Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / vdbe.c
blob5d21ad064c23bf9965fc004fbec16a09491bc0b3
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
87 #endif
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
121 ** Invoke the VDBE coverage callback, if that callback is defined. This
122 ** feature is used for test suite validation only and does not appear an
123 ** production builds.
125 ** M is an integer, 2 or 3, that indices how many different ways the
126 ** branch can go. It is usually 2. "I" is the direction the branch
127 ** goes. 0 means falls through. 1 means branch is taken. 2 means the
128 ** second alternative branch is taken.
130 ** iSrcLine is the source code line (from the __LINE__ macro) that
131 ** generated the VDBE instruction. This instrumentation assumes that all
132 ** source code is in a single file (the amalgamation). Special values 1
133 ** and 2 for the iSrcLine parameter mean that this particular branch is
134 ** always taken or never taken, respectively.
136 #if !defined(SQLITE_VDBE_COVERAGE)
137 # define VdbeBranchTaken(I,M)
138 #else
139 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
152 #endif
155 ** Convert the given register into a string if it isn't one
156 ** already. Return non-zero if a malloc() fails.
158 #define Stringify(P, enc) \
159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
160 { goto no_mem; }
163 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
164 ** a pointer to a dynamically allocated string where some other entity
165 ** is responsible for deallocating that string. Because the register
166 ** does not control the string, it might be deleted without the register
167 ** knowing it.
169 ** This routine converts an ephemeral string into a dynamically allocated
170 ** string that the register itself controls. In other words, it
171 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
173 #define Deephemeralize(P) \
174 if( ((P)->flags&MEM_Ephem)!=0 \
175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
177 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
178 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
181 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
182 ** if we run out of memory.
184 static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
187 int nField, /* Number of fields in the table or index */
188 int iDb, /* Database the cursor belongs to, or -1 */
189 u8 eCurType /* Type of the new cursor */
191 /* Find the memory cell that will be used to store the blob of memory
192 ** required for this VdbeCursor structure. It is convenient to use a
193 ** vdbe memory cell to manage the memory allocation required for a
194 ** VdbeCursor structure for the following reasons:
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
211 int nByte;
212 VdbeCursor *pCx = 0;
213 nByte =
214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
217 assert( iCur>=0 && iCur<p->nCursor );
218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
220 p->apCsr[iCur] = 0;
222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
224 memset(pCx, 0, sizeof(VdbeCursor));
225 pCx->eCurType = eCurType;
226 pCx->iDb = iDb;
227 pCx->nField = nField;
228 pCx->aOffset = &pCx->aType[nField];
229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
235 return pCx;
239 ** Try to convert a value into a numeric representation if we can
240 ** do so without loss of information. In other words, if the string
241 ** looks like a number, convert it into a number. If it does not
242 ** look like a number, leave it alone.
244 ** If the bTryForInt flag is true, then extra effort is made to give
245 ** an integer representation. Strings that look like floating point
246 ** values but which have no fractional component (example: '48.00')
247 ** will have a MEM_Int representation when bTryForInt is true.
249 ** If bTryForInt is false, then if the input string contains a decimal
250 ** point or exponential notation, the result is only MEM_Real, even
251 ** if there is an exact integer representation of the quantity.
253 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
263 pRec->u.r = rValue;
264 pRec->flags |= MEM_Real;
265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
270 ** Processing is determine by the affinity parameter:
272 ** SQLITE_AFF_INTEGER:
273 ** SQLITE_AFF_REAL:
274 ** SQLITE_AFF_NUMERIC:
275 ** Try to convert pRec to an integer representation or a
276 ** floating-point representation if an integer representation
277 ** is not possible. Note that the integer representation is
278 ** always preferred, even if the affinity is REAL, because
279 ** an integer representation is more space efficient on disk.
281 ** SQLITE_AFF_TEXT:
282 ** Convert pRec to a text representation.
284 ** SQLITE_AFF_BLOB:
285 ** No-op. pRec is unchanged.
287 static void applyAffinity(
288 Mem *pRec, /* The value to apply affinity to */
289 char affinity, /* The affinity to be applied */
290 u8 enc /* Use this text encoding */
292 if( affinity>=SQLITE_AFF_NUMERIC ){
293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294 || affinity==SQLITE_AFF_NUMERIC );
295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
296 if( (pRec->flags & MEM_Real)==0 ){
297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
298 }else{
299 sqlite3VdbeIntegerAffinity(pRec);
302 }else if( affinity==SQLITE_AFF_TEXT ){
303 /* Only attempt the conversion to TEXT if there is an integer or real
304 ** representation (blob and NULL do not get converted) but no string
305 ** representation. It would be harmless to repeat the conversion if
306 ** there is already a string rep, but it is pointless to waste those
307 ** CPU cycles. */
308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310 sqlite3VdbeMemStringify(pRec, enc, 1);
313 pRec->flags &= ~(MEM_Real|MEM_Int);
318 ** Try to convert the type of a function argument or a result column
319 ** into a numeric representation. Use either INTEGER or REAL whichever
320 ** is appropriate. But only do the conversion if it is possible without
321 ** loss of information and return the revised type of the argument.
323 int sqlite3_value_numeric_type(sqlite3_value *pVal){
324 int eType = sqlite3_value_type(pVal);
325 if( eType==SQLITE_TEXT ){
326 Mem *pMem = (Mem*)pVal;
327 applyNumericAffinity(pMem, 0);
328 eType = sqlite3_value_type(pVal);
330 return eType;
334 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
335 ** not the internal Mem* type.
337 void sqlite3ValueApplyAffinity(
338 sqlite3_value *pVal,
339 u8 affinity,
340 u8 enc
342 applyAffinity((Mem *)pVal, affinity, enc);
346 ** pMem currently only holds a string type (or maybe a BLOB that we can
347 ** interpret as a string if we want to). Compute its corresponding
348 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
349 ** accordingly.
351 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
355 return 0;
357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
358 return MEM_Int;
360 return MEM_Real;
364 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365 ** none.
367 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
368 ** But it does set pMem->u.r and pMem->u.i appropriately.
370 static u16 numericType(Mem *pMem){
371 if( pMem->flags & (MEM_Int|MEM_Real) ){
372 return pMem->flags & (MEM_Int|MEM_Real);
374 if( pMem->flags & (MEM_Str|MEM_Blob) ){
375 return computeNumericType(pMem);
377 return 0;
380 #ifdef SQLITE_DEBUG
382 ** Write a nice string representation of the contents of cell pMem
383 ** into buffer zBuf, length nBuf.
385 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
386 char *zCsr = zBuf;
387 int f = pMem->flags;
389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
391 if( f&MEM_Blob ){
392 int i;
393 char c;
394 if( f & MEM_Dyn ){
395 c = 'z';
396 assert( (f & (MEM_Static|MEM_Ephem))==0 );
397 }else if( f & MEM_Static ){
398 c = 't';
399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400 }else if( f & MEM_Ephem ){
401 c = 'e';
402 assert( (f & (MEM_Static|MEM_Dyn))==0 );
403 }else{
404 c = 's';
407 sqlite3_snprintf(100, zCsr, "%c", c);
408 zCsr += sqlite3Strlen30(zCsr);
409 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
410 zCsr += sqlite3Strlen30(zCsr);
411 for(i=0; i<16 && i<pMem->n; i++){
412 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
413 zCsr += sqlite3Strlen30(zCsr);
415 for(i=0; i<16 && i<pMem->n; i++){
416 char z = pMem->z[i];
417 if( z<32 || z>126 ) *zCsr++ = '.';
418 else *zCsr++ = z;
421 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
422 zCsr += sqlite3Strlen30(zCsr);
423 if( f & MEM_Zero ){
424 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
425 zCsr += sqlite3Strlen30(zCsr);
427 *zCsr = '\0';
428 }else if( f & MEM_Str ){
429 int j, k;
430 zBuf[0] = ' ';
431 if( f & MEM_Dyn ){
432 zBuf[1] = 'z';
433 assert( (f & (MEM_Static|MEM_Ephem))==0 );
434 }else if( f & MEM_Static ){
435 zBuf[1] = 't';
436 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
437 }else if( f & MEM_Ephem ){
438 zBuf[1] = 'e';
439 assert( (f & (MEM_Static|MEM_Dyn))==0 );
440 }else{
441 zBuf[1] = 's';
443 k = 2;
444 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
445 k += sqlite3Strlen30(&zBuf[k]);
446 zBuf[k++] = '[';
447 for(j=0; j<15 && j<pMem->n; j++){
448 u8 c = pMem->z[j];
449 if( c>=0x20 && c<0x7f ){
450 zBuf[k++] = c;
451 }else{
452 zBuf[k++] = '.';
455 zBuf[k++] = ']';
456 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
457 k += sqlite3Strlen30(&zBuf[k]);
458 zBuf[k++] = 0;
461 #endif
463 #ifdef SQLITE_DEBUG
465 ** Print the value of a register for tracing purposes:
467 static void memTracePrint(Mem *p){
468 if( p->flags & MEM_Undefined ){
469 printf(" undefined");
470 }else if( p->flags & MEM_Null ){
471 printf(" NULL");
472 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
473 printf(" si:%lld", p->u.i);
474 }else if( p->flags & MEM_Int ){
475 printf(" i:%lld", p->u.i);
476 #ifndef SQLITE_OMIT_FLOATING_POINT
477 }else if( p->flags & MEM_Real ){
478 printf(" r:%g", p->u.r);
479 #endif
480 }else if( p->flags & MEM_RowSet ){
481 printf(" (rowset)");
482 }else{
483 char zBuf[200];
484 sqlite3VdbeMemPrettyPrint(p, zBuf);
485 printf(" %s", zBuf);
487 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
489 static void registerTrace(int iReg, Mem *p){
490 printf("REG[%d] = ", iReg);
491 memTracePrint(p);
492 printf("\n");
494 #endif
496 #ifdef SQLITE_DEBUG
497 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
498 #else
499 # define REGISTER_TRACE(R,M)
500 #endif
503 #ifdef VDBE_PROFILE
506 ** hwtime.h contains inline assembler code for implementing
507 ** high-performance timing routines.
509 #include "hwtime.h"
511 #endif
513 #ifndef NDEBUG
515 ** This function is only called from within an assert() expression. It
516 ** checks that the sqlite3.nTransaction variable is correctly set to
517 ** the number of non-transaction savepoints currently in the
518 ** linked list starting at sqlite3.pSavepoint.
520 ** Usage:
522 ** assert( checkSavepointCount(db) );
524 static int checkSavepointCount(sqlite3 *db){
525 int n = 0;
526 Savepoint *p;
527 for(p=db->pSavepoint; p; p=p->pNext) n++;
528 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
529 return 1;
531 #endif
534 ** Return the register of pOp->p2 after first preparing it to be
535 ** overwritten with an integer value.
537 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
538 sqlite3VdbeMemSetNull(pOut);
539 pOut->flags = MEM_Int;
540 return pOut;
542 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
543 Mem *pOut;
544 assert( pOp->p2>0 );
545 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
546 pOut = &p->aMem[pOp->p2];
547 memAboutToChange(p, pOut);
548 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
549 return out2PrereleaseWithClear(pOut);
550 }else{
551 pOut->flags = MEM_Int;
552 return pOut;
558 ** Execute as much of a VDBE program as we can.
559 ** This is the core of sqlite3_step().
561 int sqlite3VdbeExec(
562 Vdbe *p /* The VDBE */
564 Op *aOp = p->aOp; /* Copy of p->aOp */
565 Op *pOp = aOp; /* Current operation */
566 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
567 Op *pOrigOp; /* Value of pOp at the top of the loop */
568 #endif
569 #ifdef SQLITE_DEBUG
570 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
571 #endif
572 int rc = SQLITE_OK; /* Value to return */
573 sqlite3 *db = p->db; /* The database */
574 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
575 u8 encoding = ENC(db); /* The database encoding */
576 int iCompare = 0; /* Result of last OP_Compare operation */
577 unsigned nVmStep = 0; /* Number of virtual machine steps */
578 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
579 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
580 #endif
581 Mem *aMem = p->aMem; /* Copy of p->aMem */
582 Mem *pIn1 = 0; /* 1st input operand */
583 Mem *pIn2 = 0; /* 2nd input operand */
584 Mem *pIn3 = 0; /* 3rd input operand */
585 Mem *pOut = 0; /* Output operand */
586 int *aPermute = 0; /* Permutation of columns for OP_Compare */
587 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
588 #ifdef VDBE_PROFILE
589 u64 start; /* CPU clock count at start of opcode */
590 #endif
591 /*** INSERT STACK UNION HERE ***/
593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
594 sqlite3VdbeEnter(p);
595 if( p->rc==SQLITE_NOMEM ){
596 /* This happens if a malloc() inside a call to sqlite3_column_text() or
597 ** sqlite3_column_text16() failed. */
598 goto no_mem;
600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
601 assert( p->bIsReader || p->readOnly!=0 );
602 p->rc = SQLITE_OK;
603 p->iCurrentTime = 0;
604 assert( p->explain==0 );
605 p->pResultSet = 0;
606 db->busyHandler.nBusy = 0;
607 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
608 sqlite3VdbeIOTraceSql(p);
609 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
610 if( db->xProgress ){
611 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
612 assert( 0 < db->nProgressOps );
613 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
615 #endif
616 #ifdef SQLITE_DEBUG
617 sqlite3BeginBenignMalloc();
618 if( p->pc==0
619 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
621 int i;
622 int once = 1;
623 sqlite3VdbePrintSql(p);
624 if( p->db->flags & SQLITE_VdbeListing ){
625 printf("VDBE Program Listing:\n");
626 for(i=0; i<p->nOp; i++){
627 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
630 if( p->db->flags & SQLITE_VdbeEQP ){
631 for(i=0; i<p->nOp; i++){
632 if( aOp[i].opcode==OP_Explain ){
633 if( once ) printf("VDBE Query Plan:\n");
634 printf("%s\n", aOp[i].p4.z);
635 once = 0;
639 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
641 sqlite3EndBenignMalloc();
642 #endif
643 for(pOp=&aOp[p->pc]; 1; pOp++){
644 /* Errors are detected by individual opcodes, with an immediate
645 ** jumps to abort_due_to_error. */
646 assert( rc==SQLITE_OK );
648 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
649 #ifdef VDBE_PROFILE
650 start = sqlite3Hwtime();
651 #endif
652 nVmStep++;
653 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
654 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
655 #endif
657 /* Only allow tracing if SQLITE_DEBUG is defined.
659 #ifdef SQLITE_DEBUG
660 if( db->flags & SQLITE_VdbeTrace ){
661 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
663 #endif
666 /* Check to see if we need to simulate an interrupt. This only happens
667 ** if we have a special test build.
669 #ifdef SQLITE_TEST
670 if( sqlite3_interrupt_count>0 ){
671 sqlite3_interrupt_count--;
672 if( sqlite3_interrupt_count==0 ){
673 sqlite3_interrupt(db);
676 #endif
678 /* Sanity checking on other operands */
679 #ifdef SQLITE_DEBUG
681 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
682 if( (opProperty & OPFLG_IN1)!=0 ){
683 assert( pOp->p1>0 );
684 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
685 assert( memIsValid(&aMem[pOp->p1]) );
686 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
687 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
689 if( (opProperty & OPFLG_IN2)!=0 ){
690 assert( pOp->p2>0 );
691 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
692 assert( memIsValid(&aMem[pOp->p2]) );
693 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
694 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
696 if( (opProperty & OPFLG_IN3)!=0 ){
697 assert( pOp->p3>0 );
698 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
699 assert( memIsValid(&aMem[pOp->p3]) );
700 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
701 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
703 if( (opProperty & OPFLG_OUT2)!=0 ){
704 assert( pOp->p2>0 );
705 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
706 memAboutToChange(p, &aMem[pOp->p2]);
708 if( (opProperty & OPFLG_OUT3)!=0 ){
709 assert( pOp->p3>0 );
710 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
711 memAboutToChange(p, &aMem[pOp->p3]);
714 #endif
715 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
716 pOrigOp = pOp;
717 #endif
719 switch( pOp->opcode ){
721 /*****************************************************************************
722 ** What follows is a massive switch statement where each case implements a
723 ** separate instruction in the virtual machine. If we follow the usual
724 ** indentation conventions, each case should be indented by 6 spaces. But
725 ** that is a lot of wasted space on the left margin. So the code within
726 ** the switch statement will break with convention and be flush-left. Another
727 ** big comment (similar to this one) will mark the point in the code where
728 ** we transition back to normal indentation.
730 ** The formatting of each case is important. The makefile for SQLite
731 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
732 ** file looking for lines that begin with "case OP_". The opcodes.h files
733 ** will be filled with #defines that give unique integer values to each
734 ** opcode and the opcodes.c file is filled with an array of strings where
735 ** each string is the symbolic name for the corresponding opcode. If the
736 ** case statement is followed by a comment of the form "/# same as ... #/"
737 ** that comment is used to determine the particular value of the opcode.
739 ** Other keywords in the comment that follows each case are used to
740 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
741 ** Keywords include: in1, in2, in3, out2, out3. See
742 ** the mkopcodeh.awk script for additional information.
744 ** Documentation about VDBE opcodes is generated by scanning this file
745 ** for lines of that contain "Opcode:". That line and all subsequent
746 ** comment lines are used in the generation of the opcode.html documentation
747 ** file.
749 ** SUMMARY:
751 ** Formatting is important to scripts that scan this file.
752 ** Do not deviate from the formatting style currently in use.
754 *****************************************************************************/
756 /* Opcode: Goto * P2 * * *
758 ** An unconditional jump to address P2.
759 ** The next instruction executed will be
760 ** the one at index P2 from the beginning of
761 ** the program.
763 ** The P1 parameter is not actually used by this opcode. However, it
764 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
765 ** that this Goto is the bottom of a loop and that the lines from P2 down
766 ** to the current line should be indented for EXPLAIN output.
768 case OP_Goto: { /* jump */
769 jump_to_p2_and_check_for_interrupt:
770 pOp = &aOp[pOp->p2 - 1];
772 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
773 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
774 ** completion. Check to see if sqlite3_interrupt() has been called
775 ** or if the progress callback needs to be invoked.
777 ** This code uses unstructured "goto" statements and does not look clean.
778 ** But that is not due to sloppy coding habits. The code is written this
779 ** way for performance, to avoid having to run the interrupt and progress
780 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
781 ** faster according to "valgrind --tool=cachegrind" */
782 check_for_interrupt:
783 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
784 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
785 /* Call the progress callback if it is configured and the required number
786 ** of VDBE ops have been executed (either since this invocation of
787 ** sqlite3VdbeExec() or since last time the progress callback was called).
788 ** If the progress callback returns non-zero, exit the virtual machine with
789 ** a return code SQLITE_ABORT.
791 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
792 assert( db->nProgressOps!=0 );
793 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
794 if( db->xProgress(db->pProgressArg) ){
795 rc = SQLITE_INTERRUPT;
796 goto abort_due_to_error;
799 #endif
801 break;
804 /* Opcode: Gosub P1 P2 * * *
806 ** Write the current address onto register P1
807 ** and then jump to address P2.
809 case OP_Gosub: { /* jump */
810 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
811 pIn1 = &aMem[pOp->p1];
812 assert( VdbeMemDynamic(pIn1)==0 );
813 memAboutToChange(p, pIn1);
814 pIn1->flags = MEM_Int;
815 pIn1->u.i = (int)(pOp-aOp);
816 REGISTER_TRACE(pOp->p1, pIn1);
818 /* Most jump operations do a goto to this spot in order to update
819 ** the pOp pointer. */
820 jump_to_p2:
821 pOp = &aOp[pOp->p2 - 1];
822 break;
825 /* Opcode: Return P1 * * * *
827 ** Jump to the next instruction after the address in register P1. After
828 ** the jump, register P1 becomes undefined.
830 case OP_Return: { /* in1 */
831 pIn1 = &aMem[pOp->p1];
832 assert( pIn1->flags==MEM_Int );
833 pOp = &aOp[pIn1->u.i];
834 pIn1->flags = MEM_Undefined;
835 break;
838 /* Opcode: InitCoroutine P1 P2 P3 * *
840 ** Set up register P1 so that it will Yield to the coroutine
841 ** located at address P3.
843 ** If P2!=0 then the coroutine implementation immediately follows
844 ** this opcode. So jump over the coroutine implementation to
845 ** address P2.
847 ** See also: EndCoroutine
849 case OP_InitCoroutine: { /* jump */
850 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
851 assert( pOp->p2>=0 && pOp->p2<p->nOp );
852 assert( pOp->p3>=0 && pOp->p3<p->nOp );
853 pOut = &aMem[pOp->p1];
854 assert( !VdbeMemDynamic(pOut) );
855 pOut->u.i = pOp->p3 - 1;
856 pOut->flags = MEM_Int;
857 if( pOp->p2 ) goto jump_to_p2;
858 break;
861 /* Opcode: EndCoroutine P1 * * * *
863 ** The instruction at the address in register P1 is a Yield.
864 ** Jump to the P2 parameter of that Yield.
865 ** After the jump, register P1 becomes undefined.
867 ** See also: InitCoroutine
869 case OP_EndCoroutine: { /* in1 */
870 VdbeOp *pCaller;
871 pIn1 = &aMem[pOp->p1];
872 assert( pIn1->flags==MEM_Int );
873 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
874 pCaller = &aOp[pIn1->u.i];
875 assert( pCaller->opcode==OP_Yield );
876 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
877 pOp = &aOp[pCaller->p2 - 1];
878 pIn1->flags = MEM_Undefined;
879 break;
882 /* Opcode: Yield P1 P2 * * *
884 ** Swap the program counter with the value in register P1. This
885 ** has the effect of yielding to a coroutine.
887 ** If the coroutine that is launched by this instruction ends with
888 ** Yield or Return then continue to the next instruction. But if
889 ** the coroutine launched by this instruction ends with
890 ** EndCoroutine, then jump to P2 rather than continuing with the
891 ** next instruction.
893 ** See also: InitCoroutine
895 case OP_Yield: { /* in1, jump */
896 int pcDest;
897 pIn1 = &aMem[pOp->p1];
898 assert( VdbeMemDynamic(pIn1)==0 );
899 pIn1->flags = MEM_Int;
900 pcDest = (int)pIn1->u.i;
901 pIn1->u.i = (int)(pOp - aOp);
902 REGISTER_TRACE(pOp->p1, pIn1);
903 pOp = &aOp[pcDest];
904 break;
907 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
908 ** Synopsis: if r[P3]=null halt
910 ** Check the value in register P3. If it is NULL then Halt using
911 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
912 ** value in register P3 is not NULL, then this routine is a no-op.
913 ** The P5 parameter should be 1.
915 case OP_HaltIfNull: { /* in3 */
916 pIn3 = &aMem[pOp->p3];
917 if( (pIn3->flags & MEM_Null)==0 ) break;
918 /* Fall through into OP_Halt */
921 /* Opcode: Halt P1 P2 * P4 P5
923 ** Exit immediately. All open cursors, etc are closed
924 ** automatically.
926 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
927 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
928 ** For errors, it can be some other value. If P1!=0 then P2 will determine
929 ** whether or not to rollback the current transaction. Do not rollback
930 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
931 ** then back out all changes that have occurred during this execution of the
932 ** VDBE, but do not rollback the transaction.
934 ** If P4 is not null then it is an error message string.
936 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
938 ** 0: (no change)
939 ** 1: NOT NULL contraint failed: P4
940 ** 2: UNIQUE constraint failed: P4
941 ** 3: CHECK constraint failed: P4
942 ** 4: FOREIGN KEY constraint failed: P4
944 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
945 ** omitted.
947 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
948 ** every program. So a jump past the last instruction of the program
949 ** is the same as executing Halt.
951 case OP_Halt: {
952 VdbeFrame *pFrame;
953 int pcx;
955 pcx = (int)(pOp - aOp);
956 if( pOp->p1==SQLITE_OK && p->pFrame ){
957 /* Halt the sub-program. Return control to the parent frame. */
958 pFrame = p->pFrame;
959 p->pFrame = pFrame->pParent;
960 p->nFrame--;
961 sqlite3VdbeSetChanges(db, p->nChange);
962 pcx = sqlite3VdbeFrameRestore(pFrame);
963 lastRowid = db->lastRowid;
964 if( pOp->p2==OE_Ignore ){
965 /* Instruction pcx is the OP_Program that invoked the sub-program
966 ** currently being halted. If the p2 instruction of this OP_Halt
967 ** instruction is set to OE_Ignore, then the sub-program is throwing
968 ** an IGNORE exception. In this case jump to the address specified
969 ** as the p2 of the calling OP_Program. */
970 pcx = p->aOp[pcx].p2-1;
972 aOp = p->aOp;
973 aMem = p->aMem;
974 pOp = &aOp[pcx];
975 break;
977 p->rc = pOp->p1;
978 p->errorAction = (u8)pOp->p2;
979 p->pc = pcx;
980 assert( pOp->p5>=0 && pOp->p5<=4 );
981 if( p->rc ){
982 if( pOp->p5 ){
983 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
984 "FOREIGN KEY" };
985 testcase( pOp->p5==1 );
986 testcase( pOp->p5==2 );
987 testcase( pOp->p5==3 );
988 testcase( pOp->p5==4 );
989 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
990 if( pOp->p4.z ){
991 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
993 }else{
994 sqlite3VdbeError(p, "%s", pOp->p4.z);
996 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
998 rc = sqlite3VdbeHalt(p);
999 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1000 if( rc==SQLITE_BUSY ){
1001 p->rc = SQLITE_BUSY;
1002 }else{
1003 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1004 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1005 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1007 goto vdbe_return;
1010 /* Opcode: Integer P1 P2 * * *
1011 ** Synopsis: r[P2]=P1
1013 ** The 32-bit integer value P1 is written into register P2.
1015 case OP_Integer: { /* out2 */
1016 pOut = out2Prerelease(p, pOp);
1017 pOut->u.i = pOp->p1;
1018 break;
1021 /* Opcode: Int64 * P2 * P4 *
1022 ** Synopsis: r[P2]=P4
1024 ** P4 is a pointer to a 64-bit integer value.
1025 ** Write that value into register P2.
1027 case OP_Int64: { /* out2 */
1028 pOut = out2Prerelease(p, pOp);
1029 assert( pOp->p4.pI64!=0 );
1030 pOut->u.i = *pOp->p4.pI64;
1031 break;
1034 #ifndef SQLITE_OMIT_FLOATING_POINT
1035 /* Opcode: Real * P2 * P4 *
1036 ** Synopsis: r[P2]=P4
1038 ** P4 is a pointer to a 64-bit floating point value.
1039 ** Write that value into register P2.
1041 case OP_Real: { /* same as TK_FLOAT, out2 */
1042 pOut = out2Prerelease(p, pOp);
1043 pOut->flags = MEM_Real;
1044 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1045 pOut->u.r = *pOp->p4.pReal;
1046 break;
1048 #endif
1050 /* Opcode: String8 * P2 * P4 *
1051 ** Synopsis: r[P2]='P4'
1053 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1054 ** into a String opcode before it is executed for the first time. During
1055 ** this transformation, the length of string P4 is computed and stored
1056 ** as the P1 parameter.
