Use the SQLITE_TCLAPI macro in several extensions that were missed in the previous...
[sqlite.git] / src / build.c
blob52f6f200f8355d588e0d254e0f56608583c5d784
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 int iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 int iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel = sqlite3ParseToplevel(pParse);
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 for(i=0; i<pToplevel->nTableLock; i++){
63 p = &pToplevel->aTableLock[i];
64 if( p->iDb==iDb && p->iTab==iTab ){
65 p->isWriteLock = (p->isWriteLock || isWriteLock);
66 return;
70 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
71 pToplevel->aTableLock =
72 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
73 if( pToplevel->aTableLock ){
74 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
75 p->iDb = iDb;
76 p->iTab = iTab;
77 p->isWriteLock = isWriteLock;
78 p->zName = zName;
79 }else{
80 pToplevel->nTableLock = 0;
81 sqlite3OomFault(pToplevel->db);
86 ** Code an OP_TableLock instruction for each table locked by the
87 ** statement (configured by calls to sqlite3TableLock()).
89 static void codeTableLocks(Parse *pParse){
90 int i;
91 Vdbe *pVdbe;
93 pVdbe = sqlite3GetVdbe(pParse);
94 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
96 for(i=0; i<pParse->nTableLock; i++){
97 TableLock *p = &pParse->aTableLock[i];
98 int p1 = p->iDb;
99 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
100 p->zName, P4_STATIC);
103 #else
104 #define codeTableLocks(x)
105 #endif
108 ** Return TRUE if the given yDbMask object is empty - if it contains no
109 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
110 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
112 #if SQLITE_MAX_ATTACHED>30
113 int sqlite3DbMaskAllZero(yDbMask m){
114 int i;
115 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
116 return 1;
118 #endif
121 ** This routine is called after a single SQL statement has been
122 ** parsed and a VDBE program to execute that statement has been
123 ** prepared. This routine puts the finishing touches on the
124 ** VDBE program and resets the pParse structure for the next
125 ** parse.
127 ** Note that if an error occurred, it might be the case that
128 ** no VDBE code was generated.
130 void sqlite3FinishCoding(Parse *pParse){
131 sqlite3 *db;
132 Vdbe *v;
134 assert( pParse->pToplevel==0 );
135 db = pParse->db;
136 if( pParse->nested ) return;
137 if( db->mallocFailed || pParse->nErr ){
138 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
139 return;
142 /* Begin by generating some termination code at the end of the
143 ** vdbe program
145 v = sqlite3GetVdbe(pParse);
146 assert( !pParse->isMultiWrite
147 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
148 if( v ){
149 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
150 sqlite3VdbeAddOp0(v, OP_Halt);
152 #if SQLITE_USER_AUTHENTICATION
153 if( pParse->nTableLock>0 && db->init.busy==0 ){
154 sqlite3UserAuthInit(db);
155 if( db->auth.authLevel<UAUTH_User ){
156 pParse->rc = SQLITE_AUTH_USER;
157 sqlite3ErrorMsg(pParse, "user not authenticated");
158 return;
161 #endif
163 /* The cookie mask contains one bit for each database file open.
164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
165 ** set for each database that is used. Generate code to start a
166 ** transaction on each used database and to verify the schema cookie
167 ** on each used database.
169 if( db->mallocFailed==0
170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172 int iDb, i;
173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
174 sqlite3VdbeJumpHere(v, 0);
175 for(iDb=0; iDb<db->nDb; iDb++){
176 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
177 sqlite3VdbeUsesBtree(v, iDb);
178 sqlite3VdbeAddOp4Int(v,
179 OP_Transaction, /* Opcode */
180 iDb, /* P1 */
181 DbMaskTest(pParse->writeMask,iDb), /* P2 */
182 pParse->cookieValue[iDb], /* P3 */
183 db->aDb[iDb].pSchema->iGeneration /* P4 */
185 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
186 VdbeComment((v,
187 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
189 #ifndef SQLITE_OMIT_VIRTUALTABLE
190 for(i=0; i<pParse->nVtabLock; i++){
191 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
192 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
194 pParse->nVtabLock = 0;
195 #endif
197 /* Once all the cookies have been verified and transactions opened,
198 ** obtain the required table-locks. This is a no-op unless the
199 ** shared-cache feature is enabled.
201 codeTableLocks(pParse);
203 /* Initialize any AUTOINCREMENT data structures required.
