Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / vdbemem.c
blob04cb9c5c630b19cdbc63b7f65a850bf1745c74d9
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 #ifdef SQLITE_DEBUG
23 ** Check invariants on a Mem object.
25 ** This routine is intended for use inside of assert() statements, like
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
28 int sqlite3VdbeCheckMemInvariants(Mem *p){
29 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
40 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
43 /* The szMalloc field holds the correct memory allocation size */
44 assert( p->szMalloc==0
45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
47 /* If p holds a string or blob, the Mem.z must point to exactly
48 ** one of the following:
50 ** (1) Memory in Mem.zMalloc and managed by the Mem object
51 ** (2) Memory to be freed using Mem.xDel
52 ** (3) An ephemeral string or blob
53 ** (4) A static string or blob
55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
56 assert(
57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
63 return 1;
65 #endif
69 ** If pMem is an object with a valid string representation, this routine
70 ** ensures the internal encoding for the string representation is
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
73 ** If pMem is not a string object, or the encoding of the string
74 ** representation is already stored using the requested encoding, then this
75 ** routine is a no-op.
77 ** SQLITE_OK is returned if the conversion is successful (or not required).
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
79 ** between formats.
81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
82 #ifndef SQLITE_OMIT_UTF16
83 int rc;
84 #endif
85 assert( (pMem->flags&MEM_RowSet)==0 );
86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
87 || desiredEnc==SQLITE_UTF16BE );
88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
89 return SQLITE_OK;
91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
92 #ifdef SQLITE_OMIT_UTF16
93 return SQLITE_ERROR;
94 #else
96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97 ** then the encoding of the value may not have changed.
99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
103 return rc;
104 #endif
108 ** Make sure pMem->z points to a writable allocation of at least
109 ** min(n,32) bytes.
111 ** If the bPreserve argument is true, then copy of the content of
112 ** pMem->z into the new allocation. pMem must be either a string or
113 ** blob if bPreserve is true. If bPreserve is false, any prior content
114 ** in pMem->z is discarded.
116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
117 assert( sqlite3VdbeCheckMemInvariants(pMem) );
118 assert( (pMem->flags&MEM_RowSet)==0 );
119 testcase( pMem->db==0 );
121 /* If the bPreserve flag is set to true, then the memory cell must already
122 ** contain a valid string or blob value. */
123 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
124 testcase( bPreserve && pMem->z==0 );
126 assert( pMem->szMalloc==0
127 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
128 if( pMem->szMalloc<n ){
129 if( n<32 ) n = 32;
130 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
131 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
132 bPreserve = 0;
133 }else{
134 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
135 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
137 if( pMem->zMalloc==0 ){
138 sqlite3VdbeMemSetNull(pMem);
139 pMem->z = 0;
140 pMem->szMalloc = 0;
141 return SQLITE_NOMEM_BKPT;
142 }else{
143 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
147 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
148 memcpy(pMem->zMalloc, pMem->z, pMem->n);
150 if( (pMem->flags&MEM_Dyn)!=0 ){
151 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
152 pMem->xDel((void *)(pMem->z));
155 pMem->z = pMem->zMalloc;
156 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
157 return SQLITE_OK;
161 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
162 ** If pMem->zMalloc already meets or exceeds the requested size, this
163 ** routine is a no-op.
165 ** Any prior string or blob content in the pMem object may be discarded.
166 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
167 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
168 ** values are preserved.
170 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
171 ** if unable to complete the resizing.
173 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
174 assert( szNew>0 );
175 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
176 if( pMem->szMalloc<szNew ){
177 return sqlite3VdbeMemGrow(pMem, szNew, 0);
179 assert( (pMem->flags & MEM_Dyn)==0 );
180 pMem->z = pMem->zMalloc;
181 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
182 return SQLITE_OK;
186 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
187 ** MEM.zMalloc, where it can be safely written.
189 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
191 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
192 int f;
193 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
194 assert( (pMem->flags&MEM_RowSet)==0 );
195 ExpandBlob(pMem);
196 f = pMem->flags;
197 if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
198 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
199 return SQLITE_NOMEM_BKPT;
201 pMem->z[pMem->n] = 0;
202 pMem->z[pMem->n+1] = 0;
203 pMem->flags |= MEM_Term;
205 pMem->flags &= ~MEM_Ephem;
206 #ifdef SQLITE_DEBUG
207 pMem->pScopyFrom = 0;
208 #endif
210 return SQLITE_OK;
214 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
215 ** blob stored in dynamically allocated space.
217 #ifndef SQLITE_OMIT_INCRBLOB
218 int sqlite3VdbeMemExpandBlob(Mem *pMem){
219 if( pMem->flags & MEM_Zero ){
220 int nByte;
221 assert( pMem->flags&MEM_Blob );
222 assert( (pMem->flags&MEM_RowSet)==0 );
223 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
225 /* Set nByte to the number of bytes required to store the expanded blob. */
226 nByte = pMem->n + pMem->u.nZero;
227 if( nByte<=0 ){
228 nByte = 1;
230 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
231 return SQLITE_NOMEM_BKPT;
234 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
235 pMem->n += pMem->u.nZero;
236 pMem->flags &= ~(MEM_Zero|MEM_Term);
238 return SQLITE_OK;
240 #endif
243 ** It is already known that pMem contains an unterminated string.
244 ** Add the zero terminator.
246 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
247 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
248 return SQLITE_NOMEM_BKPT;
250 pMem->z[pMem->n] = 0;
251 pMem->z[pMem->n+1] = 0;
252 pMem->flags |= MEM_Term;
253 return SQLITE_OK;
257 ** Make sure the given Mem is \u0000 terminated.
259 int sqlite3VdbeMemNulTerminate(Mem *pMem){
260 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
261 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
262 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
263 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
264 return SQLITE_OK; /* Nothing to do */
265 }else{
266 return vdbeMemAddTerminator(pMem);
271 ** Add MEM_Str to the set of representations for the given Mem. Numbers
272 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
273 ** is a no-op.
275 ** Existing representations MEM_Int and MEM_Real are invalidated if
276 ** bForce is true but are retained if bForce is false.
278 ** A MEM_Null value will never be passed to this function. This function is
279 ** used for converting values to text for returning to the user (i.e. via
280 ** sqlite3_value_text()), or for ensuring that values to be used as btree
281 ** keys are strings. In the former case a NULL pointer is returned the
282 ** user and the latter is an internal programming error.
284 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
285 int fg = pMem->flags;
286 const int nByte = 32;
288 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
289 assert( !(fg&MEM_Zero) );
290 assert( !(fg&(MEM_Str|MEM_Blob)) );
291 assert( fg&(MEM_Int|MEM_Real) );
292 assert( (pMem->flags&MEM_RowSet)==0 );
293 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
296 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
297 return SQLITE_NOMEM_BKPT;
300 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
301 ** string representation of the value. Then, if the required encoding
302 ** is UTF-16le or UTF-16be do a translation.
304 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
306 if( fg & MEM_Int ){
307 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
308 }else{
309 assert( fg & MEM_Real );
310 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
312 pMem->n = sqlite3Strlen30(pMem->z);
313 pMem->enc = SQLITE_UTF8;
314 pMem->flags |= MEM_Str|MEM_Term;
315 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
316 sqlite3VdbeChangeEncoding(pMem, enc);
317 return SQLITE_OK;
321 ** Memory cell pMem contains the context of an aggregate function.
322 ** This routine calls the finalize method for that function. The
323 ** result of the aggregate is stored back into pMem.
325 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
326 ** otherwise.
328 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
329 int rc = SQLITE_OK;
330 if( ALWAYS(pFunc && pFunc->xFinalize) ){
331 sqlite3_context ctx;
332 Mem t;
333 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
334 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
335 memset(&ctx, 0, sizeof(ctx));
336 memset(&t, 0, sizeof(t));
337 t.flags = MEM_Null;
338 t.db = pMem->db;
339 ctx.pOut = &t;
340 ctx.pMem = pMem;
341 ctx.pFunc = pFunc;
342 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
343 assert( (pMem->flags & MEM_Dyn)==0 );
344 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
345 memcpy(pMem, &t, sizeof(t));
346 rc = ctx.isError;
348 return rc;
352 ** If the memory cell contains a value that must be freed by
353 ** invoking the external callback in Mem.xDel, then this routine
354 ** will free that value. It also sets Mem.flags to MEM_Null.
356 ** This is a helper routine for sqlite3VdbeMemSetNull() and
357 ** for sqlite3VdbeMemRelease(). Use those other routines as the
358 ** entry point for releasing Mem resources.
360 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
361 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
362 assert( VdbeMemDynamic(p) );
363 if( p->flags&MEM_Agg ){
364 sqlite3VdbeMemFinalize(p, p->u.pDef);
365 assert( (p->flags & MEM_Agg)==0 );
366 testcase( p->flags & MEM_Dyn );
368 if( p->flags&MEM_Dyn ){
369 assert( (p->flags&MEM_RowSet)==0 );
370 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
371 p->xDel((void *)p->z);
372 }else if( p->flags&MEM_RowSet ){
373 sqlite3RowSetClear(p->u.pRowSet);
374 }else if( p->flags&MEM_Frame ){
375 VdbeFrame *pFrame = p->u.pFrame;
376 pFrame->pParent = pFrame->v->pDelFrame;
377 pFrame->v->pDelFrame = pFrame;
379 p->flags = MEM_Null;
383 ** Release memory held by the Mem p, both external memory cleared
384 ** by p->xDel and memory in p->zMalloc.
386 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
387 ** the unusual case where there really is memory in p that needs
388 ** to be freed.
390 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
391 if( VdbeMemDynamic(p) ){
392 vdbeMemClearExternAndSetNull(p);
394 if( p->szMalloc ){
395 sqlite3DbFree(p->db, p->zMalloc);
396 p->szMalloc = 0;
398 p->z = 0;
402 ** Release any memory resources held by the Mem. Both the memory that is
403 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
405 ** Use this routine prior to clean up prior to abandoning a Mem, or to
406 ** reset a Mem back to its minimum memory utilization.
408 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
409 ** prior to inserting new content into the Mem.
411 void sqlite3VdbeMemRelease(Mem *p){
412 assert( sqlite3VdbeCheckMemInvariants(p) );
413 if( VdbeMemDynamic(p) || p->szMalloc ){
414 vdbeMemClear(p);
419 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
420 ** If the double is out of range of a 64-bit signed integer then
421 ** return the closest available 64-bit signed integer.
423 static i64 doubleToInt64(double r){
424 #ifdef SQLITE_OMIT_FLOATING_POINT
425 /* When floating-point is omitted, double and int64 are the same thing */
426 return r;
427 #else
429 ** Many compilers we encounter do not define constants for the
430 ** minimum and maximum 64-bit integers, or they define them
431 ** inconsistently. And many do not understand the "LL" notation.
432 ** So we define our own static constants here using nothing
433 ** larger than a 32-bit integer constant.
435 static const i64 maxInt = LARGEST_INT64;
436 static const i64 minInt = SMALLEST_INT64;
438 if( r<=(double)minInt ){
439 return minInt;
440 }else if( r>=(double)maxInt ){
441 return maxInt;
442 }else{
443 return (i64)r;
445 #endif
449 ** Return some kind of integer value which is the best we can do
450 ** at representing the value that *pMem describes as an integer.
451 ** If pMem is an integer, then the value is exact. If pMem is
452 ** a floating-point then the value returned is the integer part.
453 ** If pMem is a string or blob, then we make an attempt to convert
454 ** it into an integer and return that. If pMem represents an
455 ** an SQL-NULL value, return 0.
457 ** If pMem represents a string value, its encoding might be changed.
459 i64 sqlite3VdbeIntValue(Mem *pMem){
460 int flags;
461 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
462 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
463 flags = pMem->flags;
464 if( flags & MEM_Int ){
465 return pMem->u.i;
466 }else if( flags & MEM_Real ){
467 return doubleToInt64(pMem->u.r);
468 }else if( flags & (MEM_Str|MEM_Blob) ){
469 i64 value = 0;
470 assert( pMem->z || pMem->n==0 );
471 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
472 return value;
473 }else{
474 return 0;
479 ** Return the best representation of pMem that we can get into a
480 ** double. If pMem is already a double or an integer, return its
481 ** value. If it is a string or blob, try to convert it to a double.
482 ** If it is a NULL, return 0.0.
484 double sqlite3VdbeRealValue(Mem *pMem){
485 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
486 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
487 if( pMem->flags & MEM_Real ){
488 return pMem->u.r;
489 }else if( pMem->flags & MEM_Int ){
490 return (double)pMem->u.i;
491 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
492 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
493 double val = (double)0;
494 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
495 return val;
496 }else{
497 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
498 return (double)0;
503 ** The MEM structure is already a MEM_Real. Try to also make it a
504 ** MEM_Int if we can.
506 void sqlite3VdbeIntegerAffinity(Mem *pMem){
507 i64 ix;
508 assert( pMem->flags & MEM_Real );
509 assert( (pMem->flags & MEM_RowSet)==0 );
510 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
511 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
513 ix = doubleToInt64(pMem->u.r);
515 /* Only mark the value as an integer if
517 ** (1) the round-trip conversion real->int->real is a no-op, and
518 ** (2) The integer is neither the largest nor the smallest
519 ** possible integer (ticket #3922)
521 ** The second and third terms in the following conditional enforces
522 ** the second condition under the assumption that addition overflow causes
523 ** values to wrap around.
525 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
526 pMem->u.i = ix;
527 MemSetTypeFlag(pMem, MEM_Int);
532 ** Convert pMem to type integer. Invalidate any prior representations.
534 int sqlite3VdbeMemIntegerify(Mem *pMem){
535 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
536 assert( (pMem->flags & MEM_RowSet)==0 );
537 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
539 pMem->u.i = sqlite3VdbeIntValue(pMem);
540 MemSetTypeFlag(pMem, MEM_Int);
541 return SQLITE_OK;
545 ** Convert pMem so that it is of type MEM_Real.
546 ** Invalidate any prior representations.
548 int sqlite3VdbeMemRealify(Mem *pMem){
549 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
550 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
552 pMem->u.r = sqlite3VdbeRealValue(pMem);
553 MemSetTypeFlag(pMem, MEM_Real);
554 return SQLITE_OK;
558 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
559 ** Invalidate any prior representations.
561 ** Every effort is made to force the conversion, even if the input
562 ** is a string that does not look completely like a number. Convert
563 ** as much of the string as we can and ignore the rest.
565 int sqlite3VdbeMemNumerify(Mem *pMem){
566 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
567 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
568 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
569 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
570 MemSetTypeFlag(pMem, MEM_Int);
571 }else{
572 pMem->u.r = sqlite3VdbeRealValue(pMem);
573 MemSetTypeFlag(pMem, MEM_Real);
574 sqlite3VdbeIntegerAffinity(pMem);
577 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
578 pMem->flags &= ~(MEM_Str|MEM_Blob);
579 return SQLITE_OK;
583 ** Cast the datatype of the value in pMem according to the affinity
584 ** "aff". Casting is different from applying affinity in that a cast
585 ** is forced. In other words, the value is converted into the desired
586 ** affinity even if that results in loss of data. This routine is
587 ** used (for example) to implement the SQL "cast()" operator.
589 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
590 if( pMem->flags & MEM_Null ) return;
591 switch( aff ){
592 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
593 if( (pMem->flags & MEM_Blob)==0 ){
594 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
595 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
596 MemSetTypeFlag(pMem, MEM_Blob);
597 }else{
598 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
600 break;
602 case SQLITE_AFF_NUMERIC: {
603 sqlite3VdbeMemNumerify(pMem);
604 break;
606 case SQLITE_AFF_INTEGER: {
607 sqlite3VdbeMemIntegerify(pMem);
608 break;
610 case SQLITE_AFF_REAL: {
611 sqlite3VdbeMemRealify(pMem);
612 break;
614 default: {
615 assert( aff==SQLITE_AFF_TEXT );
616 assert( MEM_Str==(MEM_Blob>>3) );
617 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
618 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
619 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
620 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
621 break;
627 ** Initialize bulk memory to be a consistent Mem object.
629 ** The minimum amount of initialization feasible is performed.
631 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
632 assert( (flags & ~MEM_TypeMask)==0 );
633 pMem->flags = flags;
634 pMem->db = db;
635 pMem->szMalloc = 0;
640 ** Delete any previous value and set the value stored in *pMem to NULL.
642 ** This routine calls the Mem.xDel destructor to dispose of values that
643 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
644 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
645 ** routine to invoke the destructor and deallocates Mem.zMalloc.
647 ** Use this routine to reset the Mem prior to insert a new value.
649 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
651 void sqlite3VdbeMemSetNull(Mem *pMem){
652 if( VdbeMemDynamic(pMem) ){
653 vdbeMemClearExternAndSetNull(pMem);
654 }else{
655 pMem->flags = MEM_Null;
658 void sqlite3ValueSetNull(sqlite3_value *p){
659 sqlite3VdbeMemSetNull((Mem*)p);
663 ** Delete any previous value and set the value to be a BLOB of length
664 ** n containing all zeros.
666 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
667 sqlite3VdbeMemRelease(pMem);
668 pMem->flags = MEM_Blob|MEM_Zero;
669 pMem->n = 0;
670 if( n<0 ) n = 0;
671 pMem->u.nZero = n;
672 pMem->enc = SQLITE_UTF8;
673 pMem->z = 0;
677 ** The pMem is known to contain content that needs to be destroyed prior
678 ** to a value change. So invoke the destructor, then set the value to
679 ** a 64-bit integer.
681 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
682 sqlite3VdbeMemSetNull(pMem);
683 pMem->u.i = val;
684 pMem->flags = MEM_Int;
688 ** Delete any previous value and set the value stored in *pMem to val,
689 ** manifest type INTEGER.
691 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
692 if( VdbeMemDynamic(pMem) ){
693 vdbeReleaseAndSetInt64(pMem, val);
694 }else{
695 pMem->u.i = val;
696 pMem->flags = MEM_Int;
700 #ifndef SQLITE_OMIT_FLOATING_POINT
702 ** Delete any previous value and set the value stored in *pMem to val,
703 ** manifest type REAL.
705 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
706 sqlite3VdbeMemSetNull(pMem);
707 if( !sqlite3IsNaN(val) ){
708 pMem->u.r = val;
709 pMem->flags = MEM_Real;
712 #endif
715 ** Delete any previous value and set the value of pMem to be an
716 ** empty boolean index.
718 void sqlite3VdbeMemSetRowSet(Mem *pMem){
719 sqlite3 *db = pMem->db;
720 assert( db!=0 );
721 assert( (pMem->flags & MEM_RowSet)==0 );
722 sqlite3VdbeMemRelease(pMem);
723 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
724 if( db->mallocFailed ){
725 pMem->flags = MEM_Null;
726 pMem->szMalloc = 0;
727 }else{
728 assert( pMem->zMalloc );
729 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
730 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
731 assert( pMem->u.pRowSet!=0 );
732 pMem->flags = MEM_RowSet;
737 ** Return true if the Mem object contains a TEXT or BLOB that is
738 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
740 int sqlite3VdbeMemTooBig(Mem *p){
741 assert( p->db!=0 );
742 if( p->flags & (MEM_Str|MEM_Blob) ){
743 int n = p->n;
744 if( p->flags & MEM_Zero ){
745 n += p->u.nZero;
747 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
749 return 0;
752 #ifdef SQLITE_DEBUG
754 ** This routine prepares a memory cell for modification by breaking
755 ** its link to a shallow copy and by marking any current shallow
756 ** copies of this cell as invalid.
758 ** This is used for testing and debugging only - to make sure shallow
759 ** copies are not misused.
761 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
762 int i;
763 Mem *pX;
764 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
765 if( pX->pScopyFrom==pMem ){
766 pX->flags |= MEM_Undefined;
767 pX->pScopyFrom = 0;
770 pMem->pScopyFrom = 0;
772 #endif /* SQLITE_DEBUG */
776 ** Make an shallow copy of pFrom into pTo. Prior contents of
777 ** pTo are freed. The pFrom->z field is not duplicated. If
778 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
779 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
781 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
782 vdbeMemClearExternAndSetNull(pTo);
783 assert( !VdbeMemDynamic(pTo) );
784 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
786 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
787 assert( (pFrom->flags & MEM_RowSet)==0 );
788 assert( pTo->db==pFrom->db );
789 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
790 memcpy(pTo, pFrom, MEMCELLSIZE);
791 if( (pFrom->flags&MEM_Static)==0 ){
792 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
793 assert( srcType==MEM_Ephem || srcType==MEM_Static );
794 pTo->flags |= srcType;
799 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
800 ** freed before the copy is made.
802 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
803 int rc = SQLITE_OK;
805 assert( (pFrom->flags & MEM_RowSet)==0 );
806 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
807 memcpy(pTo, pFrom, MEMCELLSIZE);
808 pTo->flags &= ~MEM_Dyn;
809 if( pTo->flags&(MEM_Str|MEM_Blob) ){
810 if( 0==(pFrom->flags&MEM_Static) ){
811 pTo->flags |= MEM_Ephem;
812 rc = sqlite3VdbeMemMakeWriteable(pTo);
816 return rc;
820 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
821 ** freed. If pFrom contains ephemeral data, a copy is made.
823 ** pFrom contains an SQL NULL when this routine returns.
825 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
826 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
827 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
828 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
830 sqlite3VdbeMemRelease(pTo);
831 memcpy(pTo, pFrom, sizeof(Mem));
832 pFrom->flags = MEM_Null;
833 pFrom->szMalloc = 0;
837 ** Change the value of a Mem to be a string or a BLOB.
839 ** The memory management strategy depends on the value of the xDel
840 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
841 ** string is copied into a (possibly existing) buffer managed by the
842 ** Mem structure. Otherwise, any existing buffer is freed and the
843 ** pointer copied.
845 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
846 ** size limit) then no memory allocation occurs. If the string can be
847 ** stored without allocating memory, then it is. If a memory allocation
848 ** is required to store the string, then value of pMem is unchanged. In
849 ** either case, SQLITE_TOOBIG is returned.
851 int sqlite3VdbeMemSetStr(
852 Mem *pMem, /* Memory cell to set to string value */
853 const char *z, /* String pointer */
854 int n, /* Bytes in string, or negative */
855 u8 enc, /* Encoding of z. 0 for BLOBs */
856 void (*xDel)(void*) /* Destructor function */
858 int nByte = n; /* New value for pMem->n */
859 int iLimit; /* Maximum allowed string or blob size */
860 u16 flags = 0; /* New value for pMem->flags */
862 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
863 assert( (pMem->flags & MEM_RowSet)==0 );
865 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
866 if( !z ){
867 sqlite3VdbeMemSetNull(pMem);
868 return SQLITE_OK;
871 if( pMem->db ){
872 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
873 }else{
874 iLimit = SQLITE_MAX_LENGTH;
876 flags = (enc==0?MEM_Blob:MEM_Str);
877 if( nByte<0 ){
878 assert( enc!=0 );
879 if( enc==SQLITE_UTF8 ){
880 nByte = sqlite3Strlen30(z);
881 if( nByte>iLimit ) nByte = iLimit+1;
882 }else{
883 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
885 flags |= MEM_Term;
888 /* The following block sets the new values of Mem.z and Mem.xDel. It
889 ** also sets a flag in local variable "flags" to indicate the memory
890 ** management (one of MEM_Dyn or MEM_Static).
892 if( xDel==SQLITE_TRANSIENT ){
893 int nAlloc = nByte;
894 if( flags&MEM_Term ){
895 nAlloc += (enc==SQLITE_UTF8?1:2);
897 if( nByte>iLimit ){
898 return SQLITE_TOOBIG;
900 testcase( nAlloc==0 );
901 testcase( nAlloc==31 );
902 testcase( nAlloc==32 );
903 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
904 return SQLITE_NOMEM_BKPT;
906 memcpy(pMem->z, z, nAlloc);
907 }else if( xDel==SQLITE_DYNAMIC ){
908 sqlite3VdbeMemRelease(pMem);
909 pMem->zMalloc = pMem->z = (char *)z;
910 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
911 }else{
912 sqlite3VdbeMemRelease(pMem);
913 pMem->z = (char *)z;
914 pMem->xDel = xDel;
915 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
918 pMem->n = nByte;
919 pMem->flags = flags;
920 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
922 #ifndef SQLITE_OMIT_UTF16
923 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
924 return SQLITE_NOMEM_BKPT;
926 #endif
928 if( nByte>iLimit ){
929 return SQLITE_TOOBIG;
932 return SQLITE_OK;
936 ** Move data out of a btree key or data field and into a Mem structure.
937 ** The data or key is taken from the entry that pCur is currently pointing
938 ** to. offset and amt determine what portion of the data or key to retrieve.
939 ** key is true to get the key or false to get data. The result is written
940 ** into the pMem element.
942 ** The pMem object must have been initialized. This routine will use
943 ** pMem->zMalloc to hold the content from the btree, if possible. New
944 ** pMem->zMalloc space will be allocated if necessary. The calling routine
945 ** is responsible for making sure that the pMem object is eventually
946 ** destroyed.
948 ** If this routine fails for any reason (malloc returns NULL or unable
949 ** to read from the disk) then the pMem is left in an inconsistent state.
951 static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
952 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
953 u32 offset, /* Offset from the start of data to return bytes from. */
954 u32 amt, /* Number of bytes to return. */
955 int key, /* If true, retrieve from the btree key, not data. */
956 Mem *pMem /* OUT: Return data in this Mem structure. */
958 int rc;
959 pMem->flags = MEM_Null;
960 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
961 if( key ){
962 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
963 }else{
964 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
966 if( rc==SQLITE_OK ){
967 pMem->z[amt] = 0;
968 pMem->z[amt+1] = 0;
969 pMem->flags = MEM_Blob|MEM_Term;
970 pMem->n = (int)amt;
971 }else{
972 sqlite3VdbeMemRelease(pMem);
975 return rc;
977 int sqlite3VdbeMemFromBtree(
978 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
979 u32 offset, /* Offset from the start of data to return bytes from. */
980 u32 amt, /* Number of bytes to return. */
981 int key, /* If true, retrieve from the btree key, not data. */
982 Mem *pMem /* OUT: Return data in this Mem structure. */
984 char *zData; /* Data from the btree layer */
985 u32 available = 0; /* Number of bytes available on the local btree page */
986 int rc = SQLITE_OK; /* Return code */
988 assert( sqlite3BtreeCursorIsValid(pCur) );
989 assert( !VdbeMemDynamic(pMem) );
991 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
992 ** that both the BtShared and database handle mutexes are held. */
993 assert( (pMem->flags & MEM_RowSet)==0 );
994 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
995 assert( zData!=0 );
997 if( offset+amt<=available ){
998 pMem->z = &zData[offset];
999 pMem->flags = MEM_Blob|MEM_Ephem;
1000 pMem->n = (int)amt;
1001 }else{
1002 rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem);
1005 return rc;
1009 ** The pVal argument is known to be a value other than NULL.
1010 ** Convert it into a string with encoding enc and return a pointer
1011 ** to a zero-terminated version of that string.
1013 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1014 assert( pVal!=0 );
1015 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1016 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1017 assert( (pVal->flags & MEM_RowSet)==0 );
1018 assert( (pVal->flags & (MEM_Null))==0 );
1019 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1020 pVal->flags |= MEM_Str;
1021 if( pVal->flags & MEM_Zero ){
1022 sqlite3VdbeMemExpandBlob(pVal);
1024 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1025 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1027 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1028 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1029 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1030 return 0;
1033 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1034 }else{
1035 sqlite3VdbeMemStringify(pVal, enc, 0);
1036 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1038 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1039 || pVal->db->mallocFailed );
1040 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1041 return pVal->z;
1042 }else{
1043 return 0;
1047 /* This function is only available internally, it is not part of the
1048 ** external API. It works in a similar way to sqlite3_value_text(),
1049 ** except the data returned is in the encoding specified by the second
1050 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1051 ** SQLITE_UTF8.
1053 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1054 ** If that is the case, then the result must be aligned on an even byte
1055 ** boundary.
1057 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1058 if( !pVal ) return 0;
1059 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1060 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1061 assert( (pVal->flags & MEM_RowSet)==0 );
1062 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1063 return pVal->z;
1065 if( pVal->flags&MEM_Null ){
1066 return 0;
1068 return valueToText(pVal, enc);
1072 ** Create a new sqlite3_value object.
1074 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1075 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1076 if( p ){
1077 p->flags = MEM_Null;
1078 p->db = db;
1080 return p;
1084 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1085 ** valueNew(). See comments above valueNew() for details.
1087 struct ValueNewStat4Ctx {
1088 Parse *pParse;
1089 Index *pIdx;
1090 UnpackedRecord **ppRec;
1091 int iVal;
1095 ** Allocate and return a pointer to a new sqlite3_value object. If
1096 ** the second argument to this function is NULL, the object is allocated
1097 ** by calling sqlite3ValueNew().
1099 ** Otherwise, if the second argument is non-zero, then this function is
1100 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1101 ** already been allocated, allocate the UnpackedRecord structure that
1102 ** that function will return to its caller here. Then return a pointer to
1103 ** an sqlite3_value within the UnpackedRecord.a[] array.
1105 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1106 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1107 if( p ){
1108 UnpackedRecord *pRec = p->ppRec[0];
1110 if( pRec==0 ){
1111 Index *pIdx = p->pIdx; /* Index being probed */
1112 int nByte; /* Bytes of space to allocate */
1113 int i; /* Counter variable */
1114 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1116 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1117 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1118 if( pRec ){
1119 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1120 if( pRec->pKeyInfo ){
1121 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
1122 assert( pRec->pKeyInfo->enc==ENC(db) );
1123 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1124 for(i=0; i<nCol; i++){
1125 pRec->aMem[i].flags = MEM_Null;
1126 pRec->aMem[i].db = db;
1128 }else{
1129 sqlite3DbFree(db, pRec);
1130 pRec = 0;
1133 if( pRec==0 ) return 0;
1134 p->ppRec[0] = pRec;
1137 pRec->nField = p->iVal+1;
1138 return &pRec->aMem[p->iVal];
1140 #else
1141 UNUSED_PARAMETER(p);
1142 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1143 return sqlite3ValueNew(db);
1147 ** The expression object indicated by the second argument is guaranteed
1148 ** to be a scalar SQL function. If
1150 ** * all function arguments are SQL literals,
1151 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1152 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1154 ** then this routine attempts to invoke the SQL function. Assuming no
1155 ** error occurs, output parameter (*ppVal) is set to point to a value
1156 ** object containing the result before returning SQLITE_OK.
1158 ** Affinity aff is applied to the result of the function before returning.
1159 ** If the result is a text value, the sqlite3_value object uses encoding
1160 ** enc.
1162 ** If the conditions above are not met, this function returns SQLITE_OK
1163 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1164 ** NULL and an SQLite error code returned.
1166 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1167 static int valueFromFunction(
1168 sqlite3 *db, /* The database connection */
1169 Expr *p, /* The expression to evaluate */
1170 u8 enc, /* Encoding to use */
1171 u8 aff, /* Affinity to use */
1172 sqlite3_value **ppVal, /* Write the new value here */
1173 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1175 sqlite3_context ctx; /* Context object for function invocation */
1176 sqlite3_value **apVal = 0; /* Function arguments */
1177 int nVal = 0; /* Size of apVal[] array */
1178 FuncDef *pFunc = 0; /* Function definition */
1179 sqlite3_value *pVal = 0; /* New value */
1180 int rc = SQLITE_OK; /* Return code */
1181 ExprList *pList = 0; /* Function arguments */
1182 int i; /* Iterator variable */
1184 assert( pCtx!=0 );
1185 assert( (p->flags & EP_TokenOnly)==0 );
1186 pList = p->x.pList;
1187 if( pList ) nVal = pList->nExpr;
1188 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1189 assert( pFunc );
1190 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1191 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1193 return SQLITE_OK;
1196 if( pList ){
1197 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1198 if( apVal==0 ){
1199 rc = SQLITE_NOMEM_BKPT;
1200 goto value_from_function_out;
1202 for(i=0; i<nVal; i++){
1203 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1204 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1208 pVal = valueNew(db, pCtx);
1209 if( pVal==0 ){
1210 rc = SQLITE_NOMEM_BKPT;
1211 goto value_from_function_out;
1214 assert( pCtx->pParse->rc==SQLITE_OK );
1215 memset(&ctx, 0, sizeof(ctx));
1216 ctx.pOut = pVal;
1217 ctx.pFunc = pFunc;
1218 pFunc->xSFunc(&ctx, nVal, apVal);
1219 if( ctx.isError ){
1220 rc = ctx.isError;
1221 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1222 }else{
1223 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1224 assert( rc==SQLITE_OK );
1225 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1226 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1227 rc = SQLITE_TOOBIG;
1228 pCtx->pParse->nErr++;
1231 pCtx->pParse->rc = rc;
1233 value_from_function_out:
1234 if( rc!=SQLITE_OK ){
1235 pVal = 0;
1237 if( apVal ){
1238 for(i=0; i<nVal; i++){
1239 sqlite3ValueFree(apVal[i]);
1241 sqlite3DbFree(db, apVal);
1244 *ppVal = pVal;
1245 return rc;
1247 #else
1248 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1249 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1252 ** Extract a value from the supplied expression in the manner described
1253 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1254 ** using valueNew().
1256 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1257 ** has been allocated, it is freed before returning. Or, if pCtx is not
1258 ** NULL, it is assumed that the caller will free any allocated object
1259 ** in all cases.
1261 static int valueFromExpr(
1262 sqlite3 *db, /* The database connection */
1263 Expr *pExpr, /* The expression to evaluate */
1264 u8 enc, /* Encoding to use */
1265 u8 affinity, /* Affinity to use */
1266 sqlite3_value **ppVal, /* Write the new value here */
1267 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1269 int op;
1270 char *zVal = 0;
1271 sqlite3_value *pVal = 0;
1272 int negInt = 1;
1273 const char *zNeg = "";
1274 int rc = SQLITE_OK;
1276 if( !pExpr ){
1277 *ppVal = 0;
1278 return SQLITE_OK;
1280 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1281 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1283 /* Compressed expressions only appear when parsing the DEFAULT clause
1284 ** on a table column definition, and hence only when pCtx==0. This
1285 ** check ensures that an EP_TokenOnly expression is never passed down
1286 ** into valueFromFunction(). */
1287 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1289 if( op==TK_CAST ){
1290 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1291 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1292 testcase( rc!=SQLITE_OK );
1293 if( *ppVal ){
1294 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1295 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1297 return rc;
1300 /* Handle negative integers in a single step. This is needed in the
1301 ** case when the value is -9223372036854775808.
1303 if( op==TK_UMINUS
1304 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1305 pExpr = pExpr->pLeft;
1306 op = pExpr->op;
1307 negInt = -1;
1308 zNeg = "-";
1311 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1312 pVal = valueNew(db, pCtx);
1313 if( pVal==0 ) goto no_mem;
1314 if( ExprHasProperty(pExpr, EP_IntValue) ){
1315 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1316 }else{
1317 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1318 if( zVal==0 ) goto no_mem;
1319 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1321 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1322 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1323 }else{
1324 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1326 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
1327 if( enc!=SQLITE_UTF8 ){
1328 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1330 }else if( op==TK_UMINUS ) {
1331 /* This branch happens for multiple negative signs. Ex: -(-5) */
1332 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
1333 && pVal!=0
1335 sqlite3VdbeMemNumerify(pVal);
1336 if( pVal->flags & MEM_Real ){
1337 pVal->u.r = -pVal->u.r;
1338 }else if( pVal->u.i==SMALLEST_INT64 ){
1339 pVal->u.r = -(double)SMALLEST_INT64;
1340 MemSetTypeFlag(pVal, MEM_Real);
1341 }else{
1342 pVal->u.i = -pVal->u.i;
1344 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1346 }else if( op==TK_NULL ){
1347 pVal = valueNew(db, pCtx);
1348 if( pVal==0 ) goto no_mem;
1350 #ifndef SQLITE_OMIT_BLOB_LITERAL
1351 else if( op==TK_BLOB ){
1352 int nVal;
1353 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1354 assert( pExpr->u.zToken[1]=='\'' );
1355 pVal = valueNew(db, pCtx);
1356 if( !pVal ) goto no_mem;
1357 zVal = &pExpr->u.zToken[2];
1358 nVal = sqlite3Strlen30(zVal)-1;
1359 assert( zVal[nVal]=='\'' );
1360 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1361 0, SQLITE_DYNAMIC);
1363 #endif
1365 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1366 else if( op==TK_FUNCTION && pCtx!=0 ){
1367 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1369 #endif
1371 *ppVal = pVal;
1372 return rc;
1374 no_mem:
1375 sqlite3OomFault(db);
1376 sqlite3DbFree(db, zVal);
1377 assert( *ppVal==0 );
1378 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1379 if( pCtx==0 ) sqlite3ValueFree(pVal);
1380 #else
1381 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1382 #endif
1383 return SQLITE_NOMEM_BKPT;
1387 ** Create a new sqlite3_value object, containing the value of pExpr.
1389 ** This only works for very simple expressions that consist of one constant
1390 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1391 ** be converted directly into a value, then the value is allocated and
1392 ** a pointer written to *ppVal. The caller is responsible for deallocating
1393 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1394 ** cannot be converted to a value, then *ppVal is set to NULL.
1396 int sqlite3ValueFromExpr(
1397 sqlite3 *db, /* The database connection */
1398 Expr *pExpr, /* The expression to evaluate */
1399 u8 enc, /* Encoding to use */
1400 u8 affinity, /* Affinity to use */
1401 sqlite3_value **ppVal /* Write the new value here */
1403 return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
1406 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1408 ** The implementation of the sqlite_record() function. This function accepts
1409 ** a single argument of any type. The return value is a formatted database
1410 ** record (a blob) containing the argument value.
1412 ** This is used to convert the value stored in the 'sample' column of the
1413 ** sqlite_stat3 table to the record format SQLite uses internally.
1415 static void recordFunc(
1416 sqlite3_context *context,
1417 int argc,
1418 sqlite3_value **argv
1420 const int file_format = 1;
1421 u32 iSerial; /* Serial type */
1422 int nSerial; /* Bytes of space for iSerial as varint */
1423 u32 nVal; /* Bytes of space required for argv[0] */
1424 int nRet;
1425 sqlite3 *db;
1426 u8 *aRet;
1428 UNUSED_PARAMETER( argc );
1429 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
1430 nSerial = sqlite3VarintLen(iSerial);
1431 db = sqlite3_context_db_handle(context);
1433 nRet = 1 + nSerial + nVal;
1434 aRet = sqlite3DbMallocRawNN(db, nRet);
1435 if( aRet==0 ){
1436 sqlite3_result_error_nomem(context);
1437 }else{
1438 aRet[0] = nSerial+1;
1439 putVarint32(&aRet[1], iSerial);
1440 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
1441 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1442 sqlite3DbFree(db, aRet);
1447 ** Register built-in functions used to help read ANALYZE data.
1449 void sqlite3AnalyzeFunctions(void){
1450 static FuncDef aAnalyzeTableFuncs[] = {
1451 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1453 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
1457 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1459 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1460 ** pAlloc if one does not exist and the new value is added to the
1461 ** UnpackedRecord object.
1463 ** A value is extracted in the following cases:
1465 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1467 ** * The expression is a bound variable, and this is a reprepare, or
1469 ** * The expression is a literal value.
1471 ** On success, *ppVal is made to point to the extracted value. The caller
1472 ** is responsible for ensuring that the value is eventually freed.
1474 static int stat4ValueFromExpr(
1475 Parse *pParse, /* Parse context */
1476 Expr *pExpr, /* The expression to extract a value from */
1477 u8 affinity, /* Affinity to use */
1478 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1479 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1481 int rc = SQLITE_OK;
1482 sqlite3_value *pVal = 0;
1483 sqlite3 *db = pParse->db;
1485 /* Skip over any TK_COLLATE nodes */
1486 pExpr = sqlite3ExprSkipCollate(pExpr);
1488 if( !pExpr ){
1489 pVal = valueNew(db, pAlloc);
1490 if( pVal ){
1491 sqlite3VdbeMemSetNull((Mem*)pVal);
1493 }else if( pExpr->op==TK_VARIABLE
1494 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
1496 Vdbe *v;
1497 int iBindVar = pExpr->iColumn;
1498 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1499 if( (v = pParse->pReprepare)!=0 ){
1500 pVal = valueNew(db, pAlloc);
1501 if( pVal ){
1502 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1503 if( rc==SQLITE_OK ){
1504 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1506 pVal->db = pParse->db;
1509 }else{
1510 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1513 assert( pVal==0 || pVal->db==db );
1514 *ppVal = pVal;
1515 return rc;
1519 ** This function is used to allocate and populate UnpackedRecord
1520 ** structures intended to be compared against sample index keys stored
1521 ** in the sqlite_stat4 table.
1523 ** A single call to this function attempts to populates field iVal (leftmost
1524 ** is 0 etc.) of the unpacked record with a value extracted from expression
1525 ** pExpr. Extraction of values is possible if:
1527 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1529 ** * The expression is a bound variable, and this is a reprepare, or
1531 ** * The sqlite3ValueFromExpr() function is able to extract a value
1532 ** from the expression (i.e. the expression is a literal value).
1534 ** If a value can be extracted, the affinity passed as the 5th argument
1535 ** is applied to it before it is copied into the UnpackedRecord. Output
1536 ** parameter *pbOk is set to true if a value is extracted, or false
1537 ** otherwise.
1539 ** When this function is called, *ppRec must either point to an object
1540 ** allocated by an earlier call to this function, or must be NULL. If it
1541 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1542 ** is allocated (and *ppRec set to point to it) before returning.
1544 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1545 ** error if a value cannot be extracted from pExpr. If an error does
1546 ** occur, an SQLite error code is returned.
1548 int sqlite3Stat4ProbeSetValue(
1549 Parse *pParse, /* Parse context */
1550 Index *pIdx, /* Index being probed */
1551 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1552 Expr *pExpr, /* The expression to extract a value from */
1553 u8 affinity, /* Affinity to use */
1554 int iVal, /* Array element to populate */
1555 int *pbOk /* OUT: True if value was extracted */
1557 int rc;
1558 sqlite3_value *pVal = 0;
1559 struct ValueNewStat4Ctx alloc;
1561 alloc.pParse = pParse;
1562 alloc.pIdx = pIdx;
1563 alloc.ppRec = ppRec;
1564 alloc.iVal = iVal;
1566 rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);
1567 assert( pVal==0 || pVal->db==pParse->db );
1568 *pbOk = (pVal!=0);
1569 return rc;
1573 ** Attempt to extract a value from expression pExpr using the methods
1574 ** as described for sqlite3Stat4ProbeSetValue() above.
1576 ** If successful, set *ppVal to point to a new value object and return
1577 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1578 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1579 ** does occur, return an SQLite error code. The final value of *ppVal
1580 ** is undefined in this case.
1582 int sqlite3Stat4ValueFromExpr(
1583 Parse *pParse, /* Parse context */
1584 Expr *pExpr, /* The expression to extract a value from */
1585 u8 affinity, /* Affinity to use */
1586 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1588 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1592 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1593 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1594 ** sqlite3_value object is allocated.
1596 ** If *ppVal is initially NULL then the caller is responsible for
1597 ** ensuring that the value written into *ppVal is eventually freed.
1599 int sqlite3Stat4Column(
1600 sqlite3 *db, /* Database handle */
1601 const void *pRec, /* Pointer to buffer containing record */
1602 int nRec, /* Size of buffer pRec in bytes */
1603 int iCol, /* Column to extract */
1604 sqlite3_value **ppVal /* OUT: Extracted value */
1606 u32 t; /* a column type code */
1607 int nHdr; /* Size of the header in the record */
1608 int iHdr; /* Next unread header byte */
1609 int iField; /* Next unread data byte */
1610 int szField; /* Size of the current data field */
1611 int i; /* Column index */
1612 u8 *a = (u8*)pRec; /* Typecast byte array */
1613 Mem *pMem = *ppVal; /* Write result into this Mem object */
1615 assert( iCol>0 );
1616 iHdr = getVarint32(a, nHdr);
1617 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1618 iField = nHdr;
1619 for(i=0; i<=iCol; i++){
1620 iHdr += getVarint32(&a[iHdr], t);
1621 testcase( iHdr==nHdr );
1622 testcase( iHdr==nHdr+1 );
1623 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1624 szField = sqlite3VdbeSerialTypeLen(t);
1625 iField += szField;
1627 testcase( iField==nRec );
1628 testcase( iField==nRec+1 );
1629 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1630 if( pMem==0 ){
1631 pMem = *ppVal = sqlite3ValueNew(db);
1632 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1634 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1635 pMem->enc = ENC(db);
1636 return SQLITE_OK;
1640 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1641 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1642 ** the object.
1644 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1645 if( pRec ){
1646 int i;
1647 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
1648 Mem *aMem = pRec->aMem;
1649 sqlite3 *db = aMem[0].db;
1650 for(i=0; i<nCol; i++){
1651 sqlite3VdbeMemRelease(&aMem[i]);
1653 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1654 sqlite3DbFree(db, pRec);
1657 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1660 ** Change the string value of an sqlite3_value object
1662 void sqlite3ValueSetStr(
1663 sqlite3_value *v, /* Value to be set */
1664 int n, /* Length of string z */
1665 const void *z, /* Text of the new string */
1666 u8 enc, /* Encoding to use */
1667 void (*xDel)(void*) /* Destructor for the string */
1669 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1673 ** Free an sqlite3_value object
1675 void sqlite3ValueFree(sqlite3_value *v){
1676 if( !v ) return;
1677 sqlite3VdbeMemRelease((Mem *)v);
1678 sqlite3DbFree(((Mem*)v)->db, v);
1682 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1683 ** sqlite3_value object assuming that it uses the encoding "enc".
1684 ** The valueBytes() routine is a helper function.
1686 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1687 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1689 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1690 Mem *p = (Mem*)pVal;
1691 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1692 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1693 return p->n;
1695 if( (p->flags & MEM_Blob)!=0 ){
1696 if( p->flags & MEM_Zero ){
1697 return p->n + p->u.nZero;
1698 }else{
1699 return p->n;
1702 if( p->flags & MEM_Null ) return 0;
1703 return valueBytes(pVal, enc);