Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / insert.c
blob5dc045ab69a0deee95374e09278002fdfa101a80
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 v = sqlite3GetVdbe(pParse);
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
37 sqlite3TableLock(pParse, iDb, pTab->tnum,
38 (opcode==OP_OpenWrite)?1:0, pTab->zName);
39 if( HasRowid(pTab) ){
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol);
41 VdbeComment((v, "%s", pTab->zName));
42 }else{
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
44 assert( pPk!=0 );
45 assert( pPk->tnum==pTab->tnum );
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
48 VdbeComment((v, "%s", pTab->zName));
53 ** Return a pointer to the column affinity string associated with index
54 ** pIdx. A column affinity string has one character for each column in
55 ** the table, according to the affinity of the column:
57 ** Character Column affinity
58 ** ------------------------------
59 ** 'A' BLOB
60 ** 'B' TEXT
61 ** 'C' NUMERIC
62 ** 'D' INTEGER
63 ** 'F' REAL
65 ** An extra 'D' is appended to the end of the string to cover the
66 ** rowid that appears as the last column in every index.
68 ** Memory for the buffer containing the column index affinity string
69 ** is managed along with the rest of the Index structure. It will be
70 ** released when sqlite3DeleteIndex() is called.
72 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
73 if( !pIdx->zColAff ){
74 /* The first time a column affinity string for a particular index is
75 ** required, it is allocated and populated here. It is then stored as
76 ** a member of the Index structure for subsequent use.
78 ** The column affinity string will eventually be deleted by
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned
80 ** up.
82 int n;
83 Table *pTab = pIdx->pTable;
84 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
85 if( !pIdx->zColAff ){
86 sqlite3OomFault(db);
87 return 0;
89 for(n=0; n<pIdx->nColumn; n++){
90 i16 x = pIdx->aiColumn[n];
91 if( x>=0 ){
92 pIdx->zColAff[n] = pTab->aCol[x].affinity;
93 }else if( x==XN_ROWID ){
94 pIdx->zColAff[n] = SQLITE_AFF_INTEGER;
95 }else{
96 char aff;
97 assert( x==XN_EXPR );
98 assert( pIdx->aColExpr!=0 );
99 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
100 if( aff==0 ) aff = SQLITE_AFF_BLOB;
101 pIdx->zColAff[n] = aff;
104 pIdx->zColAff[n] = 0;
107 return pIdx->zColAff;
111 ** Compute the affinity string for table pTab, if it has not already been
112 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
114 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
115 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
116 ** for register iReg and following. Or if affinities exists and iReg==0,
117 ** then just set the P4 operand of the previous opcode (which should be
118 ** an OP_MakeRecord) to the affinity string.
120 ** A column affinity string has one character per column:
122 ** Character Column affinity
123 ** ------------------------------
124 ** 'A' BLOB
125 ** 'B' TEXT
126 ** 'C' NUMERIC
127 ** 'D' INTEGER
128 ** 'E' REAL
130 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
131 int i;
132 char *zColAff = pTab->zColAff;
133 if( zColAff==0 ){
134 sqlite3 *db = sqlite3VdbeDb(v);
135 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
136 if( !zColAff ){
137 sqlite3OomFault(db);
138 return;
141 for(i=0; i<pTab->nCol; i++){
142 zColAff[i] = pTab->aCol[i].affinity;
145 zColAff[i--] = 0;
146 }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
147 pTab->zColAff = zColAff;
149 i = sqlite3Strlen30(zColAff);
150 if( i ){
151 if( iReg ){
152 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
153 }else{
154 sqlite3VdbeChangeP4(v, -1, zColAff, i);
160 ** Return non-zero if the table pTab in database iDb or any of its indices
161 ** have been opened at any point in the VDBE program. This is used to see if
162 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
163 ** run without using a temporary table for the results of the SELECT.
165 static int readsTable(Parse *p, int iDb, Table *pTab){
166 Vdbe *v = sqlite3GetVdbe(p);
167 int i;
168 int iEnd = sqlite3VdbeCurrentAddr(v);
169 #ifndef SQLITE_OMIT_VIRTUALTABLE
170 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
171 #endif
173 for(i=1; i<iEnd; i++){
174 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
175 assert( pOp!=0 );
176 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
177 Index *pIndex;
178 int tnum = pOp->p2;
179 if( tnum==pTab->tnum ){
180 return 1;
182 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
183 if( tnum==pIndex->tnum ){
184 return 1;
188 #ifndef SQLITE_OMIT_VIRTUALTABLE
189 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
190 assert( pOp->p4.pVtab!=0 );
191 assert( pOp->p4type==P4_VTAB );
192 return 1;
194 #endif
196 return 0;
199 #ifndef SQLITE_OMIT_AUTOINCREMENT
201 ** Locate or create an AutoincInfo structure associated with table pTab
202 ** which is in database iDb. Return the register number for the register
203 ** that holds the maximum rowid.
205 ** There is at most one AutoincInfo structure per table even if the
206 ** same table is autoincremented multiple times due to inserts within
207 ** triggers. A new AutoincInfo structure is created if this is the
208 ** first use of table pTab. On 2nd and subsequent uses, the original
209 ** AutoincInfo structure is used.
211 ** Three memory locations are allocated:
213 ** (1) Register to hold the name of the pTab table.
214 ** (2) Register to hold the maximum ROWID of pTab.
215 ** (3) Register to hold the rowid in sqlite_sequence of pTab
217 ** The 2nd register is the one that is returned. That is all the
218 ** insert routine needs to know about.
220 static int autoIncBegin(
221 Parse *pParse, /* Parsing context */
222 int iDb, /* Index of the database holding pTab */
223 Table *pTab /* The table we are writing to */
225 int memId = 0; /* Register holding maximum rowid */
226 if( pTab->tabFlags & TF_Autoincrement ){
227 Parse *pToplevel = sqlite3ParseToplevel(pParse);
228 AutoincInfo *pInfo;
230 pInfo = pToplevel->pAinc;
231 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
232 if( pInfo==0 ){
233 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
234 if( pInfo==0 ) return 0;
235 pInfo->pNext = pToplevel->pAinc;
236 pToplevel->pAinc = pInfo;
237 pInfo->pTab = pTab;
238 pInfo->iDb = iDb;
239 pToplevel->nMem++; /* Register to hold name of table */
240 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
241 pToplevel->nMem++; /* Rowid in sqlite_sequence */
243 memId = pInfo->regCtr;
245 return memId;
249 ** This routine generates code that will initialize all of the
250 ** register used by the autoincrement tracker.
252 void sqlite3AutoincrementBegin(Parse *pParse){
253 AutoincInfo *p; /* Information about an AUTOINCREMENT */
254 sqlite3 *db = pParse->db; /* The database connection */
255 Db *pDb; /* Database only autoinc table */
256 int memId; /* Register holding max rowid */
257 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
259 /* This routine is never called during trigger-generation. It is
260 ** only called from the top-level */
261 assert( pParse->pTriggerTab==0 );
262 assert( sqlite3IsToplevel(pParse) );
264 assert( v ); /* We failed long ago if this is not so */
265 for(p = pParse->pAinc; p; p = p->pNext){
266 static const int iLn = VDBE_OFFSET_LINENO(2);
267 static const VdbeOpList autoInc[] = {
268 /* 0 */ {OP_Null, 0, 0, 0},
269 /* 1 */ {OP_Rewind, 0, 9, 0},
270 /* 2 */ {OP_Column, 0, 0, 0},
271 /* 3 */ {OP_Ne, 0, 7, 0},
272 /* 4 */ {OP_Rowid, 0, 0, 0},
273 /* 5 */ {OP_Column, 0, 1, 0},
274 /* 6 */ {OP_Goto, 0, 9, 0},
275 /* 7 */ {OP_Next, 0, 2, 0},
276 /* 8 */ {OP_Integer, 0, 0, 0},
277 /* 9 */ {OP_Close, 0, 0, 0}
279 VdbeOp *aOp;
280 pDb = &db->aDb[p->iDb];
281 memId = p->regCtr;
282 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
283 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
284 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
285 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
286 if( aOp==0 ) break;
287 aOp[0].p2 = memId;
288 aOp[0].p3 = memId+1;
289 aOp[2].p3 = memId;
290 aOp[3].p1 = memId-1;
291 aOp[3].p3 = memId;
292 aOp[3].p5 = SQLITE_JUMPIFNULL;
293 aOp[4].p2 = memId+1;
294 aOp[5].p3 = memId;
295 aOp[8].p2 = memId;
300 ** Update the maximum rowid for an autoincrement calculation.
302 ** This routine should be called when the regRowid register holds a
303 ** new rowid that is about to be inserted. If that new rowid is
304 ** larger than the maximum rowid in the memId memory cell, then the
305 ** memory cell is updated.
307 static void autoIncStep(Parse *pParse, int memId, int regRowid){
308 if( memId>0 ){
309 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
314 ** This routine generates the code needed to write autoincrement
315 ** maximum rowid values back into the sqlite_sequence register.
316 ** Every statement that might do an INSERT into an autoincrement
317 ** table (either directly or through triggers) needs to call this
318 ** routine just before the "exit" code.
320 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
321 AutoincInfo *p;
322 Vdbe *v = pParse->pVdbe;
323 sqlite3 *db = pParse->db;
325 assert( v );
326 for(p = pParse->pAinc; p; p = p->pNext){
327 static const int iLn = VDBE_OFFSET_LINENO(2);
328 static const VdbeOpList autoIncEnd[] = {
329 /* 0 */ {OP_NotNull, 0, 2, 0},
330 /* 1 */ {OP_NewRowid, 0, 0, 0},
331 /* 2 */ {OP_MakeRecord, 0, 2, 0},
332 /* 3 */ {OP_Insert, 0, 0, 0},
333 /* 4 */ {OP_Close, 0, 0, 0}
335 VdbeOp *aOp;
336 Db *pDb = &db->aDb[p->iDb];
337 int iRec;
338 int memId = p->regCtr;
340 iRec = sqlite3GetTempReg(pParse);
341 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
342 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
343 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
344 if( aOp==0 ) break;
345 aOp[0].p1 = memId+1;
346 aOp[1].p2 = memId+1;
347 aOp[2].p1 = memId-1;
348 aOp[2].p3 = iRec;
349 aOp[3].p2 = iRec;
350 aOp[3].p3 = memId+1;
351 aOp[3].p5 = OPFLAG_APPEND;
352 sqlite3ReleaseTempReg(pParse, iRec);
355 void sqlite3AutoincrementEnd(Parse *pParse){
356 if( pParse->pAinc ) autoIncrementEnd(pParse);
358 #else
360 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
361 ** above are all no-ops
363 # define autoIncBegin(A,B,C) (0)
364 # define autoIncStep(A,B,C)
365 #endif /* SQLITE_OMIT_AUTOINCREMENT */
368 /* Forward declaration */
369 static int xferOptimization(
370 Parse *pParse, /* Parser context */
371 Table *pDest, /* The table we are inserting into */
372 Select *pSelect, /* A SELECT statement to use as the data source */
373 int onError, /* How to handle constraint errors */
374 int iDbDest /* The database of pDest */
378 ** This routine is called to handle SQL of the following forms:
380 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
381 ** insert into TABLE (IDLIST) select
382 ** insert into TABLE (IDLIST) default values
384 ** The IDLIST following the table name is always optional. If omitted,
385 ** then a list of all (non-hidden) columns for the table is substituted.
386 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
387 ** is omitted.
389 ** For the pSelect parameter holds the values to be inserted for the
390 ** first two forms shown above. A VALUES clause is really just short-hand
391 ** for a SELECT statement that omits the FROM clause and everything else
392 ** that follows. If the pSelect parameter is NULL, that means that the
393 ** DEFAULT VALUES form of the INSERT statement is intended.
395 ** The code generated follows one of four templates. For a simple
396 ** insert with data coming from a single-row VALUES clause, the code executes
397 ** once straight down through. Pseudo-code follows (we call this
398 ** the "1st template"):
400 ** open write cursor to <table> and its indices
401 ** put VALUES clause expressions into registers
402 ** write the resulting record into <table>
403 ** cleanup
405 ** The three remaining templates assume the statement is of the form
407 ** INSERT INTO <table> SELECT ...
409 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
410 ** in other words if the SELECT pulls all columns from a single table
411 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
412 ** if <table2> and <table1> are distinct tables but have identical
413 ** schemas, including all the same indices, then a special optimization
414 ** is invoked that copies raw records from <table2> over to <table1>.
415 ** See the xferOptimization() function for the implementation of this
416 ** template. This is the 2nd template.
418 ** open a write cursor to <table>
419 ** open read cursor on <table2>
420 ** transfer all records in <table2> over to <table>
421 ** close cursors
422 ** foreach index on <table>
423 ** open a write cursor on the <table> index
424 ** open a read cursor on the corresponding <table2> index
425 ** transfer all records from the read to the write cursors
426 ** close cursors
427 ** end foreach
429 ** The 3rd template is for when the second template does not apply
430 ** and the SELECT clause does not read from <table> at any time.
431 ** The generated code follows this template:
433 ** X <- A
434 ** goto B
435 ** A: setup for the SELECT
436 ** loop over the rows in the SELECT
437 ** load values into registers R..R+n
438 ** yield X
439 ** end loop
440 ** cleanup after the SELECT
441 ** end-coroutine X
442 ** B: open write cursor to <table> and its indices
443 ** C: yield X, at EOF goto D
444 ** insert the select result into <table> from R..R+n
445 ** goto C
446 ** D: cleanup
448 ** The 4th template is used if the insert statement takes its
449 ** values from a SELECT but the data is being inserted into a table
450 ** that is also read as part of the SELECT. In the third form,
451 ** we have to use an intermediate table to store the results of
452 ** the select. The template is like this:
454 ** X <- A
455 ** goto B
456 ** A: setup for the SELECT
457 ** loop over the tables in the SELECT
458 ** load value into register R..R+n
459 ** yield X
460 ** end loop
461 ** cleanup after the SELECT
462 ** end co-routine R
463 ** B: open temp table
464 ** L: yield X, at EOF goto M
465 ** insert row from R..R+n into temp table
466 ** goto L
467 ** M: open write cursor to <table> and its indices
468 ** rewind temp table
469 ** C: loop over rows of intermediate table
470 ** transfer values form intermediate table into <table>
471 ** end loop
472 ** D: cleanup
474 void sqlite3Insert(
475 Parse *pParse, /* Parser context */
476 SrcList *pTabList, /* Name of table into which we are inserting */
477 Select *pSelect, /* A SELECT statement to use as the data source */
478 IdList *pColumn, /* Column names corresponding to IDLIST. */
479 int onError /* How to handle constraint errors */
481 sqlite3 *db; /* The main database structure */
482 Table *pTab; /* The table to insert into. aka TABLE */
483 char *zTab; /* Name of the table into which we are inserting */
484 const char *zDb; /* Name of the database holding this table */
485 int i, j, idx; /* Loop counters */
486 Vdbe *v; /* Generate code into this virtual machine */
487 Index *pIdx; /* For looping over indices of the table */
488 int nColumn; /* Number of columns in the data */
489 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
490 int iDataCur = 0; /* VDBE cursor that is the main data repository */
491 int iIdxCur = 0; /* First index cursor */
492 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
493 int endOfLoop; /* Label for the end of the insertion loop */
494 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
495 int addrInsTop = 0; /* Jump to label "D" */
496 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
497 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
498 int iDb; /* Index of database holding TABLE */
499 Db *pDb; /* The database containing table being inserted into */
500 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
501 u8 appendFlag = 0; /* True if the insert is likely to be an append */
502 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
503 u8 bIdListInOrder; /* True if IDLIST is in table order */
504 ExprList *pList = 0; /* List of VALUES() to be inserted */
506 /* Register allocations */
507 int regFromSelect = 0;/* Base register for data coming from SELECT */
508 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
509 int regRowCount = 0; /* Memory cell used for the row counter */
510 int regIns; /* Block of regs holding rowid+data being inserted */
511 int regRowid; /* registers holding insert rowid */
512 int regData; /* register holding first column to insert */
513 int *aRegIdx = 0; /* One register allocated to each index */
515 #ifndef SQLITE_OMIT_TRIGGER
516 int isView; /* True if attempting to insert into a view */
517 Trigger *pTrigger; /* List of triggers on pTab, if required */
518 int tmask; /* Mask of trigger times */
519 #endif
521 db = pParse->db;
522 memset(&dest, 0, sizeof(dest));
523 if( pParse->nErr || db->mallocFailed ){
524 goto insert_cleanup;
527 /* If the Select object is really just a simple VALUES() list with a
528 ** single row (the common case) then keep that one row of values
529 ** and discard the other (unused) parts of the pSelect object
531 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
532 pList = pSelect->pEList;
533 pSelect->pEList = 0;
534 sqlite3SelectDelete(db, pSelect);
535 pSelect = 0;
538 /* Locate the table into which we will be inserting new information.
540 assert( pTabList->nSrc==1 );
541 zTab = pTabList->a[0].zName;
542 if( NEVER(zTab==0) ) goto insert_cleanup;
543 pTab = sqlite3SrcListLookup(pParse, pTabList);
544 if( pTab==0 ){
545 goto insert_cleanup;
547 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
548 assert( iDb<db->nDb );
549 pDb = &db->aDb[iDb];
550 zDb = pDb->zName;
551 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
552 goto insert_cleanup;
554 withoutRowid = !HasRowid(pTab);
556 /* Figure out if we have any triggers and if the table being
557 ** inserted into is a view
559 #ifndef SQLITE_OMIT_TRIGGER
560 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
561 isView = pTab->pSelect!=0;
562 #else
563 # define pTrigger 0
564 # define tmask 0
565 # define isView 0
566 #endif
567 #ifdef SQLITE_OMIT_VIEW
568 # undef isView
569 # define isView 0
570 #endif
571 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
573 /* If pTab is really a view, make sure it has been initialized.
574 ** ViewGetColumnNames() is a no-op if pTab is not a view.
576 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
577 goto insert_cleanup;
580 /* Cannot insert into a read-only table.
582 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
583 goto insert_cleanup;
586 /* Allocate a VDBE
588 v = sqlite3GetVdbe(pParse);
589 if( v==0 ) goto insert_cleanup;
590 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
591 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
593 #ifndef SQLITE_OMIT_XFER_OPT
594 /* If the statement is of the form
596 ** INSERT INTO <table1> SELECT * FROM <table2>;
598 ** Then special optimizations can be applied that make the transfer
599 ** very fast and which reduce fragmentation of indices.
601 ** This is the 2nd template.
603 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
604 assert( !pTrigger );
605 assert( pList==0 );
606 goto insert_end;
608 #endif /* SQLITE_OMIT_XFER_OPT */
610 /* If this is an AUTOINCREMENT table, look up the sequence number in the
611 ** sqlite_sequence table and store it in memory cell regAutoinc.
613 regAutoinc = autoIncBegin(pParse, iDb, pTab);
615 /* Allocate registers for holding the rowid of the new row,
616 ** the content of the new row, and the assembled row record.
618 regRowid = regIns = pParse->nMem+1;
619 pParse->nMem += pTab->nCol + 1;
620 if( IsVirtual(pTab) ){
621 regRowid++;
622 pParse->nMem++;
624 regData = regRowid+1;
626 /* If the INSERT statement included an IDLIST term, then make sure
627 ** all elements of the IDLIST really are columns of the table and
628 ** remember the column indices.
630 ** If the table has an INTEGER PRIMARY KEY column and that column
631 ** is named in the IDLIST, then record in the ipkColumn variable
632 ** the index into IDLIST of the primary key column. ipkColumn is
633 ** the index of the primary key as it appears in IDLIST, not as
634 ** is appears in the original table. (The index of the INTEGER
635 ** PRIMARY KEY in the original table is pTab->iPKey.)
637 bIdListInOrder = (pTab->tabFlags & TF_OOOHidden)==0;
638 if( pColumn ){
639 for(i=0; i<pColumn->nId; i++){
640 pColumn->a[i].idx = -1;
642 for(i=0; i<pColumn->nId; i++){
643 for(j=0; j<pTab->nCol; j++){
644 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
645 pColumn->a[i].idx = j;
646 if( i!=j ) bIdListInOrder = 0;
647 if( j==pTab->iPKey ){
648 ipkColumn = i; assert( !withoutRowid );
650 break;
653 if( j>=pTab->nCol ){
654 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
655 ipkColumn = i;
656 bIdListInOrder = 0;
657 }else{
658 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
659 pTabList, 0, pColumn->a[i].zName);
660 pParse->checkSchema = 1;
661 goto insert_cleanup;
667 /* Figure out how many columns of data are supplied. If the data
668 ** is coming from a SELECT statement, then generate a co-routine that
669 ** produces a single row of the SELECT on each invocation. The
670 ** co-routine is the common header to the 3rd and 4th templates.
672 if( pSelect ){
673 /* Data is coming from a SELECT or from a multi-row VALUES clause.
674 ** Generate a co-routine to run the SELECT. */
675 int regYield; /* Register holding co-routine entry-point */
676 int addrTop; /* Top of the co-routine */
677 int rc; /* Result code */
679 regYield = ++pParse->nMem;
680 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
681 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
682 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
683 dest.iSdst = bIdListInOrder ? regData : 0;
684 dest.nSdst = pTab->nCol;
685 rc = sqlite3Select(pParse, pSelect, &dest);
686 regFromSelect = dest.iSdst;
687 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
688 sqlite3VdbeEndCoroutine(v, regYield);
689 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
690 assert( pSelect->pEList );
691 nColumn = pSelect->pEList->nExpr;
693 /* Set useTempTable to TRUE if the result of the SELECT statement
694 ** should be written into a temporary table (template 4). Set to
695 ** FALSE if each output row of the SELECT can be written directly into
696 ** the destination table (template 3).
698 ** A temp table must be used if the table being updated is also one
699 ** of the tables being read by the SELECT statement. Also use a
700 ** temp table in the case of row triggers.
702 if( pTrigger || readsTable(pParse, iDb, pTab) ){
703 useTempTable = 1;
706 if( useTempTable ){
707 /* Invoke the coroutine to extract information from the SELECT
708 ** and add it to a transient table srcTab. The code generated
709 ** here is from the 4th template:
711 ** B: open temp table
712 ** L: yield X, goto M at EOF
713 ** insert row from R..R+n into temp table
714 ** goto L
715 ** M: ...
717 int regRec; /* Register to hold packed record */
718 int regTempRowid; /* Register to hold temp table ROWID */
719 int addrL; /* Label "L" */
721 srcTab = pParse->nTab++;
722 regRec = sqlite3GetTempReg(pParse);
723 regTempRowid = sqlite3GetTempReg(pParse);
724 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
725 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
726 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
727 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
728 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
729 sqlite3VdbeGoto(v, addrL);
730 sqlite3VdbeJumpHere(v, addrL);
731 sqlite3ReleaseTempReg(pParse, regRec);
732 sqlite3ReleaseTempReg(pParse, regTempRowid);
734 }else{
735 /* This is the case if the data for the INSERT is coming from a
736 ** single-row VALUES clause
738 NameContext sNC;
739 memset(&sNC, 0, sizeof(sNC));
740 sNC.pParse = pParse;
741 srcTab = -1;
742 assert( useTempTable==0 );
743 if( pList ){
744 nColumn = pList->nExpr;
745 if( sqlite3ResolveExprListNames(&sNC, pList) ){
746 goto insert_cleanup;
748 }else{
749 nColumn = 0;
753 /* If there is no IDLIST term but the table has an integer primary
754 ** key, the set the ipkColumn variable to the integer primary key
755 ** column index in the original table definition.
757 if( pColumn==0 && nColumn>0 ){
758 ipkColumn = pTab->iPKey;
761 /* Make sure the number of columns in the source data matches the number
762 ** of columns to be inserted into the table.
764 for(i=0; i<pTab->nCol; i++){
765 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
767 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
768 sqlite3ErrorMsg(pParse,
769 "table %S has %d columns but %d values were supplied",
770 pTabList, 0, pTab->nCol-nHidden, nColumn);
771 goto insert_cleanup;
773 if( pColumn!=0 && nColumn!=pColumn->nId ){
774 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
775 goto insert_cleanup;
778 /* Initialize the count of rows to be inserted
780 if( db->flags & SQLITE_CountRows ){
781 regRowCount = ++pParse->nMem;
782 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
785 /* If this is not a view, open the table and and all indices */
786 if( !isView ){
787 int nIdx;
788 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
789 &iDataCur, &iIdxCur);
790 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+1));
791 if( aRegIdx==0 ){
792 goto insert_cleanup;
794 for(i=0; i<nIdx; i++){
795 aRegIdx[i] = ++pParse->nMem;
799 /* This is the top of the main insertion loop */
800 if( useTempTable ){
801 /* This block codes the top of loop only. The complete loop is the
802 ** following pseudocode (template 4):
804 ** rewind temp table, if empty goto D
805 ** C: loop over rows of intermediate table
806 ** transfer values form intermediate table into <table>
807 ** end loop
808 ** D: ...
810 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
811 addrCont = sqlite3VdbeCurrentAddr(v);
812 }else if( pSelect ){
813 /* This block codes the top of loop only. The complete loop is the
814 ** following pseudocode (template 3):
816 ** C: yield X, at EOF goto D
817 ** insert the select result into <table> from R..R+n
818 ** goto C
819 ** D: ...
821 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
822 VdbeCoverage(v);
825 /* Run the BEFORE and INSTEAD OF triggers, if there are any
827 endOfLoop = sqlite3VdbeMakeLabel(v);
828 if( tmask & TRIGGER_BEFORE ){
829 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
831 /* build the NEW.* reference row. Note that if there is an INTEGER
832 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
833 ** translated into a unique ID for the row. But on a BEFORE trigger,
834 ** we do not know what the unique ID will be (because the insert has
835 ** not happened yet) so we substitute a rowid of -1
837 if( ipkColumn<0 ){
838 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
839 }else{
840 int addr1;
841 assert( !withoutRowid );
842 if( useTempTable ){
843 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
844 }else{
845 assert( pSelect==0 ); /* Otherwise useTempTable is true */
846 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
848 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
849 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
850 sqlite3VdbeJumpHere(v, addr1);
851 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
854 /* Cannot have triggers on a virtual table. If it were possible,
855 ** this block would have to account for hidden column.
857 assert( !IsVirtual(pTab) );
859 /* Create the new column data
861 for(i=j=0; i<pTab->nCol; i++){
862 if( pColumn ){
863 for(j=0; j<pColumn->nId; j++){
864 if( pColumn->a[j].idx==i ) break;
867 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
868 || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
869 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
870 }else if( useTempTable ){
871 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
872 }else{
873 assert( pSelect==0 ); /* Otherwise useTempTable is true */
874 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
876 if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
879 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
880 ** do not attempt any conversions before assembling the record.
881 ** If this is a real table, attempt conversions as required by the
882 ** table column affinities.
884 if( !isView ){
885 sqlite3TableAffinity(v, pTab, regCols+1);
888 /* Fire BEFORE or INSTEAD OF triggers */
889 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
890 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
892 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
895 /* Compute the content of the next row to insert into a range of
896 ** registers beginning at regIns.
898 if( !isView ){
899 if( IsVirtual(pTab) ){
900 /* The row that the VUpdate opcode will delete: none */
901 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
903 if( ipkColumn>=0 ){
904 if( useTempTable ){
905 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
906 }else if( pSelect ){
907 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
908 }else{
909 VdbeOp *pOp;
910 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
911 pOp = sqlite3VdbeGetOp(v, -1);
912 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
913 appendFlag = 1;
914 pOp->opcode = OP_NewRowid;
915 pOp->p1 = iDataCur;
916 pOp->p2 = regRowid;
917 pOp->p3 = regAutoinc;
920 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
921 ** to generate a unique primary key value.
923 if( !appendFlag ){
924 int addr1;
925 if( !IsVirtual(pTab) ){
926 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
927 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
928 sqlite3VdbeJumpHere(v, addr1);
929 }else{
930 addr1 = sqlite3VdbeCurrentAddr(v);
931 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
933 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
935 }else if( IsVirtual(pTab) || withoutRowid ){
936 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
937 }else{
938 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
939 appendFlag = 1;
941 autoIncStep(pParse, regAutoinc, regRowid);
943 /* Compute data for all columns of the new entry, beginning
944 ** with the first column.
946 nHidden = 0;
947 for(i=0; i<pTab->nCol; i++){
948 int iRegStore = regRowid+1+i;
949 if( i==pTab->iPKey ){
950 /* The value of the INTEGER PRIMARY KEY column is always a NULL.
951 ** Whenever this column is read, the rowid will be substituted
952 ** in its place. Hence, fill this column with a NULL to avoid
953 ** taking up data space with information that will never be used.
954 ** As there may be shallow copies of this value, make it a soft-NULL */
955 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
956 continue;
958 if( pColumn==0 ){
959 if( IsHiddenColumn(&pTab->aCol[i]) ){
960 j = -1;
961 nHidden++;
962 }else{
963 j = i - nHidden;
965 }else{
966 for(j=0; j<pColumn->nId; j++){
967 if( pColumn->a[j].idx==i ) break;
970 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
971 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
972 }else if( useTempTable ){
973 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
974 }else if( pSelect ){
975 if( regFromSelect!=regData ){
976 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
978 }else{
979 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
983 /* Generate code to check constraints and generate index keys and
984 ** do the insertion.
986 #ifndef SQLITE_OMIT_VIRTUALTABLE
987 if( IsVirtual(pTab) ){
988 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
989 sqlite3VtabMakeWritable(pParse, pTab);
990 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
991 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
992 sqlite3MayAbort(pParse);
993 }else
994 #endif
996 int isReplace; /* Set to true if constraints may cause a replace */
997 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
998 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0
1000 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1001 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1002 regIns, aRegIdx, 0, appendFlag, isReplace==0);
1006 /* Update the count of rows that are inserted
1008 if( (db->flags & SQLITE_CountRows)!=0 ){
1009 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1012 if( pTrigger ){
1013 /* Code AFTER triggers */
1014 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1015 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1018 /* The bottom of the main insertion loop, if the data source
1019 ** is a SELECT statement.
1021 sqlite3VdbeResolveLabel(v, endOfLoop);
1022 if( useTempTable ){
1023 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1024 sqlite3VdbeJumpHere(v, addrInsTop);
1025 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1026 }else if( pSelect ){
1027 sqlite3VdbeGoto(v, addrCont);
1028 sqlite3VdbeJumpHere(v, addrInsTop);
1031 if( !IsVirtual(pTab) && !isView ){
1032 /* Close all tables opened */
1033 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur);
1034 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
1035 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur);
1039 insert_end:
1040 /* Update the sqlite_sequence table by storing the content of the
1041 ** maximum rowid counter values recorded while inserting into
1042 ** autoincrement tables.
1044 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1045 sqlite3AutoincrementEnd(pParse);
1049 ** Return the number of rows inserted. If this routine is
1050 ** generating code because of a call to sqlite3NestedParse(), do not
1051 ** invoke the callback function.
1053 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
1054 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1055 sqlite3VdbeSetNumCols(v, 1);
1056 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1059 insert_cleanup:
1060 sqlite3SrcListDelete(db, pTabList);
1061 sqlite3ExprListDelete(db, pList);
1062 sqlite3SelectDelete(db, pSelect);
1063 sqlite3IdListDelete(db, pColumn);
1064 sqlite3DbFree(db, aRegIdx);
1067 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1068 ** they may interfere with compilation of other functions in this file
1069 ** (or in another file, if this file becomes part of the amalgamation). */
1070 #ifdef isView
1071 #undef isView
1072 #endif
1073 #ifdef pTrigger
1074 #undef pTrigger
1075 #endif
1076 #ifdef tmask
1077 #undef tmask
1078 #endif
1081 ** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()
1083 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1084 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1086 /* This is the Walker callback from checkConstraintUnchanged(). Set
1087 ** bit 0x01 of pWalker->eCode if
1088 ** pWalker->eCode to 0 if this expression node references any of the
1089 ** columns that are being modifed by an UPDATE statement.
1091 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1092 if( pExpr->op==TK_COLUMN ){
1093 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1094 if( pExpr->iColumn>=0 ){
1095 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1096 pWalker->eCode |= CKCNSTRNT_COLUMN;
1098 }else{
1099 pWalker->eCode |= CKCNSTRNT_ROWID;
1102 return WRC_Continue;
1106 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1107 ** only columns that are modified by the UPDATE are those for which
1108 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1110 ** Return true if CHECK constraint pExpr does not use any of the
1111 ** changing columns (or the rowid if it is changing). In other words,
1112 ** return true if this CHECK constraint can be skipped when validating
1113 ** the new row in the UPDATE statement.
1115 static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){
1116 Walker w;
1117 memset(&w, 0, sizeof(w));
1118 w.eCode = 0;
1119 w.xExprCallback = checkConstraintExprNode;
1120 w.u.aiCol = aiChng;
1121 sqlite3WalkExpr(&w, pExpr);
1122 if( !chngRowid ){
1123 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1124 w.eCode &= ~CKCNSTRNT_ROWID;
1126 testcase( w.eCode==0 );
1127 testcase( w.eCode==CKCNSTRNT_COLUMN );
1128 testcase( w.eCode==CKCNSTRNT_ROWID );
1129 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1130 return !w.eCode;
1134 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1135 ** on table pTab.
1137 ** The regNewData parameter is the first register in a range that contains
1138 ** the data to be inserted or the data after the update. There will be
1139 ** pTab->nCol+1 registers in this range. The first register (the one
1140 ** that regNewData points to) will contain the new rowid, or NULL in the
1141 ** case of a WITHOUT ROWID table. The second register in the range will
1142 ** contain the content of the first table column. The third register will
1143 ** contain the content of the second table column. And so forth.
1145 ** The regOldData parameter is similar to regNewData except that it contains
1146 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1147 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1148 ** checking regOldData for zero.
1150 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1151 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1152 ** might be modified by the UPDATE. If pkChng is false, then the key of
1153 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1155 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1156 ** was explicitly specified as part of the INSERT statement. If pkChng
1157 ** is zero, it means that the either rowid is computed automatically or
1158 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1159 ** pkChng will only be true if the INSERT statement provides an integer
1160 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1162 ** The code generated by this routine will store new index entries into
1163 ** registers identified by aRegIdx[]. No index entry is created for
1164 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1165 ** the same as the order of indices on the linked list of indices
1166 ** at pTab->pIndex.
1168 ** The caller must have already opened writeable cursors on the main
1169 ** table and all applicable indices (that is to say, all indices for which
1170 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1171 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1172 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1173 ** for the first index in the pTab->pIndex list. Cursors for other indices
1174 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1176 ** This routine also generates code to check constraints. NOT NULL,
1177 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1178 ** then the appropriate action is performed. There are five possible
1179 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1181 ** Constraint type Action What Happens
1182 ** --------------- ---------- ----------------------------------------
1183 ** any ROLLBACK The current transaction is rolled back and
1184 ** sqlite3_step() returns immediately with a
1185 ** return code of SQLITE_CONSTRAINT.
1187 ** any ABORT Back out changes from the current command
1188 ** only (do not do a complete rollback) then
1189 ** cause sqlite3_step() to return immediately
1190 ** with SQLITE_CONSTRAINT.
1192 ** any FAIL Sqlite3_step() returns immediately with a
1193 ** return code of SQLITE_CONSTRAINT. The
1194 ** transaction is not rolled back and any
1195 ** changes to prior rows are retained.
1197 ** any IGNORE The attempt in insert or update the current
1198 ** row is skipped, without throwing an error.
1199 ** Processing continues with the next row.
1200 ** (There is an immediate jump to ignoreDest.)
1202 ** NOT NULL REPLACE The NULL value is replace by the default
1203 ** value for that column. If the default value
1204 ** is NULL, the action is the same as ABORT.
1206 ** UNIQUE REPLACE The other row that conflicts with the row
1207 ** being inserted is removed.
1209 ** CHECK REPLACE Illegal. The results in an exception.
1211 ** Which action to take is determined by the overrideError parameter.
1212 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1213 ** is used. Or if pParse->onError==OE_Default then the onError value
1214 ** for the constraint is used.
1216 void sqlite3GenerateConstraintChecks(
1217 Parse *pParse, /* The parser context */
1218 Table *pTab, /* The table being inserted or updated */
1219 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1220 int iDataCur, /* Canonical data cursor (main table or PK index) */
1221 int iIdxCur, /* First index cursor */
1222 int regNewData, /* First register in a range holding values to insert */
1223 int regOldData, /* Previous content. 0 for INSERTs */
1224 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1225 u8 overrideError, /* Override onError to this if not OE_Default */
1226 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1227 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1228 int *aiChng /* column i is unchanged if aiChng[i]<0 */
1230 Vdbe *v; /* VDBE under constrution */
1231 Index *pIdx; /* Pointer to one of the indices */
1232 Index *pPk = 0; /* The PRIMARY KEY index */
1233 sqlite3 *db; /* Database connection */
1234 int i; /* loop counter */
1235 int ix; /* Index loop counter */
1236 int nCol; /* Number of columns */
1237 int onError; /* Conflict resolution strategy */
1238 int addr1; /* Address of jump instruction */
1239 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1240 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1241 int ipkTop = 0; /* Top of the rowid change constraint check */
1242 int ipkBottom = 0; /* Bottom of the rowid change constraint check */
1243 u8 isUpdate; /* True if this is an UPDATE operation */
1244 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1245 int regRowid = -1; /* Register holding ROWID value */
1247 isUpdate = regOldData!=0;
1248 db = pParse->db;
1249 v = sqlite3GetVdbe(pParse);
1250 assert( v!=0 );
1251 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1252 nCol = pTab->nCol;
1254 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1255 ** normal rowid tables. nPkField is the number of key fields in the
1256 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1257 ** number of fields in the true primary key of the table. */
1258 if( HasRowid(pTab) ){
1259 pPk = 0;
1260 nPkField = 1;
1261 }else{
1262 pPk = sqlite3PrimaryKeyIndex(pTab);
1263 nPkField = pPk->nKeyCol;
1266 /* Record that this module has started */
1267 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1268 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1270 /* Test all NOT NULL constraints.
1272 for(i=0; i<nCol; i++){
1273 if( i==pTab->iPKey ){
1274 continue; /* ROWID is never NULL */
1276 if( aiChng && aiChng[i]<0 ){
1277 /* Don't bother checking for NOT NULL on columns that do not change */
1278 continue;
1280 onError = pTab->aCol[i].notNull;
1281 if( onError==OE_None ) continue; /* This column is allowed to be NULL */
1282 if( overrideError!=OE_Default ){
1283 onError = overrideError;
1284 }else if( onError==OE_Default ){
1285 onError = OE_Abort;
1287 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
1288 onError = OE_Abort;
1290 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1291 || onError==OE_Ignore || onError==OE_Replace );
1292 switch( onError ){
1293 case OE_Abort:
1294 sqlite3MayAbort(pParse);
1295 /* Fall through */
1296 case OE_Rollback:
1297 case OE_Fail: {
1298 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1299 pTab->aCol[i].zName);
1300 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError,
1301 regNewData+1+i, zMsg, P4_DYNAMIC);
1302 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1303 VdbeCoverage(v);
1304 break;
1306 case OE_Ignore: {
1307 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest);
1308 VdbeCoverage(v);
1309 break;
1311 default: {
1312 assert( onError==OE_Replace );
1313 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i);
1314 VdbeCoverage(v);
1315 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i);
1316 sqlite3VdbeJumpHere(v, addr1);
1317 break;
1322 /* Test all CHECK constraints
1324 #ifndef SQLITE_OMIT_CHECK
1325 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1326 ExprList *pCheck = pTab->pCheck;
1327 pParse->ckBase = regNewData+1;
1328 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1329 for(i=0; i<pCheck->nExpr; i++){
1330 int allOk;
1331 Expr *pExpr = pCheck->a[i].pExpr;
1332 if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;
1333 allOk = sqlite3VdbeMakeLabel(v);
1334 sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
1335 if( onError==OE_Ignore ){
1336 sqlite3VdbeGoto(v, ignoreDest);
1337 }else{
1338 char *zName = pCheck->a[i].zName;
1339 if( zName==0 ) zName = pTab->zName;
1340 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
1341 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1342 onError, zName, P4_TRANSIENT,
1343 P5_ConstraintCheck);
1345 sqlite3VdbeResolveLabel(v, allOk);
1348 #endif /* !defined(SQLITE_OMIT_CHECK) */
1350 /* If rowid is changing, make sure the new rowid does not previously
1351 ** exist in the table.
1353 if( pkChng && pPk==0 ){
1354 int addrRowidOk = sqlite3VdbeMakeLabel(v);
1356 /* Figure out what action to take in case of a rowid collision */
1357 onError = pTab->keyConf;
1358 if( overrideError!=OE_Default ){
1359 onError = overrideError;
1360 }else if( onError==OE_Default ){
1361 onError = OE_Abort;
1364 if( isUpdate ){
1365 /* pkChng!=0 does not mean that the rowid has change, only that
1366 ** it might have changed. Skip the conflict logic below if the rowid
1367 ** is unchanged. */
1368 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1369 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1370 VdbeCoverage(v);
1373 /* If the response to a rowid conflict is REPLACE but the response
1374 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1375 ** to defer the running of the rowid conflict checking until after
1376 ** the UNIQUE constraints have run.
1378 if( onError==OE_Replace && overrideError!=OE_Replace ){
1379 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1380 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){
1381 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto);
1382 break;
1387 /* Check to see if the new rowid already exists in the table. Skip
1388 ** the following conflict logic if it does not. */
1389 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1390 VdbeCoverage(v);
1392 /* Generate code that deals with a rowid collision */
1393 switch( onError ){
1394 default: {
1395 onError = OE_Abort;
1396 /* Fall thru into the next case */
1398 case OE_Rollback:
1399 case OE_Abort:
1400 case OE_Fail: {
1401 sqlite3RowidConstraint(pParse, onError, pTab);
1402 break;
1404 case OE_Replace: {
1405 /* If there are DELETE triggers on this table and the
1406 ** recursive-triggers flag is set, call GenerateRowDelete() to
1407 ** remove the conflicting row from the table. This will fire
1408 ** the triggers and remove both the table and index b-tree entries.
1410 ** Otherwise, if there are no triggers or the recursive-triggers
1411 ** flag is not set, but the table has one or more indexes, call
1412 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1413 ** only. The table b-tree entry will be replaced by the new entry
1414 ** when it is inserted.
1416 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1417 ** also invoke MultiWrite() to indicate that this VDBE may require
1418 ** statement rollback (if the statement is aborted after the delete
1419 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1420 ** but being more selective here allows statements like:
1422 ** REPLACE INTO t(rowid) VALUES($newrowid)
1424 ** to run without a statement journal if there are no indexes on the
1425 ** table.
1427 Trigger *pTrigger = 0;
1428 if( db->flags&SQLITE_RecTriggers ){
1429 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1431 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
1432 sqlite3MultiWrite(pParse);
1433 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1434 regNewData, 1, 0, OE_Replace, 1, -1);
1435 }else{
1436 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1437 if( HasRowid(pTab) ){
1438 /* This OP_Delete opcode fires the pre-update-hook only. It does
1439 ** not modify the b-tree. It is more efficient to let the coming
1440 ** OP_Insert replace the existing entry than it is to delete the
1441 ** existing entry and then insert a new one. */
1442 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1443 sqlite3VdbeChangeP4(v, -1, (char *)pTab, P4_TABLE);
1445 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1446 if( pTab->pIndex ){
1447 sqlite3MultiWrite(pParse);
1448 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1451 seenReplace = 1;
1452 break;
1454 case OE_Ignore: {
1455 /*assert( seenReplace==0 );*/
1456 sqlite3VdbeGoto(v, ignoreDest);
1457 break;
1460 sqlite3VdbeResolveLabel(v, addrRowidOk);
1461 if( ipkTop ){
1462 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1463 sqlite3VdbeJumpHere(v, ipkTop);
1467 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1468 ** index and making sure that duplicate entries do not already exist.
1469 ** Compute the revised record entries for indices as we go.
1471 ** This loop also handles the case of the PRIMARY KEY index for a
1472 ** WITHOUT ROWID table.
1474 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1475 int regIdx; /* Range of registers hold conent for pIdx */
1476 int regR; /* Range of registers holding conflicting PK */
1477 int iThisCur; /* Cursor for this UNIQUE index */
1478 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1480 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1481 if( bAffinityDone==0 ){
1482 sqlite3TableAffinity(v, pTab, regNewData+1);
1483 bAffinityDone = 1;
1485 iThisCur = iIdxCur+ix;
1486 addrUniqueOk = sqlite3VdbeMakeLabel(v);
1488 /* Skip partial indices for which the WHERE clause is not true */
1489 if( pIdx->pPartIdxWhere ){
1490 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1491 pParse->ckBase = regNewData+1;
1492 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1493 SQLITE_JUMPIFNULL);
1494 pParse->ckBase = 0;
1497 /* Create a record for this index entry as it should appear after
1498 ** the insert or update. Store that record in the aRegIdx[ix] register
1500 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
1501 for(i=0; i<pIdx->nColumn; i++){
1502 int iField = pIdx->aiColumn[i];
1503 int x;
1504 if( iField==XN_EXPR ){
1505 pParse->ckBase = regNewData+1;
1506 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1507 pParse->ckBase = 0;
1508 VdbeComment((v, "%s column %d", pIdx->zName, i));
1509 }else{
1510 if( iField==XN_ROWID || iField==pTab->iPKey ){
1511 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
1512 x = regNewData;
1513 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i;
1514 }else{
1515 x = iField + regNewData + 1;
1517 sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
1518 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
1521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1522 VdbeComment((v, "for %s", pIdx->zName));
1523 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);
1525 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1526 ** of a WITHOUT ROWID table and there has been no change the
1527 ** primary key, then no collision is possible. The collision detection
1528 ** logic below can all be skipped. */
1529 if( isUpdate && pPk==pIdx && pkChng==0 ){
1530 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1531 continue;
1534 /* Find out what action to take in case there is a uniqueness conflict */
1535 onError = pIdx->onError;
1536 if( onError==OE_None ){
1537 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1538 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1539 continue; /* pIdx is not a UNIQUE index */
1541 if( overrideError!=OE_Default ){
1542 onError = overrideError;
1543 }else if( onError==OE_Default ){
1544 onError = OE_Abort;
1547 /* Check to see if the new index entry will be unique */
1548 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
1549 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
1551 /* Generate code to handle collisions */
1552 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
1553 if( isUpdate || onError==OE_Replace ){
1554 if( HasRowid(pTab) ){
1555 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
1556 /* Conflict only if the rowid of the existing index entry
1557 ** is different from old-rowid */
1558 if( isUpdate ){
1559 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
1560 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1561 VdbeCoverage(v);
1563 }else{
1564 int x;
1565 /* Extract the PRIMARY KEY from the end of the index entry and
1566 ** store it in registers regR..regR+nPk-1 */
1567 if( pIdx!=pPk ){
1568 for(i=0; i<pPk->nKeyCol; i++){
1569 assert( pPk->aiColumn[i]>=0 );
1570 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]);
1571 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
1572 VdbeComment((v, "%s.%s", pTab->zName,
1573 pTab->aCol[pPk->aiColumn[i]].zName));
1576 if( isUpdate ){
1577 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
1578 ** table, only conflict if the new PRIMARY KEY values are actually
1579 ** different from the old.
1581 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
1582 ** of the matched index row are different from the original PRIMARY
1583 ** KEY values of this row before the update. */
1584 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
1585 int op = OP_Ne;
1586 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
1588 for(i=0; i<pPk->nKeyCol; i++){
1589 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
1590 x = pPk->aiColumn[i];
1591 assert( x>=0 );
1592 if( i==(pPk->nKeyCol-1) ){
1593 addrJump = addrUniqueOk;
1594 op = OP_Eq;
1596 sqlite3VdbeAddOp4(v, op,
1597 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
1599 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1600 VdbeCoverageIf(v, op==OP_Eq);
1601 VdbeCoverageIf(v, op==OP_Ne);
1607 /* Generate code that executes if the new index entry is not unique */
1608 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1609 || onError==OE_Ignore || onError==OE_Replace );
1610 switch( onError ){
1611 case OE_Rollback:
1612 case OE_Abort:
1613 case OE_Fail: {
1614 sqlite3UniqueConstraint(pParse, onError, pIdx);
1615 break;
1617 case OE_Ignore: {
1618 sqlite3VdbeGoto(v, ignoreDest);
1619 break;
1621 default: {
1622 Trigger *pTrigger = 0;
1623 assert( onError==OE_Replace );
1624 sqlite3MultiWrite(pParse);
1625 if( db->flags&SQLITE_RecTriggers ){
1626 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1628 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1629 regR, nPkField, 0, OE_Replace,
1630 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), -1);
1631 seenReplace = 1;
1632 break;
1635 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1636 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn);
1637 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
1639 if( ipkTop ){
1640 sqlite3VdbeGoto(v, ipkTop+1);
1641 sqlite3VdbeJumpHere(v, ipkBottom);
1644 *pbMayReplace = seenReplace;
1645 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
1649 ** This routine generates code to finish the INSERT or UPDATE operation
1650 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
1651 ** A consecutive range of registers starting at regNewData contains the
1652 ** rowid and the content to be inserted.
1654 ** The arguments to this routine should be the same as the first six
1655 ** arguments to sqlite3GenerateConstraintChecks.
1657 void sqlite3CompleteInsertion(
1658 Parse *pParse, /* The parser context */
1659 Table *pTab, /* the table into which we are inserting */
1660 int iDataCur, /* Cursor of the canonical data source */
1661 int iIdxCur, /* First index cursor */
1662 int regNewData, /* Range of content */
1663 int *aRegIdx, /* Register used by each index. 0 for unused indices */
1664 int isUpdate, /* True for UPDATE, False for INSERT */
1665 int appendBias, /* True if this is likely to be an append */
1666 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
1668 Vdbe *v; /* Prepared statements under construction */
1669 Index *pIdx; /* An index being inserted or updated */
1670 u8 pik_flags; /* flag values passed to the btree insert */
1671 int regData; /* Content registers (after the rowid) */
1672 int regRec; /* Register holding assembled record for the table */
1673 int i; /* Loop counter */
1674 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */
1676 v = sqlite3GetVdbe(pParse);
1677 assert( v!=0 );
1678 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1679 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1680 if( aRegIdx[i]==0 ) continue;
1681 bAffinityDone = 1;
1682 if( pIdx->pPartIdxWhere ){
1683 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
1684 VdbeCoverage(v);
1686 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]);
1687 pik_flags = 0;
1688 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT;
1689 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1690 assert( pParse->nested==0 );
1691 pik_flags |= OPFLAG_NCHANGE;
1693 sqlite3VdbeChangeP5(v, pik_flags);
1695 if( !HasRowid(pTab) ) return;
1696 regData = regNewData + 1;
1697 regRec = sqlite3GetTempReg(pParse);
1698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
1699 if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0);
1700 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
1701 if( pParse->nested ){
1702 pik_flags = 0;
1703 }else{
1704 pik_flags = OPFLAG_NCHANGE;
1705 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
1707 if( appendBias ){
1708 pik_flags |= OPFLAG_APPEND;
1710 if( useSeekResult ){
1711 pik_flags |= OPFLAG_USESEEKRESULT;
1713 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData);
1714 if( !pParse->nested ){
1715 sqlite3VdbeChangeP4(v, -1, (char *)pTab, P4_TABLE);
1717 sqlite3VdbeChangeP5(v, pik_flags);
1721 ** Allocate cursors for the pTab table and all its indices and generate
1722 ** code to open and initialized those cursors.
1724 ** The cursor for the object that contains the complete data (normally
1725 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
1726 ** ROWID table) is returned in *piDataCur. The first index cursor is
1727 ** returned in *piIdxCur. The number of indices is returned.
1729 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
1730 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
1731 ** If iBase is negative, then allocate the next available cursor.
1733 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
1734 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
1735 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
1736 ** pTab->pIndex list.
1738 ** If pTab is a virtual table, then this routine is a no-op and the
1739 ** *piDataCur and *piIdxCur values are left uninitialized.
1741 int sqlite3OpenTableAndIndices(
1742 Parse *pParse, /* Parsing context */
1743 Table *pTab, /* Table to be opened */
1744 int op, /* OP_OpenRead or OP_OpenWrite */
1745 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
1746 int iBase, /* Use this for the table cursor, if there is one */
1747 u8 *aToOpen, /* If not NULL: boolean for each table and index */
1748 int *piDataCur, /* Write the database source cursor number here */
1749 int *piIdxCur /* Write the first index cursor number here */
1751 int i;
1752 int iDb;
1753 int iDataCur;
1754 Index *pIdx;
1755 Vdbe *v;
1757 assert( op==OP_OpenRead || op==OP_OpenWrite );
1758 assert( op==OP_OpenWrite || p5==0 );
1759 if( IsVirtual(pTab) ){
1760 /* This routine is a no-op for virtual tables. Leave the output
1761 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
1762 ** can detect if they are used by mistake in the caller. */
1763 return 0;
1765 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1766 v = sqlite3GetVdbe(pParse);
1767 assert( v!=0 );
1768 if( iBase<0 ) iBase = pParse->nTab;
1769 iDataCur = iBase++;
1770 if( piDataCur ) *piDataCur = iDataCur;
1771 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
1772 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
1773 }else{
1774 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
1776 if( piIdxCur ) *piIdxCur = iBase;
1777 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
1778 int iIdxCur = iBase++;
1779 assert( pIdx->pSchema==pTab->pSchema );
1780 if( aToOpen==0 || aToOpen[i+1] ){
1781 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
1782 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1783 VdbeComment((v, "%s", pIdx->zName));
1785 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
1786 if( piDataCur ) *piDataCur = iIdxCur;
1787 }else{
1788 sqlite3VdbeChangeP5(v, p5);
1791 if( iBase>pParse->nTab ) pParse->nTab = iBase;
1792 return i;
1796 #ifdef SQLITE_TEST
1798 ** The following global variable is incremented whenever the
1799 ** transfer optimization is used. This is used for testing
1800 ** purposes only - to make sure the transfer optimization really
1801 ** is happening when it is supposed to.
1803 int sqlite3_xferopt_count;
1804 #endif /* SQLITE_TEST */
1807 #ifndef SQLITE_OMIT_XFER_OPT
1809 ** Check to see if index pSrc is compatible as a source of data
1810 ** for index pDest in an insert transfer optimization. The rules
1811 ** for a compatible index:
1813 ** * The index is over the same set of columns
1814 ** * The same DESC and ASC markings occurs on all columns
1815 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
1816 ** * The same collating sequence on each column
1817 ** * The index has the exact same WHERE clause
1819 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
1820 int i;
1821 assert( pDest && pSrc );
1822 assert( pDest->pTable!=pSrc->pTable );
1823 if( pDest->nKeyCol!=pSrc->nKeyCol ){
1824 return 0; /* Different number of columns */
1826 if( pDest->onError!=pSrc->onError ){
1827 return 0; /* Different conflict resolution strategies */
1829 for(i=0; i<pSrc->nKeyCol; i++){
1830 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
1831 return 0; /* Different columns indexed */
1833 if( pSrc->aiColumn[i]==XN_EXPR ){
1834 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
1835 if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr,
1836 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
1837 return 0; /* Different expressions in the index */
1840 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
1841 return 0; /* Different sort orders */
1843 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
1844 return 0; /* Different collating sequences */
1847 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
1848 return 0; /* Different WHERE clauses */
1851 /* If no test above fails then the indices must be compatible */
1852 return 1;
1856 ** Attempt the transfer optimization on INSERTs of the form
1858 ** INSERT INTO tab1 SELECT * FROM tab2;
1860 ** The xfer optimization transfers raw records from tab2 over to tab1.
1861 ** Columns are not decoded and reassembled, which greatly improves
1862 ** performance. Raw index records are transferred in the same way.
1864 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
1865 ** There are lots of rules for determining compatibility - see comments
1866 ** embedded in the code for details.
1868 ** This routine returns TRUE if the optimization is guaranteed to be used.
1869 ** Sometimes the xfer optimization will only work if the destination table
1870 ** is empty - a factor that can only be determined at run-time. In that
1871 ** case, this routine generates code for the xfer optimization but also
1872 ** does a test to see if the destination table is empty and jumps over the
1873 ** xfer optimization code if the test fails. In that case, this routine
1874 ** returns FALSE so that the caller will know to go ahead and generate
1875 ** an unoptimized transfer. This routine also returns FALSE if there
1876 ** is no chance that the xfer optimization can be applied.
1878 ** This optimization is particularly useful at making VACUUM run faster.
1880 static int xferOptimization(
1881 Parse *pParse, /* Parser context */
1882 Table *pDest, /* The table we are inserting into */
1883 Select *pSelect, /* A SELECT statement to use as the data source */
1884 int onError, /* How to handle constraint errors */
1885 int iDbDest /* The database of pDest */
1887 sqlite3 *db = pParse->db;
1888 ExprList *pEList; /* The result set of the SELECT */
1889 Table *pSrc; /* The table in the FROM clause of SELECT */
1890 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
1891 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
1892 int i; /* Loop counter */
1893 int iDbSrc; /* The database of pSrc */
1894 int iSrc, iDest; /* Cursors from source and destination */
1895 int addr1, addr2; /* Loop addresses */
1896 int emptyDestTest = 0; /* Address of test for empty pDest */
1897 int emptySrcTest = 0; /* Address of test for empty pSrc */
1898 Vdbe *v; /* The VDBE we are building */
1899 int regAutoinc; /* Memory register used by AUTOINC */
1900 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
1901 int regData, regRowid; /* Registers holding data and rowid */
1903 if( pSelect==0 ){
1904 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
1906 if( pParse->pWith || pSelect->pWith ){
1907 /* Do not attempt to process this query if there are an WITH clauses
1908 ** attached to it. Proceeding may generate a false "no such table: xxx"
1909 ** error if pSelect reads from a CTE named "xxx". */
1910 return 0;
1912 if( sqlite3TriggerList(pParse, pDest) ){
1913 return 0; /* tab1 must not have triggers */
1915 #ifndef SQLITE_OMIT_VIRTUALTABLE
1916 if( pDest->tabFlags & TF_Virtual ){
1917 return 0; /* tab1 must not be a virtual table */
1919 #endif
1920 if( onError==OE_Default ){
1921 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
1922 if( onError==OE_Default ) onError = OE_Abort;
1924 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
1925 if( pSelect->pSrc->nSrc!=1 ){
1926 return 0; /* FROM clause must have exactly one term */
1928 if( pSelect->pSrc->a[0].pSelect ){
1929 return 0; /* FROM clause cannot contain a subquery */
1931 if( pSelect->pWhere ){
1932 return 0; /* SELECT may not have a WHERE clause */
1934 if( pSelect->pOrderBy ){
1935 return 0; /* SELECT may not have an ORDER BY clause */
1937 /* Do not need to test for a HAVING clause. If HAVING is present but
1938 ** there is no ORDER BY, we will get an error. */
1939 if( pSelect->pGroupBy ){
1940 return 0; /* SELECT may not have a GROUP BY clause */
1942 if( pSelect->pLimit ){
1943 return 0; /* SELECT may not have a LIMIT clause */
1945 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
1946 if( pSelect->pPrior ){
1947 return 0; /* SELECT may not be a compound query */
1949 if( pSelect->selFlags & SF_Distinct ){
1950 return 0; /* SELECT may not be DISTINCT */
1952 pEList = pSelect->pEList;
1953 assert( pEList!=0 );
1954 if( pEList->nExpr!=1 ){
1955 return 0; /* The result set must have exactly one column */
1957 assert( pEList->a[0].pExpr );
1958 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
1959 return 0; /* The result set must be the special operator "*" */
1962 /* At this point we have established that the statement is of the
1963 ** correct syntactic form to participate in this optimization. Now
1964 ** we have to check the semantics.