205 sqlite3AutoincrementBegin(pParse);
207 /* Code constant expressions that where factored out of inner loops */
208 if( pParse->pConstExpr ){
209 ExprList *pEL = pParse->pConstExpr;
210 pParse->okConstFactor = 0;
211 for(i=0; i<pEL->nExpr; i++){
212 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
216 /* Finally, jump back to the beginning of the executable code. */
217 sqlite3VdbeGoto(v, 1);
222 /* Get the VDBE program ready for execution
224 if( v && pParse->nErr==0 && !db->mallocFailed ){
225 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
226 /* A minimum of one cursor is required if autoincrement is used
227 * See ticket [a696379c1f08866] */
228 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
229 sqlite3VdbeMakeReady(v, pParse);
230 pParse->rc = SQLITE_DONE;
231 }else{
232 pParse->rc = SQLITE_ERROR;
235 /* We are done with this Parse object. There is no need to de-initialize it */
236 #if 0
237 pParse->colNamesSet = 0;
238 pParse->nTab = 0;
239 pParse->nMem = 0;
240 pParse->nSet = 0;
241 pParse->nVar = 0;
242 DbMaskZero(pParse->cookieMask);
243 #endif
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction. When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
252 ** outermost parser.
254 ** Not everything is nestable. This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
256 ** care if you decide to try to use this routine for some other purposes.
258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
259 va_list ap;
260 char *zSql;
261 char *zErrMsg = 0;
262 sqlite3 *db = pParse->db;
263 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
264 char saveBuf[SAVE_SZ];
266 if( pParse->nErr ) return;
267 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
268 va_start(ap, zFormat);
269 zSql = sqlite3VMPrintf(db, zFormat, ap);
270 va_end(ap);
271 if( zSql==0 ){
272 return; /* A malloc must have failed */
274 pParse->nested++;
275 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
276 memset(&pParse->nVar, 0, SAVE_SZ);
277 sqlite3RunParser(pParse, zSql, &zErrMsg);
278 sqlite3DbFree(db, zErrMsg);
279 sqlite3DbFree(db, zSql);
280 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
281 pParse->nested--;
284 #if SQLITE_USER_AUTHENTICATION
286 ** Return TRUE if zTable is the name of the system table that stores the
287 ** list of users and their access credentials.
289 int sqlite3UserAuthTable(const char *zTable){
290 return sqlite3_stricmp(zTable, "sqlite_user")==0;
292 #endif
295 ** Locate the in-memory structure that describes a particular database
296 ** table given the name of that table and (optionally) the name of the
297 ** database containing the table. Return NULL if not found.
299 ** If zDatabase is 0, all databases are searched for the table and the
300 ** first matching table is returned. (No checking for duplicate table
301 ** names is done.) The search order is TEMP first, then MAIN, then any
302 ** auxiliary databases added using the ATTACH command.
304 ** See also sqlite3LocateTable().
306 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
307 Table *p = 0;
308 int i;
310 /* All mutexes are required for schema access. Make sure we hold them. */
311 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
312 #if SQLITE_USER_AUTHENTICATION
313 /* Only the admin user is allowed to know that the sqlite_user table
314 ** exists */
315 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
316 return 0;
318 #endif
319 for(i=OMIT_TEMPDB; i<db->nDb; i++){
320 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
321 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
322 assert( sqlite3SchemaMutexHeld(db, j, 0) );
323 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
324 if( p ) break;
326 return p;
330 ** Locate the in-memory structure that describes a particular database
331 ** table given the name of that table and (optionally) the name of the
332 ** database containing the table. Return NULL if not found. Also leave an
333 ** error message in pParse->zErrMsg.
335 ** The difference between this routine and sqlite3FindTable() is that this
336 ** routine leaves an error message in pParse->zErrMsg where
337 ** sqlite3FindTable() does not.
