Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / func.c
blob78c88064561eff27371fe28a054cf5443ea267be
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite. (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #include "vdbeInt.h"
22 ** Return the collating function associated with a function.
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
25 VdbeOp *pOp;
26 assert( context->pVdbe!=0 );
27 pOp = &context->pVdbe->aOp[context->iOp-1];
28 assert( pOp->opcode==OP_CollSeq );
29 assert( pOp->p4type==P4_COLLSEQ );
30 return pOp->p4.pColl;
34 ** Indicate that the accumulator load should be skipped on this
35 ** iteration of the aggregate loop.
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
38 context->skipFlag = 1;
42 ** Implementation of the non-aggregate min() and max() functions
44 static void minmaxFunc(
45 sqlite3_context *context,
46 int argc,
47 sqlite3_value **argv
49 int i;
50 int mask; /* 0 for min() or 0xffffffff for max() */
51 int iBest;
52 CollSeq *pColl;
54 assert( argc>1 );
55 mask = sqlite3_user_data(context)==0 ? 0 : -1;
56 pColl = sqlite3GetFuncCollSeq(context);
57 assert( pColl );
58 assert( mask==-1 || mask==0 );
59 iBest = 0;
60 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
61 for(i=1; i<argc; i++){
62 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
63 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
64 testcase( mask==0 );
65 iBest = i;
68 sqlite3_result_value(context, argv[iBest]);
72 ** Return the type of the argument.
74 static void typeofFunc(
75 sqlite3_context *context,
76 int NotUsed,
77 sqlite3_value **argv
79 const char *z = 0;
80 UNUSED_PARAMETER(NotUsed);
81 switch( sqlite3_value_type(argv[0]) ){
82 case SQLITE_INTEGER: z = "integer"; break;
83 case SQLITE_TEXT: z = "text"; break;
84 case SQLITE_FLOAT: z = "real"; break;
85 case SQLITE_BLOB: z = "blob"; break;
86 default: z = "null"; break;
88 sqlite3_result_text(context, z, -1, SQLITE_STATIC);
93 ** Implementation of the length() function
95 static void lengthFunc(
96 sqlite3_context *context,
97 int argc,
98 sqlite3_value **argv
100 int len;
102 assert( argc==1 );
103 UNUSED_PARAMETER(argc);
104 switch( sqlite3_value_type(argv[0]) ){
105 case SQLITE_BLOB:
106 case SQLITE_INTEGER:
107 case SQLITE_FLOAT: {
108 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
109 break;
111 case SQLITE_TEXT: {
112 const unsigned char *z = sqlite3_value_text(argv[0]);
113 if( z==0 ) return;
114 len = 0;
115 while( *z ){
116 len++;
117 SQLITE_SKIP_UTF8(z);
119 sqlite3_result_int(context, len);
120 break;
122 default: {
123 sqlite3_result_null(context);
124 break;
130 ** Implementation of the abs() function.
132 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
133 ** the numeric argument X.
135 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
136 assert( argc==1 );
137 UNUSED_PARAMETER(argc);
138 switch( sqlite3_value_type(argv[0]) ){
139 case SQLITE_INTEGER: {
140 i64 iVal = sqlite3_value_int64(argv[0]);
141 if( iVal<0 ){
142 if( iVal==SMALLEST_INT64 ){
143 /* IMP: R-31676-45509 If X is the integer -9223372036854775808
144 ** then abs(X) throws an integer overflow error since there is no
145 ** equivalent positive 64-bit two complement value. */
146 sqlite3_result_error(context, "integer overflow", -1);
147 return;
149 iVal = -iVal;
151 sqlite3_result_int64(context, iVal);
152 break;
154 case SQLITE_NULL: {
155 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
156 sqlite3_result_null(context);
157 break;
159 default: {
160 /* Because sqlite3_value_double() returns 0.0 if the argument is not
161 ** something that can be converted into a number, we have:
162 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
163 ** that cannot be converted to a numeric value.
165 double rVal = sqlite3_value_double(argv[0]);
166 if( rVal<0 ) rVal = -rVal;
167 sqlite3_result_double(context, rVal);
168 break;
174 ** Implementation of the instr() function.
176 ** instr(haystack,needle) finds the first occurrence of needle
177 ** in haystack and returns the number of previous characters plus 1,
178 ** or 0 if needle does not occur within haystack.
180 ** If both haystack and needle are BLOBs, then the result is one more than
181 ** the number of bytes in haystack prior to the first occurrence of needle,
182 ** or 0 if needle never occurs in haystack.
184 static void instrFunc(
185 sqlite3_context *context,
186 int argc,
187 sqlite3_value **argv
189 const unsigned char *zHaystack;
190 const unsigned char *zNeedle;
191 int nHaystack;
192 int nNeedle;
193 int typeHaystack, typeNeedle;
194 int N = 1;
195 int isText;
197 UNUSED_PARAMETER(argc);
198 typeHaystack = sqlite3_value_type(argv[0]);
199 typeNeedle = sqlite3_value_type(argv[1]);
200 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
201 nHaystack = sqlite3_value_bytes(argv[0]);
202 nNeedle = sqlite3_value_bytes(argv[1]);
203 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
204 zHaystack = sqlite3_value_blob(argv[0]);
205 zNeedle = sqlite3_value_blob(argv[1]);
206 isText = 0;
207 }else{
208 zHaystack = sqlite3_value_text(argv[0]);
209 zNeedle = sqlite3_value_text(argv[1]);
210 isText = 1;
212 while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){
213 N++;
215 nHaystack--;
216 zHaystack++;
217 }while( isText && (zHaystack[0]&0xc0)==0x80 );
219 if( nNeedle>nHaystack ) N = 0;
220 sqlite3_result_int(context, N);
224 ** Implementation of the printf() function.
226 static void printfFunc(
227 sqlite3_context *context,
228 int argc,
229 sqlite3_value **argv
231 PrintfArguments x;
232 StrAccum str;
233 const char *zFormat;
234 int n;
235 sqlite3 *db = sqlite3_context_db_handle(context);
237 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
238 x.nArg = argc-1;
239 x.nUsed = 0;
240 x.apArg = argv+1;
241 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
242 str.printfFlags = SQLITE_PRINTF_SQLFUNC;
243 sqlite3XPrintf(&str, zFormat, &x);
244 n = str.nChar;
245 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
246 SQLITE_DYNAMIC);
251 ** Implementation of the substr() function.
253 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
254 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
255 ** of x. If x is text, then we actually count UTF-8 characters.
256 ** If x is a blob, then we count bytes.
258 ** If p1 is negative, then we begin abs(p1) from the end of x[].
260 ** If p2 is negative, return the p2 characters preceding p1.
262 static void substrFunc(
263 sqlite3_context *context,
264 int argc,
265 sqlite3_value **argv
267 const unsigned char *z;
268 const unsigned char *z2;
269 int len;
270 int p0type;
271 i64 p1, p2;
272 int negP2 = 0;
274 assert( argc==3 || argc==2 );
275 if( sqlite3_value_type(argv[1])==SQLITE_NULL
276 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
278 return;
280 p0type = sqlite3_value_type(argv[0]);
281 p1 = sqlite3_value_int(argv[1]);
282 if( p0type==SQLITE_BLOB ){
283 len = sqlite3_value_bytes(argv[0]);
284 z = sqlite3_value_blob(argv[0]);
285 if( z==0 ) return;
286 assert( len==sqlite3_value_bytes(argv[0]) );
287 }else{
288 z = sqlite3_value_text(argv[0]);
289 if( z==0 ) return;
290 len = 0;
291 if( p1<0 ){
292 for(z2=z; *z2; len++){
293 SQLITE_SKIP_UTF8(z2);
297 #ifdef SQLITE_SUBSTR_COMPATIBILITY
298 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
299 ** as substr(X,1,N) - it returns the first N characters of X. This
300 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
301 ** from 2009-02-02 for compatibility of applications that exploited the
302 ** old buggy behavior. */
303 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
304 #endif
305 if( argc==3 ){
306 p2 = sqlite3_value_int(argv[2]);
307 if( p2<0 ){
308 p2 = -p2;
309 negP2 = 1;
311 }else{
312 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
314 if( p1<0 ){
315 p1 += len;
316 if( p1<0 ){
317 p2 += p1;
318 if( p2<0 ) p2 = 0;
319 p1 = 0;
321 }else if( p1>0 ){
322 p1--;
323 }else if( p2>0 ){
324 p2--;
326 if( negP2 ){
327 p1 -= p2;
328 if( p1<0 ){
329 p2 += p1;
330 p1 = 0;
333 assert( p1>=0 && p2>=0 );
334 if( p0type!=SQLITE_BLOB ){
335 while( *z && p1 ){
336 SQLITE_SKIP_UTF8(z);
337 p1--;
339 for(z2=z; *z2 && p2; p2--){
340 SQLITE_SKIP_UTF8(z2);
342 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
343 SQLITE_UTF8);
344 }else{
345 if( p1+p2>len ){
346 p2 = len-p1;
347 if( p2<0 ) p2 = 0;
349 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
354 ** Implementation of the round() function
356 #ifndef SQLITE_OMIT_FLOATING_POINT
357 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
358 int n = 0;
359 double r;
360 char *zBuf;
361 assert( argc==1 || argc==2 );
362 if( argc==2 ){
363 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
364 n = sqlite3_value_int(argv[1]);
365 if( n>30 ) n = 30;
366 if( n<0 ) n = 0;
368 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
369 r = sqlite3_value_double(argv[0]);
370 /* If Y==0 and X will fit in a 64-bit int,
371 ** handle the rounding directly,
372 ** otherwise use printf.
374 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
375 r = (double)((sqlite_int64)(r+0.5));
376 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
377 r = -(double)((sqlite_int64)((-r)+0.5));
378 }else{
379 zBuf = sqlite3_mprintf("%.*f",n,r);
380 if( zBuf==0 ){
381 sqlite3_result_error_nomem(context);
382 return;
384 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
385 sqlite3_free(zBuf);
387 sqlite3_result_double(context, r);
389 #endif
392 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
393 ** allocation fails, call sqlite3_result_error_nomem() to notify
394 ** the database handle that malloc() has failed and return NULL.
395 ** If nByte is larger than the maximum string or blob length, then
396 ** raise an SQLITE_TOOBIG exception and return NULL.
398 static void *contextMalloc(sqlite3_context *context, i64 nByte){
399 char *z;
400 sqlite3 *db = sqlite3_context_db_handle(context);
401 assert( nByte>0 );
402 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
403 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
404 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
405 sqlite3_result_error_toobig(context);
406 z = 0;
407 }else{
408 z = sqlite3Malloc(nByte);
409 if( !z ){
410 sqlite3_result_error_nomem(context);
413 return z;
417 ** Implementation of the upper() and lower() SQL functions.
419 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
420 char *z1;
421 const char *z2;
422 int i, n;
423 UNUSED_PARAMETER(argc);
424 z2 = (char*)sqlite3_value_text(argv[0]);
425 n = sqlite3_value_bytes(argv[0]);
426 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
427 assert( z2==(char*)sqlite3_value_text(argv[0]) );
428 if( z2 ){
429 z1 = contextMalloc(context, ((i64)n)+1);
430 if( z1 ){
431 for(i=0; i<n; i++){
432 z1[i] = (char)sqlite3Toupper(z2[i]);
434 sqlite3_result_text(context, z1, n, sqlite3_free);
438 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
439 char *z1;
440 const char *z2;
441 int i, n;
442 UNUSED_PARAMETER(argc);
443 z2 = (char*)sqlite3_value_text(argv[0]);
444 n = sqlite3_value_bytes(argv[0]);
445 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
446 assert( z2==(char*)sqlite3_value_text(argv[0]) );
447 if( z2 ){
448 z1 = contextMalloc(context, ((i64)n)+1);
449 if( z1 ){
450 for(i=0; i<n; i++){
451 z1[i] = sqlite3Tolower(z2[i]);
453 sqlite3_result_text(context, z1, n, sqlite3_free);
459 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
460 ** as VDBE code so that unused argument values do not have to be computed.
461 ** However, we still need some kind of function implementation for this
462 ** routines in the function table. The noopFunc macro provides this.
463 ** noopFunc will never be called so it doesn't matter what the implementation
464 ** is. We might as well use the "version()" function as a substitute.
466 #define noopFunc versionFunc /* Substitute function - never called */
469 ** Implementation of random(). Return a random integer.
471 static void randomFunc(
472 sqlite3_context *context,
473 int NotUsed,
474 sqlite3_value **NotUsed2
476 sqlite_int64 r;
477 UNUSED_PARAMETER2(NotUsed, NotUsed2);
478 sqlite3_randomness(sizeof(r), &r);
479 if( r<0 ){
480 /* We need to prevent a random number of 0x8000000000000000
481 ** (or -9223372036854775808) since when you do abs() of that
482 ** number of you get the same value back again. To do this
483 ** in a way that is testable, mask the sign bit off of negative
484 ** values, resulting in a positive value. Then take the
485 ** 2s complement of that positive value. The end result can
486 ** therefore be no less than -9223372036854775807.
488 r = -(r & LARGEST_INT64);
490 sqlite3_result_int64(context, r);
494 ** Implementation of randomblob(N). Return a random blob
495 ** that is N bytes long.
497 static void randomBlob(
498 sqlite3_context *context,
499 int argc,
500 sqlite3_value **argv
502 int n;
503 unsigned char *p;
504 assert( argc==1 );
505 UNUSED_PARAMETER(argc);
506 n = sqlite3_value_int(argv[0]);
507 if( n<1 ){
508 n = 1;
510 p = contextMalloc(context, n);
511 if( p ){
512 sqlite3_randomness(n, p);
513 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
518 ** Implementation of the last_insert_rowid() SQL function. The return
519 ** value is the same as the sqlite3_last_insert_rowid() API function.
521 static void last_insert_rowid(
522 sqlite3_context *context,
523 int NotUsed,
524 sqlite3_value **NotUsed2
526 sqlite3 *db = sqlite3_context_db_handle(context);
527 UNUSED_PARAMETER2(NotUsed, NotUsed2);
528 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
529 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
530 ** function. */
531 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
535 ** Implementation of the changes() SQL function.
537 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
538 ** around the sqlite3_changes() C/C++ function and hence follows the same
539 ** rules for counting changes.
541 static void changes(
542 sqlite3_context *context,
543 int NotUsed,
544 sqlite3_value **NotUsed2
546 sqlite3 *db = sqlite3_context_db_handle(context);
547 UNUSED_PARAMETER2(NotUsed, NotUsed2);
548 sqlite3_result_int(context, sqlite3_changes(db));
552 ** Implementation of the total_changes() SQL function. The return value is
553 ** the same as the sqlite3_total_changes() API function.
555 static void total_changes(
556 sqlite3_context *context,
557 int NotUsed,
558 sqlite3_value **NotUsed2
560 sqlite3 *db = sqlite3_context_db_handle(context);
561 UNUSED_PARAMETER2(NotUsed, NotUsed2);
562 /* IMP: R-52756-41993 This function is a wrapper around the
563 ** sqlite3_total_changes() C/C++ interface. */
564 sqlite3_result_int(context, sqlite3_total_changes(db));
568 ** A structure defining how to do GLOB-style comparisons.
570 struct compareInfo {
571 u8 matchAll; /* "*" or "%" */
572 u8 matchOne; /* "?" or "_" */
573 u8 matchSet; /* "[" or 0 */
574 u8 noCase; /* true to ignore case differences */
578 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
579 ** character is exactly one byte in size. Also, provde the Utf8Read()
580 ** macro for fast reading of the next character in the common case where
581 ** the next character is ASCII.
583 #if defined(SQLITE_EBCDIC)
584 # define sqlite3Utf8Read(A) (*((*A)++))
585 # define Utf8Read(A) (*(A++))
586 #else
587 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
588 #endif
590 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
591 /* The correct SQL-92 behavior is for the LIKE operator to ignore
592 ** case. Thus 'a' LIKE 'A' would be true. */
593 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
594 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
595 ** is case sensitive causing 'a' LIKE 'A' to be false */
596 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
599 ** Compare two UTF-8 strings for equality where the first string can
600 ** potentially be a "glob" or "like" expression. Return true (1) if they
601 ** are the same and false (0) if they are different.
603 ** Globbing rules:
605 ** '*' Matches any sequence of zero or more characters.
607 ** '?' Matches exactly one character.
609 ** [...] Matches one character from the enclosed list of
610 ** characters.
612 ** [^...] Matches one character not in the enclosed list.
614 ** With the [...] and [^...] matching, a ']' character can be included
615 ** in the list by making it the first character after '[' or '^'. A
616 ** range of characters can be specified using '-'. Example:
617 ** "[a-z]" matches any single lower-case letter. To match a '-', make
618 ** it the last character in the list.
620 ** Like matching rules:
622 ** '%' Matches any sequence of zero or more characters
624 *** '_' Matches any one character
626 ** Ec Where E is the "esc" character and c is any other
627 ** character, including '%', '_', and esc, match exactly c.
629 ** The comments within this routine usually assume glob matching.
631 ** This routine is usually quick, but can be N**2 in the worst case.
633 static int patternCompare(
634 const u8 *zPattern, /* The glob pattern */
635 const u8 *zString, /* The string to compare against the glob */
636 const struct compareInfo *pInfo, /* Information about how to do the compare */
637 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
639 u32 c, c2; /* Next pattern and input string chars */
640 u32 matchOne = pInfo->matchOne; /* "?" or "_" */
641 u32 matchAll = pInfo->matchAll; /* "*" or "%" */
642 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
643 const u8 *zEscaped = 0; /* One past the last escaped input char */
645 while( (c = Utf8Read(zPattern))!=0 ){
646 if( c==matchAll ){ /* Match "*" */
647 /* Skip over multiple "*" characters in the pattern. If there
648 ** are also "?" characters, skip those as well, but consume a
649 ** single character of the input string for each "?" skipped */
650 while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){
651 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
652 return 0;
655 if( c==0 ){
656 return 1; /* "*" at the end of the pattern matches */
657 }else if( c==matchOther ){
658 if( pInfo->matchSet==0 ){
659 c = sqlite3Utf8Read(&zPattern);
660 if( c==0 ) return 0;
661 }else{
662 /* "[...]" immediately follows the "*". We have to do a slow
663 ** recursive search in this case, but it is an unusual case. */
664 assert( matchOther<0x80 ); /* '[' is a single-byte character */
665 while( *zString
666 && patternCompare(&zPattern[-1],zString,pInfo,matchOther)==0 ){
667 SQLITE_SKIP_UTF8(zString);
669 return *zString!=0;
673 /* At this point variable c contains the first character of the
674 ** pattern string past the "*". Search in the input string for the
675 ** first matching character and recursively contine the match from
676 ** that point.
678 ** For a case-insensitive search, set variable cx to be the same as
679 ** c but in the other case and search the input string for either
680 ** c or cx.
682 if( c<=0x80 ){
683 u32 cx;
684 if( noCase ){
685 cx = sqlite3Toupper(c);
686 c = sqlite3Tolower(c);
687 }else{
688 cx = c;
690 while( (c2 = *(zString++))!=0 ){
691 if( c2!=c && c2!=cx ) continue;
692 if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
694 }else{
695 while( (c2 = Utf8Read(zString))!=0 ){
696 if( c2!=c ) continue;
697 if( patternCompare(zPattern,zString,pInfo,matchOther) ) return 1;
700 return 0;
702 if( c==matchOther ){
703 if( pInfo->matchSet==0 ){
704 c = sqlite3Utf8Read(&zPattern);
705 if( c==0 ) return 0;
706 zEscaped = zPattern;
707 }else{
708 u32 prior_c = 0;
709 int seen = 0;
710 int invert = 0;
711 c = sqlite3Utf8Read(&zString);
712 if( c==0 ) return 0;
713 c2 = sqlite3Utf8Read(&zPattern);
714 if( c2=='^' ){
715 invert = 1;
716 c2 = sqlite3Utf8Read(&zPattern);
718 if( c2==']' ){
719 if( c==']' ) seen = 1;
720 c2 = sqlite3Utf8Read(&zPattern);
722 while( c2 && c2!=']' ){
723 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
724 c2 = sqlite3Utf8Read(&zPattern);
725 if( c>=prior_c && c<=c2 ) seen = 1;
726 prior_c = 0;
727 }else{
728 if( c==c2 ){
729 seen = 1;
731 prior_c = c2;
733 c2 = sqlite3Utf8Read(&zPattern);
735 if( c2==0 || (seen ^ invert)==0 ){
736 return 0;
738 continue;
741 c2 = Utf8Read(zString);
742 if( c==c2 ) continue;
743 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
744 continue;
746 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
747 return 0;
749 return *zString==0;
753 ** The sqlite3_strglob() interface.
755 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
756 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[')==0;
760 ** The sqlite3_strlike() interface.
762 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
763 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
767 ** Count the number of times that the LIKE operator (or GLOB which is
768 ** just a variation of LIKE) gets called. This is used for testing
769 ** only.
771 #ifdef SQLITE_TEST
772 int sqlite3_like_count = 0;
773 #endif
777 ** Implementation of the like() SQL function. This function implements
778 ** the build-in LIKE operator. The first argument to the function is the
779 ** pattern and the second argument is the string. So, the SQL statements:
781 ** A LIKE B
783 ** is implemented as like(B,A).
785 ** This same function (with a different compareInfo structure) computes
786 ** the GLOB operator.
788 static void likeFunc(
789 sqlite3_context *context,
790 int argc,
791 sqlite3_value **argv
793 const unsigned char *zA, *zB;
794 u32 escape;
795 int nPat;
796 sqlite3 *db = sqlite3_context_db_handle(context);
797 struct compareInfo *pInfo = sqlite3_user_data(context);
799 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
800 if( sqlite3_value_type(argv[0])==SQLITE_BLOB
801 || sqlite3_value_type(argv[1])==SQLITE_BLOB
803 #ifdef SQLITE_TEST
804 sqlite3_like_count++;
805 #endif
806 sqlite3_result_int(context, 0);
807 return;
809 #endif
810 zB = sqlite3_value_text(argv[0]);
811 zA = sqlite3_value_text(argv[1]);
813 /* Limit the length of the LIKE or GLOB pattern to avoid problems
814 ** of deep recursion and N*N behavior in patternCompare().
816 nPat = sqlite3_value_bytes(argv[0]);
817 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
818 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
819 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
820 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
821 return;
823 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
825 if( argc==3 ){
826 /* The escape character string must consist of a single UTF-8 character.
827 ** Otherwise, return an error.
829 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
830 if( zEsc==0 ) return;
831 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
832 sqlite3_result_error(context,
833 "ESCAPE expression must be a single character", -1);
834 return;
836 escape = sqlite3Utf8Read(&zEsc);
837 }else{
838 escape = pInfo->matchSet;
840 if( zA && zB ){
841 #ifdef SQLITE_TEST
842 sqlite3_like_count++;
843 #endif
844 sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
849 ** Implementation of the NULLIF(x,y) function. The result is the first
850 ** argument if the arguments are different. The result is NULL if the
851 ** arguments are equal to each other.
853 static void nullifFunc(
854 sqlite3_context *context,
855 int NotUsed,
856 sqlite3_value **argv
858 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
859 UNUSED_PARAMETER(NotUsed);
860 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
861 sqlite3_result_value(context, argv[0]);
866 ** Implementation of the sqlite_version() function. The result is the version
867 ** of the SQLite library that is running.
869 static void versionFunc(
870 sqlite3_context *context,
871 int NotUsed,
872 sqlite3_value **NotUsed2
874 UNUSED_PARAMETER2(NotUsed, NotUsed2);
875 /* IMP: R-48699-48617 This function is an SQL wrapper around the
876 ** sqlite3_libversion() C-interface. */
877 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
881 ** Implementation of the sqlite_source_id() function. The result is a string
882 ** that identifies the particular version of the source code used to build
883 ** SQLite.
885 static void sourceidFunc(
886 sqlite3_context *context,
887 int NotUsed,
888 sqlite3_value **NotUsed2
890 UNUSED_PARAMETER2(NotUsed, NotUsed2);
891 /* IMP: R-24470-31136 This function is an SQL wrapper around the
892 ** sqlite3_sourceid() C interface. */
893 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
897 ** Implementation of the sqlite_log() function. This is a wrapper around
898 ** sqlite3_log(). The return value is NULL. The function exists purely for
899 ** its side-effects.
901 static void errlogFunc(
902 sqlite3_context *context,
903 int argc,
904 sqlite3_value **argv
906 UNUSED_PARAMETER(argc);
907 UNUSED_PARAMETER(context);
908 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
912 ** Implementation of the sqlite_compileoption_used() function.
913 ** The result is an integer that identifies if the compiler option
914 ** was used to build SQLite.
916 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
917 static void compileoptionusedFunc(
918 sqlite3_context *context,
919 int argc,
920 sqlite3_value **argv
922 const char *zOptName;
923 assert( argc==1 );
924 UNUSED_PARAMETER(argc);
925 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
926 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
927 ** function.
929 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
930 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
933 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
936 ** Implementation of the sqlite_compileoption_get() function.
937 ** The result is a string that identifies the compiler options
938 ** used to build SQLite.
940 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
941 static void compileoptiongetFunc(
942 sqlite3_context *context,
943 int argc,
944 sqlite3_value **argv
946 int n;
947 assert( argc==1 );
948 UNUSED_PARAMETER(argc);
949 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
950 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
952 n = sqlite3_value_int(argv[0]);
953 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
955 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
957 /* Array for converting from half-bytes (nybbles) into ASCII hex
958 ** digits. */
959 static const char hexdigits[] = {
960 '0', '1', '2', '3', '4', '5', '6', '7',
961 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
965 ** Implementation of the QUOTE() function. This function takes a single
966 ** argument. If the argument is numeric, the return value is the same as
967 ** the argument. If the argument is NULL, the return value is the string
968 ** "NULL". Otherwise, the argument is enclosed in single quotes with
969 ** single-quote escapes.
971 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
972 assert( argc==1 );
973 UNUSED_PARAMETER(argc);
974 switch( sqlite3_value_type(argv[0]) ){
975 case SQLITE_FLOAT: {
976 double r1, r2;
977 char zBuf[50];
978 r1 = sqlite3_value_double(argv[0]);
979 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
980 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
981 if( r1!=r2 ){
982 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
984 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
985 break;
987 case SQLITE_INTEGER: {
988 sqlite3_result_value(context, argv[0]);
989 break;
991 case SQLITE_BLOB: {
992 char *zText = 0;
993 char const *zBlob = sqlite3_value_blob(argv[0]);
994 int nBlob = sqlite3_value_bytes(argv[0]);
995 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
996 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
997 if( zText ){
998 int i;
999 for(i=0; i<nBlob; i++){
1000 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1001 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1003 zText[(nBlob*2)+2] = '\'';
1004 zText[(nBlob*2)+3] = '\0';
1005 zText[0] = 'X';
1006 zText[1] = '\'';
1007 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
1008 sqlite3_free(zText);
1010 break;
1012 case SQLITE_TEXT: {
1013 int i,j;
1014 u64 n;
1015 const unsigned char *zArg = sqlite3_value_text(argv[0]);
1016 char *z;
1018 if( zArg==0 ) return;
1019 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
1020 z = contextMalloc(context, ((i64)i)+((i64)n)+3);
1021 if( z ){
1022 z[0] = '\'';
1023 for(i=0, j=1; zArg[i]; i++){
1024 z[j++] = zArg[i];
1025 if( zArg[i]=='\'' ){
1026 z[j++] = '\'';
1029 z[j++] = '\'';
1030 z[j] = 0;
1031 sqlite3_result_text(context, z, j, sqlite3_free);
1033 break;
1035 default: {
1036 assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
1037 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
1038 break;
1044 ** The unicode() function. Return the integer unicode code-point value
1045 ** for the first character of the input string.
1047 static void unicodeFunc(
1048 sqlite3_context *context,
1049 int argc,
1050 sqlite3_value **argv
1052 const unsigned char *z = sqlite3_value_text(argv[0]);
1053 (void)argc;
1054 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1058 ** The char() function takes zero or more arguments, each of which is
1059 ** an integer. It constructs a string where each character of the string
1060 ** is the unicode character for the corresponding integer argument.
1062 static void charFunc(
1063 sqlite3_context *context,
1064 int argc,
1065 sqlite3_value **argv
1067 unsigned char *z, *zOut;
1068 int i;
1069 zOut = z = sqlite3_malloc64( argc*4+1 );
1070 if( z==0 ){
1071 sqlite3_result_error_nomem(context);
1072 return;
1074 for(i=0; i<argc; i++){
1075 sqlite3_int64 x;
1076 unsigned c;
1077 x = sqlite3_value_int64(argv[i]);
1078 if( x<0 || x>0x10ffff ) x = 0xfffd;
1079 c = (unsigned)(x & 0x1fffff);
1080 if( c<0x00080 ){
1081 *zOut++ = (u8)(c&0xFF);
1082 }else if( c<0x00800 ){
1083 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1084 *zOut++ = 0x80 + (u8)(c & 0x3F);
1085 }else if( c<0x10000 ){
1086 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1087 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1088 *zOut++ = 0x80 + (u8)(c & 0x3F);
1089 }else{
1090 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1091 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1092 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1093 *zOut++ = 0x80 + (u8)(c & 0x3F);
1096 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1100 ** The hex() function. Interpret the argument as a blob. Return
1101 ** a hexadecimal rendering as text.
1103 static void hexFunc(
1104 sqlite3_context *context,
1105 int argc,
1106 sqlite3_value **argv
1108 int i, n;
1109 const unsigned char *pBlob;
1110 char *zHex, *z;
1111 assert( argc==1 );
1112 UNUSED_PARAMETER(argc);
1113 pBlob = sqlite3_value_blob(argv[0]);
1114 n = sqlite3_value_bytes(argv[0]);
1115 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1116 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1117 if( zHex ){
1118 for(i=0; i<n; i++, pBlob++){
1119 unsigned char c = *pBlob;
1120 *(z++) = hexdigits[(c>>4)&0xf];
1121 *(z++) = hexdigits[c&0xf];
1123 *z = 0;
1124 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1129 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1131 static void zeroblobFunc(
1132 sqlite3_context *context,
1133 int argc,
1134 sqlite3_value **argv
1136 i64 n;
1137 int rc;
1138 assert( argc==1 );
1139 UNUSED_PARAMETER(argc);
1140 n = sqlite3_value_int64(argv[0]);
1141 if( n<0 ) n = 0;
1142 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1143 if( rc ){
1144 sqlite3_result_error_code(context, rc);
1149 ** The replace() function. Three arguments are all strings: call
1150 ** them A, B, and C. The result is also a string which is derived
1151 ** from A by replacing every occurrence of B with C. The match
1152 ** must be exact. Collating sequences are not used.
1154 static void replaceFunc(
1155 sqlite3_context *context,
1156 int argc,
1157 sqlite3_value **argv
1159 const unsigned char *zStr; /* The input string A */
1160 const unsigned char *zPattern; /* The pattern string B */
1161 const unsigned char *zRep; /* The replacement string C */
1162 unsigned char *zOut; /* The output */
1163 int nStr; /* Size of zStr */
1164 int nPattern; /* Size of zPattern */
1165 int nRep; /* Size of zRep */
1166 i64 nOut; /* Maximum size of zOut */
1167 int loopLimit; /* Last zStr[] that might match zPattern[] */
1168 int i, j; /* Loop counters */
1170 assert( argc==3 );
1171 UNUSED_PARAMETER(argc);
1172 zStr = sqlite3_value_text(argv[0]);
1173 if( zStr==0 ) return;
1174 nStr = sqlite3_value_bytes(argv[0]);
1175 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
1176 zPattern = sqlite3_value_text(argv[1]);
1177 if( zPattern==0 ){
1178 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1179 || sqlite3_context_db_handle(context)->mallocFailed );
1180 return;
1182 if( zPattern[0]==0 ){
1183 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1184 sqlite3_result_value(context, argv[0]);
1185 return;
1187 nPattern = sqlite3_value_bytes(argv[1]);
1188 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
1189 zRep = sqlite3_value_text(argv[2]);
1190 if( zRep==0 ) return;
1191 nRep = sqlite3_value_bytes(argv[2]);
1192 assert( zRep==sqlite3_value_text(argv[2]) );
1193 nOut = nStr + 1;
1194 assert( nOut<SQLITE_MAX_LENGTH );
1195 zOut = contextMalloc(context, (i64)nOut);
1196 if( zOut==0 ){
1197 return;
1199 loopLimit = nStr - nPattern;
1200 for(i=j=0; i<=loopLimit; i++){
1201 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1202 zOut[j++] = zStr[i];
1203 }else{
1204 u8 *zOld;
1205 sqlite3 *db = sqlite3_context_db_handle(context);
1206 nOut += nRep - nPattern;
1207 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1208 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1209 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1210 sqlite3_result_error_toobig(context);
1211 sqlite3_free(zOut);
1212 return;
1214 zOld = zOut;
1215 zOut = sqlite3_realloc64(zOut, (int)nOut);
1216 if( zOut==0 ){
1217 sqlite3_result_error_nomem(context);
1218 sqlite3_free(zOld);
1219 return;
1221 memcpy(&zOut[j], zRep, nRep);
1222 j += nRep;
1223 i += nPattern-1;
1226 assert( j+nStr-i+1==nOut );
1227 memcpy(&zOut[j], &zStr[i], nStr-i);
1228 j += nStr - i;
1229 assert( j<=nOut );
1230 zOut[j] = 0;
1231 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1235 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1236 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1238 static void trimFunc(
1239 sqlite3_context *context,
1240 int argc,
1241 sqlite3_value **argv
1243 const unsigned char *zIn; /* Input string */
1244 const unsigned char *zCharSet; /* Set of characters to trim */
1245 int nIn; /* Number of bytes in input */
1246 int flags; /* 1: trimleft 2: trimright 3: trim */
1247 int i; /* Loop counter */
1248 unsigned char *aLen = 0; /* Length of each character in zCharSet */
1249 unsigned char **azChar = 0; /* Individual characters in zCharSet */
1250 int nChar; /* Number of characters in zCharSet */
1252 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1253 return;
1255 zIn = sqlite3_value_text(argv[0]);
1256 if( zIn==0 ) return;
1257 nIn = sqlite3_value_bytes(argv[0]);
1258 assert( zIn==sqlite3_value_text(argv[0]) );
1259 if( argc==1 ){
1260 static const unsigned char lenOne[] = { 1 };
1261 static unsigned char * const azOne[] = { (u8*)" " };
1262 nChar = 1;
1263 aLen = (u8*)lenOne;
1264 azChar = (unsigned char **)azOne;
1265 zCharSet = 0;
1266 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1267 return;
1268 }else{
1269 const unsigned char *z;
1270 for(z=zCharSet, nChar=0; *z; nChar++){
1271 SQLITE_SKIP_UTF8(z);
1273 if( nChar>0 ){
1274 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1275 if( azChar==0 ){
1276 return;
1278 aLen = (unsigned char*)&azChar[nChar];
1279 for(z=zCharSet, nChar=0; *z; nChar++){
1280 azChar[nChar] = (unsigned char *)z;
1281 SQLITE_SKIP_UTF8(z);
1282 aLen[nChar] = (u8)(z - azChar[nChar]);
1286 if( nChar>0 ){
1287 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1288 if( flags & 1 ){
1289 while( nIn>0 ){
1290 int len = 0;
1291 for(i=0; i<nChar; i++){
1292 len = aLen[i];
1293 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1295 if( i>=nChar ) break;
1296 zIn += len;
1297 nIn -= len;
1300 if( flags & 2 ){
1301 while( nIn>0 ){
1302 int len = 0;
1303 for(i=0; i<nChar; i++){
1304 len = aLen[i];
1305 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1307 if( i>=nChar ) break;
1308 nIn -= len;
1311 if( zCharSet ){
1312 sqlite3_free(azChar);
1315 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1319 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1320 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1321 ** when SQLite is built.
1323 #ifdef SQLITE_SOUNDEX
1325 ** Compute the soundex encoding of a word.
1327 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1328 ** soundex encoding of the string X.
1330 static void soundexFunc(
1331 sqlite3_context *context,
1332 int argc,
1333 sqlite3_value **argv
1335 char zResult[8];
1336 const u8 *zIn;
1337 int i, j;
1338 static const unsigned char iCode[] = {
1339 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1340 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1341 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1342 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1343 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1344 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1345 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1346 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1348 assert( argc==1 );
1349 zIn = (u8*)sqlite3_value_text(argv[0]);
1350 if( zIn==0 ) zIn = (u8*)"";
1351 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1352 if( zIn[i] ){
1353 u8 prevcode = iCode[zIn[i]&0x7f];
1354 zResult[0] = sqlite3Toupper(zIn[i]);
1355 for(j=1; j<4 && zIn[i]; i++){
1356 int code = iCode[zIn[i]&0x7f];
1357 if( code>0 ){
1358 if( code!=prevcode ){
1359 prevcode = code;
1360 zResult[j++] = code + '0';
1362 }else{
1363 prevcode = 0;
1366 while( j<4 ){
1367 zResult[j++] = '0';
1369 zResult[j] = 0;
1370 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1371 }else{
1372 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1373 ** is NULL or contains no ASCII alphabetic characters. */
1374 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1377 #endif /* SQLITE_SOUNDEX */
1379 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1381 ** A function that loads a shared-library extension then returns NULL.
1383 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1384 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1385 const char *zProc;
1386 sqlite3 *db = sqlite3_context_db_handle(context);
1387 char *zErrMsg = 0;
1389 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
1390 ** flag is set. See the sqlite3_enable_load_extension() API.
1392 if( (db->flags & SQLITE_LoadExtFunc)==0 ){
1393 sqlite3_result_error(context, "not authorized", -1);
1394 return;
1397 if( argc==2 ){
1398 zProc = (const char *)sqlite3_value_text(argv[1]);
1399 }else{
1400 zProc = 0;
1402 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1403 sqlite3_result_error(context, zErrMsg, -1);
1404 sqlite3_free(zErrMsg);
1407 #endif
1411 ** An instance of the following structure holds the context of a
1412 ** sum() or avg() aggregate computation.
1414 typedef struct SumCtx SumCtx;
1415 struct SumCtx {
1416 double rSum; /* Floating point sum */
1417 i64 iSum; /* Integer sum */
1418 i64 cnt; /* Number of elements summed */
1419 u8 overflow; /* True if integer overflow seen */
1420 u8 approx; /* True if non-integer value was input to the sum */
1424 ** Routines used to compute the sum, average, and total.
1426 ** The SUM() function follows the (broken) SQL standard which means
1427 ** that it returns NULL if it sums over no inputs. TOTAL returns
1428 ** 0.0 in that case. In addition, TOTAL always returns a float where
1429 ** SUM might return an integer if it never encounters a floating point
1430 ** value. TOTAL never fails, but SUM might through an exception if
1431 ** it overflows an integer.
1433 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1434 SumCtx *p;
1435 int type;
1436 assert( argc==1 );
1437 UNUSED_PARAMETER(argc);
1438 p = sqlite3_aggregate_context(context, sizeof(*p));
1439 type = sqlite3_value_numeric_type(argv[0]);
1440 if( p && type!=SQLITE_NULL ){
1441 p->cnt++;
1442 if( type==SQLITE_INTEGER ){
1443 i64 v = sqlite3_value_int64(argv[0]);
1444 p->rSum += v;
1445 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1446 p->overflow = 1;
1448 }else{
1449 p->rSum += sqlite3_value_double(argv[0]);
1450 p->approx = 1;
1454 static void sumFinalize(sqlite3_context *context){
1455 SumCtx *p;
1456 p = sqlite3_aggregate_context(context, 0);
1457 if( p && p->cnt>0 ){
1458 if( p->overflow ){
1459 sqlite3_result_error(context,"integer overflow",-1);
1460 }else if( p->approx ){
1461 sqlite3_result_double(context, p->rSum);
1462 }else{
1463 sqlite3_result_int64(context, p->iSum);
1467 static void avgFinalize(sqlite3_context *context){
1468 SumCtx *p;
1469 p = sqlite3_aggregate_context(context, 0);
1470 if( p && p->cnt>0 ){
1471 sqlite3_result_double(context, p->rSum/(double)p->cnt);
1474 static void totalFinalize(sqlite3_context *context){
1475 SumCtx *p;
1476 p = sqlite3_aggregate_context(context, 0);
1477 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1478 sqlite3_result_double(context, p ? p->rSum : (double)0);
1482 ** The following structure keeps track of state information for the
1483 ** count() aggregate function.
1485 typedef struct CountCtx CountCtx;
1486 struct CountCtx {
1487 i64 n;
1491 ** Routines to implement the count() aggregate function.
1493 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1494 CountCtx *p;
1495 p = sqlite3_aggregate_context(context, sizeof(*p));
1496 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1497 p->n++;
1500 #ifndef SQLITE_OMIT_DEPRECATED
1501 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1502 ** sure it still operates correctly, verify that its count agrees with our
1503 ** internal count when using count(*) and when the total count can be
1504 ** expressed as a 32-bit integer. */
1505 assert( argc==1 || p==0 || p->n>0x7fffffff
1506 || p->n==sqlite3_aggregate_count(context) );
1507 #endif
1509 static void countFinalize(sqlite3_context *context){
1510 CountCtx *p;
1511 p = sqlite3_aggregate_context(context, 0);
1512 sqlite3_result_int64(context, p ? p->n : 0);
1516 ** Routines to implement min() and max() aggregate functions.
1518 static void minmaxStep(
1519 sqlite3_context *context,
1520 int NotUsed,
1521 sqlite3_value **argv
1523 Mem *pArg = (Mem *)argv[0];
1524 Mem *pBest;
1525 UNUSED_PARAMETER(NotUsed);
1527 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1528 if( !pBest ) return;
1530 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1531 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1532 }else if( pBest->flags ){
1533 int max;
1534 int cmp;
1535 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1536 /* This step function is used for both the min() and max() aggregates,
1537 ** the only difference between the two being that the sense of the
1538 ** comparison is inverted. For the max() aggregate, the
1539 ** sqlite3_user_data() function returns (void *)-1. For min() it
1540 ** returns (void *)db, where db is the sqlite3* database pointer.
1541 ** Therefore the next statement sets variable 'max' to 1 for the max()
1542 ** aggregate, or 0 for min().
1544 max = sqlite3_user_data(context)!=0;
1545 cmp = sqlite3MemCompare(pBest, pArg, pColl);
1546 if( (max && cmp<0) || (!max && cmp>0) ){
1547 sqlite3VdbeMemCopy(pBest, pArg);
1548 }else{
1549 sqlite3SkipAccumulatorLoad(context);
1551 }else{
1552 pBest->db = sqlite3_context_db_handle(context);
1553 sqlite3VdbeMemCopy(pBest, pArg);
1556 static void minMaxFinalize(sqlite3_context *context){
1557 sqlite3_value *pRes;
1558 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1559 if( pRes ){
1560 if( pRes->flags ){
1561 sqlite3_result_value(context, pRes);
1563 sqlite3VdbeMemRelease(pRes);
1568 ** group_concat(EXPR, ?SEPARATOR?)
1570 static void groupConcatStep(
1571 sqlite3_context *context,
1572 int argc,
1573 sqlite3_value **argv
1575 const char *zVal;
1576 StrAccum *pAccum;
1577 const char *zSep;
1578 int nVal, nSep;
1579 assert( argc==1 || argc==2 );
1580 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1581 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1583 if( pAccum ){
1584 sqlite3 *db = sqlite3_context_db_handle(context);
1585 int firstTerm = pAccum->mxAlloc==0;
1586 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1587 if( !firstTerm ){
1588 if( argc==2 ){
1589 zSep = (char*)sqlite3_value_text(argv[1]);
1590 nSep = sqlite3_value_bytes(argv[1]);
1591 }else{
1592 zSep = ",";
1593 nSep = 1;
1595 if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep);
1597 zVal = (char*)sqlite3_value_text(argv[0]);
1598 nVal = sqlite3_value_bytes(argv[0]);
1599 if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal);
1602 static void groupConcatFinalize(sqlite3_context *context){
1603 StrAccum *pAccum;
1604 pAccum = sqlite3_aggregate_context(context, 0);
1605 if( pAccum ){
1606 if( pAccum->accError==STRACCUM_TOOBIG ){
1607 sqlite3_result_error_toobig(context);
1608 }else if( pAccum->accError==STRACCUM_NOMEM ){
1609 sqlite3_result_error_nomem(context);
1610 }else{
1611 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1612 sqlite3_free);
1618 ** This routine does per-connection function registration. Most
1619 ** of the built-in functions above are part of the global function set.
1620 ** This routine only deals with those that are not global.
1622 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
1623 int rc = sqlite3_overload_function(db, "MATCH", 2);
1624 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1625 if( rc==SQLITE_NOMEM ){
1626 sqlite3OomFault(db);
1631 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1633 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1634 FuncDef *pDef;
1635 pDef = sqlite3FindFunction(db, zName, 2, SQLITE_UTF8, 0);
1636 if( ALWAYS(pDef) ){
1637 pDef->funcFlags |= flagVal;
1642 ** Register the built-in LIKE and GLOB functions. The caseSensitive
1643 ** parameter determines whether or not the LIKE operator is case
1644 ** sensitive. GLOB is always case sensitive.
1646 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1647 struct compareInfo *pInfo;
1648 if( caseSensitive ){
1649 pInfo = (struct compareInfo*)&likeInfoAlt;
1650 }else{
1651 pInfo = (struct compareInfo*)&likeInfoNorm;
1653 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1654 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1655 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1656 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1657 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1658 setLikeOptFlag(db, "like",
1659 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1663 ** pExpr points to an expression which implements a function. If
1664 ** it is appropriate to apply the LIKE optimization to that function
1665 ** then set aWc[0] through aWc[2] to the wildcard characters and
1666 ** return TRUE. If the function is not a LIKE-style function then
1667 ** return FALSE.
1669 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1670 ** the function (default for LIKE). If the function makes the distinction
1671 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1672 ** false.
1674 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1675 FuncDef *pDef;
1676 if( pExpr->op!=TK_FUNCTION
1677 || !pExpr->x.pList
1678 || pExpr->x.pList->nExpr!=2
1680 return 0;
1682 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1683 pDef = sqlite3FindFunction(db, pExpr->u.zToken, 2, SQLITE_UTF8, 0);
1684 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1685 return 0;
1688 /* The memcpy() statement assumes that the wildcard characters are
1689 ** the first three statements in the compareInfo structure. The
1690 ** asserts() that follow verify that assumption
1692 memcpy(aWc, pDef->pUserData, 3);
1693 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1694 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1695 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1696 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
1697 return 1;
1701 ** All of the FuncDef structures in the aBuiltinFunc[] array above
1702 ** to the global function hash table. This occurs at start-time (as
1703 ** a consequence of calling sqlite3_initialize()).
1705 ** After this routine runs
1707 void sqlite3RegisterBuiltinFunctions(void){
1709 ** The following array holds FuncDef structures for all of the functions
1710 ** defined in this file.
1712 ** The array cannot be constant since changes are made to the
1713 ** FuncDef.pHash elements at start-time. The elements of this array
1714 ** are read-only after initialization is complete.
1716 ** For peak efficiency, put the most frequently used function last.
1718 static FuncDef aBuiltinFunc[] = {
1719 #ifdef SQLITE_SOUNDEX
1720 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
1721 #endif
1722 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1723 VFUNCTION(load_extension, 1, 0, 0, loadExt ),
1724 VFUNCTION(load_extension, 2, 0, 0, loadExt ),
1725 #endif
1726 #if SQLITE_USER_AUTHENTICATION
1727 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
1728 #endif
1729 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1730 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
1731 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
1732 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1733 FUNCTION2(unlikely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY),
1734 FUNCTION2(likelihood, 2, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY),
1735 FUNCTION2(likely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY),
1736 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
1737 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
1738 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
1739 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
1740 FUNCTION(trim, 1, 3, 0, trimFunc ),
1741 FUNCTION(trim, 2, 3, 0, trimFunc ),
1742 FUNCTION(min, -1, 0, 1, minmaxFunc ),
1743 FUNCTION(min, 0, 0, 1, 0 ),
1744 AGGREGATE2(min, 1, 0, 1, minmaxStep, minMaxFinalize,
1745 SQLITE_FUNC_MINMAX ),
1746 FUNCTION(max, -1, 1, 1, minmaxFunc ),
1747 FUNCTION(max, 0, 1, 1, 0 ),
1748 AGGREGATE2(max, 1, 1, 1, minmaxStep, minMaxFinalize,
1749 SQLITE_FUNC_MINMAX ),
1750 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
1751 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
1752 FUNCTION(instr, 2, 0, 0, instrFunc ),
1753 FUNCTION(printf, -1, 0, 0, printfFunc ),
1754 FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
1755 FUNCTION(char, -1, 0, 0, charFunc ),
1756 FUNCTION(abs, 1, 0, 0, absFunc ),
1757 #ifndef SQLITE_OMIT_FLOATING_POINT
1758 FUNCTION(round, 1, 0, 0, roundFunc ),
1759 FUNCTION(round, 2, 0, 0, roundFunc ),
1760 #endif
1761 FUNCTION(upper, 1, 0, 0, upperFunc ),
1762 FUNCTION(lower, 1, 0, 0, lowerFunc ),
1763 FUNCTION(hex, 1, 0, 0, hexFunc ),
1764 FUNCTION2(ifnull, 2, 0, 0, noopFunc, SQLITE_FUNC_COALESCE),
1765 VFUNCTION(random, 0, 0, 0, randomFunc ),
1766 VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
1767 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
1768 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
1769 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
1770 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
1771 FUNCTION(quote, 1, 0, 0, quoteFunc ),
1772 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1773 VFUNCTION(changes, 0, 0, 0, changes ),
1774 VFUNCTION(total_changes, 0, 0, 0, total_changes ),
1775 FUNCTION(replace, 3, 0, 0, replaceFunc ),
1776 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
1777 FUNCTION(substr, 2, 0, 0, substrFunc ),
1778 FUNCTION(substr, 3, 0, 0, substrFunc ),
1779 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
1780 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
1781 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
1782 AGGREGATE2(count, 0, 0, 0, countStep, countFinalize,
1783 SQLITE_FUNC_COUNT ),
1784 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
1785 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize),
1786 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize),
1788 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1789 #ifdef SQLITE_CASE_SENSITIVE_LIKE
1790 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1791 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1792 #else
1793 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1794 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1795 #endif
1796 FUNCTION(coalesce, 1, 0, 0, 0 ),
1797 FUNCTION(coalesce, 0, 0, 0, 0 ),
1798 FUNCTION2(coalesce, -1, 0, 0, noopFunc, SQLITE_FUNC_COALESCE),
1800 #ifndef SQLITE_OMIT_ALTERTABLE
1801 sqlite3AlterFunctions();
1802 #endif
1803 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4)
1804 sqlite3AnalyzeFunctions();
1805 #endif
1806 sqlite3RegisterDateTimeFunctions();
1807 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
1809 #if 0 /* Enable to print out how the built-in functions are hashed */
1811 int i;
1812 FuncDef *p;
1813 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
1814 printf("FUNC-HASH %02d:", i);
1815 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
1816 int n = sqlite3Strlen30(p->zName);
1817 int h = p->zName[0] + n;
1818 printf(" %s(%d)", p->zName, h);
1820 printf("\n");
1823 #endif