1058 case OP_String8: { /* same as TK_STRING, out2 */
1059 assert( pOp->p4.z!=0 );
1060 pOut = out2Prerelease(p, pOp);
1061 pOp->opcode = OP_String;
1062 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1064 #ifndef SQLITE_OMIT_UTF16
1065 if( encoding!=SQLITE_UTF8 ){
1066 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1067 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1068 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1069 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1070 assert( VdbeMemDynamic(pOut)==0 );
1071 pOut->szMalloc = 0;
1072 pOut->flags |= MEM_Static;
1073 if( pOp->p4type==P4_DYNAMIC ){
1074 sqlite3DbFree(db, pOp->p4.z);
1076 pOp->p4type = P4_DYNAMIC;
1077 pOp->p4.z = pOut->z;
1078 pOp->p1 = pOut->n;
1080 testcase( rc==SQLITE_TOOBIG );
1081 #endif
1082 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1083 goto too_big;
1085 assert( rc==SQLITE_OK );
1086 /* Fall through to the next case, OP_String */
1089 /* Opcode: String P1 P2 P3 P4 P5
1090 ** Synopsis: r[P2]='P4' (len=P1)
1092 ** The string value P4 of length P1 (bytes) is stored in register P2.
1094 ** If P3 is not zero and the content of register P3 is equal to P5, then
1095 ** the datatype of the register P2 is converted to BLOB. The content is
1096 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1097 ** of a string, as if it had been CAST. In other words:
1099 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1101 case OP_String: { /* out2 */
1102 assert( pOp->p4.z!=0 );
1103 pOut = out2Prerelease(p, pOp);
1104 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1105 pOut->z = pOp->p4.z;
1106 pOut->n = pOp->p1;
1107 pOut->enc = encoding;
1108 UPDATE_MAX_BLOBSIZE(pOut);
1109 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1110 if( pOp->p3>0 ){
1111 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1112 pIn3 = &aMem[pOp->p3];
1113 assert( pIn3->flags & MEM_Int );
1114 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1116 #endif
1117 break;
1120 /* Opcode: Null P1 P2 P3 * *
1121 ** Synopsis: r[P2..P3]=NULL
1123 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1124 ** NULL into register P3 and every register in between P2 and P3. If P3
1125 ** is less than P2 (typically P3 is zero) then only register P2 is
1126 ** set to NULL.
1128 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1129 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1130 ** OP_Ne or OP_Eq.
1132 case OP_Null: { /* out2 */
1133 int cnt;
1134 u16 nullFlag;
1135 pOut = out2Prerelease(p, pOp);
1136 cnt = pOp->p3-pOp->p2;
1137 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1138 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1139 while( cnt>0 ){
1140 pOut++;
1141 memAboutToChange(p, pOut);
1142 sqlite3VdbeMemSetNull(pOut);
1143 pOut->flags = nullFlag;
1144 cnt--;
1146 break;
1149 /* Opcode: SoftNull P1 * * * *
1150 ** Synopsis: r[P1]=NULL
1152 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1153 ** instruction, but do not free any string or blob memory associated with
1154 ** the register, so that if the value was a string or blob that was
1155 ** previously copied using OP_SCopy, the copies will continue to be valid.
1157 case OP_SoftNull: {
1158 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1159 pOut = &aMem[pOp->p1];
1160 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1161 break;
1164 /* Opcode: Blob P1 P2 * P4 *
1165 ** Synopsis: r[P2]=P4 (len=P1)
1167 ** P4 points to a blob of data P1 bytes long. Store this
1168 ** blob in register P2.
1170 case OP_Blob: { /* out2 */
1171 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1172 pOut = out2Prerelease(p, pOp);
1173 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1174 pOut->enc = encoding;
1175 UPDATE_MAX_BLOBSIZE(pOut);
1176 break;
1179 /* Opcode: Variable P1 P2 * P4 *
1180 ** Synopsis: r[P2]=parameter(P1,P4)
1182 ** Transfer the values of bound parameter P1 into register P2
1184 ** If the parameter is named, then its name appears in P4.
1185 ** The P4 value is used by sqlite3_bind_parameter_name().
1187 case OP_Variable: { /* out2 */
1188 Mem *pVar; /* Value being transferred */
1190 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1191 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1192 pVar = &p->aVar[pOp->p1 - 1];
1193 if( sqlite3VdbeMemTooBig(pVar) ){
1194 goto too_big;
1196 pOut = out2Prerelease(p, pOp);
1197 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1198 UPDATE_MAX_BLOBSIZE(pOut);
1199 break;
1202 /* Opcode: Move P1 P2 P3 * *
1203 ** Synopsis: r[P2@P3]=r[P1@P3]
1205 ** Move the P3 values in register P1..P1+P3-1 over into
1206 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1207 ** left holding a NULL. It is an error for register ranges
1208 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1209 ** for P3 to be less than 1.
1211 case OP_Move: {
1212 int n; /* Number of registers left to copy */
1213 int p1; /* Register to copy from */
1214 int p2; /* Register to copy to */
1216 n = pOp->p3;
1217 p1 = pOp->p1;
1218 p2 = pOp->p2;
1219 assert( n>0 && p1>0 && p2>0 );
1220 assert( p1+n<=p2 || p2+n<=p1 );
1222 pIn1 = &aMem[p1];
1223 pOut = &aMem[p2];
1225 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1226 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1227 assert( memIsValid(pIn1) );
1228 memAboutToChange(p, pOut);
1229 sqlite3VdbeMemMove(pOut, pIn1);
1230 #ifdef SQLITE_DEBUG
1231 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1232 pOut->pScopyFrom += pOp->p2 - p1;
1234 #endif
1235 Deephemeralize(pOut);
1236 REGISTER_TRACE(p2++, pOut);
1237 pIn1++;
1238 pOut++;
1239 }while( --n );
1240 break;
1243 /* Opcode: Copy P1 P2 P3 * *
1244 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1246 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1248 ** This instruction makes a deep copy of the value. A duplicate
1249 ** is made of any string or blob constant. See also OP_SCopy.
1251 case OP_Copy: {
1252 int n;
1254 n = pOp->p3;
1255 pIn1 = &aMem[pOp->p1];
1256 pOut = &aMem[pOp->p2];
1257 assert( pOut!=pIn1 );
1258 while( 1 ){
1259 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1260 Deephemeralize(pOut);
1261 #ifdef SQLITE_DEBUG
1262 pOut->pScopyFrom = 0;
1263 #endif
1264 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1265 if( (n--)==0 ) break;
1266 pOut++;
1267 pIn1++;
1269 break;
1272 /* Opcode: SCopy P1 P2 * * *
1273 ** Synopsis: r[P2]=r[P1]
1275 ** Make a shallow copy of register P1 into register P2.
1277 ** This instruction makes a shallow copy of the value. If the value
1278 ** is a string or blob, then the copy is only a pointer to the
1279 ** original and hence if the original changes so will the copy.
1280 ** Worse, if the original is deallocated, the copy becomes invalid.
1281 ** Thus the program must guarantee that the original will not change
1282 ** during the lifetime of the copy. Use OP_Copy to make a complete
1283 ** copy.
1285 case OP_SCopy: { /* out2 */
1286 pIn1 = &aMem[pOp->p1];
1287 pOut = &aMem[pOp->p2];
1288 assert( pOut!=pIn1 );
1289 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1290 #ifdef SQLITE_DEBUG
1291 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1292 #endif
1293 break;
1296 /* Opcode: IntCopy P1 P2 * * *
1297 ** Synopsis: r[P2]=r[P1]
1299 ** Transfer the integer value held in register P1 into register P2.
1301 ** This is an optimized version of SCopy that works only for integer
1302 ** values.
1304 case OP_IntCopy: { /* out2 */
1305 pIn1 = &aMem[pOp->p1];
1306 assert( (pIn1->flags & MEM_Int)!=0 );
1307 pOut = &aMem[pOp->p2];
1308 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1309 break;
1312 /* Opcode: ResultRow P1 P2 * * *
1313 ** Synopsis: output=r[P1@P2]
1315 ** The registers P1 through P1+P2-1 contain a single row of
1316 ** results. This opcode causes the sqlite3_step() call to terminate
1317 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1318 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1319 ** the result row.
1321 case OP_ResultRow: {
1322 Mem *pMem;
1323 int i;
1324 assert( p->nResColumn==pOp->p2 );
1325 assert( pOp->p1>0 );
1326 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1328 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1329 /* Run the progress counter just before returning.
1331 if( db->xProgress!=0
1332 && nVmStep>=nProgressLimit
1333 && db->xProgress(db->pProgressArg)!=0
1335 rc = SQLITE_INTERRUPT;
1336 goto abort_due_to_error;
1338 #endif
1340 /* If this statement has violated immediate foreign key constraints, do
1341 ** not return the number of rows modified. And do not RELEASE the statement
1342 ** transaction. It needs to be rolled back. */
1343 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1344 assert( db->flags&SQLITE_CountRows );
1345 assert( p->usesStmtJournal );
1346 goto abort_due_to_error;
1349 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1350 ** DML statements invoke this opcode to return the number of rows
1351 ** modified to the user. This is the only way that a VM that
1352 ** opens a statement transaction may invoke this opcode.
1354 ** In case this is such a statement, close any statement transaction
1355 ** opened by this VM before returning control to the user. This is to
1356 ** ensure that statement-transactions are always nested, not overlapping.
1357 ** If the open statement-transaction is not closed here, then the user
1358 ** may step another VM that opens its own statement transaction. This
1359 ** may lead to overlapping statement transactions.
1361 ** The statement transaction is never a top-level transaction. Hence
1362 ** the RELEASE call below can never fail.
1364 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1365 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1366 assert( rc==SQLITE_OK );
1368 /* Invalidate all ephemeral cursor row caches */
1369 p->cacheCtr = (p->cacheCtr + 2)|1;
1371 /* Make sure the results of the current row are \000 terminated
1372 ** and have an assigned type. The results are de-ephemeralized as
1373 ** a side effect.
1375 pMem = p->pResultSet = &aMem[pOp->p1];
1376 for(i=0; i<pOp->p2; i++){
1377 assert( memIsValid(&pMem[i]) );
1378 Deephemeralize(&pMem[i]);
1379 assert( (pMem[i].flags & MEM_Ephem)==0
1380 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1381 sqlite3VdbeMemNulTerminate(&pMem[i]);
1382 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1384 if( db->mallocFailed ) goto no_mem;
1386 if( db->mTrace & SQLITE_TRACE_ROW ){
1387 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1390 /* Return SQLITE_ROW
1392 p->pc = (int)(pOp - aOp) + 1;
1393 rc = SQLITE_ROW;
1394 goto vdbe_return;
1397 /* Opcode: Concat P1 P2 P3 * *
1398 ** Synopsis: r[P3]=r[P2]+r[P1]
1400 ** Add the text in register P1 onto the end of the text in
1401 ** register P2 and store the result in register P3.
1402 ** If either the P1 or P2 text are NULL then store NULL in P3.
1404 ** P3 = P2 || P1
1406 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1407 ** if P3 is the same register as P2, the implementation is able
1408 ** to avoid a memcpy().
1410 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1411 i64 nByte;
1413 pIn1 = &aMem[pOp->p1];
1414 pIn2 = &aMem[pOp->p2];
1415 pOut = &aMem[pOp->p3];
1416 assert( pIn1!=pOut );
1417 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1418 sqlite3VdbeMemSetNull(pOut);
1419 break;
1421 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1422 Stringify(pIn1, encoding);
1423 Stringify(pIn2, encoding);
1424 nByte = pIn1->n + pIn2->n;
1425 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1426 goto too_big;
1428 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1429 goto no_mem;
1431 MemSetTypeFlag(pOut, MEM_Str);
1432 if( pOut!=pIn2 ){
1433 memcpy(pOut->z, pIn2->z, pIn2->n);
1435 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1436 pOut->z[nByte]=0;
1437 pOut->z[nByte+1] = 0;
1438 pOut->flags |= MEM_Term;
1439 pOut->n = (int)nByte;
1440 pOut->enc = encoding;
1441 UPDATE_MAX_BLOBSIZE(pOut);
1442 break;
1445 /* Opcode: Add P1 P2 P3 * *
1446 ** Synopsis: r[P3]=r[P1]+r[P2]
1448 ** Add the value in register P1 to the value in register P2
1449 ** and store the result in register P3.
1450 ** If either input is NULL, the result is NULL.
1452 /* Opcode: Multiply P1 P2 P3 * *
1453 ** Synopsis: r[P3]=r[P1]*r[P2]
1456 ** Multiply the value in register P1 by the value in register P2
1457 ** and store the result in register P3.
1458 ** If either input is NULL, the result is NULL.
1460 /* Opcode: Subtract P1 P2 P3 * *
1461 ** Synopsis: r[P3]=r[P2]-r[P1]
1463 ** Subtract the value in register P1 from the value in register P2
1464 ** and store the result in register P3.
1465 ** If either input is NULL, the result is NULL.
1467 /* Opcode: Divide P1 P2 P3 * *
1468 ** Synopsis: r[P3]=r[P2]/r[P1]
1470 ** Divide the value in register P1 by the value in register P2
1471 ** and store the result in register P3 (P3=P2/P1). If the value in
1472 ** register P1 is zero, then the result is NULL. If either input is
1473 ** NULL, the result is NULL.
1475 /* Opcode: Remainder P1 P2 P3 * *
1476 ** Synopsis: r[P3]=r[P2]%r[P1]
1478 ** Compute the remainder after integer register P2 is divided by
1479 ** register P1 and store the result in register P3.
1480 ** If the value in register P1 is zero the result is NULL.
1481 ** If either operand is NULL, the result is NULL.
1483 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1484 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1485 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1486 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1487 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1488 char bIntint; /* Started out as two integer operands */
1489 u16 flags; /* Combined MEM_* flags from both inputs */
1490 u16 type1; /* Numeric type of left operand */
1491 u16 type2; /* Numeric type of right operand */
1492 i64 iA; /* Integer value of left operand */
1493 i64 iB; /* Integer value of right operand */
1494 double rA; /* Real value of left operand */
1495 double rB; /* Real value of right operand */
1497 pIn1 = &aMem[pOp->p1];
1498 type1 = numericType(pIn1);
1499 pIn2 = &aMem[pOp->p2];
1500 type2 = numericType(pIn2);
1501 pOut = &aMem[pOp->p3];
1502 flags = pIn1->flags | pIn2->flags;
1503 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1504 if( (type1 & type2 & MEM_Int)!=0 ){
1505 iA = pIn1->u.i;
1506 iB = pIn2->u.i;
1507 bIntint = 1;
1508 switch( pOp->opcode ){
1509 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1510 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1511 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1512 case OP_Divide: {
1513 if( iA==0 ) goto arithmetic_result_is_null;
1514 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1515 iB /= iA;
1516 break;
1518 default: {
1519 if( iA==0 ) goto arithmetic_result_is_null;
1520 if( iA==-1 ) iA = 1;
1521 iB %= iA;
1522 break;
1525 pOut->u.i = iB;
1526 MemSetTypeFlag(pOut, MEM_Int);
1527 }else{
1528 bIntint = 0;
1529 fp_math:
1530 rA = sqlite3VdbeRealValue(pIn1);
1531 rB = sqlite3VdbeRealValue(pIn2);
1532 switch( pOp->opcode ){
1533 case OP_Add: rB += rA; break;
1534 case OP_Subtract: rB -= rA; break;
1535 case OP_Multiply: rB *= rA; break;
1536 case OP_Divide: {
1537 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1538 if( rA==(double)0 ) goto arithmetic_result_is_null;
1539 rB /= rA;
1540 break;
1542 default: {
1543 iA = (i64)rA;
1544 iB = (i64)rB;
1545 if( iA==0 ) goto arithmetic_result_is_null;
1546 if( iA==-1 ) iA = 1;
1547 rB = (double)(iB % iA);
1548 break;
1551 #ifdef SQLITE_OMIT_FLOATING_POINT
1552 pOut->u.i = rB;
1553 MemSetTypeFlag(pOut, MEM_Int);
1554 #else
1555 if( sqlite3IsNaN(rB) ){
1556 goto arithmetic_result_is_null;
1558 pOut->u.r = rB;
1559 MemSetTypeFlag(pOut, MEM_Real);
1560 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1561 sqlite3VdbeIntegerAffinity(pOut);
1563 #endif
1565 break;
1567 arithmetic_result_is_null:
1568 sqlite3VdbeMemSetNull(pOut);
1569 break;
1572 /* Opcode: CollSeq P1 * * P4
1574 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1575 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1576 ** be returned. This is used by the built-in min(), max() and nullif()
1577 ** functions.
1579 ** If P1 is not zero, then it is a register that a subsequent min() or
1580 ** max() aggregate will set to 1 if the current row is not the minimum or
1581 ** maximum. The P1 register is initialized to 0 by this instruction.
1583 ** The interface used by the implementation of the aforementioned functions
1584 ** to retrieve the collation sequence set by this opcode is not available
1585 ** publicly. Only built-in functions have access to this feature.
1587 case OP_CollSeq: {
1588 assert( pOp->p4type==P4_COLLSEQ );
1589 if( pOp->p1 ){
1590 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1592 break;
1595 /* Opcode: Function0 P1 P2 P3 P4 P5
1596 ** Synopsis: r[P3]=func(r[P2@P5])
1598 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1599 ** defines the function) with P5 arguments taken from register P2 and
1600 ** successors. The result of the function is stored in register P3.
1601 ** Register P3 must not be one of the function inputs.
1603 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1604 ** function was determined to be constant at compile time. If the first
1605 ** argument was constant then bit 0 of P1 is set. This is used to determine
1606 ** whether meta data associated with a user function argument using the
1607 ** sqlite3_set_auxdata() API may be safely retained until the next
1608 ** invocation of this opcode.
1610 ** See also: Function, AggStep, AggFinal
1612 /* Opcode: Function P1 P2 P3 P4 P5
1613 ** Synopsis: r[P3]=func(r[P2@P5])
1615 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1616 ** contains a pointer to the function to be run) with P5 arguments taken
1617 ** from register P2 and successors. The result of the function is stored
1618 ** in register P3. Register P3 must not be one of the function inputs.
1620 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1621 ** function was determined to be constant at compile time. If the first
1622 ** argument was constant then bit 0 of P1 is set. This is used to determine
1623 ** whether meta data associated with a user function argument using the
1624 ** sqlite3_set_auxdata() API may be safely retained until the next
1625 ** invocation of this opcode.
1627 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1628 ** to a FuncDef object. But on first evaluation, the P4 operand is
1629 ** automatically converted into an sqlite3_context object and the operation
1630 ** changed to this OP_Function opcode. In this way, the initialization of
1631 ** the sqlite3_context object occurs only once, rather than once for each
1632 ** evaluation of the function.
1634 ** See also: Function0, AggStep, AggFinal
1636 case OP_Function0: {
1637 int n;
1638 sqlite3_context *pCtx;
1640 assert( pOp->p4type==P4_FUNCDEF );
1641 n = pOp->p5;
1642 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1643 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
1644 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1645 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1646 if( pCtx==0 ) goto no_mem;
1647 pCtx->pOut = 0;
1648 pCtx->pFunc = pOp->p4.pFunc;
1649 pCtx->iOp = (int)(pOp - aOp);
1650 pCtx->pVdbe = p;
1651 pCtx->argc = n;
1652 pOp->p4type = P4_FUNCCTX;
1653 pOp->p4.pCtx = pCtx;
1654 pOp->opcode = OP_Function;
1655 /* Fall through into OP_Function */
1657 case OP_Function: {
1658 int i;
1659 sqlite3_context *pCtx;
1661 assert( pOp->p4type==P4_FUNCCTX );
1662 pCtx = pOp->p4.pCtx;
1664 /* If this function is inside of a trigger, the register array in aMem[]
1665 ** might change from one evaluation to the next. The next block of code
1666 ** checks to see if the register array has changed, and if so it
1667 ** reinitializes the relavant parts of the sqlite3_context object */
1668 pOut = &aMem[pOp->p3];
1669 if( pCtx->pOut != pOut ){
1670 pCtx->pOut = pOut;
1671 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1674 memAboutToChange(p, pCtx->pOut);
1675 #ifdef SQLITE_DEBUG
1676 for(i=0; i<pCtx->argc; i++){
1677 assert( memIsValid(pCtx->argv[i]) );
1678 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1680 #endif
1681 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1682 pCtx->fErrorOrAux = 0;
1683 db->lastRowid = lastRowid;
1684 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1685 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */
1687 /* If the function returned an error, throw an exception */
1688 if( pCtx->fErrorOrAux ){
1689 if( pCtx->isError ){
1690 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1691 rc = pCtx->isError;
1693 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
1694 if( rc ) goto abort_due_to_error;
1697 /* Copy the result of the function into register P3 */
1698 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1699 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1700 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1703 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1704 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1705 break;
1708 /* Opcode: BitAnd P1 P2 P3 * *
1709 ** Synopsis: r[P3]=r[P1]&r[P2]
1711 ** Take the bit-wise AND of the values in register P1 and P2 and
1712 ** store the result in register P3.
1713 ** If either input is NULL, the result is NULL.
1715 /* Opcode: BitOr P1 P2 P3 * *
1716 ** Synopsis: r[P3]=r[P1]|r[P2]
1718 ** Take the bit-wise OR of the values in register P1 and P2 and
1719 ** store the result in register P3.
1720 ** If either input is NULL, the result is NULL.
1722 /* Opcode: ShiftLeft P1 P2 P3 * *
1723 ** Synopsis: r[P3]=r[P2]<<r[P1]
1725 ** Shift the integer value in register P2 to the left by the
1726 ** number of bits specified by the integer in register P1.
1727 ** Store the result in register P3.
1728 ** If either input is NULL, the result is NULL.
1730 /* Opcode: ShiftRight P1 P2 P3 * *
1731 ** Synopsis: r[P3]=r[P2]>>r[P1]
1733 ** Shift the integer value in register P2 to the right by the
1734 ** number of bits specified by the integer in register P1.
1735 ** Store the result in register P3.
1736 ** If either input is NULL, the result is NULL.
1738 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1739 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1740 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1741 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1742 i64 iA;
1743 u64 uA;
1744 i64 iB;
1745 u8 op;
1747 pIn1 = &aMem[pOp->p1];
1748 pIn2 = &aMem[pOp->p2];
1749 pOut = &aMem[pOp->p3];
1750 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1751 sqlite3VdbeMemSetNull(pOut);
1752 break;
1754 iA = sqlite3VdbeIntValue(pIn2);
1755 iB = sqlite3VdbeIntValue(pIn1);
1756 op = pOp->opcode;
1757 if( op==OP_BitAnd ){
1758 iA &= iB;
1759 }else if( op==OP_BitOr ){
1760 iA |= iB;
1761 }else if( iB!=0 ){
1762 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1764 /* If shifting by a negative amount, shift in the other direction */
1765 if( iB<0 ){
1766 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1767 op = 2*OP_ShiftLeft + 1 - op;
1768 iB = iB>(-64) ? -iB : 64;
1771 if( iB>=64 ){
1772 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1773 }else{
1774 memcpy(&uA, &iA, sizeof(uA));
1775 if( op==OP_ShiftLeft ){
1776 uA <<= iB;
1777 }else{
1778 uA >>= iB;
1779 /* Sign-extend on a right shift of a negative number */
1780 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1782 memcpy(&iA, &uA, sizeof(iA));
1785 pOut->u.i = iA;
1786 MemSetTypeFlag(pOut, MEM_Int);
1787 break;
1790 /* Opcode: AddImm P1 P2 * * *
1791 ** Synopsis: r[P1]=r[P1]+P2
1793 ** Add the constant P2 to the value in register P1.
1794 ** The result is always an integer.
1796 ** To force any register to be an integer, just add 0.
1798 case OP_AddImm: { /* in1 */
1799 pIn1 = &aMem[pOp->p1];
1800 memAboutToChange(p, pIn1);
1801 sqlite3VdbeMemIntegerify(pIn1);
1802 pIn1->u.i += pOp->p2;
1803 break;
1806 /* Opcode: MustBeInt P1 P2 * * *
1808 ** Force the value in register P1 to be an integer. If the value
1809 ** in P1 is not an integer and cannot be converted into an integer
1810 ** without data loss, then jump immediately to P2, or if P2==0
1811 ** raise an SQLITE_MISMATCH exception.
1813 case OP_MustBeInt: { /* jump, in1 */
1814 pIn1 = &aMem[pOp->p1];
1815 if( (pIn1->flags & MEM_Int)==0 ){
1816 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1817 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1818 if( (pIn1->flags & MEM_Int)==0 ){
1819 if( pOp->p2==0 ){
1820 rc = SQLITE_MISMATCH;
1821 goto abort_due_to_error;
1822 }else{
1823 goto jump_to_p2;
1827 MemSetTypeFlag(pIn1, MEM_Int);
1828 break;
1831 #ifndef SQLITE_OMIT_FLOATING_POINT
1832 /* Opcode: RealAffinity P1 * * * *
1834 ** If register P1 holds an integer convert it to a real value.
1836 ** This opcode is used when extracting information from a column that
1837 ** has REAL affinity. Such column values may still be stored as
1838 ** integers, for space efficiency, but after extraction we want them
1839 ** to have only a real value.
1841 case OP_RealAffinity: { /* in1 */
1842 pIn1 = &aMem[pOp->p1];
1843 if( pIn1->flags & MEM_Int ){
1844 sqlite3VdbeMemRealify(pIn1);
1846 break;
1848 #endif
1850 #ifndef SQLITE_OMIT_CAST
1851 /* Opcode: Cast P1 P2 * * *
1852 ** Synopsis: affinity(r[P1])
1854 ** Force the value in register P1 to be the type defined by P2.
1856 ** <ul>
1857 ** <li value="97"> TEXT
1858 ** <li value="98"> BLOB
1859 ** <li value="99"> NUMERIC
1860 ** <li value="100"> INTEGER
1861 ** <li value="101"> REAL
1862 ** </ul>
1864 ** A NULL value is not changed by this routine. It remains NULL.
1866 case OP_Cast: { /* in1 */
1867 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1868 testcase( pOp->p2==SQLITE_AFF_TEXT );
1869 testcase( pOp->p2==SQLITE_AFF_BLOB );
1870 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1871 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1872 testcase( pOp->p2==SQLITE_AFF_REAL );
1873 pIn1 = &aMem[pOp->p1];
1874 memAboutToChange(p, pIn1);
1875 rc = ExpandBlob(pIn1);
1876 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1877 UPDATE_MAX_BLOBSIZE(pIn1);
1878 if( rc ) goto abort_due_to_error;
1879 break;
1881 #endif /* SQLITE_OMIT_CAST */
1883 /* Opcode: Lt P1 P2 P3 P4 P5
1884 ** Synopsis: if r[P1]<r[P3] goto P2
1886 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1887 ** jump to address P2.
1889 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1890 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1891 ** bit is clear then fall through if either operand is NULL.
1893 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1894 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1895 ** to coerce both inputs according to this affinity before the
1896 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1897 ** affinity is used. Note that the affinity conversions are stored
1898 ** back into the input registers P1 and P3. So this opcode can cause
1899 ** persistent changes to registers P1 and P3.
1901 ** Once any conversions have taken place, and neither value is NULL,
1902 ** the values are compared. If both values are blobs then memcmp() is
1903 ** used to determine the results of the comparison. If both values
1904 ** are text, then the appropriate collating function specified in
1905 ** P4 is used to do the comparison. If P4 is not specified then
1906 ** memcmp() is used to compare text string. If both values are
1907 ** numeric, then a numeric comparison is used. If the two values
1908 ** are of different types, then numbers are considered less than
1909 ** strings and strings are considered less than blobs.
1911 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1912 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1914 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1915 ** equal to one another, provided that they do not have their MEM_Cleared
1916 ** bit set.
1918 /* Opcode: Ne P1 P2 P3 P4 P5
1919 ** Synopsis: if r[P1]!=r[P3] goto P2
1921 ** This works just like the Lt opcode except that the jump is taken if
1922 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1923 ** additional information.
1925 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1926 ** true or false and is never NULL. If both operands are NULL then the result
1927 ** of comparison is false. If either operand is NULL then the result is true.