339 Table *sqlite3LocateTable(
340 Parse *pParse, /* context in which to report errors */
341 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
342 const char *zName, /* Name of the table we are looking for */
343 const char *zDbase /* Name of the database. Might be NULL */
345 Table *p;
347 /* Read the database schema. If an error occurs, leave an error message
348 ** and code in pParse and return NULL. */
349 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
350 return 0;
353 p = sqlite3FindTable(pParse->db, zName, zDbase);
354 if( p==0 ){
355 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
356 #ifndef SQLITE_OMIT_VIRTUALTABLE
357 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
358 /* If zName is the not the name of a table in the schema created using
359 ** CREATE, then check to see if it is the name of an virtual table that
360 ** can be an eponymous virtual table. */
361 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
362 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
363 return pMod->pEpoTab;
366 #endif
367 if( (flags & LOCATE_NOERR)==0 ){
368 if( zDbase ){
369 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
370 }else{
371 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
373 pParse->checkSchema = 1;
377 return p;
381 ** Locate the table identified by *p.
383 ** This is a wrapper around sqlite3LocateTable(). The difference between
384 ** sqlite3LocateTable() and this function is that this function restricts
385 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
386 ** non-NULL if it is part of a view or trigger program definition. See
387 ** sqlite3FixSrcList() for details.
389 Table *sqlite3LocateTableItem(
390 Parse *pParse,
391 u32 flags,
392 struct SrcList_item *p
394 const char *zDb;
395 assert( p->pSchema==0 || p->zDatabase==0 );
396 if( p->pSchema ){
397 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
398 zDb = pParse->db->aDb[iDb].zName;
399 }else{
400 zDb = p->zDatabase;
402 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
406 ** Locate the in-memory structure that describes
407 ** a particular index given the name of that index
408 ** and the name of the database that contains the index.
409 ** Return NULL if not found.
411 ** If zDatabase is 0, all databases are searched for the
412 ** table and the first matching index is returned. (No checking
413 ** for duplicate index names is done.) The search order is
414 ** TEMP first, then MAIN, then any auxiliary databases added
415 ** using the ATTACH command.
417 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
418 Index *p = 0;
419 int i;
420 /* All mutexes are required for schema access. Make sure we hold them. */
421 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
422 for(i=OMIT_TEMPDB; i<db->nDb; i++){
423 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
424 Schema *pSchema = db->aDb[j].pSchema;
425 assert( pSchema );
426 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
427 assert( sqlite3SchemaMutexHeld(db, j, 0) );
428 p = sqlite3HashFind(&pSchema->idxHash, zName);
429 if( p ) break;
431 return p;
435 ** Reclaim the memory used by an index
437 static void freeIndex(sqlite3 *db, Index *p){
438 #ifndef SQLITE_OMIT_ANALYZE
439 sqlite3DeleteIndexSamples(db, p);
440 #endif
441 sqlite3ExprDelete(db, p->pPartIdxWhere);
442 sqlite3ExprListDelete(db, p->aColExpr);
443 sqlite3DbFree(db, p->zColAff);
444 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
445 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
446 sqlite3_free(p->aiRowEst);
447 #endif
448 sqlite3DbFree(db, p);
452 ** For the index called zIdxName which is found in the database iDb,
453 ** unlike that index from its Table then remove the index from
454 ** the index hash table and free all memory structures associated
455 ** with the index.
457 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
458 Index *pIndex;
459 Hash *pHash;
461 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
462 pHash = &db->aDb[iDb].pSchema->idxHash;
463 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
464 if( ALWAYS(pIndex) ){
465 if( pIndex->pTable->pIndex==pIndex ){
466 pIndex->pTable->pIndex = pIndex->pNext;
467 }else{
468 Index *p;
469 /* Justification of ALWAYS(); The index must be on the list of
470 ** indices. */
471 p = pIndex->pTable->pIndex;
472 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
473 if( ALWAYS(p && p->pNext==pIndex) ){
474 p->pNext = pIndex->pNext;
477 freeIndex(db, pIndex);
479 db->flags |= SQLITE_InternChanges;
483 ** Look through the list of open database files in db->aDb[] and if
484 ** any have been closed, remove them from the list. Reallocate the
485 ** db->aDb[] structure to a smaller size, if possible.
487 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
488 ** are never candidates for being collapsed.
490 void sqlite3CollapseDatabaseArray(sqlite3 *db){
491 int i, j;
492 for(i=j=2; i<db->nDb; i++){
493 struct Db *pDb = &db->aDb[i];
494 if( pDb->pBt==0 ){
495 sqlite3DbFree(db, pDb->zName);
496 pDb->zName = 0;
497 continue;
499 if( j<i ){
500 db->aDb[j] = db->aDb[i];
502 j++;
504 db->nDb = j;
505 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
506 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
507 sqlite3DbFree(db, db->aDb);
508 db->aDb = db->aDbStatic;
513 ** Reset the schema for the database at index iDb. Also reset the
514 ** TEMP schema.
516 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
517 Db *pDb;
518 assert( iDb<db->nDb );
520 /* Case 1: Reset the single schema identified by iDb */
521 pDb = &db->aDb[iDb];
522 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
523 assert( pDb->pSchema!=0 );
524 sqlite3SchemaClear(pDb->pSchema);
526 /* If any database other than TEMP is reset, then also reset TEMP
527 ** since TEMP might be holding triggers that reference tables in the
528 ** other database.
530 if( iDb!=1 ){
531 pDb = &db->aDb[1];
532 assert( pDb->pSchema!=0 );
533 sqlite3SchemaClear(pDb->pSchema);
535 return;
539 ** Erase all schema information from all attached databases (including
540 ** "main" and "temp") for a single database connection.
542 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
543 int i;
544 sqlite3BtreeEnterAll(db);
545 for(i=0; i<db->nDb; i++){
546 Db *pDb = &db->aDb[i];
547 if( pDb->pSchema ){
548 sqlite3SchemaClear(pDb->pSchema);
551 db->flags &= ~SQLITE_InternChanges;
552 sqlite3VtabUnlockList(db);
553 sqlite3BtreeLeaveAll(db);
554 sqlite3CollapseDatabaseArray(db);
558 ** This routine is called when a commit occurs.
560 void sqlite3CommitInternalChanges(sqlite3 *db){
561 db->flags &= ~SQLITE_InternChanges;
565 ** Delete memory allocated for the column names of a table or view (the
566 ** Table.aCol[] array).
568 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
569 int i;
570 Column *pCol;
571 assert( pTable!=0 );
572 if( (pCol = pTable->aCol)!=0 ){
573 for(i=0; i<pTable->nCol; i++, pCol++){
574 sqlite3DbFree(db, pCol->zName);
575 sqlite3ExprDelete(db, pCol->pDflt);
576 sqlite3DbFree(db, pCol->zColl);
578 sqlite3DbFree(db, pTable->aCol);
583 ** Remove the memory data structures associated with the given
584 ** Table. No changes are made to disk by this routine.
586 ** This routine just deletes the data structure. It does not unlink
587 ** the table data structure from the hash table. But it does destroy
588 ** memory structures of the indices and foreign keys associated with
589 ** the table.
591 ** The db parameter is optional. It is needed if the Table object
592 ** contains lookaside memory. (Table objects in the schema do not use
593 ** lookaside memory, but some ephemeral Table objects do.) Or the
594 ** db parameter can be used with db->pnBytesFreed to measure the memory
595 ** used by the Table object.
597 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
598 Index *pIndex, *pNext;
599 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
601 /* Record the number of outstanding lookaside allocations in schema Tables
602 ** prior to doing any free() operations. Since schema Tables do not use
603 ** lookaside, this number should not change. */
604 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
605 db->lookaside.nOut : 0 );
607 /* Delete all indices associated with this table. */
608 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
609 pNext = pIndex->pNext;
610 assert( pIndex->pSchema==pTable->pSchema
611 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
612 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
613 char *zName = pIndex->zName;
614 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
615 &pIndex->pSchema->idxHash, zName, 0
617 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
618 assert( pOld==pIndex || pOld==0 );
620 freeIndex(db, pIndex);
623 /* Delete any foreign keys attached to this table. */
624 sqlite3FkDelete(db, pTable);
626 /* Delete the Table structure itself.
628 sqlite3DeleteColumnNames(db, pTable);
629 sqlite3DbFree(db, pTable->zName);
630 sqlite3DbFree(db, pTable->zColAff);
631 sqlite3SelectDelete(db, pTable->pSelect);
632 sqlite3ExprListDelete(db, pTable->pCheck);
633 #ifndef SQLITE_OMIT_VIRTUALTABLE
634 sqlite3VtabClear(db, pTable);
635 #endif
636 sqlite3DbFree(db, pTable);
638 /* Verify that no lookaside memory was used by schema tables */
639 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
641 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
642 /* Do not delete the table until the reference count reaches zero. */
643 if( !pTable ) return;
644 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
645 deleteTable(db, pTable);
650 ** Unlink the given table from the hash tables and the delete the
651 ** table structure with all its indices and foreign keys.
653 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
654 Table *p;
655 Db *pDb;
657 assert( db!=0 );
658 assert( iDb>=0 && iDb<db->nDb );
659 assert( zTabName );
660 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
661 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
662 pDb = &db->aDb[iDb];
663 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
664 sqlite3DeleteTable(db, p);
665 db->flags |= SQLITE_InternChanges;
669 ** Given a token, return a string that consists of the text of that
670 ** token. Space to hold the returned string
671 ** is obtained from sqliteMalloc() and must be freed by the calling
672 ** function.
674 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
675 ** surround the body of the token are removed.
677 ** Tokens are often just pointers into the original SQL text and so
678 ** are not \000 terminated and are not persistent. The returned string
679 ** is \000 terminated and is persistent.
681 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
682 char *zName;
683 if( pName ){
684 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
685 sqlite3Dequote(zName);
686 }else{
687 zName = 0;
689 return zName;
693 ** Open the sqlite_master table stored in database number iDb for
694 ** writing. The table is opened using cursor 0.
696 void sqlite3OpenMasterTable(Parse *p, int iDb){
697 Vdbe *v = sqlite3GetVdbe(p);
698 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
699 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
700 if( p->nTab==0 ){
701 p->nTab = 1;
706 ** Parameter zName points to a nul-terminated buffer containing the name
707 ** of a database ("main", "temp" or the name of an attached db). This
708 ** function returns the index of the named database in db->aDb[], or
709 ** -1 if the named db cannot be found.
711 int sqlite3FindDbName(sqlite3 *db, const char *zName){
712 int i = -1; /* Database number */
713 if( zName ){
714 Db *pDb;
715 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
716 if( 0==sqlite3StrICmp(pDb->zName, zName) ) break;
719 return i;
723 ** The token *pName contains the name of a database (either "main" or
724 ** "temp" or the name of an attached db). This routine returns the
725 ** index of the named database in db->aDb[], or -1 if the named db
726 ** does not exist.
728 int sqlite3FindDb(sqlite3 *db, Token *pName){
729 int i; /* Database number */
730 char *zName; /* Name we are searching for */
731 zName = sqlite3NameFromToken(db, pName);
732 i = sqlite3FindDbName(db, zName);
733 sqlite3DbFree(db, zName);
734 return i;
737 /* The table or view or trigger name is passed to this routine via tokens
738 ** pName1 and pName2. If the table name was fully qualified, for example:
740 ** CREATE TABLE xxx.yyy (...);
742 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
743 ** the table name is not fully qualified, i.e.:
745 ** CREATE TABLE yyy(...);
747 ** Then pName1 is set to "yyy" and pName2 is "".
749 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
750 ** pName2) that stores the unqualified table name. The index of the
751 ** database "xxx" is returned.
753 int sqlite3TwoPartName(
754 Parse *pParse, /* Parsing and code generating context */
755 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
756 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
757 Token **pUnqual /* Write the unqualified object name here */
759 int iDb; /* Database holding the object */
760 sqlite3 *db = pParse->db;
762 assert( pName2!=0 );
763 if( pName2->n>0 ){
764 if( db->init.busy ) {
765 sqlite3ErrorMsg(pParse, "corrupt database");
766 return -1;
768 *pUnqual = pName2;
769 iDb = sqlite3FindDb(db, pName1);
770 if( iDb<0 ){
771 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
772 return -1;
774 }else{
775 assert( db->init.iDb==0 || db->init.busy );
776 iDb = db->init.iDb;
777 *pUnqual = pName1;
779 return iDb;
783 ** This routine is used to check if the UTF-8 string zName is a legal
784 ** unqualified name for a new schema object (table, index, view or
785 ** trigger). All names are legal except those that begin with the string
786 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
787 ** is reserved for internal use.
789 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
790 if( !pParse->db->init.busy && pParse->nested==0
791 && (pParse->db->flags & SQLITE_WriteSchema)==0
792 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
793 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
794 return SQLITE_ERROR;
796 return SQLITE_OK;
800 ** Return the PRIMARY KEY index of a table
802 Index *sqlite3PrimaryKeyIndex(Table *pTab){
803 Index *p;
804 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
805 return p;
809 ** Return the column of index pIdx that corresponds to table
810 ** column iCol. Return -1 if not found.
812 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
813 int i;
814 for(i=0; i<pIdx->nColumn; i++){
815 if( iCol==pIdx->aiColumn[i] ) return i;
817 return -1;
821 ** Begin constructing a new table representation in memory. This is
822 ** the first of several action routines that get called in response
823 ** to a CREATE TABLE statement. In particular, this routine is called
824 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
825 ** flag is true if the table should be stored in the auxiliary database
826 ** file instead of in the main database file. This is normally the case
827 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
828 ** CREATE and TABLE.
830 ** The new table record is initialized and put in pParse->pNewTable.
831 ** As more of the CREATE TABLE statement is parsed, additional action
832 ** routines will be called to add more information to this record.
833 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
834 ** is called to complete the construction of the new table record.
836 void sqlite3StartTable(
837 Parse *pParse, /* Parser context */
838 Token *pName1, /* First part of the name of the table or view */
839 Token *pName2, /* Second part of the name of the table or view */
840 int isTemp, /* True if this is a TEMP table */
841 int isView, /* True if this is a VIEW */
842 int isVirtual, /* True if this is a VIRTUAL table */
843 int noErr /* Do nothing if table already exists */
845 Table *pTable;
846 char *zName = 0; /* The name of the new table */
847 sqlite3 *db = pParse->db;
848 Vdbe *v;
849 int iDb; /* Database number to create the table in */
850 Token *pName; /* Unqualified name of the table to create */
852 if( db->init.busy && db->init.newTnum==1 ){
853 /* Special case: Parsing the sqlite_master or sqlite_temp_master schema */
854 iDb = db->init.iDb;
855 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
856 pName = pName1;
857 }else{
858 /* The common case */
859 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
860 if( iDb<0 ) return;
861 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
862 /* If creating a temp table, the name may not be qualified. Unless
863 ** the database name is "temp" anyway. */
864 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
865 return;
867 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
868 zName = sqlite3NameFromToken(db, pName);
870 pParse->sNameToken = *pName;
871 if( zName==0 ) return;
872 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
873 goto begin_table_error;
875 if( db->init.iDb==1 ) isTemp = 1;
876 #ifndef SQLITE_OMIT_AUTHORIZATION
877 assert( isTemp==0 || isTemp==1 );
878 assert( isView==0 || isView==1 );
880 static const u8 aCode[] = {
881 SQLITE_CREATE_TABLE,
882 SQLITE_CREATE_TEMP_TABLE,
883 SQLITE_CREATE_VIEW,
884 SQLITE_CREATE_TEMP_VIEW
886 char *zDb = db->aDb[iDb].zName;
887 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
888 goto begin_table_error;
890 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
891 zName, 0, zDb) ){
892 goto begin_table_error;
895 #endif
897 /* Make sure the new table name does not collide with an existing
898 ** index or table name in the same database. Issue an error message if
899 ** it does. The exception is if the statement being parsed was passed
900 ** to an sqlite3_declare_vtab() call. In that case only the column names
901 ** and types will be used, so there is no need to test for namespace
902 ** collisions.
904 if( !IN_DECLARE_VTAB ){
905 char *zDb = db->aDb[iDb].zName;
906 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
907 goto begin_table_error;
909 pTable = sqlite3FindTable(db, zName, zDb);
910 if( pTable ){
911 if( !noErr ){
912 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
913 }else{
914 assert( !db->init.busy || CORRUPT_DB );
915 sqlite3CodeVerifySchema(pParse, iDb);
917 goto begin_table_error;
919 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
920 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
921 goto begin_table_error;
925 pTable = sqlite3DbMallocZero(db, sizeof(Table));
926 if( pTable==0 ){
927 assert( db->mallocFailed );
928 pParse->rc = SQLITE_NOMEM_BKPT;
929 pParse->nErr++;
930 goto begin_table_error;
932 pTable->zName = zName;
933 pTable->iPKey = -1;
934 pTable->pSchema = db->aDb[iDb].pSchema;
935 pTable->nRef = 1;
936 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
937 assert( pParse->pNewTable==0 );
938 pParse->pNewTable = pTable;
940 /* If this is the magic sqlite_sequence table used by autoincrement,
941 ** then record a pointer to this table in the main database structure
942 ** so that INSERT can find the table easily.
