Updates to the sqlite3_file_control() documentation. No changes to code.
[sqlite.git] / src / fkey.c
blobc366c1b3aababbad58a074410d4cae16726455cd
1 /*
2 **
3 ** The author disclaims copyright to this source code. In place of
4 ** a legal notice, here is a blessing:
5 **
6 ** May you do good and not evil.
7 ** May you find forgiveness for yourself and forgive others.
8 ** May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
14 #include "sqliteInt.h"
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
20 ** Deferred and Immediate FKs
21 ** --------------------------
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
40 ** * When a commit fails due to a deferred foreign key constraint,
41 ** there is no way to tell which foreign constraint is not satisfied,
42 ** or which row it is not satisfied for.
44 ** * If the database contains foreign key violations when the
45 ** transaction is opened, this may cause the mechanism to malfunction.
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
50 ** INSERT operations:
52 ** I.1) For each FK for which the table is the child table, search
53 ** the parent table for a match. If none is found increment the
54 ** constraint counter.
56 ** I.2) For each FK for which the table is the parent table,
57 ** search the child table for rows that correspond to the new
58 ** row in the parent table. Decrement the counter for each row
59 ** found (as the constraint is now satisfied).
61 ** DELETE operations:
63 ** D.1) For each FK for which the table is the child table,
64 ** search the parent table for a row that corresponds to the
65 ** deleted row in the child table. If such a row is not found,
66 ** decrement the counter.
68 ** D.2) For each FK for which the table is the parent table, search
69 ** the child table for rows that correspond to the deleted row
70 ** in the parent table. For each found increment the counter.
72 ** UPDATE operations:
74 ** An UPDATE command requires that all 4 steps above are taken, but only
75 ** for FK constraints for which the affected columns are actually
76 ** modified (values must be compared at runtime).
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
102 ** Query API Notes
103 ** ---------------
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
114 ** sqlite3FkRequired() - Test to see if FK processing is required.
115 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
118 ** Externally accessible module functions
119 ** --------------------------------------
121 ** sqlite3FkCheck() - Check for foreign key violations.
122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
123 ** sqlite3FkDelete() - Delete an FKey structure.
127 ** VDBE Calling Convention
128 ** -----------------------
130 ** Example:
132 ** For the following INSERT statement:
134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 ** INSERT INTO t1 VALUES(1, 2, 3.1);
137 ** Register (x): 2 (type integer)
138 ** Register (x+1): 1 (type integer)
139 ** Register (x+2): NULL (type NULL)
140 ** Register (x+3): 3.1 (type real)
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
163 ** If the required index cannot be found, either because:
165 ** 1) The named parent key columns do not exist, or
167 ** 2) The named parent key columns do exist, but are not subject to a
168 ** UNIQUE or PRIMARY KEY constraint, or
170 ** 3) No parent key columns were provided explicitly as part of the
171 ** foreign key definition, and the parent table does not have a
172 ** PRIMARY KEY, or
174 ** 4) No parent key columns were provided explicitly as part of the
175 ** foreign key definition, and the PRIMARY KEY of the parent table
176 ** consists of a different number of columns to the child key in
177 ** the child table.
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
183 int sqlite3FkLocateIndex(
184 Parse *pParse, /* Parse context to store any error in */
185 Table *pParent, /* Parent table of FK constraint pFKey */
186 FKey *pFKey, /* Foreign key to find index for */
187 Index **ppIdx, /* OUT: Unique index on parent table */
188 int **paiCol /* OUT: Map of index columns in pFKey */
190 Index *pIdx = 0; /* Value to return via *ppIdx */
191 int *aiCol = 0; /* Value to return via *paiCol */
192 int nCol = pFKey->nCol; /* Number of columns in parent key */
193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
195 /* The caller is responsible for zeroing output parameters. */
196 assert( ppIdx && *ppIdx==0 );
197 assert( !paiCol || *paiCol==0 );
198 assert( pParse );
200 /* If this is a non-composite (single column) foreign key, check if it
201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202 ** and *paiCol set to zero and return early.
204 ** Otherwise, for a composite foreign key (more than one column), allocate
205 ** space for the aiCol array (returned via output parameter *paiCol).
206 ** Non-composite foreign keys do not require the aiCol array.
208 if( nCol==1 ){
209 /* The FK maps to the IPK if any of the following are true:
211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212 ** mapped to the primary key of table pParent, or
213 ** 2) The FK is explicitly mapped to a column declared as INTEGER
214 ** PRIMARY KEY.