1966 pItem = pSelect->pSrc->a;
1967 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
1968 if( pSrc==0 ){
1969 return 0; /* FROM clause does not contain a real table */
1971 if( pSrc==pDest ){
1972 return 0; /* tab1 and tab2 may not be the same table */
1974 if( HasRowid(pDest)!=HasRowid(pSrc) ){
1975 return 0; /* source and destination must both be WITHOUT ROWID or not */
1977 #ifndef SQLITE_OMIT_VIRTUALTABLE
1978 if( pSrc->tabFlags & TF_Virtual ){
1979 return 0; /* tab2 must not be a virtual table */
1981 #endif
1982 if( pSrc->pSelect ){
1983 return 0; /* tab2 may not be a view */
1985 if( pDest->nCol!=pSrc->nCol ){
1986 return 0; /* Number of columns must be the same in tab1 and tab2 */
1988 if( pDest->iPKey!=pSrc->iPKey ){
1989 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
1991 for(i=0; i<pDest->nCol; i++){
1992 Column *pDestCol = &pDest->aCol[i];
1993 Column *pSrcCol = &pSrc->aCol[i];
1994 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
1995 if( (db->flags & SQLITE_Vacuum)==0
1996 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
1998 return 0; /* Neither table may have __hidden__ columns */
2000 #endif
2001 if( pDestCol->affinity!=pSrcCol->affinity ){
2002 return 0; /* Affinity must be the same on all columns */
2004 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2005 return 0; /* Collating sequence must be the same on all columns */
2007 if( pDestCol->notNull && !pSrcCol->notNull ){
2008 return 0; /* tab2 must be NOT NULL if tab1 is */
2010 /* Default values for second and subsequent columns need to match. */
2011 if( i>0 ){
2012 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2013 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2014 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2015 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2016 pSrcCol->pDflt->u.zToken)!=0)
2018 return 0; /* Default values must be the same for all columns */
2022 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2023 if( IsUniqueIndex(pDestIdx) ){
2024 destHasUniqueIdx = 1;
2026 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2027 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2029 if( pSrcIdx==0 ){
2030 return 0; /* pDestIdx has no corresponding index in pSrc */
2033 #ifndef SQLITE_OMIT_CHECK
2034 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2035 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2037 #endif
2038 #ifndef SQLITE_OMIT_FOREIGN_KEY
2039 /* Disallow the transfer optimization if the destination table constains
2040 ** any foreign key constraints. This is more restrictive than necessary.
2041 ** But the main beneficiary of the transfer optimization is the VACUUM
2042 ** command, and the VACUUM command disables foreign key constraints. So
2043 ** the extra complication to make this rule less restrictive is probably
2044 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2046 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2047 return 0;
2049 #endif
2050 if( (db->flags & SQLITE_CountRows)!=0 ){
2051 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2054 /* If we get this far, it means that the xfer optimization is at
2055 ** least a possibility, though it might only work if the destination
2056 ** table (tab1) is initially empty.
2058 #ifdef SQLITE_TEST
2059 sqlite3_xferopt_count++;
2060 #endif
2061 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2062 v = sqlite3GetVdbe(pParse);
2063 sqlite3CodeVerifySchema(pParse, iDbSrc);
2064 iSrc = pParse->nTab++;
2065 iDest = pParse->nTab++;
2066 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2067 regData = sqlite3GetTempReg(pParse);
2068 regRowid = sqlite3GetTempReg(pParse);
2069 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2070 assert( HasRowid(pDest) || destHasUniqueIdx );
2071 if( (db->flags & SQLITE_Vacuum)==0 && (
2072 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2073 || destHasUniqueIdx /* (2) */
2074 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2076 /* In some circumstances, we are able to run the xfer optimization
2077 ** only if the destination table is initially empty. Unless the
2078 ** SQLITE_Vacuum flag is set, this block generates code to make
2079 ** that determination. If SQLITE_Vacuum is set, then the destination
2080 ** table is always empty.
2082 ** Conditions under which the destination must be empty:
2084 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2085 ** (If the destination is not initially empty, the rowid fields
2086 ** of index entries might need to change.)
2088 ** (2) The destination has a unique index. (The xfer optimization
2089 ** is unable to test uniqueness.)
2091 ** (3) onError is something other than OE_Abort and OE_Rollback.
2093 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2094 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2095 sqlite3VdbeJumpHere(v, addr1);
2097 if( HasRowid(pSrc) ){
2098 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2099 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2100 if( pDest->iPKey>=0 ){
2101 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2102 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2103 VdbeCoverage(v);
2104 sqlite3RowidConstraint(pParse, onError, pDest);
2105 sqlite3VdbeJumpHere(v, addr2);
2106 autoIncStep(pParse, regAutoinc, regRowid);
2107 }else if( pDest->pIndex==0 ){
2108 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2109 }else{
2110 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2111 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2113 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
2114 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2115 (char*)pDest, P4_TABLE);
2116 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
2117 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2118 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2119 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2120 }else{
2121 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2122 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2124 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2125 u8 idxInsFlags = 0;
2126 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2127 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2129 assert( pSrcIdx );
2130 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2131 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2132 VdbeComment((v, "%s", pSrcIdx->zName));
2133 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2134 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2135 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2136 VdbeComment((v, "%s", pDestIdx->zName));
2137 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2138 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
2139 if( db->flags & SQLITE_Vacuum ){
2140 /* This INSERT command is part of a VACUUM operation, which guarantees
2141 ** that the destination table is empty. If all indexed columns use
2142 ** collation sequence BINARY, then it can also be assumed that the
2143 ** index will be populated by inserting keys in strictly sorted
2144 ** order. In this case, instead of seeking within the b-tree as part
2145 ** of every OP_IdxInsert opcode, an OP_Last is added before the
2146 ** OP_IdxInsert to seek to the point within the b-tree where each key
2147 ** should be inserted. This is faster.
2149 ** If any of the indexed columns use a collation sequence other than
2150 ** BINARY, this optimization is disabled. This is because the user
2151 ** might change the definition of a collation sequence and then run
2152 ** a VACUUM command. In that case keys may not be written in strictly
2153 ** sorted order. */
2154 for(i=0; i<pSrcIdx->nColumn; i++){
2155 const char *zColl = pSrcIdx->azColl[i];
2156 assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0
2157 || sqlite3StrBINARY==zColl );
2158 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2160 if( i==pSrcIdx->nColumn ){
2161 idxInsFlags = OPFLAG_USESEEKRESULT;
2162 sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
2165 if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
2166 idxInsFlags |= OPFLAG_NCHANGE;
2168 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
2169 sqlite3VdbeChangeP5(v, idxInsFlags);
2170 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2171 sqlite3VdbeJumpHere(v, addr1);
2172 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2173 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2175 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2176 sqlite3ReleaseTempReg(pParse, regRowid);
2177 sqlite3ReleaseTempReg(pParse, regData);
2178 if( emptyDestTest ){
2179 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2180 sqlite3VdbeJumpHere(v, emptyDestTest);
2181 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2182 return 0;
2183 }else{
2184 return 1;
2187 #endif /* SQLITE_OMIT_XFER_OPT */