1928 ** If neither operand is NULL the result is the same as it would be if
1929 ** the SQLITE_NULLEQ flag were omitted from P5.
1931 /* Opcode: Eq P1 P2 P3 P4 P5
1932 ** Synopsis: if r[P1]==r[P3] goto P2
1934 ** This works just like the Lt opcode except that the jump is taken if
1935 ** the operands in registers P1 and P3 are equal.
1936 ** See the Lt opcode for additional information.
1938 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1939 ** true or false and is never NULL. If both operands are NULL then the result
1940 ** of comparison is true. If either operand is NULL then the result is false.
1941 ** If neither operand is NULL the result is the same as it would be if
1942 ** the SQLITE_NULLEQ flag were omitted from P5.
1944 /* Opcode: Le P1 P2 P3 P4 P5
1945 ** Synopsis: if r[P1]<=r[P3] goto P2
1947 ** This works just like the Lt opcode except that the jump is taken if
1948 ** the content of register P3 is less than or equal to the content of
1949 ** register P1. See the Lt opcode for additional information.
1951 /* Opcode: Gt P1 P2 P3 P4 P5
1952 ** Synopsis: if r[P1]>r[P3] goto P2
1954 ** This works just like the Lt opcode except that the jump is taken if
1955 ** the content of register P3 is greater than the content of
1956 ** register P1. See the Lt opcode for additional information.
1958 /* Opcode: Ge P1 P2 P3 P4 P5
1959 ** Synopsis: if r[P1]>=r[P3] goto P2
1961 ** This works just like the Lt opcode except that the jump is taken if
1962 ** the content of register P3 is greater than or equal to the content of
1963 ** register P1. See the Lt opcode for additional information.
1965 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1966 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1967 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1968 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1969 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1970 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1971 int res; /* Result of the comparison of pIn1 against pIn3 */
1972 char affinity; /* Affinity to use for comparison */
1973 u16 flags1; /* Copy of initial value of pIn1->flags */
1974 u16 flags3; /* Copy of initial value of pIn3->flags */
1976 pIn1 = &aMem[pOp->p1];
1977 pIn3 = &aMem[pOp->p3];
1978 flags1 = pIn1->flags;
1979 flags3 = pIn3->flags;
1980 if( (flags1 | flags3)&MEM_Null ){
1981 /* One or both operands are NULL */
1982 if( pOp->p5 & SQLITE_NULLEQ ){
1983 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1984 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1985 ** or not both operands are null.
1987 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1988 assert( (flags1 & MEM_Cleared)==0 );
1989 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1990 if( (flags1&MEM_Null)!=0
1991 && (flags3&MEM_Null)!=0
1992 && (flags3&MEM_Cleared)==0
1994 res = 0; /* Results are equal */
1995 }else{
1996 res = 1; /* Results are not equal */
1998 }else{
1999 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2000 ** then the result is always NULL.
2001 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2003 if( pOp->p5 & SQLITE_STOREP2 ){
2004 pOut = &aMem[pOp->p2];
2005 memAboutToChange(p, pOut);
2006 MemSetTypeFlag(pOut, MEM_Null);
2007 REGISTER_TRACE(pOp->p2, pOut);
2008 }else{
2009 VdbeBranchTaken(2,3);
2010 if( pOp->p5 & SQLITE_JUMPIFNULL ){
2011 goto jump_to_p2;
2014 break;
2016 }else{
2017 /* Neither operand is NULL. Do a comparison. */
2018 affinity = pOp->p5 & SQLITE_AFF_MASK;
2019 if( affinity>=SQLITE_AFF_NUMERIC ){
2020 if( (flags1 | flags3)&MEM_Str ){
2021 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2022 applyNumericAffinity(pIn1,0);
2023 flags3 = pIn3->flags;
2025 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2026 applyNumericAffinity(pIn3,0);
2029 }else if( affinity==SQLITE_AFF_TEXT ){
2030 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
2031 testcase( pIn1->flags & MEM_Int );
2032 testcase( pIn1->flags & MEM_Real );
2033 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2034 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2035 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2036 flags3 = pIn3->flags;
2038 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2039 testcase( pIn3->flags & MEM_Int );
2040 testcase( pIn3->flags & MEM_Real );
2041 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2042 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2043 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2046 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2047 if( flags1 & MEM_Zero ){
2048 sqlite3VdbeMemExpandBlob(pIn1);
2049 flags1 &= ~MEM_Zero;
2051 if( flags3 & MEM_Zero ){
2052 sqlite3VdbeMemExpandBlob(pIn3);
2053 flags3 &= ~MEM_Zero;
2055 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2057 switch( pOp->opcode ){
2058 case OP_Eq: res = res==0; break;
2059 case OP_Ne: res = res!=0; break;
2060 case OP_Lt: res = res<0; break;
2061 case OP_Le: res = res<=0; break;
2062 case OP_Gt: res = res>0; break;
2063 default: res = res>=0; break;
2066 /* Undo any changes made by applyAffinity() to the input registers. */
2067 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2068 pIn1->flags = flags1;
2069 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2070 pIn3->flags = flags3;
2072 if( pOp->p5 & SQLITE_STOREP2 ){
2073 pOut = &aMem[pOp->p2];
2074 memAboutToChange(p, pOut);
2075 MemSetTypeFlag(pOut, MEM_Int);
2076 pOut->u.i = res;
2077 REGISTER_TRACE(pOp->p2, pOut);
2078 }else{
2079 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2080 if( res ){
2081 goto jump_to_p2;
2084 break;
2087 /* Opcode: Permutation * * * P4 *
2089 ** Set the permutation used by the OP_Compare operator to be the array
2090 ** of integers in P4.
2092 ** The permutation is only valid until the next OP_Compare that has
2093 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2094 ** occur immediately prior to the OP_Compare.
2096 ** The first integer in the P4 integer array is the length of the array
2097 ** and does not become part of the permutation.
2099 case OP_Permutation: {
2100 assert( pOp->p4type==P4_INTARRAY );
2101 assert( pOp->p4.ai );
2102 aPermute = pOp->p4.ai + 1;
2103 break;
2106 /* Opcode: Compare P1 P2 P3 P4 P5
2107 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2109 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2110 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2111 ** the comparison for use by the next OP_Jump instruct.
2113 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2114 ** determined by the most recent OP_Permutation operator. If the
2115 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2116 ** order.
2118 ** P4 is a KeyInfo structure that defines collating sequences and sort
2119 ** orders for the comparison. The permutation applies to registers
2120 ** only. The KeyInfo elements are used sequentially.
2122 ** The comparison is a sort comparison, so NULLs compare equal,
2123 ** NULLs are less than numbers, numbers are less than strings,
2124 ** and strings are less than blobs.
2126 case OP_Compare: {
2127 int n;
2128 int i;
2129 int p1;
2130 int p2;
2131 const KeyInfo *pKeyInfo;
2132 int idx;
2133 CollSeq *pColl; /* Collating sequence to use on this term */
2134 int bRev; /* True for DESCENDING sort order */
2136 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2137 n = pOp->p3;
2138 pKeyInfo = pOp->p4.pKeyInfo;
2139 assert( n>0 );
2140 assert( pKeyInfo!=0 );
2141 p1 = pOp->p1;
2142 p2 = pOp->p2;
2143 #if SQLITE_DEBUG
2144 if( aPermute ){
2145 int k, mx = 0;
2146 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2147 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2148 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2149 }else{
2150 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2151 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2153 #endif /* SQLITE_DEBUG */
2154 for(i=0; i<n; i++){
2155 idx = aPermute ? aPermute[i] : i;
2156 assert( memIsValid(&aMem[p1+idx]) );
2157 assert( memIsValid(&aMem[p2+idx]) );
2158 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2159 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2160 assert( i<pKeyInfo->nField );
2161 pColl = pKeyInfo->aColl[i];
2162 bRev = pKeyInfo->aSortOrder[i];
2163 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2164 if( iCompare ){
2165 if( bRev ) iCompare = -iCompare;
2166 break;
2169 aPermute = 0;
2170 break;
2173 /* Opcode: Jump P1 P2 P3 * *
2175 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2176 ** in the most recent OP_Compare instruction the P1 vector was less than
2177 ** equal to, or greater than the P2 vector, respectively.
2179 case OP_Jump: { /* jump */
2180 if( iCompare<0 ){
2181 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2182 }else if( iCompare==0 ){
2183 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2184 }else{
2185 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2187 break;
2190 /* Opcode: And P1 P2 P3 * *
2191 ** Synopsis: r[P3]=(r[P1] && r[P2])
2193 ** Take the logical AND of the values in registers P1 and P2 and
2194 ** write the result into register P3.
2196 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2197 ** the other input is NULL. A NULL and true or two NULLs give
2198 ** a NULL output.
2200 /* Opcode: Or P1 P2 P3 * *
2201 ** Synopsis: r[P3]=(r[P1] || r[P2])
2203 ** Take the logical OR of the values in register P1 and P2 and
2204 ** store the answer in register P3.
2206 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2207 ** even if the other input is NULL. A NULL and false or two NULLs
2208 ** give a NULL output.
2210 case OP_And: /* same as TK_AND, in1, in2, out3 */
2211 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2212 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2213 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2215 pIn1 = &aMem[pOp->p1];
2216 if( pIn1->flags & MEM_Null ){
2217 v1 = 2;
2218 }else{
2219 v1 = sqlite3VdbeIntValue(pIn1)!=0;
2221 pIn2 = &aMem[pOp->p2];
2222 if( pIn2->flags & MEM_Null ){
2223 v2 = 2;
2224 }else{
2225 v2 = sqlite3VdbeIntValue(pIn2)!=0;
2227 if( pOp->opcode==OP_And ){
2228 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2229 v1 = and_logic[v1*3+v2];
2230 }else{
2231 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2232 v1 = or_logic[v1*3+v2];
2234 pOut = &aMem[pOp->p3];
2235 if( v1==2 ){
2236 MemSetTypeFlag(pOut, MEM_Null);
2237 }else{
2238 pOut->u.i = v1;
2239 MemSetTypeFlag(pOut, MEM_Int);
2241 break;
2244 /* Opcode: Not P1 P2 * * *
2245 ** Synopsis: r[P2]= !r[P1]
2247 ** Interpret the value in register P1 as a boolean value. Store the
2248 ** boolean complement in register P2. If the value in register P1 is
2249 ** NULL, then a NULL is stored in P2.
2251 case OP_Not: { /* same as TK_NOT, in1, out2 */
2252 pIn1 = &aMem[pOp->p1];
2253 pOut = &aMem[pOp->p2];
2254 sqlite3VdbeMemSetNull(pOut);
2255 if( (pIn1->flags & MEM_Null)==0 ){
2256 pOut->flags = MEM_Int;
2257 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2259 break;
2262 /* Opcode: BitNot P1 P2 * * *
2263 ** Synopsis: r[P1]= ~r[P1]
2265 ** Interpret the content of register P1 as an integer. Store the
2266 ** ones-complement of the P1 value into register P2. If P1 holds
2267 ** a NULL then store a NULL in P2.
2269 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2270 pIn1 = &aMem[pOp->p1];
2271 pOut = &aMem[pOp->p2];
2272 sqlite3VdbeMemSetNull(pOut);
2273 if( (pIn1->flags & MEM_Null)==0 ){
2274 pOut->flags = MEM_Int;
2275 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2277 break;
2280 /* Opcode: Once P1 P2 * * *
2282 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2283 ** Otherwise, set the flag and fall through to the next instruction.
2284 ** In other words, this opcode causes all following opcodes up through P2
2285 ** (but not including P2) to run just once and to be skipped on subsequent
2286 ** times through the loop.
2288 ** All "once" flags are initially cleared whenever a prepared statement
2289 ** first begins to run.
2291 case OP_Once: { /* jump */
2292 assert( pOp->p1<p->nOnceFlag );
2293 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2294 if( p->aOnceFlag[pOp->p1] ){
2295 goto jump_to_p2;
2296 }else{
2297 p->aOnceFlag[pOp->p1] = 1;
2299 break;
2302 /* Opcode: If P1 P2 P3 * *
2304 ** Jump to P2 if the value in register P1 is true. The value
2305 ** is considered true if it is numeric and non-zero. If the value
2306 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2308 /* Opcode: IfNot P1 P2 P3 * *
2310 ** Jump to P2 if the value in register P1 is False. The value
2311 ** is considered false if it has a numeric value of zero. If the value
2312 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2314 case OP_If: /* jump, in1 */
2315 case OP_IfNot: { /* jump, in1 */
2316 int c;
2317 pIn1 = &aMem[pOp->p1];
2318 if( pIn1->flags & MEM_Null ){
2319 c = pOp->p3;
2320 }else{
2321 #ifdef SQLITE_OMIT_FLOATING_POINT
2322 c = sqlite3VdbeIntValue(pIn1)!=0;
2323 #else
2324 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2325 #endif
2326 if( pOp->opcode==OP_IfNot ) c = !c;
2328 VdbeBranchTaken(c!=0, 2);
2329 if( c ){
2330 goto jump_to_p2;
2332 break;
2335 /* Opcode: IsNull P1 P2 * * *
2336 ** Synopsis: if r[P1]==NULL goto P2
2338 ** Jump to P2 if the value in register P1 is NULL.
2340 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2341 pIn1 = &aMem[pOp->p1];
2342 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2343 if( (pIn1->flags & MEM_Null)!=0 ){
2344 goto jump_to_p2;
2346 break;
2349 /* Opcode: NotNull P1 P2 * * *
2350 ** Synopsis: if r[P1]!=NULL goto P2
2352 ** Jump to P2 if the value in register P1 is not NULL.
2354 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2355 pIn1 = &aMem[pOp->p1];
2356 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2357 if( (pIn1->flags & MEM_Null)==0 ){
2358 goto jump_to_p2;
2360 break;
2363 /* Opcode: Column P1 P2 P3 P4 P5
2364 ** Synopsis: r[P3]=PX
2366 ** Interpret the data that cursor P1 points to as a structure built using
2367 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2368 ** information about the format of the data.) Extract the P2-th column
2369 ** from this record. If there are less that (P2+1)
2370 ** values in the record, extract a NULL.
2372 ** The value extracted is stored in register P3.
2374 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2375 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2376 ** the result.
2378 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2379 ** then the cache of the cursor is reset prior to extracting the column.
2380 ** The first OP_Column against a pseudo-table after the value of the content
2381 ** register has changed should have this bit set.
2383 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2384 ** the result is guaranteed to only be used as the argument of a length()
2385 ** or typeof() function, respectively. The loading of large blobs can be
2386 ** skipped for length() and all content loading can be skipped for typeof().
2388 case OP_Column: {
2389 int p2; /* column number to retrieve */
2390 VdbeCursor *pC; /* The VDBE cursor */
2391 BtCursor *pCrsr; /* The BTree cursor */
2392 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2393 int len; /* The length of the serialized data for the column */
2394 int i; /* Loop counter */
2395 Mem *pDest; /* Where to write the extracted value */
2396 Mem sMem; /* For storing the record being decoded */
2397 const u8 *zData; /* Part of the record being decoded */
2398 const u8 *zHdr; /* Next unparsed byte of the header */
2399 const u8 *zEndHdr; /* Pointer to first byte after the header */
2400 u32 offset; /* Offset into the data */
2401 u64 offset64; /* 64-bit offset */
2402 u32 avail; /* Number of bytes of available data */
2403 u32 t; /* A type code from the record header */
2404 Mem *pReg; /* PseudoTable input register */
2406 pC = p->apCsr[pOp->p1];
2407 p2 = pOp->p2;
2409 /* If the cursor cache is stale, bring it up-to-date */
2410 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2411 if( rc ) goto abort_due_to_error;
2413 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2414 pDest = &aMem[pOp->p3];
2415 memAboutToChange(p, pDest);
2416 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2417 assert( pC!=0 );
2418 assert( p2<pC->nField );
2419 aOffset = pC->aOffset;
2420 assert( pC->eCurType!=CURTYPE_VTAB );
2421 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2422 assert( pC->eCurType!=CURTYPE_SORTER );
2423 pCrsr = pC->uc.pCursor;
2425 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
2426 if( pC->nullRow ){
2427 if( pC->eCurType==CURTYPE_PSEUDO ){
2428 assert( pC->uc.pseudoTableReg>0 );
2429 pReg = &aMem[pC->uc.pseudoTableReg];
2430 assert( pReg->flags & MEM_Blob );
2431 assert( memIsValid(pReg) );
2432 pC->payloadSize = pC->szRow = avail = pReg->n;
2433 pC->aRow = (u8*)pReg->z;
2434 }else{
2435 sqlite3VdbeMemSetNull(pDest);
2436 goto op_column_out;
2438 }else{
2439 assert( pC->eCurType==CURTYPE_BTREE );
2440 assert( pCrsr );
2441 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2442 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2443 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
2444 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2445 if( pC->payloadSize <= (u32)avail ){
2446 pC->szRow = pC->payloadSize;
2447 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2448 goto too_big;
2449 }else{
2450 pC->szRow = avail;
2453 pC->cacheStatus = p->cacheCtr;
2454 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2455 pC->nHdrParsed = 0;
2456 aOffset[0] = offset;
2459 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/
2460 /* pC->aRow does not have to hold the entire row, but it does at least
2461 ** need to cover the header of the record. If pC->aRow does not contain
2462 ** the complete header, then set it to zero, forcing the header to be
2463 ** dynamically allocated. */
2464 pC->aRow = 0;
2465 pC->szRow = 0;
2467 /* Make sure a corrupt database has not given us an oversize header.
2468 ** Do this now to avoid an oversize memory allocation.
2470 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2471 ** types use so much data space that there can only be 4096 and 32 of
2472 ** them, respectively. So the maximum header length results from a
2473 ** 3-byte type for each of the maximum of 32768 columns plus three
2474 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2476 if( offset > 98307 || offset > pC->payloadSize ){
2477 rc = SQLITE_CORRUPT_BKPT;
2478 goto abort_due_to_error;
2480 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
2481 /* The following goto is an optimization. It can be omitted and
2482 ** everything will still work. But OP_Column is measurably faster
2483 ** by skipping the subsequent conditional, which is always true.
2485 zData = pC->aRow;
2486 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2487 goto op_column_read_header;
2491 /* Make sure at least the first p2+1 entries of the header have been
2492 ** parsed and valid information is in aOffset[] and pC->aType[].
2494 if( pC->nHdrParsed<=p2 ){
2495 /* If there is more header available for parsing in the record, try
2496 ** to extract additional fields up through the p2+1-th field
2498 if( pC->iHdrOffset<aOffset[0] ){
2499 /* Make sure zData points to enough of the record to cover the header. */
2500 if( pC->aRow==0 ){
2501 memset(&sMem, 0, sizeof(sMem));
2502 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2503 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2504 zData = (u8*)sMem.z;
2505 }else{
2506 zData = pC->aRow;
2509 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2510 op_column_read_header:
2511 i = pC->nHdrParsed;
2512 offset64 = aOffset[i];
2513 zHdr = zData + pC->iHdrOffset;
2514 zEndHdr = zData + aOffset[0];
2516 if( (t = zHdr[0])<0x80 ){
2517 zHdr++;
2518 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2519 }else{
2520 zHdr += sqlite3GetVarint32(zHdr, &t);
2521 offset64 += sqlite3VdbeSerialTypeLen(t);
2523 pC->aType[i++] = t;
2524 aOffset[i] = (u32)(offset64 & 0xffffffff);
2525 }while( i<=p2 && zHdr<zEndHdr );
2527 /* The record is corrupt if any of the following are true:
2528 ** (1) the bytes of the header extend past the declared header size
2529 ** (2) the entire header was used but not all data was used
2530 ** (3) the end of the data extends beyond the end of the record.
2532 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2533 || (offset64 > pC->payloadSize)
2535 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2536 rc = SQLITE_CORRUPT_BKPT;
2537 goto abort_due_to_error;
2540 pC->nHdrParsed = i;
2541 pC->iHdrOffset = (u32)(zHdr - zData);
2542 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2543 }else{
2544 t = 0;
2547 /* If after trying to extract new entries from the header, nHdrParsed is
2548 ** still not up to p2, that means that the record has fewer than p2
2549 ** columns. So the result will be either the default value or a NULL.
2551 if( pC->nHdrParsed<=p2 ){
2552 if( pOp->p4type==P4_MEM ){
2553 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2554 }else{
2555 sqlite3VdbeMemSetNull(pDest);
2557 goto op_column_out;
2559 }else{
2560 t = pC->aType[p2];
2563 /* Extract the content for the p2+1-th column. Control can only
2564 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2565 ** all valid.
2567 assert( p2<pC->nHdrParsed );
2568 assert( rc==SQLITE_OK );
2569 assert( sqlite3VdbeCheckMemInvariants(pDest) );
2570 if( VdbeMemDynamic(pDest) ){
2571 sqlite3VdbeMemSetNull(pDest);
2573 assert( t==pC->aType[p2] );
2574 if( pC->szRow>=aOffset[p2+1] ){
2575 /* This is the common case where the desired content fits on the original
2576 ** page - where the content is not on an overflow page */
2577 zData = pC->aRow + aOffset[p2];
2578 if( t<12 ){
2579 sqlite3VdbeSerialGet(zData, t, pDest);
2580 }else{
2581 /* If the column value is a string, we need a persistent value, not
2582 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2583 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2585 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2586 pDest->n = len = (t-12)/2;
2587 pDest->enc = encoding;
2588 if( pDest->szMalloc < len+2 ){
2589 pDest->flags = MEM_Null;
2590 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2591 }else{
2592 pDest->z = pDest->zMalloc;
2594 memcpy(pDest->z, zData, len);
2595 pDest->z[len] = 0;
2596 pDest->z[len+1] = 0;
2597 pDest->flags = aFlag[t&1];
2599 }else{
2600 pDest->enc = encoding;
2601 /* This branch happens only when content is on overflow pages */
2602 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2603 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2604 || (len = sqlite3VdbeSerialTypeLen(t))==0
2606 /* Content is irrelevant for
2607 ** 1. the typeof() function,
2608 ** 2. the length(X) function if X is a blob, and
2609 ** 3. if the content length is zero.
2610 ** So we might as well use bogus content rather than reading
2611 ** content from disk. */
2612 static u8 aZero[8]; /* This is the bogus content */
2613 sqlite3VdbeSerialGet(aZero, t, pDest);
2614 }else{
2615 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2616 pDest);
2617 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2618 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2619 pDest->flags &= ~MEM_Ephem;
2623 op_column_out:
2624 UPDATE_MAX_BLOBSIZE(pDest);
2625 REGISTER_TRACE(pOp->p3, pDest);
2626 break;
2629 /* Opcode: Affinity P1 P2 * P4 *
2630 ** Synopsis: affinity(r[P1@P2])
2632 ** Apply affinities to a range of P2 registers starting with P1.
2634 ** P4 is a string that is P2 characters long. The nth character of the
2635 ** string indicates the column affinity that should be used for the nth
2636 ** memory cell in the range.
2638 case OP_Affinity: {
2639 const char *zAffinity; /* The affinity to be applied */
2640 char cAff; /* A single character of affinity */
2642 zAffinity = pOp->p4.z;
2643 assert( zAffinity!=0 );
2644 assert( zAffinity[pOp->p2]==0 );
2645 pIn1 = &aMem[pOp->p1];
2646 while( (cAff = *(zAffinity++))!=0 ){
2647 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
2648 assert( memIsValid(pIn1) );
2649 applyAffinity(pIn1, cAff, encoding);
2650 pIn1++;
2652 break;
2655 /* Opcode: MakeRecord P1 P2 P3 P4 *
2656 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2658 ** Convert P2 registers beginning with P1 into the [record format]
2659 ** use as a data record in a database table or as a key
2660 ** in an index. The OP_Column opcode can decode the record later.
2662 ** P4 may be a string that is P2 characters long. The nth character of the
2663 ** string indicates the column affinity that should be used for the nth
2664 ** field of the index key.
2666 ** The mapping from character to affinity is given by the SQLITE_AFF_
2667 ** macros defined in sqliteInt.h.
2669 ** If P4 is NULL then all index fields have the affinity BLOB.
2671 case OP_MakeRecord: {
2672 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2673 Mem *pRec; /* The new record */
2674 u64 nData; /* Number of bytes of data space */
2675 int nHdr; /* Number of bytes of header space */
2676 i64 nByte; /* Data space required for this record */
2677 i64 nZero; /* Number of zero bytes at the end of the record */
2678 int nVarint; /* Number of bytes in a varint */
2679 u32 serial_type; /* Type field */
2680 Mem *pData0; /* First field to be combined into the record */
2681 Mem *pLast; /* Last field of the record */
2682 int nField; /* Number of fields in the record */
2683 char *zAffinity; /* The affinity string for the record */
2684 int file_format; /* File format to use for encoding */
2685 int i; /* Space used in zNewRecord[] header */
2686 int j; /* Space used in zNewRecord[] content */
2687 u32 len; /* Length of a field */
2689 /* Assuming the record contains N fields, the record format looks
2690 ** like this:
2692 ** ------------------------------------------------------------------------
2693 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2694 ** ------------------------------------------------------------------------
2696 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2697 ** and so forth.
2699 ** Each type field is a varint representing the serial type of the
2700 ** corresponding data element (see sqlite3VdbeSerialType()). The
2701 ** hdr-size field is also a varint which is the offset from the beginning
2702 ** of the record to data0.
2704 nData = 0; /* Number of bytes of data space */
2705 nHdr = 0; /* Number of bytes of header space */
2706 nZero = 0; /* Number of zero bytes at the end of the record */
2707 nField = pOp->p1;
2708 zAffinity = pOp->p4.z;
2709 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
2710 pData0 = &aMem[nField];
2711 nField = pOp->p2;
2712 pLast = &pData0[nField-1];
2713 file_format = p->minWriteFileFormat;
2715 /* Identify the output register */
2716 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2717 pOut = &aMem[pOp->p3];
2718 memAboutToChange(p, pOut);
2720 /* Apply the requested affinity to all inputs
2722 assert( pData0<=pLast );
2723 if( zAffinity ){
2724 pRec = pData0;
2726 applyAffinity(pRec++, *(zAffinity++), encoding);
2727 assert( zAffinity[0]==0 || pRec<=pLast );
2728 }while( zAffinity[0] );
2731 /* Loop through the elements that will make up the record to figure
2732 ** out how much space is required for the new record.
2734 pRec = pLast;
2736 assert( memIsValid(pRec) );
2737 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2738 if( pRec->flags & MEM_Zero ){
2739 if( nData ){
2740 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2741 }else{
2742 nZero += pRec->u.nZero;
2743 len -= pRec->u.nZero;
2746 nData += len;
2747 testcase( serial_type==127 );
2748 testcase( serial_type==128 );
2749 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2750 if( pRec==pData0 ) break;
2751 pRec--;
2752 }while(1);
2754 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2755 ** which determines the total number of bytes in the header. The varint
2756 ** value is the size of the header in bytes including the size varint
2757 ** itself. */
2758 testcase( nHdr==126 );
2759 testcase( nHdr==127 );
2760 if( nHdr<=126 ){
2761 /* The common case */
2762 nHdr += 1;
2763 }else{
2764 /* Rare case of a really large header */
2765 nVarint = sqlite3VarintLen(nHdr);
2766 nHdr += nVarint;
2767 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2769 nByte = nHdr+nData;
2770 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2771 goto too_big;
2774 /* Make sure the output register has a buffer large enough to store
2775 ** the new record. The output register (pOp->p3) is not allowed to
2776 ** be one of the input registers (because the following call to
2777 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2779 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2780 goto no_mem;
2782 zNewRecord = (u8 *)pOut->z;
2784 /* Write the record */
2785 i = putVarint32(zNewRecord, nHdr);
2786 j = nHdr;
2787 assert( pData0<=pLast );
2788 pRec = pData0;
2790 serial_type = pRec->uTemp;
2791 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2792 ** additional varints, one per column. */
2793 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2794 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2795 ** immediately follow the header. */
2796 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2797 }while( (++pRec)<=pLast );
2798 assert( i==nHdr );
2799 assert( j==nByte );
2801 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2802 pOut->n = (int)nByte;
2803 pOut->flags = MEM_Blob;
2804 if( nZero ){
2805 pOut->u.nZero = nZero;
2806 pOut->flags |= MEM_Zero;
2808 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2809 REGISTER_TRACE(pOp->p3, pOut);
2810 UPDATE_MAX_BLOBSIZE(pOut);
2811 break;
2814 /* Opcode: Count P1 P2 * * *
2815 ** Synopsis: r[P2]=count()
2817 ** Store the number of entries (an integer value) in the table or index
2818 ** opened by cursor P1 in register P2
2820 #ifndef SQLITE_OMIT_BTREECOUNT
2821 case OP_Count: { /* out2 */
2822 i64 nEntry;
2823 BtCursor *pCrsr;
2825 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2826 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2827 assert( pCrsr );
2828 nEntry = 0; /* Not needed. Only used to silence a warning. */
2829 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2830 if( rc ) goto abort_due_to_error;
2831 pOut = out2Prerelease(p, pOp);
2832 pOut->u.i = nEntry;
2833 break;
2835 #endif
2837 /* Opcode: Savepoint P1 * * P4 *
2839 ** Open, release or rollback the savepoint named by parameter P4, depending
2840 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2841 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2843 case OP_Savepoint: {
2844 int p1; /* Value of P1 operand */
2845 char *zName; /* Name of savepoint */
2846 int nName;
2847 Savepoint *pNew;
2848 Savepoint *pSavepoint;
2849 Savepoint *pTmp;
2850 int iSavepoint;
2851 int ii;
2853 p1 = pOp->p1;
2854 zName = pOp->p4.z;
2856 /* Assert that the p1 parameter is valid. Also that if there is no open
2857 ** transaction, then there cannot be any savepoints.
2859 assert( db->pSavepoint==0 || db->autoCommit==0 );
2860 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2861 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2862 assert( checkSavepointCount(db) );
2863 assert( p->bIsReader );
2865 if( p1==SAVEPOINT_BEGIN ){
2866 if( db->nVdbeWrite>0 ){
2867 /* A new savepoint cannot be created if there are active write
2868 ** statements (i.e. open read/write incremental blob handles).
2870 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2871 rc = SQLITE_BUSY;
2872 }else{
2873 nName = sqlite3Strlen30(zName);
2875 #ifndef SQLITE_OMIT_VIRTUALTABLE
2876 /* This call is Ok even if this savepoint is actually a transaction
2877 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2878 ** If this is a transaction savepoint being opened, it is guaranteed
2879 ** that the db->aVTrans[] array is empty. */
2880 assert( db->autoCommit==0 || db->nVTrans==0 );
2881 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2882 db->nStatement+db->nSavepoint);
2883 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2884 #endif
2886 /* Create a new savepoint structure. */
2887 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
2888 if( pNew ){
2889 pNew->zName = (char *)&pNew[1];
2890 memcpy(pNew->zName, zName, nName+1);
2892 /* If there is no open transaction, then mark this as a special
2893 ** "transaction savepoint". */
2894 if( db->autoCommit ){
2895 db->autoCommit = 0;
2896 db->isTransactionSavepoint = 1;
2897 }else{
2898 db->nSavepoint++;
2901 /* Link the new savepoint into the database handle's list. */
2902 pNew->pNext = db->pSavepoint;
2903 db->pSavepoint = pNew;
2904 pNew->nDeferredCons = db->nDeferredCons;
2905 pNew->nDeferredImmCons = db->nDeferredImmCons;
2908 }else{
2909 iSavepoint = 0;
2911 /* Find the named savepoint. If there is no such savepoint, then an
2912 ** an error is returned to the user. */
2913 for(
2914 pSavepoint = db->pSavepoint;
2915 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2916 pSavepoint = pSavepoint->pNext
2918 iSavepoint++;
2920 if( !pSavepoint ){
2921 sqlite3VdbeError(p, "no such savepoint: %s", zName);
2922 rc = SQLITE_ERROR;
2923 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2924 /* It is not possible to release (commit) a savepoint if there are
2925 ** active write statements.
2927 sqlite3VdbeError(p, "cannot release savepoint - "
2928 "SQL statements in progress");
2929 rc = SQLITE_BUSY;
2930 }else{
2932 /* Determine whether or not this is a transaction savepoint. If so,
2933 ** and this is a RELEASE command, then the current transaction
2934 ** is committed.
2936 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2937 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2938 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2939 goto vdbe_return;
2941 db->autoCommit = 1;
2942 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2943 p->pc = (int)(pOp - aOp);
2944 db->autoCommit = 0;
2945 p->rc = rc = SQLITE_BUSY;
2946 goto vdbe_return;
2948 db->isTransactionSavepoint = 0;
2949 rc = p->rc;
2950 }else{
2951 int isSchemaChange;
2952 iSavepoint = db->nSavepoint - iSavepoint - 1;
2953 if( p1==SAVEPOINT_ROLLBACK ){
2954 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2955 for(ii=0; ii<db->nDb; ii++){
2956 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2957 SQLITE_ABORT_ROLLBACK,
2958 isSchemaChange==0);
2959 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2961 }else{
2962 isSchemaChange = 0;
2964 for(ii=0; ii<db->nDb; ii++){
2965 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2966 if( rc!=SQLITE_OK ){
2967 goto abort_due_to_error;
2970 if( isSchemaChange ){
2971 sqlite3ExpirePreparedStatements(db);
2972 sqlite3ResetAllSchemasOfConnection(db);
2973 db->flags = (db->flags | SQLITE_InternChanges);
2977 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2978 ** savepoints nested inside of the savepoint being operated on. */
2979 while( db->pSavepoint!=pSavepoint ){
2980 pTmp = db->pSavepoint;
2981 db->pSavepoint = pTmp->pNext;
2982 sqlite3DbFree(db, pTmp);
2983 db->nSavepoint--;
2986 /* If it is a RELEASE, then destroy the savepoint being operated on
2987 ** too. If it is a ROLLBACK TO, then set the number of deferred
2988 ** constraint violations present in the database to the value stored
2989 ** when the savepoint was created. */
2990 if( p1==SAVEPOINT_RELEASE ){
2991 assert( pSavepoint==db->pSavepoint );
2992 db->pSavepoint = pSavepoint->pNext;
2993 sqlite3DbFree(db, pSavepoint);
2994 if( !isTransaction ){
2995 db->nSavepoint--;
2997 }else{
2998 db->nDeferredCons = pSavepoint->nDeferredCons;
2999 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3002 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3003 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3004 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3008 if( rc ) goto abort_due_to_error;
3010 break;
3013 /* Opcode: AutoCommit P1 P2 * * *
3015 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3016 ** back any currently active btree transactions. If there are any active
3017 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3018 ** there are active writing VMs or active VMs that use shared cache.
3020 ** This instruction causes the VM to halt.
3022 case OP_AutoCommit: {
3023 int desiredAutoCommit;
3024 int iRollback;
3026 desiredAutoCommit = pOp->p1;
3027 iRollback = pOp->p2;
3028 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3029 assert( desiredAutoCommit==1 || iRollback==0 );
3030 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3031 assert( p->bIsReader );
3033 if( desiredAutoCommit!=db->autoCommit ){
3034 if( iRollback ){
3035 assert( desiredAutoCommit==1 );
3036 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3037 db->autoCommit = 1;
3038 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3039 /* If this instruction implements a COMMIT and other VMs are writing
3040 ** return an error indicating that the other VMs must complete first.
3042 sqlite3VdbeError(p, "cannot commit transaction - "
3043 "SQL statements in progress");
3044 rc = SQLITE_BUSY;
3045 goto abort_due_to_error;
3046 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3047 goto vdbe_return;
3048 }else{
3049 db->autoCommit = (u8)desiredAutoCommit;
3051 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3052 p->pc = (int)(pOp - aOp);
3053 db->autoCommit = (u8)(1-desiredAutoCommit);
3054 p->rc = rc = SQLITE_BUSY;
3055 goto vdbe_return;
3057 assert( db->nStatement==0 );
3058 sqlite3CloseSavepoints(db);
3059 if( p->rc==SQLITE_OK ){
3060 rc = SQLITE_DONE;
3061 }else{
3062 rc = SQLITE_ERROR;
3064 goto vdbe_return;
3065 }else{
3066 sqlite3VdbeError(p,
3067 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3068 (iRollback)?"cannot rollback - no transaction is active":
3069 "cannot commit - no transaction is active"));
3071 rc = SQLITE_ERROR;
3072 goto abort_due_to_error;
3074 break;
3077 /* Opcode: Transaction P1 P2 P3 P4 P5
3079 ** Begin a transaction on database P1 if a transaction is not already
3080 ** active.
3081 ** If P2 is non-zero, then a write-transaction is started, or if a
3082 ** read-transaction is already active, it is upgraded to a write-transaction.
3083 ** If P2 is zero, then a read-transaction is started.
3085 ** P1 is the index of the database file on which the transaction is
3086 ** started. Index 0 is the main database file and index 1 is the
3087 ** file used for temporary tables. Indices of 2 or more are used for
3088 ** attached databases.
3090 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3091 ** true (this flag is set if the Vdbe may modify more than one row and may
3092 ** throw an ABORT exception), a statement transaction may also be opened.
3093 ** More specifically, a statement transaction is opened iff the database
3094 ** connection is currently not in autocommit mode, or if there are other
3095 ** active statements. A statement transaction allows the changes made by this
3096 ** VDBE to be rolled back after an error without having to roll back the
3097 ** entire transaction. If no error is encountered, the statement transaction
3098 ** will automatically commit when the VDBE halts.
3100 ** If P5!=0 then this opcode also checks the schema cookie against P3
3101 ** and the schema generation counter against P4.
3102 ** The cookie changes its value whenever the database schema changes.
3103 ** This operation is used to detect when that the cookie has changed
3104 ** and that the current process needs to reread the schema. If the schema
3105 ** cookie in P3 differs from the schema cookie in the database header or
3106 ** if the schema generation counter in P4 differs from the current
3107 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3108 ** halts. The sqlite3_step() wrapper function might then reprepare the
3109 ** statement and rerun it from the beginning.
3111 case OP_Transaction: {
3112 Btree *pBt;
3113 int iMeta;
3114 int iGen;
3116 assert( p->bIsReader );
3117 assert( p->readOnly==0 || pOp->p2==0 );
3118 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3119 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3120 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3121 rc = SQLITE_READONLY;
3122 goto abort_due_to_error;
3124 pBt = db->aDb[pOp->p1].pBt;
3126 if( pBt ){
3127 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3128 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3129 testcase( rc==SQLITE_BUSY_RECOVERY );
3130 if( (rc&0xff)==SQLITE_BUSY ){
3131 p->pc = (int)(pOp - aOp);
3132 p->rc = rc;
3133 goto vdbe_return;
3135 if( rc!=SQLITE_OK ){
3136 goto abort_due_to_error;
3139 if( pOp->p2 && p->usesStmtJournal
3140 && (db->autoCommit==0 || db->nVdbeRead>1)
3142 assert( sqlite3BtreeIsInTrans(pBt) );
3143 if( p->iStatement==0 ){
3144 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3145 db->nStatement++;
3146 p->iStatement = db->nSavepoint + db->nStatement;
3149 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3150 if( rc==SQLITE_OK ){
3151 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3154 /* Store the current value of the database handles deferred constraint
3155 ** counter. If the statement transaction needs to be rolled back,
3156 ** the value of this counter needs to be restored too. */
3157 p->nStmtDefCons = db->nDeferredCons;
3158 p->nStmtDefImmCons = db->nDeferredImmCons;
3161 /* Gather the schema version number for checking:
3162 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3163 ** each time a query is executed to ensure that the internal cache of the
3164 ** schema used when compiling the SQL query matches the schema of the
3165 ** database against which the compiled query is actually executed.
3167 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3168 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3169 }else{
3170 iGen = iMeta = 0;
3172 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3173 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3174 sqlite3DbFree(db, p->zErrMsg);
3175 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3176 /* If the schema-cookie from the database file matches the cookie
3177 ** stored with the in-memory representation of the schema, do
3178 ** not reload the schema from the database file.
3180 ** If virtual-tables are in use, this is not just an optimization.
3181 ** Often, v-tables store their data in other SQLite tables, which
3182 ** are queried from within xNext() and other v-table methods using
3183 ** prepared queries. If such a query is out-of-date, we do not want to
3184 ** discard the database schema, as the user code implementing the
3185 ** v-table would have to be ready for the sqlite3_vtab structure itself
3186 ** to be invalidated whenever sqlite3_step() is called from within
3187 ** a v-table method.
3189 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3190 sqlite3ResetOneSchema(db, pOp->p1);
3192 p->expired = 1;
3193 rc = SQLITE_SCHEMA;
3195 if( rc ) goto abort_due_to_error;
3196 break;
3199 /* Opcode: ReadCookie P1 P2 P3 * *
3201 ** Read cookie number P3 from database P1 and write it into register P2.
3202 ** P3==1 is the schema version. P3==2 is the database format.
3203 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3204 ** the main database file and P1==1 is the database file used to store
3205 ** temporary tables.
3207 ** There must be a read-lock on the database (either a transaction
3208 ** must be started or there must be an open cursor) before
3209 ** executing this instruction.
3211 case OP_ReadCookie: { /* out2 */
3212 int iMeta;
3213 int iDb;
3214 int iCookie;
3216 assert( p->bIsReader );
3217 iDb = pOp->p1;
3218 iCookie = pOp->p3;
3219 assert( pOp->p3<SQLITE_N_BTREE_META );
3220 assert( iDb>=0 && iDb<db->nDb );
3221 assert( db->aDb[iDb].pBt!=0 );
3222 assert( DbMaskTest(p->btreeMask, iDb) );
3224 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3225 pOut = out2Prerelease(p, pOp);
3226 pOut->u.i = iMeta;
3227 break;
3230 /* Opcode: SetCookie P1 P2 P3 * *
3232 ** Write the integer value P3 into cookie number P2 of database P1.
3233 ** P2==1 is the schema version. P2==2 is the database format.
3234 ** P2==3 is the recommended pager cache
3235 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3236 ** database file used to store temporary tables.
3238 ** A transaction must be started before executing this opcode.
3240 case OP_SetCookie: {
3241 Db *pDb;
3242 assert( pOp->p2<SQLITE_N_BTREE_META );
3243 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3244 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3245 assert( p->readOnly==0 );
3246 pDb = &db->aDb[pOp->p1];
3247 assert( pDb->pBt!=0 );
3248 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3249 /* See note about index shifting on OP_ReadCookie */
3250 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
3251 if( pOp->p2==BTREE_SCHEMA_VERSION ){
3252 /* When the schema cookie changes, record the new cookie internally */
3253 pDb->pSchema->schema_cookie = pOp->p3;
3254 db->flags |= SQLITE_InternChanges;
3255 }else if( pOp->p2==BTREE_FILE_FORMAT ){
3256 /* Record changes in the file format */
3257 pDb->pSchema->file_format = pOp->p3;
3259 if( pOp->p1==1 ){
3260 /* Invalidate all prepared statements whenever the TEMP database
3261 ** schema is changed. Ticket #1644 */
3262 sqlite3ExpirePreparedStatements(db);
3263 p->expired = 0;
3265 if( rc ) goto abort_due_to_error;
3266 break;
3269 /* Opcode: OpenRead P1 P2 P3 P4 P5
3270 ** Synopsis: root=P2 iDb=P3
3272 ** Open a read-only cursor for the database table whose root page is
3273 ** P2 in a database file. The database file is determined by P3.
3274 ** P3==0 means the main database, P3==1 means the database used for
3275 ** temporary tables, and P3>1 means used the corresponding attached
3276 ** database. Give the new cursor an identifier of P1. The P1
3277 ** values need not be contiguous but all P1 values should be small integers.
3278 ** It is an error for P1 to be negative.
3280 ** If P5!=0 then use the content of register P2 as the root page, not
3281 ** the value of P2 itself.
3283 ** There will be a read lock on the database whenever there is an
3284 ** open cursor. If the database was unlocked prior to this instruction
3285 ** then a read lock is acquired as part of this instruction. A read
3286 ** lock allows other processes to read the database but prohibits
3287 ** any other process from modifying the database. The read lock is
3288 ** released when all cursors are closed. If this instruction attempts
3289 ** to get a read lock but fails, the script terminates with an
3290 ** SQLITE_BUSY error code.
3292 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3293 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3294 ** structure, then said structure defines the content and collating
3295 ** sequence of the index being opened. Otherwise, if P4 is an integer
3296 ** value, it is set to the number of columns in the table.
3298 ** See also: OpenWrite, ReopenIdx
3300 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3301 ** Synopsis: root=P2 iDb=P3
3303 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3304 ** checks to see if the cursor on P1 is already open with a root page
3305 ** number of P2 and if it is this opcode becomes a no-op. In other words,
3306 ** if the cursor is already open, do not reopen it.
3308 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3309 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3310 ** every other ReopenIdx or OpenRead for the same cursor number.
3312 ** See the OpenRead opcode documentation for additional information.
3314 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3315 ** Synopsis: root=P2 iDb=P3
3317 ** Open a read/write cursor named P1 on the table or index whose root
3318 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3319 ** root page.
3321 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3322 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3323 ** structure, then said structure defines the content and collating
3324 ** sequence of the index being opened. Otherwise, if P4 is an integer
3325 ** value, it is set to the number of columns in the table, or to the
3326 ** largest index of any column of the table that is actually used.
3328 ** This instruction works just like OpenRead except that it opens the cursor
3329 ** in read/write mode. For a given table, there can be one or more read-only
3330 ** cursors or a single read/write cursor but not both.
3332 ** See also OpenRead.
3334 case OP_ReopenIdx: {
3335 int nField;
3336 KeyInfo *pKeyInfo;
3337 int p2;
3338 int iDb;
3339 int wrFlag;
3340 Btree *pX;
3341 VdbeCursor *pCur;
3342 Db *pDb;
3344 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3345 assert( pOp->p4type==P4_KEYINFO );
3346 pCur = p->apCsr[pOp->p1];
3347 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3348 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3349 goto open_cursor_set_hints;
3351 /* If the cursor is not currently open or is open on a different
3352 ** index, then fall through into OP_OpenRead to force a reopen */
3353 case OP_OpenRead:
3354 case OP_OpenWrite:
3356 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3357 assert( p->bIsReader );
3358 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3359 || p->readOnly==0 );
3361 if( p->expired ){
3362 rc = SQLITE_ABORT_ROLLBACK;
3363 goto abort_due_to_error;
3366 nField = 0;
3367 pKeyInfo = 0;
3368 p2 = pOp->p2;
3369 iDb = pOp->p3;
3370 assert( iDb>=0 && iDb<db->nDb );
3371 assert( DbMaskTest(p->btreeMask, iDb) );
3372 pDb = &db->aDb[iDb];
3373 pX = pDb->pBt;
3374 assert( pX!=0 );
3375 if( pOp->opcode==OP_OpenWrite ){
3376 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3377 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3378 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3379 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3380 p->minWriteFileFormat = pDb->pSchema->file_format;
3382 }else{
3383 wrFlag = 0;
3385 if( pOp->p5 & OPFLAG_P2ISREG ){
3386 assert( p2>0 );
3387 assert( p2<=(p->nMem+1 - p->nCursor) );
3388 pIn2 = &aMem[p2];
3389 assert( memIsValid(pIn2) );
3390 assert( (pIn2->flags & MEM_Int)!=0 );
3391 sqlite3VdbeMemIntegerify(pIn2);
3392 p2 = (int)pIn2->u.i;
3393 /* The p2 value always comes from a prior OP_CreateTable opcode and
3394 ** that opcode will always set the p2 value to 2 or more or else fail.
3395 ** If there were a failure, the prepared statement would have halted
3396 ** before reaching this instruction. */
3397 assert( p2>=2 );
3399 if( pOp->p4type==P4_KEYINFO ){
3400 pKeyInfo = pOp->p4.pKeyInfo;
3401 assert( pKeyInfo->enc==ENC(db) );
3402 assert( pKeyInfo->db==db );
3403 nField = pKeyInfo->nField+pKeyInfo->nXField;
3404 }else if( pOp->p4type==P4_INT32 ){
3405 nField = pOp->p4.i;
3407 assert( pOp->p1>=0 );
3408 assert( nField>=0 );
3409 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3410 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3411 if( pCur==0 ) goto no_mem;
3412 pCur->nullRow = 1;
3413 pCur->isOrdered = 1;
3414 pCur->pgnoRoot = p2;
3415 #ifdef SQLITE_DEBUG
3416 pCur->wrFlag = wrFlag;
3417 #endif
3418 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3419 pCur->pKeyInfo = pKeyInfo;
3420 /* Set the VdbeCursor.isTable variable. Previous versions of
3421 ** SQLite used to check if the root-page flags were sane at this point
3422 ** and report database corruption if they were not, but this check has
3423 ** since moved into the btree layer. */
3424 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3426 open_cursor_set_hints:
3427 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3428 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3429 testcase( pOp->p5 & OPFLAG_BULKCSR );
3430 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3431 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3432 #endif
3433 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3434 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3435 if( rc ) goto abort_due_to_error;
3436 break;
3439 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3440 ** Synopsis: nColumn=P2
3442 ** Open a new cursor P1 to a transient table.
3443 ** The cursor is always opened read/write even if
3444 ** the main database is read-only. The ephemeral
3445 ** table is deleted automatically when the cursor is closed.
3447 ** P2 is the number of columns in the ephemeral table.
3448 ** The cursor points to a BTree table if P4==0 and to a BTree index
3449 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3450 ** that defines the format of keys in the index.
3452 ** The P5 parameter can be a mask of the BTREE_* flags defined
3453 ** in btree.h. These flags control aspects of the operation of
3454 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3455 ** added automatically.
3457 /* Opcode: OpenAutoindex P1 P2 * P4 *
3458 ** Synopsis: nColumn=P2
3460 ** This opcode works the same as OP_OpenEphemeral. It has a
3461 ** different name to distinguish its use. Tables created using
3462 ** by this opcode will be used for automatically created transient
3463 ** indices in joins.
3465 case OP_OpenAutoindex:
3466 case OP_OpenEphemeral: {
3467 VdbeCursor *pCx;
3468 KeyInfo *pKeyInfo;
3470 static const int vfsFlags =
3471 SQLITE_OPEN_READWRITE |
3472 SQLITE_OPEN_CREATE |
3473 SQLITE_OPEN_EXCLUSIVE |
3474 SQLITE_OPEN_DELETEONCLOSE |
3475 SQLITE_OPEN_TRANSIENT_DB;
3476 assert( pOp->p1>=0 );
3477 assert( pOp->p2>=0 );
3478 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3479 if( pCx==0 ) goto no_mem;
3480 pCx->nullRow = 1;
3481 pCx->isEphemeral = 1;
3482 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3483 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3484 if( rc==SQLITE_OK ){
3485 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3487 if( rc==SQLITE_OK ){
3488 /* If a transient index is required, create it by calling
3489 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3490 ** opening it. If a transient table is required, just use the
3491 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3493 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3494 int pgno;
3495 assert( pOp->p4type==P4_KEYINFO );
3496 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3497 if( rc==SQLITE_OK ){
3498 assert( pgno==MASTER_ROOT+1 );
3499 assert( pKeyInfo->db==db );
3500 assert( pKeyInfo->enc==ENC(db) );
3501 pCx->pKeyInfo = pKeyInfo;
3502 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3503 pKeyInfo, pCx->uc.pCursor);
3505 pCx->isTable = 0;
3506 }else{
3507 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3508 0, pCx->uc.pCursor);
3509 pCx->isTable = 1;
3512 if( rc ) goto abort_due_to_error;
3513 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3514 break;
3517 /* Opcode: SorterOpen P1 P2 P3 P4 *
3519 ** This opcode works like OP_OpenEphemeral except that it opens
3520 ** a transient index that is specifically designed to sort large
3521 ** tables using an external merge-sort algorithm.
3523 ** If argument P3 is non-zero, then it indicates that the sorter may
3524 ** assume that a stable sort considering the first P3 fields of each
3525 ** key is sufficient to produce the required results.
3527 case OP_SorterOpen: {
3528 VdbeCursor *pCx;
3530 assert( pOp->p1>=0 );
3531 assert( pOp->p2>=0 );
3532 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3533 if( pCx==0 ) goto no_mem;
3534 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3535 assert( pCx->pKeyInfo->db==db );
3536 assert( pCx->pKeyInfo->enc==ENC(db) );
3537 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3538 if( rc ) goto abort_due_to_error;
3539 break;
3542 /* Opcode: SequenceTest P1 P2 * * *
3543 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3545 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3546 ** to P2. Regardless of whether or not the jump is taken, increment the
3547 ** the sequence value.
3549 case OP_SequenceTest: {
3550 VdbeCursor *pC;
3551 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3552 pC = p->apCsr[pOp->p1];
3553 assert( isSorter(pC) );
3554 if( (pC->seqCount++)==0 ){
3555 goto jump_to_p2;
3557 break;
3560 /* Opcode: OpenPseudo P1 P2 P3 * *
3561 ** Synopsis: P3 columns in r[P2]
3563 ** Open a new cursor that points to a fake table that contains a single
3564 ** row of data. The content of that one row is the content of memory
3565 ** register P2. In other words, cursor P1 becomes an alias for the
3566 ** MEM_Blob content contained in register P2.
3568 ** A pseudo-table created by this opcode is used to hold a single
3569 ** row output from the sorter so that the row can be decomposed into
3570 ** individual columns using the OP_Column opcode. The OP_Column opcode
3571 ** is the only cursor opcode that works with a pseudo-table.
3573 ** P3 is the number of fields in the records that will be stored by
3574 ** the pseudo-table.
3576 case OP_OpenPseudo: {
3577 VdbeCursor *pCx;
3579 assert( pOp->p1>=0 );
3580 assert( pOp->p3>=0 );
3581 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3582 if( pCx==0 ) goto no_mem;
3583 pCx->nullRow = 1;
3584 pCx->uc.pseudoTableReg = pOp->p2;
3585 pCx->isTable = 1;
3586 assert( pOp->p5==0 );
3587 break;
3590 /* Opcode: Close P1 * * * *
3592 ** Close a cursor previously opened as P1. If P1 is not
3593 ** currently open, this instruction is a no-op.
3595 case OP_Close: {
3596 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3597 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3598 p->apCsr[pOp->p1] = 0;
3599 break;
3602 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3603 /* Opcode: ColumnsUsed P1 * * P4 *
3605 ** This opcode (which only exists if SQLite was compiled with
3606 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3607 ** table or index for cursor P1 are used. P4 is a 64-bit integer
3608 ** (P4_INT64) in which the first 63 bits are one for each of the
3609 ** first 63 columns of the table or index that are actually used
3610 ** by the cursor. The high-order bit is set if any column after
3611 ** the 64th is used.
3613 case OP_ColumnsUsed: {
3614 VdbeCursor *pC;
3615 pC = p->apCsr[pOp->p1];
3616 assert( pC->eCurType==CURTYPE_BTREE );
3617 pC->maskUsed = *(u64*)pOp->p4.pI64;
3618 break;
3620 #endif
3622 /* Opcode: SeekGE P1 P2 P3 P4 *
3623 ** Synopsis: key=r[P3@P4]
3625 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3626 ** use the value in register P3 as the key. If cursor P1 refers
3627 ** to an SQL index, then P3 is the first in an array of P4 registers
3628 ** that are used as an unpacked index key.
3630 ** Reposition cursor P1 so that it points to the smallest entry that
3631 ** is greater than or equal to the key value. If there are no records
3632 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3634 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3635 ** opcode will always land on a record that equally equals the key, or
3636 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3637 ** opcode must be followed by an IdxLE opcode with the same arguments.
3638 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3639 ** IdxLE opcode will be used on subsequent loop iterations.
3641 ** This opcode leaves the cursor configured to move in forward order,
3642 ** from the beginning toward the end. In other words, the cursor is
3643 ** configured to use Next, not Prev.
3645 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3647 /* Opcode: SeekGT P1 P2 P3 P4 *
3648 ** Synopsis: key=r[P3@P4]
3650 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3651 ** use the value in register P3 as a key. If cursor P1 refers
3652 ** to an SQL index, then P3 is the first in an array of P4 registers
3653 ** that are used as an unpacked index key.
3655 ** Reposition cursor P1 so that it points to the smallest entry that
3656 ** is greater than the key value. If there are no records greater than
3657 ** the key and P2 is not zero, then jump to P2.
3659 ** This opcode leaves the cursor configured to move in forward order,
3660 ** from the beginning toward the end. In other words, the cursor is
3661 ** configured to use Next, not Prev.
3663 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3665 /* Opcode: SeekLT P1 P2 P3 P4 *
3666 ** Synopsis: key=r[P3@P4]
3668 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3669 ** use the value in register P3 as a key. If cursor P1 refers
3670 ** to an SQL index, then P3 is the first in an array of P4 registers
3671 ** that are used as an unpacked index key.
3673 ** Reposition cursor P1 so that it points to the largest entry that
3674 ** is less than the key value. If there are no records less than
3675 ** the key and P2 is not zero, then jump to P2.
3677 ** This opcode leaves the cursor configured to move in reverse order,
3678 ** from the end toward the beginning. In other words, the cursor is
3679 ** configured to use Prev, not Next.
3681 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3683 /* Opcode: SeekLE P1 P2 P3 P4 *
3684 ** Synopsis: key=r[P3@P4]
3686 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3687 ** use the value in register P3 as a key. If cursor P1 refers
3688 ** to an SQL index, then P3 is the first in an array of P4 registers
3689 ** that are used as an unpacked index key.
3691 ** Reposition cursor P1 so that it points to the largest entry that
3692 ** is less than or equal to the key value. If there are no records
3693 ** less than or equal to the key and P2 is not zero, then jump to P2.
3695 ** This opcode leaves the cursor configured to move in reverse order,
3696 ** from the end toward the beginning. In other words, the cursor is
3697 ** configured to use Prev, not Next.
3699 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3700 ** opcode will always land on a record that equally equals the key, or
3701 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3702 ** opcode must be followed by an IdxGE opcode with the same arguments.
3703 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3704 ** IdxGE opcode will be used on subsequent loop iterations.
3706 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3708 case OP_SeekLT: /* jump, in3 */
3709 case OP_SeekLE: /* jump, in3 */
3710 case OP_SeekGE: /* jump, in3 */
3711 case OP_SeekGT: { /* jump, in3 */
3712 int res; /* Comparison result */
3713 int oc; /* Opcode */
3714 VdbeCursor *pC; /* The cursor to seek */
3715 UnpackedRecord r; /* The key to seek for */
3716 int nField; /* Number of columns or fields in the key */
3717 i64 iKey; /* The rowid we are to seek to */
3718 int eqOnly; /* Only interested in == results */
3720 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3721 assert( pOp->p2!=0 );
3722 pC = p->apCsr[pOp->p1];
3723 assert( pC!=0 );
3724 assert( pC->eCurType==CURTYPE_BTREE );
3725 assert( OP_SeekLE == OP_SeekLT+1 );
3726 assert( OP_SeekGE == OP_SeekLT+2 );
3727 assert( OP_SeekGT == OP_SeekLT+3 );
3728 assert( pC->isOrdered );
3729 assert( pC->uc.pCursor!=0 );
3730 oc = pOp->opcode;
3731 eqOnly = 0;
3732 pC->nullRow = 0;
3733 #ifdef SQLITE_DEBUG
3734 pC->seekOp = pOp->opcode;
3735 #endif
3737 if( pC->isTable ){
3738 /* The BTREE_SEEK_EQ flag is only set on index cursors */
3739 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
3741 /* The input value in P3 might be of any type: integer, real, string,
3742 ** blob, or NULL. But it needs to be an integer before we can do
3743 ** the seek, so convert it. */
3744 pIn3 = &aMem[pOp->p3];
3745 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3746 applyNumericAffinity(pIn3, 0);
3748 iKey = sqlite3VdbeIntValue(pIn3);
3750 /* If the P3 value could not be converted into an integer without
3751 ** loss of information, then special processing is required... */
3752 if( (pIn3->flags & MEM_Int)==0 ){
3753 if( (pIn3->flags & MEM_Real)==0 ){
3754 /* If the P3 value cannot be converted into any kind of a number,
3755 ** then the seek is not possible, so jump to P2 */
3756 VdbeBranchTaken(1,2); goto jump_to_p2;
3757 break;
3760 /* If the approximation iKey is larger than the actual real search
3761 ** term, substitute >= for > and < for <=. e.g. if the search term
3762 ** is 4.9 and the integer approximation 5:
3764 ** (x > 4.9) -> (x >= 5)
3765 ** (x <= 4.9) -> (x < 5)
3767 if( pIn3->u.r<(double)iKey ){
3768 assert( OP_SeekGE==(OP_SeekGT-1) );
3769 assert( OP_SeekLT==(OP_SeekLE-1) );
3770 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3771 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3774 /* If the approximation iKey is smaller than the actual real search
3775 ** term, substitute <= for < and > for >=. */
3776 else if( pIn3->u.r>(double)iKey ){
3777 assert( OP_SeekLE==(OP_SeekLT+1) );
3778 assert( OP_SeekGT==(OP_SeekGE+1) );
3779 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3780 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3783 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3784 pC->movetoTarget = iKey; /* Used by OP_Delete */
3785 if( rc!=SQLITE_OK ){
3786 goto abort_due_to_error;
3788 }else{
3789 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3790 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3791 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3793 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3794 eqOnly = 1;
3795 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3796 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3797 assert( pOp[1].p1==pOp[0].p1 );
3798 assert( pOp[1].p2==pOp[0].p2 );
3799 assert( pOp[1].p3==pOp[0].p3 );
3800 assert( pOp[1].p4.i==pOp[0].p4.i );
3803 nField = pOp->p4.i;
3804 assert( pOp->p4type==P4_INT32 );
3805 assert( nField>0 );
3806 r.pKeyInfo = pC->pKeyInfo;
3807 r.nField = (u16)nField;
3809 /* The next line of code computes as follows, only faster:
3810 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3811 ** r.default_rc = -1;
3812 ** }else{
3813 ** r.default_rc = +1;
3814 ** }
3816 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3817 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3818 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3819 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3820 assert( oc!=OP_SeekLT || r.default_rc==+1 );
3822 r.aMem = &aMem[pOp->p3];
3823 #ifdef SQLITE_DEBUG
3824 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3825 #endif
3826 ExpandBlob(r.aMem);
3827 r.eqSeen = 0;
3828 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3829 if( rc!=SQLITE_OK ){
3830 goto abort_due_to_error;
3832 if( eqOnly && r.eqSeen==0 ){
3833 assert( res!=0 );
3834 goto seek_not_found;
3837 pC->deferredMoveto = 0;
3838 pC->cacheStatus = CACHE_STALE;
3839 #ifdef SQLITE_TEST
3840 sqlite3_search_count++;
3841 #endif
3842 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3843 if( res<0 || (res==0 && oc==OP_SeekGT) ){
3844 res = 0;
3845 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3846 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3847 }else{
3848 res = 0;
3850 }else{
3851 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3852 if( res>0 || (res==0 && oc==OP_SeekLT) ){
3853 res = 0;
3854 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3855 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3856 }else{
3857 /* res might be negative because the table is empty. Check to
3858 ** see if this is the case.
3860 res = sqlite3BtreeEof(pC->uc.pCursor);
3863 seek_not_found:
3864 assert( pOp->p2>0 );
3865 VdbeBranchTaken(res!=0,2);
3866 if( res ){
3867 goto jump_to_p2;
3868 }else if( eqOnly ){
3869 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3870 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3872 break;
3876 /* Opcode: Found P1 P2 P3 P4 *
3877 ** Synopsis: key=r[P3@P4]
3879 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3880 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3881 ** record.
3883 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3884 ** is a prefix of any entry in P1 then a jump is made to P2 and
3885 ** P1 is left pointing at the matching entry.
3887 ** This operation leaves the cursor in a state where it can be
3888 ** advanced in the forward direction. The Next instruction will work,
3889 ** but not the Prev instruction.
3891 ** See also: NotFound, NoConflict, NotExists. SeekGe
3893 /* Opcode: NotFound P1 P2 P3 P4 *
3894 ** Synopsis: key=r[P3@P4]
3896 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3897 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3898 ** record.
3900 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3901 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3902 ** does contain an entry whose prefix matches the P3/P4 record then control
3903 ** falls through to the next instruction and P1 is left pointing at the
3904 ** matching entry.
3906 ** This operation leaves the cursor in a state where it cannot be
3907 ** advanced in either direction. In other words, the Next and Prev
3908 ** opcodes do not work after this operation.
3910 ** See also: Found, NotExists, NoConflict
3912 /* Opcode: NoConflict P1 P2 P3 P4 *
3913 ** Synopsis: key=r[P3@P4]
3915 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3916 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3917 ** record.
3919 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3920 ** contains any NULL value, jump immediately to P2. If all terms of the
3921 ** record are not-NULL then a check is done to determine if any row in the
3922 ** P1 index btree has a matching key prefix. If there are no matches, jump
3923 ** immediately to P2. If there is a match, fall through and leave the P1
3924 ** cursor pointing to the matching row.
3926 ** This opcode is similar to OP_NotFound with the exceptions that the
3927 ** branch is always taken if any part of the search key input is NULL.
3929 ** This operation leaves the cursor in a state where it cannot be
3930 ** advanced in either direction. In other words, the Next and Prev
3931 ** opcodes do not work after this operation.
3933 ** See also: NotFound, Found, NotExists
3935 case OP_NoConflict: /* jump, in3 */
3936 case OP_NotFound: /* jump, in3 */
3937 case OP_Found: { /* jump, in3 */
3938 int alreadyExists;
3939 int takeJump;
3940 int ii;
3941 VdbeCursor *pC;
3942 int res;
3943 char *pFree;
3944 UnpackedRecord *pIdxKey;
3945 UnpackedRecord r;
3946 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3948 #ifdef SQLITE_TEST
3949 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3950 #endif
3952 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3953 assert( pOp->p4type==P4_INT32 );
3954 pC = p->apCsr[pOp->p1];
3955 assert( pC!=0 );
3956 #ifdef SQLITE_DEBUG
3957 pC->seekOp = pOp->opcode;
3958 #endif
3959 pIn3 = &aMem[pOp->p3];
3960 assert( pC->eCurType==CURTYPE_BTREE );
3961 assert( pC->uc.pCursor!=0 );
3962 assert( pC->isTable==0 );
3963 pFree = 0;
3964 if( pOp->p4.i>0 ){
3965 r.pKeyInfo = pC->pKeyInfo;
3966 r.nField = (u16)pOp->p4.i;
3967 r.aMem = pIn3;
3968 for(ii=0; ii<r.nField; ii++){
3969 assert( memIsValid(&r.aMem[ii]) );
3970 ExpandBlob(&r.aMem[ii]);
3971 #ifdef SQLITE_DEBUG
3972 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3973 #endif
3975 pIdxKey = &r;
3976 }else{
3977 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3978 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3980 if( pIdxKey==0 ) goto no_mem;
3981 assert( pIn3->flags & MEM_Blob );
3982 ExpandBlob(pIn3);
3983 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3985 pIdxKey->default_rc = 0;
3986 takeJump = 0;
3987 if( pOp->opcode==OP_NoConflict ){
3988 /* For the OP_NoConflict opcode, take the jump if any of the
3989 ** input fields are NULL, since any key with a NULL will not
3990 ** conflict */
3991 for(ii=0; ii<pIdxKey->nField; ii++){
3992 if( pIdxKey->aMem[ii].flags & MEM_Null ){
3993 takeJump = 1;
3994 break;
3998 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
3999 sqlite3DbFree(db, pFree);
4000 if( rc!=SQLITE_OK ){
4001 goto abort_due_to_error;
4003 pC->seekResult = res;
4004 alreadyExists = (res==0);
4005 pC->nullRow = 1-alreadyExists;
4006 pC->deferredMoveto = 0;
4007 pC->cacheStatus = CACHE_STALE;
4008 if( pOp->opcode==OP_Found ){
4009 VdbeBranchTaken(alreadyExists!=0,2);
4010 if( alreadyExists ) goto jump_to_p2;
4011 }else{
4012 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4013 if( takeJump || !alreadyExists ) goto jump_to_p2;
4015 break;
4018 /* Opcode: SeekRowid P1 P2 P3 * *
4019 ** Synopsis: intkey=r[P3]
4021 ** P1 is the index of a cursor open on an SQL table btree (with integer
4022 ** keys). If register P3 does not contain an integer or if P1 does not
4023 ** contain a record with rowid P3 then jump immediately to P2.
4024 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4025 ** a record with rowid P3 then
4026 ** leave the cursor pointing at that record and fall through to the next
4027 ** instruction.
4029 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4030 ** the P3 register must be guaranteed to contain an integer value. With this
4031 ** opcode, register P3 might not contain an integer.
4033 ** The OP_NotFound opcode performs the same operation on index btrees
4034 ** (with arbitrary multi-value keys).
4036 ** This opcode leaves the cursor in a state where it cannot be advanced
4037 ** in either direction. In other words, the Next and Prev opcodes will
4038 ** not work following this opcode.
4040 ** See also: Found, NotFound, NoConflict, SeekRowid
4042 /* Opcode: NotExists P1 P2 P3 * *
4043 ** Synopsis: intkey=r[P3]
4045 ** P1 is the index of a cursor open on an SQL table btree (with integer
4046 ** keys). P3 is an integer rowid. If P1 does not contain a record with
4047 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4048 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4049 ** leave the cursor pointing at that record and fall through to the next
4050 ** instruction.
4052 ** The OP_SeekRowid opcode performs the same operation but also allows the
4053 ** P3 register to contain a non-integer value, in which case the jump is
4054 ** always taken. This opcode requires that P3 always contain an integer.
4056 ** The OP_NotFound opcode performs the same operation on index btrees
4057 ** (with arbitrary multi-value keys).
4059 ** This opcode leaves the cursor in a state where it cannot be advanced
4060 ** in either direction. In other words, the Next and Prev opcodes will
4061 ** not work following this opcode.
4063 ** See also: Found, NotFound, NoConflict, SeekRowid
4065 case OP_SeekRowid: { /* jump, in3 */
4066 VdbeCursor *pC;
4067 BtCursor *pCrsr;
4068 int res;
4069 u64 iKey;
4071 pIn3 = &aMem[pOp->p3];
4072 if( (pIn3->flags & MEM_Int)==0 ){
4073 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4074 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4076 /* Fall through into OP_NotExists */
4077 case OP_NotExists: /* jump, in3 */
4078 pIn3 = &aMem[pOp->p3];
4079 assert( pIn3->flags & MEM_Int );
4080 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4081 pC = p->apCsr[pOp->p1];
4082 assert( pC!=0 );
4083 #ifdef SQLITE_DEBUG
4084 pC->seekOp = 0;
4085 #endif
4086 assert( pC->isTable );
4087 assert( pC->eCurType==CURTYPE_BTREE );
4088 pCrsr = pC->uc.pCursor;
4089 assert( pCrsr!=0 );
4090 res = 0;
4091 iKey = pIn3->u.i;
4092 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4093 assert( rc==SQLITE_OK || res==0 );
4094 pC->movetoTarget = iKey; /* Used by OP_Delete */
4095 pC->nullRow = 0;
4096 pC->cacheStatus = CACHE_STALE;
4097 pC->deferredMoveto = 0;
4098 VdbeBranchTaken(res!=0,2);
4099 pC->seekResult = res;
4100 if( res!=0 ){
4101 assert( rc==SQLITE_OK );
4102 if( pOp->p2==0 ){
4103 rc = SQLITE_CORRUPT_BKPT;
4104 }else{
4105 goto jump_to_p2;
4108 if( rc ) goto abort_due_to_error;
4109 break;
4112 /* Opcode: Sequence P1 P2 * * *
4113 ** Synopsis: r[P2]=cursor[P1].ctr++
4115 ** Find the next available sequence number for cursor P1.
4116 ** Write the sequence number into register P2.
4117 ** The sequence number on the cursor is incremented after this
4118 ** instruction.
4120 case OP_Sequence: { /* out2 */
4121 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4122 assert( p->apCsr[pOp->p1]!=0 );
4123 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4124 pOut = out2Prerelease(p, pOp);
4125 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4126 break;
4130 /* Opcode: NewRowid P1 P2 P3 * *
4131 ** Synopsis: r[P2]=rowid
4133 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4134 ** The record number is not previously used as a key in the database
4135 ** table that cursor P1 points to. The new record number is written
4136 ** written to register P2.
4138 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4139 ** the largest previously generated record number. No new record numbers are
4140 ** allowed to be less than this value. When this value reaches its maximum,
4141 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4142 ** generated record number. This P3 mechanism is used to help implement the
4143 ** AUTOINCREMENT feature.
4145 case OP_NewRowid: { /* out2 */
4146 i64 v; /* The new rowid */
4147 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4148 int res; /* Result of an sqlite3BtreeLast() */
4149 int cnt; /* Counter to limit the number of searches */
4150 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
4151 VdbeFrame *pFrame; /* Root frame of VDBE */
4153 v = 0;
4154 res = 0;
4155 pOut = out2Prerelease(p, pOp);
4156 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4157 pC = p->apCsr[pOp->p1];
4158 assert( pC!=0 );
4159 assert( pC->eCurType==CURTYPE_BTREE );
4160 assert( pC->uc.pCursor!=0 );
4162 /* The next rowid or record number (different terms for the same
4163 ** thing) is obtained in a two-step algorithm.
4165 ** First we attempt to find the largest existing rowid and add one
4166 ** to that. But if the largest existing rowid is already the maximum
4167 ** positive integer, we have to fall through to the second
4168 ** probabilistic algorithm
4170 ** The second algorithm is to select a rowid at random and see if
4171 ** it already exists in the table. If it does not exist, we have
4172 ** succeeded. If the random rowid does exist, we select a new one
4173 ** and try again, up to 100 times.
4175 assert( pC->isTable );
4177 #ifdef SQLITE_32BIT_ROWID
4178 # define MAX_ROWID 0x7fffffff
4179 #else
4180 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4181 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4182 ** to provide the constant while making all compilers happy.
4184 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4185 #endif
4187 if( !pC->useRandomRowid ){
4188 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4189 if( rc!=SQLITE_OK ){
4190 goto abort_due_to_error;
4192 if( res ){
4193 v = 1; /* IMP: R-61914-48074 */
4194 }else{
4195 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4196 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4197 if( v>=MAX_ROWID ){
4198 pC->useRandomRowid = 1;
4199 }else{
4200 v++; /* IMP: R-29538-34987 */
4205 #ifndef SQLITE_OMIT_AUTOINCREMENT
4206 if( pOp->p3 ){
4207 /* Assert that P3 is a valid memory cell. */
4208 assert( pOp->p3>0 );
4209 if( p->pFrame ){
4210 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4211 /* Assert that P3 is a valid memory cell. */
4212 assert( pOp->p3<=pFrame->nMem );
4213 pMem = &pFrame->aMem[pOp->p3];
4214 }else{
4215 /* Assert that P3 is a valid memory cell. */
4216 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
4217 pMem = &aMem[pOp->p3];
4218 memAboutToChange(p, pMem);
4220 assert( memIsValid(pMem) );
4222 REGISTER_TRACE(pOp->p3, pMem);
4223 sqlite3VdbeMemIntegerify(pMem);
4224 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4225 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4226 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4227 goto abort_due_to_error;
4229 if( v<pMem->u.i+1 ){
4230 v = pMem->u.i + 1;
4232 pMem->u.i = v;
4234 #endif
4235 if( pC->useRandomRowid ){
4236 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4237 ** largest possible integer (9223372036854775807) then the database
4238 ** engine starts picking positive candidate ROWIDs at random until
4239 ** it finds one that is not previously used. */
4240 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4241 ** an AUTOINCREMENT table. */
4242 cnt = 0;
4244 sqlite3_randomness(sizeof(v), &v);
4245 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
4246 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4247 0, &res))==SQLITE_OK)
4248 && (res==0)
4249 && (++cnt<100));
4250 if( rc ) goto abort_due_to_error;
4251 if( res==0 ){
4252 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
4253 goto abort_due_to_error;
4255 assert( v>0 ); /* EV: R-40812-03570 */
4257 pC->deferredMoveto = 0;
4258 pC->cacheStatus = CACHE_STALE;
4260 pOut->u.i = v;
4261 break;
4264 /* Opcode: Insert P1 P2 P3 P4 P5
4265 ** Synopsis: intkey=r[P3] data=r[P2]
4267 ** Write an entry into the table of cursor P1. A new entry is
4268 ** created if it doesn't already exist or the data for an existing
4269 ** entry is overwritten. The data is the value MEM_Blob stored in register
4270 ** number P2. The key is stored in register P3. The key must
4271 ** be a MEM_Int.
4273 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4274 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4275 ** then rowid is stored for subsequent return by the
4276 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4278 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4279 ** the last seek operation (OP_NotExists or OP_SeekRowid) was a success,
4280 ** then this
4281 ** operation will not attempt to find the appropriate row before doing
4282 ** the insert but will instead overwrite the row that the cursor is
4283 ** currently pointing to. Presumably, the prior OP_NotExists or
4284 ** OP_SeekRowid opcode
4285 ** has already positioned the cursor correctly. This is an optimization
4286 ** that boosts performance by avoiding redundant seeks.
4288 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4289 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4290 ** is part of an INSERT operation. The difference is only important to
4291 ** the update hook.
4293 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
4294 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4295 ** following a successful insert.
4297 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4298 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4299 ** and register P2 becomes ephemeral. If the cursor is changed, the
4300 ** value of register P2 will then change. Make sure this does not
4301 ** cause any problems.)
4303 ** This instruction only works on tables. The equivalent instruction
4304 ** for indices is OP_IdxInsert.
4306 /* Opcode: InsertInt P1 P2 P3 P4 P5
4307 ** Synopsis: intkey=P3 data=r[P2]
4309 ** This works exactly like OP_Insert except that the key is the
4310 ** integer value P3, not the value of the integer stored in register P3.
4312 case OP_Insert:
4313 case OP_InsertInt: {
4314 Mem *pData; /* MEM cell holding data for the record to be inserted */
4315 Mem *pKey; /* MEM cell holding key for the record */
4316 VdbeCursor *pC; /* Cursor to table into which insert is written */
4317 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4318 const char *zDb; /* database name - used by the update hook */
4319 Table *pTab; /* Table structure - used by update and pre-update hooks */
4320 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4321 BtreePayload x; /* Payload to be inserted */
4323 op = 0;
4324 pData = &aMem[pOp->p2];
4325 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4326 assert( memIsValid(pData) );
4327 pC = p->apCsr[pOp->p1];
4328 assert( pC!=0 );
4329 assert( pC->eCurType==CURTYPE_BTREE );
4330 assert( pC->uc.pCursor!=0 );
4331 assert( pC->isTable );
4332 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
4333 REGISTER_TRACE(pOp->p2, pData);
4335 if( pOp->opcode==OP_Insert ){
4336 pKey = &aMem[pOp->p3];
4337 assert( pKey->flags & MEM_Int );
4338 assert( memIsValid(pKey) );
4339 REGISTER_TRACE(pOp->p3, pKey);
4340 x.nKey = pKey->u.i;
4341 }else{
4342 assert( pOp->opcode==OP_InsertInt );
4343 x.nKey = pOp->p3;
4346 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4347 assert( pC->isTable );
4348 assert( pC->iDb>=0 );
4349 zDb = db->aDb[pC->iDb].zName;
4350 pTab = pOp->p4.pTab;
4351 assert( HasRowid(pTab) );
4352 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4353 }else{
4354 pTab = 0; /* Not needed. Silence a comiler warning. */
4355 zDb = 0; /* Not needed. Silence a compiler warning. */
4358 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4359 /* Invoke the pre-update hook, if any */
4360 if( db->xPreUpdateCallback
4361 && pOp->p4type==P4_TABLE
4362 && !(pOp->p5 & OPFLAG_ISUPDATE)
4364 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
4366 #endif
4368 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4369 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey;
4370 if( pData->flags & MEM_Null ){
4371 x.pData = 0;
4372 x.nData = 0;
4373 }else{
4374 assert( pData->flags & (MEM_Blob|MEM_Str) );
4375 x.pData = pData->z;
4376 x.nData = pData->n;
4378 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4379 if( pData->flags & MEM_Zero ){
4380 x.nZero = pData->u.nZero;
4381 }else{
4382 x.nZero = 0;
4384 x.pKey = 0;
4385 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
4386 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4388 pC->deferredMoveto = 0;
4389 pC->cacheStatus = CACHE_STALE;
4391 /* Invoke the update-hook if required. */
4392 if( rc ) goto abort_due_to_error;
4393 if( db->xUpdateCallback && op ){
4394 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
4396 break;
4399 /* Opcode: Delete P1 P2 P3 P4 P5
4401 ** Delete the record at which the P1 cursor is currently pointing.
4403 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4404 ** the cursor will be left pointing at either the next or the previous
4405 ** record in the table. If it is left pointing at the next record, then
4406 ** the next Next instruction will be a no-op. As a result, in this case
4407 ** it is ok to delete a record from within a Next loop. If
4408 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4409 ** left in an undefined state.
4411 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4412 ** delete one of several associated with deleting a table row and all its
4413 ** associated index entries. Exactly one of those deletes is the "primary"
4414 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4415 ** marked with the AUXDELETE flag.
4417 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4418 ** change count is incremented (otherwise not).
4420 ** P1 must not be pseudo-table. It has to be a real table with
4421 ** multiple rows.
4423 ** If P4 is not NULL then it points to a Table struture. In this case either
4424 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4425 ** have been positioned using OP_NotFound prior to invoking this opcode in
4426 ** this case. Specifically, if one is configured, the pre-update hook is
4427 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4428 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
4430 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4431 ** of the memory cell that contains the value that the rowid of the row will
4432 ** be set to by the update.