216 if( pParent->iPKey>=0 ){
217 if( !zKey ) return 0;
218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
220 }else if( paiCol ){
221 assert( nCol>1 );
222 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int));
223 if( !aiCol ) return 1;
224 *paiCol = aiCol;
227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){
229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230 ** of columns. If each indexed column corresponds to a foreign key
231 ** column of pFKey, then this index is a winner. */
233 if( zKey==0 ){
234 /* If zKey is NULL, then this foreign key is implicitly mapped to
235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236 ** identified by the test. */
237 if( IsPrimaryKeyIndex(pIdx) ){
238 if( aiCol ){
239 int i;
240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
242 break;
244 }else{
245 /* If zKey is non-NULL, then this foreign key was declared to
246 ** map to an explicit list of columns in table pParent. Check if this
247 ** index matches those columns. Also, check that the index uses
248 ** the default collation sequences for each column. */
249 int i, j;
250 for(i=0; i<nCol; i++){
251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
252 const char *zDfltColl; /* Def. collation for column */
253 char *zIdxCol; /* Name of indexed column */
255 if( iCol<0 ) break; /* No foreign keys against expression indexes */
257 /* If the index uses a collation sequence that is different from
258 ** the default collation sequence for the column, this index is
259 ** unusable. Bail out early in this case. */
260 zDfltColl = pParent->aCol[iCol].zColl;
261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;
262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
264 zIdxCol = pParent->aCol[iCol].zName;
265 for(j=0; j<nCol; j++){
266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268 break;
271 if( j==nCol ) break;
273 if( i==nCol ) break; /* pIdx is usable */
278 if( !pIdx ){
279 if( !pParse->disableTriggers ){
280 sqlite3ErrorMsg(pParse,
281 "foreign key mismatch - \"%w\" referencing \"%w\"",
282 pFKey->pFrom->zName, pFKey->zTo);
284 sqlite3DbFree(pParse->db, aiCol);
285 return 1;
288 *ppIdx = pIdx;
289 return 0;
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
305 ** Operation | FK type | Action taken
306 ** --------------------------------------------------------------------------
307 ** INSERT immediate Increment the "immediate constraint counter".
309 ** DELETE immediate Decrement the "immediate constraint counter".
311 ** INSERT deferred Increment the "deferred constraint counter".
313 ** DELETE deferred Decrement the "deferred constraint counter".
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
318 static void fkLookupParent(
319 Parse *pParse, /* Parse context */
320 int iDb, /* Index of database housing pTab */
321 Table *pTab, /* Parent table of FK pFKey */
322 Index *pIdx, /* Unique index on parent key columns in pTab */
323 FKey *pFKey, /* Foreign key constraint */
324 int *aiCol, /* Map from parent key columns to child table columns */
325 int regData, /* Address of array containing child table row */
326 int nIncr, /* Increment constraint counter by this */
327 int isIgnore /* If true, pretend pTab contains all NULL values */
329 int i; /* Iterator variable */
330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
331 int iCur = pParse->nTab - 1; /* Cursor number to use */
332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
334 /* If nIncr is less than zero, then check at runtime if there are any
335 ** outstanding constraints to resolve. If there are not, there is no need
336 ** to check if deleting this row resolves any outstanding violations.
338 ** Check if any of the key columns in the child table row are NULL. If
339 ** any are, then the constraint is considered satisfied. No need to
340 ** search for a matching row in the parent table. */
341 if( nIncr<0 ){
342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
343 VdbeCoverage(v);
345 for(i=0; i<pFKey->nCol; i++){
346 int iReg = aiCol[i] + regData + 1;
347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
350 if( isIgnore==0 ){
351 if( pIdx==0 ){
352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
353 ** column of the parent table (table pTab). */
354 int iMustBeInt; /* Address of MustBeInt instruction */
355 int regTemp = sqlite3GetTempReg(pParse);
357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
358 ** apply the affinity of the parent key). If this fails, then there
359 ** is no matching parent key. Before using MustBeInt, make a copy of
360 ** the value. Otherwise, the value inserted into the child key column
361 ** will have INTEGER affinity applied to it, which may not be correct. */
362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
364 VdbeCoverage(v);
366 /* If the parent table is the same as the child table, and we are about
367 ** to increment the constraint-counter (i.e. this is an INSERT operation),
368 ** then check if the row being inserted matches itself. If so, do not
369 ** increment the constraint-counter. */
370 if( pTab==pFKey->pFrom && nIncr==1 ){
371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
377 sqlite3VdbeGoto(v, iOk);
378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
379 sqlite3VdbeJumpHere(v, iMustBeInt);
380 sqlite3ReleaseTempReg(pParse, regTemp);
381 }else{
382 int nCol = pFKey->nCol;
383 int regTemp = sqlite3GetTempRange(pParse, nCol);
384 int regRec = sqlite3GetTempReg(pParse);
386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
388 for(i=0; i<nCol; i++){
389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
392 /* If the parent table is the same as the child table, and we are about
393 ** to increment the constraint-counter (i.e. this is an INSERT operation),
394 ** then check if the row being inserted matches itself. If so, do not
395 ** increment the constraint-counter.
397 ** If any of the parent-key values are NULL, then the row cannot match
398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
399 ** of the parent-key values are NULL (at this point it is known that
400 ** none of the child key values are).
402 if( pTab==pFKey->pFrom && nIncr==1 ){
403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
404 for(i=0; i<nCol; i++){
405 int iChild = aiCol[i]+1+regData;
406 int iParent = pIdx->aiColumn[i]+1+regData;
407 assert( pIdx->aiColumn[i]>=0 );
408 assert( aiCol[i]!=pTab->iPKey );
409 if( pIdx->aiColumn[i]==pTab->iPKey ){
410 /* The parent key is a composite key that includes the IPK column */
411 iParent = regData;
413 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
414 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
416 sqlite3VdbeGoto(v, iOk);
419 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
420 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol);
421 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
423 sqlite3ReleaseTempReg(pParse, regRec);
424 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
428 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
429 && !pParse->pToplevel
430 && !pParse->isMultiWrite
432 /* Special case: If this is an INSERT statement that will insert exactly
433 ** one row into the table, raise a constraint immediately instead of
434 ** incrementing a counter. This is necessary as the VM code is being
435 ** generated for will not open a statement transaction. */
436 assert( nIncr==1 );
437 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
438 OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
439 }else{
440 if( nIncr>0 && pFKey->isDeferred==0 ){
441 sqlite3MayAbort(pParse);
443 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
446 sqlite3VdbeResolveLabel(v, iOk);
447 sqlite3VdbeAddOp1(v, OP_Close, iCur);
452 ** Return an Expr object that refers to a memory register corresponding
453 ** to column iCol of table pTab.
455 ** regBase is the first of an array of register that contains the data
456 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first
457 ** column. regBase+2 holds the second column, and so forth.
459 static Expr *exprTableRegister(
460 Parse *pParse, /* Parsing and code generating context */
461 Table *pTab, /* The table whose content is at r[regBase]... */
462 int regBase, /* Contents of table pTab */
463 i16 iCol /* Which column of pTab is desired */
465 Expr *pExpr;
466 Column *pCol;
467 const char *zColl;
468 sqlite3 *db = pParse->db;
470 pExpr = sqlite3Expr(db, TK_REGISTER, 0);
471 if( pExpr ){
472 if( iCol>=0 && iCol!=pTab->iPKey ){
473 pCol = &pTab->aCol[iCol];
474 pExpr->iTable = regBase + iCol + 1;
475 pExpr->affinity = pCol->affinity;
476 zColl = pCol->zColl;
477 if( zColl==0 ) zColl = db->pDfltColl->zName;
478 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
479 }else{
480 pExpr->iTable = regBase;
481 pExpr->affinity = SQLITE_AFF_INTEGER;
484 return pExpr;
488 ** Return an Expr object that refers to column iCol of table pTab which
489 ** has cursor iCur.
491 static Expr *exprTableColumn(
492 sqlite3 *db, /* The database connection */
493 Table *pTab, /* The table whose column is desired */
494 int iCursor, /* The open cursor on the table */
495 i16 iCol /* The column that is wanted */
497 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
498 if( pExpr ){
499 pExpr->pTab = pTab;
500 pExpr->iTable = iCursor;
501 pExpr->iColumn = iCol;
503 return pExpr;
507 ** This function is called to generate code executed when a row is deleted
508 ** from the parent table of foreign key constraint pFKey and, if pFKey is
509 ** deferred, when a row is inserted into the same table. When generating
510 ** code for an SQL UPDATE operation, this function may be called twice -
511 ** once to "delete" the old row and once to "insert" the new row.
513 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
514 ** the number of FK violations in the db) or +1 when deleting one (as this
515 ** may increase the number of FK constraint problems).
517 ** The code generated by this function scans through the rows in the child
518 ** table that correspond to the parent table row being deleted or inserted.
519 ** For each child row found, one of the following actions is taken:
521 ** Operation | FK type | Action taken
522 ** --------------------------------------------------------------------------
523 ** DELETE immediate Increment the "immediate constraint counter".
524 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
525 ** throw a "FOREIGN KEY constraint failed" exception.
527 ** INSERT immediate Decrement the "immediate constraint counter".
529 ** DELETE deferred Increment the "deferred constraint counter".
530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
531 ** throw a "FOREIGN KEY constraint failed" exception.
533 ** INSERT deferred Decrement the "deferred constraint counter".
535 ** These operations are identified in the comment at the top of this file
536 ** (fkey.c) as "I.2" and "D.2".
538 static void fkScanChildren(
539 Parse *pParse, /* Parse context */
540 SrcList *pSrc, /* The child table to be scanned */
541 Table *pTab, /* The parent table */
542 Index *pIdx, /* Index on parent covering the foreign key */
543 FKey *pFKey, /* The foreign key linking pSrc to pTab */
544 int *aiCol, /* Map from pIdx cols to child table cols */
545 int regData, /* Parent row data starts here */
546 int nIncr /* Amount to increment deferred counter by */
548 sqlite3 *db = pParse->db; /* Database handle */
549 int i; /* Iterator variable */
550 Expr *pWhere = 0; /* WHERE clause to scan with */
551 NameContext sNameContext; /* Context used to resolve WHERE clause */
552 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
553 int iFkIfZero = 0; /* Address of OP_FkIfZero */
554 Vdbe *v = sqlite3GetVdbe(pParse);
556 assert( pIdx==0 || pIdx->pTable==pTab );
557 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
558 assert( pIdx!=0 || pFKey->nCol==1 );
559 assert( pIdx!=0 || HasRowid(pTab) );
561 if( nIncr<0 ){
562 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
563 VdbeCoverage(v);
566 /* Create an Expr object representing an SQL expression like:
568 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
570 ** The collation sequence used for the comparison should be that of
571 ** the parent key columns. The affinity of the parent key column should
572 ** be applied to each child key value before the comparison takes place.
574 for(i=0; i<pFKey->nCol; i++){
575 Expr *pLeft; /* Value from parent table row */
576 Expr *pRight; /* Column ref to child table */
577 Expr *pEq; /* Expression (pLeft = pRight) */
578 i16 iCol; /* Index of column in child table */
579 const char *zCol; /* Name of column in child table */
581 iCol = pIdx ? pIdx->aiColumn[i] : -1;
582 pLeft = exprTableRegister(pParse, pTab, regData, iCol);
583 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
584 assert( iCol>=0 );
585 zCol = pFKey->pFrom->aCol[iCol].zName;
586 pRight = sqlite3Expr(db, TK_ID, zCol);
587 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
588 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
591 /* If the child table is the same as the parent table, then add terms
592 ** to the WHERE clause that prevent this entry from being scanned.
593 ** The added WHERE clause terms are like this:
595 ** $current_rowid!=rowid
596 ** NOT( $current_a==a AND $current_b==b AND ... )
598 ** The first form is used for rowid tables. The second form is used
599 ** for WITHOUT ROWID tables. In the second form, the primary key is
600 ** (a,b,...)
602 if( pTab==pFKey->pFrom && nIncr>0 ){
603 Expr *pNe; /* Expression (pLeft != pRight) */
604 Expr *pLeft; /* Value from parent table row */
605 Expr *pRight; /* Column ref to child table */
606 if( HasRowid(pTab) ){
607 pLeft = exprTableRegister(pParse, pTab, regData, -1);
608 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
609 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight);
610 }else{
611 Expr *pEq, *pAll = 0;
612 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
613 assert( pIdx!=0 );
614 for(i=0; i<pPk->nKeyCol; i++){
615 i16 iCol = pIdx->aiColumn[i];
616 assert( iCol>=0 );
617 pLeft = exprTableRegister(pParse, pTab, regData, iCol);
618 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol);
619 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight);
620 pAll = sqlite3ExprAnd(db, pAll, pEq);
622 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0);
624 pWhere = sqlite3ExprAnd(db, pWhere, pNe);
627 /* Resolve the references in the WHERE clause. */
628 memset(&sNameContext, 0, sizeof(NameContext));
629 sNameContext.pSrcList = pSrc;
630 sNameContext.pParse = pParse;
631 sqlite3ResolveExprNames(&sNameContext, pWhere);
633 /* Create VDBE to loop through the entries in pSrc that match the WHERE
634 ** clause. For each row found, increment either the deferred or immediate
635 ** foreign key constraint counter. */
636 if( pParse->nErr==0 ){
637 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
638 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
639 if( pWInfo ){
640 sqlite3WhereEnd(pWInfo);
644 /* Clean up the WHERE clause constructed above. */
645 sqlite3ExprDelete(db, pWhere);
646 if( iFkIfZero ){
647 sqlite3VdbeJumpHere(v, iFkIfZero);
652 ** This function returns a linked list of FKey objects (connected by
653 ** FKey.pNextTo) holding all children of table pTab. For example,
654 ** given the following schema:
656 ** CREATE TABLE t1(a PRIMARY KEY);
657 ** CREATE TABLE t2(b REFERENCES t1(a);
659 ** Calling this function with table "t1" as an argument returns a pointer
660 ** to the FKey structure representing the foreign key constraint on table
661 ** "t2". Calling this function with "t2" as the argument would return a
662 ** NULL pointer (as there are no FK constraints for which t2 is the parent
663 ** table).
665 FKey *sqlite3FkReferences(Table *pTab){
666 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
670 ** The second argument is a Trigger structure allocated by the
671 ** fkActionTrigger() routine. This function deletes the Trigger structure
672 ** and all of its sub-components.
674 ** The Trigger structure or any of its sub-components may be allocated from
675 ** the lookaside buffer belonging to database handle dbMem.
677 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
678 if( p ){
679 TriggerStep *pStep = p->step_list;
680 sqlite3ExprDelete(dbMem, pStep->pWhere);
681 sqlite3ExprListDelete(dbMem, pStep->pExprList);
682 sqlite3SelectDelete(dbMem, pStep->pSelect);
683 sqlite3ExprDelete(dbMem, p->pWhen);
684 sqlite3DbFree(dbMem, p);
689 ** This function is called to generate code that runs when table pTab is
690 ** being dropped from the database. The SrcList passed as the second argument
691 ** to this function contains a single entry guaranteed to resolve to
692 ** table pTab.
694 ** Normally, no code is required. However, if either
696 ** (a) The table is the parent table of a FK constraint, or
697 ** (b) The table is the child table of a deferred FK constraint and it is
698 ** determined at runtime that there are outstanding deferred FK
699 ** constraint violations in the database,
701 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
702 ** the table from the database. Triggers are disabled while running this
703 ** DELETE, but foreign key actions are not.
705 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
706 sqlite3 *db = pParse->db;
707 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
708 int iSkip = 0;
709 Vdbe *v = sqlite3GetVdbe(pParse);
711 assert( v ); /* VDBE has already been allocated */
712 if( sqlite3FkReferences(pTab)==0 ){
713 /* Search for a deferred foreign key constraint for which this table
714 ** is the child table. If one cannot be found, return without
715 ** generating any VDBE code. If one can be found, then jump over
716 ** the entire DELETE if there are no outstanding deferred constraints
717 ** when this statement is run. */
718 FKey *p;
719 for(p=pTab->pFKey; p; p=p->pNextFrom){
720 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
722 if( !p ) return;
723 iSkip = sqlite3VdbeMakeLabel(v);
724 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
727 pParse->disableTriggers = 1;
728 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0);
729 pParse->disableTriggers = 0;
731 /* If the DELETE has generated immediate foreign key constraint
732 ** violations, halt the VDBE and return an error at this point, before
733 ** any modifications to the schema are made. This is because statement
734 ** transactions are not able to rollback schema changes.
736 ** If the SQLITE_DeferFKs flag is set, then this is not required, as
737 ** the statement transaction will not be rolled back even if FK
738 ** constraints are violated.
740 if( (db->flags & SQLITE_DeferFKs)==0 ){
741 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
742 VdbeCoverage(v);
743 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
744 OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
747 if( iSkip ){
748 sqlite3VdbeResolveLabel(v, iSkip);
755 ** The second argument points to an FKey object representing a foreign key
756 ** for which pTab is the child table. An UPDATE statement against pTab
757 ** is currently being processed. For each column of the table that is
758 ** actually updated, the corresponding element in the aChange[] array
759 ** is zero or greater (if a column is unmodified the corresponding element
760 ** is set to -1). If the rowid column is modified by the UPDATE statement
761 ** the bChngRowid argument is non-zero.
763 ** This function returns true if any of the columns that are part of the
764 ** child key for FK constraint *p are modified.
766 static int fkChildIsModified(
767 Table *pTab, /* Table being updated */
768 FKey *p, /* Foreign key for which pTab is the child */
769 int *aChange, /* Array indicating modified columns */
770 int bChngRowid /* True if rowid is modified by this update */
772 int i;
773 for(i=0; i<p->nCol; i++){
774 int iChildKey = p->aCol[i].iFrom;
775 if( aChange[iChildKey]>=0 ) return 1;
776 if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
778 return 0;
782 ** The second argument points to an FKey object representing a foreign key
783 ** for which pTab is the parent table. An UPDATE statement against pTab
784 ** is currently being processed. For each column of the table that is
785 ** actually updated, the corresponding element in the aChange[] array
786 ** is zero or greater (if a column is unmodified the corresponding element
787 ** is set to -1). If the rowid column is modified by the UPDATE statement
788 ** the bChngRowid argument is non-zero.
790 ** This function returns true if any of the columns that are part of the
791 ** parent key for FK constraint *p are modified.
793 static int fkParentIsModified(
794 Table *pTab,
795 FKey *p,
796 int *aChange,
797 int bChngRowid
799 int i;
800 for(i=0; i<p->nCol; i++){
801 char *zKey = p->aCol[i].zCol;
802 int iKey;
803 for(iKey=0; iKey<pTab->nCol; iKey++){
804 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
805 Column *pCol = &pTab->aCol[iKey];
806 if( zKey ){
807 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
808 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
809 return 1;
814 return 0;
818 ** Return true if the parser passed as the first argument is being
819 ** used to code a trigger that is really a "SET NULL" action belonging
820 ** to trigger pFKey.
822 static int isSetNullAction(Parse *pParse, FKey *pFKey){
823 Parse *pTop = sqlite3ParseToplevel(pParse);
824 if( pTop->pTriggerPrg ){
825 Trigger *p = pTop->pTriggerPrg->pTrigger;
826 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
827 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
829 return 1;
832 return 0;
836 ** This function is called when inserting, deleting or updating a row of
837 ** table pTab to generate VDBE code to perform foreign key constraint
838 ** processing for the operation.
840 ** For a DELETE operation, parameter regOld is passed the index of the
841 ** first register in an array of (pTab->nCol+1) registers containing the
842 ** rowid of the row being deleted, followed by each of the column values
843 ** of the row being deleted, from left to right. Parameter regNew is passed
844 ** zero in this case.
846 ** For an INSERT operation, regOld is passed zero and regNew is passed the
847 ** first register of an array of (pTab->nCol+1) registers containing the new
848 ** row data.
850 ** For an UPDATE operation, this function is called twice. Once before
851 ** the original record is deleted from the table using the calling convention
852 ** described for DELETE. Then again after the original record is deleted
853 ** but before the new record is inserted using the INSERT convention.
855 void sqlite3FkCheck(
856 Parse *pParse, /* Parse context */
857 Table *pTab, /* Row is being deleted from this table */
858 int regOld, /* Previous row data is stored here */
859 int regNew, /* New row data is stored here */
860 int *aChange, /* Array indicating UPDATEd columns (or 0) */
861 int bChngRowid /* True if rowid is UPDATEd */
863 sqlite3 *db = pParse->db; /* Database handle */
864 FKey *pFKey; /* Used to iterate through FKs */
865 int iDb; /* Index of database containing pTab */
866 const char *zDb; /* Name of database containing pTab */
867 int isIgnoreErrors = pParse->disableTriggers;
869 /* Exactly one of regOld and regNew should be non-zero. */
870 assert( (regOld==0)!=(regNew==0) );
872 /* If foreign-keys are disabled, this function is a no-op. */
873 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
875 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
876 zDb = db->aDb[iDb].zDbSName;
878 /* Loop through all the foreign key constraints for which pTab is the
879 ** child table (the table that the foreign key definition is part of). */
880 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
881 Table *pTo; /* Parent table of foreign key pFKey */
882 Index *pIdx = 0; /* Index on key columns in pTo */
883 int *aiFree = 0;
884 int *aiCol;
885 int iCol;
886 int i;
887 int bIgnore = 0;
889 if( aChange
890 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
891 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
893 continue;
896 /* Find the parent table of this foreign key. Also find a unique index
897 ** on the parent key columns in the parent table. If either of these
898 ** schema items cannot be located, set an error in pParse and return
899 ** early. */
900 if( pParse->disableTriggers ){
901 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
902 }else{
903 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
905 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
906 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
907 if( !isIgnoreErrors || db->mallocFailed ) return;
908 if( pTo==0 ){
909 /* If isIgnoreErrors is true, then a table is being dropped. In this
910 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
911 ** before actually dropping it in order to check FK constraints.
912 ** If the parent table of an FK constraint on the current table is
913 ** missing, behave as if it is empty. i.e. decrement the relevant
914 ** FK counter for each row of the current table with non-NULL keys.
916 Vdbe *v = sqlite3GetVdbe(pParse);
917 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
918 for(i=0; i<pFKey->nCol; i++){
919 int iReg = pFKey->aCol[i].iFrom + regOld + 1;
920 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
922 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
924 continue;
926 assert( pFKey->nCol==1 || (aiFree && pIdx) );
928 if( aiFree ){
929 aiCol = aiFree;
930 }else{
931 iCol = pFKey->aCol[0].iFrom;
932 aiCol = &iCol;
934 for(i=0; i<pFKey->nCol; i++){
935 if( aiCol[i]==pTab->iPKey ){
936 aiCol[i] = -1;
938 assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
939 #ifndef SQLITE_OMIT_AUTHORIZATION
940 /* Request permission to read the parent key columns. If the
941 ** authorization callback returns SQLITE_IGNORE, behave as if any
942 ** values read from the parent table are NULL. */
943 if( db->xAuth ){
944 int rcauth;
945 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
946 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
947 bIgnore = (rcauth==SQLITE_IGNORE);
949 #endif
952 /* Take a shared-cache advisory read-lock on the parent table. Allocate
953 ** a cursor to use to search the unique index on the parent key columns
954 ** in the parent table. */
955 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
956 pParse->nTab++;
958 if( regOld!=0 ){
959 /* A row is being removed from the child table. Search for the parent.
960 ** If the parent does not exist, removing the child row resolves an
961 ** outstanding foreign key constraint violation. */
962 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
964 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
965 /* A row is being added to the child table. If a parent row cannot
966 ** be found, adding the child row has violated the FK constraint.
968 ** If this operation is being performed as part of a trigger program
969 ** that is actually a "SET NULL" action belonging to this very
970 ** foreign key, then omit this scan altogether. As all child key
971 ** values are guaranteed to be NULL, it is not possible for adding
972 ** this row to cause an FK violation. */
973 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
976 sqlite3DbFree(db, aiFree);
979 /* Loop through all the foreign key constraints that refer to this table.
980 ** (the "child" constraints) */
981 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
982 Index *pIdx = 0; /* Foreign key index for pFKey */
983 SrcList *pSrc;
984 int *aiCol = 0;
986 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
987 continue;
990 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
991 && !pParse->pToplevel && !pParse->isMultiWrite
993 assert( regOld==0 && regNew!=0 );
994 /* Inserting a single row into a parent table cannot cause (or fix)
995 ** an immediate foreign key violation. So do nothing in this case. */
996 continue;
999 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
1000 if( !isIgnoreErrors || db->mallocFailed ) return;
1001 continue;
1003 assert( aiCol || pFKey->nCol==1 );
1005 /* Create a SrcList structure containing the child table. We need the
1006 ** child table as a SrcList for sqlite3WhereBegin() */
1007 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
1008 if( pSrc ){
1009 struct SrcList_item *pItem = pSrc->a;
1010 pItem->pTab = pFKey->pFrom;
1011 pItem->zName = pFKey->pFrom->zName;
1012 pItem->pTab->nTabRef++;
1013 pItem->iCursor = pParse->nTab++;
1015 if( regNew!=0 ){
1016 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
1018 if( regOld!=0 ){
1019 int eAction = pFKey->aAction[aChange!=0];
1020 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
1021 /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1022 ** action applies, then any foreign key violations caused by
1023 ** removing the parent key will be rectified by the action trigger.
1024 ** So do not set the "may-abort" flag in this case.
1026 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1027 ** may-abort flag will eventually be set on this statement anyway
1028 ** (when this function is called as part of processing the UPDATE
1029 ** within the action trigger).
1031 ** Note 2: At first glance it may seem like SQLite could simply omit
1032 ** all OP_FkCounter related scans when either CASCADE or SET NULL
1033 ** applies. The trouble starts if the CASCADE or SET NULL action
1034 ** trigger causes other triggers or action rules attached to the
1035 ** child table to fire. In these cases the fk constraint counters
1036 ** might be set incorrectly if any OP_FkCounter related scans are
1037 ** omitted. */
1038 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
1039 sqlite3MayAbort(pParse);
1042 pItem->zName = 0;
1043 sqlite3SrcListDelete(db, pSrc);
1045 sqlite3DbFree(db, aiCol);
1049 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1052 ** This function is called before generating code to update or delete a
1053 ** row contained in table pTab.
1055 u32 sqlite3FkOldmask(
1056 Parse *pParse, /* Parse context */
1057 Table *pTab /* Table being modified */
1059 u32 mask = 0;
1060 if( pParse->db->flags&SQLITE_ForeignKeys ){
1061 FKey *p;
1062 int i;
1063 for(p=pTab->pFKey; p; p=p->pNextFrom){
1064 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1066 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1067 Index *pIdx = 0;
1068 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1069 if( pIdx ){
1070 for(i=0; i<pIdx->nKeyCol; i++){
1071 assert( pIdx->aiColumn[i]>=0 );
1072 mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1077 return mask;
1082 ** This function is called before generating code to update or delete a
1083 ** row contained in table pTab. If the operation is a DELETE, then
1084 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1085 ** to an array of size N, where N is the number of columns in table pTab.
1086 ** If the i'th column is not modified by the UPDATE, then the corresponding
1087 ** entry in the aChange[] array is set to -1. If the column is modified,
1088 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1089 ** UPDATE statement modifies the rowid fields of the table.
1091 ** If any foreign key processing will be required, this function returns
1092 ** non-zero. If there is no foreign key related processing, this function
1093 ** returns zero.
1095 ** For an UPDATE, this function returns 2 if:
1097 ** * There are any FKs for which pTab is the child and the parent table, or
1098 ** * the UPDATE modifies one or more parent keys for which the action is
1099 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1101 ** Or, assuming some other foreign key processing is required, 1.
1103 int sqlite3FkRequired(
1104 Parse *pParse, /* Parse context */
1105 Table *pTab, /* Table being modified */
1106 int *aChange, /* Non-NULL for UPDATE operations */
1107 int chngRowid /* True for UPDATE that affects rowid */
1109 int eRet = 0;
1110 if( pParse->db->flags&SQLITE_ForeignKeys ){
1111 if( !aChange ){
1112 /* A DELETE operation. Foreign key processing is required if the
1113 ** table in question is either the child or parent table for any
1114 ** foreign key constraint. */
1115 eRet = (sqlite3FkReferences(pTab) || pTab->pFKey);
1116 }else{
1117 /* This is an UPDATE. Foreign key processing is only required if the
1118 ** operation modifies one or more child or parent key columns. */
1119 FKey *p;
1121 /* Check if any child key columns are being modified. */
1122 for(p=pTab->pFKey; p; p=p->pNextFrom){
1123 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) return 2;
1124 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){
1125 eRet = 1;
1129 /* Check if any parent key columns are being modified. */
1130 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1131 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){
1132 if( p->aAction[1]!=OE_None ) return 2;
1133 eRet = 1;
1138 return eRet;
1142 ** This function is called when an UPDATE or DELETE operation is being
1143 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1144 ** If the current operation is an UPDATE, then the pChanges parameter is
1145 ** passed a pointer to the list of columns being modified. If it is a
1146 ** DELETE, pChanges is passed a NULL pointer.
1148 ** It returns a pointer to a Trigger structure containing a trigger
1149 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1150 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1151 ** returned (these actions require no special handling by the triggers
1152 ** sub-system, code for them is created by fkScanChildren()).
1154 ** For example, if pFKey is the foreign key and pTab is table "p" in
1155 ** the following schema:
1157 ** CREATE TABLE p(pk PRIMARY KEY);
1158 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1160 ** then the returned trigger structure is equivalent to:
1162 ** CREATE TRIGGER ... DELETE ON p BEGIN
1163 ** DELETE FROM c WHERE ck = old.pk;
1164 ** END;
1166 ** The returned pointer is cached as part of the foreign key object. It
1167 ** is eventually freed along with the rest of the foreign key object by
1168 ** sqlite3FkDelete().
1170 static Trigger *fkActionTrigger(
1171 Parse *pParse, /* Parse context */
1172 Table *pTab, /* Table being updated or deleted from */
1173 FKey *pFKey, /* Foreign key to get action for */
1174 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
1176 sqlite3 *db = pParse->db; /* Database handle */
1177 int action; /* One of OE_None, OE_Cascade etc. */
1178 Trigger *pTrigger; /* Trigger definition to return */
1179 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
1181 action = pFKey->aAction[iAction];
1182 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){
1183 return 0;
1185 pTrigger = pFKey->apTrigger[iAction];
1187 if( action!=OE_None && !pTrigger ){
1188 char const *zFrom; /* Name of child table */
1189 int nFrom; /* Length in bytes of zFrom */
1190 Index *pIdx = 0; /* Parent key index for this FK */
1191 int *aiCol = 0; /* child table cols -> parent key cols */
1192 TriggerStep *pStep = 0; /* First (only) step of trigger program */
1193 Expr *pWhere = 0; /* WHERE clause of trigger step */
1194 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
1195 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
1196 int i; /* Iterator variable */
1197 Expr *pWhen = 0; /* WHEN clause for the trigger */
1199 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1200 assert( aiCol || pFKey->nCol==1 );
1202 for(i=0; i<pFKey->nCol; i++){
1203 Token tOld = { "old", 3 }; /* Literal "old" token */
1204 Token tNew = { "new", 3 }; /* Literal "new" token */
1205 Token tFromCol; /* Name of column in child table */
1206 Token tToCol; /* Name of column in parent table */
1207 int iFromCol; /* Idx of column in child table */
1208 Expr *pEq; /* tFromCol = OLD.tToCol */
1210 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1211 assert( iFromCol>=0 );
1212 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) );
1213 assert( pIdx==0 || pIdx->aiColumn[i]>=0 );
1214 sqlite3TokenInit(&tToCol,
1215 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName);
1216 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zName);
1218 /* Create the expression "OLD.zToCol = zFromCol". It is important
1219 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1220 ** that the affinity and collation sequence associated with the
1221 ** parent table are used for the comparison. */
1222 pEq = sqlite3PExpr(pParse, TK_EQ,
1223 sqlite3PExpr(pParse, TK_DOT,
1224 sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1225 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1226 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0)
1228 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1230 /* For ON UPDATE, construct the next term of the WHEN clause.
1231 ** The final WHEN clause will be like this:
1233 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1235 if( pChanges ){
1236 pEq = sqlite3PExpr(pParse, TK_IS,
1237 sqlite3PExpr(pParse, TK_DOT,
1238 sqlite3ExprAlloc(db, TK_ID, &tOld, 0),
1239 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)),
1240 sqlite3PExpr(pParse, TK_DOT,
1241 sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1242 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0))
1244 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1247 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1248 Expr *pNew;
1249 if( action==OE_Cascade ){
1250 pNew = sqlite3PExpr(pParse, TK_DOT,
1251 sqlite3ExprAlloc(db, TK_ID, &tNew, 0),
1252 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0));
1253 }else if( action==OE_SetDflt ){
1254 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1255 if( pDflt ){
1256 pNew = sqlite3ExprDup(db, pDflt, 0);
1257 }else{
1258 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1260 }else{
1261 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
1263 pList = sqlite3ExprListAppend(pParse, pList, pNew);
1264 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1267 sqlite3DbFree(db, aiCol);
1269 zFrom = pFKey->pFrom->zName;
1270 nFrom = sqlite3Strlen30(zFrom);
1272 if( action==OE_Restrict ){
1273 Token tFrom;
1274 Expr *pRaise;
1276 tFrom.z = zFrom;
1277 tFrom.n = nFrom;
1278 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1279 if( pRaise ){
1280 pRaise->affinity = OE_Abort;
1282 pSelect = sqlite3SelectNew(pParse,
1283 sqlite3ExprListAppend(pParse, 0, pRaise),
1284 sqlite3SrcListAppend(db, 0, &tFrom, 0),
1285 pWhere,
1286 0, 0, 0, 0, 0
1288 pWhere = 0;
1291 /* Disable lookaside memory allocation */
1292 db->lookaside.bDisable++;
1294 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1295 sizeof(Trigger) + /* struct Trigger */
1296 sizeof(TriggerStep) + /* Single step in trigger program */
1297 nFrom + 1 /* Space for pStep->zTarget */
1299 if( pTrigger ){
1300 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1301 pStep->zTarget = (char *)&pStep[1];
1302 memcpy((char *)pStep->zTarget, zFrom, nFrom);
1304 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1305 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1306 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1307 if( pWhen ){
1308 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0);
1309 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1313 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1314 db->lookaside.bDisable--;
1316 sqlite3ExprDelete(db, pWhere);
1317 sqlite3ExprDelete(db, pWhen);
1318 sqlite3ExprListDelete(db, pList);
1319 sqlite3SelectDelete(db, pSelect);
1320 if( db->mallocFailed==1 ){
1321 fkTriggerDelete(db, pTrigger);
1322 return 0;
1324 assert( pStep!=0 );
1326 switch( action ){
1327 case OE_Restrict:
1328 pStep->op = TK_SELECT;
1329 break;
1330 case OE_Cascade:
1331 if( !pChanges ){
1332 pStep->op = TK_DELETE;
1333 break;
1335 default:
1336 pStep->op = TK_UPDATE;
1338 pStep->pTrig = pTrigger;
1339 pTrigger->pSchema = pTab->pSchema;
1340 pTrigger->pTabSchema = pTab->pSchema;
1341 pFKey->apTrigger[iAction] = pTrigger;
1342 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1345 return pTrigger;
1349 ** This function is called when deleting or updating a row to implement
1350 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1352 void sqlite3FkActions(
1353 Parse *pParse, /* Parse context */
1354 Table *pTab, /* Table being updated or deleted from */
1355 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1356 int regOld, /* Address of array containing old row */
1357 int *aChange, /* Array indicating UPDATEd columns (or 0) */
1358 int bChngRowid /* True if rowid is UPDATEd */
1360 /* If foreign-key support is enabled, iterate through all FKs that
1361 ** refer to table pTab. If there is an action associated with the FK
1362 ** for this operation (either update or delete), invoke the associated
1363 ** trigger sub-program. */
1364 if( pParse->db->flags&SQLITE_ForeignKeys ){
1365 FKey *pFKey; /* Iterator variable */
1366 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1367 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1368 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1369 if( pAct ){
1370 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1377 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1380 ** Free all memory associated with foreign key definitions attached to
1381 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1382 ** hash table.
1384 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1385 FKey *pFKey; /* Iterator variable */
1386 FKey *pNext; /* Copy of pFKey->pNextFrom */
1388 assert( db==0 || IsVirtual(pTab)
1389 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1390 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1392 /* Remove the FK from the fkeyHash hash table. */
1393 if( !db || db->pnBytesFreed==0 ){
1394 if( pFKey->pPrevTo ){
1395 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1396 }else{
1397 void *p = (void *)pFKey->pNextTo;
1398 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1399 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1401 if( pFKey->pNextTo ){
1402 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1406 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1407 ** classified as either immediate or deferred.
1409 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1411 /* Delete any triggers created to implement actions for this FK. */
1412 #ifndef SQLITE_OMIT_TRIGGER
1413 fkTriggerDelete(db, pFKey->apTrigger[0]);
1414 fkTriggerDelete(db, pFKey->apTrigger[1]);
1415 #endif
1417 pNext = pFKey->pNextFrom;
1418 sqlite3DbFree(db, pFKey);
1421 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */