Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / vdbeaux.c
blob992fa4db9e1ae8fa13784a8568dc50287d3ff475
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
34 p->pParse = pParse;
35 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
38 assert( pParse->szOpAlloc==0 );
39 return p;
43 ** Change the error string stored in Vdbe.zErrMsg
45 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
46 va_list ap;
47 sqlite3DbFree(p->db, p->zErrMsg);
48 va_start(ap, zFormat);
49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
50 va_end(ap);
54 ** Remember the SQL string for a prepared statement.
56 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
57 assert( isPrepareV2==1 || isPrepareV2==0 );
58 if( p==0 ) return;
59 #if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
60 if( !isPrepareV2 ) return;
61 #endif
62 assert( p->zSql==0 );
63 p->zSql = sqlite3DbStrNDup(p->db, z, n);
64 p->isPrepareV2 = (u8)isPrepareV2;
68 ** Swap all content between two VDBE structures.
70 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
71 Vdbe tmp, *pTmp;
72 char *zTmp;
73 assert( pA->db==pB->db );
74 tmp = *pA;
75 *pA = *pB;
76 *pB = tmp;
77 pTmp = pA->pNext;
78 pA->pNext = pB->pNext;
79 pB->pNext = pTmp;
80 pTmp = pA->pPrev;
81 pA->pPrev = pB->pPrev;
82 pB->pPrev = pTmp;
83 zTmp = pA->zSql;
84 pA->zSql = pB->zSql;
85 pB->zSql = zTmp;
86 pB->isPrepareV2 = pA->isPrepareV2;
90 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
91 ** than its current size. nOp is guaranteed to be less than or equal
92 ** to 1024/sizeof(Op).
94 ** If an out-of-memory error occurs while resizing the array, return
95 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
96 ** unchanged (this is so that any opcodes already allocated can be
97 ** correctly deallocated along with the rest of the Vdbe).
99 static int growOpArray(Vdbe *v, int nOp){
100 VdbeOp *pNew;
101 Parse *p = v->pParse;
103 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
104 ** more frequent reallocs and hence provide more opportunities for
105 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
106 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
107 ** by the minimum* amount required until the size reaches 512. Normal
108 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
109 ** size of the op array or add 1KB of space, whichever is smaller. */
110 #ifdef SQLITE_TEST_REALLOC_STRESS
111 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
112 #else
113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
114 UNUSED_PARAMETER(nOp);
115 #endif
117 assert( nOp<=(1024/sizeof(Op)) );
118 assert( nNew>=(p->nOpAlloc+nOp) );
119 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
120 if( pNew ){
121 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
122 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
123 v->aOp = pNew;
125 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
128 #ifdef SQLITE_DEBUG
129 /* This routine is just a convenient place to set a breakpoint that will
130 ** fire after each opcode is inserted and displayed using
131 ** "PRAGMA vdbe_addoptrace=on".
133 static void test_addop_breakpoint(void){
134 static int n = 0;
135 n++;
137 #endif
140 ** Add a new instruction to the list of instructions current in the
141 ** VDBE. Return the address of the new instruction.
143 ** Parameters:
145 ** p Pointer to the VDBE
147 ** op The opcode for this instruction
149 ** p1, p2, p3 Operands
151 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
152 ** the sqlite3VdbeChangeP4() function to change the value of the P4
153 ** operand.
155 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
156 assert( p->pParse->nOpAlloc<=p->nOp );
157 if( growOpArray(p, 1) ) return 1;
158 assert( p->pParse->nOpAlloc>p->nOp );
159 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
161 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
162 int i;
163 VdbeOp *pOp;
165 i = p->nOp;
166 assert( p->magic==VDBE_MAGIC_INIT );
167 assert( op>=0 && op<0xff );
168 if( p->pParse->nOpAlloc<=i ){
169 return growOp3(p, op, p1, p2, p3);
171 p->nOp++;
172 pOp = &p->aOp[i];
173 pOp->opcode = (u8)op;
174 pOp->p5 = 0;
175 pOp->p1 = p1;
176 pOp->p2 = p2;
177 pOp->p3 = p3;
178 pOp->p4.p = 0;
179 pOp->p4type = P4_NOTUSED;
180 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
181 pOp->zComment = 0;
182 #endif
183 #ifdef SQLITE_DEBUG
184 if( p->db->flags & SQLITE_VdbeAddopTrace ){
185 int jj, kk;
186 Parse *pParse = p->pParse;
187 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
188 struct yColCache *x = pParse->aColCache + jj;
189 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
191 kk++;
193 if( kk ) printf("\n");
194 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
195 test_addop_breakpoint();
197 #endif
198 #ifdef VDBE_PROFILE
199 pOp->cycles = 0;
200 pOp->cnt = 0;
201 #endif
202 #ifdef SQLITE_VDBE_COVERAGE
203 pOp->iSrcLine = 0;
204 #endif
205 return i;
207 int sqlite3VdbeAddOp0(Vdbe *p, int op){
208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
210 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
213 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
217 /* Generate code for an unconditional jump to instruction iDest
219 int sqlite3VdbeGoto(Vdbe *p, int iDest){
220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
223 /* Generate code to cause the string zStr to be loaded into
224 ** register iDest
226 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
231 ** Generate code that initializes multiple registers to string or integer
232 ** constants. The registers begin with iDest and increase consecutively.
233 ** One register is initialized for each characgter in zTypes[]. For each
234 ** "s" character in zTypes[], the register is a string if the argument is
235 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
236 ** in zTypes[], the register is initialized to an integer.
238 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
239 va_list ap;
240 int i;
241 char c;
242 va_start(ap, zTypes);
243 for(i=0; (c = zTypes[i])!=0; i++){
244 if( c=='s' ){
245 const char *z = va_arg(ap, const char*);
246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
247 }else{
248 assert( c=='i' );
249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
252 va_end(ap);
256 ** Add an opcode that includes the p4 value as a pointer.
258 int sqlite3VdbeAddOp4(
259 Vdbe *p, /* Add the opcode to this VM */
260 int op, /* The new opcode */
261 int p1, /* The P1 operand */
262 int p2, /* The P2 operand */
263 int p3, /* The P3 operand */
264 const char *zP4, /* The P4 operand */
265 int p4type /* P4 operand type */
267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
268 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
269 return addr;
273 ** Add an opcode that includes the p4 value with a P4_INT64 or
274 ** P4_REAL type.
276 int sqlite3VdbeAddOp4Dup8(
277 Vdbe *p, /* Add the opcode to this VM */
278 int op, /* The new opcode */
279 int p1, /* The P1 operand */
280 int p2, /* The P2 operand */
281 int p3, /* The P3 operand */
282 const u8 *zP4, /* The P4 operand */
283 int p4type /* P4 operand type */
285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
286 if( p4copy ) memcpy(p4copy, zP4, 8);
287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
291 ** Add an OP_ParseSchema opcode. This routine is broken out from
292 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
293 ** as having been used.
295 ** The zWhere string must have been obtained from sqlite3_malloc().
296 ** This routine will take ownership of the allocated memory.
298 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
299 int j;
300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
305 ** Add an opcode that includes the p4 value as an integer.
307 int sqlite3VdbeAddOp4Int(
308 Vdbe *p, /* Add the opcode to this VM */
309 int op, /* The new opcode */
310 int p1, /* The P1 operand */
311 int p2, /* The P2 operand */
312 int p3, /* The P3 operand */
313 int p4 /* The P4 operand as an integer */
315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
316 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
317 return addr;
320 /* Insert the end of a co-routine
322 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
323 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
325 /* Clear the temporary register cache, thereby ensuring that each
326 ** co-routine has its own independent set of registers, because co-routines
327 ** might expect their registers to be preserved across an OP_Yield, and
328 ** that could cause problems if two or more co-routines are using the same
329 ** temporary register.
331 v->pParse->nTempReg = 0;
332 v->pParse->nRangeReg = 0;
336 ** Create a new symbolic label for an instruction that has yet to be
337 ** coded. The symbolic label is really just a negative number. The
338 ** label can be used as the P2 value of an operation. Later, when
339 ** the label is resolved to a specific address, the VDBE will scan
340 ** through its operation list and change all values of P2 which match
341 ** the label into the resolved address.
343 ** The VDBE knows that a P2 value is a label because labels are
344 ** always negative and P2 values are suppose to be non-negative.
345 ** Hence, a negative P2 value is a label that has yet to be resolved.
347 ** Zero is returned if a malloc() fails.
349 int sqlite3VdbeMakeLabel(Vdbe *v){
350 Parse *p = v->pParse;
351 int i = p->nLabel++;
352 assert( v->magic==VDBE_MAGIC_INIT );
353 if( (i & (i-1))==0 ){
354 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
355 (i*2+1)*sizeof(p->aLabel[0]));
357 if( p->aLabel ){
358 p->aLabel[i] = -1;
360 return ADDR(i);
364 ** Resolve label "x" to be the address of the next instruction to
365 ** be inserted. The parameter "x" must have been obtained from
366 ** a prior call to sqlite3VdbeMakeLabel().
368 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
369 Parse *p = v->pParse;
370 int j = ADDR(x);
371 assert( v->magic==VDBE_MAGIC_INIT );
372 assert( j<p->nLabel );
373 assert( j>=0 );
374 if( p->aLabel ){
375 p->aLabel[j] = v->nOp;
377 p->iFixedOp = v->nOp - 1;
381 ** Mark the VDBE as one that can only be run one time.
383 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
384 p->runOnlyOnce = 1;
388 ** Mark the VDBE as one that can only be run multiple times.
390 void sqlite3VdbeReusable(Vdbe *p){
391 p->runOnlyOnce = 0;
394 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
397 ** The following type and function are used to iterate through all opcodes
398 ** in a Vdbe main program and each of the sub-programs (triggers) it may
399 ** invoke directly or indirectly. It should be used as follows:
401 ** Op *pOp;
402 ** VdbeOpIter sIter;
404 ** memset(&sIter, 0, sizeof(sIter));
405 ** sIter.v = v; // v is of type Vdbe*
406 ** while( (pOp = opIterNext(&sIter)) ){
407 ** // Do something with pOp
408 ** }
409 ** sqlite3DbFree(v->db, sIter.apSub);
412 typedef struct VdbeOpIter VdbeOpIter;
413 struct VdbeOpIter {
414 Vdbe *v; /* Vdbe to iterate through the opcodes of */
415 SubProgram **apSub; /* Array of subprograms */
416 int nSub; /* Number of entries in apSub */
417 int iAddr; /* Address of next instruction to return */
418 int iSub; /* 0 = main program, 1 = first sub-program etc. */
420 static Op *opIterNext(VdbeOpIter *p){
421 Vdbe *v = p->v;
422 Op *pRet = 0;
423 Op *aOp;
424 int nOp;
426 if( p->iSub<=p->nSub ){
428 if( p->iSub==0 ){
429 aOp = v->aOp;
430 nOp = v->nOp;
431 }else{
432 aOp = p->apSub[p->iSub-1]->aOp;
433 nOp = p->apSub[p->iSub-1]->nOp;
435 assert( p->iAddr<nOp );
437 pRet = &aOp[p->iAddr];
438 p->iAddr++;
439 if( p->iAddr==nOp ){
440 p->iSub++;
441 p->iAddr = 0;
444 if( pRet->p4type==P4_SUBPROGRAM ){
445 int nByte = (p->nSub+1)*sizeof(SubProgram*);
446 int j;
447 for(j=0; j<p->nSub; j++){
448 if( p->apSub[j]==pRet->p4.pProgram ) break;
450 if( j==p->nSub ){
451 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
452 if( !p->apSub ){
453 pRet = 0;
454 }else{
455 p->apSub[p->nSub++] = pRet->p4.pProgram;
461 return pRet;
465 ** Check if the program stored in the VM associated with pParse may
466 ** throw an ABORT exception (causing the statement, but not entire transaction
467 ** to be rolled back). This condition is true if the main program or any
468 ** sub-programs contains any of the following:
470 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
471 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
472 ** * OP_Destroy
473 ** * OP_VUpdate
474 ** * OP_VRename
475 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
476 ** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
478 ** Then check that the value of Parse.mayAbort is true if an
479 ** ABORT may be thrown, or false otherwise. Return true if it does
480 ** match, or false otherwise. This function is intended to be used as
481 ** part of an assert statement in the compiler. Similar to:
483 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
485 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
486 int hasAbort = 0;
487 int hasFkCounter = 0;
488 int hasCreateTable = 0;
489 int hasInitCoroutine = 0;
490 Op *pOp;
491 VdbeOpIter sIter;
492 memset(&sIter, 0, sizeof(sIter));
493 sIter.v = v;
495 while( (pOp = opIterNext(&sIter))!=0 ){
496 int opcode = pOp->opcode;
497 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
498 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
499 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
501 hasAbort = 1;
502 break;
504 if( opcode==OP_CreateTable ) hasCreateTable = 1;
505 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
506 #ifndef SQLITE_OMIT_FOREIGN_KEY
507 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
508 hasFkCounter = 1;
510 #endif
512 sqlite3DbFree(v->db, sIter.apSub);
514 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
515 ** If malloc failed, then the while() loop above may not have iterated
516 ** through all opcodes and hasAbort may be set incorrectly. Return
517 ** true for this case to prevent the assert() in the callers frame
518 ** from failing. */
519 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
520 || (hasCreateTable && hasInitCoroutine) );
522 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
525 ** This routine is called after all opcodes have been inserted. It loops
526 ** through all the opcodes and fixes up some details.
528 ** (1) For each jump instruction with a negative P2 value (a label)
529 ** resolve the P2 value to an actual address.
531 ** (2) Compute the maximum number of arguments used by any SQL function
532 ** and store that value in *pMaxFuncArgs.
534 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
535 ** indicate what the prepared statement actually does.
537 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
539 ** (5) Reclaim the memory allocated for storing labels.
541 ** This routine will only function correctly if the mkopcodeh.tcl generator
542 ** script numbers the opcodes correctly. Changes to this routine must be
543 ** coordinated with changes to mkopcodeh.tcl.
545 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
546 int nMaxArgs = *pMaxFuncArgs;
547 Op *pOp;
548 Parse *pParse = p->pParse;
549 int *aLabel = pParse->aLabel;
550 p->readOnly = 1;
551 p->bIsReader = 0;
552 pOp = &p->aOp[p->nOp-1];
553 while(1){
555 /* Only JUMP opcodes and the short list of special opcodes in the switch
556 ** below need to be considered. The mkopcodeh.tcl generator script groups
557 ** all these opcodes together near the front of the opcode list. Skip
558 ** any opcode that does not need processing by virtual of the fact that
559 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
561 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
562 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
563 ** cases from this switch! */
564 switch( pOp->opcode ){
565 case OP_Transaction: {
566 if( pOp->p2!=0 ) p->readOnly = 0;
567 /* fall thru */
569 case OP_AutoCommit:
570 case OP_Savepoint: {
571 p->bIsReader = 1;
572 break;
574 #ifndef SQLITE_OMIT_WAL
575 case OP_Checkpoint:
576 #endif
577 case OP_Vacuum:
578 case OP_JournalMode: {
579 p->readOnly = 0;
580 p->bIsReader = 1;
581 break;
583 #ifndef SQLITE_OMIT_VIRTUALTABLE
584 case OP_VUpdate: {
585 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
586 break;
588 case OP_VFilter: {
589 int n;
590 assert( (pOp - p->aOp) >= 3 );
591 assert( pOp[-1].opcode==OP_Integer );
592 n = pOp[-1].p1;
593 if( n>nMaxArgs ) nMaxArgs = n;
594 break;
596 #endif
597 case OP_Next:
598 case OP_NextIfOpen:
599 case OP_SorterNext: {
600 pOp->p4.xAdvance = sqlite3BtreeNext;
601 pOp->p4type = P4_ADVANCE;
602 break;
604 case OP_Prev:
605 case OP_PrevIfOpen: {
606 pOp->p4.xAdvance = sqlite3BtreePrevious;
607 pOp->p4type = P4_ADVANCE;
608 break;
611 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){
612 assert( ADDR(pOp->p2)<pParse->nLabel );
613 pOp->p2 = aLabel[ADDR(pOp->p2)];
616 if( pOp==p->aOp ) break;
617 pOp--;
619 sqlite3DbFree(p->db, pParse->aLabel);
620 pParse->aLabel = 0;
621 pParse->nLabel = 0;
622 *pMaxFuncArgs = nMaxArgs;
623 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
627 ** Return the address of the next instruction to be inserted.
629 int sqlite3VdbeCurrentAddr(Vdbe *p){
630 assert( p->magic==VDBE_MAGIC_INIT );
631 return p->nOp;
635 ** Verify that at least N opcode slots are available in p without
636 ** having to malloc for more space (except when compiled using
637 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
638 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
639 ** fail due to a OOM fault and hence that the return value from
640 ** sqlite3VdbeAddOpList() will always be non-NULL.
642 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
643 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
644 assert( p->nOp + N <= p->pParse->nOpAlloc );
646 #endif
649 ** This function returns a pointer to the array of opcodes associated with
650 ** the Vdbe passed as the first argument. It is the callers responsibility
651 ** to arrange for the returned array to be eventually freed using the
652 ** vdbeFreeOpArray() function.
654 ** Before returning, *pnOp is set to the number of entries in the returned
655 ** array. Also, *pnMaxArg is set to the larger of its current value and
656 ** the number of entries in the Vdbe.apArg[] array required to execute the
657 ** returned program.
659 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
660 VdbeOp *aOp = p->aOp;
661 assert( aOp && !p->db->mallocFailed );
663 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
664 assert( DbMaskAllZero(p->btreeMask) );
666 resolveP2Values(p, pnMaxArg);
667 *pnOp = p->nOp;
668 p->aOp = 0;
669 return aOp;
673 ** Add a whole list of operations to the operation stack. Return a
674 ** pointer to the first operation inserted.
676 ** Non-zero P2 arguments to jump instructions are automatically adjusted
677 ** so that the jump target is relative to the first operation inserted.
679 VdbeOp *sqlite3VdbeAddOpList(
680 Vdbe *p, /* Add opcodes to the prepared statement */
681 int nOp, /* Number of opcodes to add */
682 VdbeOpList const *aOp, /* The opcodes to be added */
683 int iLineno /* Source-file line number of first opcode */
685 int i;
686 VdbeOp *pOut, *pFirst;
687 assert( nOp>0 );
688 assert( p->magic==VDBE_MAGIC_INIT );
689 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
690 return 0;
692 pFirst = pOut = &p->aOp[p->nOp];
693 for(i=0; i<nOp; i++, aOp++, pOut++){
694 pOut->opcode = aOp->opcode;
695 pOut->p1 = aOp->p1;
696 pOut->p2 = aOp->p2;
697 assert( aOp->p2>=0 );
698 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
699 pOut->p2 += p->nOp;
701 pOut->p3 = aOp->p3;
702 pOut->p4type = P4_NOTUSED;
703 pOut->p4.p = 0;
704 pOut->p5 = 0;
705 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
706 pOut->zComment = 0;
707 #endif
708 #ifdef SQLITE_VDBE_COVERAGE
709 pOut->iSrcLine = iLineno+i;
710 #else
711 (void)iLineno;
712 #endif
713 #ifdef SQLITE_DEBUG
714 if( p->db->flags & SQLITE_VdbeAddopTrace ){
715 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
717 #endif
719 p->nOp += nOp;
720 return pFirst;
723 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
725 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
727 void sqlite3VdbeScanStatus(
728 Vdbe *p, /* VM to add scanstatus() to */
729 int addrExplain, /* Address of OP_Explain (or 0) */
730 int addrLoop, /* Address of loop counter */
731 int addrVisit, /* Address of rows visited counter */
732 LogEst nEst, /* Estimated number of output rows */
733 const char *zName /* Name of table or index being scanned */
735 int nByte = (p->nScan+1) * sizeof(ScanStatus);
736 ScanStatus *aNew;
737 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
738 if( aNew ){
739 ScanStatus *pNew = &aNew[p->nScan++];
740 pNew->addrExplain = addrExplain;
741 pNew->addrLoop = addrLoop;
742 pNew->addrVisit = addrVisit;
743 pNew->nEst = nEst;
744 pNew->zName = sqlite3DbStrDup(p->db, zName);
745 p->aScan = aNew;
748 #endif
752 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
753 ** for a specific instruction.
755 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
756 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
758 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
759 sqlite3VdbeGetOp(p,addr)->p1 = val;
761 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
762 sqlite3VdbeGetOp(p,addr)->p2 = val;
764 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
765 sqlite3VdbeGetOp(p,addr)->p3 = val;
767 void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
768 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5;
772 ** Change the P2 operand of instruction addr so that it points to
773 ** the address of the next instruction to be coded.
775 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
776 p->pParse->iFixedOp = p->nOp - 1;
777 sqlite3VdbeChangeP2(p, addr, p->nOp);
782 ** If the input FuncDef structure is ephemeral, then free it. If
783 ** the FuncDef is not ephermal, then do nothing.
785 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
786 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
787 sqlite3DbFree(db, pDef);
791 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
794 ** Delete a P4 value if necessary.
796 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
797 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
798 sqlite3DbFree(db, p);
800 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
801 freeEphemeralFunction(db, p->pFunc);
802 sqlite3DbFree(db, p);
804 static void freeP4(sqlite3 *db, int p4type, void *p4){
805 assert( db );
806 switch( p4type ){
807 case P4_FUNCCTX: {
808 freeP4FuncCtx(db, (sqlite3_context*)p4);
809 break;
811 case P4_REAL:
812 case P4_INT64:
813 case P4_DYNAMIC:
814 case P4_INTARRAY: {
815 sqlite3DbFree(db, p4);
816 break;
818 case P4_KEYINFO: {
819 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
820 break;
822 #ifdef SQLITE_ENABLE_CURSOR_HINTS
823 case P4_EXPR: {
824 sqlite3ExprDelete(db, (Expr*)p4);
825 break;
827 #endif
828 case P4_MPRINTF: {
829 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
830 break;
832 case P4_FUNCDEF: {
833 freeEphemeralFunction(db, (FuncDef*)p4);
834 break;
836 case P4_MEM: {
837 if( db->pnBytesFreed==0 ){
838 sqlite3ValueFree((sqlite3_value*)p4);
839 }else{
840 freeP4Mem(db, (Mem*)p4);
842 break;
844 case P4_VTAB : {
845 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
846 break;
852 ** Free the space allocated for aOp and any p4 values allocated for the
853 ** opcodes contained within. If aOp is not NULL it is assumed to contain
854 ** nOp entries.
856 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
857 if( aOp ){
858 Op *pOp;
859 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
860 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
861 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
862 sqlite3DbFree(db, pOp->zComment);
863 #endif
866 sqlite3DbFree(db, aOp);
870 ** Link the SubProgram object passed as the second argument into the linked
871 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
872 ** objects when the VM is no longer required.
874 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
875 p->pNext = pVdbe->pProgram;
876 pVdbe->pProgram = p;
880 ** Change the opcode at addr into OP_Noop
882 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
883 VdbeOp *pOp;
884 if( p->db->mallocFailed ) return 0;
885 assert( addr>=0 && addr<p->nOp );
886 pOp = &p->aOp[addr];
887 freeP4(p->db, pOp->p4type, pOp->p4.p);
888 pOp->p4type = P4_NOTUSED;
889 pOp->p4.z = 0;
890 pOp->opcode = OP_Noop;
891 return 1;
895 ** If the last opcode is "op" and it is not a jump destination,
896 ** then remove it. Return true if and only if an opcode was removed.
898 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
899 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
900 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
901 }else{
902 return 0;
907 ** Change the value of the P4 operand for a specific instruction.
908 ** This routine is useful when a large program is loaded from a
909 ** static array using sqlite3VdbeAddOpList but we want to make a
910 ** few minor changes to the program.
912 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
913 ** the string is made into memory obtained from sqlite3_malloc().
914 ** A value of n==0 means copy bytes of zP4 up to and including the
915 ** first null byte. If n>0 then copy n+1 bytes of zP4.
917 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
918 ** to a string or structure that is guaranteed to exist for the lifetime of
919 ** the Vdbe. In these cases we can just copy the pointer.
921 ** If addr<0 then change P4 on the most recently inserted instruction.
923 static void SQLITE_NOINLINE vdbeChangeP4Full(
924 Vdbe *p,
925 Op *pOp,
926 const char *zP4,
927 int n
929 if( pOp->p4type ){
930 freeP4(p->db, pOp->p4type, pOp->p4.p);
931 pOp->p4type = 0;
932 pOp->p4.p = 0;
934 if( n<0 ){
935 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
936 }else{
937 if( n==0 ) n = sqlite3Strlen30(zP4);
938 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
939 pOp->p4type = P4_DYNAMIC;
942 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
943 Op *pOp;
944 sqlite3 *db;
945 assert( p!=0 );
946 db = p->db;
947 assert( p->magic==VDBE_MAGIC_INIT );
948 assert( p->aOp!=0 || db->mallocFailed );
949 if( db->mallocFailed ){
950 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
951 return;
953 assert( p->nOp>0 );
954 assert( addr<p->nOp );
955 if( addr<0 ){
956 addr = p->nOp - 1;
958 pOp = &p->aOp[addr];
959 if( n>=0 || pOp->p4type ){
960 vdbeChangeP4Full(p, pOp, zP4, n);
961 return;
963 if( n==P4_INT32 ){
964 /* Note: this cast is safe, because the origin data point was an int
965 ** that was cast to a (const char *). */
966 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
967 pOp->p4type = P4_INT32;
968 }else if( zP4!=0 ){
969 assert( n<0 );
970 pOp->p4.p = (void*)zP4;
971 pOp->p4type = (signed char)n;
972 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
977 ** Set the P4 on the most recently added opcode to the KeyInfo for the
978 ** index given.
980 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
981 Vdbe *v = pParse->pVdbe;
982 assert( v!=0 );
983 assert( pIdx!=0 );
984 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
985 P4_KEYINFO);
988 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
990 ** Change the comment on the most recently coded instruction. Or
991 ** insert a No-op and add the comment to that new instruction. This
992 ** makes the code easier to read during debugging. None of this happens
993 ** in a production build.
995 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
996 assert( p->nOp>0 || p->aOp==0 );
997 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
998 if( p->nOp ){
999 assert( p->aOp );
1000 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1001 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1004 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1005 va_list ap;
1006 if( p ){
1007 va_start(ap, zFormat);
1008 vdbeVComment(p, zFormat, ap);
1009 va_end(ap);
1012 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1013 va_list ap;
1014 if( p ){
1015 sqlite3VdbeAddOp0(p, OP_Noop);
1016 va_start(ap, zFormat);
1017 vdbeVComment(p, zFormat, ap);
1018 va_end(ap);
1021 #endif /* NDEBUG */
1023 #ifdef SQLITE_VDBE_COVERAGE
1025 ** Set the value if the iSrcLine field for the previously coded instruction.
1027 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1028 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1030 #endif /* SQLITE_VDBE_COVERAGE */
1033 ** Return the opcode for a given address. If the address is -1, then
1034 ** return the most recently inserted opcode.
1036 ** If a memory allocation error has occurred prior to the calling of this
1037 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1038 ** is readable but not writable, though it is cast to a writable value.
1039 ** The return of a dummy opcode allows the call to continue functioning
1040 ** after an OOM fault without having to check to see if the return from
1041 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1042 ** dummy will never be written to. This is verified by code inspection and
1043 ** by running with Valgrind.
1045 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1046 /* C89 specifies that the constant "dummy" will be initialized to all
1047 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1048 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1049 assert( p->magic==VDBE_MAGIC_INIT );
1050 if( addr<0 ){
1051 addr = p->nOp - 1;
1053 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1054 if( p->db->mallocFailed ){
1055 return (VdbeOp*)&dummy;
1056 }else{
1057 return &p->aOp[addr];
1061 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1063 ** Return an integer value for one of the parameters to the opcode pOp
1064 ** determined by character c.
1066 static int translateP(char c, const Op *pOp){
1067 if( c=='1' ) return pOp->p1;
1068 if( c=='2' ) return pOp->p2;
1069 if( c=='3' ) return pOp->p3;
1070 if( c=='4' ) return pOp->p4.i;
1071 return pOp->p5;
1075 ** Compute a string for the "comment" field of a VDBE opcode listing.
1077 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1078 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1079 ** absence of other comments, this synopsis becomes the comment on the opcode.
1080 ** Some translation occurs:
1082 ** "PX" -> "r[X]"
1083 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1084 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1085 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1087 static int displayComment(
1088 const Op *pOp, /* The opcode to be commented */
1089 const char *zP4, /* Previously obtained value for P4 */
1090 char *zTemp, /* Write result here */
1091 int nTemp /* Space available in zTemp[] */
1093 const char *zOpName;
1094 const char *zSynopsis;
1095 int nOpName;
1096 int ii, jj;
1097 zOpName = sqlite3OpcodeName(pOp->opcode);
1098 nOpName = sqlite3Strlen30(zOpName);
1099 if( zOpName[nOpName+1] ){
1100 int seenCom = 0;
1101 char c;
1102 zSynopsis = zOpName += nOpName + 1;
1103 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1104 if( c=='P' ){
1105 c = zSynopsis[++ii];
1106 if( c=='4' ){
1107 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1108 }else if( c=='X' ){
1109 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1110 seenCom = 1;
1111 }else{
1112 int v1 = translateP(c, pOp);
1113 int v2;
1114 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1115 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1116 ii += 3;
1117 jj += sqlite3Strlen30(zTemp+jj);
1118 v2 = translateP(zSynopsis[ii], pOp);
1119 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1120 ii += 2;
1121 v2++;
1123 if( v2>1 ){
1124 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1126 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1127 ii += 4;
1130 jj += sqlite3Strlen30(zTemp+jj);
1131 }else{
1132 zTemp[jj++] = c;
1135 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1136 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1137 jj += sqlite3Strlen30(zTemp+jj);
1139 if( jj<nTemp ) zTemp[jj] = 0;
1140 }else if( pOp->zComment ){
1141 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1142 jj = sqlite3Strlen30(zTemp);
1143 }else{
1144 zTemp[0] = 0;
1145 jj = 0;
1147 return jj;
1149 #endif /* SQLITE_DEBUG */
1151 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1153 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1154 ** that can be displayed in the P4 column of EXPLAIN output.
1156 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1157 const char *zOp = 0;
1158 switch( pExpr->op ){
1159 case TK_STRING:
1160 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1161 break;
1162 case TK_INTEGER:
1163 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1164 break;
1165 case TK_NULL:
1166 sqlite3XPrintf(p, "NULL");
1167 break;
1168 case TK_REGISTER: {
1169 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1170 break;
1172 case TK_COLUMN: {
1173 if( pExpr->iColumn<0 ){
1174 sqlite3XPrintf(p, "rowid");
1175 }else{
1176 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1178 break;
1180 case TK_LT: zOp = "LT"; break;
1181 case TK_LE: zOp = "LE"; break;
1182 case TK_GT: zOp = "GT"; break;
1183 case TK_GE: zOp = "GE"; break;
1184 case TK_NE: zOp = "NE"; break;
1185 case TK_EQ: zOp = "EQ"; break;
1186 case TK_IS: zOp = "IS"; break;
1187 case TK_ISNOT: zOp = "ISNOT"; break;
1188 case TK_AND: zOp = "AND"; break;
1189 case TK_OR: zOp = "OR"; break;
1190 case TK_PLUS: zOp = "ADD"; break;
1191 case TK_STAR: zOp = "MUL"; break;
1192 case TK_MINUS: zOp = "SUB"; break;
1193 case TK_REM: zOp = "REM"; break;
1194 case TK_BITAND: zOp = "BITAND"; break;
1195 case TK_BITOR: zOp = "BITOR"; break;
1196 case TK_SLASH: zOp = "DIV"; break;
1197 case TK_LSHIFT: zOp = "LSHIFT"; break;
1198 case TK_RSHIFT: zOp = "RSHIFT"; break;
1199 case TK_CONCAT: zOp = "CONCAT"; break;
1200 case TK_UMINUS: zOp = "MINUS"; break;
1201 case TK_UPLUS: zOp = "PLUS"; break;
1202 case TK_BITNOT: zOp = "BITNOT"; break;
1203 case TK_NOT: zOp = "NOT"; break;
1204 case TK_ISNULL: zOp = "ISNULL"; break;
1205 case TK_NOTNULL: zOp = "NOTNULL"; break;
1207 default:
1208 sqlite3XPrintf(p, "%s", "expr");
1209 break;
1212 if( zOp ){
1213 sqlite3XPrintf(p, "%s(", zOp);
1214 displayP4Expr(p, pExpr->pLeft);
1215 if( pExpr->pRight ){
1216 sqlite3StrAccumAppend(p, ",", 1);
1217 displayP4Expr(p, pExpr->pRight);
1219 sqlite3StrAccumAppend(p, ")", 1);
1222 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1225 #if VDBE_DISPLAY_P4
1227 ** Compute a string that describes the P4 parameter for an opcode.
1228 ** Use zTemp for any required temporary buffer space.
1230 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1231 char *zP4 = zTemp;
1232 StrAccum x;
1233 assert( nTemp>=20 );
1234 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1235 switch( pOp->p4type ){
1236 case P4_KEYINFO: {
1237 int j;
1238 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1239 assert( pKeyInfo->aSortOrder!=0 );
1240 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
1241 for(j=0; j<pKeyInfo->nField; j++){
1242 CollSeq *pColl = pKeyInfo->aColl[j];
1243 const char *zColl = pColl ? pColl->zName : "";
1244 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1245 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1247 sqlite3StrAccumAppend(&x, ")", 1);
1248 break;
1250 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1251 case P4_EXPR: {
1252 displayP4Expr(&x, pOp->p4.pExpr);
1253 break;
1255 #endif
1256 case P4_COLLSEQ: {
1257 CollSeq *pColl = pOp->p4.pColl;
1258 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1259 break;
1261 case P4_FUNCDEF: {
1262 FuncDef *pDef = pOp->p4.pFunc;
1263 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1264 break;
1266 #ifdef SQLITE_DEBUG
1267 case P4_FUNCCTX: {
1268 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1269 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1270 break;
1272 #endif
1273 case P4_INT64: {
1274 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1275 break;
1277 case P4_INT32: {
1278 sqlite3XPrintf(&x, "%d", pOp->p4.i);
1279 break;
1281 case P4_REAL: {
1282 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1283 break;
1285 case P4_MEM: {
1286 Mem *pMem = pOp->p4.pMem;
1287 if( pMem->flags & MEM_Str ){
1288 zP4 = pMem->z;
1289 }else if( pMem->flags & MEM_Int ){
1290 sqlite3XPrintf(&x, "%lld", pMem->u.i);
1291 }else if( pMem->flags & MEM_Real ){
1292 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1293 }else if( pMem->flags & MEM_Null ){
1294 zP4 = "NULL";
1295 }else{
1296 assert( pMem->flags & MEM_Blob );
1297 zP4 = "(blob)";
1299 break;
1301 #ifndef SQLITE_OMIT_VIRTUALTABLE
1302 case P4_VTAB: {
1303 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1304 sqlite3XPrintf(&x, "vtab:%p", pVtab);
1305 break;
1307 #endif
1308 case P4_INTARRAY: {
1309 int i;
1310 int *ai = pOp->p4.ai;
1311 int n = ai[0]; /* The first element of an INTARRAY is always the
1312 ** count of the number of elements to follow */
1313 for(i=1; i<n; i++){
1314 sqlite3XPrintf(&x, ",%d", ai[i]);
1316 zTemp[0] = '[';
1317 sqlite3StrAccumAppend(&x, "]", 1);
1318 break;
1320 case P4_SUBPROGRAM: {
1321 sqlite3XPrintf(&x, "program");
1322 break;
1324 case P4_ADVANCE: {
1325 zTemp[0] = 0;
1326 break;
1328 case P4_TABLE: {
1329 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1330 break;
1332 default: {
1333 zP4 = pOp->p4.z;
1334 if( zP4==0 ){
1335 zP4 = zTemp;
1336 zTemp[0] = 0;
1340 sqlite3StrAccumFinish(&x);
1341 assert( zP4!=0 );
1342 return zP4;
1344 #endif /* VDBE_DISPLAY_P4 */
1347 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1349 ** The prepared statements need to know in advance the complete set of
1350 ** attached databases that will be use. A mask of these databases
1351 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1352 ** p->btreeMask of databases that will require a lock.
1354 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1355 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1356 assert( i<(int)sizeof(p->btreeMask)*8 );
1357 DbMaskSet(p->btreeMask, i);
1358 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1359 DbMaskSet(p->lockMask, i);
1363 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1365 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1366 ** this routine obtains the mutex associated with each BtShared structure
1367 ** that may be accessed by the VM passed as an argument. In doing so it also
1368 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1369 ** that the correct busy-handler callback is invoked if required.
1371 ** If SQLite is not threadsafe but does support shared-cache mode, then
1372 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1373 ** of all of BtShared structures accessible via the database handle
1374 ** associated with the VM.
1376 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1377 ** function is a no-op.
1379 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1380 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1381 ** corresponding to btrees that use shared cache. Then the runtime of
1382 ** this routine is N*N. But as N is rarely more than 1, this should not
1383 ** be a problem.
1385 void sqlite3VdbeEnter(Vdbe *p){
1386 int i;
1387 sqlite3 *db;
1388 Db *aDb;
1389 int nDb;
1390 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1391 db = p->db;
1392 aDb = db->aDb;
1393 nDb = db->nDb;
1394 for(i=0; i<nDb; i++){
1395 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1396 sqlite3BtreeEnter(aDb[i].pBt);
1400 #endif
1402 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1404 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1406 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1407 int i;
1408 sqlite3 *db;
1409 Db *aDb;
1410 int nDb;
1411 db = p->db;
1412 aDb = db->aDb;
1413 nDb = db->nDb;
1414 for(i=0; i<nDb; i++){
1415 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1416 sqlite3BtreeLeave(aDb[i].pBt);
1420 void sqlite3VdbeLeave(Vdbe *p){
1421 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1422 vdbeLeave(p);
1424 #endif
1426 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1428 ** Print a single opcode. This routine is used for debugging only.
1430 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1431 char *zP4;
1432 char zPtr[50];
1433 char zCom[100];
1434 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1435 if( pOut==0 ) pOut = stdout;
1436 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1437 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1438 displayComment(pOp, zP4, zCom, sizeof(zCom));
1439 #else
1440 zCom[0] = 0;
1441 #endif
1442 /* NB: The sqlite3OpcodeName() function is implemented by code created
1443 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1444 ** information from the vdbe.c source text */
1445 fprintf(pOut, zFormat1, pc,
1446 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1447 zCom
1449 fflush(pOut);
1451 #endif
1454 ** Release an array of N Mem elements
1456 static void releaseMemArray(Mem *p, int N){
1457 if( p && N ){
1458 Mem *pEnd = &p[N];
1459 sqlite3 *db = p->db;
1460 if( db->pnBytesFreed ){
1462 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1463 }while( (++p)<pEnd );
1464 return;
1467 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1468 assert( sqlite3VdbeCheckMemInvariants(p) );
1470 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1471 ** that takes advantage of the fact that the memory cell value is
1472 ** being set to NULL after releasing any dynamic resources.
1474 ** The justification for duplicating code is that according to
1475 ** callgrind, this causes a certain test case to hit the CPU 4.7
1476 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1477 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1478 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1479 ** with no indexes using a single prepared INSERT statement, bind()
1480 ** and reset(). Inserts are grouped into a transaction.
1482 testcase( p->flags & MEM_Agg );
1483 testcase( p->flags & MEM_Dyn );
1484 testcase( p->flags & MEM_Frame );
1485 testcase( p->flags & MEM_RowSet );
1486 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1487 sqlite3VdbeMemRelease(p);
1488 }else if( p->szMalloc ){
1489 sqlite3DbFree(db, p->zMalloc);
1490 p->szMalloc = 0;
1493 p->flags = MEM_Undefined;
1494 }while( (++p)<pEnd );
1499 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1500 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1502 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1503 int i;
1504 Mem *aMem = VdbeFrameMem(p);
1505 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1506 for(i=0; i<p->nChildCsr; i++){
1507 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1509 releaseMemArray(aMem, p->nChildMem);
1510 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1511 sqlite3DbFree(p->v->db, p);
1514 #ifndef SQLITE_OMIT_EXPLAIN
1516 ** Give a listing of the program in the virtual machine.
1518 ** The interface is the same as sqlite3VdbeExec(). But instead of
1519 ** running the code, it invokes the callback once for each instruction.
1520 ** This feature is used to implement "EXPLAIN".
1522 ** When p->explain==1, each instruction is listed. When
1523 ** p->explain==2, only OP_Explain instructions are listed and these
1524 ** are shown in a different format. p->explain==2 is used to implement
1525 ** EXPLAIN QUERY PLAN.
1527 ** When p->explain==1, first the main program is listed, then each of
1528 ** the trigger subprograms are listed one by one.
1530 int sqlite3VdbeList(
1531 Vdbe *p /* The VDBE */
1533 int nRow; /* Stop when row count reaches this */
1534 int nSub = 0; /* Number of sub-vdbes seen so far */
1535 SubProgram **apSub = 0; /* Array of sub-vdbes */
1536 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1537 sqlite3 *db = p->db; /* The database connection */
1538 int i; /* Loop counter */
1539 int rc = SQLITE_OK; /* Return code */
1540 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1542 assert( p->explain );
1543 assert( p->magic==VDBE_MAGIC_RUN );
1544 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1546 /* Even though this opcode does not use dynamic strings for
1547 ** the result, result columns may become dynamic if the user calls
1548 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1550 releaseMemArray(pMem, 8);
1551 p->pResultSet = 0;
1553 if( p->rc==SQLITE_NOMEM_BKPT ){
1554 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1555 ** sqlite3_column_text16() failed. */
1556 sqlite3OomFault(db);
1557 return SQLITE_ERROR;
1560 /* When the number of output rows reaches nRow, that means the
1561 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1562 ** nRow is the sum of the number of rows in the main program, plus
1563 ** the sum of the number of rows in all trigger subprograms encountered
1564 ** so far. The nRow value will increase as new trigger subprograms are
1565 ** encountered, but p->pc will eventually catch up to nRow.
1567 nRow = p->nOp;
1568 if( p->explain==1 ){
1569 /* The first 8 memory cells are used for the result set. So we will
1570 ** commandeer the 9th cell to use as storage for an array of pointers
1571 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1572 ** cells. */
1573 assert( p->nMem>9 );
1574 pSub = &p->aMem[9];
1575 if( pSub->flags&MEM_Blob ){
1576 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1577 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1578 nSub = pSub->n/sizeof(Vdbe*);
1579 apSub = (SubProgram **)pSub->z;
1581 for(i=0; i<nSub; i++){
1582 nRow += apSub[i]->nOp;
1587 i = p->pc++;
1588 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1589 if( i>=nRow ){
1590 p->rc = SQLITE_OK;
1591 rc = SQLITE_DONE;
1592 }else if( db->u1.isInterrupted ){
1593 p->rc = SQLITE_INTERRUPT;
1594 rc = SQLITE_ERROR;
1595 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1596 }else{
1597 char *zP4;
1598 Op *pOp;
1599 if( i<p->nOp ){
1600 /* The output line number is small enough that we are still in the
1601 ** main program. */
1602 pOp = &p->aOp[i];
1603 }else{
1604 /* We are currently listing subprograms. Figure out which one and
1605 ** pick up the appropriate opcode. */
1606 int j;
1607 i -= p->nOp;
1608 for(j=0; i>=apSub[j]->nOp; j++){
1609 i -= apSub[j]->nOp;
1611 pOp = &apSub[j]->aOp[i];
1613 if( p->explain==1 ){
1614 pMem->flags = MEM_Int;
1615 pMem->u.i = i; /* Program counter */
1616 pMem++;
1618 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1619 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1620 assert( pMem->z!=0 );
1621 pMem->n = sqlite3Strlen30(pMem->z);
1622 pMem->enc = SQLITE_UTF8;
1623 pMem++;
1625 /* When an OP_Program opcode is encounter (the only opcode that has
1626 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1627 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1628 ** has not already been seen.
1630 if( pOp->p4type==P4_SUBPROGRAM ){
1631 int nByte = (nSub+1)*sizeof(SubProgram*);
1632 int j;
1633 for(j=0; j<nSub; j++){
1634 if( apSub[j]==pOp->p4.pProgram ) break;
1636 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1637 apSub = (SubProgram **)pSub->z;
1638 apSub[nSub++] = pOp->p4.pProgram;
1639 pSub->flags |= MEM_Blob;
1640 pSub->n = nSub*sizeof(SubProgram*);
1645 pMem->flags = MEM_Int;
1646 pMem->u.i = pOp->p1; /* P1 */
1647 pMem++;
1649 pMem->flags = MEM_Int;
1650 pMem->u.i = pOp->p2; /* P2 */
1651 pMem++;
1653 pMem->flags = MEM_Int;
1654 pMem->u.i = pOp->p3; /* P3 */
1655 pMem++;
1657 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1658 assert( p->db->mallocFailed );
1659 return SQLITE_ERROR;
1661 pMem->flags = MEM_Str|MEM_Term;
1662 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1663 if( zP4!=pMem->z ){
1664 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1665 }else{
1666 assert( pMem->z!=0 );
1667 pMem->n = sqlite3Strlen30(pMem->z);
1668 pMem->enc = SQLITE_UTF8;
1670 pMem++;
1672 if( p->explain==1 ){
1673 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1674 assert( p->db->mallocFailed );
1675 return SQLITE_ERROR;
1677 pMem->flags = MEM_Str|MEM_Term;
1678 pMem->n = 2;
1679 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1680 pMem->enc = SQLITE_UTF8;
1681 pMem++;
1683 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1684 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1685 assert( p->db->mallocFailed );
1686 return SQLITE_ERROR;
1688 pMem->flags = MEM_Str|MEM_Term;
1689 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1690 pMem->enc = SQLITE_UTF8;
1691 #else
1692 pMem->flags = MEM_Null; /* Comment */
1693 #endif
1696 p->nResColumn = 8 - 4*(p->explain-1);
1697 p->pResultSet = &p->aMem[1];
1698 p->rc = SQLITE_OK;
1699 rc = SQLITE_ROW;
1701 return rc;
1703 #endif /* SQLITE_OMIT_EXPLAIN */
1705 #ifdef SQLITE_DEBUG
1707 ** Print the SQL that was used to generate a VDBE program.
1709 void sqlite3VdbePrintSql(Vdbe *p){
1710 const char *z = 0;
1711 if( p->zSql ){
1712 z = p->zSql;
1713 }else if( p->nOp>=1 ){
1714 const VdbeOp *pOp = &p->aOp[0];
1715 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1716 z = pOp->p4.z;
1717 while( sqlite3Isspace(*z) ) z++;
1720 if( z ) printf("SQL: [%s]\n", z);
1722 #endif
1724 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1726 ** Print an IOTRACE message showing SQL content.
1728 void sqlite3VdbeIOTraceSql(Vdbe *p){
1729 int nOp = p->nOp;
1730 VdbeOp *pOp;
1731 if( sqlite3IoTrace==0 ) return;
1732 if( nOp<1 ) return;
1733 pOp = &p->aOp[0];
1734 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1735 int i, j;
1736 char z[1000];
1737 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1738 for(i=0; sqlite3Isspace(z[i]); i++){}
1739 for(j=0; z[i]; i++){
1740 if( sqlite3Isspace(z[i]) ){
1741 if( z[i-1]!=' ' ){
1742 z[j++] = ' ';
1744 }else{
1745 z[j++] = z[i];
1748 z[j] = 0;
1749 sqlite3IoTrace("SQL %s\n", z);
1752 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1754 /* An instance of this object describes bulk memory available for use
1755 ** by subcomponents of a prepared statement. Space is allocated out
1756 ** of a ReusableSpace object by the allocSpace() routine below.
1758 struct ReusableSpace {
1759 u8 *pSpace; /* Available memory */
1760 int nFree; /* Bytes of available memory */
1761 int nNeeded; /* Total bytes that could not be allocated */
1764 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1765 ** from the ReusableSpace object. Return a pointer to the allocated
1766 ** memory on success. If insufficient memory is available in the
1767 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1768 ** value by the amount needed and return NULL.
1770 ** If pBuf is not initially NULL, that means that the memory has already
1771 ** been allocated by a prior call to this routine, so just return a copy
1772 ** of pBuf and leave ReusableSpace unchanged.
1774 ** This allocator is employed to repurpose unused slots at the end of the
1775 ** opcode array of prepared state for other memory needs of the prepared
1776 ** statement.
1778 static void *allocSpace(
1779 struct ReusableSpace *p, /* Bulk memory available for allocation */
1780 void *pBuf, /* Pointer to a prior allocation */
1781 int nByte /* Bytes of memory needed */
1783 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1784 if( pBuf==0 ){
1785 nByte = ROUND8(nByte);
1786 if( nByte <= p->nFree ){
1787 p->nFree -= nByte;
1788 pBuf = &p->pSpace[p->nFree];
1789 }else{
1790 p->nNeeded += nByte;
1793 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1794 return pBuf;
1798 ** Rewind the VDBE back to the beginning in preparation for
1799 ** running it.