4434 case OP_Delete: {
4435 VdbeCursor *pC;
4436 const char *zDb;
4437 Table *pTab;
4438 int opflags;
4440 opflags = pOp->p2;
4441 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4442 pC = p->apCsr[pOp->p1];
4443 assert( pC!=0 );
4444 assert( pC->eCurType==CURTYPE_BTREE );
4445 assert( pC->uc.pCursor!=0 );
4446 assert( pC->deferredMoveto==0 );
4448 #ifdef SQLITE_DEBUG
4449 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4450 /* If p5 is zero, the seek operation that positioned the cursor prior to
4451 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4452 ** the row that is being deleted */
4453 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4454 assert( pC->movetoTarget==iKey );
4456 #endif
4458 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4459 ** the name of the db to pass as to it. Also set local pTab to a copy
4460 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4461 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4462 ** VdbeCursor.movetoTarget to the current rowid. */
4463 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
4464 assert( pC->iDb>=0 );
4465 assert( pOp->p4.pTab!=0 );
4466 zDb = db->aDb[pC->iDb].zName;
4467 pTab = pOp->p4.pTab;
4468 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
4469 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4471 }else{
4472 zDb = 0; /* Not needed. Silence a compiler warning. */
4473 pTab = 0; /* Not needed. Silence a compiler warning. */
4476 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4477 /* Invoke the pre-update-hook if required. */
4478 if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
4479 assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
4480 sqlite3VdbePreUpdateHook(p, pC,
4481 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
4482 zDb, pTab, pC->movetoTarget,
4483 pOp->p3
4486 if( opflags & OPFLAG_ISNOOP ) break;
4487 #endif
4489 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4490 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
4491 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
4492 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
4494 #ifdef SQLITE_DEBUG
4495 if( p->pFrame==0 ){
4496 if( pC->isEphemeral==0
4497 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4498 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4500 nExtraDelete++;
4502 if( pOp->p2 & OPFLAG_NCHANGE ){
4503 nExtraDelete--;
4506 #endif
4508 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4509 pC->cacheStatus = CACHE_STALE;
4510 if( rc ) goto abort_due_to_error;
4512 /* Invoke the update-hook if required. */
4513 if( opflags & OPFLAG_NCHANGE ){
4514 p->nChange++;
4515 if( db->xUpdateCallback && HasRowid(pTab) ){
4516 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
4517 pC->movetoTarget);
4518 assert( pC->iDb>=0 );
4522 break;
4524 /* Opcode: ResetCount * * * * *
4526 ** The value of the change counter is copied to the database handle
4527 ** change counter (returned by subsequent calls to sqlite3_changes()).
4528 ** Then the VMs internal change counter resets to 0.
4529 ** This is used by trigger programs.
4531 case OP_ResetCount: {
4532 sqlite3VdbeSetChanges(db, p->nChange);
4533 p->nChange = 0;
4534 break;
4537 /* Opcode: SorterCompare P1 P2 P3 P4
4538 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4540 ** P1 is a sorter cursor. This instruction compares a prefix of the
4541 ** record blob in register P3 against a prefix of the entry that
4542 ** the sorter cursor currently points to. Only the first P4 fields
4543 ** of r[P3] and the sorter record are compared.
4545 ** If either P3 or the sorter contains a NULL in one of their significant
4546 ** fields (not counting the P4 fields at the end which are ignored) then
4547 ** the comparison is assumed to be equal.
4549 ** Fall through to next instruction if the two records compare equal to
4550 ** each other. Jump to P2 if they are different.
4552 case OP_SorterCompare: {
4553 VdbeCursor *pC;
4554 int res;
4555 int nKeyCol;
4557 pC = p->apCsr[pOp->p1];
4558 assert( isSorter(pC) );
4559 assert( pOp->p4type==P4_INT32 );
4560 pIn3 = &aMem[pOp->p3];
4561 nKeyCol = pOp->p4.i;
4562 res = 0;
4563 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4564 VdbeBranchTaken(res!=0,2);
4565 if( rc ) goto abort_due_to_error;
4566 if( res ) goto jump_to_p2;
4567 break;
4570 /* Opcode: SorterData P1 P2 P3 * *
4571 ** Synopsis: r[P2]=data
4573 ** Write into register P2 the current sorter data for sorter cursor P1.
4574 ** Then clear the column header cache on cursor P3.
4576 ** This opcode is normally use to move a record out of the sorter and into
4577 ** a register that is the source for a pseudo-table cursor created using
4578 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
4579 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
4580 ** us from having to issue a separate NullRow instruction to clear that cache.
4582 case OP_SorterData: {
4583 VdbeCursor *pC;
4585 pOut = &aMem[pOp->p2];
4586 pC = p->apCsr[pOp->p1];
4587 assert( isSorter(pC) );
4588 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4589 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4590 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4591 if( rc ) goto abort_due_to_error;
4592 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4593 break;
4596 /* Opcode: RowData P1 P2 * * *
4597 ** Synopsis: r[P2]=data
4599 ** Write into register P2 the complete row data for cursor P1.
4600 ** There is no interpretation of the data.
4601 ** It is just copied onto the P2 register exactly as
4602 ** it is found in the database file.
4604 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4605 ** of a real table, not a pseudo-table.
4607 /* Opcode: RowKey P1 P2 * * *
4608 ** Synopsis: r[P2]=key
4610 ** Write into register P2 the complete row key for cursor P1.
4611 ** There is no interpretation of the data.
4612 ** The key is copied onto the P2 register exactly as
4613 ** it is found in the database file.
4615 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4616 ** of a real table, not a pseudo-table.
4618 case OP_RowKey:
4619 case OP_RowData: {
4620 VdbeCursor *pC;
4621 BtCursor *pCrsr;
4622 u32 n;
4624 pOut = &aMem[pOp->p2];
4625 memAboutToChange(p, pOut);
4627 /* Note that RowKey and RowData are really exactly the same instruction */
4628 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4629 pC = p->apCsr[pOp->p1];
4630 assert( pC!=0 );
4631 assert( pC->eCurType==CURTYPE_BTREE );
4632 assert( isSorter(pC)==0 );
4633 assert( pC->isTable || pOp->opcode!=OP_RowData );
4634 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4635 assert( pC->nullRow==0 );
4636 assert( pC->uc.pCursor!=0 );
4637 pCrsr = pC->uc.pCursor;
4639 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4640 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4641 ** that might invalidate the cursor.
4642 ** If this where not the case, on of the following assert()s
4643 ** would fail. Should this ever change (because of changes in the code
4644 ** generator) then the fix would be to insert a call to
4645 ** sqlite3VdbeCursorMoveto().
4647 assert( pC->deferredMoveto==0 );
4648 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4649 #if 0 /* Not required due to the previous to assert() statements */
4650 rc = sqlite3VdbeCursorMoveto(pC);
4651 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4652 #endif
4654 n = sqlite3BtreePayloadSize(pCrsr);
4655 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4656 goto too_big;
4658 testcase( n==0 );
4659 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4660 goto no_mem;
4662 pOut->n = n;
4663 MemSetTypeFlag(pOut, MEM_Blob);
4664 if( pC->isTable==0 ){
4665 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4666 }else{
4667 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4669 if( rc ) goto abort_due_to_error;
4670 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
4671 UPDATE_MAX_BLOBSIZE(pOut);
4672 REGISTER_TRACE(pOp->p2, pOut);
4673 break;
4676 /* Opcode: Rowid P1 P2 * * *
4677 ** Synopsis: r[P2]=rowid
4679 ** Store in register P2 an integer which is the key of the table entry that
4680 ** P1 is currently point to.
4682 ** P1 can be either an ordinary table or a virtual table. There used to
4683 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4684 ** one opcode now works for both table types.
4686 case OP_Rowid: { /* out2 */
4687 VdbeCursor *pC;
4688 i64 v;
4689 sqlite3_vtab *pVtab;
4690 const sqlite3_module *pModule;
4692 pOut = out2Prerelease(p, pOp);
4693 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4694 pC = p->apCsr[pOp->p1];
4695 assert( pC!=0 );
4696 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4697 if( pC->nullRow ){
4698 pOut->flags = MEM_Null;
4699 break;
4700 }else if( pC->deferredMoveto ){
4701 v = pC->movetoTarget;
4702 #ifndef SQLITE_OMIT_VIRTUALTABLE
4703 }else if( pC->eCurType==CURTYPE_VTAB ){
4704 assert( pC->uc.pVCur!=0 );
4705 pVtab = pC->uc.pVCur->pVtab;
4706 pModule = pVtab->pModule;
4707 assert( pModule->xRowid );
4708 rc = pModule->xRowid(pC->uc.pVCur, &v);
4709 sqlite3VtabImportErrmsg(p, pVtab);
4710 if( rc ) goto abort_due_to_error;
4711 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4712 }else{
4713 assert( pC->eCurType==CURTYPE_BTREE );
4714 assert( pC->uc.pCursor!=0 );
4715 rc = sqlite3VdbeCursorRestore(pC);
4716 if( rc ) goto abort_due_to_error;
4717 if( pC->nullRow ){
4718 pOut->flags = MEM_Null;
4719 break;
4721 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
4723 pOut->u.i = v;
4724 break;
4727 /* Opcode: NullRow P1 * * * *
4729 ** Move the cursor P1 to a null row. Any OP_Column operations
4730 ** that occur while the cursor is on the null row will always
4731 ** write a NULL.
4733 case OP_NullRow: {
4734 VdbeCursor *pC;
4736 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4737 pC = p->apCsr[pOp->p1];
4738 assert( pC!=0 );
4739 pC->nullRow = 1;
4740 pC->cacheStatus = CACHE_STALE;
4741 if( pC->eCurType==CURTYPE_BTREE ){
4742 assert( pC->uc.pCursor!=0 );
4743 sqlite3BtreeClearCursor(pC->uc.pCursor);
4745 break;
4748 /* Opcode: Last P1 P2 P3 * *
4750 ** The next use of the Rowid or Column or Prev instruction for P1
4751 ** will refer to the last entry in the database table or index.
4752 ** If the table or index is empty and P2>0, then jump immediately to P2.
4753 ** If P2 is 0 or if the table or index is not empty, fall through
4754 ** to the following instruction.
4756 ** This opcode leaves the cursor configured to move in reverse order,
4757 ** from the end toward the beginning. In other words, the cursor is
4758 ** configured to use Prev, not Next.
4760 case OP_Last: { /* jump */
4761 VdbeCursor *pC;
4762 BtCursor *pCrsr;
4763 int res;
4765 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4766 pC = p->apCsr[pOp->p1];
4767 assert( pC!=0 );
4768 assert( pC->eCurType==CURTYPE_BTREE );
4769 pCrsr = pC->uc.pCursor;
4770 res = 0;
4771 assert( pCrsr!=0 );
4772 rc = sqlite3BtreeLast(pCrsr, &res);
4773 pC->nullRow = (u8)res;
4774 pC->deferredMoveto = 0;
4775 pC->cacheStatus = CACHE_STALE;
4776 pC->seekResult = pOp->p3;
4777 #ifdef SQLITE_DEBUG
4778 pC->seekOp = OP_Last;
4779 #endif
4780 if( rc ) goto abort_due_to_error;
4781 if( pOp->p2>0 ){
4782 VdbeBranchTaken(res!=0,2);
4783 if( res ) goto jump_to_p2;
4785 break;
4789 /* Opcode: Sort P1 P2 * * *
4791 ** This opcode does exactly the same thing as OP_Rewind except that
4792 ** it increments an undocumented global variable used for testing.
4794 ** Sorting is accomplished by writing records into a sorting index,
4795 ** then rewinding that index and playing it back from beginning to
4796 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4797 ** rewinding so that the global variable will be incremented and
4798 ** regression tests can determine whether or not the optimizer is
4799 ** correctly optimizing out sorts.
4801 case OP_SorterSort: /* jump */
4802 case OP_Sort: { /* jump */
4803 #ifdef SQLITE_TEST
4804 sqlite3_sort_count++;
4805 sqlite3_search_count--;
4806 #endif
4807 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4808 /* Fall through into OP_Rewind */
4810 /* Opcode: Rewind P1 P2 * * *
4812 ** The next use of the Rowid or Column or Next instruction for P1
4813 ** will refer to the first entry in the database table or index.
4814 ** If the table or index is empty, jump immediately to P2.
4815 ** If the table or index is not empty, fall through to the following
4816 ** instruction.
4818 ** This opcode leaves the cursor configured to move in forward order,
4819 ** from the beginning toward the end. In other words, the cursor is
4820 ** configured to use Next, not Prev.
4822 case OP_Rewind: { /* jump */
4823 VdbeCursor *pC;
4824 BtCursor *pCrsr;
4825 int res;
4827 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4828 pC = p->apCsr[pOp->p1];
4829 assert( pC!=0 );
4830 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4831 res = 1;
4832 #ifdef SQLITE_DEBUG
4833 pC->seekOp = OP_Rewind;
4834 #endif
4835 if( isSorter(pC) ){
4836 rc = sqlite3VdbeSorterRewind(pC, &res);
4837 }else{
4838 assert( pC->eCurType==CURTYPE_BTREE );
4839 pCrsr = pC->uc.pCursor;
4840 assert( pCrsr );
4841 rc = sqlite3BtreeFirst(pCrsr, &res);
4842 pC->deferredMoveto = 0;
4843 pC->cacheStatus = CACHE_STALE;
4845 if( rc ) goto abort_due_to_error;
4846 pC->nullRow = (u8)res;
4847 assert( pOp->p2>0 && pOp->p2<p->nOp );
4848 VdbeBranchTaken(res!=0,2);
4849 if( res ) goto jump_to_p2;
4850 break;
4853 /* Opcode: Next P1 P2 P3 P4 P5
4855 ** Advance cursor P1 so that it points to the next key/data pair in its
4856 ** table or index. If there are no more key/value pairs then fall through
4857 ** to the following instruction. But if the cursor advance was successful,
4858 ** jump immediately to P2.
4860 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4861 ** OP_Rewind opcode used to position the cursor. Next is not allowed
4862 ** to follow SeekLT, SeekLE, or OP_Last.
4864 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4865 ** been opened prior to this opcode or the program will segfault.
4867 ** The P3 value is a hint to the btree implementation. If P3==1, that
4868 ** means P1 is an SQL index and that this instruction could have been
4869 ** omitted if that index had been unique. P3 is usually 0. P3 is
4870 ** always either 0 or 1.
4872 ** P4 is always of type P4_ADVANCE. The function pointer points to
4873 ** sqlite3BtreeNext().
4875 ** If P5 is positive and the jump is taken, then event counter
4876 ** number P5-1 in the prepared statement is incremented.
4878 ** See also: Prev, NextIfOpen
4880 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4882 ** This opcode works just like Next except that if cursor P1 is not
4883 ** open it behaves a no-op.
4885 /* Opcode: Prev P1 P2 P3 P4 P5
4887 ** Back up cursor P1 so that it points to the previous key/data pair in its
4888 ** table or index. If there is no previous key/value pairs then fall through
4889 ** to the following instruction. But if the cursor backup was successful,
4890 ** jump immediately to P2.
4893 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4894 ** OP_Last opcode used to position the cursor. Prev is not allowed
4895 ** to follow SeekGT, SeekGE, or OP_Rewind.
4897 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4898 ** not open then the behavior is undefined.
4900 ** The P3 value is a hint to the btree implementation. If P3==1, that
4901 ** means P1 is an SQL index and that this instruction could have been
4902 ** omitted if that index had been unique. P3 is usually 0. P3 is
4903 ** always either 0 or 1.
4905 ** P4 is always of type P4_ADVANCE. The function pointer points to
4906 ** sqlite3BtreePrevious().
4908 ** If P5 is positive and the jump is taken, then event counter
4909 ** number P5-1 in the prepared statement is incremented.
4911 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4913 ** This opcode works just like Prev except that if cursor P1 is not
4914 ** open it behaves a no-op.
4916 case OP_SorterNext: { /* jump */
4917 VdbeCursor *pC;
4918 int res;
4920 pC = p->apCsr[pOp->p1];
4921 assert( isSorter(pC) );
4922 res = 0;
4923 rc = sqlite3VdbeSorterNext(db, pC, &res);
4924 goto next_tail;
4925 case OP_PrevIfOpen: /* jump */
4926 case OP_NextIfOpen: /* jump */
4927 if( p->apCsr[pOp->p1]==0 ) break;
4928 /* Fall through */
4929 case OP_Prev: /* jump */
4930 case OP_Next: /* jump */
4931 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4932 assert( pOp->p5<ArraySize(p->aCounter) );
4933 pC = p->apCsr[pOp->p1];
4934 res = pOp->p3;
4935 assert( pC!=0 );
4936 assert( pC->deferredMoveto==0 );
4937 assert( pC->eCurType==CURTYPE_BTREE );
4938 assert( res==0 || (res==1 && pC->isTable==0) );
4939 testcase( res==1 );
4940 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4941 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4942 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4943 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4945 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4946 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4947 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4948 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4949 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4950 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4951 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4952 || pC->seekOp==OP_Last );
4954 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
4955 next_tail:
4956 pC->cacheStatus = CACHE_STALE;
4957 VdbeBranchTaken(res==0,2);
4958 if( rc ) goto abort_due_to_error;
4959 if( res==0 ){
4960 pC->nullRow = 0;
4961 p->aCounter[pOp->p5]++;
4962 #ifdef SQLITE_TEST
4963 sqlite3_search_count++;
4964 #endif
4965 goto jump_to_p2_and_check_for_interrupt;
4966 }else{
4967 pC->nullRow = 1;
4969 goto check_for_interrupt;
4972 /* Opcode: IdxInsert P1 P2 P3 * P5
4973 ** Synopsis: key=r[P2]
4975 ** Register P2 holds an SQL index key made using the
4976 ** MakeRecord instructions. This opcode writes that key
4977 ** into the index P1. Data for the entry is nil.
4979 ** P3 is a flag that provides a hint to the b-tree layer that this
4980 ** insert is likely to be an append.
4982 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4983 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4984 ** then the change counter is unchanged.
4986 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4987 ** just done a seek to the spot where the new entry is to be inserted.
4988 ** This flag avoids doing an extra seek.
4990 ** This instruction only works for indices. The equivalent instruction
4991 ** for tables is OP_Insert.
4993 case OP_SorterInsert: /* in2 */
4994 case OP_IdxInsert: { /* in2 */
4995 VdbeCursor *pC;
4996 BtreePayload x;
4998 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4999 pC = p->apCsr[pOp->p1];
5000 assert( pC!=0 );
5001 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
5002 pIn2 = &aMem[pOp->p2];
5003 assert( pIn2->flags & MEM_Blob );
5004 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
5005 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
5006 assert( pC->isTable==0 );
5007 rc = ExpandBlob(pIn2);
5008 if( rc ) goto abort_due_to_error;
5009 if( pOp->opcode==OP_SorterInsert ){
5010 rc = sqlite3VdbeSorterWrite(pC, pIn2);
5011 }else{
5012 x.nKey = pIn2->n;
5013 x.pKey = pIn2->z;
5014 x.nData = 0;
5015 x.nZero = 0;
5016 x.pData = 0;
5017 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, pOp->p3,
5018 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5020 assert( pC->deferredMoveto==0 );
5021 pC->cacheStatus = CACHE_STALE;
5023 if( rc) goto abort_due_to_error;
5024 break;
5027 /* Opcode: IdxDelete P1 P2 P3 * *
5028 ** Synopsis: key=r[P2@P3]
5030 ** The content of P3 registers starting at register P2 form
5031 ** an unpacked index key. This opcode removes that entry from the
5032 ** index opened by cursor P1.
5034 case OP_IdxDelete: {
5035 VdbeCursor *pC;
5036 BtCursor *pCrsr;
5037 int res;
5038 UnpackedRecord r;
5040 assert( pOp->p3>0 );
5041 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
5042 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5043 pC = p->apCsr[pOp->p1];
5044 assert( pC!=0 );
5045 assert( pC->eCurType==CURTYPE_BTREE );
5046 pCrsr = pC->uc.pCursor;
5047 assert( pCrsr!=0 );
5048 assert( pOp->p5==0 );
5049 r.pKeyInfo = pC->pKeyInfo;
5050 r.nField = (u16)pOp->p3;
5051 r.default_rc = 0;
5052 r.aMem = &aMem[pOp->p2];
5053 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
5054 if( rc ) goto abort_due_to_error;
5055 if( res==0 ){
5056 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
5057 if( rc ) goto abort_due_to_error;
5059 assert( pC->deferredMoveto==0 );
5060 pC->cacheStatus = CACHE_STALE;
5061 break;
5064 /* Opcode: Seek P1 * P3 P4 *
5065 ** Synopsis: Move P3 to P1.rowid
5067 ** P1 is an open index cursor and P3 is a cursor on the corresponding
5068 ** table. This opcode does a deferred seek of the P3 table cursor
5069 ** to the row that corresponds to the current row of P1.
5071 ** This is a deferred seek. Nothing actually happens until
5072 ** the cursor is used to read a record. That way, if no reads
5073 ** occur, no unnecessary I/O happens.
5075 ** P4 may be an array of integers (type P4_INTARRAY) containing
5076 ** one entry for each column in the P3 table. If array entry a(i)
5077 ** is non-zero, then reading column a(i)-1 from cursor P3 is
5078 ** equivalent to performing the deferred seek and then reading column i
5079 ** from P1. This information is stored in P3 and used to redirect
5080 ** reads against P3 over to P1, thus possibly avoiding the need to
5081 ** seek and read cursor P3.
5083 /* Opcode: IdxRowid P1 P2 * * *
5084 ** Synopsis: r[P2]=rowid
5086 ** Write into register P2 an integer which is the last entry in the record at
5087 ** the end of the index key pointed to by cursor P1. This integer should be
5088 ** the rowid of the table entry to which this index entry points.
5090 ** See also: Rowid, MakeRecord.
5092 case OP_Seek:
5093 case OP_IdxRowid: { /* out2 */
5094 VdbeCursor *pC; /* The P1 index cursor */
5095 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */
5096 i64 rowid; /* Rowid that P1 current points to */
5098 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5099 pC = p->apCsr[pOp->p1];
5100 assert( pC!=0 );
5101 assert( pC->eCurType==CURTYPE_BTREE );
5102 assert( pC->uc.pCursor!=0 );
5103 assert( pC->isTable==0 );
5104 assert( pC->deferredMoveto==0 );
5105 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5107 /* The IdxRowid and Seek opcodes are combined because of the commonality
5108 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5109 rc = sqlite3VdbeCursorRestore(pC);
5111 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
5112 ** out from under the cursor. That will never happens for an IdxRowid
5113 ** or Seek opcode */
5114 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5116 if( !pC->nullRow ){
5117 rowid = 0; /* Not needed. Only used to silence a warning. */
5118 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
5119 if( rc!=SQLITE_OK ){
5120 goto abort_due_to_error;
5122 if( pOp->opcode==OP_Seek ){
5123 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5124 pTabCur = p->apCsr[pOp->p3];
5125 assert( pTabCur!=0 );
5126 assert( pTabCur->eCurType==CURTYPE_BTREE );
5127 assert( pTabCur->uc.pCursor!=0 );
5128 assert( pTabCur->isTable );
5129 pTabCur->nullRow = 0;
5130 pTabCur->movetoTarget = rowid;
5131 pTabCur->deferredMoveto = 1;
5132 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5133 pTabCur->aAltMap = pOp->p4.ai;
5134 pTabCur->pAltCursor = pC;
5135 }else{
5136 pOut = out2Prerelease(p, pOp);
5137 pOut->u.i = rowid;
5138 pOut->flags = MEM_Int;
5140 }else{
5141 assert( pOp->opcode==OP_IdxRowid );
5142 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
5144 break;
5147 /* Opcode: IdxGE P1 P2 P3 P4 P5
5148 ** Synopsis: key=r[P3@P4]
5150 ** The P4 register values beginning with P3 form an unpacked index
5151 ** key that omits the PRIMARY KEY. Compare this key value against the index
5152 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5153 ** fields at the end.
5155 ** If the P1 index entry is greater than or equal to the key value
5156 ** then jump to P2. Otherwise fall through to the next instruction.
5158 /* Opcode: IdxGT P1 P2 P3 P4 P5
5159 ** Synopsis: key=r[P3@P4]
5161 ** The P4 register values beginning with P3 form an unpacked index
5162 ** key that omits the PRIMARY KEY. Compare this key value against the index
5163 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5164 ** fields at the end.
5166 ** If the P1 index entry is greater than the key value
5167 ** then jump to P2. Otherwise fall through to the next instruction.
5169 /* Opcode: IdxLT P1 P2 P3 P4 P5
5170 ** Synopsis: key=r[P3@P4]
5172 ** The P4 register values beginning with P3 form an unpacked index
5173 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5174 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5175 ** ROWID on the P1 index.
5177 ** If the P1 index entry is less than the key value then jump to P2.
5178 ** Otherwise fall through to the next instruction.
5180 /* Opcode: IdxLE P1 P2 P3 P4 P5
5181 ** Synopsis: key=r[P3@P4]
5183 ** The P4 register values beginning with P3 form an unpacked index
5184 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5185 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5186 ** ROWID on the P1 index.
5188 ** If the P1 index entry is less than or equal to the key value then jump
5189 ** to P2. Otherwise fall through to the next instruction.
5191 case OP_IdxLE: /* jump */
5192 case OP_IdxGT: /* jump */
5193 case OP_IdxLT: /* jump */
5194 case OP_IdxGE: { /* jump */
5195 VdbeCursor *pC;
5196 int res;
5197 UnpackedRecord r;
5199 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5200 pC = p->apCsr[pOp->p1];
5201 assert( pC!=0 );
5202 assert( pC->isOrdered );
5203 assert( pC->eCurType==CURTYPE_BTREE );
5204 assert( pC->uc.pCursor!=0);
5205 assert( pC->deferredMoveto==0 );
5206 assert( pOp->p5==0 || pOp->p5==1 );
5207 assert( pOp->p4type==P4_INT32 );
5208 r.pKeyInfo = pC->pKeyInfo;
5209 r.nField = (u16)pOp->p4.i;
5210 if( pOp->opcode<OP_IdxLT ){
5211 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5212 r.default_rc = -1;
5213 }else{
5214 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5215 r.default_rc = 0;
5217 r.aMem = &aMem[pOp->p3];
5218 #ifdef SQLITE_DEBUG
5219 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5220 #endif
5221 res = 0; /* Not needed. Only used to silence a warning. */
5222 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5223 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5224 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5225 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5226 res = -res;
5227 }else{
5228 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5229 res++;
5231 VdbeBranchTaken(res>0,2);
5232 if( rc ) goto abort_due_to_error;
5233 if( res>0 ) goto jump_to_p2;
5234 break;
5237 /* Opcode: Destroy P1 P2 P3 * *
5239 ** Delete an entire database table or index whose root page in the database
5240 ** file is given by P1.
5242 ** The table being destroyed is in the main database file if P3==0. If
5243 ** P3==1 then the table to be clear is in the auxiliary database file
5244 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5246 ** If AUTOVACUUM is enabled then it is possible that another root page
5247 ** might be moved into the newly deleted root page in order to keep all
5248 ** root pages contiguous at the beginning of the database. The former
5249 ** value of the root page that moved - its value before the move occurred -
5250 ** is stored in register P2. If no page
5251 ** movement was required (because the table being dropped was already
5252 ** the last one in the database) then a zero is stored in register P2.
5253 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5255 ** See also: Clear
5257 case OP_Destroy: { /* out2 */
5258 int iMoved;
5259 int iDb;
5261 assert( p->readOnly==0 );
5262 assert( pOp->p1>1 );
5263 pOut = out2Prerelease(p, pOp);
5264 pOut->flags = MEM_Null;
5265 if( db->nVdbeRead > db->nVDestroy+1 ){
5266 rc = SQLITE_LOCKED;
5267 p->errorAction = OE_Abort;
5268 goto abort_due_to_error;
5269 }else{
5270 iDb = pOp->p3;
5271 assert( DbMaskTest(p->btreeMask, iDb) );
5272 iMoved = 0; /* Not needed. Only to silence a warning. */
5273 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5274 pOut->flags = MEM_Int;
5275 pOut->u.i = iMoved;
5276 if( rc ) goto abort_due_to_error;
5277 #ifndef SQLITE_OMIT_AUTOVACUUM
5278 if( iMoved!=0 ){
5279 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5280 /* All OP_Destroy operations occur on the same btree */
5281 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5282 resetSchemaOnFault = iDb+1;
5284 #endif
5286 break;
5289 /* Opcode: Clear P1 P2 P3
5291 ** Delete all contents of the database table or index whose root page
5292 ** in the database file is given by P1. But, unlike Destroy, do not
5293 ** remove the table or index from the database file.
5295 ** The table being clear is in the main database file if P2==0. If
5296 ** P2==1 then the table to be clear is in the auxiliary database file
5297 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5299 ** If the P3 value is non-zero, then the table referred to must be an
5300 ** intkey table (an SQL table, not an index). In this case the row change
5301 ** count is incremented by the number of rows in the table being cleared.
5302 ** If P3 is greater than zero, then the value stored in register P3 is
5303 ** also incremented by the number of rows in the table being cleared.
5305 ** See also: Destroy
5307 case OP_Clear: {
5308 int nChange;
5310 nChange = 0;
5311 assert( p->readOnly==0 );
5312 assert( DbMaskTest(p->btreeMask, pOp->p2) );
5313 rc = sqlite3BtreeClearTable(
5314 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5316 if( pOp->p3 ){
5317 p->nChange += nChange;
5318 if( pOp->p3>0 ){
5319 assert( memIsValid(&aMem[pOp->p3]) );
5320 memAboutToChange(p, &aMem[pOp->p3]);
5321 aMem[pOp->p3].u.i += nChange;
5324 if( rc ) goto abort_due_to_error;
5325 break;
5328 /* Opcode: ResetSorter P1 * * * *
5330 ** Delete all contents from the ephemeral table or sorter
5331 ** that is open on cursor P1.
5333 ** This opcode only works for cursors used for sorting and
5334 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5336 case OP_ResetSorter: {
5337 VdbeCursor *pC;
5339 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5340 pC = p->apCsr[pOp->p1];
5341 assert( pC!=0 );
5342 if( isSorter(pC) ){
5343 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5344 }else{
5345 assert( pC->eCurType==CURTYPE_BTREE );
5346 assert( pC->isEphemeral );
5347 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5348 if( rc ) goto abort_due_to_error;
5350 break;
5353 /* Opcode: CreateTable P1 P2 * * *
5354 ** Synopsis: r[P2]=root iDb=P1
5356 ** Allocate a new table in the main database file if P1==0 or in the
5357 ** auxiliary database file if P1==1 or in an attached database if
5358 ** P1>1. Write the root page number of the new table into
5359 ** register P2
5361 ** The difference between a table and an index is this: A table must
5362 ** have a 4-byte integer key and can have arbitrary data. An index
5363 ** has an arbitrary key but no data.
5365 ** See also: CreateIndex
5367 /* Opcode: CreateIndex P1 P2 * * *
5368 ** Synopsis: r[P2]=root iDb=P1
5370 ** Allocate a new index in the main database file if P1==0 or in the
5371 ** auxiliary database file if P1==1 or in an attached database if
5372 ** P1>1. Write the root page number of the new table into
5373 ** register P2.
5375 ** See documentation on OP_CreateTable for additional information.
5377 case OP_CreateIndex: /* out2 */
5378 case OP_CreateTable: { /* out2 */
5379 int pgno;
5380 int flags;
5381 Db *pDb;
5383 pOut = out2Prerelease(p, pOp);
5384 pgno = 0;
5385 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5386 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5387 assert( p->readOnly==0 );
5388 pDb = &db->aDb[pOp->p1];
5389 assert( pDb->pBt!=0 );
5390 if( pOp->opcode==OP_CreateTable ){
5391 /* flags = BTREE_INTKEY; */
5392 flags = BTREE_INTKEY;
5393 }else{
5394 flags = BTREE_BLOBKEY;
5396 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5397 if( rc ) goto abort_due_to_error;
5398 pOut->u.i = pgno;
5399 break;
5402 /* Opcode: ParseSchema P1 * * P4 *
5404 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5405 ** that match the WHERE clause P4.
5407 ** This opcode invokes the parser to create a new virtual machine,
5408 ** then runs the new virtual machine. It is thus a re-entrant opcode.
5410 case OP_ParseSchema: {
5411 int iDb;
5412 const char *zMaster;
5413 char *zSql;
5414 InitData initData;
5416 /* Any prepared statement that invokes this opcode will hold mutexes
5417 ** on every btree. This is a prerequisite for invoking
5418 ** sqlite3InitCallback().
5420 #ifdef SQLITE_DEBUG
5421 for(iDb=0; iDb<db->nDb; iDb++){
5422 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5424 #endif
5426 iDb = pOp->p1;
5427 assert( iDb>=0 && iDb<db->nDb );
5428 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5429 /* Used to be a conditional */ {
5430 zMaster = SCHEMA_TABLE(iDb);
5431 initData.db = db;
5432 initData.iDb = pOp->p1;
5433 initData.pzErrMsg = &p->zErrMsg;
5434 zSql = sqlite3MPrintf(db,
5435 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5436 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5437 if( zSql==0 ){
5438 rc = SQLITE_NOMEM_BKPT;
5439 }else{
5440 assert( db->init.busy==0 );
5441 db->init.busy = 1;
5442 initData.rc = SQLITE_OK;
5443 assert( !db->mallocFailed );
5444 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5445 if( rc==SQLITE_OK ) rc = initData.rc;
5446 sqlite3DbFree(db, zSql);
5447 db->init.busy = 0;
5450 if( rc ){
5451 sqlite3ResetAllSchemasOfConnection(db);
5452 if( rc==SQLITE_NOMEM ){
5453 goto no_mem;
5455 goto abort_due_to_error;
5457 break;
5460 #if !defined(SQLITE_OMIT_ANALYZE)
5461 /* Opcode: LoadAnalysis P1 * * * *
5463 ** Read the sqlite_stat1 table for database P1 and load the content
5464 ** of that table into the internal index hash table. This will cause
5465 ** the analysis to be used when preparing all subsequent queries.
5467 case OP_LoadAnalysis: {
5468 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5469 rc = sqlite3AnalysisLoad(db, pOp->p1);
5470 if( rc ) goto abort_due_to_error;
5471 break;
5473 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5475 /* Opcode: DropTable P1 * * P4 *
5477 ** Remove the internal (in-memory) data structures that describe
5478 ** the table named P4 in database P1. This is called after a table
5479 ** is dropped from disk (using the Destroy opcode) in order to keep
5480 ** the internal representation of the
5481 ** schema consistent with what is on disk.
5483 case OP_DropTable: {
5484 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5485 break;
5488 /* Opcode: DropIndex P1 * * P4 *
5490 ** Remove the internal (in-memory) data structures that describe
5491 ** the index named P4 in database P1. This is called after an index
5492 ** is dropped from disk (using the Destroy opcode)
5493 ** in order to keep the internal representation of the
5494 ** schema consistent with what is on disk.
5496 case OP_DropIndex: {
5497 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5498 break;
5501 /* Opcode: DropTrigger P1 * * P4 *
5503 ** Remove the internal (in-memory) data structures that describe
5504 ** the trigger named P4 in database P1. This is called after a trigger
5505 ** is dropped from disk (using the Destroy opcode) in order to keep
5506 ** the internal representation of the
5507 ** schema consistent with what is on disk.
5509 case OP_DropTrigger: {
5510 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5511 break;
5515 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5516 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
5518 ** Do an analysis of the currently open database. Store in
5519 ** register P1 the text of an error message describing any problems.
5520 ** If no problems are found, store a NULL in register P1.
5522 ** The register P3 contains the maximum number of allowed errors.
5523 ** At most reg(P3) errors will be reported.
5524 ** In other words, the analysis stops as soon as reg(P1) errors are
5525 ** seen. Reg(P1) is updated with the number of errors remaining.
5527 ** The root page numbers of all tables in the database are integers
5528 ** stored in P4_INTARRAY argument.
5530 ** If P5 is not zero, the check is done on the auxiliary database
5531 ** file, not the main database file.
5533 ** This opcode is used to implement the integrity_check pragma.
5535 case OP_IntegrityCk: {
5536 int nRoot; /* Number of tables to check. (Number of root pages.) */
5537 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5538 int nErr; /* Number of errors reported */
5539 char *z; /* Text of the error report */
5540 Mem *pnErr; /* Register keeping track of errors remaining */
5542 assert( p->bIsReader );
5543 nRoot = pOp->p2;
5544 aRoot = pOp->p4.ai;
5545 assert( nRoot>0 );
5546 assert( aRoot[nRoot]==0 );
5547 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
5548 pnErr = &aMem[pOp->p3];
5549 assert( (pnErr->flags & MEM_Int)!=0 );
5550 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5551 pIn1 = &aMem[pOp->p1];
5552 assert( pOp->p5<db->nDb );
5553 assert( DbMaskTest(p->btreeMask, pOp->p5) );
5554 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5555 (int)pnErr->u.i, &nErr);
5556 pnErr->u.i -= nErr;
5557 sqlite3VdbeMemSetNull(pIn1);
5558 if( nErr==0 ){
5559 assert( z==0 );
5560 }else if( z==0 ){
5561 goto no_mem;
5562 }else{
5563 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5565 UPDATE_MAX_BLOBSIZE(pIn1);
5566 sqlite3VdbeChangeEncoding(pIn1, encoding);
5567 break;
5569 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5571 /* Opcode: RowSetAdd P1 P2 * * *
5572 ** Synopsis: rowset(P1)=r[P2]
5574 ** Insert the integer value held by register P2 into a boolean index
5575 ** held in register P1.
5577 ** An assertion fails if P2 is not an integer.
5579 case OP_RowSetAdd: { /* in1, in2 */
5580 pIn1 = &aMem[pOp->p1];
5581 pIn2 = &aMem[pOp->p2];
5582 assert( (pIn2->flags & MEM_Int)!=0 );
5583 if( (pIn1->flags & MEM_RowSet)==0 ){
5584 sqlite3VdbeMemSetRowSet(pIn1);
5585 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5587 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5588 break;
5591 /* Opcode: RowSetRead P1 P2 P3 * *
5592 ** Synopsis: r[P3]=rowset(P1)
5594 ** Extract the smallest value from boolean index P1 and put that value into
5595 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5596 ** unchanged and jump to instruction P2.
5598 case OP_RowSetRead: { /* jump, in1, out3 */
5599 i64 val;
5601 pIn1 = &aMem[pOp->p1];
5602 if( (pIn1->flags & MEM_RowSet)==0
5603 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5605 /* The boolean index is empty */
5606 sqlite3VdbeMemSetNull(pIn1);
5607 VdbeBranchTaken(1,2);
5608 goto jump_to_p2_and_check_for_interrupt;
5609 }else{
5610 /* A value was pulled from the index */
5611 VdbeBranchTaken(0,2);
5612 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5614 goto check_for_interrupt;
5617 /* Opcode: RowSetTest P1 P2 P3 P4
5618 ** Synopsis: if r[P3] in rowset(P1) goto P2
5620 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5621 ** contains a RowSet object and that RowSet object contains
5622 ** the value held in P3, jump to register P2. Otherwise, insert the
5623 ** integer in P3 into the RowSet and continue on to the
5624 ** next opcode.
5626 ** The RowSet object is optimized for the case where successive sets
5627 ** of integers, where each set contains no duplicates. Each set
5628 ** of values is identified by a unique P4 value. The first set
5629 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5630 ** non-negative. For non-negative values of P4 only the lower 4
5631 ** bits are significant.
5633 ** This allows optimizations: (a) when P4==0 there is no need to test
5634 ** the rowset object for P3, as it is guaranteed not to contain it,
5635 ** (b) when P4==-1 there is no need to insert the value, as it will
5636 ** never be tested for, and (c) when a value that is part of set X is
5637 ** inserted, there is no need to search to see if the same value was
5638 ** previously inserted as part of set X (only if it was previously
5639 ** inserted as part of some other set).
5641 case OP_RowSetTest: { /* jump, in1, in3 */
5642 int iSet;
5643 int exists;
5645 pIn1 = &aMem[pOp->p1];
5646 pIn3 = &aMem[pOp->p3];
5647 iSet = pOp->p4.i;
5648 assert( pIn3->flags&MEM_Int );
5650 /* If there is anything other than a rowset object in memory cell P1,
5651 ** delete it now and initialize P1 with an empty rowset
5653 if( (pIn1->flags & MEM_RowSet)==0 ){
5654 sqlite3VdbeMemSetRowSet(pIn1);
5655 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5658 assert( pOp->p4type==P4_INT32 );
5659 assert( iSet==-1 || iSet>=0 );
5660 if( iSet ){
5661 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5662 VdbeBranchTaken(exists!=0,2);
5663 if( exists ) goto jump_to_p2;
5665 if( iSet>=0 ){
5666 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5668 break;
5672 #ifndef SQLITE_OMIT_TRIGGER
5674 /* Opcode: Program P1 P2 P3 P4 P5
5676 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5678 ** P1 contains the address of the memory cell that contains the first memory
5679 ** cell in an array of values used as arguments to the sub-program. P2
5680 ** contains the address to jump to if the sub-program throws an IGNORE
5681 ** exception using the RAISE() function. Register P3 contains the address
5682 ** of a memory cell in this (the parent) VM that is used to allocate the
5683 ** memory required by the sub-vdbe at runtime.
5685 ** P4 is a pointer to the VM containing the trigger program.
5687 ** If P5 is non-zero, then recursive program invocation is enabled.
5689 case OP_Program: { /* jump */
5690 int nMem; /* Number of memory registers for sub-program */
5691 int nByte; /* Bytes of runtime space required for sub-program */
5692 Mem *pRt; /* Register to allocate runtime space */
5693 Mem *pMem; /* Used to iterate through memory cells */
5694 Mem *pEnd; /* Last memory cell in new array */
5695 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5696 SubProgram *pProgram; /* Sub-program to execute */
5697 void *t; /* Token identifying trigger */
5699 pProgram = pOp->p4.pProgram;
5700 pRt = &aMem[pOp->p3];
5701 assert( pProgram->nOp>0 );
5703 /* If the p5 flag is clear, then recursive invocation of triggers is
5704 ** disabled for backwards compatibility (p5 is set if this sub-program
5705 ** is really a trigger, not a foreign key action, and the flag set
5706 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5708 ** It is recursive invocation of triggers, at the SQL level, that is
5709 ** disabled. In some cases a single trigger may generate more than one
5710 ** SubProgram (if the trigger may be executed with more than one different
5711 ** ON CONFLICT algorithm). SubProgram structures associated with a
5712 ** single trigger all have the same value for the SubProgram.token
5713 ** variable. */
5714 if( pOp->p5 ){
5715 t = pProgram->token;
5716 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5717 if( pFrame ) break;
5720 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5721 rc = SQLITE_ERROR;
5722 sqlite3VdbeError(p, "too many levels of trigger recursion");
5723 goto abort_due_to_error;
5726 /* Register pRt is used to store the memory required to save the state
5727 ** of the current program, and the memory required at runtime to execute
5728 ** the trigger program. If this trigger has been fired before, then pRt
5729 ** is already allocated. Otherwise, it must be initialized. */
5730 if( (pRt->flags&MEM_Frame)==0 ){
5731 /* SubProgram.nMem is set to the number of memory cells used by the
5732 ** program stored in SubProgram.aOp. As well as these, one memory
5733 ** cell is required for each cursor used by the program. Set local
5734 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5736 nMem = pProgram->nMem + pProgram->nCsr;
5737 assert( nMem>0 );
5738 if( pProgram->nCsr==0 ) nMem++;
5739 nByte = ROUND8(sizeof(VdbeFrame))
5740 + nMem * sizeof(Mem)
5741 + pProgram->nCsr * sizeof(VdbeCursor *)
5742 + pProgram->nOnce * sizeof(u8);
5743 pFrame = sqlite3DbMallocZero(db, nByte);
5744 if( !pFrame ){
5745 goto no_mem;
5747 sqlite3VdbeMemRelease(pRt);
5748 pRt->flags = MEM_Frame;
5749 pRt->u.pFrame = pFrame;
5751 pFrame->v = p;
5752 pFrame->nChildMem = nMem;
5753 pFrame->nChildCsr = pProgram->nCsr;
5754 pFrame->pc = (int)(pOp - aOp);
5755 pFrame->aMem = p->aMem;
5756 pFrame->nMem = p->nMem;
5757 pFrame->apCsr = p->apCsr;
5758 pFrame->nCursor = p->nCursor;
5759 pFrame->aOp = p->aOp;
5760 pFrame->nOp = p->nOp;
5761 pFrame->token = pProgram->token;
5762 pFrame->aOnceFlag = p->aOnceFlag;
5763 pFrame->nOnceFlag = p->nOnceFlag;
5764 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5765 pFrame->anExec = p->anExec;
5766 #endif
5768 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5769 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5770 pMem->flags = MEM_Undefined;
5771 pMem->db = db;
5773 }else{
5774 pFrame = pRt->u.pFrame;
5775 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5776 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
5777 assert( pProgram->nCsr==pFrame->nChildCsr );
5778 assert( (int)(pOp - aOp)==pFrame->pc );
5781 p->nFrame++;
5782 pFrame->pParent = p->pFrame;
5783 pFrame->lastRowid = lastRowid;
5784 pFrame->nChange = p->nChange;
5785 pFrame->nDbChange = p->db->nChange;
5786 assert( pFrame->pAuxData==0 );
5787 pFrame->pAuxData = p->pAuxData;
5788 p->pAuxData = 0;
5789 p->nChange = 0;
5790 p->pFrame = pFrame;
5791 p->aMem = aMem = VdbeFrameMem(pFrame);
5792 p->nMem = pFrame->nChildMem;
5793 p->nCursor = (u16)pFrame->nChildCsr;
5794 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
5795 p->aOp = aOp = pProgram->aOp;
5796 p->nOp = pProgram->nOp;
5797 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5798 p->nOnceFlag = pProgram->nOnce;
5799 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5800 p->anExec = 0;
5801 #endif
5802 pOp = &aOp[-1];
5803 memset(p->aOnceFlag, 0, p->nOnceFlag);
5805 break;
5808 /* Opcode: Param P1 P2 * * *
5810 ** This opcode is only ever present in sub-programs called via the
5811 ** OP_Program instruction. Copy a value currently stored in a memory
5812 ** cell of the calling (parent) frame to cell P2 in the current frames
5813 ** address space. This is used by trigger programs to access the new.*
5814 ** and old.* values.
5816 ** The address of the cell in the parent frame is determined by adding
5817 ** the value of the P1 argument to the value of the P1 argument to the
5818 ** calling OP_Program instruction.
5820 case OP_Param: { /* out2 */
5821 VdbeFrame *pFrame;
5822 Mem *pIn;
5823 pOut = out2Prerelease(p, pOp);
5824 pFrame = p->pFrame;
5825 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5826 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5827 break;
5830 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5832 #ifndef SQLITE_OMIT_FOREIGN_KEY
5833 /* Opcode: FkCounter P1 P2 * * *
5834 ** Synopsis: fkctr[P1]+=P2
5836 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5837 ** If P1 is non-zero, the database constraint counter is incremented
5838 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5839 ** statement counter is incremented (immediate foreign key constraints).
5841 case OP_FkCounter: {
5842 if( db->flags & SQLITE_DeferFKs ){
5843 db->nDeferredImmCons += pOp->p2;
5844 }else if( pOp->p1 ){
5845 db->nDeferredCons += pOp->p2;
5846 }else{
5847 p->nFkConstraint += pOp->p2;
5849 break;
5852 /* Opcode: FkIfZero P1 P2 * * *
5853 ** Synopsis: if fkctr[P1]==0 goto P2
5855 ** This opcode tests if a foreign key constraint-counter is currently zero.
5856 ** If so, jump to instruction P2. Otherwise, fall through to the next
5857 ** instruction.
5859 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5860 ** is zero (the one that counts deferred constraint violations). If P1 is
5861 ** zero, the jump is taken if the statement constraint-counter is zero
5862 ** (immediate foreign key constraint violations).
5864 case OP_FkIfZero: { /* jump */
5865 if( pOp->p1 ){
5866 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5867 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5868 }else{
5869 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5870 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5872 break;
5874 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5876 #ifndef SQLITE_OMIT_AUTOINCREMENT
5877 /* Opcode: MemMax P1 P2 * * *
5878 ** Synopsis: r[P1]=max(r[P1],r[P2])
5880 ** P1 is a register in the root frame of this VM (the root frame is
5881 ** different from the current frame if this instruction is being executed
5882 ** within a sub-program). Set the value of register P1 to the maximum of
5883 ** its current value and the value in register P2.
5885 ** This instruction throws an error if the memory cell is not initially
5886 ** an integer.
5888 case OP_MemMax: { /* in2 */
5889 VdbeFrame *pFrame;
5890 if( p->pFrame ){
5891 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5892 pIn1 = &pFrame->aMem[pOp->p1];
5893 }else{
5894 pIn1 = &aMem[pOp->p1];
5896 assert( memIsValid(pIn1) );
5897 sqlite3VdbeMemIntegerify(pIn1);
5898 pIn2 = &aMem[pOp->p2];
5899 sqlite3VdbeMemIntegerify(pIn2);
5900 if( pIn1->u.i<pIn2->u.i){
5901 pIn1->u.i = pIn2->u.i;
5903 break;
5905 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5907 /* Opcode: IfPos P1 P2 P3 * *
5908 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5910 ** Register P1 must contain an integer.
5911 ** If the value of register P1 is 1 or greater, subtract P3 from the
5912 ** value in P1 and jump to P2.
5914 ** If the initial value of register P1 is less than 1, then the
5915 ** value is unchanged and control passes through to the next instruction.
5917 case OP_IfPos: { /* jump, in1 */
5918 pIn1 = &aMem[pOp->p1];
5919 assert( pIn1->flags&MEM_Int );
5920 VdbeBranchTaken( pIn1->u.i>0, 2);
5921 if( pIn1->u.i>0 ){
5922 pIn1->u.i -= pOp->p3;
5923 goto jump_to_p2;
5925 break;
5928 /* Opcode: OffsetLimit P1 P2 P3 * *
5929 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
5931 ** This opcode performs a commonly used computation associated with
5932 ** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
5933 ** holds the offset counter. The opcode computes the combined value
5934 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
5935 ** value computed is the total number of rows that will need to be
5936 ** visited in order to complete the query.
5938 ** If r[P3] is zero or negative, that means there is no OFFSET
5939 ** and r[P2] is set to be the value of the LIMIT, r[P1].
5941 ** if r[P1] is zero or negative, that means there is no LIMIT
5942 ** and r[P2] is set to -1.
5944 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
5946 case OP_OffsetLimit: { /* in1, out2, in3 */
5947 pIn1 = &aMem[pOp->p1];
5948 pIn3 = &aMem[pOp->p3];
5949 pOut = out2Prerelease(p, pOp);
5950 assert( pIn1->flags & MEM_Int );
5951 assert( pIn3->flags & MEM_Int );
5952 pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);
5953 break;
5956 /* Opcode: IfNotZero P1 P2 P3 * *
5957 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5959 ** Register P1 must contain an integer. If the content of register P1 is
5960 ** initially nonzero, then subtract P3 from the value in register P1 and
5961 ** jump to P2. If register P1 is initially zero, leave it unchanged
5962 ** and fall through.
5964 case OP_IfNotZero: { /* jump, in1 */
5965 pIn1 = &aMem[pOp->p1];
5966 assert( pIn1->flags&MEM_Int );
5967 VdbeBranchTaken(pIn1->u.i<0, 2);
5968 if( pIn1->u.i ){
5969 pIn1->u.i -= pOp->p3;
5970 goto jump_to_p2;
5972 break;
5975 /* Opcode: DecrJumpZero P1 P2 * * *
5976 ** Synopsis: if (--r[P1])==0 goto P2
5978 ** Register P1 must hold an integer. Decrement the value in register P1
5979 ** then jump to P2 if the new value is exactly zero.
5981 case OP_DecrJumpZero: { /* jump, in1 */
5982 pIn1 = &aMem[pOp->p1];
5983 assert( pIn1->flags&MEM_Int );
5984 pIn1->u.i--;
5985 VdbeBranchTaken(pIn1->u.i==0, 2);
5986 if( pIn1->u.i==0 ) goto jump_to_p2;
5987 break;
5991 /* Opcode: AggStep0 * P2 P3 P4 P5
5992 ** Synopsis: accum=r[P3] step(r[P2@P5])
5994 ** Execute the step function for an aggregate. The
5995 ** function has P5 arguments. P4 is a pointer to the FuncDef
5996 ** structure that specifies the function. Register P3 is the
5997 ** accumulator.
5999 ** The P5 arguments are taken from register P2 and its
6000 ** successors.
6002 /* Opcode: AggStep * P2 P3 P4 P5
6003 ** Synopsis: accum=r[P3] step(r[P2@P5])
6005 ** Execute the step function for an aggregate. The
6006 ** function has P5 arguments. P4 is a pointer to an sqlite3_context
6007 ** object that is used to run the function. Register P3 is
6008 ** as the accumulator.
6010 ** The P5 arguments are taken from register P2 and its
6011 ** successors.
6013 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
6014 ** the FuncDef stored in P4 is converted into an sqlite3_context and
6015 ** the opcode is changed. In this way, the initialization of the
6016 ** sqlite3_context only happens once, instead of on each call to the
6017 ** step function.
6019 case OP_AggStep0: {
6020 int n;
6021 sqlite3_context *pCtx;
6023 assert( pOp->p4type==P4_FUNCDEF );
6024 n = pOp->p5;
6025 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6026 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
6027 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
6028 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
6029 if( pCtx==0 ) goto no_mem;
6030 pCtx->pMem = 0;
6031 pCtx->pFunc = pOp->p4.pFunc;
6032 pCtx->iOp = (int)(pOp - aOp);
6033 pCtx->pVdbe = p;
6034 pCtx->argc = n;
6035 pOp->p4type = P4_FUNCCTX;
6036 pOp->p4.pCtx = pCtx;
6037 pOp->opcode = OP_AggStep;
6038 /* Fall through into OP_AggStep */
6040 case OP_AggStep: {
6041 int i;
6042 sqlite3_context *pCtx;
6043 Mem *pMem;
6044 Mem t;
6046 assert( pOp->p4type==P4_FUNCCTX );
6047 pCtx = pOp->p4.pCtx;
6048 pMem = &aMem[pOp->p3];
6050 /* If this function is inside of a trigger, the register array in aMem[]
6051 ** might change from one evaluation to the next. The next block of code
6052 ** checks to see if the register array has changed, and if so it
6053 ** reinitializes the relavant parts of the sqlite3_context object */
6054 if( pCtx->pMem != pMem ){
6055 pCtx->pMem = pMem;
6056 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6059 #ifdef SQLITE_DEBUG
6060 for(i=0; i<pCtx->argc; i++){
6061 assert( memIsValid(pCtx->argv[i]) );
6062 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6064 #endif
6066 pMem->n++;
6067 sqlite3VdbeMemInit(&t, db, MEM_Null);
6068 pCtx->pOut = &t;
6069 pCtx->fErrorOrAux = 0;
6070 pCtx->skipFlag = 0;
6071 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
6072 if( pCtx->fErrorOrAux ){
6073 if( pCtx->isError ){
6074 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6075 rc = pCtx->isError;
6077 sqlite3VdbeMemRelease(&t);
6078 if( rc ) goto abort_due_to_error;
6079 }else{
6080 assert( t.flags==MEM_Null );
6082 if( pCtx->skipFlag ){
6083 assert( pOp[-1].opcode==OP_CollSeq );
6084 i = pOp[-1].p1;
6085 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6087 break;
6090 /* Opcode: AggFinal P1 P2 * P4 *
6091 ** Synopsis: accum=r[P1] N=P2
6093 ** Execute the finalizer function for an aggregate. P1 is
6094 ** the memory location that is the accumulator for the aggregate.
6096 ** P2 is the number of arguments that the step function takes and
6097 ** P4 is a pointer to the FuncDef for this function. The P2
6098 ** argument is not used by this opcode. It is only there to disambiguate
6099 ** functions that can take varying numbers of arguments. The
6100 ** P4 argument is only needed for the degenerate case where
6101 ** the step function was not previously called.
6103 case OP_AggFinal: {
6104 Mem *pMem;
6105 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
6106 pMem = &aMem[pOp->p1];
6107 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
6108 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
6109 if( rc ){
6110 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
6111 goto abort_due_to_error;
6113 sqlite3VdbeChangeEncoding(pMem, encoding);
6114 UPDATE_MAX_BLOBSIZE(pMem);
6115 if( sqlite3VdbeMemTooBig(pMem) ){
6116 goto too_big;
6118 break;
6121 #ifndef SQLITE_OMIT_WAL
6122 /* Opcode: Checkpoint P1 P2 P3 * *
6124 ** Checkpoint database P1. This is a no-op if P1 is not currently in
6125 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6126 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
6127 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
6128 ** WAL after the checkpoint into mem[P3+1] and the number of pages
6129 ** in the WAL that have been checkpointed after the checkpoint
6130 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
6131 ** mem[P3+2] are initialized to -1.
6133 case OP_Checkpoint: {
6134 int i; /* Loop counter */
6135 int aRes[3]; /* Results */
6136 Mem *pMem; /* Write results here */
6138 assert( p->readOnly==0 );
6139 aRes[0] = 0;
6140 aRes[1] = aRes[2] = -1;
6141 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6142 || pOp->p2==SQLITE_CHECKPOINT_FULL
6143 || pOp->p2==SQLITE_CHECKPOINT_RESTART
6144 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
6146 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
6147 if( rc ){
6148 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
6149 rc = SQLITE_OK;
6150 aRes[0] = 1;
6152 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6153 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6155 break;
6157 #endif
6159 #ifndef SQLITE_OMIT_PRAGMA
6160 /* Opcode: JournalMode P1 P2 P3 * *
6162 ** Change the journal mode of database P1 to P3. P3 must be one of the
6163 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6164 ** modes (delete, truncate, persist, off and memory), this is a simple
6165 ** operation. No IO is required.
6167 ** If changing into or out of WAL mode the procedure is more complicated.
6169 ** Write a string containing the final journal-mode to register P2.
6171 case OP_JournalMode: { /* out2 */
6172 Btree *pBt; /* Btree to change journal mode of */
6173 Pager *pPager; /* Pager associated with pBt */
6174 int eNew; /* New journal mode */
6175 int eOld; /* The old journal mode */
6176 #ifndef SQLITE_OMIT_WAL
6177 const char *zFilename; /* Name of database file for pPager */
6178 #endif
6180 pOut = out2Prerelease(p, pOp);
6181 eNew = pOp->p3;
6182 assert( eNew==PAGER_JOURNALMODE_DELETE
6183 || eNew==PAGER_JOURNALMODE_TRUNCATE
6184 || eNew==PAGER_JOURNALMODE_PERSIST
6185 || eNew==PAGER_JOURNALMODE_OFF
6186 || eNew==PAGER_JOURNALMODE_MEMORY
6187 || eNew==PAGER_JOURNALMODE_WAL
6188 || eNew==PAGER_JOURNALMODE_QUERY
6190 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6191 assert( p->readOnly==0 );
6193 pBt = db->aDb[pOp->p1].pBt;
6194 pPager = sqlite3BtreePager(pBt);
6195 eOld = sqlite3PagerGetJournalMode(pPager);
6196 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6197 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6199 #ifndef SQLITE_OMIT_WAL
6200 zFilename = sqlite3PagerFilename(pPager, 1);
6202 /* Do not allow a transition to journal_mode=WAL for a database
6203 ** in temporary storage or if the VFS does not support shared memory
6205 if( eNew==PAGER_JOURNALMODE_WAL
6206 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
6207 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
6209 eNew = eOld;
6212 if( (eNew!=eOld)
6213 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6215 if( !db->autoCommit || db->nVdbeRead>1 ){
6216 rc = SQLITE_ERROR;
6217 sqlite3VdbeError(p,
6218 "cannot change %s wal mode from within a transaction",
6219 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6221 goto abort_due_to_error;
6222 }else{
6224 if( eOld==PAGER_JOURNALMODE_WAL ){
6225 /* If leaving WAL mode, close the log file. If successful, the call
6226 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6227 ** file. An EXCLUSIVE lock may still be held on the database file
6228 ** after a successful return.
6230 rc = sqlite3PagerCloseWal(pPager);
6231 if( rc==SQLITE_OK ){
6232 sqlite3PagerSetJournalMode(pPager, eNew);
6234 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6235 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6236 ** as an intermediate */
6237 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6240 /* Open a transaction on the database file. Regardless of the journal
6241 ** mode, this transaction always uses a rollback journal.
6243 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6244 if( rc==SQLITE_OK ){
6245 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6249 #endif /* ifndef SQLITE_OMIT_WAL */
6251 if( rc ) eNew = eOld;
6252 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6254 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6255 pOut->z = (char *)sqlite3JournalModename(eNew);
6256 pOut->n = sqlite3Strlen30(pOut->z);
6257 pOut->enc = SQLITE_UTF8;
6258 sqlite3VdbeChangeEncoding(pOut, encoding);
6259 if( rc ) goto abort_due_to_error;
6260 break;
6262 #endif /* SQLITE_OMIT_PRAGMA */
6264 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6265 /* Opcode: Vacuum * * * * *
6267 ** Vacuum the entire database. This opcode will cause other virtual
6268 ** machines to be created and run. It may not be called from within
6269 ** a transaction.
6271 case OP_Vacuum: {
6272 assert( p->readOnly==0 );
6273 rc = sqlite3RunVacuum(&p->zErrMsg, db);
6274 if( rc ) goto abort_due_to_error;
6275 break;
6277 #endif
6279 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6280 /* Opcode: IncrVacuum P1 P2 * * *
6282 ** Perform a single step of the incremental vacuum procedure on
6283 ** the P1 database. If the vacuum has finished, jump to instruction
6284 ** P2. Otherwise, fall through to the next instruction.
6286 case OP_IncrVacuum: { /* jump */
6287 Btree *pBt;
6289 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6290 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6291 assert( p->readOnly==0 );
6292 pBt = db->aDb[pOp->p1].pBt;
6293 rc = sqlite3BtreeIncrVacuum(pBt);
6294 VdbeBranchTaken(rc==SQLITE_DONE,2);
6295 if( rc ){
6296 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6297 rc = SQLITE_OK;
6298 goto jump_to_p2;
6300 break;
6302 #endif
6304 /* Opcode: Expire P1 * * * *
6306 ** Cause precompiled statements to expire. When an expired statement
6307 ** is executed using sqlite3_step() it will either automatically
6308 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6309 ** or it will fail with SQLITE_SCHEMA.
6311 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6312 ** then only the currently executing statement is expired.
6314 case OP_Expire: {
6315 if( !pOp->p1 ){
6316 sqlite3ExpirePreparedStatements(db);
6317 }else{
6318 p->expired = 1;
6320 break;
6323 #ifndef SQLITE_OMIT_SHARED_CACHE
6324 /* Opcode: TableLock P1 P2 P3 P4 *
6325 ** Synopsis: iDb=P1 root=P2 write=P3
6327 ** Obtain a lock on a particular table. This instruction is only used when
6328 ** the shared-cache feature is enabled.
6330 ** P1 is the index of the database in sqlite3.aDb[] of the database
6331 ** on which the lock is acquired. A readlock is obtained if P3==0 or
6332 ** a write lock if P3==1.
6334 ** P2 contains the root-page of the table to lock.
6336 ** P4 contains a pointer to the name of the table being locked. This is only
6337 ** used to generate an error message if the lock cannot be obtained.
6339 case OP_TableLock: {
6340 u8 isWriteLock = (u8)pOp->p3;
6341 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6342 int p1 = pOp->p1;
6343 assert( p1>=0 && p1<db->nDb );
6344 assert( DbMaskTest(p->btreeMask, p1) );
6345 assert( isWriteLock==0 || isWriteLock==1 );
6346 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6347 if( rc ){
6348 if( (rc&0xFF)==SQLITE_LOCKED ){
6349 const char *z = pOp->p4.z;
6350 sqlite3VdbeError(p, "database table is locked: %s", z);
6352 goto abort_due_to_error;
6355 break;
6357 #endif /* SQLITE_OMIT_SHARED_CACHE */
6359 #ifndef SQLITE_OMIT_VIRTUALTABLE
6360 /* Opcode: VBegin * * * P4 *
6362 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6363 ** xBegin method for that table.
6365 ** Also, whether or not P4 is set, check that this is not being called from
6366 ** within a callback to a virtual table xSync() method. If it is, the error
6367 ** code will be set to SQLITE_LOCKED.
6369 case OP_VBegin: {
6370 VTable *pVTab;
6371 pVTab = pOp->p4.pVtab;
6372 rc = sqlite3VtabBegin(db, pVTab);
6373 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6374 if( rc ) goto abort_due_to_error;
6375 break;
6377 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6379 #ifndef SQLITE_OMIT_VIRTUALTABLE
6380 /* Opcode: VCreate P1 P2 * * *
6382 ** P2 is a register that holds the name of a virtual table in database
6383 ** P1. Call the xCreate method for that table.
6385 case OP_VCreate: {
6386 Mem sMem; /* For storing the record being decoded */
6387 const char *zTab; /* Name of the virtual table */
6389 memset(&sMem, 0, sizeof(sMem));
6390 sMem.db = db;
6391 /* Because P2 is always a static string, it is impossible for the
6392 ** sqlite3VdbeMemCopy() to fail */
6393 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6394 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6395 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6396 assert( rc==SQLITE_OK );
6397 zTab = (const char*)sqlite3_value_text(&sMem);
6398 assert( zTab || db->mallocFailed );
6399 if( zTab ){
6400 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6402 sqlite3VdbeMemRelease(&sMem);
6403 if( rc ) goto abort_due_to_error;
6404 break;
6406 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6408 #ifndef SQLITE_OMIT_VIRTUALTABLE
6409 /* Opcode: VDestroy P1 * * P4 *
6411 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
6412 ** of that table.
6414 case OP_VDestroy: {
6415 db->nVDestroy++;
6416 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6417 db->nVDestroy--;
6418 if( rc ) goto abort_due_to_error;
6419 break;
6421 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6423 #ifndef SQLITE_OMIT_VIRTUALTABLE
6424 /* Opcode: VOpen P1 * * P4 *
6426 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6427 ** P1 is a cursor number. This opcode opens a cursor to the virtual
6428 ** table and stores that cursor in P1.
6430 case OP_VOpen: {
6431 VdbeCursor *pCur;
6432 sqlite3_vtab_cursor *pVCur;
6433 sqlite3_vtab *pVtab;
6434 const sqlite3_module *pModule;
6436 assert( p->bIsReader );
6437 pCur = 0;
6438 pVCur = 0;
6439 pVtab = pOp->p4.pVtab->pVtab;
6440 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6441 rc = SQLITE_LOCKED;
6442 goto abort_due_to_error;
6444 pModule = pVtab->pModule;
6445 rc = pModule->xOpen(pVtab, &pVCur);
6446 sqlite3VtabImportErrmsg(p, pVtab);
6447 if( rc ) goto abort_due_to_error;
6449 /* Initialize sqlite3_vtab_cursor base class */
6450 pVCur->pVtab = pVtab;
6452 /* Initialize vdbe cursor object */
6453 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6454 if( pCur ){
6455 pCur->uc.pVCur = pVCur;
6456 pVtab->nRef++;
6457 }else{
6458 assert( db->mallocFailed );
6459 pModule->xClose(pVCur);
6460 goto no_mem;
6462 break;
6464 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6466 #ifndef SQLITE_OMIT_VIRTUALTABLE
6467 /* Opcode: VFilter P1 P2 P3 P4 *
6468 ** Synopsis: iplan=r[P3] zplan='P4'
6470 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6471 ** the filtered result set is empty.
6473 ** P4 is either NULL or a string that was generated by the xBestIndex
6474 ** method of the module. The interpretation of the P4 string is left
6475 ** to the module implementation.
6477 ** This opcode invokes the xFilter method on the virtual table specified
6478 ** by P1. The integer query plan parameter to xFilter is stored in register
6479 ** P3. Register P3+1 stores the argc parameter to be passed to the
6480 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6481 ** additional parameters which are passed to
6482 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6484 ** A jump is made to P2 if the result set after filtering would be empty.
6486 case OP_VFilter: { /* jump */
6487 int nArg;
6488 int iQuery;
6489 const sqlite3_module *pModule;
6490 Mem *pQuery;
6491 Mem *pArgc;
6492 sqlite3_vtab_cursor *pVCur;
6493 sqlite3_vtab *pVtab;
6494 VdbeCursor *pCur;
6495 int res;
6496 int i;
6497 Mem **apArg;
6499 pQuery = &aMem[pOp->p3];
6500 pArgc = &pQuery[1];
6501 pCur = p->apCsr[pOp->p1];
6502 assert( memIsValid(pQuery) );
6503 REGISTER_TRACE(pOp->p3, pQuery);
6504 assert( pCur->eCurType==CURTYPE_VTAB );
6505 pVCur = pCur->uc.pVCur;
6506 pVtab = pVCur->pVtab;
6507 pModule = pVtab->pModule;
6509 /* Grab the index number and argc parameters */
6510 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6511 nArg = (int)pArgc->u.i;
6512 iQuery = (int)pQuery->u.i;
6514 /* Invoke the xFilter method */
6515 res = 0;
6516 apArg = p->apArg;
6517 for(i = 0; i<nArg; i++){
6518 apArg[i] = &pArgc[i+1];
6520 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6521 sqlite3VtabImportErrmsg(p, pVtab);
6522 if( rc ) goto abort_due_to_error;
6523 res = pModule->xEof(pVCur);
6524 pCur->nullRow = 0;
6525 VdbeBranchTaken(res!=0,2);
6526 if( res ) goto jump_to_p2;
6527 break;
6529 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6531 #ifndef SQLITE_OMIT_VIRTUALTABLE
6532 /* Opcode: VColumn P1 P2 P3 * *
6533 ** Synopsis: r[P3]=vcolumn(P2)
6535 ** Store the value of the P2-th column of
6536 ** the row of the virtual-table that the
6537 ** P1 cursor is pointing to into register P3.
6539 case OP_VColumn: {
6540 sqlite3_vtab *pVtab;
6541 const sqlite3_module *pModule;
6542 Mem *pDest;
6543 sqlite3_context sContext;
6545 VdbeCursor *pCur = p->apCsr[pOp->p1];
6546 assert( pCur->eCurType==CURTYPE_VTAB );
6547 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6548 pDest = &aMem[pOp->p3];
6549 memAboutToChange(p, pDest);
6550 if( pCur->nullRow ){
6551 sqlite3VdbeMemSetNull(pDest);
6552 break;
6554 pVtab = pCur->uc.pVCur->pVtab;
6555 pModule = pVtab->pModule;
6556 assert( pModule->xColumn );
6557 memset(&sContext, 0, sizeof(sContext));
6558 sContext.pOut = pDest;
6559 MemSetTypeFlag(pDest, MEM_Null);
6560 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6561 sqlite3VtabImportErrmsg(p, pVtab);
6562 if( sContext.isError ){
6563 rc = sContext.isError;
6565 sqlite3VdbeChangeEncoding(pDest, encoding);
6566 REGISTER_TRACE(pOp->p3, pDest);
6567 UPDATE_MAX_BLOBSIZE(pDest);
6569 if( sqlite3VdbeMemTooBig(pDest) ){
6570 goto too_big;
6572 if( rc ) goto abort_due_to_error;
6573 break;
6575 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6577 #ifndef SQLITE_OMIT_VIRTUALTABLE
6578 /* Opcode: VNext P1 P2 * * *
6580 ** Advance virtual table P1 to the next row in its result set and
6581 ** jump to instruction P2. Or, if the virtual table has reached
6582 ** the end of its result set, then fall through to the next instruction.
6584 case OP_VNext: { /* jump */
6585 sqlite3_vtab *pVtab;
6586 const sqlite3_module *pModule;
6587 int res;
6588 VdbeCursor *pCur;
6590 res = 0;
6591 pCur = p->apCsr[pOp->p1];
6592 assert( pCur->eCurType==CURTYPE_VTAB );
6593 if( pCur->nullRow ){
6594 break;
6596 pVtab = pCur->uc.pVCur->pVtab;
6597 pModule = pVtab->pModule;
6598 assert( pModule->xNext );
6600 /* Invoke the xNext() method of the module. There is no way for the
6601 ** underlying implementation to return an error if one occurs during
6602 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6603 ** data is available) and the error code returned when xColumn or
6604 ** some other method is next invoked on the save virtual table cursor.
6606 rc = pModule->xNext(pCur->uc.pVCur);
6607 sqlite3VtabImportErrmsg(p, pVtab);
6608 if( rc ) goto abort_due_to_error;
6609 res = pModule->xEof(pCur->uc.pVCur);
6610 VdbeBranchTaken(!res,2);
6611 if( !res ){
6612 /* If there is data, jump to P2 */
6613 goto jump_to_p2_and_check_for_interrupt;
6615 goto check_for_interrupt;
6617 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6619 #ifndef SQLITE_OMIT_VIRTUALTABLE
6620 /* Opcode: VRename P1 * * P4 *
6622 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6623 ** This opcode invokes the corresponding xRename method. The value
6624 ** in register P1 is passed as the zName argument to the xRename method.
6626 case OP_VRename: {
6627 sqlite3_vtab *pVtab;
6628 Mem *pName;
6630 pVtab = pOp->p4.pVtab->pVtab;
6631 pName = &aMem[pOp->p1];
6632 assert( pVtab->pModule->xRename );
6633 assert( memIsValid(pName) );
6634 assert( p->readOnly==0 );
6635 REGISTER_TRACE(pOp->p1, pName);
6636 assert( pName->flags & MEM_Str );
6637 testcase( pName->enc==SQLITE_UTF8 );
6638 testcase( pName->enc==SQLITE_UTF16BE );
6639 testcase( pName->enc==SQLITE_UTF16LE );
6640 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6641 if( rc ) goto abort_due_to_error;
6642 rc = pVtab->pModule->xRename(pVtab, pName->z);
6643 sqlite3VtabImportErrmsg(p, pVtab);
6644 p->expired = 0;
6645 if( rc ) goto abort_due_to_error;
6646 break;
6648 #endif
6650 #ifndef SQLITE_OMIT_VIRTUALTABLE
6651 /* Opcode: VUpdate P1 P2 P3 P4 P5
6652 ** Synopsis: data=r[P3@P2]
6654 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6655 ** This opcode invokes the corresponding xUpdate method. P2 values
6656 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6657 ** invocation. The value in register (P3+P2-1) corresponds to the
6658 ** p2th element of the argv array passed to xUpdate.
6660 ** The xUpdate method will do a DELETE or an INSERT or both.
6661 ** The argv[0] element (which corresponds to memory cell P3)
6662 ** is the rowid of a row to delete. If argv[0] is NULL then no
6663 ** deletion occurs. The argv[1] element is the rowid of the new
6664 ** row. This can be NULL to have the virtual table select the new
6665 ** rowid for itself. The subsequent elements in the array are
6666 ** the values of columns in the new row.
6668 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6669 ** a row to delete.
6671 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6672 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6673 ** is set to the value of the rowid for the row just inserted.
6675 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6676 ** apply in the case of a constraint failure on an insert or update.
6678 case OP_VUpdate: {
6679 sqlite3_vtab *pVtab;
6680 const sqlite3_module *pModule;
6681 int nArg;
6682 int i;
6683 sqlite_int64 rowid;
6684 Mem **apArg;
6685 Mem *pX;
6687 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6688 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6690 assert( p->readOnly==0 );
6691 pVtab = pOp->p4.pVtab->pVtab;
6692 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6693 rc = SQLITE_LOCKED;
6694 goto abort_due_to_error;
6696 pModule = pVtab->pModule;
6697 nArg = pOp->p2;
6698 assert( pOp->p4type==P4_VTAB );
6699 if( ALWAYS(pModule->xUpdate) ){
6700 u8 vtabOnConflict = db->vtabOnConflict;
6701 apArg = p->apArg;
6702 pX = &aMem[pOp->p3];
6703 for(i=0; i<nArg; i++){
6704 assert( memIsValid(pX) );
6705 memAboutToChange(p, pX);
6706 apArg[i] = pX;
6707 pX++;
6709 db->vtabOnConflict = pOp->p5;
6710 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6711 db->vtabOnConflict = vtabOnConflict;
6712 sqlite3VtabImportErrmsg(p, pVtab);
6713 if( rc==SQLITE_OK && pOp->p1 ){
6714 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6715 db->lastRowid = lastRowid = rowid;
6717 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6718 if( pOp->p5==OE_Ignore ){
6719 rc = SQLITE_OK;
6720 }else{
6721 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6723 }else{
6724 p->nChange++;
6726 if( rc ) goto abort_due_to_error;
6728 break;
6730 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6732 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6733 /* Opcode: Pagecount P1 P2 * * *
6735 ** Write the current number of pages in database P1 to memory cell P2.
6737 case OP_Pagecount: { /* out2 */
6738 pOut = out2Prerelease(p, pOp);
6739 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6740 break;
6742 #endif
6745 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6746 /* Opcode: MaxPgcnt P1 P2 P3 * *
6748 ** Try to set the maximum page count for database P1 to the value in P3.
6749 ** Do not let the maximum page count fall below the current page count and
6750 ** do not change the maximum page count value if P3==0.
6752 ** Store the maximum page count after the change in register P2.
6754 case OP_MaxPgcnt: { /* out2 */
6755 unsigned int newMax;
6756 Btree *pBt;
6758 pOut = out2Prerelease(p, pOp);
6759 pBt = db->aDb[pOp->p1].pBt;
6760 newMax = 0;
6761 if( pOp->p3 ){
6762 newMax = sqlite3BtreeLastPage(pBt);
6763 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6765 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6766 break;
6768 #endif
6771 /* Opcode: Init * P2 * P4 *
6772 ** Synopsis: Start at P2
6774 ** Programs contain a single instance of this opcode as the very first
6775 ** opcode.
6777 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6778 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6779 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6781 ** If P2 is not zero, jump to instruction P2.
6783 case OP_Init: { /* jump */
6784 char *zTrace;
6786 /* If the P4 argument is not NULL, then it must be an SQL comment string.
6787 ** The "--" string is broken up to prevent false-positives with srcck1.c.
6789 ** This assert() provides evidence for:
6790 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
6791 ** would have been returned by the legacy sqlite3_trace() interface by
6792 ** using the X argument when X begins with "--" and invoking
6793 ** sqlite3_expanded_sql(P) otherwise.
6795 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
6797 #ifndef SQLITE_OMIT_TRACE
6798 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
6799 && !p->doingRerun
6800 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6802 #ifndef SQLITE_OMIT_DEPRECATED
6803 if( db->mTrace & SQLITE_TRACE_LEGACY ){
6804 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
6805 char *z = sqlite3VdbeExpandSql(p, zTrace);
6806 x(db->pTraceArg, z);
6807 sqlite3_free(z);
6808 }else
6809 #endif
6811 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
6814 #ifdef SQLITE_USE_FCNTL_TRACE
6815 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6816 if( zTrace ){
6817 int i;
6818 for(i=0; i<db->nDb; i++){
6819 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6820 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6823 #endif /* SQLITE_USE_FCNTL_TRACE */
6824 #ifdef SQLITE_DEBUG
6825 if( (db->flags & SQLITE_SqlTrace)!=0
6826 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6828 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6830 #endif /* SQLITE_DEBUG */
6831 #endif /* SQLITE_OMIT_TRACE */
6832 if( pOp->p2 ) goto jump_to_p2;
6833 break;
6836 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6837 /* Opcode: CursorHint P1 * * P4 *
6839 ** Provide a hint to cursor P1 that it only needs to return rows that
6840 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6841 ** to values currently held in registers. TK_COLUMN terms in the P4
6842 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6844 case OP_CursorHint: {
6845 VdbeCursor *pC;
6847 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6848 assert( pOp->p4type==P4_EXPR );
6849 pC = p->apCsr[pOp->p1];
6850 if( pC ){
6851 assert( pC->eCurType==CURTYPE_BTREE );
6852 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6853 pOp->p4.pExpr, aMem);
6855 break;
6857 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6859 /* Opcode: Noop * * * * *
6861 ** Do nothing. This instruction is often useful as a jump
6862 ** destination.
6865 ** The magic Explain opcode are only inserted when explain==2 (which
6866 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6867 ** This opcode records information from the optimizer. It is the
6868 ** the same as a no-op. This opcodesnever appears in a real VM program.
6870 default: { /* This is really OP_Noop and OP_Explain */
6871 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6872 break;
6875 /*****************************************************************************
6876 ** The cases of the switch statement above this line should all be indented
6877 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6878 ** readability. From this point on down, the normal indentation rules are
6879 ** restored.
6880 *****************************************************************************/
6883 #ifdef VDBE_PROFILE
6885 u64 endTime = sqlite3Hwtime();
6886 if( endTime>start ) pOrigOp->cycles += endTime - start;
6887 pOrigOp->cnt++;
6889 #endif
6891 /* The following code adds nothing to the actual functionality
6892 ** of the program. It is only here for testing and debugging.
6893 ** On the other hand, it does burn CPU cycles every time through
6894 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6896 #ifndef NDEBUG
6897 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6899 #ifdef SQLITE_DEBUG
6900 if( db->flags & SQLITE_VdbeTrace ){
6901 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
6902 if( rc!=0 ) printf("rc=%d\n",rc);
6903 if( opProperty & (OPFLG_OUT2) ){
6904 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6906 if( opProperty & OPFLG_OUT3 ){
6907 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6910 #endif /* SQLITE_DEBUG */
6911 #endif /* NDEBUG */
6912 } /* The end of the for(;;) loop the loops through opcodes */
6914 /* If we reach this point, it means that execution is finished with
6915 ** an error of some kind.
6917 abort_due_to_error:
6918 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
6919 assert( rc );
6920 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
6921 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6923 p->rc = rc;
6924 sqlite3SystemError(db, rc);
6925 testcase( sqlite3GlobalConfig.xLog!=0 );
6926 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6927 (int)(pOp - aOp), p->zSql, p->zErrMsg);
6928 sqlite3VdbeHalt(p);
6929 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
6930 rc = SQLITE_ERROR;
6931 if( resetSchemaOnFault>0 ){
6932 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6935 /* This is the only way out of this procedure. We have to
6936 ** release the mutexes on btrees that were acquired at the
6937 ** top. */
6938 vdbe_return:
6939 db->lastRowid = lastRowid;
6940 testcase( nVmStep>0 );
6941 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6942 sqlite3VdbeLeave(p);
6943 assert( rc!=SQLITE_OK || nExtraDelete==0
6944 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
6946 return rc;
6948 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6949 ** is encountered.
6951 too_big:
6952 sqlite3VdbeError(p, "string or blob too big");
6953 rc = SQLITE_TOOBIG;
6954 goto abort_due_to_error;
6956 /* Jump to here if a malloc() fails.
6958 no_mem:
6959 sqlite3OomFault(db);
6960 sqlite3VdbeError(p, "out of memory");
6961 rc = SQLITE_NOMEM_BKPT;
6962 goto abort_due_to_error;
6964 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6965 ** flag.
6967 abort_due_to_interrupt:
6968 assert( db->u1.isInterrupted );
6969 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
6970 p->rc = rc;
6971 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6972 goto abort_due_to_error;