Fully initialize the Mem object for serial-type 10, in case such a
[sqlite.git] / src / vdbeaux.c
blob78777bd5a63c37b16f59a6e97ea31496ac801c41
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 p->pParse = pParse;
36 pParse->pVdbe = p;
37 assert( pParse->aLabel==0 );
38 assert( pParse->nLabel==0 );
39 assert( pParse->nOpAlloc==0 );
40 assert( pParse->szOpAlloc==0 );
41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
42 return p;
46 ** Change the error string stored in Vdbe.zErrMsg
48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
49 va_list ap;
50 sqlite3DbFree(p->db, p->zErrMsg);
51 va_start(ap, zFormat);
52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
53 va_end(ap);
57 ** Remember the SQL string for a prepared statement.
59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
60 if( p==0 ) return;
61 p->prepFlags = prepFlags;
62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
63 p->expmask = 0;
65 assert( p->zSql==0 );
66 p->zSql = sqlite3DbStrNDup(p->db, z, n);
70 ** Swap all content between two VDBE structures.
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73 Vdbe tmp, *pTmp;
74 char *zTmp;
75 assert( pA->db==pB->db );
76 tmp = *pA;
77 *pA = *pB;
78 *pB = tmp;
79 pTmp = pA->pNext;
80 pA->pNext = pB->pNext;
81 pB->pNext = pTmp;
82 pTmp = pA->pPrev;
83 pA->pPrev = pB->pPrev;
84 pB->pPrev = pTmp;
85 zTmp = pA->zSql;
86 pA->zSql = pB->zSql;
87 pB->zSql = zTmp;
88 pB->expmask = pA->expmask;
89 pB->prepFlags = pA->prepFlags;
90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
96 ** than its current size. nOp is guaranteed to be less than or equal
97 ** to 1024/sizeof(Op).
99 ** If an out-of-memory error occurs while resizing the array, return
100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
101 ** unchanged (this is so that any opcodes already allocated can be
102 ** correctly deallocated along with the rest of the Vdbe).
104 static int growOpArray(Vdbe *v, int nOp){
105 VdbeOp *pNew;
106 Parse *p = v->pParse;
108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
109 ** more frequent reallocs and hence provide more opportunities for
110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
112 ** by the minimum* amount required until the size reaches 512. Normal
113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
114 ** size of the op array or add 1KB of space, whichever is smaller. */
115 #ifdef SQLITE_TEST_REALLOC_STRESS
116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
117 #else
118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
119 UNUSED_PARAMETER(nOp);
120 #endif
122 /* Ensure that the size of a VDBE does not grow too large */
123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
124 sqlite3OomFault(p->db);
125 return SQLITE_NOMEM;
128 assert( nOp<=(1024/sizeof(Op)) );
129 assert( nNew>=(p->nOpAlloc+nOp) );
130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
131 if( pNew ){
132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
133 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
134 v->aOp = pNew;
136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
139 #ifdef SQLITE_DEBUG
140 /* This routine is just a convenient place to set a breakpoint that will
141 ** fire after each opcode is inserted and displayed using
142 ** "PRAGMA vdbe_addoptrace=on".
144 static void test_addop_breakpoint(void){
145 static int n = 0;
146 n++;
148 #endif
151 ** Add a new instruction to the list of instructions current in the
152 ** VDBE. Return the address of the new instruction.
154 ** Parameters:
156 ** p Pointer to the VDBE
158 ** op The opcode for this instruction
160 ** p1, p2, p3 Operands
162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
163 ** the sqlite3VdbeChangeP4() function to change the value of the P4
164 ** operand.
166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
167 assert( p->pParse->nOpAlloc<=p->nOp );
168 if( growOpArray(p, 1) ) return 1;
169 assert( p->pParse->nOpAlloc>p->nOp );
170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
173 int i;
174 VdbeOp *pOp;
176 i = p->nOp;
177 assert( p->magic==VDBE_MAGIC_INIT );
178 assert( op>=0 && op<0xff );
179 if( p->pParse->nOpAlloc<=i ){
180 return growOp3(p, op, p1, p2, p3);
182 p->nOp++;
183 pOp = &p->aOp[i];
184 pOp->opcode = (u8)op;
185 pOp->p5 = 0;
186 pOp->p1 = p1;
187 pOp->p2 = p2;
188 pOp->p3 = p3;
189 pOp->p4.p = 0;
190 pOp->p4type = P4_NOTUSED;
191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
192 pOp->zComment = 0;
193 #endif
194 #ifdef SQLITE_DEBUG
195 if( p->db->flags & SQLITE_VdbeAddopTrace ){
196 int jj, kk;
197 Parse *pParse = p->pParse;
198 for(jj=kk=0; jj<pParse->nColCache; jj++){
199 struct yColCache *x = pParse->aColCache + jj;
200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
201 kk++;
203 if( kk ) printf("\n");
204 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
205 test_addop_breakpoint();
207 #endif
208 #ifdef VDBE_PROFILE
209 pOp->cycles = 0;
210 pOp->cnt = 0;
211 #endif
212 #ifdef SQLITE_VDBE_COVERAGE
213 pOp->iSrcLine = 0;
214 #endif
215 return i;
217 int sqlite3VdbeAddOp0(Vdbe *p, int op){
218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
227 /* Generate code for an unconditional jump to instruction iDest
229 int sqlite3VdbeGoto(Vdbe *p, int iDest){
230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
233 /* Generate code to cause the string zStr to be loaded into
234 ** register iDest
236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
241 ** Generate code that initializes multiple registers to string or integer
242 ** constants. The registers begin with iDest and increase consecutively.
243 ** One register is initialized for each characgter in zTypes[]. For each
244 ** "s" character in zTypes[], the register is a string if the argument is
245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
246 ** in zTypes[], the register is initialized to an integer.
248 ** If the input string does not end with "X" then an OP_ResultRow instruction
249 ** is generated for the values inserted.
251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
252 va_list ap;
253 int i;
254 char c;
255 va_start(ap, zTypes);
256 for(i=0; (c = zTypes[i])!=0; i++){
257 if( c=='s' ){
258 const char *z = va_arg(ap, const char*);
259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
260 }else if( c=='i' ){
261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
262 }else{
263 goto skip_op_resultrow;
266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
267 skip_op_resultrow:
268 va_end(ap);
272 ** Add an opcode that includes the p4 value as a pointer.
274 int sqlite3VdbeAddOp4(
275 Vdbe *p, /* Add the opcode to this VM */
276 int op, /* The new opcode */
277 int p1, /* The P1 operand */
278 int p2, /* The P2 operand */
279 int p3, /* The P3 operand */
280 const char *zP4, /* The P4 operand */
281 int p4type /* P4 operand type */
283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
284 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
285 return addr;
289 ** Add an opcode that includes the p4 value with a P4_INT64 or
290 ** P4_REAL type.
292 int sqlite3VdbeAddOp4Dup8(
293 Vdbe *p, /* Add the opcode to this VM */
294 int op, /* The new opcode */
295 int p1, /* The P1 operand */
296 int p2, /* The P2 operand */
297 int p3, /* The P3 operand */
298 const u8 *zP4, /* The P4 operand */
299 int p4type /* P4 operand type */
301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
302 if( p4copy ) memcpy(p4copy, zP4, 8);
303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
307 ** Add an OP_ParseSchema opcode. This routine is broken out from
308 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
309 ** as having been used.
311 ** The zWhere string must have been obtained from sqlite3_malloc().
312 ** This routine will take ownership of the allocated memory.
314 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
315 int j;
316 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
317 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
321 ** Add an opcode that includes the p4 value as an integer.
323 int sqlite3VdbeAddOp4Int(
324 Vdbe *p, /* Add the opcode to this VM */
325 int op, /* The new opcode */
326 int p1, /* The P1 operand */
327 int p2, /* The P2 operand */
328 int p3, /* The P3 operand */
329 int p4 /* The P4 operand as an integer */
331 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
332 if( p->db->mallocFailed==0 ){
333 VdbeOp *pOp = &p->aOp[addr];
334 pOp->p4type = P4_INT32;
335 pOp->p4.i = p4;
337 return addr;
340 /* Insert the end of a co-routine
342 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
343 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
345 /* Clear the temporary register cache, thereby ensuring that each
346 ** co-routine has its own independent set of registers, because co-routines
347 ** might expect their registers to be preserved across an OP_Yield, and
348 ** that could cause problems if two or more co-routines are using the same
349 ** temporary register.
351 v->pParse->nTempReg = 0;
352 v->pParse->nRangeReg = 0;
356 ** Create a new symbolic label for an instruction that has yet to be
357 ** coded. The symbolic label is really just a negative number. The
358 ** label can be used as the P2 value of an operation. Later, when
359 ** the label is resolved to a specific address, the VDBE will scan
360 ** through its operation list and change all values of P2 which match
361 ** the label into the resolved address.
363 ** The VDBE knows that a P2 value is a label because labels are
364 ** always negative and P2 values are suppose to be non-negative.
365 ** Hence, a negative P2 value is a label that has yet to be resolved.
367 ** Zero is returned if a malloc() fails.
369 int sqlite3VdbeMakeLabel(Vdbe *v){
370 Parse *p = v->pParse;
371 int i = p->nLabel++;
372 assert( v->magic==VDBE_MAGIC_INIT );
373 if( (i & (i-1))==0 ){
374 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
375 (i*2+1)*sizeof(p->aLabel[0]));
377 if( p->aLabel ){
378 p->aLabel[i] = -1;
380 return ADDR(i);
384 ** Resolve label "x" to be the address of the next instruction to
385 ** be inserted. The parameter "x" must have been obtained from
386 ** a prior call to sqlite3VdbeMakeLabel().
388 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
389 Parse *p = v->pParse;
390 int j = ADDR(x);
391 assert( v->magic==VDBE_MAGIC_INIT );
392 assert( j<p->nLabel );
393 assert( j>=0 );
394 if( p->aLabel ){
395 p->aLabel[j] = v->nOp;
400 ** Mark the VDBE as one that can only be run one time.
402 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
403 p->runOnlyOnce = 1;
407 ** Mark the VDBE as one that can only be run multiple times.
409 void sqlite3VdbeReusable(Vdbe *p){
410 p->runOnlyOnce = 0;
413 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
416 ** The following type and function are used to iterate through all opcodes
417 ** in a Vdbe main program and each of the sub-programs (triggers) it may
418 ** invoke directly or indirectly. It should be used as follows:
420 ** Op *pOp;
421 ** VdbeOpIter sIter;
423 ** memset(&sIter, 0, sizeof(sIter));
424 ** sIter.v = v; // v is of type Vdbe*
425 ** while( (pOp = opIterNext(&sIter)) ){
426 ** // Do something with pOp
427 ** }
428 ** sqlite3DbFree(v->db, sIter.apSub);
431 typedef struct VdbeOpIter VdbeOpIter;
432 struct VdbeOpIter {
433 Vdbe *v; /* Vdbe to iterate through the opcodes of */
434 SubProgram **apSub; /* Array of subprograms */
435 int nSub; /* Number of entries in apSub */
436 int iAddr; /* Address of next instruction to return */
437 int iSub; /* 0 = main program, 1 = first sub-program etc. */
439 static Op *opIterNext(VdbeOpIter *p){
440 Vdbe *v = p->v;
441 Op *pRet = 0;
442 Op *aOp;
443 int nOp;
445 if( p->iSub<=p->nSub ){
447 if( p->iSub==0 ){
448 aOp = v->aOp;
449 nOp = v->nOp;
450 }else{
451 aOp = p->apSub[p->iSub-1]->aOp;
452 nOp = p->apSub[p->iSub-1]->nOp;
454 assert( p->iAddr<nOp );
456 pRet = &aOp[p->iAddr];
457 p->iAddr++;
458 if( p->iAddr==nOp ){
459 p->iSub++;
460 p->iAddr = 0;
463 if( pRet->p4type==P4_SUBPROGRAM ){
464 int nByte = (p->nSub+1)*sizeof(SubProgram*);
465 int j;
466 for(j=0; j<p->nSub; j++){
467 if( p->apSub[j]==pRet->p4.pProgram ) break;
469 if( j==p->nSub ){
470 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
471 if( !p->apSub ){
472 pRet = 0;
473 }else{
474 p->apSub[p->nSub++] = pRet->p4.pProgram;
480 return pRet;
484 ** Check if the program stored in the VM associated with pParse may
485 ** throw an ABORT exception (causing the statement, but not entire transaction
486 ** to be rolled back). This condition is true if the main program or any
487 ** sub-programs contains any of the following:
489 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
490 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
491 ** * OP_Destroy
492 ** * OP_VUpdate
493 ** * OP_VRename
494 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
495 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
496 ** (for CREATE TABLE AS SELECT ...)
498 ** Then check that the value of Parse.mayAbort is true if an
499 ** ABORT may be thrown, or false otherwise. Return true if it does
500 ** match, or false otherwise. This function is intended to be used as
501 ** part of an assert statement in the compiler. Similar to:
503 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
505 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
506 int hasAbort = 0;
507 int hasFkCounter = 0;
508 int hasCreateTable = 0;
509 int hasInitCoroutine = 0;
510 Op *pOp;
511 VdbeOpIter sIter;
512 memset(&sIter, 0, sizeof(sIter));
513 sIter.v = v;
515 while( (pOp = opIterNext(&sIter))!=0 ){
516 int opcode = pOp->opcode;
517 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
518 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
519 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
521 hasAbort = 1;
522 break;
524 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
525 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
526 #ifndef SQLITE_OMIT_FOREIGN_KEY
527 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
528 hasFkCounter = 1;
530 #endif
532 sqlite3DbFree(v->db, sIter.apSub);
534 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
535 ** If malloc failed, then the while() loop above may not have iterated
536 ** through all opcodes and hasAbort may be set incorrectly. Return
537 ** true for this case to prevent the assert() in the callers frame
538 ** from failing. */
539 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
540 || (hasCreateTable && hasInitCoroutine) );
542 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
545 ** This routine is called after all opcodes have been inserted. It loops
546 ** through all the opcodes and fixes up some details.
548 ** (1) For each jump instruction with a negative P2 value (a label)
549 ** resolve the P2 value to an actual address.
551 ** (2) Compute the maximum number of arguments used by any SQL function
552 ** and store that value in *pMaxFuncArgs.
554 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
555 ** indicate what the prepared statement actually does.
557 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
559 ** (5) Reclaim the memory allocated for storing labels.
561 ** This routine will only function correctly if the mkopcodeh.tcl generator
562 ** script numbers the opcodes correctly. Changes to this routine must be
563 ** coordinated with changes to mkopcodeh.tcl.
565 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
566 int nMaxArgs = *pMaxFuncArgs;
567 Op *pOp;
568 Parse *pParse = p->pParse;
569 int *aLabel = pParse->aLabel;
570 p->readOnly = 1;
571 p->bIsReader = 0;
572 pOp = &p->aOp[p->nOp-1];
573 while(1){
575 /* Only JUMP opcodes and the short list of special opcodes in the switch
576 ** below need to be considered. The mkopcodeh.tcl generator script groups
577 ** all these opcodes together near the front of the opcode list. Skip
578 ** any opcode that does not need processing by virtual of the fact that
579 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
581 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
582 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
583 ** cases from this switch! */
584 switch( pOp->opcode ){
585 case OP_Transaction: {
586 if( pOp->p2!=0 ) p->readOnly = 0;
587 /* fall thru */
589 case OP_AutoCommit:
590 case OP_Savepoint: {
591 p->bIsReader = 1;
592 break;
594 #ifndef SQLITE_OMIT_WAL
595 case OP_Checkpoint:
596 #endif
597 case OP_Vacuum:
598 case OP_JournalMode: {
599 p->readOnly = 0;
600 p->bIsReader = 1;
601 break;
603 case OP_Next:
604 case OP_NextIfOpen:
605 case OP_SorterNext: {
606 pOp->p4.xAdvance = sqlite3BtreeNext;
607 pOp->p4type = P4_ADVANCE;
608 /* The code generator never codes any of these opcodes as a jump
609 ** to a label. They are always coded as a jump backwards to a
610 ** known address */
611 assert( pOp->p2>=0 );
612 break;
614 case OP_Prev:
615 case OP_PrevIfOpen: {
616 pOp->p4.xAdvance = sqlite3BtreePrevious;
617 pOp->p4type = P4_ADVANCE;
618 /* The code generator never codes any of these opcodes as a jump
619 ** to a label. They are always coded as a jump backwards to a
620 ** known address */
621 assert( pOp->p2>=0 );
622 break;
624 #ifndef SQLITE_OMIT_VIRTUALTABLE
625 case OP_VUpdate: {
626 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
627 break;
629 case OP_VFilter: {
630 int n;
631 assert( (pOp - p->aOp) >= 3 );
632 assert( pOp[-1].opcode==OP_Integer );
633 n = pOp[-1].p1;
634 if( n>nMaxArgs ) nMaxArgs = n;
635 /* Fall through into the default case */
637 #endif
638 default: {
639 if( pOp->p2<0 ){
640 /* The mkopcodeh.tcl script has so arranged things that the only
641 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
642 ** have non-negative values for P2. */
643 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
644 assert( ADDR(pOp->p2)<pParse->nLabel );
645 pOp->p2 = aLabel[ADDR(pOp->p2)];
647 break;
650 /* The mkopcodeh.tcl script has so arranged things that the only
651 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
652 ** have non-negative values for P2. */
653 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
655 if( pOp==p->aOp ) break;
656 pOp--;
658 sqlite3DbFree(p->db, pParse->aLabel);
659 pParse->aLabel = 0;
660 pParse->nLabel = 0;
661 *pMaxFuncArgs = nMaxArgs;
662 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
666 ** Return the address of the next instruction to be inserted.
668 int sqlite3VdbeCurrentAddr(Vdbe *p){
669 assert( p->magic==VDBE_MAGIC_INIT );
670 return p->nOp;
674 ** Verify that at least N opcode slots are available in p without
675 ** having to malloc for more space (except when compiled using
676 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
677 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
678 ** fail due to a OOM fault and hence that the return value from
679 ** sqlite3VdbeAddOpList() will always be non-NULL.
681 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
682 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
683 assert( p->nOp + N <= p->pParse->nOpAlloc );
685 #endif
688 ** Verify that the VM passed as the only argument does not contain
689 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
690 ** by code in pragma.c to ensure that the implementation of certain
691 ** pragmas comports with the flags specified in the mkpragmatab.tcl
692 ** script.
694 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
695 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
696 int i;
697 for(i=0; i<p->nOp; i++){
698 assert( p->aOp[i].opcode!=OP_ResultRow );
701 #endif
704 ** This function returns a pointer to the array of opcodes associated with
705 ** the Vdbe passed as the first argument. It is the callers responsibility
706 ** to arrange for the returned array to be eventually freed using the
707 ** vdbeFreeOpArray() function.
709 ** Before returning, *pnOp is set to the number of entries in the returned
710 ** array. Also, *pnMaxArg is set to the larger of its current value and
711 ** the number of entries in the Vdbe.apArg[] array required to execute the
712 ** returned program.
714 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
715 VdbeOp *aOp = p->aOp;
716 assert( aOp && !p->db->mallocFailed );
718 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
719 assert( DbMaskAllZero(p->btreeMask) );
721 resolveP2Values(p, pnMaxArg);
722 *pnOp = p->nOp;
723 p->aOp = 0;
724 return aOp;
728 ** Add a whole list of operations to the operation stack. Return a
729 ** pointer to the first operation inserted.
731 ** Non-zero P2 arguments to jump instructions are automatically adjusted
732 ** so that the jump target is relative to the first operation inserted.
734 VdbeOp *sqlite3VdbeAddOpList(
735 Vdbe *p, /* Add opcodes to the prepared statement */
736 int nOp, /* Number of opcodes to add */
737 VdbeOpList const *aOp, /* The opcodes to be added */
738 int iLineno /* Source-file line number of first opcode */
740 int i;
741 VdbeOp *pOut, *pFirst;
742 assert( nOp>0 );
743 assert( p->magic==VDBE_MAGIC_INIT );
744 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
745 return 0;
747 pFirst = pOut = &p->aOp[p->nOp];
748 for(i=0; i<nOp; i++, aOp++, pOut++){
749 pOut->opcode = aOp->opcode;
750 pOut->p1 = aOp->p1;
751 pOut->p2 = aOp->p2;
752 assert( aOp->p2>=0 );
753 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
754 pOut->p2 += p->nOp;
756 pOut->p3 = aOp->p3;
757 pOut->p4type = P4_NOTUSED;
758 pOut->p4.p = 0;
759 pOut->p5 = 0;
760 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
761 pOut->zComment = 0;
762 #endif
763 #ifdef SQLITE_VDBE_COVERAGE
764 pOut->iSrcLine = iLineno+i;
765 #else
766 (void)iLineno;
767 #endif
768 #ifdef SQLITE_DEBUG
769 if( p->db->flags & SQLITE_VdbeAddopTrace ){
770 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
772 #endif
774 p->nOp += nOp;
775 return pFirst;
778 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
780 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
782 void sqlite3VdbeScanStatus(
783 Vdbe *p, /* VM to add scanstatus() to */
784 int addrExplain, /* Address of OP_Explain (or 0) */
785 int addrLoop, /* Address of loop counter */
786 int addrVisit, /* Address of rows visited counter */
787 LogEst nEst, /* Estimated number of output rows */
788 const char *zName /* Name of table or index being scanned */
790 int nByte = (p->nScan+1) * sizeof(ScanStatus);
791 ScanStatus *aNew;
792 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
793 if( aNew ){
794 ScanStatus *pNew = &aNew[p->nScan++];
795 pNew->addrExplain = addrExplain;
796 pNew->addrLoop = addrLoop;
797 pNew->addrVisit = addrVisit;
798 pNew->nEst = nEst;
799 pNew->zName = sqlite3DbStrDup(p->db, zName);
800 p->aScan = aNew;
803 #endif
807 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
808 ** for a specific instruction.
810 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
811 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
813 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
814 sqlite3VdbeGetOp(p,addr)->p1 = val;
816 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
817 sqlite3VdbeGetOp(p,addr)->p2 = val;
819 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
820 sqlite3VdbeGetOp(p,addr)->p3 = val;
822 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
823 assert( p->nOp>0 || p->db->mallocFailed );
824 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
828 ** Change the P2 operand of instruction addr so that it points to
829 ** the address of the next instruction to be coded.
831 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
832 sqlite3VdbeChangeP2(p, addr, p->nOp);
837 ** If the input FuncDef structure is ephemeral, then free it. If
838 ** the FuncDef is not ephermal, then do nothing.
840 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
841 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
842 sqlite3DbFreeNN(db, pDef);
846 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
849 ** Delete a P4 value if necessary.
851 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
852 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
853 sqlite3DbFreeNN(db, p);
855 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
856 freeEphemeralFunction(db, p->pFunc);
857 sqlite3DbFreeNN(db, p);
859 static void freeP4(sqlite3 *db, int p4type, void *p4){
860 assert( db );
861 switch( p4type ){
862 case P4_FUNCCTX: {
863 freeP4FuncCtx(db, (sqlite3_context*)p4);
864 break;
866 case P4_REAL:
867 case P4_INT64:
868 case P4_DYNAMIC:
869 case P4_DYNBLOB:
870 case P4_INTARRAY: {
871 sqlite3DbFree(db, p4);
872 break;
874 case P4_KEYINFO: {
875 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
876 break;
878 #ifdef SQLITE_ENABLE_CURSOR_HINTS
879 case P4_EXPR: {
880 sqlite3ExprDelete(db, (Expr*)p4);
881 break;
883 #endif
884 case P4_FUNCDEF: {
885 freeEphemeralFunction(db, (FuncDef*)p4);
886 break;
888 case P4_MEM: {
889 if( db->pnBytesFreed==0 ){
890 sqlite3ValueFree((sqlite3_value*)p4);
891 }else{
892 freeP4Mem(db, (Mem*)p4);
894 break;
896 case P4_VTAB : {
897 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
898 break;
904 ** Free the space allocated for aOp and any p4 values allocated for the
905 ** opcodes contained within. If aOp is not NULL it is assumed to contain
906 ** nOp entries.
908 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
909 if( aOp ){
910 Op *pOp;
911 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
912 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
913 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
914 sqlite3DbFree(db, pOp->zComment);
915 #endif
917 sqlite3DbFreeNN(db, aOp);
922 ** Link the SubProgram object passed as the second argument into the linked
923 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
924 ** objects when the VM is no longer required.
926 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
927 p->pNext = pVdbe->pProgram;
928 pVdbe->pProgram = p;
932 ** Change the opcode at addr into OP_Noop
934 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
935 VdbeOp *pOp;
936 if( p->db->mallocFailed ) return 0;
937 assert( addr>=0 && addr<p->nOp );
938 pOp = &p->aOp[addr];
939 freeP4(p->db, pOp->p4type, pOp->p4.p);
940 pOp->p4type = P4_NOTUSED;
941 pOp->p4.z = 0;
942 pOp->opcode = OP_Noop;
943 return 1;
947 ** If the last opcode is "op" and it is not a jump destination,
948 ** then remove it. Return true if and only if an opcode was removed.
950 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
951 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
952 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
953 }else{
954 return 0;
959 ** Change the value of the P4 operand for a specific instruction.
960 ** This routine is useful when a large program is loaded from a
961 ** static array using sqlite3VdbeAddOpList but we want to make a
962 ** few minor changes to the program.
964 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
965 ** the string is made into memory obtained from sqlite3_malloc().
966 ** A value of n==0 means copy bytes of zP4 up to and including the
967 ** first null byte. If n>0 then copy n+1 bytes of zP4.
969 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
970 ** to a string or structure that is guaranteed to exist for the lifetime of
971 ** the Vdbe. In these cases we can just copy the pointer.
973 ** If addr<0 then change P4 on the most recently inserted instruction.
975 static void SQLITE_NOINLINE vdbeChangeP4Full(
976 Vdbe *p,
977 Op *pOp,
978 const char *zP4,
979 int n
981 if( pOp->p4type ){
982 freeP4(p->db, pOp->p4type, pOp->p4.p);
983 pOp->p4type = 0;
984 pOp->p4.p = 0;
986 if( n<0 ){
987 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
988 }else{
989 if( n==0 ) n = sqlite3Strlen30(zP4);
990 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
991 pOp->p4type = P4_DYNAMIC;
994 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
995 Op *pOp;
996 sqlite3 *db;
997 assert( p!=0 );
998 db = p->db;
999 assert( p->magic==VDBE_MAGIC_INIT );
1000 assert( p->aOp!=0 || db->mallocFailed );
1001 if( db->mallocFailed ){
1002 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1003 return;
1005 assert( p->nOp>0 );
1006 assert( addr<p->nOp );
1007 if( addr<0 ){
1008 addr = p->nOp - 1;
1010 pOp = &p->aOp[addr];
1011 if( n>=0 || pOp->p4type ){
1012 vdbeChangeP4Full(p, pOp, zP4, n);
1013 return;
1015 if( n==P4_INT32 ){
1016 /* Note: this cast is safe, because the origin data point was an int
1017 ** that was cast to a (const char *). */
1018 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1019 pOp->p4type = P4_INT32;
1020 }else if( zP4!=0 ){
1021 assert( n<0 );
1022 pOp->p4.p = (void*)zP4;
1023 pOp->p4type = (signed char)n;
1024 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1029 ** Change the P4 operand of the most recently coded instruction
1030 ** to the value defined by the arguments. This is a high-speed
1031 ** version of sqlite3VdbeChangeP4().
1033 ** The P4 operand must not have been previously defined. And the new
1034 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1035 ** those cases.
1037 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1038 VdbeOp *pOp;
1039 assert( n!=P4_INT32 && n!=P4_VTAB );
1040 assert( n<=0 );
1041 if( p->db->mallocFailed ){
1042 freeP4(p->db, n, pP4);
1043 }else{
1044 assert( pP4!=0 );
1045 assert( p->nOp>0 );
1046 pOp = &p->aOp[p->nOp-1];
1047 assert( pOp->p4type==P4_NOTUSED );
1048 pOp->p4type = n;
1049 pOp->p4.p = pP4;
1054 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1055 ** index given.
1057 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1058 Vdbe *v = pParse->pVdbe;
1059 KeyInfo *pKeyInfo;
1060 assert( v!=0 );
1061 assert( pIdx!=0 );
1062 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1063 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1066 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1068 ** Change the comment on the most recently coded instruction. Or
1069 ** insert a No-op and add the comment to that new instruction. This
1070 ** makes the code easier to read during debugging. None of this happens
1071 ** in a production build.
1073 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1074 assert( p->nOp>0 || p->aOp==0 );
1075 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1076 if( p->nOp ){
1077 assert( p->aOp );
1078 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1079 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1082 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1083 va_list ap;
1084 if( p ){
1085 va_start(ap, zFormat);
1086 vdbeVComment(p, zFormat, ap);
1087 va_end(ap);
1090 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1091 va_list ap;
1092 if( p ){
1093 sqlite3VdbeAddOp0(p, OP_Noop);
1094 va_start(ap, zFormat);
1095 vdbeVComment(p, zFormat, ap);
1096 va_end(ap);
1099 #endif /* NDEBUG */
1101 #ifdef SQLITE_VDBE_COVERAGE
1103 ** Set the value if the iSrcLine field for the previously coded instruction.
1105 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1106 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1108 #endif /* SQLITE_VDBE_COVERAGE */
1111 ** Return the opcode for a given address. If the address is -1, then
1112 ** return the most recently inserted opcode.
1114 ** If a memory allocation error has occurred prior to the calling of this
1115 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1116 ** is readable but not writable, though it is cast to a writable value.
1117 ** The return of a dummy opcode allows the call to continue functioning
1118 ** after an OOM fault without having to check to see if the return from
1119 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1120 ** dummy will never be written to. This is verified by code inspection and
1121 ** by running with Valgrind.
1123 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1124 /* C89 specifies that the constant "dummy" will be initialized to all
1125 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1126 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1127 assert( p->magic==VDBE_MAGIC_INIT );
1128 if( addr<0 ){
1129 addr = p->nOp - 1;
1131 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1132 if( p->db->mallocFailed ){
1133 return (VdbeOp*)&dummy;
1134 }else{
1135 return &p->aOp[addr];
1139 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1141 ** Return an integer value for one of the parameters to the opcode pOp
1142 ** determined by character c.
1144 static int translateP(char c, const Op *pOp){
1145 if( c=='1' ) return pOp->p1;
1146 if( c=='2' ) return pOp->p2;
1147 if( c=='3' ) return pOp->p3;
1148 if( c=='4' ) return pOp->p4.i;
1149 return pOp->p5;
1153 ** Compute a string for the "comment" field of a VDBE opcode listing.
1155 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1156 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1157 ** absence of other comments, this synopsis becomes the comment on the opcode.
1158 ** Some translation occurs:
1160 ** "PX" -> "r[X]"
1161 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1162 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1163 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1165 static int displayComment(
1166 const Op *pOp, /* The opcode to be commented */
1167 const char *zP4, /* Previously obtained value for P4 */
1168 char *zTemp, /* Write result here */
1169 int nTemp /* Space available in zTemp[] */
1171 const char *zOpName;
1172 const char *zSynopsis;
1173 int nOpName;
1174 int ii, jj;
1175 char zAlt[50];
1176 zOpName = sqlite3OpcodeName(pOp->opcode);
1177 nOpName = sqlite3Strlen30(zOpName);
1178 if( zOpName[nOpName+1] ){
1179 int seenCom = 0;
1180 char c;
1181 zSynopsis = zOpName += nOpName + 1;
1182 if( strncmp(zSynopsis,"IF ",3)==0 ){
1183 if( pOp->p5 & SQLITE_STOREP2 ){
1184 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1185 }else{
1186 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1188 zSynopsis = zAlt;
1190 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1191 if( c=='P' ){
1192 c = zSynopsis[++ii];
1193 if( c=='4' ){
1194 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1195 }else if( c=='X' ){
1196 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1197 seenCom = 1;
1198 }else{
1199 int v1 = translateP(c, pOp);
1200 int v2;
1201 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1202 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1203 ii += 3;
1204 jj += sqlite3Strlen30(zTemp+jj);
1205 v2 = translateP(zSynopsis[ii], pOp);
1206 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1207 ii += 2;
1208 v2++;
1210 if( v2>1 ){
1211 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1213 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1214 ii += 4;
1217 jj += sqlite3Strlen30(zTemp+jj);
1218 }else{
1219 zTemp[jj++] = c;
1222 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1223 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1224 jj += sqlite3Strlen30(zTemp+jj);
1226 if( jj<nTemp ) zTemp[jj] = 0;
1227 }else if( pOp->zComment ){
1228 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1229 jj = sqlite3Strlen30(zTemp);
1230 }else{
1231 zTemp[0] = 0;
1232 jj = 0;
1234 return jj;
1236 #endif /* SQLITE_DEBUG */
1238 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1240 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1241 ** that can be displayed in the P4 column of EXPLAIN output.
1243 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1244 const char *zOp = 0;
1245 switch( pExpr->op ){
1246 case TK_STRING:
1247 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1248 break;
1249 case TK_INTEGER:
1250 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1251 break;
1252 case TK_NULL:
1253 sqlite3XPrintf(p, "NULL");
1254 break;
1255 case TK_REGISTER: {
1256 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1257 break;
1259 case TK_COLUMN: {
1260 if( pExpr->iColumn<0 ){
1261 sqlite3XPrintf(p, "rowid");
1262 }else{
1263 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1265 break;
1267 case TK_LT: zOp = "LT"; break;
1268 case TK_LE: zOp = "LE"; break;
1269 case TK_GT: zOp = "GT"; break;
1270 case TK_GE: zOp = "GE"; break;
1271 case TK_NE: zOp = "NE"; break;
1272 case TK_EQ: zOp = "EQ"; break;
1273 case TK_IS: zOp = "IS"; break;
1274 case TK_ISNOT: zOp = "ISNOT"; break;
1275 case TK_AND: zOp = "AND"; break;
1276 case TK_OR: zOp = "OR"; break;
1277 case TK_PLUS: zOp = "ADD"; break;
1278 case TK_STAR: zOp = "MUL"; break;
1279 case TK_MINUS: zOp = "SUB"; break;
1280 case TK_REM: zOp = "REM"; break;
1281 case TK_BITAND: zOp = "BITAND"; break;
1282 case TK_BITOR: zOp = "BITOR"; break;
1283 case TK_SLASH: zOp = "DIV"; break;
1284 case TK_LSHIFT: zOp = "LSHIFT"; break;
1285 case TK_RSHIFT: zOp = "RSHIFT"; break;
1286 case TK_CONCAT: zOp = "CONCAT"; break;
1287 case TK_UMINUS: zOp = "MINUS"; break;
1288 case TK_UPLUS: zOp = "PLUS"; break;
1289 case TK_BITNOT: zOp = "BITNOT"; break;
1290 case TK_NOT: zOp = "NOT"; break;
1291 case TK_ISNULL: zOp = "ISNULL"; break;
1292 case TK_NOTNULL: zOp = "NOTNULL"; break;
1294 default:
1295 sqlite3XPrintf(p, "%s", "expr");
1296 break;
1299 if( zOp ){
1300 sqlite3XPrintf(p, "%s(", zOp);
1301 displayP4Expr(p, pExpr->pLeft);
1302 if( pExpr->pRight ){
1303 sqlite3StrAccumAppend(p, ",", 1);
1304 displayP4Expr(p, pExpr->pRight);
1306 sqlite3StrAccumAppend(p, ")", 1);
1309 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1312 #if VDBE_DISPLAY_P4
1314 ** Compute a string that describes the P4 parameter for an opcode.
1315 ** Use zTemp for any required temporary buffer space.
1317 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1318 char *zP4 = zTemp;
1319 StrAccum x;
1320 assert( nTemp>=20 );
1321 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1322 switch( pOp->p4type ){
1323 case P4_KEYINFO: {
1324 int j;
1325 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1326 assert( pKeyInfo->aSortOrder!=0 );
1327 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField);
1328 for(j=0; j<pKeyInfo->nKeyField; j++){
1329 CollSeq *pColl = pKeyInfo->aColl[j];
1330 const char *zColl = pColl ? pColl->zName : "";
1331 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1332 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1334 sqlite3StrAccumAppend(&x, ")", 1);
1335 break;
1337 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1338 case P4_EXPR: {
1339 displayP4Expr(&x, pOp->p4.pExpr);
1340 break;
1342 #endif
1343 case P4_COLLSEQ: {
1344 CollSeq *pColl = pOp->p4.pColl;
1345 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1346 break;
1348 case P4_FUNCDEF: {
1349 FuncDef *pDef = pOp->p4.pFunc;
1350 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1351 break;
1353 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1354 case P4_FUNCCTX: {
1355 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1356 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1357 break;
1359 #endif
1360 case P4_INT64: {
1361 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1362 break;
1364 case P4_INT32: {
1365 sqlite3XPrintf(&x, "%d", pOp->p4.i);
1366 break;
1368 case P4_REAL: {
1369 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1370 break;
1372 case P4_MEM: {
1373 Mem *pMem = pOp->p4.pMem;
1374 if( pMem->flags & MEM_Str ){
1375 zP4 = pMem->z;
1376 }else if( pMem->flags & MEM_Int ){
1377 sqlite3XPrintf(&x, "%lld", pMem->u.i);
1378 }else if( pMem->flags & MEM_Real ){
1379 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1380 }else if( pMem->flags & MEM_Null ){
1381 zP4 = "NULL";
1382 }else{
1383 assert( pMem->flags & MEM_Blob );
1384 zP4 = "(blob)";
1386 break;
1388 #ifndef SQLITE_OMIT_VIRTUALTABLE
1389 case P4_VTAB: {
1390 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1391 sqlite3XPrintf(&x, "vtab:%p", pVtab);
1392 break;
1394 #endif
1395 case P4_INTARRAY: {
1396 int i;
1397 int *ai = pOp->p4.ai;
1398 int n = ai[0]; /* The first element of an INTARRAY is always the
1399 ** count of the number of elements to follow */
1400 for(i=1; i<=n; i++){
1401 sqlite3XPrintf(&x, ",%d", ai[i]);
1403 zTemp[0] = '[';
1404 sqlite3StrAccumAppend(&x, "]", 1);
1405 break;
1407 case P4_SUBPROGRAM: {
1408 sqlite3XPrintf(&x, "program");
1409 break;
1411 case P4_DYNBLOB:
1412 case P4_ADVANCE: {
1413 zTemp[0] = 0;
1414 break;
1416 case P4_TABLE: {
1417 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1418 break;
1420 default: {
1421 zP4 = pOp->p4.z;
1422 if( zP4==0 ){
1423 zP4 = zTemp;
1424 zTemp[0] = 0;
1428 sqlite3StrAccumFinish(&x);
1429 assert( zP4!=0 );
1430 return zP4;
1432 #endif /* VDBE_DISPLAY_P4 */
1435 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1437 ** The prepared statements need to know in advance the complete set of
1438 ** attached databases that will be use. A mask of these databases
1439 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1440 ** p->btreeMask of databases that will require a lock.
1442 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1443 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1444 assert( i<(int)sizeof(p->btreeMask)*8 );
1445 DbMaskSet(p->btreeMask, i);
1446 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1447 DbMaskSet(p->lockMask, i);
1451 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1453 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1454 ** this routine obtains the mutex associated with each BtShared structure
1455 ** that may be accessed by the VM passed as an argument. In doing so it also
1456 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1457 ** that the correct busy-handler callback is invoked if required.
1459 ** If SQLite is not threadsafe but does support shared-cache mode, then
1460 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1461 ** of all of BtShared structures accessible via the database handle
1462 ** associated with the VM.
1464 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1465 ** function is a no-op.
1467 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1468 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1469 ** corresponding to btrees that use shared cache. Then the runtime of
1470 ** this routine is N*N. But as N is rarely more than 1, this should not
1471 ** be a problem.
1473 void sqlite3VdbeEnter(Vdbe *p){
1474 int i;
1475 sqlite3 *db;
1476 Db *aDb;
1477 int nDb;
1478 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1479 db = p->db;
1480 aDb = db->aDb;
1481 nDb = db->nDb;
1482 for(i=0; i<nDb; i++){
1483 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1484 sqlite3BtreeEnter(aDb[i].pBt);
1488 #endif
1490 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1492 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1494 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1495 int i;
1496 sqlite3 *db;
1497 Db *aDb;
1498 int nDb;
1499 db = p->db;
1500 aDb = db->aDb;
1501 nDb = db->nDb;
1502 for(i=0; i<nDb; i++){
1503 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1504 sqlite3BtreeLeave(aDb[i].pBt);
1508 void sqlite3VdbeLeave(Vdbe *p){
1509 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1510 vdbeLeave(p);
1512 #endif
1514 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1516 ** Print a single opcode. This routine is used for debugging only.
1518 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1519 char *zP4;
1520 char zPtr[50];
1521 char zCom[100];
1522 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1523 if( pOut==0 ) pOut = stdout;
1524 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1525 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1526 displayComment(pOp, zP4, zCom, sizeof(zCom));
1527 #else
1528 zCom[0] = 0;
1529 #endif
1530 /* NB: The sqlite3OpcodeName() function is implemented by code created
1531 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1532 ** information from the vdbe.c source text */
1533 fprintf(pOut, zFormat1, pc,
1534 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1535 zCom
1537 fflush(pOut);
1539 #endif
1542 ** Initialize an array of N Mem element.
1544 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1545 while( (N--)>0 ){
1546 p->db = db;
1547 p->flags = flags;
1548 p->szMalloc = 0;
1549 #ifdef SQLITE_DEBUG
1550 p->pScopyFrom = 0;
1551 #endif
1552 p++;
1557 ** Release an array of N Mem elements
1559 static void releaseMemArray(Mem *p, int N){
1560 if( p && N ){
1561 Mem *pEnd = &p[N];
1562 sqlite3 *db = p->db;
1563 if( db->pnBytesFreed ){
1565 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1566 }while( (++p)<pEnd );
1567 return;
1570 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1571 assert( sqlite3VdbeCheckMemInvariants(p) );
1573 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1574 ** that takes advantage of the fact that the memory cell value is
1575 ** being set to NULL after releasing any dynamic resources.
1577 ** The justification for duplicating code is that according to
1578 ** callgrind, this causes a certain test case to hit the CPU 4.7
1579 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1580 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1581 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1582 ** with no indexes using a single prepared INSERT statement, bind()
1583 ** and reset(). Inserts are grouped into a transaction.
1585 testcase( p->flags & MEM_Agg );
1586 testcase( p->flags & MEM_Dyn );
1587 testcase( p->flags & MEM_Frame );
1588 testcase( p->flags & MEM_RowSet );
1589 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1590 sqlite3VdbeMemRelease(p);
1591 }else if( p->szMalloc ){
1592 sqlite3DbFreeNN(db, p->zMalloc);
1593 p->szMalloc = 0;
1596 p->flags = MEM_Undefined;
1597 }while( (++p)<pEnd );
1602 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1603 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1605 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1606 int i;
1607 Mem *aMem = VdbeFrameMem(p);
1608 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1609 for(i=0; i<p->nChildCsr; i++){
1610 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1612 releaseMemArray(aMem, p->nChildMem);
1613 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1614 sqlite3DbFree(p->v->db, p);
1617 #ifndef SQLITE_OMIT_EXPLAIN
1619 ** Give a listing of the program in the virtual machine.
1621 ** The interface is the same as sqlite3VdbeExec(). But instead of
1622 ** running the code, it invokes the callback once for each instruction.
1623 ** This feature is used to implement "EXPLAIN".
1625 ** When p->explain==1, each instruction is listed. When
1626 ** p->explain==2, only OP_Explain instructions are listed and these
1627 ** are shown in a different format. p->explain==2 is used to implement
1628 ** EXPLAIN QUERY PLAN.
1630 ** When p->explain==1, first the main program is listed, then each of
1631 ** the trigger subprograms are listed one by one.
1633 int sqlite3VdbeList(
1634 Vdbe *p /* The VDBE */
1636 int nRow; /* Stop when row count reaches this */
1637 int nSub = 0; /* Number of sub-vdbes seen so far */
1638 SubProgram **apSub = 0; /* Array of sub-vdbes */
1639 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1640 sqlite3 *db = p->db; /* The database connection */
1641 int i; /* Loop counter */
1642 int rc = SQLITE_OK; /* Return code */
1643 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1644 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1645 Op *pOp = 0;
1647 assert( p->explain );
1648 assert( p->magic==VDBE_MAGIC_RUN );
1649 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1651 /* Even though this opcode does not use dynamic strings for
1652 ** the result, result columns may become dynamic if the user calls
1653 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1655 releaseMemArray(pMem, 8);
1656 p->pResultSet = 0;
1658 if( p->rc==SQLITE_NOMEM ){
1659 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1660 ** sqlite3_column_text16() failed. */
1661 sqlite3OomFault(db);
1662 return SQLITE_ERROR;
1665 /* When the number of output rows reaches nRow, that means the
1666 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1667 ** nRow is the sum of the number of rows in the main program, plus
1668 ** the sum of the number of rows in all trigger subprograms encountered
1669 ** so far. The nRow value will increase as new trigger subprograms are
1670 ** encountered, but p->pc will eventually catch up to nRow.
1672 nRow = p->nOp;
1673 if( bListSubprogs ){
1674 /* The first 8 memory cells are used for the result set. So we will
1675 ** commandeer the 9th cell to use as storage for an array of pointers
1676 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1677 ** cells. */
1678 assert( p->nMem>9 );
1679 pSub = &p->aMem[9];
1680 if( pSub->flags&MEM_Blob ){
1681 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1682 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1683 nSub = pSub->n/sizeof(Vdbe*);
1684 apSub = (SubProgram **)pSub->z;
1686 for(i=0; i<nSub; i++){
1687 nRow += apSub[i]->nOp;
1692 i = p->pc++;
1693 if( i>=nRow ){
1694 p->rc = SQLITE_OK;
1695 rc = SQLITE_DONE;
1696 break;
1698 if( i<p->nOp ){
1699 /* The output line number is small enough that we are still in the
1700 ** main program. */
1701 pOp = &p->aOp[i];
1702 }else{
1703 /* We are currently listing subprograms. Figure out which one and
1704 ** pick up the appropriate opcode. */
1705 int j;
1706 i -= p->nOp;
1707 for(j=0; i>=apSub[j]->nOp; j++){
1708 i -= apSub[j]->nOp;
1710 pOp = &apSub[j]->aOp[i];
1713 /* When an OP_Program opcode is encounter (the only opcode that has
1714 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1715 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1716 ** has not already been seen.
1718 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
1719 int nByte = (nSub+1)*sizeof(SubProgram*);
1720 int j;
1721 for(j=0; j<nSub; j++){
1722 if( apSub[j]==pOp->p4.pProgram ) break;
1724 if( j==nSub ){
1725 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
1726 if( p->rc!=SQLITE_OK ){
1727 rc = SQLITE_ERROR;
1728 break;
1730 apSub = (SubProgram **)pSub->z;
1731 apSub[nSub++] = pOp->p4.pProgram;
1732 pSub->flags |= MEM_Blob;
1733 pSub->n = nSub*sizeof(SubProgram*);
1734 nRow += pOp->p4.pProgram->nOp;
1737 }while( p->explain==2 && pOp->opcode!=OP_Explain );
1739 if( rc==SQLITE_OK ){
1740 if( db->u1.isInterrupted ){
1741 p->rc = SQLITE_INTERRUPT;
1742 rc = SQLITE_ERROR;
1743 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1744 }else{
1745 char *zP4;
1746 if( p->explain==1 ){
1747 pMem->flags = MEM_Int;
1748 pMem->u.i = i; /* Program counter */
1749 pMem++;
1751 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1752 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1753 assert( pMem->z!=0 );
1754 pMem->n = sqlite3Strlen30(pMem->z);
1755 pMem->enc = SQLITE_UTF8;
1756 pMem++;
1759 pMem->flags = MEM_Int;
1760 pMem->u.i = pOp->p1; /* P1 */
1761 pMem++;
1763 pMem->flags = MEM_Int;
1764 pMem->u.i = pOp->p2; /* P2 */
1765 pMem++;
1767 pMem->flags = MEM_Int;
1768 pMem->u.i = pOp->p3; /* P3 */
1769 pMem++;
1771 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1772 assert( p->db->mallocFailed );
1773 return SQLITE_ERROR;
1775 pMem->flags = MEM_Str|MEM_Term;
1776 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1777 if( zP4!=pMem->z ){
1778 pMem->n = 0;
1779 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1780 }else{
1781 assert( pMem->z!=0 );
1782 pMem->n = sqlite3Strlen30(pMem->z);
1783 pMem->enc = SQLITE_UTF8;
1785 pMem++;
1787 if( p->explain==1 ){
1788 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1789 assert( p->db->mallocFailed );
1790 return SQLITE_ERROR;
1792 pMem->flags = MEM_Str|MEM_Term;
1793 pMem->n = 2;
1794 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1795 pMem->enc = SQLITE_UTF8;
1796 pMem++;
1798 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1799 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1800 assert( p->db->mallocFailed );
1801 return SQLITE_ERROR;
1803 pMem->flags = MEM_Str|MEM_Term;
1804 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1805 pMem->enc = SQLITE_UTF8;
1806 #else
1807 pMem->flags = MEM_Null; /* Comment */
1808 #endif
1811 p->nResColumn = 8 - 4*(p->explain-1);
1812 p->pResultSet = &p->aMem[1];
1813 p->rc = SQLITE_OK;
1814 rc = SQLITE_ROW;
1817 return rc;
1819 #endif /* SQLITE_OMIT_EXPLAIN */
1821 #ifdef SQLITE_DEBUG
1823 ** Print the SQL that was used to generate a VDBE program.
1825 void sqlite3VdbePrintSql(Vdbe *p){
1826 const char *z = 0;
1827 if( p->zSql ){
1828 z = p->zSql;
1829 }else if( p->nOp>=1 ){
1830 const VdbeOp *pOp = &p->aOp[0];
1831 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1832 z = pOp->p4.z;
1833 while( sqlite3Isspace(*z) ) z++;
1836 if( z ) printf("SQL: [%s]\n", z);
1838 #endif
1840 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1842 ** Print an IOTRACE message showing SQL content.
1844 void sqlite3VdbeIOTraceSql(Vdbe *p){
1845 int nOp = p->nOp;
1846 VdbeOp *pOp;
1847 if( sqlite3IoTrace==0 ) return;
1848 if( nOp<1 ) return;
1849 pOp = &p->aOp[0];
1850 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1851 int i, j;
1852 char z[1000];
1853 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1854 for(i=0; sqlite3Isspace(z[i]); i++){}
1855 for(j=0; z[i]; i++){
1856 if( sqlite3Isspace(z[i]) ){
1857 if( z[i-1]!=' ' ){
1858 z[j++] = ' ';
1860 }else{
1861 z[j++] = z[i];
1864 z[j] = 0;
1865 sqlite3IoTrace("SQL %s\n", z);
1868 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1870 /* An instance of this object describes bulk memory available for use
1871 ** by subcomponents of a prepared statement. Space is allocated out
1872 ** of a ReusableSpace object by the allocSpace() routine below.
1874 struct ReusableSpace {
1875 u8 *pSpace; /* Available memory */
1876 int nFree; /* Bytes of available memory */
1877 int nNeeded; /* Total bytes that could not be allocated */
1880 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1881 ** from the ReusableSpace object. Return a pointer to the allocated
1882 ** memory on success. If insufficient memory is available in the
1883 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1884 ** value by the amount needed and return NULL.
1886 ** If pBuf is not initially NULL, that means that the memory has already
1887 ** been allocated by a prior call to this routine, so just return a copy
1888 ** of pBuf and leave ReusableSpace unchanged.
1890 ** This allocator is employed to repurpose unused slots at the end of the
1891 ** opcode array of prepared state for other memory needs of the prepared
1892 ** statement.
1894 static void *allocSpace(
1895 struct ReusableSpace *p, /* Bulk memory available for allocation */
1896 void *pBuf, /* Pointer to a prior allocation */
1897 int nByte /* Bytes of memory needed */
1899 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1900 if( pBuf==0 ){
1901 nByte = ROUND8(nByte);
1902 if( nByte <= p->nFree ){
1903 p->nFree -= nByte;
1904 pBuf = &p->pSpace[p->nFree];
1905 }else{
1906 p->nNeeded += nByte;
1909 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1910 return pBuf;
1914 ** Rewind the VDBE back to the beginning in preparation for
1915 ** running it.
1917 void sqlite3VdbeRewind(Vdbe *p){
1918 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1919 int i;
1920 #endif
1921 assert( p!=0 );
1922 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1924 /* There should be at least one opcode.
1926 assert( p->nOp>0 );
1928 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1929 p->magic = VDBE_MAGIC_RUN;
1931 #ifdef SQLITE_DEBUG
1932 for(i=0; i<p->nMem; i++){
1933 assert( p->aMem[i].db==p->db );
1935 #endif
1936 p->pc = -1;
1937 p->rc = SQLITE_OK;
1938 p->errorAction = OE_Abort;
1939 p->nChange = 0;
1940 p->cacheCtr = 1;
1941 p->minWriteFileFormat = 255;
1942 p->iStatement = 0;
1943 p->nFkConstraint = 0;
1944 #ifdef VDBE_PROFILE
1945 for(i=0; i<p->nOp; i++){
1946 p->aOp[i].cnt = 0;
1947 p->aOp[i].cycles = 0;
1949 #endif
1953 ** Prepare a virtual machine for execution for the first time after
1954 ** creating the virtual machine. This involves things such
1955 ** as allocating registers and initializing the program counter.
1956 ** After the VDBE has be prepped, it can be executed by one or more
1957 ** calls to sqlite3VdbeExec().
1959 ** This function may be called exactly once on each virtual machine.
1960 ** After this routine is called the VM has been "packaged" and is ready
1961 ** to run. After this routine is called, further calls to
1962 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1963 ** the Vdbe from the Parse object that helped generate it so that the
1964 ** the Vdbe becomes an independent entity and the Parse object can be
1965 ** destroyed.
1967 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1968 ** to its initial state after it has been run.
1970 void sqlite3VdbeMakeReady(
1971 Vdbe *p, /* The VDBE */
1972 Parse *pParse /* Parsing context */
1974 sqlite3 *db; /* The database connection */
1975 int nVar; /* Number of parameters */
1976 int nMem; /* Number of VM memory registers */
1977 int nCursor; /* Number of cursors required */
1978 int nArg; /* Number of arguments in subprograms */
1979 int n; /* Loop counter */
1980 struct ReusableSpace x; /* Reusable bulk memory */
1982 assert( p!=0 );
1983 assert( p->nOp>0 );
1984 assert( pParse!=0 );
1985 assert( p->magic==VDBE_MAGIC_INIT );
1986 assert( pParse==p->pParse );
1987 db = p->db;
1988 assert( db->mallocFailed==0 );
1989 nVar = pParse->nVar;
1990 nMem = pParse->nMem;
1991 nCursor = pParse->nTab;
1992 nArg = pParse->nMaxArg;
1994 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1995 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1996 ** space at the end of aMem[] for cursors 1 and greater.
1997 ** See also: allocateCursor().
1999 nMem += nCursor;
2000 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2002 /* Figure out how much reusable memory is available at the end of the
2003 ** opcode array. This extra memory will be reallocated for other elements
2004 ** of the prepared statement.
2006 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2007 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2008 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2009 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2010 assert( x.nFree>=0 );
2011 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2013 resolveP2Values(p, &nArg);
2014 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2015 if( pParse->explain && nMem<10 ){
2016 nMem = 10;
2018 p->expired = 0;
2020 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2021 ** passes. On the first pass, we try to reuse unused memory at the
2022 ** end of the opcode array. If we are unable to satisfy all memory
2023 ** requirements by reusing the opcode array tail, then the second
2024 ** pass will fill in the remainder using a fresh memory allocation.
2026 ** This two-pass approach that reuses as much memory as possible from
2027 ** the leftover memory at the end of the opcode array. This can significantly
2028 ** reduce the amount of memory held by a prepared statement.
2030 do {
2031 x.nNeeded = 0;
2032 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2033 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2034 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2035 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2036 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2037 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2038 #endif
2039 if( x.nNeeded==0 ) break;
2040 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2041 x.nFree = x.nNeeded;
2042 }while( !db->mallocFailed );
2044 p->pVList = pParse->pVList;
2045 pParse->pVList = 0;
2046 p->explain = pParse->explain;
2047 if( db->mallocFailed ){
2048 p->nVar = 0;
2049 p->nCursor = 0;
2050 p->nMem = 0;
2051 }else{
2052 p->nCursor = nCursor;
2053 p->nVar = (ynVar)nVar;
2054 initMemArray(p->aVar, nVar, db, MEM_Null);
2055 p->nMem = nMem;
2056 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2057 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2058 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2059 memset(p->anExec, 0, p->nOp*sizeof(i64));
2060 #endif
2062 sqlite3VdbeRewind(p);
2066 ** Close a VDBE cursor and release all the resources that cursor
2067 ** happens to hold.
2069 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2070 if( pCx==0 ){
2071 return;
2073 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2074 switch( pCx->eCurType ){
2075 case CURTYPE_SORTER: {
2076 sqlite3VdbeSorterClose(p->db, pCx);
2077 break;
2079 case CURTYPE_BTREE: {
2080 if( pCx->isEphemeral ){
2081 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2082 /* The pCx->pCursor will be close automatically, if it exists, by
2083 ** the call above. */
2084 }else{
2085 assert( pCx->uc.pCursor!=0 );
2086 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2088 break;
2090 #ifndef SQLITE_OMIT_VIRTUALTABLE
2091 case CURTYPE_VTAB: {
2092 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2093 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2094 assert( pVCur->pVtab->nRef>0 );
2095 pVCur->pVtab->nRef--;
2096 pModule->xClose(pVCur);
2097 break;
2099 #endif
2104 ** Close all cursors in the current frame.
2106 static void closeCursorsInFrame(Vdbe *p){
2107 if( p->apCsr ){
2108 int i;
2109 for(i=0; i<p->nCursor; i++){
2110 VdbeCursor *pC = p->apCsr[i];
2111 if( pC ){
2112 sqlite3VdbeFreeCursor(p, pC);
2113 p->apCsr[i] = 0;
2120 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2121 ** is used, for example, when a trigger sub-program is halted to restore
2122 ** control to the main program.
2124 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2125 Vdbe *v = pFrame->v;
2126 closeCursorsInFrame(v);
2127 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2128 v->anExec = pFrame->anExec;
2129 #endif
2130 v->aOp = pFrame->aOp;
2131 v->nOp = pFrame->nOp;
2132 v->aMem = pFrame->aMem;
2133 v->nMem = pFrame->nMem;
2134 v->apCsr = pFrame->apCsr;
2135 v->nCursor = pFrame->nCursor;
2136 v->db->lastRowid = pFrame->lastRowid;
2137 v->nChange = pFrame->nChange;
2138 v->db->nChange = pFrame->nDbChange;
2139 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2140 v->pAuxData = pFrame->pAuxData;
2141 pFrame->pAuxData = 0;
2142 return pFrame->pc;
2146 ** Close all cursors.
2148 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2149 ** cell array. This is necessary as the memory cell array may contain
2150 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2151 ** open cursors.
2153 static void closeAllCursors(Vdbe *p){
2154 if( p->pFrame ){
2155 VdbeFrame *pFrame;
2156 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2157 sqlite3VdbeFrameRestore(pFrame);
2158 p->pFrame = 0;
2159 p->nFrame = 0;
2161 assert( p->nFrame==0 );
2162 closeCursorsInFrame(p);
2163 if( p->aMem ){
2164 releaseMemArray(p->aMem, p->nMem);
2166 while( p->pDelFrame ){
2167 VdbeFrame *pDel = p->pDelFrame;
2168 p->pDelFrame = pDel->pParent;
2169 sqlite3VdbeFrameDelete(pDel);
2172 /* Delete any auxdata allocations made by the VM */
2173 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2174 assert( p->pAuxData==0 );
2178 ** Set the number of result columns that will be returned by this SQL
2179 ** statement. This is now set at compile time, rather than during
2180 ** execution of the vdbe program so that sqlite3_column_count() can
2181 ** be called on an SQL statement before sqlite3_step().
2183 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2184 int n;
2185 sqlite3 *db = p->db;
2187 if( p->nResColumn ){
2188 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2189 sqlite3DbFree(db, p->aColName);
2191 n = nResColumn*COLNAME_N;
2192 p->nResColumn = (u16)nResColumn;
2193 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2194 if( p->aColName==0 ) return;
2195 initMemArray(p->aColName, n, db, MEM_Null);
2199 ** Set the name of the idx'th column to be returned by the SQL statement.
2200 ** zName must be a pointer to a nul terminated string.
2202 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2204 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2205 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2206 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2208 int sqlite3VdbeSetColName(
2209 Vdbe *p, /* Vdbe being configured */
2210 int idx, /* Index of column zName applies to */
2211 int var, /* One of the COLNAME_* constants */
2212 const char *zName, /* Pointer to buffer containing name */
2213 void (*xDel)(void*) /* Memory management strategy for zName */
2215 int rc;
2216 Mem *pColName;
2217 assert( idx<p->nResColumn );
2218 assert( var<COLNAME_N );
2219 if( p->db->mallocFailed ){
2220 assert( !zName || xDel!=SQLITE_DYNAMIC );
2221 return SQLITE_NOMEM_BKPT;
2223 assert( p->aColName!=0 );
2224 pColName = &(p->aColName[idx+var*p->nResColumn]);
2225 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2226 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2227 return rc;
2231 ** A read or write transaction may or may not be active on database handle
2232 ** db. If a transaction is active, commit it. If there is a
2233 ** write-transaction spanning more than one database file, this routine
2234 ** takes care of the master journal trickery.
2236 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2237 int i;
2238 int nTrans = 0; /* Number of databases with an active write-transaction
2239 ** that are candidates for a two-phase commit using a
2240 ** master-journal */
2241 int rc = SQLITE_OK;
2242 int needXcommit = 0;
2244 #ifdef SQLITE_OMIT_VIRTUALTABLE
2245 /* With this option, sqlite3VtabSync() is defined to be simply
2246 ** SQLITE_OK so p is not used.
2248 UNUSED_PARAMETER(p);
2249 #endif
2251 /* Before doing anything else, call the xSync() callback for any
2252 ** virtual module tables written in this transaction. This has to
2253 ** be done before determining whether a master journal file is
2254 ** required, as an xSync() callback may add an attached database
2255 ** to the transaction.
2257 rc = sqlite3VtabSync(db, p);
2259 /* This loop determines (a) if the commit hook should be invoked and
2260 ** (b) how many database files have open write transactions, not
2261 ** including the temp database. (b) is important because if more than
2262 ** one database file has an open write transaction, a master journal
2263 ** file is required for an atomic commit.
2265 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2266 Btree *pBt = db->aDb[i].pBt;
2267 if( sqlite3BtreeIsInTrans(pBt) ){
2268 /* Whether or not a database might need a master journal depends upon
2269 ** its journal mode (among other things). This matrix determines which
2270 ** journal modes use a master journal and which do not */
2271 static const u8 aMJNeeded[] = {
2272 /* DELETE */ 1,
2273 /* PERSIST */ 1,
2274 /* OFF */ 0,
2275 /* TRUNCATE */ 1,
2276 /* MEMORY */ 0,
2277 /* WAL */ 0
2279 Pager *pPager; /* Pager associated with pBt */
2280 needXcommit = 1;
2281 sqlite3BtreeEnter(pBt);
2282 pPager = sqlite3BtreePager(pBt);
2283 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2284 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2285 && sqlite3PagerIsMemdb(pPager)==0
2287 assert( i!=1 );
2288 nTrans++;
2290 rc = sqlite3PagerExclusiveLock(pPager);
2291 sqlite3BtreeLeave(pBt);
2294 if( rc!=SQLITE_OK ){
2295 return rc;
2298 /* If there are any write-transactions at all, invoke the commit hook */
2299 if( needXcommit && db->xCommitCallback ){
2300 rc = db->xCommitCallback(db->pCommitArg);
2301 if( rc ){
2302 return SQLITE_CONSTRAINT_COMMITHOOK;
2306 /* The simple case - no more than one database file (not counting the
2307 ** TEMP database) has a transaction active. There is no need for the
2308 ** master-journal.
2310 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2311 ** string, it means the main database is :memory: or a temp file. In
2312 ** that case we do not support atomic multi-file commits, so use the
2313 ** simple case then too.
2315 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2316 || nTrans<=1
2318 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2319 Btree *pBt = db->aDb[i].pBt;
2320 if( pBt ){
2321 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2325 /* Do the commit only if all databases successfully complete phase 1.
2326 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2327 ** IO error while deleting or truncating a journal file. It is unlikely,
2328 ** but could happen. In this case abandon processing and return the error.
2330 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2331 Btree *pBt = db->aDb[i].pBt;
2332 if( pBt ){
2333 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2336 if( rc==SQLITE_OK ){
2337 sqlite3VtabCommit(db);
2341 /* The complex case - There is a multi-file write-transaction active.
2342 ** This requires a master journal file to ensure the transaction is
2343 ** committed atomically.
2345 #ifndef SQLITE_OMIT_DISKIO
2346 else{
2347 sqlite3_vfs *pVfs = db->pVfs;
2348 char *zMaster = 0; /* File-name for the master journal */
2349 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2350 sqlite3_file *pMaster = 0;
2351 i64 offset = 0;
2352 int res;
2353 int retryCount = 0;
2354 int nMainFile;
2356 /* Select a master journal file name */
2357 nMainFile = sqlite3Strlen30(zMainFile);
2358 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2359 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2360 do {
2361 u32 iRandom;
2362 if( retryCount ){
2363 if( retryCount>100 ){
2364 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2365 sqlite3OsDelete(pVfs, zMaster, 0);
2366 break;
2367 }else if( retryCount==1 ){
2368 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2371 retryCount++;
2372 sqlite3_randomness(sizeof(iRandom), &iRandom);
2373 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2374 (iRandom>>8)&0xffffff, iRandom&0xff);
2375 /* The antipenultimate character of the master journal name must
2376 ** be "9" to avoid name collisions when using 8+3 filenames. */
2377 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2378 sqlite3FileSuffix3(zMainFile, zMaster);
2379 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2380 }while( rc==SQLITE_OK && res );
2381 if( rc==SQLITE_OK ){
2382 /* Open the master journal. */
2383 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2384 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2385 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2388 if( rc!=SQLITE_OK ){
2389 sqlite3DbFree(db, zMaster);
2390 return rc;
2393 /* Write the name of each database file in the transaction into the new
2394 ** master journal file. If an error occurs at this point close
2395 ** and delete the master journal file. All the individual journal files
2396 ** still have 'null' as the master journal pointer, so they will roll
2397 ** back independently if a failure occurs.
2399 for(i=0; i<db->nDb; i++){
2400 Btree *pBt = db->aDb[i].pBt;
2401 if( sqlite3BtreeIsInTrans(pBt) ){
2402 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2403 if( zFile==0 ){
2404 continue; /* Ignore TEMP and :memory: databases */
2406 assert( zFile[0]!=0 );
2407 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2408 offset += sqlite3Strlen30(zFile)+1;
2409 if( rc!=SQLITE_OK ){
2410 sqlite3OsCloseFree(pMaster);
2411 sqlite3OsDelete(pVfs, zMaster, 0);
2412 sqlite3DbFree(db, zMaster);
2413 return rc;
2418 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2419 ** flag is set this is not required.
2421 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2422 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2424 sqlite3OsCloseFree(pMaster);
2425 sqlite3OsDelete(pVfs, zMaster, 0);
2426 sqlite3DbFree(db, zMaster);
2427 return rc;
2430 /* Sync all the db files involved in the transaction. The same call
2431 ** sets the master journal pointer in each individual journal. If
2432 ** an error occurs here, do not delete the master journal file.
2434 ** If the error occurs during the first call to
2435 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2436 ** master journal file will be orphaned. But we cannot delete it,
2437 ** in case the master journal file name was written into the journal
2438 ** file before the failure occurred.
2440 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2441 Btree *pBt = db->aDb[i].pBt;
2442 if( pBt ){
2443 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2446 sqlite3OsCloseFree(pMaster);
2447 assert( rc!=SQLITE_BUSY );
2448 if( rc!=SQLITE_OK ){
2449 sqlite3DbFree(db, zMaster);
2450 return rc;
2453 /* Delete the master journal file. This commits the transaction. After
2454 ** doing this the directory is synced again before any individual
2455 ** transaction files are deleted.
2457 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2458 sqlite3DbFree(db, zMaster);
2459 zMaster = 0;
2460 if( rc ){
2461 return rc;
2464 /* All files and directories have already been synced, so the following
2465 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2466 ** deleting or truncating journals. If something goes wrong while
2467 ** this is happening we don't really care. The integrity of the
2468 ** transaction is already guaranteed, but some stray 'cold' journals
2469 ** may be lying around. Returning an error code won't help matters.
2471 disable_simulated_io_errors();
2472 sqlite3BeginBenignMalloc();
2473 for(i=0; i<db->nDb; i++){
2474 Btree *pBt = db->aDb[i].pBt;
2475 if( pBt ){
2476 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2479 sqlite3EndBenignMalloc();
2480 enable_simulated_io_errors();
2482 sqlite3VtabCommit(db);
2484 #endif
2486 return rc;
2490 ** This routine checks that the sqlite3.nVdbeActive count variable
2491 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2492 ** currently active. An assertion fails if the two counts do not match.
2493 ** This is an internal self-check only - it is not an essential processing
2494 ** step.
2496 ** This is a no-op if NDEBUG is defined.
2498 #ifndef NDEBUG
2499 static void checkActiveVdbeCnt(sqlite3 *db){
2500 Vdbe *p;
2501 int cnt = 0;
2502 int nWrite = 0;
2503 int nRead = 0;
2504 p = db->pVdbe;
2505 while( p ){
2506 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2507 cnt++;
2508 if( p->readOnly==0 ) nWrite++;
2509 if( p->bIsReader ) nRead++;
2511 p = p->pNext;
2513 assert( cnt==db->nVdbeActive );
2514 assert( nWrite==db->nVdbeWrite );
2515 assert( nRead==db->nVdbeRead );
2517 #else
2518 #define checkActiveVdbeCnt(x)
2519 #endif
2522 ** If the Vdbe passed as the first argument opened a statement-transaction,
2523 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2524 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2525 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2526 ** statement transaction is committed.
2528 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2529 ** Otherwise SQLITE_OK.
2531 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2532 sqlite3 *const db = p->db;
2533 int rc = SQLITE_OK;
2534 int i;
2535 const int iSavepoint = p->iStatement-1;
2537 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2538 assert( db->nStatement>0 );
2539 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2541 for(i=0; i<db->nDb; i++){
2542 int rc2 = SQLITE_OK;
2543 Btree *pBt = db->aDb[i].pBt;
2544 if( pBt ){
2545 if( eOp==SAVEPOINT_ROLLBACK ){
2546 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2548 if( rc2==SQLITE_OK ){
2549 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2551 if( rc==SQLITE_OK ){
2552 rc = rc2;
2556 db->nStatement--;
2557 p->iStatement = 0;
2559 if( rc==SQLITE_OK ){
2560 if( eOp==SAVEPOINT_ROLLBACK ){
2561 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2563 if( rc==SQLITE_OK ){
2564 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2568 /* If the statement transaction is being rolled back, also restore the
2569 ** database handles deferred constraint counter to the value it had when
2570 ** the statement transaction was opened. */
2571 if( eOp==SAVEPOINT_ROLLBACK ){
2572 db->nDeferredCons = p->nStmtDefCons;
2573 db->nDeferredImmCons = p->nStmtDefImmCons;
2575 return rc;
2577 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2578 if( p->db->nStatement && p->iStatement ){
2579 return vdbeCloseStatement(p, eOp);
2581 return SQLITE_OK;
2586 ** This function is called when a transaction opened by the database
2587 ** handle associated with the VM passed as an argument is about to be
2588 ** committed. If there are outstanding deferred foreign key constraint
2589 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2591 ** If there are outstanding FK violations and this function returns
2592 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2593 ** and write an error message to it. Then return SQLITE_ERROR.
2595 #ifndef SQLITE_OMIT_FOREIGN_KEY
2596 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2597 sqlite3 *db = p->db;
2598 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2599 || (!deferred && p->nFkConstraint>0)
2601 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2602 p->errorAction = OE_Abort;
2603 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2604 return SQLITE_ERROR;
2606 return SQLITE_OK;
2608 #endif
2611 ** This routine is called the when a VDBE tries to halt. If the VDBE
2612 ** has made changes and is in autocommit mode, then commit those
2613 ** changes. If a rollback is needed, then do the rollback.
2615 ** This routine is the only way to move the state of a VM from
2616 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2617 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2619 ** Return an error code. If the commit could not complete because of
2620 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2621 ** means the close did not happen and needs to be repeated.
2623 int sqlite3VdbeHalt(Vdbe *p){
2624 int rc; /* Used to store transient return codes */
2625 sqlite3 *db = p->db;
2627 /* This function contains the logic that determines if a statement or
2628 ** transaction will be committed or rolled back as a result of the
2629 ** execution of this virtual machine.
2631 ** If any of the following errors occur:
2633 ** SQLITE_NOMEM
2634 ** SQLITE_IOERR
2635 ** SQLITE_FULL
2636 ** SQLITE_INTERRUPT
2638 ** Then the internal cache might have been left in an inconsistent
2639 ** state. We need to rollback the statement transaction, if there is
2640 ** one, or the complete transaction if there is no statement transaction.
2643 if( p->magic!=VDBE_MAGIC_RUN ){
2644 return SQLITE_OK;
2646 if( db->mallocFailed ){
2647 p->rc = SQLITE_NOMEM_BKPT;
2649 closeAllCursors(p);
2650 checkActiveVdbeCnt(db);
2652 /* No commit or rollback needed if the program never started or if the
2653 ** SQL statement does not read or write a database file. */
2654 if( p->pc>=0 && p->bIsReader ){
2655 int mrc; /* Primary error code from p->rc */
2656 int eStatementOp = 0;
2657 int isSpecialError; /* Set to true if a 'special' error */
2659 /* Lock all btrees used by the statement */
2660 sqlite3VdbeEnter(p);
2662 /* Check for one of the special errors */
2663 mrc = p->rc & 0xff;
2664 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2665 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2666 if( isSpecialError ){
2667 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2668 ** no rollback is necessary. Otherwise, at least a savepoint
2669 ** transaction must be rolled back to restore the database to a
2670 ** consistent state.
2672 ** Even if the statement is read-only, it is important to perform
2673 ** a statement or transaction rollback operation. If the error
2674 ** occurred while writing to the journal, sub-journal or database
2675 ** file as part of an effort to free up cache space (see function
2676 ** pagerStress() in pager.c), the rollback is required to restore
2677 ** the pager to a consistent state.
2679 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2680 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2681 eStatementOp = SAVEPOINT_ROLLBACK;
2682 }else{
2683 /* We are forced to roll back the active transaction. Before doing
2684 ** so, abort any other statements this handle currently has active.
2686 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2687 sqlite3CloseSavepoints(db);
2688 db->autoCommit = 1;
2689 p->nChange = 0;
2694 /* Check for immediate foreign key violations. */
2695 if( p->rc==SQLITE_OK ){
2696 sqlite3VdbeCheckFk(p, 0);
2699 /* If the auto-commit flag is set and this is the only active writer
2700 ** VM, then we do either a commit or rollback of the current transaction.
2702 ** Note: This block also runs if one of the special errors handled
2703 ** above has occurred.
2705 if( !sqlite3VtabInSync(db)
2706 && db->autoCommit
2707 && db->nVdbeWrite==(p->readOnly==0)
2709 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2710 rc = sqlite3VdbeCheckFk(p, 1);
2711 if( rc!=SQLITE_OK ){
2712 if( NEVER(p->readOnly) ){
2713 sqlite3VdbeLeave(p);
2714 return SQLITE_ERROR;
2716 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2717 }else{
2718 /* The auto-commit flag is true, the vdbe program was successful
2719 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2720 ** key constraints to hold up the transaction. This means a commit
2721 ** is required. */
2722 rc = vdbeCommit(db, p);
2724 if( rc==SQLITE_BUSY && p->readOnly ){
2725 sqlite3VdbeLeave(p);
2726 return SQLITE_BUSY;
2727 }else if( rc!=SQLITE_OK ){
2728 p->rc = rc;
2729 sqlite3RollbackAll(db, SQLITE_OK);
2730 p->nChange = 0;
2731 }else{
2732 db->nDeferredCons = 0;
2733 db->nDeferredImmCons = 0;
2734 db->flags &= ~SQLITE_DeferFKs;
2735 sqlite3CommitInternalChanges(db);
2737 }else{
2738 sqlite3RollbackAll(db, SQLITE_OK);
2739 p->nChange = 0;
2741 db->nStatement = 0;
2742 }else if( eStatementOp==0 ){
2743 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2744 eStatementOp = SAVEPOINT_RELEASE;
2745 }else if( p->errorAction==OE_Abort ){
2746 eStatementOp = SAVEPOINT_ROLLBACK;
2747 }else{
2748 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2749 sqlite3CloseSavepoints(db);
2750 db->autoCommit = 1;
2751 p->nChange = 0;
2755 /* If eStatementOp is non-zero, then a statement transaction needs to
2756 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2757 ** do so. If this operation returns an error, and the current statement
2758 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2759 ** current statement error code.
2761 if( eStatementOp ){
2762 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2763 if( rc ){
2764 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2765 p->rc = rc;
2766 sqlite3DbFree(db, p->zErrMsg);
2767 p->zErrMsg = 0;
2769 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2770 sqlite3CloseSavepoints(db);
2771 db->autoCommit = 1;
2772 p->nChange = 0;
2776 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2777 ** has been rolled back, update the database connection change-counter.
2779 if( p->changeCntOn ){
2780 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2781 sqlite3VdbeSetChanges(db, p->nChange);
2782 }else{
2783 sqlite3VdbeSetChanges(db, 0);
2785 p->nChange = 0;
2788 /* Release the locks */
2789 sqlite3VdbeLeave(p);
2792 /* We have successfully halted and closed the VM. Record this fact. */
2793 if( p->pc>=0 ){
2794 db->nVdbeActive--;
2795 if( !p->readOnly ) db->nVdbeWrite--;
2796 if( p->bIsReader ) db->nVdbeRead--;
2797 assert( db->nVdbeActive>=db->nVdbeRead );
2798 assert( db->nVdbeRead>=db->nVdbeWrite );
2799 assert( db->nVdbeWrite>=0 );
2801 p->magic = VDBE_MAGIC_HALT;
2802 checkActiveVdbeCnt(db);
2803 if( db->mallocFailed ){
2804 p->rc = SQLITE_NOMEM_BKPT;
2807 /* If the auto-commit flag is set to true, then any locks that were held
2808 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2809 ** to invoke any required unlock-notify callbacks.
2811 if( db->autoCommit ){
2812 sqlite3ConnectionUnlocked(db);
2815 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2816 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2821 ** Each VDBE holds the result of the most recent sqlite3_step() call
2822 ** in p->rc. This routine sets that result back to SQLITE_OK.
2824 void sqlite3VdbeResetStepResult(Vdbe *p){
2825 p->rc = SQLITE_OK;
2829 ** Copy the error code and error message belonging to the VDBE passed
2830 ** as the first argument to its database handle (so that they will be
2831 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2833 ** This function does not clear the VDBE error code or message, just
2834 ** copies them to the database handle.
2836 int sqlite3VdbeTransferError(Vdbe *p){
2837 sqlite3 *db = p->db;
2838 int rc = p->rc;
2839 if( p->zErrMsg ){
2840 db->bBenignMalloc++;
2841 sqlite3BeginBenignMalloc();
2842 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2843 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2844 sqlite3EndBenignMalloc();
2845 db->bBenignMalloc--;
2846 }else if( db->pErr ){
2847 sqlite3ValueSetNull(db->pErr);
2849 db->errCode = rc;
2850 return rc;
2853 #ifdef SQLITE_ENABLE_SQLLOG
2855 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2856 ** invoke it.
2858 static void vdbeInvokeSqllog(Vdbe *v){
2859 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2860 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2861 assert( v->db->init.busy==0 );
2862 if( zExpanded ){
2863 sqlite3GlobalConfig.xSqllog(
2864 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2866 sqlite3DbFree(v->db, zExpanded);
2870 #else
2871 # define vdbeInvokeSqllog(x)
2872 #endif
2875 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2876 ** Write any error messages into *pzErrMsg. Return the result code.
2878 ** After this routine is run, the VDBE should be ready to be executed
2879 ** again.
2881 ** To look at it another way, this routine resets the state of the
2882 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2883 ** VDBE_MAGIC_INIT.
2885 int sqlite3VdbeReset(Vdbe *p){
2886 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2887 int i;
2888 #endif
2890 sqlite3 *db;
2891 db = p->db;
2893 /* If the VM did not run to completion or if it encountered an
2894 ** error, then it might not have been halted properly. So halt
2895 ** it now.
2897 sqlite3VdbeHalt(p);
2899 /* If the VDBE has be run even partially, then transfer the error code
2900 ** and error message from the VDBE into the main database structure. But
2901 ** if the VDBE has just been set to run but has not actually executed any
2902 ** instructions yet, leave the main database error information unchanged.
2904 if( p->pc>=0 ){
2905 vdbeInvokeSqllog(p);
2906 sqlite3VdbeTransferError(p);
2907 if( p->runOnlyOnce ) p->expired = 1;
2908 }else if( p->rc && p->expired ){
2909 /* The expired flag was set on the VDBE before the first call
2910 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2911 ** called), set the database error in this case as well.
2913 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2916 /* Reset register contents and reclaim error message memory.
2918 #ifdef SQLITE_DEBUG
2919 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2920 ** Vdbe.aMem[] arrays have already been cleaned up. */
2921 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2922 if( p->aMem ){
2923 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2925 #endif
2926 sqlite3DbFree(db, p->zErrMsg);
2927 p->zErrMsg = 0;
2928 p->pResultSet = 0;
2930 /* Save profiling information from this VDBE run.
2932 #ifdef VDBE_PROFILE
2934 FILE *out = fopen("vdbe_profile.out", "a");
2935 if( out ){
2936 fprintf(out, "---- ");
2937 for(i=0; i<p->nOp; i++){
2938 fprintf(out, "%02x", p->aOp[i].opcode);
2940 fprintf(out, "\n");
2941 if( p->zSql ){
2942 char c, pc = 0;
2943 fprintf(out, "-- ");
2944 for(i=0; (c = p->zSql[i])!=0; i++){
2945 if( pc=='\n' ) fprintf(out, "-- ");
2946 putc(c, out);
2947 pc = c;
2949 if( pc!='\n' ) fprintf(out, "\n");
2951 for(i=0; i<p->nOp; i++){
2952 char zHdr[100];
2953 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2954 p->aOp[i].cnt,
2955 p->aOp[i].cycles,
2956 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2958 fprintf(out, "%s", zHdr);
2959 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2961 fclose(out);
2964 #endif
2965 p->magic = VDBE_MAGIC_RESET;
2966 return p->rc & db->errMask;
2970 ** Clean up and delete a VDBE after execution. Return an integer which is
2971 ** the result code. Write any error message text into *pzErrMsg.
2973 int sqlite3VdbeFinalize(Vdbe *p){
2974 int rc = SQLITE_OK;
2975 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2976 rc = sqlite3VdbeReset(p);
2977 assert( (rc & p->db->errMask)==rc );
2979 sqlite3VdbeDelete(p);
2980 return rc;
2984 ** If parameter iOp is less than zero, then invoke the destructor for
2985 ** all auxiliary data pointers currently cached by the VM passed as
2986 ** the first argument.
2988 ** Or, if iOp is greater than or equal to zero, then the destructor is
2989 ** only invoked for those auxiliary data pointers created by the user
2990 ** function invoked by the OP_Function opcode at instruction iOp of
2991 ** VM pVdbe, and only then if:
2993 ** * the associated function parameter is the 32nd or later (counting
2994 ** from left to right), or
2996 ** * the corresponding bit in argument mask is clear (where the first
2997 ** function parameter corresponds to bit 0 etc.).
2999 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3000 while( *pp ){
3001 AuxData *pAux = *pp;
3002 if( (iOp<0)
3003 || (pAux->iAuxOp==iOp
3004 && pAux->iAuxArg>=0
3005 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3007 testcase( pAux->iAuxArg==31 );
3008 if( pAux->xDeleteAux ){
3009 pAux->xDeleteAux(pAux->pAux);
3011 *pp = pAux->pNextAux;
3012 sqlite3DbFree(db, pAux);
3013 }else{
3014 pp= &pAux->pNextAux;
3020 ** Free all memory associated with the Vdbe passed as the second argument,
3021 ** except for object itself, which is preserved.
3023 ** The difference between this function and sqlite3VdbeDelete() is that
3024 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3025 ** the database connection and frees the object itself.
3027 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3028 SubProgram *pSub, *pNext;
3029 assert( p->db==0 || p->db==db );
3030 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3031 for(pSub=p->pProgram; pSub; pSub=pNext){
3032 pNext = pSub->pNext;
3033 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3034 sqlite3DbFree(db, pSub);
3036 if( p->magic!=VDBE_MAGIC_INIT ){
3037 releaseMemArray(p->aVar, p->nVar);
3038 sqlite3DbFree(db, p->pVList);
3039 sqlite3DbFree(db, p->pFree);
3041 vdbeFreeOpArray(db, p->aOp, p->nOp);
3042 sqlite3DbFree(db, p->aColName);
3043 sqlite3DbFree(db, p->zSql);
3044 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3046 int i;
3047 for(i=0; i<p->nScan; i++){
3048 sqlite3DbFree(db, p->aScan[i].zName);
3050 sqlite3DbFree(db, p->aScan);
3052 #endif
3056 ** Delete an entire VDBE.
3058 void sqlite3VdbeDelete(Vdbe *p){
3059 sqlite3 *db;
3061 assert( p!=0 );
3062 db = p->db;
3063 assert( sqlite3_mutex_held(db->mutex) );
3064 sqlite3VdbeClearObject(db, p);
3065 if( p->pPrev ){
3066 p->pPrev->pNext = p->pNext;
3067 }else{
3068 assert( db->pVdbe==p );
3069 db->pVdbe = p->pNext;
3071 if( p->pNext ){
3072 p->pNext->pPrev = p->pPrev;
3074 p->magic = VDBE_MAGIC_DEAD;
3075 p->db = 0;
3076 sqlite3DbFreeNN(db, p);
3080 ** The cursor "p" has a pending seek operation that has not yet been
3081 ** carried out. Seek the cursor now. If an error occurs, return
3082 ** the appropriate error code.
3084 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3085 int res, rc;
3086 #ifdef SQLITE_TEST
3087 extern int sqlite3_search_count;
3088 #endif
3089 assert( p->deferredMoveto );
3090 assert( p->isTable );
3091 assert( p->eCurType==CURTYPE_BTREE );
3092 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3093 if( rc ) return rc;
3094 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3095 #ifdef SQLITE_TEST
3096 sqlite3_search_count++;
3097 #endif
3098 p->deferredMoveto = 0;
3099 p->cacheStatus = CACHE_STALE;
3100 return SQLITE_OK;
3104 ** Something has moved cursor "p" out of place. Maybe the row it was
3105 ** pointed to was deleted out from under it. Or maybe the btree was
3106 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3107 ** is supposed to be pointing. If the row was deleted out from under the
3108 ** cursor, set the cursor to point to a NULL row.
3110 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3111 int isDifferentRow, rc;
3112 assert( p->eCurType==CURTYPE_BTREE );
3113 assert( p->uc.pCursor!=0 );
3114 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3115 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3116 p->cacheStatus = CACHE_STALE;
3117 if( isDifferentRow ) p->nullRow = 1;
3118 return rc;
3122 ** Check to ensure that the cursor is valid. Restore the cursor
3123 ** if need be. Return any I/O error from the restore operation.
3125 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3126 assert( p->eCurType==CURTYPE_BTREE );
3127 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3128 return handleMovedCursor(p);
3130 return SQLITE_OK;
3134 ** Make sure the cursor p is ready to read or write the row to which it
3135 ** was last positioned. Return an error code if an OOM fault or I/O error
3136 ** prevents us from positioning the cursor to its correct position.
3138 ** If a MoveTo operation is pending on the given cursor, then do that
3139 ** MoveTo now. If no move is pending, check to see if the row has been
3140 ** deleted out from under the cursor and if it has, mark the row as
3141 ** a NULL row.
3143 ** If the cursor is already pointing to the correct row and that row has
3144 ** not been deleted out from under the cursor, then this routine is a no-op.
3146 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3147 VdbeCursor *p = *pp;
3148 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3149 if( p->deferredMoveto ){
3150 int iMap;
3151 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3152 *pp = p->pAltCursor;
3153 *piCol = iMap - 1;
3154 return SQLITE_OK;
3156 return handleDeferredMoveto(p);
3158 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3159 return handleMovedCursor(p);
3161 return SQLITE_OK;
3165 ** The following functions:
3167 ** sqlite3VdbeSerialType()
3168 ** sqlite3VdbeSerialTypeLen()
3169 ** sqlite3VdbeSerialLen()
3170 ** sqlite3VdbeSerialPut()
3171 ** sqlite3VdbeSerialGet()
3173 ** encapsulate the code that serializes values for storage in SQLite
3174 ** data and index records. Each serialized value consists of a
3175 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3176 ** integer, stored as a varint.
3178 ** In an SQLite index record, the serial type is stored directly before
3179 ** the blob of data that it corresponds to. In a table record, all serial
3180 ** types are stored at the start of the record, and the blobs of data at
3181 ** the end. Hence these functions allow the caller to handle the
3182 ** serial-type and data blob separately.
3184 ** The following table describes the various storage classes for data:
3186 ** serial type bytes of data type
3187 ** -------------- --------------- ---------------
3188 ** 0 0 NULL
3189 ** 1 1 signed integer
3190 ** 2 2 signed integer
3191 ** 3 3 signed integer
3192 ** 4 4 signed integer
3193 ** 5 6 signed integer
3194 ** 6 8 signed integer
3195 ** 7 8 IEEE float
3196 ** 8 0 Integer constant 0
3197 ** 9 0 Integer constant 1
3198 ** 10,11 reserved for expansion
3199 ** N>=12 and even (N-12)/2 BLOB
3200 ** N>=13 and odd (N-13)/2 text
3202 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3203 ** of SQLite will not understand those serial types.
3207 ** Return the serial-type for the value stored in pMem.
3209 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3210 int flags = pMem->flags;
3211 u32 n;
3213 assert( pLen!=0 );
3214 if( flags&MEM_Null ){
3215 *pLen = 0;
3216 return 0;
3218 if( flags&MEM_Int ){
3219 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3220 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3221 i64 i = pMem->u.i;
3222 u64 u;
3223 if( i<0 ){
3224 u = ~i;
3225 }else{
3226 u = i;
3228 if( u<=127 ){
3229 if( (i&1)==i && file_format>=4 ){
3230 *pLen = 0;
3231 return 8+(u32)u;
3232 }else{
3233 *pLen = 1;
3234 return 1;
3237 if( u<=32767 ){ *pLen = 2; return 2; }
3238 if( u<=8388607 ){ *pLen = 3; return 3; }
3239 if( u<=2147483647 ){ *pLen = 4; return 4; }
3240 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3241 *pLen = 8;
3242 return 6;
3244 if( flags&MEM_Real ){
3245 *pLen = 8;
3246 return 7;
3248 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3249 assert( pMem->n>=0 );
3250 n = (u32)pMem->n;
3251 if( flags & MEM_Zero ){
3252 n += pMem->u.nZero;
3254 *pLen = n;
3255 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3259 ** The sizes for serial types less than 128
3261 static const u8 sqlite3SmallTypeSizes[] = {
3262 /* 0 1 2 3 4 5 6 7 8 9 */
3263 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3264 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3265 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3266 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3267 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3268 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3269 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3270 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3271 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3272 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3273 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3274 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3275 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3279 ** Return the length of the data corresponding to the supplied serial-type.
3281 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3282 if( serial_type>=128 ){
3283 return (serial_type-12)/2;
3284 }else{
3285 assert( serial_type<12
3286 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3287 return sqlite3SmallTypeSizes[serial_type];
3290 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3291 assert( serial_type<128 );
3292 return sqlite3SmallTypeSizes[serial_type];
3296 ** If we are on an architecture with mixed-endian floating
3297 ** points (ex: ARM7) then swap the lower 4 bytes with the
3298 ** upper 4 bytes. Return the result.
3300 ** For most architectures, this is a no-op.
3302 ** (later): It is reported to me that the mixed-endian problem
3303 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3304 ** that early versions of GCC stored the two words of a 64-bit
3305 ** float in the wrong order. And that error has been propagated
3306 ** ever since. The blame is not necessarily with GCC, though.
3307 ** GCC might have just copying the problem from a prior compiler.
3308 ** I am also told that newer versions of GCC that follow a different
3309 ** ABI get the byte order right.
3311 ** Developers using SQLite on an ARM7 should compile and run their
3312 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3313 ** enabled, some asserts below will ensure that the byte order of
3314 ** floating point values is correct.
3316 ** (2007-08-30) Frank van Vugt has studied this problem closely
3317 ** and has send his findings to the SQLite developers. Frank
3318 ** writes that some Linux kernels offer floating point hardware
3319 ** emulation that uses only 32-bit mantissas instead of a full
3320 ** 48-bits as required by the IEEE standard. (This is the
3321 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3322 ** byte swapping becomes very complicated. To avoid problems,
3323 ** the necessary byte swapping is carried out using a 64-bit integer
3324 ** rather than a 64-bit float. Frank assures us that the code here
3325 ** works for him. We, the developers, have no way to independently
3326 ** verify this, but Frank seems to know what he is talking about
3327 ** so we trust him.
3329 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3330 static u64 floatSwap(u64 in){
3331 union {
3332 u64 r;
3333 u32 i[2];
3334 } u;
3335 u32 t;
3337 u.r = in;
3338 t = u.i[0];
3339 u.i[0] = u.i[1];
3340 u.i[1] = t;
3341 return u.r;
3343 # define swapMixedEndianFloat(X) X = floatSwap(X)
3344 #else
3345 # define swapMixedEndianFloat(X)
3346 #endif
3349 ** Write the serialized data blob for the value stored in pMem into
3350 ** buf. It is assumed that the caller has allocated sufficient space.
3351 ** Return the number of bytes written.
3353 ** nBuf is the amount of space left in buf[]. The caller is responsible
3354 ** for allocating enough space to buf[] to hold the entire field, exclusive
3355 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3357 ** Return the number of bytes actually written into buf[]. The number
3358 ** of bytes in the zero-filled tail is included in the return value only
3359 ** if those bytes were zeroed in buf[].
3361 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3362 u32 len;
3364 /* Integer and Real */
3365 if( serial_type<=7 && serial_type>0 ){
3366 u64 v;
3367 u32 i;
3368 if( serial_type==7 ){
3369 assert( sizeof(v)==sizeof(pMem->u.r) );
3370 memcpy(&v, &pMem->u.r, sizeof(v));
3371 swapMixedEndianFloat(v);
3372 }else{
3373 v = pMem->u.i;
3375 len = i = sqlite3SmallTypeSizes[serial_type];
3376 assert( i>0 );
3378 buf[--i] = (u8)(v&0xFF);
3379 v >>= 8;
3380 }while( i );
3381 return len;
3384 /* String or blob */
3385 if( serial_type>=12 ){
3386 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3387 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3388 len = pMem->n;
3389 if( len>0 ) memcpy(buf, pMem->z, len);
3390 return len;
3393 /* NULL or constants 0 or 1 */
3394 return 0;
3397 /* Input "x" is a sequence of unsigned characters that represent a
3398 ** big-endian integer. Return the equivalent native integer
3400 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3401 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3402 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3403 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3404 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3407 ** Deserialize the data blob pointed to by buf as serial type serial_type
3408 ** and store the result in pMem. Return the number of bytes read.
3410 ** This function is implemented as two separate routines for performance.
3411 ** The few cases that require local variables are broken out into a separate
3412 ** routine so that in most cases the overhead of moving the stack pointer
3413 ** is avoided.
3415 static u32 SQLITE_NOINLINE serialGet(
3416 const unsigned char *buf, /* Buffer to deserialize from */
3417 u32 serial_type, /* Serial type to deserialize */
3418 Mem *pMem /* Memory cell to write value into */
3420 u64 x = FOUR_BYTE_UINT(buf);
3421 u32 y = FOUR_BYTE_UINT(buf+4);
3422 x = (x<<32) + y;
3423 if( serial_type==6 ){
3424 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3425 ** twos-complement integer. */
3426 pMem->u.i = *(i64*)&x;
3427 pMem->flags = MEM_Int;
3428 testcase( pMem->u.i<0 );
3429 }else{
3430 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3431 ** floating point number. */
3432 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3433 /* Verify that integers and floating point values use the same
3434 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3435 ** defined that 64-bit floating point values really are mixed
3436 ** endian.
3438 static const u64 t1 = ((u64)0x3ff00000)<<32;
3439 static const double r1 = 1.0;
3440 u64 t2 = t1;
3441 swapMixedEndianFloat(t2);
3442 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3443 #endif
3444 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3445 swapMixedEndianFloat(x);
3446 memcpy(&pMem->u.r, &x, sizeof(x));
3447 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3449 return 8;
3451 u32 sqlite3VdbeSerialGet(
3452 const unsigned char *buf, /* Buffer to deserialize from */
3453 u32 serial_type, /* Serial type to deserialize */
3454 Mem *pMem /* Memory cell to write value into */
3456 switch( serial_type ){
3457 case 10: { /* Internal use only: NULL with virtual table
3458 ** UPDATE no-change flag set */
3459 pMem->flags = MEM_Null|MEM_Zero;
3460 pMem->n = 0;
3461 pMem->u.nZero = 0;
3462 break;
3464 case 11: /* Reserved for future use */
3465 case 0: { /* Null */
3466 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3467 pMem->flags = MEM_Null;
3468 break;
3470 case 1: {
3471 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3472 ** integer. */
3473 pMem->u.i = ONE_BYTE_INT(buf);
3474 pMem->flags = MEM_Int;
3475 testcase( pMem->u.i<0 );
3476 return 1;
3478 case 2: { /* 2-byte signed integer */
3479 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3480 ** twos-complement integer. */
3481 pMem->u.i = TWO_BYTE_INT(buf);
3482 pMem->flags = MEM_Int;
3483 testcase( pMem->u.i<0 );
3484 return 2;
3486 case 3: { /* 3-byte signed integer */
3487 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3488 ** twos-complement integer. */
3489 pMem->u.i = THREE_BYTE_INT(buf);
3490 pMem->flags = MEM_Int;
3491 testcase( pMem->u.i<0 );
3492 return 3;
3494 case 4: { /* 4-byte signed integer */
3495 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3496 ** twos-complement integer. */
3497 pMem->u.i = FOUR_BYTE_INT(buf);
3498 #ifdef __HP_cc
3499 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3500 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3501 #endif
3502 pMem->flags = MEM_Int;
3503 testcase( pMem->u.i<0 );
3504 return 4;
3506 case 5: { /* 6-byte signed integer */
3507 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3508 ** twos-complement integer. */
3509 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3510 pMem->flags = MEM_Int;
3511 testcase( pMem->u.i<0 );
3512 return 6;
3514 case 6: /* 8-byte signed integer */
3515 case 7: { /* IEEE floating point */
3516 /* These use local variables, so do them in a separate routine
3517 ** to avoid having to move the frame pointer in the common case */
3518 return serialGet(buf,serial_type,pMem);
3520 case 8: /* Integer 0 */
3521 case 9: { /* Integer 1 */
3522 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3523 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3524 pMem->u.i = serial_type-8;
3525 pMem->flags = MEM_Int;
3526 return 0;
3528 default: {
3529 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3530 ** length.
3531 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3532 ** (N-13)/2 bytes in length. */
3533 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3534 pMem->z = (char *)buf;
3535 pMem->n = (serial_type-12)/2;
3536 pMem->flags = aFlag[serial_type&1];
3537 return pMem->n;
3540 return 0;
3543 ** This routine is used to allocate sufficient space for an UnpackedRecord
3544 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3545 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3547 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3548 ** the unaligned buffer passed via the second and third arguments (presumably
3549 ** stack space). If the former, then *ppFree is set to a pointer that should
3550 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3551 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3552 ** before returning.
3554 ** If an OOM error occurs, NULL is returned.
3556 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3557 KeyInfo *pKeyInfo /* Description of the record */
3559 UnpackedRecord *p; /* Unpacked record to return */
3560 int nByte; /* Number of bytes required for *p */
3561 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3562 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3563 if( !p ) return 0;
3564 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3565 assert( pKeyInfo->aSortOrder!=0 );
3566 p->pKeyInfo = pKeyInfo;
3567 p->nField = pKeyInfo->nKeyField + 1;
3568 return p;
3572 ** Given the nKey-byte encoding of a record in pKey[], populate the
3573 ** UnpackedRecord structure indicated by the fourth argument with the
3574 ** contents of the decoded record.
3576 void sqlite3VdbeRecordUnpack(
3577 KeyInfo *pKeyInfo, /* Information about the record format */
3578 int nKey, /* Size of the binary record */
3579 const void *pKey, /* The binary record */
3580 UnpackedRecord *p /* Populate this structure before returning. */
3582 const unsigned char *aKey = (const unsigned char *)pKey;
3583 int d;
3584 u32 idx; /* Offset in aKey[] to read from */
3585 u16 u; /* Unsigned loop counter */
3586 u32 szHdr;
3587 Mem *pMem = p->aMem;
3589 p->default_rc = 0;
3590 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3591 idx = getVarint32(aKey, szHdr);
3592 d = szHdr;
3593 u = 0;
3594 while( idx<szHdr && d<=nKey ){
3595 u32 serial_type;
3597 idx += getVarint32(&aKey[idx], serial_type);
3598 pMem->enc = pKeyInfo->enc;
3599 pMem->db = pKeyInfo->db;
3600 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3601 pMem->szMalloc = 0;
3602 pMem->z = 0;
3603 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3604 pMem++;
3605 if( (++u)>=p->nField ) break;
3607 assert( u<=pKeyInfo->nKeyField + 1 );
3608 p->nField = u;
3611 #ifdef SQLITE_DEBUG
3613 ** This function compares two index or table record keys in the same way
3614 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3615 ** this function deserializes and compares values using the
3616 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3617 ** in assert() statements to ensure that the optimized code in
3618 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3620 ** Return true if the result of comparison is equivalent to desiredResult.
3621 ** Return false if there is a disagreement.
3623 static int vdbeRecordCompareDebug(
3624 int nKey1, const void *pKey1, /* Left key */
3625 const UnpackedRecord *pPKey2, /* Right key */
3626 int desiredResult /* Correct answer */
3628 u32 d1; /* Offset into aKey[] of next data element */
3629 u32 idx1; /* Offset into aKey[] of next header element */
3630 u32 szHdr1; /* Number of bytes in header */
3631 int i = 0;
3632 int rc = 0;
3633 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3634 KeyInfo *pKeyInfo;
3635 Mem mem1;
3637 pKeyInfo = pPKey2->pKeyInfo;
3638 if( pKeyInfo->db==0 ) return 1;
3639 mem1.enc = pKeyInfo->enc;
3640 mem1.db = pKeyInfo->db;
3641 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3642 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3644 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3645 ** We could initialize it, as shown here, to silence those complaints.
3646 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3647 ** the unnecessary initialization has a measurable negative performance
3648 ** impact, since this routine is a very high runner. And so, we choose
3649 ** to ignore the compiler warnings and leave this variable uninitialized.
3651 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3653 idx1 = getVarint32(aKey1, szHdr1);
3654 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3655 d1 = szHdr1;
3656 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3657 assert( pKeyInfo->aSortOrder!=0 );
3658 assert( pKeyInfo->nKeyField>0 );
3659 assert( idx1<=szHdr1 || CORRUPT_DB );
3661 u32 serial_type1;
3663 /* Read the serial types for the next element in each key. */
3664 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3666 /* Verify that there is enough key space remaining to avoid
3667 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3668 ** always be greater than or equal to the amount of required key space.
3669 ** Use that approximation to avoid the more expensive call to
3670 ** sqlite3VdbeSerialTypeLen() in the common case.
3672 if( d1+serial_type1+2>(u32)nKey1
3673 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3675 break;
3678 /* Extract the values to be compared.
3680 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3682 /* Do the comparison
3684 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3685 if( rc!=0 ){
3686 assert( mem1.szMalloc==0 ); /* See comment below */
3687 if( pKeyInfo->aSortOrder[i] ){
3688 rc = -rc; /* Invert the result for DESC sort order. */
3690 goto debugCompareEnd;
3692 i++;
3693 }while( idx1<szHdr1 && i<pPKey2->nField );
3695 /* No memory allocation is ever used on mem1. Prove this using
3696 ** the following assert(). If the assert() fails, it indicates a
3697 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3699 assert( mem1.szMalloc==0 );
3701 /* rc==0 here means that one of the keys ran out of fields and
3702 ** all the fields up to that point were equal. Return the default_rc
3703 ** value. */
3704 rc = pPKey2->default_rc;
3706 debugCompareEnd:
3707 if( desiredResult==0 && rc==0 ) return 1;
3708 if( desiredResult<0 && rc<0 ) return 1;
3709 if( desiredResult>0 && rc>0 ) return 1;
3710 if( CORRUPT_DB ) return 1;
3711 if( pKeyInfo->db->mallocFailed ) return 1;
3712 return 0;
3714 #endif
3716 #ifdef SQLITE_DEBUG
3718 ** Count the number of fields (a.k.a. columns) in the record given by
3719 ** pKey,nKey. The verify that this count is less than or equal to the
3720 ** limit given by pKeyInfo->nAllField.
3722 ** If this constraint is not satisfied, it means that the high-speed
3723 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3724 ** not work correctly. If this assert() ever fires, it probably means
3725 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
3726 ** incorrectly.
3728 static void vdbeAssertFieldCountWithinLimits(
3729 int nKey, const void *pKey, /* The record to verify */
3730 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3732 int nField = 0;
3733 u32 szHdr;
3734 u32 idx;
3735 u32 notUsed;
3736 const unsigned char *aKey = (const unsigned char*)pKey;
3738 if( CORRUPT_DB ) return;
3739 idx = getVarint32(aKey, szHdr);
3740 assert( nKey>=0 );
3741 assert( szHdr<=(u32)nKey );
3742 while( idx<szHdr ){
3743 idx += getVarint32(aKey+idx, notUsed);
3744 nField++;
3746 assert( nField <= pKeyInfo->nAllField );
3748 #else
3749 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3750 #endif
3753 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3754 ** using the collation sequence pColl. As usual, return a negative , zero
3755 ** or positive value if *pMem1 is less than, equal to or greater than
3756 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3758 static int vdbeCompareMemString(
3759 const Mem *pMem1,
3760 const Mem *pMem2,
3761 const CollSeq *pColl,
3762 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3764 if( pMem1->enc==pColl->enc ){
3765 /* The strings are already in the correct encoding. Call the
3766 ** comparison function directly */
3767 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3768 }else{
3769 int rc;
3770 const void *v1, *v2;
3771 Mem c1;
3772 Mem c2;
3773 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3774 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3775 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3776 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3777 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3778 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3779 if( (v1==0 || v2==0) ){
3780 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3781 rc = 0;
3782 }else{
3783 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
3785 sqlite3VdbeMemRelease(&c1);
3786 sqlite3VdbeMemRelease(&c2);
3787 return rc;
3792 ** The input pBlob is guaranteed to be a Blob that is not marked
3793 ** with MEM_Zero. Return true if it could be a zero-blob.
3795 static int isAllZero(const char *z, int n){
3796 int i;
3797 for(i=0; i<n; i++){
3798 if( z[i] ) return 0;
3800 return 1;
3804 ** Compare two blobs. Return negative, zero, or positive if the first
3805 ** is less than, equal to, or greater than the second, respectively.
3806 ** If one blob is a prefix of the other, then the shorter is the lessor.
3808 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3809 int c;
3810 int n1 = pB1->n;
3811 int n2 = pB2->n;
3813 /* It is possible to have a Blob value that has some non-zero content
3814 ** followed by zero content. But that only comes up for Blobs formed
3815 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3816 ** sqlite3MemCompare(). */
3817 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3818 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3820 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3821 if( pB1->flags & pB2->flags & MEM_Zero ){
3822 return pB1->u.nZero - pB2->u.nZero;
3823 }else if( pB1->flags & MEM_Zero ){
3824 if( !isAllZero(pB2->z, pB2->n) ) return -1;
3825 return pB1->u.nZero - n2;
3826 }else{
3827 if( !isAllZero(pB1->z, pB1->n) ) return +1;
3828 return n1 - pB2->u.nZero;
3831 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3832 if( c ) return c;
3833 return n1 - n2;
3837 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3838 ** number. Return negative, zero, or positive if the first (i64) is less than,
3839 ** equal to, or greater than the second (double).
3841 static int sqlite3IntFloatCompare(i64 i, double r){
3842 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3843 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3844 if( x<r ) return -1;
3845 if( x>r ) return +1;
3846 return 0;
3847 }else{
3848 i64 y;
3849 double s;
3850 if( r<-9223372036854775808.0 ) return +1;
3851 if( r>9223372036854775807.0 ) return -1;
3852 y = (i64)r;
3853 if( i<y ) return -1;
3854 if( i>y ){
3855 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3856 return +1;
3858 s = (double)i;
3859 if( s<r ) return -1;
3860 if( s>r ) return +1;
3861 return 0;
3866 ** Compare the values contained by the two memory cells, returning
3867 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3868 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3869 ** and reals) sorted numerically, followed by text ordered by the collating
3870 ** sequence pColl and finally blob's ordered by memcmp().
3872 ** Two NULL values are considered equal by this function.
3874 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3875 int f1, f2;
3876 int combined_flags;
3878 f1 = pMem1->flags;
3879 f2 = pMem2->flags;
3880 combined_flags = f1|f2;
3881 assert( (combined_flags & MEM_RowSet)==0 );
3883 /* If one value is NULL, it is less than the other. If both values
3884 ** are NULL, return 0.
3886 if( combined_flags&MEM_Null ){
3887 return (f2&MEM_Null) - (f1&MEM_Null);
3890 /* At least one of the two values is a number
3892 if( combined_flags&(MEM_Int|MEM_Real) ){
3893 if( (f1 & f2 & MEM_Int)!=0 ){
3894 if( pMem1->u.i < pMem2->u.i ) return -1;
3895 if( pMem1->u.i > pMem2->u.i ) return +1;
3896 return 0;
3898 if( (f1 & f2 & MEM_Real)!=0 ){
3899 if( pMem1->u.r < pMem2->u.r ) return -1;
3900 if( pMem1->u.r > pMem2->u.r ) return +1;
3901 return 0;
3903 if( (f1&MEM_Int)!=0 ){
3904 if( (f2&MEM_Real)!=0 ){
3905 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3906 }else{
3907 return -1;
3910 if( (f1&MEM_Real)!=0 ){
3911 if( (f2&MEM_Int)!=0 ){
3912 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3913 }else{
3914 return -1;
3917 return +1;
3920 /* If one value is a string and the other is a blob, the string is less.
3921 ** If both are strings, compare using the collating functions.
3923 if( combined_flags&MEM_Str ){
3924 if( (f1 & MEM_Str)==0 ){
3925 return 1;
3927 if( (f2 & MEM_Str)==0 ){
3928 return -1;
3931 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3932 assert( pMem1->enc==SQLITE_UTF8 ||
3933 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3935 /* The collation sequence must be defined at this point, even if
3936 ** the user deletes the collation sequence after the vdbe program is
3937 ** compiled (this was not always the case).
3939 assert( !pColl || pColl->xCmp );
3941 if( pColl ){
3942 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3944 /* If a NULL pointer was passed as the collate function, fall through
3945 ** to the blob case and use memcmp(). */
3948 /* Both values must be blobs. Compare using memcmp(). */
3949 return sqlite3BlobCompare(pMem1, pMem2);
3954 ** The first argument passed to this function is a serial-type that
3955 ** corresponds to an integer - all values between 1 and 9 inclusive
3956 ** except 7. The second points to a buffer containing an integer value
3957 ** serialized according to serial_type. This function deserializes
3958 ** and returns the value.
3960 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3961 u32 y;
3962 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3963 switch( serial_type ){
3964 case 0:
3965 case 1:
3966 testcase( aKey[0]&0x80 );
3967 return ONE_BYTE_INT(aKey);
3968 case 2:
3969 testcase( aKey[0]&0x80 );
3970 return TWO_BYTE_INT(aKey);
3971 case 3:
3972 testcase( aKey[0]&0x80 );
3973 return THREE_BYTE_INT(aKey);
3974 case 4: {
3975 testcase( aKey[0]&0x80 );
3976 y = FOUR_BYTE_UINT(aKey);
3977 return (i64)*(int*)&y;
3979 case 5: {
3980 testcase( aKey[0]&0x80 );
3981 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3983 case 6: {
3984 u64 x = FOUR_BYTE_UINT(aKey);
3985 testcase( aKey[0]&0x80 );
3986 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3987 return (i64)*(i64*)&x;
3991 return (serial_type - 8);
3995 ** This function compares the two table rows or index records
3996 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3997 ** or positive integer if key1 is less than, equal to or
3998 ** greater than key2. The {nKey1, pKey1} key must be a blob
3999 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4000 ** key must be a parsed key such as obtained from
4001 ** sqlite3VdbeParseRecord.
4003 ** If argument bSkip is non-zero, it is assumed that the caller has already
4004 ** determined that the first fields of the keys are equal.
4006 ** Key1 and Key2 do not have to contain the same number of fields. If all
4007 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4008 ** returned.
4010 ** If database corruption is discovered, set pPKey2->errCode to
4011 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4012 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4013 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4015 int sqlite3VdbeRecordCompareWithSkip(
4016 int nKey1, const void *pKey1, /* Left key */
4017 UnpackedRecord *pPKey2, /* Right key */
4018 int bSkip /* If true, skip the first field */
4020 u32 d1; /* Offset into aKey[] of next data element */
4021 int i; /* Index of next field to compare */
4022 u32 szHdr1; /* Size of record header in bytes */
4023 u32 idx1; /* Offset of first type in header */
4024 int rc = 0; /* Return value */
4025 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4026 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
4027 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4028 Mem mem1;
4030 /* If bSkip is true, then the caller has already determined that the first
4031 ** two elements in the keys are equal. Fix the various stack variables so
4032 ** that this routine begins comparing at the second field. */
4033 if( bSkip ){
4034 u32 s1;
4035 idx1 = 1 + getVarint32(&aKey1[1], s1);
4036 szHdr1 = aKey1[0];
4037 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4038 i = 1;
4039 pRhs++;
4040 }else{
4041 idx1 = getVarint32(aKey1, szHdr1);
4042 d1 = szHdr1;
4043 if( d1>(unsigned)nKey1 ){
4044 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4045 return 0; /* Corruption */
4047 i = 0;
4050 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4051 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4052 || CORRUPT_DB );
4053 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4054 assert( pPKey2->pKeyInfo->nKeyField>0 );
4055 assert( idx1<=szHdr1 || CORRUPT_DB );
4057 u32 serial_type;
4059 /* RHS is an integer */
4060 if( pRhs->flags & MEM_Int ){
4061 serial_type = aKey1[idx1];
4062 testcase( serial_type==12 );
4063 if( serial_type>=10 ){
4064 rc = +1;
4065 }else if( serial_type==0 ){
4066 rc = -1;
4067 }else if( serial_type==7 ){
4068 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4069 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4070 }else{
4071 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4072 i64 rhs = pRhs->u.i;
4073 if( lhs<rhs ){
4074 rc = -1;
4075 }else if( lhs>rhs ){
4076 rc = +1;
4081 /* RHS is real */
4082 else if( pRhs->flags & MEM_Real ){
4083 serial_type = aKey1[idx1];
4084 if( serial_type>=10 ){
4085 /* Serial types 12 or greater are strings and blobs (greater than
4086 ** numbers). Types 10 and 11 are currently "reserved for future
4087 ** use", so it doesn't really matter what the results of comparing
4088 ** them to numberic values are. */
4089 rc = +1;
4090 }else if( serial_type==0 ){
4091 rc = -1;
4092 }else{
4093 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4094 if( serial_type==7 ){
4095 if( mem1.u.r<pRhs->u.r ){
4096 rc = -1;
4097 }else if( mem1.u.r>pRhs->u.r ){
4098 rc = +1;
4100 }else{
4101 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4106 /* RHS is a string */
4107 else if( pRhs->flags & MEM_Str ){
4108 getVarint32(&aKey1[idx1], serial_type);
4109 testcase( serial_type==12 );
4110 if( serial_type<12 ){
4111 rc = -1;
4112 }else if( !(serial_type & 0x01) ){
4113 rc = +1;
4114 }else{
4115 mem1.n = (serial_type - 12) / 2;
4116 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4117 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4118 if( (d1+mem1.n) > (unsigned)nKey1 ){
4119 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4120 return 0; /* Corruption */
4121 }else if( pKeyInfo->aColl[i] ){
4122 mem1.enc = pKeyInfo->enc;
4123 mem1.db = pKeyInfo->db;
4124 mem1.flags = MEM_Str;
4125 mem1.z = (char*)&aKey1[d1];
4126 rc = vdbeCompareMemString(
4127 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4129 }else{
4130 int nCmp = MIN(mem1.n, pRhs->n);
4131 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4132 if( rc==0 ) rc = mem1.n - pRhs->n;
4137 /* RHS is a blob */
4138 else if( pRhs->flags & MEM_Blob ){
4139 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4140 getVarint32(&aKey1[idx1], serial_type);
4141 testcase( serial_type==12 );
4142 if( serial_type<12 || (serial_type & 0x01) ){
4143 rc = -1;
4144 }else{
4145 int nStr = (serial_type - 12) / 2;
4146 testcase( (d1+nStr)==(unsigned)nKey1 );
4147 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4148 if( (d1+nStr) > (unsigned)nKey1 ){
4149 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4150 return 0; /* Corruption */
4151 }else if( pRhs->flags & MEM_Zero ){
4152 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4153 rc = 1;
4154 }else{
4155 rc = nStr - pRhs->u.nZero;
4157 }else{
4158 int nCmp = MIN(nStr, pRhs->n);
4159 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4160 if( rc==0 ) rc = nStr - pRhs->n;
4165 /* RHS is null */
4166 else{
4167 serial_type = aKey1[idx1];
4168 rc = (serial_type!=0);
4171 if( rc!=0 ){
4172 if( pKeyInfo->aSortOrder[i] ){
4173 rc = -rc;
4175 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4176 assert( mem1.szMalloc==0 ); /* See comment below */
4177 return rc;
4180 i++;
4181 pRhs++;
4182 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4183 idx1 += sqlite3VarintLen(serial_type);
4184 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4186 /* No memory allocation is ever used on mem1. Prove this using
4187 ** the following assert(). If the assert() fails, it indicates a
4188 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4189 assert( mem1.szMalloc==0 );
4191 /* rc==0 here means that one or both of the keys ran out of fields and
4192 ** all the fields up to that point were equal. Return the default_rc
4193 ** value. */
4194 assert( CORRUPT_DB
4195 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4196 || pKeyInfo->db->mallocFailed
4198 pPKey2->eqSeen = 1;
4199 return pPKey2->default_rc;
4201 int sqlite3VdbeRecordCompare(
4202 int nKey1, const void *pKey1, /* Left key */
4203 UnpackedRecord *pPKey2 /* Right key */
4205 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4210 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4211 ** that (a) the first field of pPKey2 is an integer, and (b) the
4212 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4213 ** byte (i.e. is less than 128).
4215 ** To avoid concerns about buffer overreads, this routine is only used
4216 ** on schemas where the maximum valid header size is 63 bytes or less.
4218 static int vdbeRecordCompareInt(
4219 int nKey1, const void *pKey1, /* Left key */
4220 UnpackedRecord *pPKey2 /* Right key */
4222 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4223 int serial_type = ((const u8*)pKey1)[1];
4224 int res;
4225 u32 y;
4226 u64 x;
4227 i64 v;
4228 i64 lhs;
4230 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4231 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4232 switch( serial_type ){
4233 case 1: { /* 1-byte signed integer */
4234 lhs = ONE_BYTE_INT(aKey);
4235 testcase( lhs<0 );
4236 break;
4238 case 2: { /* 2-byte signed integer */
4239 lhs = TWO_BYTE_INT(aKey);
4240 testcase( lhs<0 );
4241 break;
4243 case 3: { /* 3-byte signed integer */
4244 lhs = THREE_BYTE_INT(aKey);
4245 testcase( lhs<0 );
4246 break;
4248 case 4: { /* 4-byte signed integer */
4249 y = FOUR_BYTE_UINT(aKey);
4250 lhs = (i64)*(int*)&y;
4251 testcase( lhs<0 );
4252 break;
4254 case 5: { /* 6-byte signed integer */
4255 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4256 testcase( lhs<0 );
4257 break;
4259 case 6: { /* 8-byte signed integer */
4260 x = FOUR_BYTE_UINT(aKey);
4261 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4262 lhs = *(i64*)&x;
4263 testcase( lhs<0 );
4264 break;
4266 case 8:
4267 lhs = 0;
4268 break;
4269 case 9:
4270 lhs = 1;
4271 break;
4273 /* This case could be removed without changing the results of running
4274 ** this code. Including it causes gcc to generate a faster switch
4275 ** statement (since the range of switch targets now starts at zero and
4276 ** is contiguous) but does not cause any duplicate code to be generated
4277 ** (as gcc is clever enough to combine the two like cases). Other
4278 ** compilers might be similar. */
4279 case 0: case 7:
4280 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4282 default:
4283 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4286 v = pPKey2->aMem[0].u.i;
4287 if( v>lhs ){
4288 res = pPKey2->r1;
4289 }else if( v<lhs ){
4290 res = pPKey2->r2;
4291 }else if( pPKey2->nField>1 ){
4292 /* The first fields of the two keys are equal. Compare the trailing
4293 ** fields. */
4294 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4295 }else{
4296 /* The first fields of the two keys are equal and there are no trailing
4297 ** fields. Return pPKey2->default_rc in this case. */
4298 res = pPKey2->default_rc;
4299 pPKey2->eqSeen = 1;
4302 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4303 return res;
4307 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4308 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4309 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4310 ** at the start of (pKey1/nKey1) fits in a single byte.
4312 static int vdbeRecordCompareString(
4313 int nKey1, const void *pKey1, /* Left key */
4314 UnpackedRecord *pPKey2 /* Right key */
4316 const u8 *aKey1 = (const u8*)pKey1;
4317 int serial_type;
4318 int res;
4320 assert( pPKey2->aMem[0].flags & MEM_Str );
4321 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4322 getVarint32(&aKey1[1], serial_type);
4323 if( serial_type<12 ){
4324 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4325 }else if( !(serial_type & 0x01) ){
4326 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4327 }else{
4328 int nCmp;
4329 int nStr;
4330 int szHdr = aKey1[0];
4332 nStr = (serial_type-12) / 2;
4333 if( (szHdr + nStr) > nKey1 ){
4334 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4335 return 0; /* Corruption */
4337 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4338 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4340 if( res==0 ){
4341 res = nStr - pPKey2->aMem[0].n;
4342 if( res==0 ){
4343 if( pPKey2->nField>1 ){
4344 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4345 }else{
4346 res = pPKey2->default_rc;
4347 pPKey2->eqSeen = 1;
4349 }else if( res>0 ){
4350 res = pPKey2->r2;
4351 }else{
4352 res = pPKey2->r1;
4354 }else if( res>0 ){
4355 res = pPKey2->r2;
4356 }else{
4357 res = pPKey2->r1;
4361 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4362 || CORRUPT_DB
4363 || pPKey2->pKeyInfo->db->mallocFailed
4365 return res;
4369 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4370 ** suitable for comparing serialized records to the unpacked record passed
4371 ** as the only argument.
4373 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4374 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4375 ** that the size-of-header varint that occurs at the start of each record
4376 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4377 ** also assumes that it is safe to overread a buffer by at least the
4378 ** maximum possible legal header size plus 8 bytes. Because there is
4379 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4380 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4381 ** limit the size of the header to 64 bytes in cases where the first field
4382 ** is an integer.
4384 ** The easiest way to enforce this limit is to consider only records with
4385 ** 13 fields or less. If the first field is an integer, the maximum legal
4386 ** header size is (12*5 + 1 + 1) bytes. */
4387 if( p->pKeyInfo->nAllField<=13 ){
4388 int flags = p->aMem[0].flags;
4389 if( p->pKeyInfo->aSortOrder[0] ){
4390 p->r1 = 1;
4391 p->r2 = -1;
4392 }else{
4393 p->r1 = -1;
4394 p->r2 = 1;
4396 if( (flags & MEM_Int) ){
4397 return vdbeRecordCompareInt;
4399 testcase( flags & MEM_Real );
4400 testcase( flags & MEM_Null );
4401 testcase( flags & MEM_Blob );
4402 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4403 assert( flags & MEM_Str );
4404 return vdbeRecordCompareString;
4408 return sqlite3VdbeRecordCompare;
4412 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4413 ** Read the rowid (the last field in the record) and store it in *rowid.
4414 ** Return SQLITE_OK if everything works, or an error code otherwise.
4416 ** pCur might be pointing to text obtained from a corrupt database file.
4417 ** So the content cannot be trusted. Do appropriate checks on the content.
4419 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4420 i64 nCellKey = 0;
4421 int rc;
4422 u32 szHdr; /* Size of the header */
4423 u32 typeRowid; /* Serial type of the rowid */
4424 u32 lenRowid; /* Size of the rowid */
4425 Mem m, v;
4427 /* Get the size of the index entry. Only indices entries of less
4428 ** than 2GiB are support - anything large must be database corruption.
4429 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4430 ** this code can safely assume that nCellKey is 32-bits
4432 assert( sqlite3BtreeCursorIsValid(pCur) );
4433 nCellKey = sqlite3BtreePayloadSize(pCur);
4434 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4436 /* Read in the complete content of the index entry */
4437 sqlite3VdbeMemInit(&m, db, 0);
4438 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4439 if( rc ){
4440 return rc;
4443 /* The index entry must begin with a header size */
4444 (void)getVarint32((u8*)m.z, szHdr);
4445 testcase( szHdr==3 );
4446 testcase( szHdr==m.n );
4447 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4448 goto idx_rowid_corruption;
4451 /* The last field of the index should be an integer - the ROWID.
4452 ** Verify that the last entry really is an integer. */
4453 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4454 testcase( typeRowid==1 );
4455 testcase( typeRowid==2 );
4456 testcase( typeRowid==3 );
4457 testcase( typeRowid==4 );
4458 testcase( typeRowid==5 );
4459 testcase( typeRowid==6 );
4460 testcase( typeRowid==8 );
4461 testcase( typeRowid==9 );
4462 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4463 goto idx_rowid_corruption;
4465 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4466 testcase( (u32)m.n==szHdr+lenRowid );
4467 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4468 goto idx_rowid_corruption;
4471 /* Fetch the integer off the end of the index record */
4472 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4473 *rowid = v.u.i;
4474 sqlite3VdbeMemRelease(&m);
4475 return SQLITE_OK;
4477 /* Jump here if database corruption is detected after m has been
4478 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4479 idx_rowid_corruption:
4480 testcase( m.szMalloc!=0 );
4481 sqlite3VdbeMemRelease(&m);
4482 return SQLITE_CORRUPT_BKPT;
4486 ** Compare the key of the index entry that cursor pC is pointing to against
4487 ** the key string in pUnpacked. Write into *pRes a number
4488 ** that is negative, zero, or positive if pC is less than, equal to,
4489 ** or greater than pUnpacked. Return SQLITE_OK on success.
4491 ** pUnpacked is either created without a rowid or is truncated so that it
4492 ** omits the rowid at the end. The rowid at the end of the index entry
4493 ** is ignored as well. Hence, this routine only compares the prefixes
4494 ** of the keys prior to the final rowid, not the entire key.
4496 int sqlite3VdbeIdxKeyCompare(
4497 sqlite3 *db, /* Database connection */
4498 VdbeCursor *pC, /* The cursor to compare against */
4499 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4500 int *res /* Write the comparison result here */
4502 i64 nCellKey = 0;
4503 int rc;
4504 BtCursor *pCur;
4505 Mem m;
4507 assert( pC->eCurType==CURTYPE_BTREE );
4508 pCur = pC->uc.pCursor;
4509 assert( sqlite3BtreeCursorIsValid(pCur) );
4510 nCellKey = sqlite3BtreePayloadSize(pCur);
4511 /* nCellKey will always be between 0 and 0xffffffff because of the way
4512 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4513 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4514 *res = 0;
4515 return SQLITE_CORRUPT_BKPT;
4517 sqlite3VdbeMemInit(&m, db, 0);
4518 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4519 if( rc ){
4520 return rc;
4522 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4523 sqlite3VdbeMemRelease(&m);
4524 return SQLITE_OK;
4528 ** This routine sets the value to be returned by subsequent calls to
4529 ** sqlite3_changes() on the database handle 'db'.
4531 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4532 assert( sqlite3_mutex_held(db->mutex) );
4533 db->nChange = nChange;
4534 db->nTotalChange += nChange;
4538 ** Set a flag in the vdbe to update the change counter when it is finalised
4539 ** or reset.
4541 void sqlite3VdbeCountChanges(Vdbe *v){
4542 v->changeCntOn = 1;
4546 ** Mark every prepared statement associated with a database connection
4547 ** as expired.
4549 ** An expired statement means that recompilation of the statement is
4550 ** recommend. Statements expire when things happen that make their
4551 ** programs obsolete. Removing user-defined functions or collating
4552 ** sequences, or changing an authorization function are the types of
4553 ** things that make prepared statements obsolete.
4555 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4556 Vdbe *p;
4557 for(p = db->pVdbe; p; p=p->pNext){
4558 p->expired = 1;
4563 ** Return the database associated with the Vdbe.
4565 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4566 return v->db;
4570 ** Return the SQLITE_PREPARE flags for a Vdbe.
4572 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4573 return v->prepFlags;
4577 ** Return a pointer to an sqlite3_value structure containing the value bound
4578 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4579 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4580 ** constants) to the value before returning it.
4582 ** The returned value must be freed by the caller using sqlite3ValueFree().
4584 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4585 assert( iVar>0 );
4586 if( v ){
4587 Mem *pMem = &v->aVar[iVar-1];
4588 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4589 if( 0==(pMem->flags & MEM_Null) ){
4590 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4591 if( pRet ){
4592 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4593 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4595 return pRet;
4598 return 0;
4602 ** Configure SQL variable iVar so that binding a new value to it signals
4603 ** to sqlite3_reoptimize() that re-preparing the statement may result
4604 ** in a better query plan.
4606 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4607 assert( iVar>0 );
4608 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4609 if( iVar>=32 ){
4610 v->expmask |= 0x80000000;
4611 }else{
4612 v->expmask |= ((u32)1 << (iVar-1));
4617 ** Cause a function to throw an error if it was call from OP_PureFunc
4618 ** rather than OP_Function.
4620 ** OP_PureFunc means that the function must be deterministic, and should
4621 ** throw an error if it is given inputs that would make it non-deterministic.
4622 ** This routine is invoked by date/time functions that use non-deterministic
4623 ** features such as 'now'.
4625 int sqlite3NotPureFunc(sqlite3_context *pCtx){
4626 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4627 if( pCtx->pVdbe==0 ) return 1;
4628 #endif
4629 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
4630 sqlite3_result_error(pCtx,
4631 "non-deterministic function in index expression or CHECK constraint",
4632 -1);
4633 return 0;
4635 return 1;
4638 #ifndef SQLITE_OMIT_VIRTUALTABLE
4640 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4641 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4642 ** in memory obtained from sqlite3DbMalloc).
4644 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4645 if( pVtab->zErrMsg ){
4646 sqlite3 *db = p->db;
4647 sqlite3DbFree(db, p->zErrMsg);
4648 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4649 sqlite3_free(pVtab->zErrMsg);
4650 pVtab->zErrMsg = 0;
4653 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4655 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4658 ** If the second argument is not NULL, release any allocations associated
4659 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4660 ** structure itself, using sqlite3DbFree().
4662 ** This function is used to free UnpackedRecord structures allocated by
4663 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4665 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4666 if( p ){
4667 int i;
4668 for(i=0; i<nField; i++){
4669 Mem *pMem = &p->aMem[i];
4670 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4672 sqlite3DbFreeNN(db, p);
4675 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4677 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4679 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4680 ** then cursor passed as the second argument should point to the row about
4681 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4682 ** the required value will be read from the row the cursor points to.
4684 void sqlite3VdbePreUpdateHook(
4685 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4686 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4687 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4688 const char *zDb, /* Database name */
4689 Table *pTab, /* Modified table */
4690 i64 iKey1, /* Initial key value */
4691 int iReg /* Register for new.* record */
4693 sqlite3 *db = v->db;
4694 i64 iKey2;
4695 PreUpdate preupdate;
4696 const char *zTbl = pTab->zName;
4697 static const u8 fakeSortOrder = 0;
4699 assert( db->pPreUpdate==0 );
4700 memset(&preupdate, 0, sizeof(PreUpdate));
4701 if( HasRowid(pTab)==0 ){
4702 iKey1 = iKey2 = 0;
4703 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4704 }else{
4705 if( op==SQLITE_UPDATE ){
4706 iKey2 = v->aMem[iReg].u.i;
4707 }else{
4708 iKey2 = iKey1;
4712 assert( pCsr->nField==pTab->nCol
4713 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4716 preupdate.v = v;
4717 preupdate.pCsr = pCsr;
4718 preupdate.op = op;
4719 preupdate.iNewReg = iReg;
4720 preupdate.keyinfo.db = db;
4721 preupdate.keyinfo.enc = ENC(db);
4722 preupdate.keyinfo.nKeyField = pTab->nCol;
4723 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4724 preupdate.iKey1 = iKey1;
4725 preupdate.iKey2 = iKey2;
4726 preupdate.pTab = pTab;
4728 db->pPreUpdate = &preupdate;
4729 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4730 db->pPreUpdate = 0;
4731 sqlite3DbFree(db, preupdate.aRecord);
4732 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
4733 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
4734 if( preupdate.aNew ){
4735 int i;
4736 for(i=0; i<pCsr->nField; i++){
4737 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4739 sqlite3DbFreeNN(db, preupdate.aNew);
4742 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */