4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
32 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p
->flags
& (MEM_Int
|MEM_Real
))!=(MEM_Int
|MEM_Real
) );
43 /* The szMalloc field holds the correct memory allocation size */
44 assert( p
->szMalloc
==0
45 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
) );
47 /* If p holds a string or blob, the Mem.z must point to exactly
48 ** one of the following:
50 ** (1) Memory in Mem.zMalloc and managed by the Mem object
51 ** (2) Memory to be freed using Mem.xDel
52 ** (3) An ephemeral string or blob
53 ** (4) A static string or blob
55 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
57 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
58 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
59 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
60 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
81 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
82 #ifndef SQLITE_OMIT_UTF16
85 assert( (pMem
->flags
&MEM_RowSet
)==0 );
86 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
87 || desiredEnc
==SQLITE_UTF16BE
);
88 if( !(pMem
->flags
&MEM_Str
) || pMem
->enc
==desiredEnc
){
91 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
92 #ifdef SQLITE_OMIT_UTF16
96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97 ** then the encoding of the value may not have changed.
99 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
100 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
101 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
102 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
108 ** Make sure pMem->z points to a writable allocation of at least
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation. pMem must be either a string or
113 ** blob if bPreserve is true. If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
116 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
117 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
118 assert( (pMem
->flags
&MEM_RowSet
)==0 );
119 testcase( pMem
->db
==0 );
121 /* If the bPreserve flag is set to true, then the memory cell must already
122 ** contain a valid string or blob value. */
123 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
124 testcase( bPreserve
&& pMem
->z
==0 );
126 assert( pMem
->szMalloc
==0
127 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
) );
128 if( pMem
->szMalloc
<n
){
130 if( bPreserve
&& pMem
->szMalloc
>0 && pMem
->z
==pMem
->zMalloc
){
131 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
134 if( pMem
->szMalloc
>0 ) sqlite3DbFree(pMem
->db
, pMem
->zMalloc
);
135 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
137 if( pMem
->zMalloc
==0 ){
138 sqlite3VdbeMemSetNull(pMem
);
141 return SQLITE_NOMEM_BKPT
;
143 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
147 if( bPreserve
&& pMem
->z
&& pMem
->z
!=pMem
->zMalloc
){
148 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
150 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
151 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
152 pMem
->xDel((void *)(pMem
->z
));
155 pMem
->z
= pMem
->zMalloc
;
156 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
161 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
162 ** If pMem->zMalloc already meets or exceeds the requested size, this
163 ** routine is a no-op.
165 ** Any prior string or blob content in the pMem object may be discarded.
166 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
168 ** values are preserved.
170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
171 ** if unable to complete the resizing.
173 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
175 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
176 if( pMem
->szMalloc
<szNew
){
177 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
179 assert( (pMem
->flags
& MEM_Dyn
)==0 );
180 pMem
->z
= pMem
->zMalloc
;
181 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
);
186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
187 ** MEM.zMalloc, where it can be safely written.
189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
191 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
193 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
194 assert( (pMem
->flags
&MEM_RowSet
)==0 );
197 if( (f
&(MEM_Str
|MEM_Blob
)) && (pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
) ){
198 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+ 2, 1) ){
199 return SQLITE_NOMEM_BKPT
;
201 pMem
->z
[pMem
->n
] = 0;
202 pMem
->z
[pMem
->n
+1] = 0;
203 pMem
->flags
|= MEM_Term
;
205 pMem
->flags
&= ~MEM_Ephem
;
207 pMem
->pScopyFrom
= 0;
214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
215 ** blob stored in dynamically allocated space.
217 #ifndef SQLITE_OMIT_INCRBLOB
218 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
219 if( pMem
->flags
& MEM_Zero
){
221 assert( pMem
->flags
&MEM_Blob
);
222 assert( (pMem
->flags
&MEM_RowSet
)==0 );
223 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
225 /* Set nByte to the number of bytes required to store the expanded blob. */
226 nByte
= pMem
->n
+ pMem
->u
.nZero
;
230 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
231 return SQLITE_NOMEM_BKPT
;
234 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
235 pMem
->n
+= pMem
->u
.nZero
;
236 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
243 ** It is already known that pMem contains an unterminated string.
244 ** Add the zero terminator.
246 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
247 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+2, 1) ){
248 return SQLITE_NOMEM_BKPT
;
250 pMem
->z
[pMem
->n
] = 0;
251 pMem
->z
[pMem
->n
+1] = 0;
252 pMem
->flags
|= MEM_Term
;
257 ** Make sure the given Mem is \u0000 terminated.
259 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
260 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
261 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
262 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
263 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
264 return SQLITE_OK
; /* Nothing to do */
266 return vdbeMemAddTerminator(pMem
);
271 ** Add MEM_Str to the set of representations for the given Mem. Numbers
272 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
275 ** Existing representations MEM_Int and MEM_Real are invalidated if
276 ** bForce is true but are retained if bForce is false.
278 ** A MEM_Null value will never be passed to this function. This function is
279 ** used for converting values to text for returning to the user (i.e. via
280 ** sqlite3_value_text()), or for ensuring that values to be used as btree
281 ** keys are strings. In the former case a NULL pointer is returned the
282 ** user and the latter is an internal programming error.
284 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
285 int fg
= pMem
->flags
;
286 const int nByte
= 32;
288 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
289 assert( !(fg
&MEM_Zero
) );
290 assert( !(fg
&(MEM_Str
|MEM_Blob
)) );
291 assert( fg
&(MEM_Int
|MEM_Real
) );
292 assert( (pMem
->flags
&MEM_RowSet
)==0 );
293 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
296 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
297 return SQLITE_NOMEM_BKPT
;
300 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
301 ** string representation of the value. Then, if the required encoding
302 ** is UTF-16le or UTF-16be do a translation.
304 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
307 sqlite3_snprintf(nByte
, pMem
->z
, "%lld", pMem
->u
.i
);
309 assert( fg
& MEM_Real
);
310 sqlite3_snprintf(nByte
, pMem
->z
, "%!.15g", pMem
->u
.r
);
312 pMem
->n
= sqlite3Strlen30(pMem
->z
);
313 pMem
->enc
= SQLITE_UTF8
;
314 pMem
->flags
|= MEM_Str
|MEM_Term
;
315 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
);
316 sqlite3VdbeChangeEncoding(pMem
, enc
);
321 ** Memory cell pMem contains the context of an aggregate function.
322 ** This routine calls the finalize method for that function. The
323 ** result of the aggregate is stored back into pMem.
325 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
328 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
330 if( ALWAYS(pFunc
&& pFunc
->xFinalize
) ){
333 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
334 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
335 memset(&ctx
, 0, sizeof(ctx
));
336 memset(&t
, 0, sizeof(t
));
342 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
343 assert( (pMem
->flags
& MEM_Dyn
)==0 );
344 if( pMem
->szMalloc
>0 ) sqlite3DbFree(pMem
->db
, pMem
->zMalloc
);
345 memcpy(pMem
, &t
, sizeof(t
));
352 ** If the memory cell contains a value that must be freed by
353 ** invoking the external callback in Mem.xDel, then this routine
354 ** will free that value. It also sets Mem.flags to MEM_Null.
356 ** This is a helper routine for sqlite3VdbeMemSetNull() and
357 ** for sqlite3VdbeMemRelease(). Use those other routines as the
358 ** entry point for releasing Mem resources.
360 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
361 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
362 assert( VdbeMemDynamic(p
) );
363 if( p
->flags
&MEM_Agg
){
364 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
365 assert( (p
->flags
& MEM_Agg
)==0 );
366 testcase( p
->flags
& MEM_Dyn
);
368 if( p
->flags
&MEM_Dyn
){
369 assert( (p
->flags
&MEM_RowSet
)==0 );
370 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
371 p
->xDel((void *)p
->z
);
372 }else if( p
->flags
&MEM_RowSet
){
373 sqlite3RowSetClear(p
->u
.pRowSet
);
374 }else if( p
->flags
&MEM_Frame
){
375 VdbeFrame
*pFrame
= p
->u
.pFrame
;
376 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
377 pFrame
->v
->pDelFrame
= pFrame
;
383 ** Release memory held by the Mem p, both external memory cleared
384 ** by p->xDel and memory in p->zMalloc.
386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
387 ** the unusual case where there really is memory in p that needs
390 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
391 if( VdbeMemDynamic(p
) ){
392 vdbeMemClearExternAndSetNull(p
);
395 sqlite3DbFree(p
->db
, p
->zMalloc
);
402 ** Release any memory resources held by the Mem. Both the memory that is
403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
405 ** Use this routine prior to clean up prior to abandoning a Mem, or to
406 ** reset a Mem back to its minimum memory utilization.
408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
409 ** prior to inserting new content into the Mem.
411 void sqlite3VdbeMemRelease(Mem
*p
){
412 assert( sqlite3VdbeCheckMemInvariants(p
) );
413 if( VdbeMemDynamic(p
) || p
->szMalloc
){
419 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
420 ** If the double is out of range of a 64-bit signed integer then
421 ** return the closest available 64-bit signed integer.
423 static i64
doubleToInt64(double r
){
424 #ifdef SQLITE_OMIT_FLOATING_POINT
425 /* When floating-point is omitted, double and int64 are the same thing */
429 ** Many compilers we encounter do not define constants for the
430 ** minimum and maximum 64-bit integers, or they define them
431 ** inconsistently. And many do not understand the "LL" notation.
432 ** So we define our own static constants here using nothing
433 ** larger than a 32-bit integer constant.
435 static const i64 maxInt
= LARGEST_INT64
;
436 static const i64 minInt
= SMALLEST_INT64
;
438 if( r
<=(double)minInt
){
440 }else if( r
>=(double)maxInt
){
449 ** Return some kind of integer value which is the best we can do
450 ** at representing the value that *pMem describes as an integer.
451 ** If pMem is an integer, then the value is exact. If pMem is
452 ** a floating-point then the value returned is the integer part.
453 ** If pMem is a string or blob, then we make an attempt to convert
454 ** it into an integer and return that. If pMem represents an
455 ** an SQL-NULL value, return 0.
457 ** If pMem represents a string value, its encoding might be changed.
459 i64
sqlite3VdbeIntValue(Mem
*pMem
){
461 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
462 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
464 if( flags
& MEM_Int
){
466 }else if( flags
& MEM_Real
){
467 return doubleToInt64(pMem
->u
.r
);
468 }else if( flags
& (MEM_Str
|MEM_Blob
) ){
470 assert( pMem
->z
|| pMem
->n
==0 );
471 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
479 ** Return the best representation of pMem that we can get into a
480 ** double. If pMem is already a double or an integer, return its
481 ** value. If it is a string or blob, try to convert it to a double.
482 ** If it is a NULL, return 0.0.
484 double sqlite3VdbeRealValue(Mem
*pMem
){
485 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
486 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
487 if( pMem
->flags
& MEM_Real
){
489 }else if( pMem
->flags
& MEM_Int
){
490 return (double)pMem
->u
.i
;
491 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
492 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
493 double val
= (double)0;
494 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
497 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
503 ** The MEM structure is already a MEM_Real. Try to also make it a
504 ** MEM_Int if we can.
506 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
508 assert( pMem
->flags
& MEM_Real
);
509 assert( (pMem
->flags
& MEM_RowSet
)==0 );
510 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
511 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
513 ix
= doubleToInt64(pMem
->u
.r
);
515 /* Only mark the value as an integer if
517 ** (1) the round-trip conversion real->int->real is a no-op, and
518 ** (2) The integer is neither the largest nor the smallest
519 ** possible integer (ticket #3922)
521 ** The second and third terms in the following conditional enforces
522 ** the second condition under the assumption that addition overflow causes
523 ** values to wrap around.
525 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
527 MemSetTypeFlag(pMem
, MEM_Int
);
532 ** Convert pMem to type integer. Invalidate any prior representations.
534 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
535 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
536 assert( (pMem
->flags
& MEM_RowSet
)==0 );
537 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
539 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
540 MemSetTypeFlag(pMem
, MEM_Int
);
545 ** Convert pMem so that it is of type MEM_Real.
546 ** Invalidate any prior representations.
548 int sqlite3VdbeMemRealify(Mem
*pMem
){
549 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
550 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
552 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
553 MemSetTypeFlag(pMem
, MEM_Real
);
558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
559 ** Invalidate any prior representations.
561 ** Every effort is made to force the conversion, even if the input
562 ** is a string that does not look completely like a number. Convert
563 ** as much of the string as we can and ignore the rest.
565 int sqlite3VdbeMemNumerify(Mem
*pMem
){
566 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))==0 ){
567 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
568 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
569 if( 0==sqlite3Atoi64(pMem
->z
, &pMem
->u
.i
, pMem
->n
, pMem
->enc
) ){
570 MemSetTypeFlag(pMem
, MEM_Int
);
572 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
573 MemSetTypeFlag(pMem
, MEM_Real
);
574 sqlite3VdbeIntegerAffinity(pMem
);
577 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))!=0 );
578 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
);
583 ** Cast the datatype of the value in pMem according to the affinity
584 ** "aff". Casting is different from applying affinity in that a cast
585 ** is forced. In other words, the value is converted into the desired
586 ** affinity even if that results in loss of data. This routine is
587 ** used (for example) to implement the SQL "cast()" operator.
589 void sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
590 if( pMem
->flags
& MEM_Null
) return;
592 case SQLITE_AFF_BLOB
: { /* Really a cast to BLOB */
593 if( (pMem
->flags
& MEM_Blob
)==0 ){
594 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
595 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
596 MemSetTypeFlag(pMem
, MEM_Blob
);
598 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
602 case SQLITE_AFF_NUMERIC
: {
603 sqlite3VdbeMemNumerify(pMem
);
606 case SQLITE_AFF_INTEGER
: {
607 sqlite3VdbeMemIntegerify(pMem
);
610 case SQLITE_AFF_REAL
: {
611 sqlite3VdbeMemRealify(pMem
);
615 assert( aff
==SQLITE_AFF_TEXT
);
616 assert( MEM_Str
==(MEM_Blob
>>3) );
617 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
618 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
619 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
620 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_Blob
|MEM_Zero
);
627 ** Initialize bulk memory to be a consistent Mem object.
629 ** The minimum amount of initialization feasible is performed.
631 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
632 assert( (flags
& ~MEM_TypeMask
)==0 );
640 ** Delete any previous value and set the value stored in *pMem to NULL.
642 ** This routine calls the Mem.xDel destructor to dispose of values that
643 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
645 ** routine to invoke the destructor and deallocates Mem.zMalloc.
647 ** Use this routine to reset the Mem prior to insert a new value.
649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
651 void sqlite3VdbeMemSetNull(Mem
*pMem
){
652 if( VdbeMemDynamic(pMem
) ){
653 vdbeMemClearExternAndSetNull(pMem
);
655 pMem
->flags
= MEM_Null
;
658 void sqlite3ValueSetNull(sqlite3_value
*p
){
659 sqlite3VdbeMemSetNull((Mem
*)p
);
663 ** Delete any previous value and set the value to be a BLOB of length
664 ** n containing all zeros.
666 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
667 sqlite3VdbeMemRelease(pMem
);
668 pMem
->flags
= MEM_Blob
|MEM_Zero
;
672 pMem
->enc
= SQLITE_UTF8
;
677 ** The pMem is known to contain content that needs to be destroyed prior
678 ** to a value change. So invoke the destructor, then set the value to
681 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
682 sqlite3VdbeMemSetNull(pMem
);
684 pMem
->flags
= MEM_Int
;
688 ** Delete any previous value and set the value stored in *pMem to val,
689 ** manifest type INTEGER.
691 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
692 if( VdbeMemDynamic(pMem
) ){
693 vdbeReleaseAndSetInt64(pMem
, val
);
696 pMem
->flags
= MEM_Int
;
700 #ifndef SQLITE_OMIT_FLOATING_POINT
702 ** Delete any previous value and set the value stored in *pMem to val,
703 ** manifest type REAL.
705 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
706 sqlite3VdbeMemSetNull(pMem
);
707 if( !sqlite3IsNaN(val
) ){
709 pMem
->flags
= MEM_Real
;
715 ** Delete any previous value and set the value of pMem to be an
716 ** empty boolean index.
718 void sqlite3VdbeMemSetRowSet(Mem
*pMem
){
719 sqlite3
*db
= pMem
->db
;
721 assert( (pMem
->flags
& MEM_RowSet
)==0 );
722 sqlite3VdbeMemRelease(pMem
);
723 pMem
->zMalloc
= sqlite3DbMallocRawNN(db
, 64);
724 if( db
->mallocFailed
){
725 pMem
->flags
= MEM_Null
;
728 assert( pMem
->zMalloc
);
729 pMem
->szMalloc
= sqlite3DbMallocSize(db
, pMem
->zMalloc
);
730 pMem
->u
.pRowSet
= sqlite3RowSetInit(db
, pMem
->zMalloc
, pMem
->szMalloc
);
731 assert( pMem
->u
.pRowSet
!=0 );
732 pMem
->flags
= MEM_RowSet
;
737 ** Return true if the Mem object contains a TEXT or BLOB that is
738 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
740 int sqlite3VdbeMemTooBig(Mem
*p
){
742 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
744 if( p
->flags
& MEM_Zero
){
747 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
754 ** This routine prepares a memory cell for modification by breaking
755 ** its link to a shallow copy and by marking any current shallow
756 ** copies of this cell as invalid.
758 ** This is used for testing and debugging only - to make sure shallow
759 ** copies are not misused.
761 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
764 for(i
=0, pX
=pVdbe
->aMem
; i
<pVdbe
->nMem
; i
++, pX
++){
765 if( pX
->pScopyFrom
==pMem
){
766 pX
->flags
|= MEM_Undefined
;
770 pMem
->pScopyFrom
= 0;
772 #endif /* SQLITE_DEBUG */
776 ** Make an shallow copy of pFrom into pTo. Prior contents of
777 ** pTo are freed. The pFrom->z field is not duplicated. If
778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
779 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
781 static SQLITE_NOINLINE
void vdbeClrCopy(Mem
*pTo
, const Mem
*pFrom
, int eType
){
782 vdbeMemClearExternAndSetNull(pTo
);
783 assert( !VdbeMemDynamic(pTo
) );
784 sqlite3VdbeMemShallowCopy(pTo
, pFrom
, eType
);
786 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
787 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
788 assert( pTo
->db
==pFrom
->db
);
789 if( VdbeMemDynamic(pTo
) ){ vdbeClrCopy(pTo
,pFrom
,srcType
); return; }
790 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
791 if( (pFrom
->flags
&MEM_Static
)==0 ){
792 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
793 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
794 pTo
->flags
|= srcType
;
799 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
800 ** freed before the copy is made.
802 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
805 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
806 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
807 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
808 pTo
->flags
&= ~MEM_Dyn
;
809 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
810 if( 0==(pFrom
->flags
&MEM_Static
) ){
811 pTo
->flags
|= MEM_Ephem
;
812 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
820 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
821 ** freed. If pFrom contains ephemeral data, a copy is made.
823 ** pFrom contains an SQL NULL when this routine returns.
825 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
826 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
827 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
828 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
830 sqlite3VdbeMemRelease(pTo
);
831 memcpy(pTo
, pFrom
, sizeof(Mem
));
832 pFrom
->flags
= MEM_Null
;
837 ** Change the value of a Mem to be a string or a BLOB.
839 ** The memory management strategy depends on the value of the xDel
840 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
841 ** string is copied into a (possibly existing) buffer managed by the
842 ** Mem structure. Otherwise, any existing buffer is freed and the
845 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
846 ** size limit) then no memory allocation occurs. If the string can be
847 ** stored without allocating memory, then it is. If a memory allocation
848 ** is required to store the string, then value of pMem is unchanged. In
849 ** either case, SQLITE_TOOBIG is returned.
851 int sqlite3VdbeMemSetStr(
852 Mem
*pMem
, /* Memory cell to set to string value */
853 const char *z
, /* String pointer */
854 int n
, /* Bytes in string, or negative */
855 u8 enc
, /* Encoding of z. 0 for BLOBs */
856 void (*xDel
)(void*) /* Destructor function */
858 int nByte
= n
; /* New value for pMem->n */
859 int iLimit
; /* Maximum allowed string or blob size */
860 u16 flags
= 0; /* New value for pMem->flags */
862 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
863 assert( (pMem
->flags
& MEM_RowSet
)==0 );
865 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
867 sqlite3VdbeMemSetNull(pMem
);
872 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
874 iLimit
= SQLITE_MAX_LENGTH
;
876 flags
= (enc
==0?MEM_Blob
:MEM_Str
);
879 if( enc
==SQLITE_UTF8
){
880 nByte
= sqlite3Strlen30(z
);
881 if( nByte
>iLimit
) nByte
= iLimit
+1;
883 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
888 /* The following block sets the new values of Mem.z and Mem.xDel. It
889 ** also sets a flag in local variable "flags" to indicate the memory
890 ** management (one of MEM_Dyn or MEM_Static).
892 if( xDel
==SQLITE_TRANSIENT
){
894 if( flags
&MEM_Term
){
895 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
898 return SQLITE_TOOBIG
;
900 testcase( nAlloc
==0 );
901 testcase( nAlloc
==31 );
902 testcase( nAlloc
==32 );
903 if( sqlite3VdbeMemClearAndResize(pMem
, MAX(nAlloc
,32)) ){
904 return SQLITE_NOMEM_BKPT
;
906 memcpy(pMem
->z
, z
, nAlloc
);
907 }else if( xDel
==SQLITE_DYNAMIC
){
908 sqlite3VdbeMemRelease(pMem
);
909 pMem
->zMalloc
= pMem
->z
= (char *)z
;
910 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
912 sqlite3VdbeMemRelease(pMem
);
915 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
920 pMem
->enc
= (enc
==0 ? SQLITE_UTF8
: enc
);
922 #ifndef SQLITE_OMIT_UTF16
923 if( pMem
->enc
!=SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
924 return SQLITE_NOMEM_BKPT
;
929 return SQLITE_TOOBIG
;
936 ** Move data out of a btree key or data field and into a Mem structure.
937 ** The data or key is taken from the entry that pCur is currently pointing
938 ** to. offset and amt determine what portion of the data or key to retrieve.
939 ** key is true to get the key or false to get data. The result is written
940 ** into the pMem element.
942 ** The pMem object must have been initialized. This routine will use
943 ** pMem->zMalloc to hold the content from the btree, if possible. New
944 ** pMem->zMalloc space will be allocated if necessary. The calling routine
945 ** is responsible for making sure that the pMem object is eventually
948 ** If this routine fails for any reason (malloc returns NULL or unable
949 ** to read from the disk) then the pMem is left in an inconsistent state.
951 static SQLITE_NOINLINE
int vdbeMemFromBtreeResize(
952 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
953 u32 offset
, /* Offset from the start of data to return bytes from. */
954 u32 amt
, /* Number of bytes to return. */
955 int key
, /* If true, retrieve from the btree key, not data. */
956 Mem
*pMem
/* OUT: Return data in this Mem structure. */
959 pMem
->flags
= MEM_Null
;
960 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+2)) ){
962 rc
= sqlite3BtreeKey(pCur
, offset
, amt
, pMem
->z
);
964 rc
= sqlite3BtreeData(pCur
, offset
, amt
, pMem
->z
);
969 pMem
->flags
= MEM_Blob
|MEM_Term
;
972 sqlite3VdbeMemRelease(pMem
);
977 int sqlite3VdbeMemFromBtree(
978 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
979 u32 offset
, /* Offset from the start of data to return bytes from. */
980 u32 amt
, /* Number of bytes to return. */
981 int key
, /* If true, retrieve from the btree key, not data. */
982 Mem
*pMem
/* OUT: Return data in this Mem structure. */
984 char *zData
; /* Data from the btree layer */
985 u32 available
= 0; /* Number of bytes available on the local btree page */
986 int rc
= SQLITE_OK
; /* Return code */
988 assert( sqlite3BtreeCursorIsValid(pCur
) );
989 assert( !VdbeMemDynamic(pMem
) );
991 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
992 ** that both the BtShared and database handle mutexes are held. */
993 assert( (pMem
->flags
& MEM_RowSet
)==0 );
994 zData
= (char *)sqlite3BtreePayloadFetch(pCur
, &available
);
997 if( offset
+amt
<=available
){
998 pMem
->z
= &zData
[offset
];
999 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
1002 rc
= vdbeMemFromBtreeResize(pCur
, offset
, amt
, key
, pMem
);
1009 ** The pVal argument is known to be a value other than NULL.
1010 ** Convert it into a string with encoding enc and return a pointer
1011 ** to a zero-terminated version of that string.
1013 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1015 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1016 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1017 assert( (pVal
->flags
& MEM_RowSet
)==0 );
1018 assert( (pVal
->flags
& (MEM_Null
))==0 );
1019 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1020 pVal
->flags
|= MEM_Str
;
1021 if( pVal
->flags
& MEM_Zero
){
1022 sqlite3VdbeMemExpandBlob(pVal
);
1024 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1025 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1027 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1028 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1029 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1033 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1035 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1036 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1038 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1039 || pVal
->db
->mallocFailed
);
1040 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1047 /* This function is only available internally, it is not part of the
1048 ** external API. It works in a similar way to sqlite3_value_text(),
1049 ** except the data returned is in the encoding specified by the second
1050 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1053 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1054 ** If that is the case, then the result must be aligned on an even byte
1057 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1058 if( !pVal
) return 0;
1059 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1060 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1061 assert( (pVal
->flags
& MEM_RowSet
)==0 );
1062 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1065 if( pVal
->flags
&MEM_Null
){
1068 return valueToText(pVal
, enc
);
1072 ** Create a new sqlite3_value object.
1074 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1075 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1077 p
->flags
= MEM_Null
;
1084 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1085 ** valueNew(). See comments above valueNew() for details.
1087 struct ValueNewStat4Ctx
{
1090 UnpackedRecord
**ppRec
;
1095 ** Allocate and return a pointer to a new sqlite3_value object. If
1096 ** the second argument to this function is NULL, the object is allocated
1097 ** by calling sqlite3ValueNew().
1099 ** Otherwise, if the second argument is non-zero, then this function is
1100 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1101 ** already been allocated, allocate the UnpackedRecord structure that
1102 ** that function will return to its caller here. Then return a pointer to
1103 ** an sqlite3_value within the UnpackedRecord.a[] array.
1105 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1106 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1108 UnpackedRecord
*pRec
= p
->ppRec
[0];
1111 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1112 int nByte
; /* Bytes of space to allocate */
1113 int i
; /* Counter variable */
1114 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1116 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1117 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1119 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1120 if( pRec
->pKeyInfo
){
1121 assert( pRec
->pKeyInfo
->nField
+pRec
->pKeyInfo
->nXField
==nCol
);
1122 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1123 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1124 for(i
=0; i
<nCol
; i
++){
1125 pRec
->aMem
[i
].flags
= MEM_Null
;
1126 pRec
->aMem
[i
].db
= db
;
1129 sqlite3DbFree(db
, pRec
);
1133 if( pRec
==0 ) return 0;
1137 pRec
->nField
= p
->iVal
+1;
1138 return &pRec
->aMem
[p
->iVal
];
1141 UNUSED_PARAMETER(p
);
1142 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1143 return sqlite3ValueNew(db
);
1147 ** The expression object indicated by the second argument is guaranteed
1148 ** to be a scalar SQL function. If
1150 ** * all function arguments are SQL literals,
1151 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1152 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1154 ** then this routine attempts to invoke the SQL function. Assuming no
1155 ** error occurs, output parameter (*ppVal) is set to point to a value
1156 ** object containing the result before returning SQLITE_OK.
1158 ** Affinity aff is applied to the result of the function before returning.
1159 ** If the result is a text value, the sqlite3_value object uses encoding
1162 ** If the conditions above are not met, this function returns SQLITE_OK
1163 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1164 ** NULL and an SQLite error code returned.
1166 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1167 static int valueFromFunction(
1168 sqlite3
*db
, /* The database connection */
1169 Expr
*p
, /* The expression to evaluate */
1170 u8 enc
, /* Encoding to use */
1171 u8 aff
, /* Affinity to use */
1172 sqlite3_value
**ppVal
, /* Write the new value here */
1173 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1175 sqlite3_context ctx
; /* Context object for function invocation */
1176 sqlite3_value
**apVal
= 0; /* Function arguments */
1177 int nVal
= 0; /* Size of apVal[] array */
1178 FuncDef
*pFunc
= 0; /* Function definition */
1179 sqlite3_value
*pVal
= 0; /* New value */
1180 int rc
= SQLITE_OK
; /* Return code */
1181 ExprList
*pList
= 0; /* Function arguments */
1182 int i
; /* Iterator variable */
1185 assert( (p
->flags
& EP_TokenOnly
)==0 );
1187 if( pList
) nVal
= pList
->nExpr
;
1188 pFunc
= sqlite3FindFunction(db
, p
->u
.zToken
, nVal
, enc
, 0);
1190 if( (pFunc
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
1191 || (pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
1197 apVal
= (sqlite3_value
**)sqlite3DbMallocZero(db
, sizeof(apVal
[0]) * nVal
);
1199 rc
= SQLITE_NOMEM_BKPT
;
1200 goto value_from_function_out
;
1202 for(i
=0; i
<nVal
; i
++){
1203 rc
= sqlite3ValueFromExpr(db
, pList
->a
[i
].pExpr
, enc
, aff
, &apVal
[i
]);
1204 if( apVal
[i
]==0 || rc
!=SQLITE_OK
) goto value_from_function_out
;
1208 pVal
= valueNew(db
, pCtx
);
1210 rc
= SQLITE_NOMEM_BKPT
;
1211 goto value_from_function_out
;
1214 assert( pCtx
->pParse
->rc
==SQLITE_OK
);
1215 memset(&ctx
, 0, sizeof(ctx
));
1218 pFunc
->xSFunc(&ctx
, nVal
, apVal
);
1221 sqlite3ErrorMsg(pCtx
->pParse
, "%s", sqlite3_value_text(pVal
));
1223 sqlite3ValueApplyAffinity(pVal
, aff
, SQLITE_UTF8
);
1224 assert( rc
==SQLITE_OK
);
1225 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1226 if( rc
==SQLITE_OK
&& sqlite3VdbeMemTooBig(pVal
) ){
1228 pCtx
->pParse
->nErr
++;
1231 pCtx
->pParse
->rc
= rc
;
1233 value_from_function_out
:
1234 if( rc
!=SQLITE_OK
){
1238 for(i
=0; i
<nVal
; i
++){
1239 sqlite3ValueFree(apVal
[i
]);
1241 sqlite3DbFree(db
, apVal
);
1248 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1249 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1252 ** Extract a value from the supplied expression in the manner described
1253 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1254 ** using valueNew().
1256 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1257 ** has been allocated, it is freed before returning. Or, if pCtx is not
1258 ** NULL, it is assumed that the caller will free any allocated object
1261 static int valueFromExpr(
1262 sqlite3
*db
, /* The database connection */
1263 Expr
*pExpr
, /* The expression to evaluate */
1264 u8 enc
, /* Encoding to use */
1265 u8 affinity
, /* Affinity to use */
1266 sqlite3_value
**ppVal
, /* Write the new value here */
1267 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1271 sqlite3_value
*pVal
= 0;
1273 const char *zNeg
= "";
1280 while( (op
= pExpr
->op
)==TK_UPLUS
|| op
==TK_SPAN
) pExpr
= pExpr
->pLeft
;
1281 if( NEVER(op
==TK_REGISTER
) ) op
= pExpr
->op2
;
1283 /* Compressed expressions only appear when parsing the DEFAULT clause
1284 ** on a table column definition, and hence only when pCtx==0. This
1285 ** check ensures that an EP_TokenOnly expression is never passed down
1286 ** into valueFromFunction(). */
1287 assert( (pExpr
->flags
& EP_TokenOnly
)==0 || pCtx
==0 );
1290 u8 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1291 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1292 testcase( rc
!=SQLITE_OK
);
1294 sqlite3VdbeMemCast(*ppVal
, aff
, SQLITE_UTF8
);
1295 sqlite3ValueApplyAffinity(*ppVal
, affinity
, SQLITE_UTF8
);
1300 /* Handle negative integers in a single step. This is needed in the
1301 ** case when the value is -9223372036854775808.
1304 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1305 pExpr
= pExpr
->pLeft
;
1311 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1312 pVal
= valueNew(db
, pCtx
);
1313 if( pVal
==0 ) goto no_mem
;
1314 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1315 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1317 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1318 if( zVal
==0 ) goto no_mem
;
1319 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1321 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_BLOB
){
1322 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1324 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1326 if( pVal
->flags
& (MEM_Int
|MEM_Real
) ) pVal
->flags
&= ~MEM_Str
;
1327 if( enc
!=SQLITE_UTF8
){
1328 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1330 }else if( op
==TK_UMINUS
) {
1331 /* This branch happens for multiple negative signs. Ex: -(-5) */
1332 if( SQLITE_OK
==sqlite3ValueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
)
1335 sqlite3VdbeMemNumerify(pVal
);
1336 if( pVal
->flags
& MEM_Real
){
1337 pVal
->u
.r
= -pVal
->u
.r
;
1338 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1339 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1340 MemSetTypeFlag(pVal
, MEM_Real
);
1342 pVal
->u
.i
= -pVal
->u
.i
;
1344 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1346 }else if( op
==TK_NULL
){
1347 pVal
= valueNew(db
, pCtx
);
1348 if( pVal
==0 ) goto no_mem
;
1350 #ifndef SQLITE_OMIT_BLOB_LITERAL
1351 else if( op
==TK_BLOB
){
1353 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1354 assert( pExpr
->u
.zToken
[1]=='\'' );
1355 pVal
= valueNew(db
, pCtx
);
1356 if( !pVal
) goto no_mem
;
1357 zVal
= &pExpr
->u
.zToken
[2];
1358 nVal
= sqlite3Strlen30(zVal
)-1;
1359 assert( zVal
[nVal
]=='\'' );
1360 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1365 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1366 else if( op
==TK_FUNCTION
&& pCtx
!=0 ){
1367 rc
= valueFromFunction(db
, pExpr
, enc
, affinity
, &pVal
, pCtx
);
1375 sqlite3OomFault(db
);
1376 sqlite3DbFree(db
, zVal
);
1377 assert( *ppVal
==0 );
1378 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1379 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1381 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1383 return SQLITE_NOMEM_BKPT
;
1387 ** Create a new sqlite3_value object, containing the value of pExpr.
1389 ** This only works for very simple expressions that consist of one constant
1390 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1391 ** be converted directly into a value, then the value is allocated and
1392 ** a pointer written to *ppVal. The caller is responsible for deallocating
1393 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1394 ** cannot be converted to a value, then *ppVal is set to NULL.
1396 int sqlite3ValueFromExpr(
1397 sqlite3
*db
, /* The database connection */
1398 Expr
*pExpr
, /* The expression to evaluate */
1399 u8 enc
, /* Encoding to use */
1400 u8 affinity
, /* Affinity to use */
1401 sqlite3_value
**ppVal
/* Write the new value here */
1403 return valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0);
1406 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1408 ** The implementation of the sqlite_record() function. This function accepts
1409 ** a single argument of any type. The return value is a formatted database
1410 ** record (a blob) containing the argument value.
1412 ** This is used to convert the value stored in the 'sample' column of the
1413 ** sqlite_stat3 table to the record format SQLite uses internally.
1415 static void recordFunc(
1416 sqlite3_context
*context
,
1418 sqlite3_value
**argv
1420 const int file_format
= 1;
1421 u32 iSerial
; /* Serial type */
1422 int nSerial
; /* Bytes of space for iSerial as varint */
1423 u32 nVal
; /* Bytes of space required for argv[0] */
1428 UNUSED_PARAMETER( argc
);
1429 iSerial
= sqlite3VdbeSerialType(argv
[0], file_format
, &nVal
);
1430 nSerial
= sqlite3VarintLen(iSerial
);
1431 db
= sqlite3_context_db_handle(context
);
1433 nRet
= 1 + nSerial
+ nVal
;
1434 aRet
= sqlite3DbMallocRawNN(db
, nRet
);
1436 sqlite3_result_error_nomem(context
);
1438 aRet
[0] = nSerial
+1;
1439 putVarint32(&aRet
[1], iSerial
);
1440 sqlite3VdbeSerialPut(&aRet
[1+nSerial
], argv
[0], iSerial
);
1441 sqlite3_result_blob(context
, aRet
, nRet
, SQLITE_TRANSIENT
);
1442 sqlite3DbFree(db
, aRet
);
1447 ** Register built-in functions used to help read ANALYZE data.
1449 void sqlite3AnalyzeFunctions(void){
1450 static FuncDef aAnalyzeTableFuncs
[] = {
1451 FUNCTION(sqlite_record
, 1, 0, 0, recordFunc
),
1453 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs
, ArraySize(aAnalyzeTableFuncs
));
1457 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1459 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1460 ** pAlloc if one does not exist and the new value is added to the
1461 ** UnpackedRecord object.
1463 ** A value is extracted in the following cases:
1465 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1467 ** * The expression is a bound variable, and this is a reprepare, or
1469 ** * The expression is a literal value.
1471 ** On success, *ppVal is made to point to the extracted value. The caller
1472 ** is responsible for ensuring that the value is eventually freed.
1474 static int stat4ValueFromExpr(
1475 Parse
*pParse
, /* Parse context */
1476 Expr
*pExpr
, /* The expression to extract a value from */
1477 u8 affinity
, /* Affinity to use */
1478 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1479 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1482 sqlite3_value
*pVal
= 0;
1483 sqlite3
*db
= pParse
->db
;
1485 /* Skip over any TK_COLLATE nodes */
1486 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1489 pVal
= valueNew(db
, pAlloc
);
1491 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1493 }else if( pExpr
->op
==TK_VARIABLE
1494 || NEVER(pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_VARIABLE
)
1497 int iBindVar
= pExpr
->iColumn
;
1498 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1499 if( (v
= pParse
->pReprepare
)!=0 ){
1500 pVal
= valueNew(db
, pAlloc
);
1502 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1503 if( rc
==SQLITE_OK
){
1504 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1506 pVal
->db
= pParse
->db
;
1510 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1513 assert( pVal
==0 || pVal
->db
==db
);
1519 ** This function is used to allocate and populate UnpackedRecord
1520 ** structures intended to be compared against sample index keys stored
1521 ** in the sqlite_stat4 table.
1523 ** A single call to this function attempts to populates field iVal (leftmost
1524 ** is 0 etc.) of the unpacked record with a value extracted from expression
1525 ** pExpr. Extraction of values is possible if:
1527 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1529 ** * The expression is a bound variable, and this is a reprepare, or
1531 ** * The sqlite3ValueFromExpr() function is able to extract a value
1532 ** from the expression (i.e. the expression is a literal value).
1534 ** If a value can be extracted, the affinity passed as the 5th argument
1535 ** is applied to it before it is copied into the UnpackedRecord. Output
1536 ** parameter *pbOk is set to true if a value is extracted, or false
1539 ** When this function is called, *ppRec must either point to an object
1540 ** allocated by an earlier call to this function, or must be NULL. If it
1541 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1542 ** is allocated (and *ppRec set to point to it) before returning.
1544 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1545 ** error if a value cannot be extracted from pExpr. If an error does
1546 ** occur, an SQLite error code is returned.
1548 int sqlite3Stat4ProbeSetValue(
1549 Parse
*pParse
, /* Parse context */
1550 Index
*pIdx
, /* Index being probed */
1551 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1552 Expr
*pExpr
, /* The expression to extract a value from */
1553 u8 affinity
, /* Affinity to use */
1554 int iVal
, /* Array element to populate */
1555 int *pbOk
/* OUT: True if value was extracted */
1558 sqlite3_value
*pVal
= 0;
1559 struct ValueNewStat4Ctx alloc
;
1561 alloc
.pParse
= pParse
;
1563 alloc
.ppRec
= ppRec
;
1566 rc
= stat4ValueFromExpr(pParse
, pExpr
, affinity
, &alloc
, &pVal
);
1567 assert( pVal
==0 || pVal
->db
==pParse
->db
);
1573 ** Attempt to extract a value from expression pExpr using the methods
1574 ** as described for sqlite3Stat4ProbeSetValue() above.
1576 ** If successful, set *ppVal to point to a new value object and return
1577 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1578 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1579 ** does occur, return an SQLite error code. The final value of *ppVal
1580 ** is undefined in this case.
1582 int sqlite3Stat4ValueFromExpr(
1583 Parse
*pParse
, /* Parse context */
1584 Expr
*pExpr
, /* The expression to extract a value from */
1585 u8 affinity
, /* Affinity to use */
1586 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1588 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1592 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1593 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1594 ** sqlite3_value object is allocated.
1596 ** If *ppVal is initially NULL then the caller is responsible for
1597 ** ensuring that the value written into *ppVal is eventually freed.
1599 int sqlite3Stat4Column(
1600 sqlite3
*db
, /* Database handle */
1601 const void *pRec
, /* Pointer to buffer containing record */
1602 int nRec
, /* Size of buffer pRec in bytes */
1603 int iCol
, /* Column to extract */
1604 sqlite3_value
**ppVal
/* OUT: Extracted value */
1606 u32 t
; /* a column type code */
1607 int nHdr
; /* Size of the header in the record */
1608 int iHdr
; /* Next unread header byte */
1609 int iField
; /* Next unread data byte */
1610 int szField
; /* Size of the current data field */
1611 int i
; /* Column index */
1612 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1613 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1616 iHdr
= getVarint32(a
, nHdr
);
1617 if( nHdr
>nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1619 for(i
=0; i
<=iCol
; i
++){
1620 iHdr
+= getVarint32(&a
[iHdr
], t
);
1621 testcase( iHdr
==nHdr
);
1622 testcase( iHdr
==nHdr
+1 );
1623 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1624 szField
= sqlite3VdbeSerialTypeLen(t
);
1627 testcase( iField
==nRec
);
1628 testcase( iField
==nRec
+1 );
1629 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1631 pMem
= *ppVal
= sqlite3ValueNew(db
);
1632 if( pMem
==0 ) return SQLITE_NOMEM_BKPT
;
1634 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1635 pMem
->enc
= ENC(db
);
1640 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1641 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1644 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1647 int nCol
= pRec
->pKeyInfo
->nField
+pRec
->pKeyInfo
->nXField
;
1648 Mem
*aMem
= pRec
->aMem
;
1649 sqlite3
*db
= aMem
[0].db
;
1650 for(i
=0; i
<nCol
; i
++){
1651 sqlite3VdbeMemRelease(&aMem
[i
]);
1653 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1654 sqlite3DbFree(db
, pRec
);
1657 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1660 ** Change the string value of an sqlite3_value object
1662 void sqlite3ValueSetStr(
1663 sqlite3_value
*v
, /* Value to be set */
1664 int n
, /* Length of string z */
1665 const void *z
, /* Text of the new string */
1666 u8 enc
, /* Encoding to use */
1667 void (*xDel
)(void*) /* Destructor for the string */
1669 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1673 ** Free an sqlite3_value object
1675 void sqlite3ValueFree(sqlite3_value
*v
){
1677 sqlite3VdbeMemRelease((Mem
*)v
);
1678 sqlite3DbFree(((Mem
*)v
)->db
, v
);
1682 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1683 ** sqlite3_value object assuming that it uses the encoding "enc".
1684 ** The valueBytes() routine is a helper function.
1686 static SQLITE_NOINLINE
int valueBytes(sqlite3_value
*pVal
, u8 enc
){
1687 return valueToText(pVal
, enc
)!=0 ? pVal
->n
: 0;
1689 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1690 Mem
*p
= (Mem
*)pVal
;
1691 assert( (p
->flags
& MEM_Null
)==0 || (p
->flags
& (MEM_Str
|MEM_Blob
))==0 );
1692 if( (p
->flags
& MEM_Str
)!=0 && pVal
->enc
==enc
){
1695 if( (p
->flags
& MEM_Blob
)!=0 ){
1696 if( p
->flags
& MEM_Zero
){
1697 return p
->n
+ p
->u
.nZero
;
1702 if( p
->flags
& MEM_Null
) return 0;
1703 return valueBytes(pVal
, enc
);