1801 void sqlite3VdbeRewind(Vdbe *p){
1802 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1803 int i;
1804 #endif
1805 assert( p!=0 );
1806 assert( p->magic==VDBE_MAGIC_INIT );
1808 /* There should be at least one opcode.
1810 assert( p->nOp>0 );
1812 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1813 p->magic = VDBE_MAGIC_RUN;
1815 #ifdef SQLITE_DEBUG
1816 for(i=0; i<p->nMem; i++){
1817 assert( p->aMem[i].db==p->db );
1819 #endif
1820 p->pc = -1;
1821 p->rc = SQLITE_OK;
1822 p->errorAction = OE_Abort;
1823 p->nChange = 0;
1824 p->cacheCtr = 1;
1825 p->minWriteFileFormat = 255;
1826 p->iStatement = 0;
1827 p->nFkConstraint = 0;
1828 #ifdef VDBE_PROFILE
1829 for(i=0; i<p->nOp; i++){
1830 p->aOp[i].cnt = 0;
1831 p->aOp[i].cycles = 0;
1833 #endif
1837 ** Prepare a virtual machine for execution for the first time after
1838 ** creating the virtual machine. This involves things such
1839 ** as allocating registers and initializing the program counter.
1840 ** After the VDBE has be prepped, it can be executed by one or more
1841 ** calls to sqlite3VdbeExec().
1843 ** This function may be called exactly once on each virtual machine.
1844 ** After this routine is called the VM has been "packaged" and is ready
1845 ** to run. After this routine is called, further calls to
1846 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1847 ** the Vdbe from the Parse object that helped generate it so that the
1848 ** the Vdbe becomes an independent entity and the Parse object can be
1849 ** destroyed.
1851 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1852 ** to its initial state after it has been run.
1854 void sqlite3VdbeMakeReady(
1855 Vdbe *p, /* The VDBE */
1856 Parse *pParse /* Parsing context */
1858 sqlite3 *db; /* The database connection */
1859 int nVar; /* Number of parameters */
1860 int nMem; /* Number of VM memory registers */
1861 int nCursor; /* Number of cursors required */
1862 int nArg; /* Number of arguments in subprograms */
1863 int nOnce; /* Number of OP_Once instructions */
1864 int n; /* Loop counter */
1865 struct ReusableSpace x; /* Reusable bulk memory */
1867 assert( p!=0 );
1868 assert( p->nOp>0 );
1869 assert( pParse!=0 );
1870 assert( p->magic==VDBE_MAGIC_INIT );
1871 assert( pParse==p->pParse );
1872 db = p->db;
1873 assert( db->mallocFailed==0 );
1874 nVar = pParse->nVar;
1875 nMem = pParse->nMem;
1876 nCursor = pParse->nTab;
1877 nArg = pParse->nMaxArg;
1878 nOnce = pParse->nOnce;
1879 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1881 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1882 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1883 ** space at the end of aMem[] for cursors 1 and greater.
1884 ** See also: allocateCursor().
1886 nMem += nCursor;
1887 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
1889 /* Figure out how much reusable memory is available at the end of the
1890 ** opcode array. This extra memory will be reallocated for other elements
1891 ** of the prepared statement.
1893 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1894 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1895 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1896 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1897 assert( x.nFree>=0 );
1898 if( x.nFree>0 ){
1899 memset(x.pSpace, 0, x.nFree);
1900 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
1903 resolveP2Values(p, &nArg);
1904 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1905 if( pParse->explain && nMem<10 ){
1906 nMem = 10;
1908 p->expired = 0;
1910 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1911 ** passes. On the first pass, we try to reuse unused memory at the
1912 ** end of the opcode array. If we are unable to satisfy all memory
1913 ** requirements by reusing the opcode array tail, then the second
1914 ** pass will fill in the remainder using a fresh memory allocation.
1916 ** This two-pass approach that reuses as much memory as possible from
1917 ** the leftover memory at the end of the opcode array. This can significantly
1918 ** reduce the amount of memory held by a prepared statement.
1920 do {
1921 x.nNeeded = 0;
1922 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1923 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1924 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1925 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
1926 p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce);
1927 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1928 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
1929 #endif
1930 if( x.nNeeded==0 ) break;
1931 x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded);
1932 x.nFree = x.nNeeded;
1933 }while( !db->mallocFailed );
1935 p->nCursor = nCursor;
1936 p->nOnceFlag = nOnce;
1937 if( p->aVar ){
1938 p->nVar = (ynVar)nVar;
1939 for(n=0; n<nVar; n++){
1940 p->aVar[n].flags = MEM_Null;
1941 p->aVar[n].db = db;
1944 p->nzVar = pParse->nzVar;
1945 p->azVar = pParse->azVar;
1946 pParse->nzVar = 0;
1947 pParse->azVar = 0;
1948 if( p->aMem ){
1949 p->nMem = nMem;
1950 for(n=0; n<nMem; n++){
1951 p->aMem[n].flags = MEM_Undefined;
1952 p->aMem[n].db = db;
1955 p->explain = pParse->explain;
1956 sqlite3VdbeRewind(p);
1960 ** Close a VDBE cursor and release all the resources that cursor
1961 ** happens to hold.
1963 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1964 if( pCx==0 ){
1965 return;
1967 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
1968 switch( pCx->eCurType ){
1969 case CURTYPE_SORTER: {
1970 sqlite3VdbeSorterClose(p->db, pCx);
1971 break;
1973 case CURTYPE_BTREE: {
1974 if( pCx->pBt ){
1975 sqlite3BtreeClose(pCx->pBt);
1976 /* The pCx->pCursor will be close automatically, if it exists, by
1977 ** the call above. */
1978 }else{
1979 assert( pCx->uc.pCursor!=0 );
1980 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
1982 break;
1984 #ifndef SQLITE_OMIT_VIRTUALTABLE
1985 case CURTYPE_VTAB: {
1986 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
1987 const sqlite3_module *pModule = pVCur->pVtab->pModule;
1988 assert( pVCur->pVtab->nRef>0 );
1989 pVCur->pVtab->nRef--;
1990 pModule->xClose(pVCur);
1991 break;
1993 #endif
1998 ** Close all cursors in the current frame.
2000 static void closeCursorsInFrame(Vdbe *p){
2001 if( p->apCsr ){
2002 int i;
2003 for(i=0; i<p->nCursor; i++){
2004 VdbeCursor *pC = p->apCsr[i];
2005 if( pC ){
2006 sqlite3VdbeFreeCursor(p, pC);
2007 p->apCsr[i] = 0;
2014 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2015 ** is used, for example, when a trigger sub-program is halted to restore
2016 ** control to the main program.
2018 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2019 Vdbe *v = pFrame->v;
2020 closeCursorsInFrame(v);
2021 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2022 v->anExec = pFrame->anExec;
2023 #endif
2024 v->aOnceFlag = pFrame->aOnceFlag;
2025 v->nOnceFlag = pFrame->nOnceFlag;
2026 v->aOp = pFrame->aOp;
2027 v->nOp = pFrame->nOp;
2028 v->aMem = pFrame->aMem;
2029 v->nMem = pFrame->nMem;
2030 v->apCsr = pFrame->apCsr;
2031 v->nCursor = pFrame->nCursor;
2032 v->db->lastRowid = pFrame->lastRowid;
2033 v->nChange = pFrame->nChange;
2034 v->db->nChange = pFrame->nDbChange;
2035 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2036 v->pAuxData = pFrame->pAuxData;
2037 pFrame->pAuxData = 0;
2038 return pFrame->pc;
2042 ** Close all cursors.
2044 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2045 ** cell array. This is necessary as the memory cell array may contain
2046 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2047 ** open cursors.
2049 static void closeAllCursors(Vdbe *p){
2050 if( p->pFrame ){
2051 VdbeFrame *pFrame;
2052 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2053 sqlite3VdbeFrameRestore(pFrame);
2054 p->pFrame = 0;
2055 p->nFrame = 0;
2057 assert( p->nFrame==0 );
2058 closeCursorsInFrame(p);
2059 if( p->aMem ){
2060 releaseMemArray(p->aMem, p->nMem);
2062 while( p->pDelFrame ){
2063 VdbeFrame *pDel = p->pDelFrame;
2064 p->pDelFrame = pDel->pParent;
2065 sqlite3VdbeFrameDelete(pDel);
2068 /* Delete any auxdata allocations made by the VM */
2069 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2070 assert( p->pAuxData==0 );
2074 ** Clean up the VM after a single run.
2076 static void Cleanup(Vdbe *p){
2077 sqlite3 *db = p->db;
2079 #ifdef SQLITE_DEBUG
2080 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2081 ** Vdbe.aMem[] arrays have already been cleaned up. */
2082 int i;
2083 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2084 if( p->aMem ){
2085 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2087 #endif
2089 sqlite3DbFree(db, p->zErrMsg);
2090 p->zErrMsg = 0;
2091 p->pResultSet = 0;
2095 ** Set the number of result columns that will be returned by this SQL
2096 ** statement. This is now set at compile time, rather than during
2097 ** execution of the vdbe program so that sqlite3_column_count() can
2098 ** be called on an SQL statement before sqlite3_step().
2100 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2101 Mem *pColName;
2102 int n;
2103 sqlite3 *db = p->db;
2105 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2106 sqlite3DbFree(db, p->aColName);
2107 n = nResColumn*COLNAME_N;
2108 p->nResColumn = (u16)nResColumn;
2109 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
2110 if( p->aColName==0 ) return;
2111 while( n-- > 0 ){
2112 pColName->flags = MEM_Null;
2113 pColName->db = p->db;
2114 pColName++;
2119 ** Set the name of the idx'th column to be returned by the SQL statement.
2120 ** zName must be a pointer to a nul terminated string.
2122 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2124 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2125 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2126 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2128 int sqlite3VdbeSetColName(
2129 Vdbe *p, /* Vdbe being configured */
2130 int idx, /* Index of column zName applies to */
2131 int var, /* One of the COLNAME_* constants */
2132 const char *zName, /* Pointer to buffer containing name */
2133 void (*xDel)(void*) /* Memory management strategy for zName */
2135 int rc;
2136 Mem *pColName;
2137 assert( idx<p->nResColumn );
2138 assert( var<COLNAME_N );
2139 if( p->db->mallocFailed ){
2140 assert( !zName || xDel!=SQLITE_DYNAMIC );
2141 return SQLITE_NOMEM_BKPT;
2143 assert( p->aColName!=0 );
2144 pColName = &(p->aColName[idx+var*p->nResColumn]);
2145 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2146 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2147 return rc;
2151 ** A read or write transaction may or may not be active on database handle
2152 ** db. If a transaction is active, commit it. If there is a
2153 ** write-transaction spanning more than one database file, this routine
2154 ** takes care of the master journal trickery.
2156 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2157 int i;
2158 int nTrans = 0; /* Number of databases with an active write-transaction
2159 ** that are candidates for a two-phase commit using a
2160 ** master-journal */
2161 int rc = SQLITE_OK;
2162 int needXcommit = 0;
2164 #ifdef SQLITE_OMIT_VIRTUALTABLE
2165 /* With this option, sqlite3VtabSync() is defined to be simply
2166 ** SQLITE_OK so p is not used.
2168 UNUSED_PARAMETER(p);
2169 #endif
2171 /* Before doing anything else, call the xSync() callback for any
2172 ** virtual module tables written in this transaction. This has to
2173 ** be done before determining whether a master journal file is
2174 ** required, as an xSync() callback may add an attached database
2175 ** to the transaction.
2177 rc = sqlite3VtabSync(db, p);
2179 /* This loop determines (a) if the commit hook should be invoked and
2180 ** (b) how many database files have open write transactions, not
2181 ** including the temp database. (b) is important because if more than
2182 ** one database file has an open write transaction, a master journal
2183 ** file is required for an atomic commit.
2185 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2186 Btree *pBt = db->aDb[i].pBt;
2187 if( sqlite3BtreeIsInTrans(pBt) ){
2188 /* Whether or not a database might need a master journal depends upon
2189 ** its journal mode (among other things). This matrix determines which
2190 ** journal modes use a master journal and which do not */
2191 static const u8 aMJNeeded[] = {
2192 /* DELETE */ 1,
2193 /* PERSIST */ 1,
2194 /* OFF */ 0,
2195 /* TRUNCATE */ 1,
2196 /* MEMORY */ 0,
2197 /* WAL */ 0
2199 Pager *pPager; /* Pager associated with pBt */
2200 needXcommit = 1;
2201 sqlite3BtreeEnter(pBt);
2202 pPager = sqlite3BtreePager(pBt);
2203 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2204 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2206 assert( i!=1 );
2207 nTrans++;
2209 rc = sqlite3PagerExclusiveLock(pPager);
2210 sqlite3BtreeLeave(pBt);
2213 if( rc!=SQLITE_OK ){
2214 return rc;
2217 /* If there are any write-transactions at all, invoke the commit hook */
2218 if( needXcommit && db->xCommitCallback ){
2219 rc = db->xCommitCallback(db->pCommitArg);
2220 if( rc ){
2221 return SQLITE_CONSTRAINT_COMMITHOOK;
2225 /* The simple case - no more than one database file (not counting the
2226 ** TEMP database) has a transaction active. There is no need for the
2227 ** master-journal.
2229 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2230 ** string, it means the main database is :memory: or a temp file. In
2231 ** that case we do not support atomic multi-file commits, so use the
2232 ** simple case then too.
2234 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2235 || nTrans<=1
2237 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2238 Btree *pBt = db->aDb[i].pBt;
2239 if( pBt ){
2240 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2244 /* Do the commit only if all databases successfully complete phase 1.
2245 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2246 ** IO error while deleting or truncating a journal file. It is unlikely,
2247 ** but could happen. In this case abandon processing and return the error.
2249 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2250 Btree *pBt = db->aDb[i].pBt;
2251 if( pBt ){
2252 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2255 if( rc==SQLITE_OK ){
2256 sqlite3VtabCommit(db);
2260 /* The complex case - There is a multi-file write-transaction active.
2261 ** This requires a master journal file to ensure the transaction is
2262 ** committed atomically.
2264 #ifndef SQLITE_OMIT_DISKIO
2265 else{
2266 sqlite3_vfs *pVfs = db->pVfs;
2267 char *zMaster = 0; /* File-name for the master journal */
2268 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2269 sqlite3_file *pMaster = 0;
2270 i64 offset = 0;
2271 int res;
2272 int retryCount = 0;
2273 int nMainFile;
2275 /* Select a master journal file name */
2276 nMainFile = sqlite3Strlen30(zMainFile);
2277 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2278 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2279 do {
2280 u32 iRandom;
2281 if( retryCount ){
2282 if( retryCount>100 ){
2283 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2284 sqlite3OsDelete(pVfs, zMaster, 0);
2285 break;
2286 }else if( retryCount==1 ){
2287 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2290 retryCount++;
2291 sqlite3_randomness(sizeof(iRandom), &iRandom);
2292 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2293 (iRandom>>8)&0xffffff, iRandom&0xff);
2294 /* The antipenultimate character of the master journal name must
2295 ** be "9" to avoid name collisions when using 8+3 filenames. */
2296 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2297 sqlite3FileSuffix3(zMainFile, zMaster);
2298 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2299 }while( rc==SQLITE_OK && res );
2300 if( rc==SQLITE_OK ){
2301 /* Open the master journal. */
2302 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2303 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2304 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2307 if( rc!=SQLITE_OK ){
2308 sqlite3DbFree(db, zMaster);
2309 return rc;
2312 /* Write the name of each database file in the transaction into the new
2313 ** master journal file. If an error occurs at this point close
2314 ** and delete the master journal file. All the individual journal files
2315 ** still have 'null' as the master journal pointer, so they will roll
2316 ** back independently if a failure occurs.
2318 for(i=0; i<db->nDb; i++){
2319 Btree *pBt = db->aDb[i].pBt;
2320 if( sqlite3BtreeIsInTrans(pBt) ){
2321 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2322 if( zFile==0 ){
2323 continue; /* Ignore TEMP and :memory: databases */
2325 assert( zFile[0]!=0 );
2326 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2327 offset += sqlite3Strlen30(zFile)+1;
2328 if( rc!=SQLITE_OK ){
2329 sqlite3OsCloseFree(pMaster);
2330 sqlite3OsDelete(pVfs, zMaster, 0);
2331 sqlite3DbFree(db, zMaster);
2332 return rc;
2337 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2338 ** flag is set this is not required.
2340 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2341 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2343 sqlite3OsCloseFree(pMaster);
2344 sqlite3OsDelete(pVfs, zMaster, 0);
2345 sqlite3DbFree(db, zMaster);
2346 return rc;
2349 /* Sync all the db files involved in the transaction. The same call
2350 ** sets the master journal pointer in each individual journal. If
2351 ** an error occurs here, do not delete the master journal file.
2353 ** If the error occurs during the first call to
2354 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2355 ** master journal file will be orphaned. But we cannot delete it,
2356 ** in case the master journal file name was written into the journal
2357 ** file before the failure occurred.
2359 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2360 Btree *pBt = db->aDb[i].pBt;
2361 if( pBt ){
2362 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2365 sqlite3OsCloseFree(pMaster);
2366 assert( rc!=SQLITE_BUSY );
2367 if( rc!=SQLITE_OK ){
2368 sqlite3DbFree(db, zMaster);
2369 return rc;
2372 /* Delete the master journal file. This commits the transaction. After
2373 ** doing this the directory is synced again before any individual
2374 ** transaction files are deleted.
2376 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2377 sqlite3DbFree(db, zMaster);
2378 zMaster = 0;
2379 if( rc ){
2380 return rc;
2383 /* All files and directories have already been synced, so the following
2384 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2385 ** deleting or truncating journals. If something goes wrong while
2386 ** this is happening we don't really care. The integrity of the
2387 ** transaction is already guaranteed, but some stray 'cold' journals
2388 ** may be lying around. Returning an error code won't help matters.
2390 disable_simulated_io_errors();
2391 sqlite3BeginBenignMalloc();
2392 for(i=0; i<db->nDb; i++){
2393 Btree *pBt = db->aDb[i].pBt;
2394 if( pBt ){
2395 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2398 sqlite3EndBenignMalloc();
2399 enable_simulated_io_errors();
2401 sqlite3VtabCommit(db);
2403 #endif
2405 return rc;
2409 ** This routine checks that the sqlite3.nVdbeActive count variable
2410 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2411 ** currently active. An assertion fails if the two counts do not match.
2412 ** This is an internal self-check only - it is not an essential processing
2413 ** step.
2415 ** This is a no-op if NDEBUG is defined.
2417 #ifndef NDEBUG
2418 static void checkActiveVdbeCnt(sqlite3 *db){
2419 Vdbe *p;
2420 int cnt = 0;
2421 int nWrite = 0;
2422 int nRead = 0;
2423 p = db->pVdbe;
2424 while( p ){
2425 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2426 cnt++;
2427 if( p->readOnly==0 ) nWrite++;
2428 if( p->bIsReader ) nRead++;
2430 p = p->pNext;
2432 assert( cnt==db->nVdbeActive );
2433 assert( nWrite==db->nVdbeWrite );
2434 assert( nRead==db->nVdbeRead );
2436 #else
2437 #define checkActiveVdbeCnt(x)
2438 #endif
2441 ** If the Vdbe passed as the first argument opened a statement-transaction,
2442 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2443 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2444 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2445 ** statement transaction is committed.
2447 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2448 ** Otherwise SQLITE_OK.
2450 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2451 sqlite3 *const db = p->db;
2452 int rc = SQLITE_OK;
2454 /* If p->iStatement is greater than zero, then this Vdbe opened a
2455 ** statement transaction that should be closed here. The only exception
2456 ** is that an IO error may have occurred, causing an emergency rollback.
2457 ** In this case (db->nStatement==0), and there is nothing to do.
2459 if( db->nStatement && p->iStatement ){
2460 int i;
2461 const int iSavepoint = p->iStatement-1;
2463 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2464 assert( db->nStatement>0 );
2465 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2467 for(i=0; i<db->nDb; i++){
2468 int rc2 = SQLITE_OK;
2469 Btree *pBt = db->aDb[i].pBt;
2470 if( pBt ){
2471 if( eOp==SAVEPOINT_ROLLBACK ){
2472 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2474 if( rc2==SQLITE_OK ){
2475 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2477 if( rc==SQLITE_OK ){
2478 rc = rc2;
2482 db->nStatement--;
2483 p->iStatement = 0;
2485 if( rc==SQLITE_OK ){
2486 if( eOp==SAVEPOINT_ROLLBACK ){
2487 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2489 if( rc==SQLITE_OK ){
2490 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2494 /* If the statement transaction is being rolled back, also restore the
2495 ** database handles deferred constraint counter to the value it had when
2496 ** the statement transaction was opened. */
2497 if( eOp==SAVEPOINT_ROLLBACK ){
2498 db->nDeferredCons = p->nStmtDefCons;
2499 db->nDeferredImmCons = p->nStmtDefImmCons;
2502 return rc;
2506 ** This function is called when a transaction opened by the database
2507 ** handle associated with the VM passed as an argument is about to be
2508 ** committed. If there are outstanding deferred foreign key constraint
2509 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2511 ** If there are outstanding FK violations and this function returns
2512 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2513 ** and write an error message to it. Then return SQLITE_ERROR.
2515 #ifndef SQLITE_OMIT_FOREIGN_KEY
2516 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2517 sqlite3 *db = p->db;
2518 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2519 || (!deferred && p->nFkConstraint>0)
2521 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2522 p->errorAction = OE_Abort;
2523 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2524 return SQLITE_ERROR;
2526 return SQLITE_OK;
2528 #endif
2531 ** This routine is called the when a VDBE tries to halt. If the VDBE
2532 ** has made changes and is in autocommit mode, then commit those
2533 ** changes. If a rollback is needed, then do the rollback.
2535 ** This routine is the only way to move the state of a VM from
2536 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2537 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2539 ** Return an error code. If the commit could not complete because of
2540 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2541 ** means the close did not happen and needs to be repeated.
2543 int sqlite3VdbeHalt(Vdbe *p){
2544 int rc; /* Used to store transient return codes */
2545 sqlite3 *db = p->db;
2547 /* This function contains the logic that determines if a statement or
2548 ** transaction will be committed or rolled back as a result of the
2549 ** execution of this virtual machine.
2551 ** If any of the following errors occur:
2553 ** SQLITE_NOMEM
2554 ** SQLITE_IOERR
2555 ** SQLITE_FULL
2556 ** SQLITE_INTERRUPT
2558 ** Then the internal cache might have been left in an inconsistent
2559 ** state. We need to rollback the statement transaction, if there is
2560 ** one, or the complete transaction if there is no statement transaction.
2563 if( db->mallocFailed ){
2564 p->rc = SQLITE_NOMEM_BKPT;
2566 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2567 closeAllCursors(p);
2568 if( p->magic!=VDBE_MAGIC_RUN ){
2569 return SQLITE_OK;
2571 checkActiveVdbeCnt(db);
2573 /* No commit or rollback needed if the program never started or if the
2574 ** SQL statement does not read or write a database file. */
2575 if( p->pc>=0 && p->bIsReader ){
2576 int mrc; /* Primary error code from p->rc */
2577 int eStatementOp = 0;
2578 int isSpecialError; /* Set to true if a 'special' error */
2580 /* Lock all btrees used by the statement */
2581 sqlite3VdbeEnter(p);
2583 /* Check for one of the special errors */
2584 mrc = p->rc & 0xff;
2585 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2586 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2587 if( isSpecialError ){
2588 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2589 ** no rollback is necessary. Otherwise, at least a savepoint
2590 ** transaction must be rolled back to restore the database to a
2591 ** consistent state.
2593 ** Even if the statement is read-only, it is important to perform
2594 ** a statement or transaction rollback operation. If the error
2595 ** occurred while writing to the journal, sub-journal or database
2596 ** file as part of an effort to free up cache space (see function
2597 ** pagerStress() in pager.c), the rollback is required to restore
2598 ** the pager to a consistent state.
2600 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2601 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2602 eStatementOp = SAVEPOINT_ROLLBACK;
2603 }else{
2604 /* We are forced to roll back the active transaction. Before doing
2605 ** so, abort any other statements this handle currently has active.
2607 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2608 sqlite3CloseSavepoints(db);
2609 db->autoCommit = 1;
2610 p->nChange = 0;
2615 /* Check for immediate foreign key violations. */
2616 if( p->rc==SQLITE_OK ){
2617 sqlite3VdbeCheckFk(p, 0);
2620 /* If the auto-commit flag is set and this is the only active writer
2621 ** VM, then we do either a commit or rollback of the current transaction.
2623 ** Note: This block also runs if one of the special errors handled
2624 ** above has occurred.
2626 if( !sqlite3VtabInSync(db)
2627 && db->autoCommit
2628 && db->nVdbeWrite==(p->readOnly==0)
2630 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2631 rc = sqlite3VdbeCheckFk(p, 1);
2632 if( rc!=SQLITE_OK ){
2633 if( NEVER(p->readOnly) ){
2634 sqlite3VdbeLeave(p);
2635 return SQLITE_ERROR;
2637 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2638 }else{
2639 /* The auto-commit flag is true, the vdbe program was successful
2640 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2641 ** key constraints to hold up the transaction. This means a commit
2642 ** is required. */
2643 rc = vdbeCommit(db, p);
2645 if( rc==SQLITE_BUSY && p->readOnly ){
2646 sqlite3VdbeLeave(p);
2647 return SQLITE_BUSY;
2648 }else if( rc!=SQLITE_OK ){
2649 p->rc = rc;
2650 sqlite3RollbackAll(db, SQLITE_OK);
2651 p->nChange = 0;
2652 }else{
2653 db->nDeferredCons = 0;
2654 db->nDeferredImmCons = 0;
2655 db->flags &= ~SQLITE_DeferFKs;
2656 sqlite3CommitInternalChanges(db);
2658 }else{
2659 sqlite3RollbackAll(db, SQLITE_OK);
2660 p->nChange = 0;
2662 db->nStatement = 0;
2663 }else if( eStatementOp==0 ){
2664 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2665 eStatementOp = SAVEPOINT_RELEASE;
2666 }else if( p->errorAction==OE_Abort ){
2667 eStatementOp = SAVEPOINT_ROLLBACK;
2668 }else{
2669 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2670 sqlite3CloseSavepoints(db);
2671 db->autoCommit = 1;
2672 p->nChange = 0;
2676 /* If eStatementOp is non-zero, then a statement transaction needs to
2677 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2678 ** do so. If this operation returns an error, and the current statement
2679 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2680 ** current statement error code.
2682 if( eStatementOp ){
2683 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2684 if( rc ){
2685 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2686 p->rc = rc;
2687 sqlite3DbFree(db, p->zErrMsg);
2688 p->zErrMsg = 0;
2690 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2691 sqlite3CloseSavepoints(db);
2692 db->autoCommit = 1;
2693 p->nChange = 0;
2697 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2698 ** has been rolled back, update the database connection change-counter.
2700 if( p->changeCntOn ){
2701 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2702 sqlite3VdbeSetChanges(db, p->nChange);
2703 }else{
2704 sqlite3VdbeSetChanges(db, 0);
2706 p->nChange = 0;
2709 /* Release the locks */
2710 sqlite3VdbeLeave(p);
2713 /* We have successfully halted and closed the VM. Record this fact. */
2714 if( p->pc>=0 ){
2715 db->nVdbeActive--;
2716 if( !p->readOnly ) db->nVdbeWrite--;
2717 if( p->bIsReader ) db->nVdbeRead--;
2718 assert( db->nVdbeActive>=db->nVdbeRead );
2719 assert( db->nVdbeRead>=db->nVdbeWrite );
2720 assert( db->nVdbeWrite>=0 );
2722 p->magic = VDBE_MAGIC_HALT;
2723 checkActiveVdbeCnt(db);
2724 if( db->mallocFailed ){
2725 p->rc = SQLITE_NOMEM_BKPT;
2728 /* If the auto-commit flag is set to true, then any locks that were held
2729 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2730 ** to invoke any required unlock-notify callbacks.
2732 if( db->autoCommit ){
2733 sqlite3ConnectionUnlocked(db);
2736 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2737 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2742 ** Each VDBE holds the result of the most recent sqlite3_step() call
2743 ** in p->rc. This routine sets that result back to SQLITE_OK.
2745 void sqlite3VdbeResetStepResult(Vdbe *p){
2746 p->rc = SQLITE_OK;
2750 ** Copy the error code and error message belonging to the VDBE passed
2751 ** as the first argument to its database handle (so that they will be
2752 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2754 ** This function does not clear the VDBE error code or message, just
2755 ** copies them to the database handle.
2757 int sqlite3VdbeTransferError(Vdbe *p){
2758 sqlite3 *db = p->db;
2759 int rc = p->rc;
2760 if( p->zErrMsg ){
2761 db->bBenignMalloc++;
2762 sqlite3BeginBenignMalloc();
2763 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2764 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2765 sqlite3EndBenignMalloc();
2766 db->bBenignMalloc--;
2767 db->errCode = rc;
2768 }else{
2769 sqlite3Error(db, rc);
2771 return rc;
2774 #ifdef SQLITE_ENABLE_SQLLOG
2776 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2777 ** invoke it.
2779 static void vdbeInvokeSqllog(Vdbe *v){
2780 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2781 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2782 assert( v->db->init.busy==0 );
2783 if( zExpanded ){
2784 sqlite3GlobalConfig.xSqllog(
2785 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2787 sqlite3DbFree(v->db, zExpanded);
2791 #else
2792 # define vdbeInvokeSqllog(x)
2793 #endif
2796 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2797 ** Write any error messages into *pzErrMsg. Return the result code.
2799 ** After this routine is run, the VDBE should be ready to be executed
2800 ** again.
2802 ** To look at it another way, this routine resets the state of the
2803 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2804 ** VDBE_MAGIC_INIT.
2806 int sqlite3VdbeReset(Vdbe *p){
2807 sqlite3 *db;
2808 db = p->db;
2810 /* If the VM did not run to completion or if it encountered an
2811 ** error, then it might not have been halted properly. So halt
2812 ** it now.
2814 sqlite3VdbeHalt(p);
2816 /* If the VDBE has be run even partially, then transfer the error code
2817 ** and error message from the VDBE into the main database structure. But
2818 ** if the VDBE has just been set to run but has not actually executed any
2819 ** instructions yet, leave the main database error information unchanged.
2821 if( p->pc>=0 ){
2822 vdbeInvokeSqllog(p);
2823 sqlite3VdbeTransferError(p);
2824 sqlite3DbFree(db, p->zErrMsg);
2825 p->zErrMsg = 0;
2826 if( p->runOnlyOnce ) p->expired = 1;
2827 }else if( p->rc && p->expired ){
2828 /* The expired flag was set on the VDBE before the first call
2829 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2830 ** called), set the database error in this case as well.
2832 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2833 sqlite3DbFree(db, p->zErrMsg);
2834 p->zErrMsg = 0;
2837 /* Reclaim all memory used by the VDBE
2839 Cleanup(p);
2841 /* Save profiling information from this VDBE run.
2843 #ifdef VDBE_PROFILE
2845 FILE *out = fopen("vdbe_profile.out", "a");
2846 if( out ){
2847 int i;
2848 fprintf(out, "---- ");
2849 for(i=0; i<p->nOp; i++){
2850 fprintf(out, "%02x", p->aOp[i].opcode);
2852 fprintf(out, "\n");
2853 if( p->zSql ){
2854 char c, pc = 0;
2855 fprintf(out, "-- ");
2856 for(i=0; (c = p->zSql[i])!=0; i++){
2857 if( pc=='\n' ) fprintf(out, "-- ");
2858 putc(c, out);
2859 pc = c;
2861 if( pc!='\n' ) fprintf(out, "\n");
2863 for(i=0; i<p->nOp; i++){
2864 char zHdr[100];
2865 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2866 p->aOp[i].cnt,
2867 p->aOp[i].cycles,
2868 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2870 fprintf(out, "%s", zHdr);
2871 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2873 fclose(out);
2876 #endif
2877 p->iCurrentTime = 0;
2878 p->magic = VDBE_MAGIC_INIT;
2879 return p->rc & db->errMask;
2883 ** Clean up and delete a VDBE after execution. Return an integer which is
2884 ** the result code. Write any error message text into *pzErrMsg.
2886 int sqlite3VdbeFinalize(Vdbe *p){
2887 int rc = SQLITE_OK;
2888 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2889 rc = sqlite3VdbeReset(p);
2890 assert( (rc & p->db->errMask)==rc );
2892 sqlite3VdbeDelete(p);
2893 return rc;
2897 ** If parameter iOp is less than zero, then invoke the destructor for
2898 ** all auxiliary data pointers currently cached by the VM passed as
2899 ** the first argument.
2901 ** Or, if iOp is greater than or equal to zero, then the destructor is
2902 ** only invoked for those auxiliary data pointers created by the user
2903 ** function invoked by the OP_Function opcode at instruction iOp of
2904 ** VM pVdbe, and only then if:
2906 ** * the associated function parameter is the 32nd or later (counting
2907 ** from left to right), or
2909 ** * the corresponding bit in argument mask is clear (where the first
2910 ** function parameter corresponds to bit 0 etc.).
2912 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
2913 while( *pp ){
2914 AuxData *pAux = *pp;
2915 if( (iOp<0)
2916 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
2918 testcase( pAux->iArg==31 );
2919 if( pAux->xDelete ){
2920 pAux->xDelete(pAux->pAux);
2922 *pp = pAux->pNext;
2923 sqlite3DbFree(db, pAux);
2924 }else{
2925 pp= &pAux->pNext;
2931 ** Free all memory associated with the Vdbe passed as the second argument,
2932 ** except for object itself, which is preserved.
2934 ** The difference between this function and sqlite3VdbeDelete() is that
2935 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2936 ** the database connection and frees the object itself.
2938 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
2939 SubProgram *pSub, *pNext;
2940 int i;
2941 assert( p->db==0 || p->db==db );
2942 releaseMemArray(p->aVar, p->nVar);
2943 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2944 for(pSub=p->pProgram; pSub; pSub=pNext){
2945 pNext = pSub->pNext;
2946 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2947 sqlite3DbFree(db, pSub);
2949 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2950 sqlite3DbFree(db, p->azVar);
2951 vdbeFreeOpArray(db, p->aOp, p->nOp);
2952 sqlite3DbFree(db, p->aColName);
2953 sqlite3DbFree(db, p->zSql);
2954 sqlite3DbFree(db, p->pFree);
2955 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2956 for(i=0; i<p->nScan; i++){
2957 sqlite3DbFree(db, p->aScan[i].zName);
2959 sqlite3DbFree(db, p->aScan);
2960 #endif
2964 ** Delete an entire VDBE.
2966 void sqlite3VdbeDelete(Vdbe *p){
2967 sqlite3 *db;
2969 if( NEVER(p==0) ) return;
2970 db = p->db;
2971 assert( sqlite3_mutex_held(db->mutex) );
2972 sqlite3VdbeClearObject(db, p);
2973 if( p->pPrev ){
2974 p->pPrev->pNext = p->pNext;
2975 }else{
2976 assert( db->pVdbe==p );
2977 db->pVdbe = p->pNext;
2979 if( p->pNext ){
2980 p->pNext->pPrev = p->pPrev;
2982 p->magic = VDBE_MAGIC_DEAD;
2983 p->db = 0;
2984 sqlite3DbFree(db, p);
2988 ** The cursor "p" has a pending seek operation that has not yet been
2989 ** carried out. Seek the cursor now. If an error occurs, return
2990 ** the appropriate error code.
2992 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2993 int res, rc;
2994 #ifdef SQLITE_TEST
2995 extern int sqlite3_search_count;
2996 #endif
2997 assert( p->deferredMoveto );
2998 assert( p->isTable );
2999 assert( p->eCurType==CURTYPE_BTREE );
3000 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3001 if( rc ) return rc;
3002 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3003 #ifdef SQLITE_TEST
3004 sqlite3_search_count++;
3005 #endif
3006 p->deferredMoveto = 0;
3007 p->cacheStatus = CACHE_STALE;
3008 return SQLITE_OK;
3012 ** Something has moved cursor "p" out of place. Maybe the row it was
3013 ** pointed to was deleted out from under it. Or maybe the btree was
3014 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3015 ** is supposed to be pointing. If the row was deleted out from under the
3016 ** cursor, set the cursor to point to a NULL row.
3018 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3019 int isDifferentRow, rc;
3020 assert( p->eCurType==CURTYPE_BTREE );
3021 assert( p->uc.pCursor!=0 );
3022 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3023 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3024 p->cacheStatus = CACHE_STALE;
3025 if( isDifferentRow ) p->nullRow = 1;
3026 return rc;
3030 ** Check to ensure that the cursor is valid. Restore the cursor
3031 ** if need be. Return any I/O error from the restore operation.
3033 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3034 assert( p->eCurType==CURTYPE_BTREE );
3035 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3036 return handleMovedCursor(p);
3038 return SQLITE_OK;
3042 ** Make sure the cursor p is ready to read or write the row to which it
3043 ** was last positioned. Return an error code if an OOM fault or I/O error
3044 ** prevents us from positioning the cursor to its correct position.
3046 ** If a MoveTo operation is pending on the given cursor, then do that
3047 ** MoveTo now. If no move is pending, check to see if the row has been
3048 ** deleted out from under the cursor and if it has, mark the row as
3049 ** a NULL row.
3051 ** If the cursor is already pointing to the correct row and that row has
3052 ** not been deleted out from under the cursor, then this routine is a no-op.
3054 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3055 VdbeCursor *p = *pp;
3056 if( p->eCurType==CURTYPE_BTREE ){
3057 if( p->deferredMoveto ){
3058 int iMap;
3059 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3060 *pp = p->pAltCursor;
3061 *piCol = iMap - 1;
3062 return SQLITE_OK;
3064 return handleDeferredMoveto(p);
3066 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3067 return handleMovedCursor(p);
3070 return SQLITE_OK;
3074 ** The following functions:
3076 ** sqlite3VdbeSerialType()
3077 ** sqlite3VdbeSerialTypeLen()
3078 ** sqlite3VdbeSerialLen()
3079 ** sqlite3VdbeSerialPut()
3080 ** sqlite3VdbeSerialGet()
3082 ** encapsulate the code that serializes values for storage in SQLite
3083 ** data and index records. Each serialized value consists of a
3084 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3085 ** integer, stored as a varint.
3087 ** In an SQLite index record, the serial type is stored directly before
3088 ** the blob of data that it corresponds to. In a table record, all serial
3089 ** types are stored at the start of the record, and the blobs of data at
3090 ** the end. Hence these functions allow the caller to handle the
3091 ** serial-type and data blob separately.
3093 ** The following table describes the various storage classes for data:
3095 ** serial type bytes of data type
3096 ** -------------- --------------- ---------------
3097 ** 0 0 NULL
3098 ** 1 1 signed integer
3099 ** 2 2 signed integer
3100 ** 3 3 signed integer
3101 ** 4 4 signed integer
3102 ** 5 6 signed integer
3103 ** 6 8 signed integer
3104 ** 7 8 IEEE float
3105 ** 8 0 Integer constant 0
3106 ** 9 0 Integer constant 1
3107 ** 10,11 reserved for expansion
3108 ** N>=12 and even (N-12)/2 BLOB
3109 ** N>=13 and odd (N-13)/2 text
3111 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3112 ** of SQLite will not understand those serial types.
3116 ** Return the serial-type for the value stored in pMem.
3118 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3119 int flags = pMem->flags;
3120 u32 n;
3122 assert( pLen!=0 );
3123 if( flags&MEM_Null ){
3124 *pLen = 0;
3125 return 0;
3127 if( flags&MEM_Int ){
3128 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3129 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3130 i64 i = pMem->u.i;
3131 u64 u;
3132 if( i<0 ){
3133 u = ~i;
3134 }else{
3135 u = i;
3137 if( u<=127 ){
3138 if( (i&1)==i && file_format>=4 ){
3139 *pLen = 0;
3140 return 8+(u32)u;
3141 }else{
3142 *pLen = 1;
3143 return 1;
3146 if( u<=32767 ){ *pLen = 2; return 2; }
3147 if( u<=8388607 ){ *pLen = 3; return 3; }
3148 if( u<=2147483647 ){ *pLen = 4; return 4; }
3149 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3150 *pLen = 8;
3151 return 6;
3153 if( flags&MEM_Real ){
3154 *pLen = 8;
3155 return 7;
3157 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3158 assert( pMem->n>=0 );
3159 n = (u32)pMem->n;
3160 if( flags & MEM_Zero ){
3161 n += pMem->u.nZero;
3163 *pLen = n;
3164 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3168 ** The sizes for serial types less than 128
3170 static const u8 sqlite3SmallTypeSizes[] = {
3171 /* 0 1 2 3 4 5 6 7 8 9 */
3172 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3173 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3174 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3175 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3176 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3177 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3178 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3179 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3180 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3181 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3182 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3183 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3184 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3188 ** Return the length of the data corresponding to the supplied serial-type.
3190 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3191 if( serial_type>=128 ){
3192 return (serial_type-12)/2;
3193 }else{
3194 assert( serial_type<12
3195 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3196 return sqlite3SmallTypeSizes[serial_type];
3199 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3200 assert( serial_type<128 );
3201 return sqlite3SmallTypeSizes[serial_type];
3205 ** If we are on an architecture with mixed-endian floating
3206 ** points (ex: ARM7) then swap the lower 4 bytes with the
3207 ** upper 4 bytes. Return the result.
3209 ** For most architectures, this is a no-op.
3211 ** (later): It is reported to me that the mixed-endian problem
3212 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3213 ** that early versions of GCC stored the two words of a 64-bit
3214 ** float in the wrong order. And that error has been propagated
3215 ** ever since. The blame is not necessarily with GCC, though.
3216 ** GCC might have just copying the problem from a prior compiler.
3217 ** I am also told that newer versions of GCC that follow a different
3218 ** ABI get the byte order right.
3220 ** Developers using SQLite on an ARM7 should compile and run their
3221 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3222 ** enabled, some asserts below will ensure that the byte order of
3223 ** floating point values is correct.
3225 ** (2007-08-30) Frank van Vugt has studied this problem closely
3226 ** and has send his findings to the SQLite developers. Frank
3227 ** writes that some Linux kernels offer floating point hardware
3228 ** emulation that uses only 32-bit mantissas instead of a full
3229 ** 48-bits as required by the IEEE standard. (This is the
3230 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3231 ** byte swapping becomes very complicated. To avoid problems,
3232 ** the necessary byte swapping is carried out using a 64-bit integer
3233 ** rather than a 64-bit float. Frank assures us that the code here
3234 ** works for him. We, the developers, have no way to independently
3235 ** verify this, but Frank seems to know what he is talking about
3236 ** so we trust him.
3238 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3239 static u64 floatSwap(u64 in){
3240 union {
3241 u64 r;
3242 u32 i[2];
3243 } u;
3244 u32 t;
3246 u.r = in;
3247 t = u.i[0];
3248 u.i[0] = u.i[1];
3249 u.i[1] = t;
3250 return u.r;
3252 # define swapMixedEndianFloat(X) X = floatSwap(X)
3253 #else
3254 # define swapMixedEndianFloat(X)
3255 #endif
3258 ** Write the serialized data blob for the value stored in pMem into
3259 ** buf. It is assumed that the caller has allocated sufficient space.
3260 ** Return the number of bytes written.
3262 ** nBuf is the amount of space left in buf[]. The caller is responsible
3263 ** for allocating enough space to buf[] to hold the entire field, exclusive
3264 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3266 ** Return the number of bytes actually written into buf[]. The number
3267 ** of bytes in the zero-filled tail is included in the return value only
3268 ** if those bytes were zeroed in buf[].
3270 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3271 u32 len;
3273 /* Integer and Real */
3274 if( serial_type<=7 && serial_type>0 ){
3275 u64 v;
3276 u32 i;
3277 if( serial_type==7 ){
3278 assert( sizeof(v)==sizeof(pMem->u.r) );
3279 memcpy(&v, &pMem->u.r, sizeof(v));
3280 swapMixedEndianFloat(v);
3281 }else{
3282 v = pMem->u.i;
3284 len = i = sqlite3SmallTypeSizes[serial_type];
3285 assert( i>0 );
3287 buf[--i] = (u8)(v&0xFF);
3288 v >>= 8;
3289 }while( i );
3290 return len;
3293 /* String or blob */
3294 if( serial_type>=12 ){
3295 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3296 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3297 len = pMem->n;
3298 if( len>0 ) memcpy(buf, pMem->z, len);
3299 return len;
3302 /* NULL or constants 0 or 1 */
3303 return 0;
3306 /* Input "x" is a sequence of unsigned characters that represent a
3307 ** big-endian integer. Return the equivalent native integer
3309 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3310 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3311 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3312 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3313 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3316 ** Deserialize the data blob pointed to by buf as serial type serial_type
3317 ** and store the result in pMem. Return the number of bytes read.
3319 ** This function is implemented as two separate routines for performance.
3320 ** The few cases that require local variables are broken out into a separate
3321 ** routine so that in most cases the overhead of moving the stack pointer
3322 ** is avoided.
3324 static u32 SQLITE_NOINLINE serialGet(
3325 const unsigned char *buf, /* Buffer to deserialize from */
3326 u32 serial_type, /* Serial type to deserialize */
3327 Mem *pMem /* Memory cell to write value into */
3329 u64 x = FOUR_BYTE_UINT(buf);
3330 u32 y = FOUR_BYTE_UINT(buf+4);
3331 x = (x<<32) + y;
3332 if( serial_type==6 ){
3333 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3334 ** twos-complement integer. */
3335 pMem->u.i = *(i64*)&x;
3336 pMem->flags = MEM_Int;
3337 testcase( pMem->u.i<0 );
3338 }else{
3339 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3340 ** floating point number. */
3341 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3342 /* Verify that integers and floating point values use the same
3343 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3344 ** defined that 64-bit floating point values really are mixed
3345 ** endian.
3347 static const u64 t1 = ((u64)0x3ff00000)<<32;
3348 static const double r1 = 1.0;
3349 u64 t2 = t1;
3350 swapMixedEndianFloat(t2);
3351 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3352 #endif
3353 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3354 swapMixedEndianFloat(x);
3355 memcpy(&pMem->u.r, &x, sizeof(x));
3356 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3358 return 8;
3360 u32 sqlite3VdbeSerialGet(
3361 const unsigned char *buf, /* Buffer to deserialize from */
3362 u32 serial_type, /* Serial type to deserialize */
3363 Mem *pMem /* Memory cell to write value into */
3365 switch( serial_type ){
3366 case 10: /* Reserved for future use */
3367 case 11: /* Reserved for future use */
3368 case 0: { /* Null */
3369 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3370 pMem->flags = MEM_Null;
3371 break;
3373 case 1: {
3374 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3375 ** integer. */
3376 pMem->u.i = ONE_BYTE_INT(buf);
3377 pMem->flags = MEM_Int;
3378 testcase( pMem->u.i<0 );
3379 return 1;
3381 case 2: { /* 2-byte signed integer */
3382 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3383 ** twos-complement integer. */
3384 pMem->u.i = TWO_BYTE_INT(buf);
3385 pMem->flags = MEM_Int;
3386 testcase( pMem->u.i<0 );
3387 return 2;
3389 case 3: { /* 3-byte signed integer */
3390 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3391 ** twos-complement integer. */
3392 pMem->u.i = THREE_BYTE_INT(buf);
3393 pMem->flags = MEM_Int;
3394 testcase( pMem->u.i<0 );
3395 return 3;
3397 case 4: { /* 4-byte signed integer */
3398 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3399 ** twos-complement integer. */
3400 pMem->u.i = FOUR_BYTE_INT(buf);
3401 #ifdef __HP_cc
3402 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3403 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3404 #endif
3405 pMem->flags = MEM_Int;
3406 testcase( pMem->u.i<0 );
3407 return 4;
3409 case 5: { /* 6-byte signed integer */
3410 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3411 ** twos-complement integer. */
3412 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3413 pMem->flags = MEM_Int;
3414 testcase( pMem->u.i<0 );
3415 return 6;
3417 case 6: /* 8-byte signed integer */
3418 case 7: { /* IEEE floating point */
3419 /* These use local variables, so do them in a separate routine
3420 ** to avoid having to move the frame pointer in the common case */
3421 return serialGet(buf,serial_type,pMem);
3423 case 8: /* Integer 0 */
3424 case 9: { /* Integer 1 */
3425 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3426 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3427 pMem->u.i = serial_type-8;
3428 pMem->flags = MEM_Int;
3429 return 0;
3431 default: {
3432 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3433 ** length.
3434 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3435 ** (N-13)/2 bytes in length. */
3436 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3437 pMem->z = (char *)buf;
3438 pMem->n = (serial_type-12)/2;
3439 pMem->flags = aFlag[serial_type&1];
3440 return pMem->n;
3443 return 0;
3446 ** This routine is used to allocate sufficient space for an UnpackedRecord
3447 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3448 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3450 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3451 ** the unaligned buffer passed via the second and third arguments (presumably
3452 ** stack space). If the former, then *ppFree is set to a pointer that should
3453 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3454 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3455 ** before returning.
3457 ** If an OOM error occurs, NULL is returned.
3459 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3460 KeyInfo *pKeyInfo, /* Description of the record */
3461 char *pSpace, /* Unaligned space available */
3462 int szSpace, /* Size of pSpace[] in bytes */
3463 char **ppFree /* OUT: Caller should free this pointer */
3465 UnpackedRecord *p; /* Unpacked record to return */
3466 int nOff; /* Increment pSpace by nOff to align it */
3467 int nByte; /* Number of bytes required for *p */
3469 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
3470 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3471 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3473 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
3474 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
3475 if( nByte>szSpace+nOff ){
3476 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3477 *ppFree = (char *)p;
3478 if( !p ) return 0;
3479 }else{
3480 p = (UnpackedRecord*)&pSpace[nOff];
3481 *ppFree = 0;
3484 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3485 assert( pKeyInfo->aSortOrder!=0 );
3486 p->pKeyInfo = pKeyInfo;
3487 p->nField = pKeyInfo->nField + 1;
3488 return p;
3492 ** Given the nKey-byte encoding of a record in pKey[], populate the
3493 ** UnpackedRecord structure indicated by the fourth argument with the
3494 ** contents of the decoded record.
3496 void sqlite3VdbeRecordUnpack(
3497 KeyInfo *pKeyInfo, /* Information about the record format */
3498 int nKey, /* Size of the binary record */
3499 const void *pKey, /* The binary record */
3500 UnpackedRecord *p /* Populate this structure before returning. */
3502 const unsigned char *aKey = (const unsigned char *)pKey;
3503 int d;
3504 u32 idx; /* Offset in aKey[] to read from */
3505 u16 u; /* Unsigned loop counter */
3506 u32 szHdr;
3507 Mem *pMem = p->aMem;
3509 p->default_rc = 0;
3510 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3511 idx = getVarint32(aKey, szHdr);
3512 d = szHdr;
3513 u = 0;
3514 while( idx<szHdr && d<=nKey ){
3515 u32 serial_type;
3517 idx += getVarint32(&aKey[idx], serial_type);
3518 pMem->enc = pKeyInfo->enc;
3519 pMem->db = pKeyInfo->db;
3520 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3521 pMem->szMalloc = 0;
3522 pMem->z = 0;
3523 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3524 pMem++;
3525 if( (++u)>=p->nField ) break;
3527 assert( u<=pKeyInfo->nField + 1 );
3528 p->nField = u;
3531 #if SQLITE_DEBUG
3533 ** This function compares two index or table record keys in the same way
3534 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3535 ** this function deserializes and compares values using the
3536 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3537 ** in assert() statements to ensure that the optimized code in
3538 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3540 ** Return true if the result of comparison is equivalent to desiredResult.
3541 ** Return false if there is a disagreement.
3543 static int vdbeRecordCompareDebug(
3544 int nKey1, const void *pKey1, /* Left key */
3545 const UnpackedRecord *pPKey2, /* Right key */
3546 int desiredResult /* Correct answer */
3548 u32 d1; /* Offset into aKey[] of next data element */
3549 u32 idx1; /* Offset into aKey[] of next header element */
3550 u32 szHdr1; /* Number of bytes in header */
3551 int i = 0;
3552 int rc = 0;
3553 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3554 KeyInfo *pKeyInfo;
3555 Mem mem1;
3557 pKeyInfo = pPKey2->pKeyInfo;
3558 if( pKeyInfo->db==0 ) return 1;
3559 mem1.enc = pKeyInfo->enc;
3560 mem1.db = pKeyInfo->db;
3561 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3562 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3564 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3565 ** We could initialize it, as shown here, to silence those complaints.
3566 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3567 ** the unnecessary initialization has a measurable negative performance
3568 ** impact, since this routine is a very high runner. And so, we choose
3569 ** to ignore the compiler warnings and leave this variable uninitialized.
3571 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3573 idx1 = getVarint32(aKey1, szHdr1);
3574 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3575 d1 = szHdr1;
3576 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3577 assert( pKeyInfo->aSortOrder!=0 );
3578 assert( pKeyInfo->nField>0 );
3579 assert( idx1<=szHdr1 || CORRUPT_DB );
3581 u32 serial_type1;
3583 /* Read the serial types for the next element in each key. */
3584 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3586 /* Verify that there is enough key space remaining to avoid
3587 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3588 ** always be greater than or equal to the amount of required key space.
3589 ** Use that approximation to avoid the more expensive call to
3590 ** sqlite3VdbeSerialTypeLen() in the common case.
3592 if( d1+serial_type1+2>(u32)nKey1
3593 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3595 break;
3598 /* Extract the values to be compared.
3600 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3602 /* Do the comparison
3604 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3605 if( rc!=0 ){
3606 assert( mem1.szMalloc==0 ); /* See comment below */
3607 if( pKeyInfo->aSortOrder[i] ){
3608 rc = -rc; /* Invert the result for DESC sort order. */
3610 goto debugCompareEnd;
3612 i++;
3613 }while( idx1<szHdr1 && i<pPKey2->nField );
3615 /* No memory allocation is ever used on mem1. Prove this using
3616 ** the following assert(). If the assert() fails, it indicates a
3617 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3619 assert( mem1.szMalloc==0 );
3621 /* rc==0 here means that one of the keys ran out of fields and
3622 ** all the fields up to that point were equal. Return the default_rc
3623 ** value. */
3624 rc = pPKey2->default_rc;
3626 debugCompareEnd:
3627 if( desiredResult==0 && rc==0 ) return 1;
3628 if( desiredResult<0 && rc<0 ) return 1;
3629 if( desiredResult>0 && rc>0 ) return 1;
3630 if( CORRUPT_DB ) return 1;
3631 if( pKeyInfo->db->mallocFailed ) return 1;
3632 return 0;
3634 #endif
3636 #if SQLITE_DEBUG
3638 ** Count the number of fields (a.k.a. columns) in the record given by
3639 ** pKey,nKey. The verify that this count is less than or equal to the
3640 ** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3642 ** If this constraint is not satisfied, it means that the high-speed
3643 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3644 ** not work correctly. If this assert() ever fires, it probably means
3645 ** that the KeyInfo.nField or KeyInfo.nXField values were computed
3646 ** incorrectly.
3648 static void vdbeAssertFieldCountWithinLimits(
3649 int nKey, const void *pKey, /* The record to verify */
3650 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3652 int nField = 0;
3653 u32 szHdr;
3654 u32 idx;
3655 u32 notUsed;
3656 const unsigned char *aKey = (const unsigned char*)pKey;
3658 if( CORRUPT_DB ) return;
3659 idx = getVarint32(aKey, szHdr);
3660 assert( nKey>=0 );
3661 assert( szHdr<=(u32)nKey );
3662 while( idx<szHdr ){
3663 idx += getVarint32(aKey+idx, notUsed);
3664 nField++;
3666 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3668 #else
3669 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3670 #endif
3673 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3674 ** using the collation sequence pColl. As usual, return a negative , zero
3675 ** or positive value if *pMem1 is less than, equal to or greater than
3676 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3678 static int vdbeCompareMemString(
3679 const Mem *pMem1,
3680 const Mem *pMem2,
3681 const CollSeq *pColl,
3682 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3684 if( pMem1->enc==pColl->enc ){
3685 /* The strings are already in the correct encoding. Call the
3686 ** comparison function directly */
3687 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3688 }else{
3689 int rc;
3690 const void *v1, *v2;
3691 int n1, n2;
3692 Mem c1;
3693 Mem c2;
3694 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3695 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3696 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3697 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3698 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3699 n1 = v1==0 ? 0 : c1.n;
3700 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3701 n2 = v2==0 ? 0 : c2.n;
3702 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3703 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3704 sqlite3VdbeMemRelease(&c1);
3705 sqlite3VdbeMemRelease(&c2);
3706 return rc;
3711 ** Compare two blobs. Return negative, zero, or positive if the first
3712 ** is less than, equal to, or greater than the second, respectively.
3713 ** If one blob is a prefix of the other, then the shorter is the lessor.
3715 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3716 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3717 if( c ) return c;
3718 return pB1->n - pB2->n;
3722 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3723 ** number. Return negative, zero, or positive if the first (i64) is less than,
3724 ** equal to, or greater than the second (double).
3726 static int sqlite3IntFloatCompare(i64 i, double r){
3727 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3728 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3729 if( x<r ) return -1;
3730 if( x>r ) return +1;
3731 return 0;
3732 }else{
3733 i64 y;
3734 double s;
3735 if( r<-9223372036854775808.0 ) return +1;
3736 if( r>9223372036854775807.0 ) return -1;
3737 y = (i64)r;
3738 if( i<y ) return -1;
3739 if( i>y ){
3740 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3741 return +1;
3743 s = (double)i;
3744 if( s<r ) return -1;
3745 if( s>r ) return +1;
3746 return 0;
3751 ** Compare the values contained by the two memory cells, returning
3752 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3753 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3754 ** and reals) sorted numerically, followed by text ordered by the collating
3755 ** sequence pColl and finally blob's ordered by memcmp().
3757 ** Two NULL values are considered equal by this function.
3759 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3760 int f1, f2;
3761 int combined_flags;
3763 f1 = pMem1->flags;
3764 f2 = pMem2->flags;
3765 combined_flags = f1|f2;
3766 assert( (combined_flags & MEM_RowSet)==0 );
3768 /* If one value is NULL, it is less than the other. If both values
3769 ** are NULL, return 0.
3771 if( combined_flags&MEM_Null ){
3772 return (f2&MEM_Null) - (f1&MEM_Null);
3775 /* At least one of the two values is a number
3777 if( combined_flags&(MEM_Int|MEM_Real) ){
3778 if( (f1 & f2 & MEM_Int)!=0 ){
3779 if( pMem1->u.i < pMem2->u.i ) return -1;
3780 if( pMem1->u.i > pMem2->u.i ) return +1;
3781 return 0;
3783 if( (f1 & f2 & MEM_Real)!=0 ){
3784 if( pMem1->u.r < pMem2->u.r ) return -1;
3785 if( pMem1->u.r > pMem2->u.r ) return +1;
3786 return 0;
3788 if( (f1&MEM_Int)!=0 ){
3789 if( (f2&MEM_Real)!=0 ){
3790 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3791 }else{
3792 return -1;
3795 if( (f1&MEM_Real)!=0 ){
3796 if( (f2&MEM_Int)!=0 ){
3797 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3798 }else{
3799 return -1;
3802 return +1;
3805 /* If one value is a string and the other is a blob, the string is less.
3806 ** If both are strings, compare using the collating functions.
3808 if( combined_flags&MEM_Str ){
3809 if( (f1 & MEM_Str)==0 ){
3810 return 1;
3812 if( (f2 & MEM_Str)==0 ){
3813 return -1;
3816 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3817 assert( pMem1->enc==SQLITE_UTF8 ||
3818 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3820 /* The collation sequence must be defined at this point, even if
3821 ** the user deletes the collation sequence after the vdbe program is
3822 ** compiled (this was not always the case).
3824 assert( !pColl || pColl->xCmp );
3826 if( pColl ){
3827 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3829 /* If a NULL pointer was passed as the collate function, fall through
3830 ** to the blob case and use memcmp(). */
3833 /* Both values must be blobs. Compare using memcmp(). */
3834 return sqlite3BlobCompare(pMem1, pMem2);
3839 ** The first argument passed to this function is a serial-type that
3840 ** corresponds to an integer - all values between 1 and 9 inclusive
3841 ** except 7. The second points to a buffer containing an integer value
3842 ** serialized according to serial_type. This function deserializes
3843 ** and returns the value.
3845 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3846 u32 y;
3847 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3848 switch( serial_type ){
3849 case 0:
3850 case 1:
3851 testcase( aKey[0]&0x80 );
3852 return ONE_BYTE_INT(aKey);
3853 case 2:
3854 testcase( aKey[0]&0x80 );
3855 return TWO_BYTE_INT(aKey);
3856 case 3:
3857 testcase( aKey[0]&0x80 );
3858 return THREE_BYTE_INT(aKey);
3859 case 4: {
3860 testcase( aKey[0]&0x80 );
3861 y = FOUR_BYTE_UINT(aKey);
3862 return (i64)*(int*)&y;
3864 case 5: {
3865 testcase( aKey[0]&0x80 );
3866 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
3868 case 6: {
3869 u64 x = FOUR_BYTE_UINT(aKey);
3870 testcase( aKey[0]&0x80 );
3871 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3872 return (i64)*(i64*)&x;
3876 return (serial_type - 8);
3880 ** This function compares the two table rows or index records
3881 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3882 ** or positive integer if key1 is less than, equal to or
3883 ** greater than key2. The {nKey1, pKey1} key must be a blob
3884 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
3885 ** key must be a parsed key such as obtained from
3886 ** sqlite3VdbeParseRecord.
3888 ** If argument bSkip is non-zero, it is assumed that the caller has already
3889 ** determined that the first fields of the keys are equal.
3891 ** Key1 and Key2 do not have to contain the same number of fields. If all
3892 ** fields that appear in both keys are equal, then pPKey2->default_rc is
3893 ** returned.
3895 ** If database corruption is discovered, set pPKey2->errCode to
3896 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3897 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3898 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
3900 int sqlite3VdbeRecordCompareWithSkip(
3901 int nKey1, const void *pKey1, /* Left key */
3902 UnpackedRecord *pPKey2, /* Right key */
3903 int bSkip /* If true, skip the first field */
3905 u32 d1; /* Offset into aKey[] of next data element */
3906 int i; /* Index of next field to compare */
3907 u32 szHdr1; /* Size of record header in bytes */
3908 u32 idx1; /* Offset of first type in header */
3909 int rc = 0; /* Return value */
3910 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
3911 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3912 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3913 Mem mem1;
3915 /* If bSkip is true, then the caller has already determined that the first
3916 ** two elements in the keys are equal. Fix the various stack variables so
3917 ** that this routine begins comparing at the second field. */
3918 if( bSkip ){
3919 u32 s1;
3920 idx1 = 1 + getVarint32(&aKey1[1], s1);
3921 szHdr1 = aKey1[0];
3922 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
3923 i = 1;
3924 pRhs++;
3925 }else{
3926 idx1 = getVarint32(aKey1, szHdr1);
3927 d1 = szHdr1;
3928 if( d1>(unsigned)nKey1 ){
3929 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
3930 return 0; /* Corruption */
3932 i = 0;
3935 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3936 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3937 || CORRUPT_DB );
3938 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3939 assert( pPKey2->pKeyInfo->nField>0 );
3940 assert( idx1<=szHdr1 || CORRUPT_DB );
3942 u32 serial_type;
3944 /* RHS is an integer */
3945 if( pRhs->flags & MEM_Int ){
3946 serial_type = aKey1[idx1];
3947 testcase( serial_type==12 );
3948 if( serial_type>=10 ){
3949 rc = +1;
3950 }else if( serial_type==0 ){
3951 rc = -1;
3952 }else if( serial_type==7 ){
3953 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3954 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
3955 }else{
3956 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3957 i64 rhs = pRhs->u.i;
3958 if( lhs<rhs ){
3959 rc = -1;
3960 }else if( lhs>rhs ){
3961 rc = +1;
3966 /* RHS is real */
3967 else if( pRhs->flags & MEM_Real ){
3968 serial_type = aKey1[idx1];
3969 if( serial_type>=10 ){
3970 /* Serial types 12 or greater are strings and blobs (greater than
3971 ** numbers). Types 10 and 11 are currently "reserved for future
3972 ** use", so it doesn't really matter what the results of comparing
3973 ** them to numberic values are. */
3974 rc = +1;
3975 }else if( serial_type==0 ){
3976 rc = -1;
3977 }else{
3978 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3979 if( serial_type==7 ){
3980 if( mem1.u.r<pRhs->u.r ){
3981 rc = -1;
3982 }else if( mem1.u.r>pRhs->u.r ){
3983 rc = +1;
3985 }else{
3986 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
3991 /* RHS is a string */
3992 else if( pRhs->flags & MEM_Str ){
3993 getVarint32(&aKey1[idx1], serial_type);
3994 testcase( serial_type==12 );
3995 if( serial_type<12 ){
3996 rc = -1;
3997 }else if( !(serial_type & 0x01) ){
3998 rc = +1;
3999 }else{
4000 mem1.n = (serial_type - 12) / 2;
4001 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4002 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4003 if( (d1+mem1.n) > (unsigned)nKey1 ){
4004 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4005 return 0; /* Corruption */
4006 }else if( pKeyInfo->aColl[i] ){
4007 mem1.enc = pKeyInfo->enc;
4008 mem1.db = pKeyInfo->db;
4009 mem1.flags = MEM_Str;
4010 mem1.z = (char*)&aKey1[d1];
4011 rc = vdbeCompareMemString(
4012 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4014 }else{
4015 int nCmp = MIN(mem1.n, pRhs->n);
4016 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4017 if( rc==0 ) rc = mem1.n - pRhs->n;
4022 /* RHS is a blob */
4023 else if( pRhs->flags & MEM_Blob ){
4024 getVarint32(&aKey1[idx1], serial_type);
4025 testcase( serial_type==12 );
4026 if( serial_type<12 || (serial_type & 0x01) ){
4027 rc = -1;
4028 }else{
4029 int nStr = (serial_type - 12) / 2;
4030 testcase( (d1+nStr)==(unsigned)nKey1 );
4031 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4032 if( (d1+nStr) > (unsigned)nKey1 ){
4033 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4034 return 0; /* Corruption */
4035 }else{
4036 int nCmp = MIN(nStr, pRhs->n);
4037 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4038 if( rc==0 ) rc = nStr - pRhs->n;
4043 /* RHS is null */
4044 else{
4045 serial_type = aKey1[idx1];
4046 rc = (serial_type!=0);
4049 if( rc!=0 ){
4050 if( pKeyInfo->aSortOrder[i] ){
4051 rc = -rc;
4053 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4054 assert( mem1.szMalloc==0 ); /* See comment below */
4055 return rc;
4058 i++;
4059 pRhs++;
4060 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4061 idx1 += sqlite3VarintLen(serial_type);
4062 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4064 /* No memory allocation is ever used on mem1. Prove this using
4065 ** the following assert(). If the assert() fails, it indicates a
4066 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4067 assert( mem1.szMalloc==0 );
4069 /* rc==0 here means that one or both of the keys ran out of fields and
4070 ** all the fields up to that point were equal. Return the default_rc
4071 ** value. */
4072 assert( CORRUPT_DB
4073 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4074 || pKeyInfo->db->mallocFailed
4076 pPKey2->eqSeen = 1;
4077 return pPKey2->default_rc;
4079 int sqlite3VdbeRecordCompare(
4080 int nKey1, const void *pKey1, /* Left key */
4081 UnpackedRecord *pPKey2 /* Right key */
4083 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4088 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4089 ** that (a) the first field of pPKey2 is an integer, and (b) the
4090 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4091 ** byte (i.e. is less than 128).
4093 ** To avoid concerns about buffer overreads, this routine is only used
4094 ** on schemas where the maximum valid header size is 63 bytes or less.
4096 static int vdbeRecordCompareInt(
4097 int nKey1, const void *pKey1, /* Left key */
4098 UnpackedRecord *pPKey2 /* Right key */
4100 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4101 int serial_type = ((const u8*)pKey1)[1];
4102 int res;
4103 u32 y;
4104 u64 x;
4105 i64 v = pPKey2->aMem[0].u.i;
4106 i64 lhs;
4108 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4109 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4110 switch( serial_type ){
4111 case 1: { /* 1-byte signed integer */
4112 lhs = ONE_BYTE_INT(aKey);
4113 testcase( lhs<0 );
4114 break;
4116 case 2: { /* 2-byte signed integer */
4117 lhs = TWO_BYTE_INT(aKey);
4118 testcase( lhs<0 );
4119 break;
4121 case 3: { /* 3-byte signed integer */
4122 lhs = THREE_BYTE_INT(aKey);
4123 testcase( lhs<0 );
4124 break;
4126 case 4: { /* 4-byte signed integer */
4127 y = FOUR_BYTE_UINT(aKey);
4128 lhs = (i64)*(int*)&y;
4129 testcase( lhs<0 );
4130 break;
4132 case 5: { /* 6-byte signed integer */
4133 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4134 testcase( lhs<0 );
4135 break;
4137 case 6: { /* 8-byte signed integer */
4138 x = FOUR_BYTE_UINT(aKey);
4139 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4140 lhs = *(i64*)&x;
4141 testcase( lhs<0 );
4142 break;
4144 case 8:
4145 lhs = 0;
4146 break;
4147 case 9:
4148 lhs = 1;
4149 break;
4151 /* This case could be removed without changing the results of running
4152 ** this code. Including it causes gcc to generate a faster switch
4153 ** statement (since the range of switch targets now starts at zero and
4154 ** is contiguous) but does not cause any duplicate code to be generated
4155 ** (as gcc is clever enough to combine the two like cases). Other
4156 ** compilers might be similar. */
4157 case 0: case 7:
4158 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4160 default:
4161 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4164 if( v>lhs ){
4165 res = pPKey2->r1;
4166 }else if( v<lhs ){
4167 res = pPKey2->r2;
4168 }else if( pPKey2->nField>1 ){
4169 /* The first fields of the two keys are equal. Compare the trailing
4170 ** fields. */
4171 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4172 }else{
4173 /* The first fields of the two keys are equal and there are no trailing
4174 ** fields. Return pPKey2->default_rc in this case. */
4175 res = pPKey2->default_rc;
4176 pPKey2->eqSeen = 1;
4179 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4180 return res;
4184 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4185 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4186 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4187 ** at the start of (pKey1/nKey1) fits in a single byte.
4189 static int vdbeRecordCompareString(
4190 int nKey1, const void *pKey1, /* Left key */
4191 UnpackedRecord *pPKey2 /* Right key */
4193 const u8 *aKey1 = (const u8*)pKey1;
4194 int serial_type;
4195 int res;
4197 assert( pPKey2->aMem[0].flags & MEM_Str );
4198 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4199 getVarint32(&aKey1[1], serial_type);
4200 if( serial_type<12 ){
4201 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4202 }else if( !(serial_type & 0x01) ){
4203 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4204 }else{
4205 int nCmp;
4206 int nStr;
4207 int szHdr = aKey1[0];
4209 nStr = (serial_type-12) / 2;
4210 if( (szHdr + nStr) > nKey1 ){
4211 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4212 return 0; /* Corruption */
4214 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4215 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4217 if( res==0 ){
4218 res = nStr - pPKey2->aMem[0].n;
4219 if( res==0 ){
4220 if( pPKey2->nField>1 ){
4221 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4222 }else{
4223 res = pPKey2->default_rc;
4224 pPKey2->eqSeen = 1;
4226 }else if( res>0 ){
4227 res = pPKey2->r2;
4228 }else{
4229 res = pPKey2->r1;
4231 }else if( res>0 ){
4232 res = pPKey2->r2;
4233 }else{
4234 res = pPKey2->r1;
4238 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4239 || CORRUPT_DB
4240 || pPKey2->pKeyInfo->db->mallocFailed
4242 return res;
4246 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4247 ** suitable for comparing serialized records to the unpacked record passed
4248 ** as the only argument.
4250 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4251 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4252 ** that the size-of-header varint that occurs at the start of each record
4253 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4254 ** also assumes that it is safe to overread a buffer by at least the
4255 ** maximum possible legal header size plus 8 bytes. Because there is
4256 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4257 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4258 ** limit the size of the header to 64 bytes in cases where the first field
4259 ** is an integer.
4261 ** The easiest way to enforce this limit is to consider only records with
4262 ** 13 fields or less. If the first field is an integer, the maximum legal
4263 ** header size is (12*5 + 1 + 1) bytes. */
4264 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
4265 int flags = p->aMem[0].flags;
4266 if( p->pKeyInfo->aSortOrder[0] ){
4267 p->r1 = 1;
4268 p->r2 = -1;
4269 }else{
4270 p->r1 = -1;
4271 p->r2 = 1;
4273 if( (flags & MEM_Int) ){
4274 return vdbeRecordCompareInt;
4276 testcase( flags & MEM_Real );
4277 testcase( flags & MEM_Null );
4278 testcase( flags & MEM_Blob );
4279 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4280 assert( flags & MEM_Str );
4281 return vdbeRecordCompareString;
4285 return sqlite3VdbeRecordCompare;
4289 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4290 ** Read the rowid (the last field in the record) and store it in *rowid.
4291 ** Return SQLITE_OK if everything works, or an error code otherwise.
4293 ** pCur might be pointing to text obtained from a corrupt database file.
4294 ** So the content cannot be trusted. Do appropriate checks on the content.
4296 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4297 i64 nCellKey = 0;
4298 int rc;
4299 u32 szHdr; /* Size of the header */
4300 u32 typeRowid; /* Serial type of the rowid */
4301 u32 lenRowid; /* Size of the rowid */
4302 Mem m, v;
4304 /* Get the size of the index entry. Only indices entries of less
4305 ** than 2GiB are support - anything large must be database corruption.
4306 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4307 ** this code can safely assume that nCellKey is 32-bits
4309 assert( sqlite3BtreeCursorIsValid(pCur) );
4310 nCellKey = sqlite3BtreePayloadSize(pCur);
4311 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4313 /* Read in the complete content of the index entry */
4314 sqlite3VdbeMemInit(&m, db, 0);
4315 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4316 if( rc ){
4317 return rc;
4320 /* The index entry must begin with a header size */
4321 (void)getVarint32((u8*)m.z, szHdr);
4322 testcase( szHdr==3 );
4323 testcase( szHdr==m.n );
4324 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4325 goto idx_rowid_corruption;
4328 /* The last field of the index should be an integer - the ROWID.
4329 ** Verify that the last entry really is an integer. */
4330 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4331 testcase( typeRowid==1 );
4332 testcase( typeRowid==2 );
4333 testcase( typeRowid==3 );
4334 testcase( typeRowid==4 );
4335 testcase( typeRowid==5 );
4336 testcase( typeRowid==6 );
4337 testcase( typeRowid==8 );
4338 testcase( typeRowid==9 );
4339 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4340 goto idx_rowid_corruption;
4342 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4343 testcase( (u32)m.n==szHdr+lenRowid );
4344 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4345 goto idx_rowid_corruption;
4348 /* Fetch the integer off the end of the index record */
4349 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4350 *rowid = v.u.i;
4351 sqlite3VdbeMemRelease(&m);
4352 return SQLITE_OK;
4354 /* Jump here if database corruption is detected after m has been
4355 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4356 idx_rowid_corruption:
4357 testcase( m.szMalloc!=0 );
4358 sqlite3VdbeMemRelease(&m);
4359 return SQLITE_CORRUPT_BKPT;
4363 ** Compare the key of the index entry that cursor pC is pointing to against
4364 ** the key string in pUnpacked. Write into *pRes a number
4365 ** that is negative, zero, or positive if pC is less than, equal to,
4366 ** or greater than pUnpacked. Return SQLITE_OK on success.
4368 ** pUnpacked is either created without a rowid or is truncated so that it
4369 ** omits the rowid at the end. The rowid at the end of the index entry
4370 ** is ignored as well. Hence, this routine only compares the prefixes
4371 ** of the keys prior to the final rowid, not the entire key.
4373 int sqlite3VdbeIdxKeyCompare(
4374 sqlite3 *db, /* Database connection */
4375 VdbeCursor *pC, /* The cursor to compare against */
4376 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4377 int *res /* Write the comparison result here */
4379 i64 nCellKey = 0;
4380 int rc;
4381 BtCursor *pCur;
4382 Mem m;
4384 assert( pC->eCurType==CURTYPE_BTREE );
4385 pCur = pC->uc.pCursor;
4386 assert( sqlite3BtreeCursorIsValid(pCur) );
4387 nCellKey = sqlite3BtreePayloadSize(pCur);
4388 /* nCellKey will always be between 0 and 0xffffffff because of the way
4389 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4390 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4391 *res = 0;
4392 return SQLITE_CORRUPT_BKPT;
4394 sqlite3VdbeMemInit(&m, db, 0);
4395 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
4396 if( rc ){
4397 return rc;
4399 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4400 sqlite3VdbeMemRelease(&m);
4401 return SQLITE_OK;
4405 ** This routine sets the value to be returned by subsequent calls to
4406 ** sqlite3_changes() on the database handle 'db'.
4408 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4409 assert( sqlite3_mutex_held(db->mutex) );
4410 db->nChange = nChange;
4411 db->nTotalChange += nChange;
4415 ** Set a flag in the vdbe to update the change counter when it is finalised
4416 ** or reset.
4418 void sqlite3VdbeCountChanges(Vdbe *v){
4419 v->changeCntOn = 1;
4423 ** Mark every prepared statement associated with a database connection
4424 ** as expired.
4426 ** An expired statement means that recompilation of the statement is
4427 ** recommend. Statements expire when things happen that make their
4428 ** programs obsolete. Removing user-defined functions or collating
4429 ** sequences, or changing an authorization function are the types of
4430 ** things that make prepared statements obsolete.
4432 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4433 Vdbe *p;
4434 for(p = db->pVdbe; p; p=p->pNext){
4435 p->expired = 1;
4440 ** Return the database associated with the Vdbe.
4442 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4443 return v->db;
4447 ** Return a pointer to an sqlite3_value structure containing the value bound
4448 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4449 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4450 ** constants) to the value before returning it.
4452 ** The returned value must be freed by the caller using sqlite3ValueFree().
4454 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4455 assert( iVar>0 );
4456 if( v ){
4457 Mem *pMem = &v->aVar[iVar-1];
4458 if( 0==(pMem->flags & MEM_Null) ){
4459 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4460 if( pRet ){
4461 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4462 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4464 return pRet;
4467 return 0;
4471 ** Configure SQL variable iVar so that binding a new value to it signals
4472 ** to sqlite3_reoptimize() that re-preparing the statement may result
4473 ** in a better query plan.
4475 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4476 assert( iVar>0 );
4477 if( iVar>32 ){
4478 v->expmask = 0xffffffff;
4479 }else{
4480 v->expmask |= ((u32)1 << (iVar-1));
4484 #ifndef SQLITE_OMIT_VIRTUALTABLE
4486 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4487 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4488 ** in memory obtained from sqlite3DbMalloc).
4490 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4491 if( pVtab->zErrMsg ){
4492 sqlite3 *db = p->db;
4493 sqlite3DbFree(db, p->zErrMsg);
4494 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4495 sqlite3_free(pVtab->zErrMsg);
4496 pVtab->zErrMsg = 0;
4499 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4501 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4504 ** If the second argument is not NULL, release any allocations associated
4505 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4506 ** structure itself, using sqlite3DbFree().
4508 ** This function is used to free UnpackedRecord structures allocated by
4509 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4511 static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){
4512 if( p ){
4513 int i;
4514 for(i=0; i<p->nField; i++){
4515 Mem *pMem = &p->aMem[i];
4516 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4518 sqlite3DbFree(db, p);
4521 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4523 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4525 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4526 ** then cursor passed as the second argument should point to the row about
4527 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4528 ** the required value will be read from the row the cursor points to.
4530 void sqlite3VdbePreUpdateHook(
4531 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4532 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4533 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4534 const char *zDb, /* Database name */
4535 Table *pTab, /* Modified table */
4536 i64 iKey1, /* Initial key value */
4537 int iReg /* Register for new.* record */
4539 sqlite3 *db = v->db;
4540 i64 iKey2;
4541 PreUpdate preupdate;
4542 const char *zTbl = pTab->zName;
4543 static const u8 fakeSortOrder = 0;
4545 assert( db->pPreUpdate==0 );
4546 memset(&preupdate, 0, sizeof(PreUpdate));
4547 if( op==SQLITE_UPDATE ){
4548 iKey2 = v->aMem[iReg].u.i;
4549 }else{
4550 iKey2 = iKey1;
4553 assert( pCsr->nField==pTab->nCol
4554 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4557 preupdate.v = v;
4558 preupdate.pCsr = pCsr;
4559 preupdate.op = op;
4560 preupdate.iNewReg = iReg;
4561 preupdate.keyinfo.db = db;
4562 preupdate.keyinfo.enc = ENC(db);
4563 preupdate.keyinfo.nField = pTab->nCol;
4564 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4565 preupdate.iKey1 = iKey1;
4566 preupdate.iKey2 = iKey2;
4567 preupdate.iPKey = pTab->iPKey;
4569 db->pPreUpdate = &preupdate;
4570 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4571 db->pPreUpdate = 0;
4572 sqlite3DbFree(db, preupdate.aRecord);
4573 vdbeFreeUnpacked(db, preupdate.pUnpacked);
4574 vdbeFreeUnpacked(db, preupdate.pNewUnpacked);
4575 if( preupdate.aNew ){
4576 int i;
4577 for(i=0; i<pCsr->nField; i++){
4578 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4580 sqlite3DbFree(db, preupdate.aNew);
4583 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */