Add missing VdbeCoverage() and VdbeCoverageNeverTaken() macros to window.c.
[sqlite.git] / src / vdbemem.c
blobdc0a3f970282911be5ae808a841788f04e7a12b0
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
96 #ifdef SQLITE_DEBUG
98 ** Check that string value of pMem agrees with its integer or real value.
100 ** A single int or real value always converts to the same strings. But
101 ** many different strings can be converted into the same int or real.
102 ** If a table contains a numeric value and an index is based on the
103 ** corresponding string value, then it is important that the string be
104 ** derived from the numeric value, not the other way around, to ensure
105 ** that the index and table are consistent. See ticket
106 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107 ** an example.
109 ** This routine looks at pMem to verify that if it has both a numeric
110 ** representation and a string representation then the string rep has
111 ** been derived from the numeric and not the other way around. It returns
112 ** true if everything is ok and false if there is a problem.
114 ** This routine is for use inside of assert() statements only.
116 int sqlite3VdbeMemConsistentDualRep(Mem *p){
117 char zBuf[100];
118 char *z;
119 int i, j, incr;
120 if( (p->flags & MEM_Str)==0 ) return 1;
121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122 if( p->flags & MEM_Int ){
123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124 }else{
125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
127 z = p->z;
128 i = j = 0;
129 incr = 1;
130 if( p->enc!=SQLITE_UTF8 ){
131 incr = 2;
132 if( p->enc==SQLITE_UTF16BE ) z++;
134 while( zBuf[j] ){
135 if( zBuf[j++]!=z[i] ) return 0;
136 i += incr;
138 return 1;
140 #endif /* SQLITE_DEBUG */
143 ** If pMem is an object with a valid string representation, this routine
144 ** ensures the internal encoding for the string representation is
145 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
147 ** If pMem is not a string object, or the encoding of the string
148 ** representation is already stored using the requested encoding, then this
149 ** routine is a no-op.
151 ** SQLITE_OK is returned if the conversion is successful (or not required).
152 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153 ** between formats.
155 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
156 #ifndef SQLITE_OMIT_UTF16
157 int rc;
158 #endif
159 assert( (pMem->flags&MEM_RowSet)==0 );
160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161 || desiredEnc==SQLITE_UTF16BE );
162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
163 return SQLITE_OK;
165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
166 #ifdef SQLITE_OMIT_UTF16
167 return SQLITE_ERROR;
168 #else
170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171 ** then the encoding of the value may not have changed.
173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
177 return rc;
178 #endif
182 ** Make sure pMem->z points to a writable allocation of at least
183 ** min(n,32) bytes.
185 ** If the bPreserve argument is true, then copy of the content of
186 ** pMem->z into the new allocation. pMem must be either a string or
187 ** blob if bPreserve is true. If bPreserve is false, any prior content
188 ** in pMem->z is discarded.
190 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
191 assert( sqlite3VdbeCheckMemInvariants(pMem) );
192 assert( (pMem->flags&MEM_RowSet)==0 );
193 testcase( pMem->db==0 );
195 /* If the bPreserve flag is set to true, then the memory cell must already
196 ** contain a valid string or blob value. */
197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198 testcase( bPreserve && pMem->z==0 );
200 assert( pMem->szMalloc==0
201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
202 if( n<32 ) n = 32;
203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205 bPreserve = 0;
206 }else{
207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
210 if( pMem->zMalloc==0 ){
211 sqlite3VdbeMemSetNull(pMem);
212 pMem->z = 0;
213 pMem->szMalloc = 0;
214 return SQLITE_NOMEM_BKPT;
215 }else{
216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
219 if( bPreserve && pMem->z ){
220 assert( pMem->z!=pMem->zMalloc );
221 memcpy(pMem->zMalloc, pMem->z, pMem->n);
223 if( (pMem->flags&MEM_Dyn)!=0 ){
224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
225 pMem->xDel((void *)(pMem->z));
228 pMem->z = pMem->zMalloc;
229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
230 return SQLITE_OK;
234 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
235 ** If pMem->zMalloc already meets or exceeds the requested size, this
236 ** routine is a no-op.
238 ** Any prior string or blob content in the pMem object may be discarded.
239 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
240 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241 ** values are preserved.
243 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244 ** if unable to complete the resizing.
246 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
247 assert( szNew>0 );
248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
249 if( pMem->szMalloc<szNew ){
250 return sqlite3VdbeMemGrow(pMem, szNew, 0);
252 assert( (pMem->flags & MEM_Dyn)==0 );
253 pMem->z = pMem->zMalloc;
254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
255 return SQLITE_OK;
259 ** It is already known that pMem contains an unterminated string.
260 ** Add the zero terminator.
262 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264 return SQLITE_NOMEM_BKPT;
266 pMem->z[pMem->n] = 0;
267 pMem->z[pMem->n+1] = 0;
268 pMem->flags |= MEM_Term;
269 return SQLITE_OK;
273 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274 ** MEM.zMalloc, where it can be safely written.
276 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
278 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
280 assert( (pMem->flags&MEM_RowSet)==0 );
281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
284 int rc = vdbeMemAddTerminator(pMem);
285 if( rc ) return rc;
288 pMem->flags &= ~MEM_Ephem;
289 #ifdef SQLITE_DEBUG
290 pMem->pScopyFrom = 0;
291 #endif
293 return SQLITE_OK;
297 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
298 ** blob stored in dynamically allocated space.
300 #ifndef SQLITE_OMIT_INCRBLOB
301 int sqlite3VdbeMemExpandBlob(Mem *pMem){
302 int nByte;
303 assert( pMem->flags & MEM_Zero );
304 assert( pMem->flags&MEM_Blob );
305 assert( (pMem->flags&MEM_RowSet)==0 );
306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
308 /* Set nByte to the number of bytes required to store the expanded blob. */
309 nByte = pMem->n + pMem->u.nZero;
310 if( nByte<=0 ){
311 nByte = 1;
313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314 return SQLITE_NOMEM_BKPT;
317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318 pMem->n += pMem->u.nZero;
319 pMem->flags &= ~(MEM_Zero|MEM_Term);
320 return SQLITE_OK;
322 #endif
325 ** Make sure the given Mem is \u0000 terminated.
327 int sqlite3VdbeMemNulTerminate(Mem *pMem){
328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332 return SQLITE_OK; /* Nothing to do */
333 }else{
334 return vdbeMemAddTerminator(pMem);
339 ** Add MEM_Str to the set of representations for the given Mem. Numbers
340 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
341 ** is a no-op.
343 ** Existing representations MEM_Int and MEM_Real are invalidated if
344 ** bForce is true but are retained if bForce is false.
346 ** A MEM_Null value will never be passed to this function. This function is
347 ** used for converting values to text for returning to the user (i.e. via
348 ** sqlite3_value_text()), or for ensuring that values to be used as btree
349 ** keys are strings. In the former case a NULL pointer is returned the
350 ** user and the latter is an internal programming error.
352 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
353 int fg = pMem->flags;
354 const int nByte = 32;
356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
357 assert( !(fg&MEM_Zero) );
358 assert( !(fg&(MEM_Str|MEM_Blob)) );
359 assert( fg&(MEM_Int|MEM_Real) );
360 assert( (pMem->flags&MEM_RowSet)==0 );
361 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
365 pMem->enc = 0;
366 return SQLITE_NOMEM_BKPT;
369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
370 ** string representation of the value. Then, if the required encoding
371 ** is UTF-16le or UTF-16be do a translation.
373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
375 if( fg & MEM_Int ){
376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
377 }else{
378 assert( fg & MEM_Real );
379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
381 pMem->n = sqlite3Strlen30(pMem->z);
382 pMem->enc = SQLITE_UTF8;
383 pMem->flags |= MEM_Str|MEM_Term;
384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
385 sqlite3VdbeChangeEncoding(pMem, enc);
386 return SQLITE_OK;
390 ** Memory cell pMem contains the context of an aggregate function.
391 ** This routine calls the finalize method for that function. The
392 ** result of the aggregate is stored back into pMem.
394 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395 ** otherwise.
397 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
419 ** Memory cell pAccum contains the context of an aggregate function.
420 ** This routine calls the xValue method for that function and stores
421 ** the results in memory cell pMem.
423 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
424 ** otherwise.
426 #ifndef SQLITE_OMIT_WINDOWFUNC
427 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
428 sqlite3_context ctx;
429 Mem t;
430 assert( pFunc!=0 );
431 assert( pFunc->xValue!=0 );
432 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
433 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
434 memset(&ctx, 0, sizeof(ctx));
435 memset(&t, 0, sizeof(t));
436 t.flags = MEM_Null;
437 t.db = pAccum->db;
438 ctx.pOut = pOut;
439 ctx.pMem = pAccum;
440 ctx.pFunc = pFunc;
441 pFunc->xValue(&ctx);
442 return ctx.isError;
444 #endif /* SQLITE_OMIT_WINDOWFUNC */
447 ** If the memory cell contains a value that must be freed by
448 ** invoking the external callback in Mem.xDel, then this routine
449 ** will free that value. It also sets Mem.flags to MEM_Null.
451 ** This is a helper routine for sqlite3VdbeMemSetNull() and
452 ** for sqlite3VdbeMemRelease(). Use those other routines as the
453 ** entry point for releasing Mem resources.
455 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
456 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
457 assert( VdbeMemDynamic(p) );
458 if( p->flags&MEM_Agg ){
459 sqlite3VdbeMemFinalize(p, p->u.pDef);
460 assert( (p->flags & MEM_Agg)==0 );
461 testcase( p->flags & MEM_Dyn );
463 if( p->flags&MEM_Dyn ){
464 assert( (p->flags&MEM_RowSet)==0 );
465 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
466 p->xDel((void *)p->z);
467 }else if( p->flags&MEM_RowSet ){
468 sqlite3RowSetClear(p->u.pRowSet);
469 }else if( p->flags&MEM_Frame ){
470 VdbeFrame *pFrame = p->u.pFrame;
471 pFrame->pParent = pFrame->v->pDelFrame;
472 pFrame->v->pDelFrame = pFrame;
474 p->flags = MEM_Null;
478 ** Release memory held by the Mem p, both external memory cleared
479 ** by p->xDel and memory in p->zMalloc.
481 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
482 ** the unusual case where there really is memory in p that needs
483 ** to be freed.
485 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
486 if( VdbeMemDynamic(p) ){
487 vdbeMemClearExternAndSetNull(p);
489 if( p->szMalloc ){
490 sqlite3DbFreeNN(p->db, p->zMalloc);
491 p->szMalloc = 0;
493 p->z = 0;
497 ** Release any memory resources held by the Mem. Both the memory that is
498 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
500 ** Use this routine prior to clean up prior to abandoning a Mem, or to
501 ** reset a Mem back to its minimum memory utilization.
503 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
504 ** prior to inserting new content into the Mem.
506 void sqlite3VdbeMemRelease(Mem *p){
507 assert( sqlite3VdbeCheckMemInvariants(p) );
508 if( VdbeMemDynamic(p) || p->szMalloc ){
509 vdbeMemClear(p);
514 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
515 ** If the double is out of range of a 64-bit signed integer then
516 ** return the closest available 64-bit signed integer.
518 static SQLITE_NOINLINE i64 doubleToInt64(double r){
519 #ifdef SQLITE_OMIT_FLOATING_POINT
520 /* When floating-point is omitted, double and int64 are the same thing */
521 return r;
522 #else
524 ** Many compilers we encounter do not define constants for the
525 ** minimum and maximum 64-bit integers, or they define them
526 ** inconsistently. And many do not understand the "LL" notation.
527 ** So we define our own static constants here using nothing
528 ** larger than a 32-bit integer constant.
530 static const i64 maxInt = LARGEST_INT64;
531 static const i64 minInt = SMALLEST_INT64;
533 if( r<=(double)minInt ){
534 return minInt;
535 }else if( r>=(double)maxInt ){
536 return maxInt;
537 }else{
538 return (i64)r;
540 #endif
544 ** Return some kind of integer value which is the best we can do
545 ** at representing the value that *pMem describes as an integer.
546 ** If pMem is an integer, then the value is exact. If pMem is
547 ** a floating-point then the value returned is the integer part.
548 ** If pMem is a string or blob, then we make an attempt to convert
549 ** it into an integer and return that. If pMem represents an
550 ** an SQL-NULL value, return 0.
552 ** If pMem represents a string value, its encoding might be changed.
554 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
555 i64 value = 0;
556 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
557 return value;
559 i64 sqlite3VdbeIntValue(Mem *pMem){
560 int flags;
561 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
562 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
563 flags = pMem->flags;
564 if( flags & MEM_Int ){
565 return pMem->u.i;
566 }else if( flags & MEM_Real ){
567 return doubleToInt64(pMem->u.r);
568 }else if( flags & (MEM_Str|MEM_Blob) ){
569 assert( pMem->z || pMem->n==0 );
570 return memIntValue(pMem);
571 }else{
572 return 0;
577 ** Return the best representation of pMem that we can get into a
578 ** double. If pMem is already a double or an integer, return its
579 ** value. If it is a string or blob, try to convert it to a double.
580 ** If it is a NULL, return 0.0.
582 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
583 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
584 double val = (double)0;
585 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
586 return val;
588 double sqlite3VdbeRealValue(Mem *pMem){
589 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
590 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
591 if( pMem->flags & MEM_Real ){
592 return pMem->u.r;
593 }else if( pMem->flags & MEM_Int ){
594 return (double)pMem->u.i;
595 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
596 return memRealValue(pMem);
597 }else{
598 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
599 return (double)0;
604 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
605 ** Return the value ifNull if pMem is NULL.
607 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
608 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
609 if( pMem->flags & MEM_Null ) return ifNull;
610 return sqlite3VdbeRealValue(pMem)!=0.0;
614 ** The MEM structure is already a MEM_Real. Try to also make it a
615 ** MEM_Int if we can.
617 void sqlite3VdbeIntegerAffinity(Mem *pMem){
618 i64 ix;
619 assert( pMem->flags & MEM_Real );
620 assert( (pMem->flags & MEM_RowSet)==0 );
621 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
622 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
624 ix = doubleToInt64(pMem->u.r);
626 /* Only mark the value as an integer if
628 ** (1) the round-trip conversion real->int->real is a no-op, and
629 ** (2) The integer is neither the largest nor the smallest
630 ** possible integer (ticket #3922)
632 ** The second and third terms in the following conditional enforces
633 ** the second condition under the assumption that addition overflow causes
634 ** values to wrap around.
636 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
637 pMem->u.i = ix;
638 MemSetTypeFlag(pMem, MEM_Int);
643 ** Convert pMem to type integer. Invalidate any prior representations.
645 int sqlite3VdbeMemIntegerify(Mem *pMem){
646 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
647 assert( (pMem->flags & MEM_RowSet)==0 );
648 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
650 pMem->u.i = sqlite3VdbeIntValue(pMem);
651 MemSetTypeFlag(pMem, MEM_Int);
652 return SQLITE_OK;
656 ** Convert pMem so that it is of type MEM_Real.
657 ** Invalidate any prior representations.
659 int sqlite3VdbeMemRealify(Mem *pMem){
660 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
661 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
663 pMem->u.r = sqlite3VdbeRealValue(pMem);
664 MemSetTypeFlag(pMem, MEM_Real);
665 return SQLITE_OK;
668 /* Compare a floating point value to an integer. Return true if the two
669 ** values are the same within the precision of the floating point value.
671 ** For some versions of GCC on 32-bit machines, if you do the more obvious
672 ** comparison of "r1==(double)i" you sometimes get an answer of false even
673 ** though the r1 and (double)i values are bit-for-bit the same.
675 static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
676 double r2 = (double)i;
677 return memcmp(&r1, &r2, sizeof(r1))==0;
681 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
682 ** Invalidate any prior representations.
684 ** Every effort is made to force the conversion, even if the input
685 ** is a string that does not look completely like a number. Convert
686 ** as much of the string as we can and ignore the rest.
688 int sqlite3VdbeMemNumerify(Mem *pMem){
689 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
690 int rc;
691 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
692 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
693 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
694 if( rc==0 ){
695 MemSetTypeFlag(pMem, MEM_Int);
696 }else{
697 i64 i = pMem->u.i;
698 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
699 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
700 pMem->u.i = i;
701 MemSetTypeFlag(pMem, MEM_Int);
702 }else{
703 MemSetTypeFlag(pMem, MEM_Real);
707 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
708 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
709 return SQLITE_OK;
713 ** Cast the datatype of the value in pMem according to the affinity
714 ** "aff". Casting is different from applying affinity in that a cast
715 ** is forced. In other words, the value is converted into the desired
716 ** affinity even if that results in loss of data. This routine is
717 ** used (for example) to implement the SQL "cast()" operator.
719 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
720 if( pMem->flags & MEM_Null ) return;
721 switch( aff ){
722 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
723 if( (pMem->flags & MEM_Blob)==0 ){
724 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
725 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
726 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
727 }else{
728 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
730 break;
732 case SQLITE_AFF_NUMERIC: {
733 sqlite3VdbeMemNumerify(pMem);
734 break;
736 case SQLITE_AFF_INTEGER: {
737 sqlite3VdbeMemIntegerify(pMem);
738 break;
740 case SQLITE_AFF_REAL: {
741 sqlite3VdbeMemRealify(pMem);
742 break;
744 default: {
745 assert( aff==SQLITE_AFF_TEXT );
746 assert( MEM_Str==(MEM_Blob>>3) );
747 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
748 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
749 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
750 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
751 break;
757 ** Initialize bulk memory to be a consistent Mem object.
759 ** The minimum amount of initialization feasible is performed.
761 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
762 assert( (flags & ~MEM_TypeMask)==0 );
763 pMem->flags = flags;
764 pMem->db = db;
765 pMem->szMalloc = 0;
770 ** Delete any previous value and set the value stored in *pMem to NULL.
772 ** This routine calls the Mem.xDel destructor to dispose of values that
773 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
774 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
775 ** routine to invoke the destructor and deallocates Mem.zMalloc.
777 ** Use this routine to reset the Mem prior to insert a new value.
779 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
781 void sqlite3VdbeMemSetNull(Mem *pMem){
782 if( VdbeMemDynamic(pMem) ){
783 vdbeMemClearExternAndSetNull(pMem);
784 }else{
785 pMem->flags = MEM_Null;
788 void sqlite3ValueSetNull(sqlite3_value *p){
789 sqlite3VdbeMemSetNull((Mem*)p);
793 ** Delete any previous value and set the value to be a BLOB of length
794 ** n containing all zeros.
796 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
797 sqlite3VdbeMemRelease(pMem);
798 pMem->flags = MEM_Blob|MEM_Zero;
799 pMem->n = 0;
800 if( n<0 ) n = 0;
801 pMem->u.nZero = n;
802 pMem->enc = SQLITE_UTF8;
803 pMem->z = 0;
807 ** The pMem is known to contain content that needs to be destroyed prior
808 ** to a value change. So invoke the destructor, then set the value to
809 ** a 64-bit integer.
811 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
812 sqlite3VdbeMemSetNull(pMem);
813 pMem->u.i = val;
814 pMem->flags = MEM_Int;
818 ** Delete any previous value and set the value stored in *pMem to val,
819 ** manifest type INTEGER.
821 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
822 if( VdbeMemDynamic(pMem) ){
823 vdbeReleaseAndSetInt64(pMem, val);
824 }else{
825 pMem->u.i = val;
826 pMem->flags = MEM_Int;
830 /* A no-op destructor */
831 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
834 ** Set the value stored in *pMem should already be a NULL.
835 ** Also store a pointer to go with it.
837 void sqlite3VdbeMemSetPointer(
838 Mem *pMem,
839 void *pPtr,
840 const char *zPType,
841 void (*xDestructor)(void*)
843 assert( pMem->flags==MEM_Null );
844 pMem->u.zPType = zPType ? zPType : "";
845 pMem->z = pPtr;
846 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
847 pMem->eSubtype = 'p';
848 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
851 #ifndef SQLITE_OMIT_FLOATING_POINT
853 ** Delete any previous value and set the value stored in *pMem to val,
854 ** manifest type REAL.
856 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
857 sqlite3VdbeMemSetNull(pMem);
858 if( !sqlite3IsNaN(val) ){
859 pMem->u.r = val;
860 pMem->flags = MEM_Real;
863 #endif
866 ** Delete any previous value and set the value of pMem to be an
867 ** empty boolean index.
869 void sqlite3VdbeMemSetRowSet(Mem *pMem){
870 sqlite3 *db = pMem->db;
871 assert( db!=0 );
872 assert( (pMem->flags & MEM_RowSet)==0 );
873 sqlite3VdbeMemRelease(pMem);
874 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
875 if( db->mallocFailed ){
876 pMem->flags = MEM_Null;
877 pMem->szMalloc = 0;
878 }else{
879 assert( pMem->zMalloc );
880 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
881 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
882 assert( pMem->u.pRowSet!=0 );
883 pMem->flags = MEM_RowSet;
888 ** Return true if the Mem object contains a TEXT or BLOB that is
889 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
891 int sqlite3VdbeMemTooBig(Mem *p){
892 assert( p->db!=0 );
893 if( p->flags & (MEM_Str|MEM_Blob) ){
894 int n = p->n;
895 if( p->flags & MEM_Zero ){
896 n += p->u.nZero;
898 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
900 return 0;
903 #ifdef SQLITE_DEBUG
905 ** This routine prepares a memory cell for modification by breaking
906 ** its link to a shallow copy and by marking any current shallow
907 ** copies of this cell as invalid.
909 ** This is used for testing and debugging only - to make sure shallow
910 ** copies are not misused.
912 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
913 int i;
914 Mem *pX;
915 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
916 if( pX->pScopyFrom==pMem ){
917 /* If pX is marked as a shallow copy of pMem, then verify that
918 ** no significant changes have been made to pX since the OP_SCopy.
919 ** A significant change would indicated a missed call to this
920 ** function for pX. Minor changes, such as adding or removing a
921 ** dual type, are allowed, as long as the underlying value is the
922 ** same. */
923 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
924 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
925 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
926 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
927 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
929 /* pMem is the register that is changing. But also mark pX as
930 ** undefined so that we can quickly detect the shallow-copy error */
931 pX->flags = MEM_Undefined;
932 pX->pScopyFrom = 0;
935 pMem->pScopyFrom = 0;
936 #ifdef SQLITE_DEBUG_COLUMN_CACHE
937 pMem->iTabColHash = 0;
938 #endif
940 #endif /* SQLITE_DEBUG */
944 ** Make an shallow copy of pFrom into pTo. Prior contents of
945 ** pTo are freed. The pFrom->z field is not duplicated. If
946 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
947 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
949 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
950 vdbeMemClearExternAndSetNull(pTo);
951 assert( !VdbeMemDynamic(pTo) );
952 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
954 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
955 assert( (pFrom->flags & MEM_RowSet)==0 );
956 assert( pTo->db==pFrom->db );
957 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
958 memcpy(pTo, pFrom, MEMCELLSIZE);
959 #ifdef SQLITE_DEBUG_COLUMNCACHE
960 pTo->iTabColHash = pFrom->iTabColHash;
961 #endif
962 if( (pFrom->flags&MEM_Static)==0 ){
963 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
964 assert( srcType==MEM_Ephem || srcType==MEM_Static );
965 pTo->flags |= srcType;
970 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
971 ** freed before the copy is made.
973 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
974 int rc = SQLITE_OK;
976 assert( (pFrom->flags & MEM_RowSet)==0 );
977 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
978 memcpy(pTo, pFrom, MEMCELLSIZE);
979 #ifdef SQLITE_DEBUG_COLUMNCACHE
980 pTo->iTabColHash = pFrom->iTabColHash;
981 #endif
982 pTo->flags &= ~MEM_Dyn;
983 if( pTo->flags&(MEM_Str|MEM_Blob) ){
984 if( 0==(pFrom->flags&MEM_Static) ){
985 pTo->flags |= MEM_Ephem;
986 rc = sqlite3VdbeMemMakeWriteable(pTo);
990 return rc;
994 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
995 ** freed. If pFrom contains ephemeral data, a copy is made.
997 ** pFrom contains an SQL NULL when this routine returns.
999 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1000 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1001 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1002 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1004 sqlite3VdbeMemRelease(pTo);
1005 memcpy(pTo, pFrom, sizeof(Mem));
1006 pFrom->flags = MEM_Null;
1007 pFrom->szMalloc = 0;
1011 ** Change the value of a Mem to be a string or a BLOB.
1013 ** The memory management strategy depends on the value of the xDel
1014 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1015 ** string is copied into a (possibly existing) buffer managed by the
1016 ** Mem structure. Otherwise, any existing buffer is freed and the
1017 ** pointer copied.
1019 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1020 ** size limit) then no memory allocation occurs. If the string can be
1021 ** stored without allocating memory, then it is. If a memory allocation
1022 ** is required to store the string, then value of pMem is unchanged. In
1023 ** either case, SQLITE_TOOBIG is returned.
1025 int sqlite3VdbeMemSetStr(
1026 Mem *pMem, /* Memory cell to set to string value */
1027 const char *z, /* String pointer */
1028 int n, /* Bytes in string, or negative */
1029 u8 enc, /* Encoding of z. 0 for BLOBs */
1030 void (*xDel)(void*) /* Destructor function */
1032 int nByte = n; /* New value for pMem->n */
1033 int iLimit; /* Maximum allowed string or blob size */
1034 u16 flags = 0; /* New value for pMem->flags */
1036 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1037 assert( (pMem->flags & MEM_RowSet)==0 );
1039 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1040 if( !z ){
1041 sqlite3VdbeMemSetNull(pMem);
1042 return SQLITE_OK;
1045 if( pMem->db ){
1046 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1047 }else{
1048 iLimit = SQLITE_MAX_LENGTH;
1050 flags = (enc==0?MEM_Blob:MEM_Str);
1051 if( nByte<0 ){
1052 assert( enc!=0 );
1053 if( enc==SQLITE_UTF8 ){
1054 nByte = 0x7fffffff & (int)strlen(z);
1055 if( nByte>iLimit ) nByte = iLimit+1;
1056 }else{
1057 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1059 flags |= MEM_Term;
1062 /* The following block sets the new values of Mem.z and Mem.xDel. It
1063 ** also sets a flag in local variable "flags" to indicate the memory
1064 ** management (one of MEM_Dyn or MEM_Static).
1066 if( xDel==SQLITE_TRANSIENT ){
1067 int nAlloc = nByte;
1068 if( flags&MEM_Term ){
1069 nAlloc += (enc==SQLITE_UTF8?1:2);
1071 if( nByte>iLimit ){
1072 return SQLITE_TOOBIG;
1074 testcase( nAlloc==0 );
1075 testcase( nAlloc==31 );
1076 testcase( nAlloc==32 );
1077 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
1078 return SQLITE_NOMEM_BKPT;
1080 memcpy(pMem->z, z, nAlloc);
1081 }else if( xDel==SQLITE_DYNAMIC ){
1082 sqlite3VdbeMemRelease(pMem);
1083 pMem->zMalloc = pMem->z = (char *)z;
1084 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1085 }else{
1086 sqlite3VdbeMemRelease(pMem);
1087 pMem->z = (char *)z;
1088 pMem->xDel = xDel;
1089 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1092 pMem->n = nByte;
1093 pMem->flags = flags;
1094 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
1096 #ifndef SQLITE_OMIT_UTF16
1097 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1098 return SQLITE_NOMEM_BKPT;
1100 #endif
1102 if( nByte>iLimit ){
1103 return SQLITE_TOOBIG;
1106 return SQLITE_OK;
1110 ** Move data out of a btree key or data field and into a Mem structure.
1111 ** The data is payload from the entry that pCur is currently pointing
1112 ** to. offset and amt determine what portion of the data or key to retrieve.
1113 ** The result is written into the pMem element.
1115 ** The pMem object must have been initialized. This routine will use
1116 ** pMem->zMalloc to hold the content from the btree, if possible. New
1117 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1118 ** is responsible for making sure that the pMem object is eventually
1119 ** destroyed.
1121 ** If this routine fails for any reason (malloc returns NULL or unable
1122 ** to read from the disk) then the pMem is left in an inconsistent state.
1124 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1125 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1126 u32 offset, /* Offset from the start of data to return bytes from. */
1127 u32 amt, /* Number of bytes to return. */
1128 Mem *pMem /* OUT: Return data in this Mem structure. */
1130 int rc;
1131 pMem->flags = MEM_Null;
1132 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1133 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1134 if( rc==SQLITE_OK ){
1135 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1136 pMem->flags = MEM_Blob;
1137 pMem->n = (int)amt;
1138 }else{
1139 sqlite3VdbeMemRelease(pMem);
1142 return rc;
1144 int sqlite3VdbeMemFromBtree(
1145 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1146 u32 offset, /* Offset from the start of data to return bytes from. */
1147 u32 amt, /* Number of bytes to return. */
1148 Mem *pMem /* OUT: Return data in this Mem structure. */
1150 char *zData; /* Data from the btree layer */
1151 u32 available = 0; /* Number of bytes available on the local btree page */
1152 int rc = SQLITE_OK; /* Return code */
1154 assert( sqlite3BtreeCursorIsValid(pCur) );
1155 assert( !VdbeMemDynamic(pMem) );
1157 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1158 ** that both the BtShared and database handle mutexes are held. */
1159 assert( (pMem->flags & MEM_RowSet)==0 );
1160 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1161 assert( zData!=0 );
1163 if( offset+amt<=available ){
1164 pMem->z = &zData[offset];
1165 pMem->flags = MEM_Blob|MEM_Ephem;
1166 pMem->n = (int)amt;
1167 }else{
1168 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1171 return rc;
1175 ** The pVal argument is known to be a value other than NULL.
1176 ** Convert it into a string with encoding enc and return a pointer
1177 ** to a zero-terminated version of that string.
1179 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1180 assert( pVal!=0 );
1181 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1182 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1183 assert( (pVal->flags & MEM_RowSet)==0 );
1184 assert( (pVal->flags & (MEM_Null))==0 );
1185 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1186 if( ExpandBlob(pVal) ) return 0;
1187 pVal->flags |= MEM_Str;
1188 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1189 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1191 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1192 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1193 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1194 return 0;
1197 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1198 }else{
1199 sqlite3VdbeMemStringify(pVal, enc, 0);
1200 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1202 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1203 || pVal->db->mallocFailed );
1204 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1205 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1206 return pVal->z;
1207 }else{
1208 return 0;
1212 /* This function is only available internally, it is not part of the
1213 ** external API. It works in a similar way to sqlite3_value_text(),
1214 ** except the data returned is in the encoding specified by the second
1215 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1216 ** SQLITE_UTF8.
1218 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1219 ** If that is the case, then the result must be aligned on an even byte
1220 ** boundary.
1222 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1223 if( !pVal ) return 0;
1224 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1225 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1226 assert( (pVal->flags & MEM_RowSet)==0 );
1227 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1228 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
1229 return pVal->z;
1231 if( pVal->flags&MEM_Null ){
1232 return 0;
1234 return valueToText(pVal, enc);
1238 ** Create a new sqlite3_value object.
1240 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1241 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1242 if( p ){
1243 p->flags = MEM_Null;
1244 p->db = db;
1246 return p;
1250 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1251 ** valueNew(). See comments above valueNew() for details.
1253 struct ValueNewStat4Ctx {
1254 Parse *pParse;
1255 Index *pIdx;
1256 UnpackedRecord **ppRec;
1257 int iVal;
1261 ** Allocate and return a pointer to a new sqlite3_value object. If
1262 ** the second argument to this function is NULL, the object is allocated
1263 ** by calling sqlite3ValueNew().
1265 ** Otherwise, if the second argument is non-zero, then this function is
1266 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1267 ** already been allocated, allocate the UnpackedRecord structure that
1268 ** that function will return to its caller here. Then return a pointer to
1269 ** an sqlite3_value within the UnpackedRecord.a[] array.
1271 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1272 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1273 if( p ){
1274 UnpackedRecord *pRec = p->ppRec[0];
1276 if( pRec==0 ){
1277 Index *pIdx = p->pIdx; /* Index being probed */
1278 int nByte; /* Bytes of space to allocate */
1279 int i; /* Counter variable */
1280 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1282 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1283 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1284 if( pRec ){
1285 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1286 if( pRec->pKeyInfo ){
1287 assert( pRec->pKeyInfo->nAllField==nCol );
1288 assert( pRec->pKeyInfo->enc==ENC(db) );
1289 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1290 for(i=0; i<nCol; i++){
1291 pRec->aMem[i].flags = MEM_Null;
1292 pRec->aMem[i].db = db;
1294 }else{
1295 sqlite3DbFreeNN(db, pRec);
1296 pRec = 0;
1299 if( pRec==0 ) return 0;
1300 p->ppRec[0] = pRec;
1303 pRec->nField = p->iVal+1;
1304 return &pRec->aMem[p->iVal];
1306 #else
1307 UNUSED_PARAMETER(p);
1308 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1309 return sqlite3ValueNew(db);
1313 ** The expression object indicated by the second argument is guaranteed
1314 ** to be a scalar SQL function. If
1316 ** * all function arguments are SQL literals,
1317 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1318 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1320 ** then this routine attempts to invoke the SQL function. Assuming no
1321 ** error occurs, output parameter (*ppVal) is set to point to a value
1322 ** object containing the result before returning SQLITE_OK.
1324 ** Affinity aff is applied to the result of the function before returning.
1325 ** If the result is a text value, the sqlite3_value object uses encoding
1326 ** enc.
1328 ** If the conditions above are not met, this function returns SQLITE_OK
1329 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1330 ** NULL and an SQLite error code returned.
1332 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1333 static int valueFromFunction(
1334 sqlite3 *db, /* The database connection */
1335 Expr *p, /* The expression to evaluate */
1336 u8 enc, /* Encoding to use */
1337 u8 aff, /* Affinity to use */
1338 sqlite3_value **ppVal, /* Write the new value here */
1339 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1341 sqlite3_context ctx; /* Context object for function invocation */
1342 sqlite3_value **apVal = 0; /* Function arguments */
1343 int nVal = 0; /* Size of apVal[] array */
1344 FuncDef *pFunc = 0; /* Function definition */
1345 sqlite3_value *pVal = 0; /* New value */
1346 int rc = SQLITE_OK; /* Return code */
1347 ExprList *pList = 0; /* Function arguments */
1348 int i; /* Iterator variable */
1350 assert( pCtx!=0 );
1351 assert( (p->flags & EP_TokenOnly)==0 );
1352 pList = p->x.pList;
1353 if( pList ) nVal = pList->nExpr;
1354 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1355 assert( pFunc );
1356 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1357 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1359 return SQLITE_OK;
1362 if( pList ){
1363 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1364 if( apVal==0 ){
1365 rc = SQLITE_NOMEM_BKPT;
1366 goto value_from_function_out;
1368 for(i=0; i<nVal; i++){
1369 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1370 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1374 pVal = valueNew(db, pCtx);
1375 if( pVal==0 ){
1376 rc = SQLITE_NOMEM_BKPT;
1377 goto value_from_function_out;
1380 assert( pCtx->pParse->rc==SQLITE_OK );
1381 memset(&ctx, 0, sizeof(ctx));
1382 ctx.pOut = pVal;
1383 ctx.pFunc = pFunc;
1384 pFunc->xSFunc(&ctx, nVal, apVal);
1385 if( ctx.isError ){
1386 rc = ctx.isError;
1387 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1388 }else{
1389 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1390 assert( rc==SQLITE_OK );
1391 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1392 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1393 rc = SQLITE_TOOBIG;
1394 pCtx->pParse->nErr++;
1397 pCtx->pParse->rc = rc;
1399 value_from_function_out:
1400 if( rc!=SQLITE_OK ){
1401 pVal = 0;
1403 if( apVal ){
1404 for(i=0; i<nVal; i++){
1405 sqlite3ValueFree(apVal[i]);
1407 sqlite3DbFreeNN(db, apVal);
1410 *ppVal = pVal;
1411 return rc;
1413 #else
1414 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1415 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1418 ** Extract a value from the supplied expression in the manner described
1419 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1420 ** using valueNew().
1422 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1423 ** has been allocated, it is freed before returning. Or, if pCtx is not
1424 ** NULL, it is assumed that the caller will free any allocated object
1425 ** in all cases.
1427 static int valueFromExpr(
1428 sqlite3 *db, /* The database connection */
1429 Expr *pExpr, /* The expression to evaluate */
1430 u8 enc, /* Encoding to use */
1431 u8 affinity, /* Affinity to use */
1432 sqlite3_value **ppVal, /* Write the new value here */
1433 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1435 int op;
1436 char *zVal = 0;
1437 sqlite3_value *pVal = 0;
1438 int negInt = 1;
1439 const char *zNeg = "";
1440 int rc = SQLITE_OK;
1442 assert( pExpr!=0 );
1443 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1444 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1445 if( op==TK_REGISTER ) op = pExpr->op2;
1446 #else
1447 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1448 #endif
1450 /* Compressed expressions only appear when parsing the DEFAULT clause
1451 ** on a table column definition, and hence only when pCtx==0. This
1452 ** check ensures that an EP_TokenOnly expression is never passed down
1453 ** into valueFromFunction(). */
1454 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1456 if( op==TK_CAST ){
1457 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1458 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1459 testcase( rc!=SQLITE_OK );
1460 if( *ppVal ){
1461 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1462 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1464 return rc;
1467 /* Handle negative integers in a single step. This is needed in the
1468 ** case when the value is -9223372036854775808.
1470 if( op==TK_UMINUS
1471 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1472 pExpr = pExpr->pLeft;
1473 op = pExpr->op;
1474 negInt = -1;
1475 zNeg = "-";
1478 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1479 pVal = valueNew(db, pCtx);
1480 if( pVal==0 ) goto no_mem;
1481 if( ExprHasProperty(pExpr, EP_IntValue) ){
1482 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1483 }else{
1484 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1485 if( zVal==0 ) goto no_mem;
1486 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1488 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1489 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1490 }else{
1491 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1493 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1494 if( enc!=SQLITE_UTF8 ){
1495 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1497 }else if( op==TK_UMINUS ) {
1498 /* This branch happens for multiple negative signs. Ex: -(-5) */
1499 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1500 && pVal!=0
1502 sqlite3VdbeMemNumerify(pVal);
1503 if( pVal->flags & MEM_Real ){
1504 pVal->u.r = -pVal->u.r;
1505 }else if( pVal->u.i==SMALLEST_INT64 ){
1506 pVal->u.r = -(double)SMALLEST_INT64;
1507 MemSetTypeFlag(pVal, MEM_Real);
1508 }else{
1509 pVal->u.i = -pVal->u.i;
1511 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1513 }else if( op==TK_NULL ){
1514 pVal = valueNew(db, pCtx);
1515 if( pVal==0 ) goto no_mem;
1516 sqlite3VdbeMemNumerify(pVal);
1518 #ifndef SQLITE_OMIT_BLOB_LITERAL
1519 else if( op==TK_BLOB ){
1520 int nVal;
1521 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1522 assert( pExpr->u.zToken[1]=='\'' );
1523 pVal = valueNew(db, pCtx);
1524 if( !pVal ) goto no_mem;
1525 zVal = &pExpr->u.zToken[2];
1526 nVal = sqlite3Strlen30(zVal)-1;
1527 assert( zVal[nVal]=='\'' );
1528 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1529 0, SQLITE_DYNAMIC);
1531 #endif
1532 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1533 else if( op==TK_FUNCTION && pCtx!=0 ){
1534 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1536 #endif
1537 else if( op==TK_TRUEFALSE ){
1538 pVal = valueNew(db, pCtx);
1539 pVal->flags = MEM_Int;
1540 pVal->u.i = pExpr->u.zToken[4]==0;
1543 *ppVal = pVal;
1544 return rc;
1546 no_mem:
1547 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1548 if( pCtx==0 || pCtx->pParse->nErr==0 )
1549 #endif
1550 sqlite3OomFault(db);
1551 sqlite3DbFree(db, zVal);
1552 assert( *ppVal==0 );
1553 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1554 if( pCtx==0 ) sqlite3ValueFree(pVal);
1555 #else
1556 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1557 #endif
1558 return SQLITE_NOMEM_BKPT;
1562 ** Create a new sqlite3_value object, containing the value of pExpr.
1564 ** This only works for very simple expressions that consist of one constant
1565 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1566 ** be converted directly into a value, then the value is allocated and
1567 ** a pointer written to *ppVal. The caller is responsible for deallocating
1568 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1569 ** cannot be converted to a value, then *ppVal is set to NULL.
1571 int sqlite3ValueFromExpr(
1572 sqlite3 *db, /* The database connection */
1573 Expr *pExpr, /* The expression to evaluate */
1574 u8 enc, /* Encoding to use */
1575 u8 affinity, /* Affinity to use */
1576 sqlite3_value **ppVal /* Write the new value here */
1578 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1581 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1583 ** The implementation of the sqlite_record() function. This function accepts
1584 ** a single argument of any type. The return value is a formatted database
1585 ** record (a blob) containing the argument value.
1587 ** This is used to convert the value stored in the 'sample' column of the
1588 ** sqlite_stat3 table to the record format SQLite uses internally.
1590 static void recordFunc(
1591 sqlite3_context *context,
1592 int argc,
1593 sqlite3_value **argv
1595 const int file_format = 1;
1596 u32 iSerial; /* Serial type */
1597 int nSerial; /* Bytes of space for iSerial as varint */
1598 u32 nVal; /* Bytes of space required for argv[0] */
1599 int nRet;
1600 sqlite3 *db;
1601 u8 *aRet;
1603 UNUSED_PARAMETER( argc );
1604 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1605 nSerial = sqlite3VarintLen(iSerial);
1606 db = sqlite3_context_db_handle(context);
1608 nRet = 1 + nSerial + nVal;
1609 aRet = sqlite3DbMallocRawNN(db, nRet);
1610 if( aRet==0 ){
1611 sqlite3_result_error_nomem(context);
1612 }else{
1613 aRet[0] = nSerial+1;
1614 putVarint32(&aRet[1], iSerial);
1615 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1616 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1617 sqlite3DbFreeNN(db, aRet);
1622 ** Register built-in functions used to help read ANALYZE data.
1624 void sqlite3AnalyzeFunctions(void){
1625 static FuncDef aAnalyzeTableFuncs[] = {
1626 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1628 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1632 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1634 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1635 ** pAlloc if one does not exist and the new value is added to the
1636 ** UnpackedRecord object.
1638 ** A value is extracted in the following cases:
1640 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1642 ** * The expression is a bound variable, and this is a reprepare, or
1644 ** * The expression is a literal value.
1646 ** On success, *ppVal is made to point to the extracted value. The caller
1647 ** is responsible for ensuring that the value is eventually freed.
1649 static int stat4ValueFromExpr(
1650 Parse *pParse, /* Parse context */
1651 Expr *pExpr, /* The expression to extract a value from */
1652 u8 affinity, /* Affinity to use */
1653 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1654 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1656 int rc = SQLITE_OK;
1657 sqlite3_value *pVal = 0;
1658 sqlite3 *db = pParse->db;
1660 /* Skip over any TK_COLLATE nodes */
1661 pExpr = sqlite3ExprSkipCollate(pExpr);
1663 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1664 if( !pExpr ){
1665 pVal = valueNew(db, pAlloc);
1666 if( pVal ){
1667 sqlite3VdbeMemSetNull((Mem*)pVal);
1669 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1670 Vdbe *v;
1671 int iBindVar = pExpr->iColumn;
1672 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1673 if( (v = pParse->pReprepare)!=0 ){
1674 pVal = valueNew(db, pAlloc);
1675 if( pVal ){
1676 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1677 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1678 pVal->db = pParse->db;
1681 }else{
1682 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1685 assert( pVal==0 || pVal->db==db );
1686 *ppVal = pVal;
1687 return rc;
1691 ** This function is used to allocate and populate UnpackedRecord
1692 ** structures intended to be compared against sample index keys stored
1693 ** in the sqlite_stat4 table.
1695 ** A single call to this function populates zero or more fields of the
1696 ** record starting with field iVal (fields are numbered from left to
1697 ** right starting with 0). A single field is populated if:
1699 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1701 ** * The expression is a bound variable, and this is a reprepare, or
1703 ** * The sqlite3ValueFromExpr() function is able to extract a value
1704 ** from the expression (i.e. the expression is a literal value).
1706 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1707 ** vector components that match either of the two latter criteria listed
1708 ** above.
1710 ** Before any value is appended to the record, the affinity of the
1711 ** corresponding column within index pIdx is applied to it. Before
1712 ** this function returns, output parameter *pnExtract is set to the
1713 ** number of values appended to the record.
1715 ** When this function is called, *ppRec must either point to an object
1716 ** allocated by an earlier call to this function, or must be NULL. If it
1717 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1718 ** is allocated (and *ppRec set to point to it) before returning.
1720 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1721 ** error if a value cannot be extracted from pExpr. If an error does
1722 ** occur, an SQLite error code is returned.
1724 int sqlite3Stat4ProbeSetValue(
1725 Parse *pParse, /* Parse context */
1726 Index *pIdx, /* Index being probed */
1727 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1728 Expr *pExpr, /* The expression to extract a value from */
1729 int nElem, /* Maximum number of values to append */
1730 int iVal, /* Array element to populate */
1731 int *pnExtract /* OUT: Values appended to the record */
1733 int rc = SQLITE_OK;
1734 int nExtract = 0;
1736 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1737 int i;
1738 struct ValueNewStat4Ctx alloc;
1740 alloc.pParse = pParse;
1741 alloc.pIdx = pIdx;
1742 alloc.ppRec = ppRec;
1744 for(i=0; i<nElem; i++){
1745 sqlite3_value *pVal = 0;
1746 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1747 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1748 alloc.iVal = iVal+i;
1749 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1750 if( !pVal ) break;
1751 nExtract++;
1755 *pnExtract = nExtract;
1756 return rc;
1760 ** Attempt to extract a value from expression pExpr using the methods
1761 ** as described for sqlite3Stat4ProbeSetValue() above.
1763 ** If successful, set *ppVal to point to a new value object and return
1764 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1765 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1766 ** does occur, return an SQLite error code. The final value of *ppVal
1767 ** is undefined in this case.
1769 int sqlite3Stat4ValueFromExpr(
1770 Parse *pParse, /* Parse context */
1771 Expr *pExpr, /* The expression to extract a value from */
1772 u8 affinity, /* Affinity to use */
1773 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1775 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1779 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1780 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1781 ** sqlite3_value object is allocated.
1783 ** If *ppVal is initially NULL then the caller is responsible for
1784 ** ensuring that the value written into *ppVal is eventually freed.
1786 int sqlite3Stat4Column(
1787 sqlite3 *db, /* Database handle */
1788 const void *pRec, /* Pointer to buffer containing record */
1789 int nRec, /* Size of buffer pRec in bytes */
1790 int iCol, /* Column to extract */
1791 sqlite3_value **ppVal /* OUT: Extracted value */
1793 u32 t; /* a column type code */
1794 int nHdr; /* Size of the header in the record */
1795 int iHdr; /* Next unread header byte */
1796 int iField; /* Next unread data byte */
1797 int szField; /* Size of the current data field */
1798 int i; /* Column index */
1799 u8 *a = (u8*)pRec; /* Typecast byte array */
1800 Mem *pMem = *ppVal; /* Write result into this Mem object */
1802 assert( iCol>0 );
1803 iHdr = getVarint32(a, nHdr);
1804 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1805 iField = nHdr;
1806 for(i=0; i<=iCol; i++){
1807 iHdr += getVarint32(&a[iHdr], t);
1808 testcase( iHdr==nHdr );
1809 testcase( iHdr==nHdr+1 );
1810 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1811 szField = sqlite3VdbeSerialTypeLen(t);
1812 iField += szField;
1814 testcase( iField==nRec );
1815 testcase( iField==nRec+1 );
1816 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1817 if( pMem==0 ){
1818 pMem = *ppVal = sqlite3ValueNew(db);
1819 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1821 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1822 pMem->enc = ENC(db);
1823 return SQLITE_OK;
1827 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1828 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1829 ** the object.
1831 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1832 if( pRec ){
1833 int i;
1834 int nCol = pRec->pKeyInfo->nAllField;
1835 Mem *aMem = pRec->aMem;
1836 sqlite3 *db = aMem[0].db;
1837 for(i=0; i<nCol; i++){
1838 sqlite3VdbeMemRelease(&aMem[i]);
1840 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1841 sqlite3DbFreeNN(db, pRec);
1844 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1847 ** Change the string value of an sqlite3_value object
1849 void sqlite3ValueSetStr(
1850 sqlite3_value *v, /* Value to be set */
1851 int n, /* Length of string z */
1852 const void *z, /* Text of the new string */
1853 u8 enc, /* Encoding to use */
1854 void (*xDel)(void*) /* Destructor for the string */
1856 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1860 ** Free an sqlite3_value object
1862 void sqlite3ValueFree(sqlite3_value *v){
1863 if( !v ) return;
1864 sqlite3VdbeMemRelease((Mem *)v);
1865 sqlite3DbFreeNN(((Mem*)v)->db, v);
1869 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1870 ** sqlite3_value object assuming that it uses the encoding "enc".
1871 ** The valueBytes() routine is a helper function.
1873 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1874 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1876 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1877 Mem *p = (Mem*)pVal;
1878 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1879 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1880 return p->n;
1882 if( (p->flags & MEM_Blob)!=0 ){
1883 if( p->flags & MEM_Zero ){
1884 return p->n + p->u.nZero;
1885 }else{
1886 return p->n;
1889 if( p->flags & MEM_Null ) return 0;
1890 return valueBytes(pVal, enc);