Updates to the sqlite3_file_control() documentation. No changes to code.
[sqlite.git] / src / vdbemem.c
blob107d831f4c331a32dec4dee78f7581a9530a6273
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
46 |MEM_RowSet|MEM_Frame|MEM_Agg|MEM_Zero))==0 );
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
72 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
81 ** (3) An ephemeral string or blob
82 ** (4) A static string or blob
84 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
85 assert(
86 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
87 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
92 return 1;
94 #endif
98 ** If pMem is an object with a valid string representation, this routine
99 ** ensures the internal encoding for the string representation is
100 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
102 ** If pMem is not a string object, or the encoding of the string
103 ** representation is already stored using the requested encoding, then this
104 ** routine is a no-op.
106 ** SQLITE_OK is returned if the conversion is successful (or not required).
107 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
108 ** between formats.
110 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
111 #ifndef SQLITE_OMIT_UTF16
112 int rc;
113 #endif
114 assert( (pMem->flags&MEM_RowSet)==0 );
115 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
116 || desiredEnc==SQLITE_UTF16BE );
117 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
118 return SQLITE_OK;
120 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
121 #ifdef SQLITE_OMIT_UTF16
122 return SQLITE_ERROR;
123 #else
125 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
126 ** then the encoding of the value may not have changed.
128 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
129 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
130 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
131 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
132 return rc;
133 #endif
137 ** Make sure pMem->z points to a writable allocation of at least
138 ** min(n,32) bytes.
140 ** If the bPreserve argument is true, then copy of the content of
141 ** pMem->z into the new allocation. pMem must be either a string or
142 ** blob if bPreserve is true. If bPreserve is false, any prior content
143 ** in pMem->z is discarded.
145 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
146 assert( sqlite3VdbeCheckMemInvariants(pMem) );
147 assert( (pMem->flags&MEM_RowSet)==0 );
148 testcase( pMem->db==0 );
150 /* If the bPreserve flag is set to true, then the memory cell must already
151 ** contain a valid string or blob value. */
152 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
153 testcase( bPreserve && pMem->z==0 );
155 assert( pMem->szMalloc==0
156 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
157 if( n<32 ) n = 32;
158 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
159 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
160 bPreserve = 0;
161 }else{
162 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
163 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
165 if( pMem->zMalloc==0 ){
166 sqlite3VdbeMemSetNull(pMem);
167 pMem->z = 0;
168 pMem->szMalloc = 0;
169 return SQLITE_NOMEM_BKPT;
170 }else{
171 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
174 if( bPreserve && pMem->z ){
175 assert( pMem->z!=pMem->zMalloc );
176 memcpy(pMem->zMalloc, pMem->z, pMem->n);
178 if( (pMem->flags&MEM_Dyn)!=0 ){
179 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
180 pMem->xDel((void *)(pMem->z));
183 pMem->z = pMem->zMalloc;
184 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
185 return SQLITE_OK;
189 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
190 ** If pMem->zMalloc already meets or exceeds the requested size, this
191 ** routine is a no-op.
193 ** Any prior string or blob content in the pMem object may be discarded.
194 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
195 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
196 ** values are preserved.
198 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
199 ** if unable to complete the resizing.
201 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
202 assert( szNew>0 );
203 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
204 if( pMem->szMalloc<szNew ){
205 return sqlite3VdbeMemGrow(pMem, szNew, 0);
207 assert( (pMem->flags & MEM_Dyn)==0 );
208 pMem->z = pMem->zMalloc;
209 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
210 return SQLITE_OK;
214 ** It is already known that pMem contains an unterminated string.
215 ** Add the zero terminator.
217 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
218 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
219 return SQLITE_NOMEM_BKPT;
221 pMem->z[pMem->n] = 0;
222 pMem->z[pMem->n+1] = 0;
223 pMem->flags |= MEM_Term;
224 return SQLITE_OK;
228 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
229 ** MEM.zMalloc, where it can be safely written.
231 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
233 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
234 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
235 assert( (pMem->flags&MEM_RowSet)==0 );
236 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
237 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
238 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
239 int rc = vdbeMemAddTerminator(pMem);
240 if( rc ) return rc;
243 pMem->flags &= ~MEM_Ephem;
244 #ifdef SQLITE_DEBUG
245 pMem->pScopyFrom = 0;
246 #endif
248 return SQLITE_OK;
252 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
253 ** blob stored in dynamically allocated space.
255 #ifndef SQLITE_OMIT_INCRBLOB
256 int sqlite3VdbeMemExpandBlob(Mem *pMem){
257 int nByte;
258 assert( pMem->flags & MEM_Zero );
259 assert( pMem->flags&MEM_Blob );
260 assert( (pMem->flags&MEM_RowSet)==0 );
261 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
263 /* Set nByte to the number of bytes required to store the expanded blob. */
264 nByte = pMem->n + pMem->u.nZero;
265 if( nByte<=0 ){
266 nByte = 1;
268 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
269 return SQLITE_NOMEM_BKPT;
272 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
273 pMem->n += pMem->u.nZero;
274 pMem->flags &= ~(MEM_Zero|MEM_Term);
275 return SQLITE_OK;
277 #endif
280 ** Make sure the given Mem is \u0000 terminated.
282 int sqlite3VdbeMemNulTerminate(Mem *pMem){
283 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
284 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
285 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
286 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
287 return SQLITE_OK; /* Nothing to do */
288 }else{
289 return vdbeMemAddTerminator(pMem);
294 ** Add MEM_Str to the set of representations for the given Mem. Numbers
295 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
296 ** is a no-op.
298 ** Existing representations MEM_Int and MEM_Real are invalidated if
299 ** bForce is true but are retained if bForce is false.
301 ** A MEM_Null value will never be passed to this function. This function is
302 ** used for converting values to text for returning to the user (i.e. via
303 ** sqlite3_value_text()), or for ensuring that values to be used as btree
304 ** keys are strings. In the former case a NULL pointer is returned the
305 ** user and the latter is an internal programming error.
307 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
308 int fg = pMem->flags;
309 const int nByte = 32;
311 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
312 assert( !(fg&MEM_Zero) );
313 assert( !(fg&(MEM_Str|MEM_Blob)) );
314 assert( fg&(MEM_Int|MEM_Real) );
315 assert( (pMem->flags&MEM_RowSet)==0 );
316 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
319 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
320 pMem->enc = 0;
321 return SQLITE_NOMEM_BKPT;
324 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
325 ** string representation of the value. Then, if the required encoding
326 ** is UTF-16le or UTF-16be do a translation.
328 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
330 if( fg & MEM_Int ){
331 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
332 }else{
333 assert( fg & MEM_Real );
334 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
336 pMem->n = sqlite3Strlen30(pMem->z);
337 pMem->enc = SQLITE_UTF8;
338 pMem->flags |= MEM_Str|MEM_Term;
339 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
340 sqlite3VdbeChangeEncoding(pMem, enc);
341 return SQLITE_OK;
345 ** Memory cell pMem contains the context of an aggregate function.
346 ** This routine calls the finalize method for that function. The
347 ** result of the aggregate is stored back into pMem.
349 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
350 ** otherwise.
352 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
353 sqlite3_context ctx;
354 Mem t;
355 assert( pFunc!=0 );
356 assert( pFunc->xFinalize!=0 );
357 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
358 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
359 memset(&ctx, 0, sizeof(ctx));
360 memset(&t, 0, sizeof(t));
361 t.flags = MEM_Null;
362 t.db = pMem->db;
363 ctx.pOut = &t;
364 ctx.pMem = pMem;
365 ctx.pFunc = pFunc;
366 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
367 assert( (pMem->flags & MEM_Dyn)==0 );
368 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
369 memcpy(pMem, &t, sizeof(t));
370 return ctx.isError;
374 ** If the memory cell contains a value that must be freed by
375 ** invoking the external callback in Mem.xDel, then this routine
376 ** will free that value. It also sets Mem.flags to MEM_Null.
378 ** This is a helper routine for sqlite3VdbeMemSetNull() and
379 ** for sqlite3VdbeMemRelease(). Use those other routines as the
380 ** entry point for releasing Mem resources.
382 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
383 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
384 assert( VdbeMemDynamic(p) );
385 if( p->flags&MEM_Agg ){
386 sqlite3VdbeMemFinalize(p, p->u.pDef);
387 assert( (p->flags & MEM_Agg)==0 );
388 testcase( p->flags & MEM_Dyn );
390 if( p->flags&MEM_Dyn ){
391 assert( (p->flags&MEM_RowSet)==0 );
392 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
393 p->xDel((void *)p->z);
394 }else if( p->flags&MEM_RowSet ){
395 sqlite3RowSetClear(p->u.pRowSet);
396 }else if( p->flags&MEM_Frame ){
397 VdbeFrame *pFrame = p->u.pFrame;
398 pFrame->pParent = pFrame->v->pDelFrame;
399 pFrame->v->pDelFrame = pFrame;
401 p->flags = MEM_Null;
405 ** Release memory held by the Mem p, both external memory cleared
406 ** by p->xDel and memory in p->zMalloc.
408 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
409 ** the unusual case where there really is memory in p that needs
410 ** to be freed.
412 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
413 if( VdbeMemDynamic(p) ){
414 vdbeMemClearExternAndSetNull(p);
416 if( p->szMalloc ){
417 sqlite3DbFreeNN(p->db, p->zMalloc);
418 p->szMalloc = 0;
420 p->z = 0;
424 ** Release any memory resources held by the Mem. Both the memory that is
425 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
427 ** Use this routine prior to clean up prior to abandoning a Mem, or to
428 ** reset a Mem back to its minimum memory utilization.
430 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
431 ** prior to inserting new content into the Mem.
433 void sqlite3VdbeMemRelease(Mem *p){
434 assert( sqlite3VdbeCheckMemInvariants(p) );
435 if( VdbeMemDynamic(p) || p->szMalloc ){
436 vdbeMemClear(p);
441 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
442 ** If the double is out of range of a 64-bit signed integer then
443 ** return the closest available 64-bit signed integer.
445 static SQLITE_NOINLINE i64 doubleToInt64(double r){
446 #ifdef SQLITE_OMIT_FLOATING_POINT
447 /* When floating-point is omitted, double and int64 are the same thing */
448 return r;
449 #else
451 ** Many compilers we encounter do not define constants for the
452 ** minimum and maximum 64-bit integers, or they define them
453 ** inconsistently. And many do not understand the "LL" notation.
454 ** So we define our own static constants here using nothing
455 ** larger than a 32-bit integer constant.
457 static const i64 maxInt = LARGEST_INT64;
458 static const i64 minInt = SMALLEST_INT64;
460 if( r<=(double)minInt ){
461 return minInt;
462 }else if( r>=(double)maxInt ){
463 return maxInt;
464 }else{
465 return (i64)r;
467 #endif
471 ** Return some kind of integer value which is the best we can do
472 ** at representing the value that *pMem describes as an integer.
473 ** If pMem is an integer, then the value is exact. If pMem is
474 ** a floating-point then the value returned is the integer part.
475 ** If pMem is a string or blob, then we make an attempt to convert
476 ** it into an integer and return that. If pMem represents an
477 ** an SQL-NULL value, return 0.
479 ** If pMem represents a string value, its encoding might be changed.
481 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
482 i64 value = 0;
483 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
484 return value;
486 i64 sqlite3VdbeIntValue(Mem *pMem){
487 int flags;
488 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
489 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
490 flags = pMem->flags;
491 if( flags & MEM_Int ){
492 return pMem->u.i;
493 }else if( flags & MEM_Real ){
494 return doubleToInt64(pMem->u.r);
495 }else if( flags & (MEM_Str|MEM_Blob) ){
496 assert( pMem->z || pMem->n==0 );
497 return memIntValue(pMem);
498 }else{
499 return 0;
504 ** Return the best representation of pMem that we can get into a
505 ** double. If pMem is already a double or an integer, return its
506 ** value. If it is a string or blob, try to convert it to a double.
507 ** If it is a NULL, return 0.0.
509 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
510 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
511 double val = (double)0;
512 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
513 return val;
515 double sqlite3VdbeRealValue(Mem *pMem){
516 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
517 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
518 if( pMem->flags & MEM_Real ){
519 return pMem->u.r;
520 }else if( pMem->flags & MEM_Int ){
521 return (double)pMem->u.i;
522 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
523 return memRealValue(pMem);
524 }else{
525 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
526 return (double)0;
531 ** The MEM structure is already a MEM_Real. Try to also make it a
532 ** MEM_Int if we can.
534 void sqlite3VdbeIntegerAffinity(Mem *pMem){
535 i64 ix;
536 assert( pMem->flags & MEM_Real );
537 assert( (pMem->flags & MEM_RowSet)==0 );
538 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
539 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
541 ix = doubleToInt64(pMem->u.r);
543 /* Only mark the value as an integer if
545 ** (1) the round-trip conversion real->int->real is a no-op, and
546 ** (2) The integer is neither the largest nor the smallest
547 ** possible integer (ticket #3922)
549 ** The second and third terms in the following conditional enforces
550 ** the second condition under the assumption that addition overflow causes
551 ** values to wrap around.
553 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
554 pMem->u.i = ix;
555 MemSetTypeFlag(pMem, MEM_Int);
560 ** Convert pMem to type integer. Invalidate any prior representations.
562 int sqlite3VdbeMemIntegerify(Mem *pMem){
563 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
564 assert( (pMem->flags & MEM_RowSet)==0 );
565 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
567 pMem->u.i = sqlite3VdbeIntValue(pMem);
568 MemSetTypeFlag(pMem, MEM_Int);
569 return SQLITE_OK;
573 ** Convert pMem so that it is of type MEM_Real.
574 ** Invalidate any prior representations.
576 int sqlite3VdbeMemRealify(Mem *pMem){
577 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
578 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
580 pMem->u.r = sqlite3VdbeRealValue(pMem);
581 MemSetTypeFlag(pMem, MEM_Real);
582 return SQLITE_OK;
586 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
587 ** Invalidate any prior representations.
589 ** Every effort is made to force the conversion, even if the input
590 ** is a string that does not look completely like a number. Convert
591 ** as much of the string as we can and ignore the rest.
593 int sqlite3VdbeMemNumerify(Mem *pMem){
594 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
595 int rc;
596 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
597 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
598 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
599 if( rc==0 ){
600 MemSetTypeFlag(pMem, MEM_Int);
601 }else{
602 i64 i = pMem->u.i;
603 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
604 if( rc==1 && pMem->u.r==(double)i ){
605 pMem->u.i = i;
606 MemSetTypeFlag(pMem, MEM_Int);
607 }else{
608 MemSetTypeFlag(pMem, MEM_Real);
612 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
613 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
614 return SQLITE_OK;
618 ** Cast the datatype of the value in pMem according to the affinity
619 ** "aff". Casting is different from applying affinity in that a cast
620 ** is forced. In other words, the value is converted into the desired
621 ** affinity even if that results in loss of data. This routine is
622 ** used (for example) to implement the SQL "cast()" operator.
624 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
625 if( pMem->flags & MEM_Null ) return;
626 switch( aff ){
627 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
628 if( (pMem->flags & MEM_Blob)==0 ){
629 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
630 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
631 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
632 }else{
633 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
635 break;
637 case SQLITE_AFF_NUMERIC: {
638 sqlite3VdbeMemNumerify(pMem);
639 break;
641 case SQLITE_AFF_INTEGER: {
642 sqlite3VdbeMemIntegerify(pMem);
643 break;
645 case SQLITE_AFF_REAL: {
646 sqlite3VdbeMemRealify(pMem);
647 break;
649 default: {
650 assert( aff==SQLITE_AFF_TEXT );
651 assert( MEM_Str==(MEM_Blob>>3) );
652 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
653 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
654 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
655 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
656 break;
662 ** Initialize bulk memory to be a consistent Mem object.
664 ** The minimum amount of initialization feasible is performed.
666 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
667 assert( (flags & ~MEM_TypeMask)==0 );
668 pMem->flags = flags;
669 pMem->db = db;
670 pMem->szMalloc = 0;
675 ** Delete any previous value and set the value stored in *pMem to NULL.
677 ** This routine calls the Mem.xDel destructor to dispose of values that
678 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
679 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
680 ** routine to invoke the destructor and deallocates Mem.zMalloc.
682 ** Use this routine to reset the Mem prior to insert a new value.
684 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
686 void sqlite3VdbeMemSetNull(Mem *pMem){
687 if( VdbeMemDynamic(pMem) ){
688 vdbeMemClearExternAndSetNull(pMem);
689 }else{
690 pMem->flags = MEM_Null;
693 void sqlite3ValueSetNull(sqlite3_value *p){
694 sqlite3VdbeMemSetNull((Mem*)p);
698 ** Delete any previous value and set the value to be a BLOB of length
699 ** n containing all zeros.
701 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
702 sqlite3VdbeMemRelease(pMem);
703 pMem->flags = MEM_Blob|MEM_Zero;
704 pMem->n = 0;
705 if( n<0 ) n = 0;
706 pMem->u.nZero = n;
707 pMem->enc = SQLITE_UTF8;
708 pMem->z = 0;
712 ** The pMem is known to contain content that needs to be destroyed prior
713 ** to a value change. So invoke the destructor, then set the value to
714 ** a 64-bit integer.
716 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
717 sqlite3VdbeMemSetNull(pMem);
718 pMem->u.i = val;
719 pMem->flags = MEM_Int;
723 ** Delete any previous value and set the value stored in *pMem to val,
724 ** manifest type INTEGER.
726 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
727 if( VdbeMemDynamic(pMem) ){
728 vdbeReleaseAndSetInt64(pMem, val);
729 }else{
730 pMem->u.i = val;
731 pMem->flags = MEM_Int;
735 /* A no-op destructor */
736 static void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
739 ** Set the value stored in *pMem should already be a NULL.
740 ** Also store a pointer to go with it.
742 void sqlite3VdbeMemSetPointer(
743 Mem *pMem,
744 void *pPtr,
745 const char *zPType,
746 void (*xDestructor)(void*)
748 assert( pMem->flags==MEM_Null );
749 pMem->u.zPType = zPType ? zPType : "";
750 pMem->z = pPtr;
751 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
752 pMem->eSubtype = 'p';
753 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
756 #ifndef SQLITE_OMIT_FLOATING_POINT
758 ** Delete any previous value and set the value stored in *pMem to val,
759 ** manifest type REAL.
761 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
762 sqlite3VdbeMemSetNull(pMem);
763 if( !sqlite3IsNaN(val) ){
764 pMem->u.r = val;
765 pMem->flags = MEM_Real;
768 #endif
771 ** Delete any previous value and set the value of pMem to be an
772 ** empty boolean index.
774 void sqlite3VdbeMemSetRowSet(Mem *pMem){
775 sqlite3 *db = pMem->db;
776 assert( db!=0 );
777 assert( (pMem->flags & MEM_RowSet)==0 );
778 sqlite3VdbeMemRelease(pMem);
779 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
780 if( db->mallocFailed ){
781 pMem->flags = MEM_Null;
782 pMem->szMalloc = 0;
783 }else{
784 assert( pMem->zMalloc );
785 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
786 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
787 assert( pMem->u.pRowSet!=0 );
788 pMem->flags = MEM_RowSet;
793 ** Return true if the Mem object contains a TEXT or BLOB that is
794 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
796 int sqlite3VdbeMemTooBig(Mem *p){
797 assert( p->db!=0 );
798 if( p->flags & (MEM_Str|MEM_Blob) ){
799 int n = p->n;
800 if( p->flags & MEM_Zero ){
801 n += p->u.nZero;
803 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
805 return 0;
808 #ifdef SQLITE_DEBUG
810 ** This routine prepares a memory cell for modification by breaking
811 ** its link to a shallow copy and by marking any current shallow
812 ** copies of this cell as invalid.
814 ** This is used for testing and debugging only - to make sure shallow
815 ** copies are not misused.
817 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
818 int i;
819 Mem *pX;
820 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
821 if( pX->pScopyFrom==pMem ){
822 pX->flags |= MEM_Undefined;
823 pX->pScopyFrom = 0;
826 pMem->pScopyFrom = 0;
828 #endif /* SQLITE_DEBUG */
832 ** Make an shallow copy of pFrom into pTo. Prior contents of
833 ** pTo are freed. The pFrom->z field is not duplicated. If
834 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
835 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
837 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
838 vdbeMemClearExternAndSetNull(pTo);
839 assert( !VdbeMemDynamic(pTo) );
840 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
842 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
843 assert( (pFrom->flags & MEM_RowSet)==0 );
844 assert( pTo->db==pFrom->db );
845 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
846 memcpy(pTo, pFrom, MEMCELLSIZE);
847 if( (pFrom->flags&MEM_Static)==0 ){
848 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
849 assert( srcType==MEM_Ephem || srcType==MEM_Static );
850 pTo->flags |= srcType;
855 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
856 ** freed before the copy is made.
858 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
859 int rc = SQLITE_OK;
861 assert( (pFrom->flags & MEM_RowSet)==0 );
862 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
863 memcpy(pTo, pFrom, MEMCELLSIZE);
864 pTo->flags &= ~MEM_Dyn;
865 if( pTo->flags&(MEM_Str|MEM_Blob) ){
866 if( 0==(pFrom->flags&MEM_Static) ){
867 pTo->flags |= MEM_Ephem;
868 rc = sqlite3VdbeMemMakeWriteable(pTo);
872 return rc;
876 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
877 ** freed. If pFrom contains ephemeral data, a copy is made.
879 ** pFrom contains an SQL NULL when this routine returns.
881 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
882 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
883 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
884 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
886 sqlite3VdbeMemRelease(pTo);
887 memcpy(pTo, pFrom, sizeof(Mem));
888 pFrom->flags = MEM_Null;
889 pFrom->szMalloc = 0;
893 ** Change the value of a Mem to be a string or a BLOB.
895 ** The memory management strategy depends on the value of the xDel
896 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
897 ** string is copied into a (possibly existing) buffer managed by the
898 ** Mem structure. Otherwise, any existing buffer is freed and the
899 ** pointer copied.
901 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
902 ** size limit) then no memory allocation occurs. If the string can be
903 ** stored without allocating memory, then it is. If a memory allocation
904 ** is required to store the string, then value of pMem is unchanged. In
905 ** either case, SQLITE_TOOBIG is returned.
907 int sqlite3VdbeMemSetStr(
908 Mem *pMem, /* Memory cell to set to string value */
909 const char *z, /* String pointer */
910 int n, /* Bytes in string, or negative */
911 u8 enc, /* Encoding of z. 0 for BLOBs */
912 void (*xDel)(void*) /* Destructor function */
914 int nByte = n; /* New value for pMem->n */
915 int iLimit; /* Maximum allowed string or blob size */
916 u16 flags = 0; /* New value for pMem->flags */
918 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
919 assert( (pMem->flags & MEM_RowSet)==0 );
921 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
922 if( !z ){
923 sqlite3VdbeMemSetNull(pMem);
924 return SQLITE_OK;
927 if( pMem->db ){
928 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
929 }else{
930 iLimit = SQLITE_MAX_LENGTH;
932 flags = (enc==0?MEM_Blob:MEM_Str);
933 if( nByte<0 ){
934 assert( enc!=0 );
935 if( enc==SQLITE_UTF8 ){
936 nByte = 0x7fffffff & (int)strlen(z);
937 if( nByte>iLimit ) nByte = iLimit+1;
938 }else{
939 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
941 flags |= MEM_Term;
944 /* The following block sets the new values of Mem.z and Mem.xDel. It
945 ** also sets a flag in local variable "flags" to indicate the memory
946 ** management (one of MEM_Dyn or MEM_Static).
948 if( xDel==SQLITE_TRANSIENT ){
949 int nAlloc = nByte;
950 if( flags&MEM_Term ){
951 nAlloc += (enc==SQLITE_UTF8?1:2);
953 if( nByte>iLimit ){
954 return SQLITE_TOOBIG;
956 testcase( nAlloc==0 );
957 testcase( nAlloc==31 );
958 testcase( nAlloc==32 );
959 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
960 return SQLITE_NOMEM_BKPT;
962 memcpy(pMem->z, z, nAlloc);
963 }else if( xDel==SQLITE_DYNAMIC ){
964 sqlite3VdbeMemRelease(pMem);
965 pMem->zMalloc = pMem->z = (char *)z;
966 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
967 }else{
968 sqlite3VdbeMemRelease(pMem);
969 pMem->z = (char *)z;
970 pMem->xDel = xDel;
971 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
974 pMem->n = nByte;
975 pMem->flags = flags;
976 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
978 #ifndef SQLITE_OMIT_UTF16
979 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
980 return SQLITE_NOMEM_BKPT;
982 #endif
984 if( nByte>iLimit ){
985 return SQLITE_TOOBIG;
988 return SQLITE_OK;
992 ** Move data out of a btree key or data field and into a Mem structure.
993 ** The data is payload from the entry that pCur is currently pointing
994 ** to. offset and amt determine what portion of the data or key to retrieve.
995 ** The result is written into the pMem element.
997 ** The pMem object must have been initialized. This routine will use
998 ** pMem->zMalloc to hold the content from the btree, if possible. New
999 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1000 ** is responsible for making sure that the pMem object is eventually
1001 ** destroyed.
1003 ** If this routine fails for any reason (malloc returns NULL or unable
1004 ** to read from the disk) then the pMem is left in an inconsistent state.
1006 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1007 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1008 u32 offset, /* Offset from the start of data to return bytes from. */
1009 u32 amt, /* Number of bytes to return. */
1010 Mem *pMem /* OUT: Return data in this Mem structure. */
1012 int rc;
1013 pMem->flags = MEM_Null;
1014 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1015 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1016 if( rc==SQLITE_OK ){
1017 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1018 pMem->flags = MEM_Blob;
1019 pMem->n = (int)amt;
1020 }else{
1021 sqlite3VdbeMemRelease(pMem);
1024 return rc;
1026 int sqlite3VdbeMemFromBtree(
1027 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1028 u32 offset, /* Offset from the start of data to return bytes from. */
1029 u32 amt, /* Number of bytes to return. */
1030 Mem *pMem /* OUT: Return data in this Mem structure. */
1032 char *zData; /* Data from the btree layer */
1033 u32 available = 0; /* Number of bytes available on the local btree page */
1034 int rc = SQLITE_OK; /* Return code */
1036 assert( sqlite3BtreeCursorIsValid(pCur) );
1037 assert( !VdbeMemDynamic(pMem) );
1039 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1040 ** that both the BtShared and database handle mutexes are held. */
1041 assert( (pMem->flags & MEM_RowSet)==0 );
1042 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1043 assert( zData!=0 );
1045 if( offset+amt<=available ){
1046 pMem->z = &zData[offset];
1047 pMem->flags = MEM_Blob|MEM_Ephem;
1048 pMem->n = (int)amt;
1049 }else{
1050 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
1053 return rc;
1057 ** The pVal argument is known to be a value other than NULL.
1058 ** Convert it into a string with encoding enc and return a pointer
1059 ** to a zero-terminated version of that string.
1061 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1062 assert( pVal!=0 );
1063 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1064 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1065 assert( (pVal->flags & MEM_RowSet)==0 );
1066 assert( (pVal->flags & (MEM_Null))==0 );
1067 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1068 if( ExpandBlob(pVal) ) return 0;
1069 pVal->flags |= MEM_Str;
1070 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1071 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1073 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1074 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1075 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1076 return 0;
1079 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1080 }else{
1081 sqlite3VdbeMemStringify(pVal, enc, 0);
1082 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1084 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1085 || pVal->db->mallocFailed );
1086 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1087 return pVal->z;
1088 }else{
1089 return 0;
1093 /* This function is only available internally, it is not part of the
1094 ** external API. It works in a similar way to sqlite3_value_text(),
1095 ** except the data returned is in the encoding specified by the second
1096 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1097 ** SQLITE_UTF8.
1099 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1100 ** If that is the case, then the result must be aligned on an even byte
1101 ** boundary.
1103 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1104 if( !pVal ) return 0;
1105 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1106 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1107 assert( (pVal->flags & MEM_RowSet)==0 );
1108 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1109 return pVal->z;
1111 if( pVal->flags&MEM_Null ){
1112 return 0;
1114 return valueToText(pVal, enc);
1118 ** Create a new sqlite3_value object.
1120 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1121 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1122 if( p ){
1123 p->flags = MEM_Null;
1124 p->db = db;
1126 return p;
1130 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1131 ** valueNew(). See comments above valueNew() for details.
1133 struct ValueNewStat4Ctx {
1134 Parse *pParse;
1135 Index *pIdx;
1136 UnpackedRecord **ppRec;
1137 int iVal;
1141 ** Allocate and return a pointer to a new sqlite3_value object. If
1142 ** the second argument to this function is NULL, the object is allocated
1143 ** by calling sqlite3ValueNew().
1145 ** Otherwise, if the second argument is non-zero, then this function is
1146 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1147 ** already been allocated, allocate the UnpackedRecord structure that
1148 ** that function will return to its caller here. Then return a pointer to
1149 ** an sqlite3_value within the UnpackedRecord.a[] array.
1151 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1152 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1153 if( p ){
1154 UnpackedRecord *pRec = p->ppRec[0];
1156 if( pRec==0 ){
1157 Index *pIdx = p->pIdx; /* Index being probed */
1158 int nByte; /* Bytes of space to allocate */
1159 int i; /* Counter variable */
1160 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1162 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1163 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1164 if( pRec ){
1165 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1166 if( pRec->pKeyInfo ){
1167 assert( pRec->pKeyInfo->nAllField==nCol );
1168 assert( pRec->pKeyInfo->enc==ENC(db) );
1169 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1170 for(i=0; i<nCol; i++){
1171 pRec->aMem[i].flags = MEM_Null;
1172 pRec->aMem[i].db = db;
1174 }else{
1175 sqlite3DbFreeNN(db, pRec);
1176 pRec = 0;
1179 if( pRec==0 ) return 0;
1180 p->ppRec[0] = pRec;
1183 pRec->nField = p->iVal+1;
1184 return &pRec->aMem[p->iVal];
1186 #else
1187 UNUSED_PARAMETER(p);
1188 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1189 return sqlite3ValueNew(db);
1193 ** The expression object indicated by the second argument is guaranteed
1194 ** to be a scalar SQL function. If
1196 ** * all function arguments are SQL literals,
1197 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1198 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1200 ** then this routine attempts to invoke the SQL function. Assuming no
1201 ** error occurs, output parameter (*ppVal) is set to point to a value
1202 ** object containing the result before returning SQLITE_OK.
1204 ** Affinity aff is applied to the result of the function before returning.
1205 ** If the result is a text value, the sqlite3_value object uses encoding
1206 ** enc.
1208 ** If the conditions above are not met, this function returns SQLITE_OK
1209 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1210 ** NULL and an SQLite error code returned.
1212 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1213 static int valueFromFunction(
1214 sqlite3 *db, /* The database connection */
1215 Expr *p, /* The expression to evaluate */
1216 u8 enc, /* Encoding to use */
1217 u8 aff, /* Affinity to use */
1218 sqlite3_value **ppVal, /* Write the new value here */
1219 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1221 sqlite3_context ctx; /* Context object for function invocation */
1222 sqlite3_value **apVal = 0; /* Function arguments */
1223 int nVal = 0; /* Size of apVal[] array */
1224 FuncDef *pFunc = 0; /* Function definition */
1225 sqlite3_value *pVal = 0; /* New value */
1226 int rc = SQLITE_OK; /* Return code */
1227 ExprList *pList = 0; /* Function arguments */
1228 int i; /* Iterator variable */
1230 assert( pCtx!=0 );
1231 assert( (p->flags & EP_TokenOnly)==0 );
1232 pList = p->x.pList;
1233 if( pList ) nVal = pList->nExpr;
1234 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1235 assert( pFunc );
1236 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1237 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1239 return SQLITE_OK;
1242 if( pList ){
1243 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1244 if( apVal==0 ){
1245 rc = SQLITE_NOMEM_BKPT;
1246 goto value_from_function_out;
1248 for(i=0; i<nVal; i++){
1249 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1250 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1254 pVal = valueNew(db, pCtx);
1255 if( pVal==0 ){
1256 rc = SQLITE_NOMEM_BKPT;
1257 goto value_from_function_out;
1260 assert( pCtx->pParse->rc==SQLITE_OK );
1261 memset(&ctx, 0, sizeof(ctx));
1262 ctx.pOut = pVal;
1263 ctx.pFunc = pFunc;
1264 pFunc->xSFunc(&ctx, nVal, apVal);
1265 if( ctx.isError ){
1266 rc = ctx.isError;
1267 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1268 }else{
1269 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1270 assert( rc==SQLITE_OK );
1271 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1272 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1273 rc = SQLITE_TOOBIG;
1274 pCtx->pParse->nErr++;
1277 pCtx->pParse->rc = rc;
1279 value_from_function_out:
1280 if( rc!=SQLITE_OK ){
1281 pVal = 0;
1283 if( apVal ){
1284 for(i=0; i<nVal; i++){
1285 sqlite3ValueFree(apVal[i]);
1287 sqlite3DbFreeNN(db, apVal);
1290 *ppVal = pVal;
1291 return rc;
1293 #else
1294 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1295 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1298 ** Extract a value from the supplied expression in the manner described
1299 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1300 ** using valueNew().
1302 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1303 ** has been allocated, it is freed before returning. Or, if pCtx is not
1304 ** NULL, it is assumed that the caller will free any allocated object
1305 ** in all cases.
1307 static int valueFromExpr(
1308 sqlite3 *db, /* The database connection */
1309 Expr *pExpr, /* The expression to evaluate */
1310 u8 enc, /* Encoding to use */
1311 u8 affinity, /* Affinity to use */
1312 sqlite3_value **ppVal, /* Write the new value here */
1313 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1315 int op;
1316 char *zVal = 0;
1317 sqlite3_value *pVal = 0;
1318 int negInt = 1;
1319 const char *zNeg = "";
1320 int rc = SQLITE_OK;
1322 assert( pExpr!=0 );
1323 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1324 #if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
1325 if( op==TK_REGISTER ) op = pExpr->op2;
1326 #else
1327 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1328 #endif
1330 /* Compressed expressions only appear when parsing the DEFAULT clause
1331 ** on a table column definition, and hence only when pCtx==0. This
1332 ** check ensures that an EP_TokenOnly expression is never passed down
1333 ** into valueFromFunction(). */
1334 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1336 if( op==TK_CAST ){
1337 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1338 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1339 testcase( rc!=SQLITE_OK );
1340 if( *ppVal ){
1341 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1342 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1344 return rc;
1347 /* Handle negative integers in a single step. This is needed in the
1348 ** case when the value is -9223372036854775808.
1350 if( op==TK_UMINUS
1351 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1352 pExpr = pExpr->pLeft;
1353 op = pExpr->op;
1354 negInt = -1;
1355 zNeg = "-";
1358 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1359 pVal = valueNew(db, pCtx);
1360 if( pVal==0 ) goto no_mem;
1361 if( ExprHasProperty(pExpr, EP_IntValue) ){
1362 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1363 }else{
1364 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1365 if( zVal==0 ) goto no_mem;
1366 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1368 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1369 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1370 }else{
1371 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1373 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1374 if( enc!=SQLITE_UTF8 ){
1375 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1377 }else if( op==TK_UMINUS ) {
1378 /* This branch happens for multiple negative signs. Ex: -(-5) */
1379 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1380 && pVal!=0
1382 sqlite3VdbeMemNumerify(pVal);
1383 if( pVal->flags & MEM_Real ){
1384 pVal->u.r = -pVal->u.r;
1385 }else if( pVal->u.i==SMALLEST_INT64 ){
1386 pVal->u.r = -(double)SMALLEST_INT64;
1387 MemSetTypeFlag(pVal, MEM_Real);
1388 }else{
1389 pVal->u.i = -pVal->u.i;
1391 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1393 }else if( op==TK_NULL ){
1394 pVal = valueNew(db, pCtx);
1395 if( pVal==0 ) goto no_mem;
1396 sqlite3VdbeMemNumerify(pVal);
1398 #ifndef SQLITE_OMIT_BLOB_LITERAL
1399 else if( op==TK_BLOB ){
1400 int nVal;
1401 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1402 assert( pExpr->u.zToken[1]=='\'' );
1403 pVal = valueNew(db, pCtx);
1404 if( !pVal ) goto no_mem;
1405 zVal = &pExpr->u.zToken[2];
1406 nVal = sqlite3Strlen30(zVal)-1;
1407 assert( zVal[nVal]=='\'' );
1408 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1409 0, SQLITE_DYNAMIC);
1411 #endif
1413 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1414 else if( op==TK_FUNCTION && pCtx!=0 ){
1415 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1417 #endif
1419 *ppVal = pVal;
1420 return rc;
1422 no_mem:
1423 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1424 if( pCtx==0 || pCtx->pParse->nErr==0 )
1425 #endif
1426 sqlite3OomFault(db);
1427 sqlite3DbFree(db, zVal);
1428 assert( *ppVal==0 );
1429 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1430 if( pCtx==0 ) sqlite3ValueFree(pVal);
1431 #else
1432 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1433 #endif
1434 return SQLITE_NOMEM_BKPT;
1438 ** Create a new sqlite3_value object, containing the value of pExpr.
1440 ** This only works for very simple expressions that consist of one constant
1441 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1442 ** be converted directly into a value, then the value is allocated and
1443 ** a pointer written to *ppVal. The caller is responsible for deallocating
1444 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1445 ** cannot be converted to a value, then *ppVal is set to NULL.
1447 int sqlite3ValueFromExpr(
1448 sqlite3 *db, /* The database connection */
1449 Expr *pExpr, /* The expression to evaluate */
1450 u8 enc, /* Encoding to use */
1451 u8 affinity, /* Affinity to use */
1452 sqlite3_value **ppVal /* Write the new value here */
1454 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1457 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1459 ** The implementation of the sqlite_record() function. This function accepts
1460 ** a single argument of any type. The return value is a formatted database
1461 ** record (a blob) containing the argument value.
1463 ** This is used to convert the value stored in the 'sample' column of the
1464 ** sqlite_stat3 table to the record format SQLite uses internally.
1466 static void recordFunc(
1467 sqlite3_context *context,
1468 int argc,
1469 sqlite3_value **argv
1471 const int file_format = 1;
1472 u32 iSerial; /* Serial type */
1473 int nSerial; /* Bytes of space for iSerial as varint */
1474 u32 nVal; /* Bytes of space required for argv[0] */
1475 int nRet;
1476 sqlite3 *db;
1477 u8 *aRet;
1479 UNUSED_PARAMETER( argc );
1480 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1481 nSerial = sqlite3VarintLen(iSerial);
1482 db = sqlite3_context_db_handle(context);
1484 nRet = 1 + nSerial + nVal;
1485 aRet = sqlite3DbMallocRawNN(db, nRet);
1486 if( aRet==0 ){
1487 sqlite3_result_error_nomem(context);
1488 }else{
1489 aRet[0] = nSerial+1;
1490 putVarint32(&aRet[1], iSerial);
1491 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1492 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1493 sqlite3DbFreeNN(db, aRet);
1498 ** Register built-in functions used to help read ANALYZE data.
1500 void sqlite3AnalyzeFunctions(void){
1501 static FuncDef aAnalyzeTableFuncs[] = {
1502 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1504 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1508 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1510 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1511 ** pAlloc if one does not exist and the new value is added to the
1512 ** UnpackedRecord object.
1514 ** A value is extracted in the following cases:
1516 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1518 ** * The expression is a bound variable, and this is a reprepare, or
1520 ** * The expression is a literal value.
1522 ** On success, *ppVal is made to point to the extracted value. The caller
1523 ** is responsible for ensuring that the value is eventually freed.
1525 static int stat4ValueFromExpr(
1526 Parse *pParse, /* Parse context */
1527 Expr *pExpr, /* The expression to extract a value from */
1528 u8 affinity, /* Affinity to use */
1529 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1530 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1532 int rc = SQLITE_OK;
1533 sqlite3_value *pVal = 0;
1534 sqlite3 *db = pParse->db;
1536 /* Skip over any TK_COLLATE nodes */
1537 pExpr = sqlite3ExprSkipCollate(pExpr);
1539 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1540 if( !pExpr ){
1541 pVal = valueNew(db, pAlloc);
1542 if( pVal ){
1543 sqlite3VdbeMemSetNull((Mem*)pVal);
1545 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1546 Vdbe *v;
1547 int iBindVar = pExpr->iColumn;
1548 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1549 if( (v = pParse->pReprepare)!=0 ){
1550 pVal = valueNew(db, pAlloc);
1551 if( pVal ){
1552 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1553 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1554 pVal->db = pParse->db;
1557 }else{
1558 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1561 assert( pVal==0 || pVal->db==db );
1562 *ppVal = pVal;
1563 return rc;
1567 ** This function is used to allocate and populate UnpackedRecord
1568 ** structures intended to be compared against sample index keys stored
1569 ** in the sqlite_stat4 table.
1571 ** A single call to this function populates zero or more fields of the
1572 ** record starting with field iVal (fields are numbered from left to
1573 ** right starting with 0). A single field is populated if:
1575 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1577 ** * The expression is a bound variable, and this is a reprepare, or
1579 ** * The sqlite3ValueFromExpr() function is able to extract a value
1580 ** from the expression (i.e. the expression is a literal value).
1582 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1583 ** vector components that match either of the two latter criteria listed
1584 ** above.
1586 ** Before any value is appended to the record, the affinity of the
1587 ** corresponding column within index pIdx is applied to it. Before
1588 ** this function returns, output parameter *pnExtract is set to the
1589 ** number of values appended to the record.
1591 ** When this function is called, *ppRec must either point to an object
1592 ** allocated by an earlier call to this function, or must be NULL. If it
1593 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1594 ** is allocated (and *ppRec set to point to it) before returning.
1596 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1597 ** error if a value cannot be extracted from pExpr. If an error does
1598 ** occur, an SQLite error code is returned.
1600 int sqlite3Stat4ProbeSetValue(
1601 Parse *pParse, /* Parse context */
1602 Index *pIdx, /* Index being probed */
1603 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1604 Expr *pExpr, /* The expression to extract a value from */
1605 int nElem, /* Maximum number of values to append */
1606 int iVal, /* Array element to populate */
1607 int *pnExtract /* OUT: Values appended to the record */
1609 int rc = SQLITE_OK;
1610 int nExtract = 0;
1612 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1613 int i;
1614 struct ValueNewStat4Ctx alloc;
1616 alloc.pParse = pParse;
1617 alloc.pIdx = pIdx;
1618 alloc.ppRec = ppRec;
1620 for(i=0; i<nElem; i++){
1621 sqlite3_value *pVal = 0;
1622 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1623 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1624 alloc.iVal = iVal+i;
1625 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1626 if( !pVal ) break;
1627 nExtract++;
1631 *pnExtract = nExtract;
1632 return rc;
1636 ** Attempt to extract a value from expression pExpr using the methods
1637 ** as described for sqlite3Stat4ProbeSetValue() above.
1639 ** If successful, set *ppVal to point to a new value object and return
1640 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1641 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1642 ** does occur, return an SQLite error code. The final value of *ppVal
1643 ** is undefined in this case.
1645 int sqlite3Stat4ValueFromExpr(
1646 Parse *pParse, /* Parse context */
1647 Expr *pExpr, /* The expression to extract a value from */
1648 u8 affinity, /* Affinity to use */
1649 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1651 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1655 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1656 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1657 ** sqlite3_value object is allocated.
1659 ** If *ppVal is initially NULL then the caller is responsible for
1660 ** ensuring that the value written into *ppVal is eventually freed.
1662 int sqlite3Stat4Column(
1663 sqlite3 *db, /* Database handle */
1664 const void *pRec, /* Pointer to buffer containing record */
1665 int nRec, /* Size of buffer pRec in bytes */
1666 int iCol, /* Column to extract */
1667 sqlite3_value **ppVal /* OUT: Extracted value */
1669 u32 t; /* a column type code */
1670 int nHdr; /* Size of the header in the record */
1671 int iHdr; /* Next unread header byte */
1672 int iField; /* Next unread data byte */
1673 int szField; /* Size of the current data field */
1674 int i; /* Column index */
1675 u8 *a = (u8*)pRec; /* Typecast byte array */
1676 Mem *pMem = *ppVal; /* Write result into this Mem object */
1678 assert( iCol>0 );
1679 iHdr = getVarint32(a, nHdr);
1680 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1681 iField = nHdr;
1682 for(i=0; i<=iCol; i++){
1683 iHdr += getVarint32(&a[iHdr], t);
1684 testcase( iHdr==nHdr );
1685 testcase( iHdr==nHdr+1 );
1686 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1687 szField = sqlite3VdbeSerialTypeLen(t);
1688 iField += szField;
1690 testcase( iField==nRec );
1691 testcase( iField==nRec+1 );
1692 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1693 if( pMem==0 ){
1694 pMem = *ppVal = sqlite3ValueNew(db);
1695 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1697 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1698 pMem->enc = ENC(db);
1699 return SQLITE_OK;
1703 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1704 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1705 ** the object.
1707 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1708 if( pRec ){
1709 int i;
1710 int nCol = pRec->pKeyInfo->nAllField;
1711 Mem *aMem = pRec->aMem;
1712 sqlite3 *db = aMem[0].db;
1713 for(i=0; i<nCol; i++){
1714 sqlite3VdbeMemRelease(&aMem[i]);
1716 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1717 sqlite3DbFreeNN(db, pRec);
1720 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1723 ** Change the string value of an sqlite3_value object
1725 void sqlite3ValueSetStr(
1726 sqlite3_value *v, /* Value to be set */
1727 int n, /* Length of string z */
1728 const void *z, /* Text of the new string */
1729 u8 enc, /* Encoding to use */
1730 void (*xDel)(void*) /* Destructor for the string */
1732 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1736 ** Free an sqlite3_value object
1738 void sqlite3ValueFree(sqlite3_value *v){
1739 if( !v ) return;
1740 sqlite3VdbeMemRelease((Mem *)v);
1741 sqlite3DbFreeNN(((Mem*)v)->db, v);
1745 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1746 ** sqlite3_value object assuming that it uses the encoding "enc".
1747 ** The valueBytes() routine is a helper function.
1749 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1750 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1752 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1753 Mem *p = (Mem*)pVal;
1754 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1755 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1756 return p->n;
1758 if( (p->flags & MEM_Blob)!=0 ){
1759 if( p->flags & MEM_Zero ){
1760 return p->n + p->u.nZero;
1761 }else{
1762 return p->n;
1765 if( p->flags & MEM_Null ) return 0;
1766 return valueBytes(pVal, enc);