int rc = SQLITE_OK;
345 *pp = sqlite3Fts5MallocZero(&rc, sizeof(Fts5Termset));
346 return rc;
349 int sqlite3Fts5TermsetAdd(
350 Fts5Termset *p,
351 int iIdx,
352 const char *pTerm, int nTerm,
353 int *pbPresent
355 int rc = SQLITE_OK;
356 *pbPresent = 0;
357 if( p ){
358 int i;
359 u32 hash = 13;
360 Fts5TermsetEntry *pEntry;
362 /* Calculate a hash value for this term. This is the same hash checksum
363 ** used by the fts5_hash.c module. This is not important for correct
364 ** operation of the module, but is necessary to ensure that some tests
365 ** designed to produce hash table collisions really do work. */
366 for(i=nTerm-1; i>=0; i--){
367 hash = (hash << 3) ^ hash ^ pTerm[i];
369 hash = (hash << 3) ^ hash ^ iIdx;
370 hash = hash % ArraySize(p->apHash);
372 for(pEntry=p->apHash[hash]; pEntry; pEntry=pEntry->pNext){
373 if( pEntry->iIdx==iIdx
374 && pEntry->nTerm==nTerm
375 && memcmp(pEntry->pTerm, pTerm, nTerm)==0
377 *pbPresent = 1;
378 break;
382 if( pEntry==0 ){
383 pEntry = sqlite3Fts5MallocZero(&rc, sizeof(Fts5TermsetEntry) + nTerm);
384 if( pEntry ){
385 pEntry->pTerm = (char*)&pEntry[1];
386 pEntry->nTerm = nTerm;
387 pEntry->iIdx = iIdx;
388 memcpy(pEntry->pTerm, pTerm, nTerm);
389 pEntry->pNext = p->apHash[hash];
390 p->apHash[hash] = pEntry;
395 return rc;
398 void sqlite3Fts5TermsetFree(Fts5Termset *p){
399 if( p ){
400 u32 i;
401 for(i=0; i<ArraySize(p->apHash); i++){
402 Fts5TermsetEntry *pEntry = p->apHash[i];
403 while( pEntry ){
404 Fts5TermsetEntry *pDel = pEntry;
405 pEntry = pEntry->pNext;
406 sqlite3_free(pDel);
409 sqlite3_free(p);