944 #ifndef SQLITE_OMIT_AUTOINCREMENT
945 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
946 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
947 pTable->pSchema->pSeqTab = pTable;
949 #endif
951 /* Begin generating the code that will insert the table record into
952 ** the SQLITE_MASTER table. Note in particular that we must go ahead
953 ** and allocate the record number for the table entry now. Before any
954 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
955 ** indices to be created and the table record must come before the
956 ** indices. Hence, the record number for the table must be allocated
957 ** now.
959 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
960 int addr1;
961 int fileFormat;
962 int reg1, reg2, reg3;
963 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
964 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
965 sqlite3BeginWriteOperation(pParse, 1, iDb);
967 #ifndef SQLITE_OMIT_VIRTUALTABLE
968 if( isVirtual ){
969 sqlite3VdbeAddOp0(v, OP_VBegin);
971 #endif
973 /* If the file format and encoding in the database have not been set,
974 ** set them now.
976 reg1 = pParse->regRowid = ++pParse->nMem;
977 reg2 = pParse->regRoot = ++pParse->nMem;
978 reg3 = ++pParse->nMem;
979 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
980 sqlite3VdbeUsesBtree(v, iDb);
981 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
982 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
983 1 : SQLITE_MAX_FILE_FORMAT;
984 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
985 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
986 sqlite3VdbeJumpHere(v, addr1);
988 /* This just creates a place-holder record in the sqlite_master table.
989 ** The record created does not contain anything yet. It will be replaced
990 ** by the real entry in code generated at sqlite3EndTable().
992 ** The rowid for the new entry is left in register pParse->regRowid.
993 ** The root page number of the new table is left in reg pParse->regRoot.
994 ** The rowid and root page number values are needed by the code that
995 ** sqlite3EndTable will generate.
997 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
998 if( isView || isVirtual ){
999 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1000 }else
1001 #endif
1003 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1005 sqlite3OpenMasterTable(pParse, iDb);
1006 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1007 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1008 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1009 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1010 sqlite3VdbeAddOp0(v, OP_Close);
1013 /* Normal (non-error) return. */
1014 return;
1016 /* If an error occurs, we jump here */
1017 begin_table_error:
1018 sqlite3DbFree(db, zName);
1019 return;
1022 /* Set properties of a table column based on the (magical)
1023 ** name of the column.
1025 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1026 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1027 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1028 pCol->colFlags |= COLFLAG_HIDDEN;
1029 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1030 pTab->tabFlags |= TF_OOOHidden;
1033 #endif
1037 ** Add a new column to the table currently being constructed.
1039 ** The parser calls this routine once for each column declaration
1040 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1041 ** first to get things going. Then this routine is called for each
1042 ** column.
1044 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1045 Table *p;
1046 int i;
1047 char *z;
1048 char *zType;
1049 Column *pCol;
1050 sqlite3 *db = pParse->db;
1051 if( (p = pParse->pNewTable)==0 ) return;
1052 #if SQLITE_MAX_COLUMN
1053 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1054 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1055 return;
1057 #endif
1058 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1059 if( z==0 ) return;
1060 memcpy(z, pName->z, pName->n);
1061 z[pName->n] = 0;
1062 sqlite3Dequote(z);
1063 for(i=0; i<p->nCol; i++){
1064 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1065 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1066 sqlite3DbFree(db, z);
1067 return;
1070 if( (p->nCol & 0x7)==0 ){
1071 Column *aNew;
1072 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1073 if( aNew==0 ){
1074 sqlite3DbFree(db, z);
1075 return;
1077 p->aCol = aNew;
1079 pCol = &p->aCol[p->nCol];
1080 memset(pCol, 0, sizeof(p->aCol[0]));
1081 pCol->zName = z;
1082 sqlite3ColumnPropertiesFromName(p, pCol);
1084 if( pType->n==0 ){
1085 /* If there is no type specified, columns have the default affinity
1086 ** 'BLOB'. */
1087 pCol->affinity = SQLITE_AFF_BLOB;
1088 pCol->szEst = 1;
1089 }else{
1090 zType = z + sqlite3Strlen30(z) + 1;
1091 memcpy(zType, pType->z, pType->n);
1092 zType[pType->n] = 0;
1093 sqlite3Dequote(zType);
1094 pCol->affinity = sqlite3AffinityType(zType, &pCol->szEst);
1095 pCol->colFlags |= COLFLAG_HASTYPE;
1097 p->nCol++;
1098 pParse->constraintName.n = 0;
1102 ** This routine is called by the parser while in the middle of
1103 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1104 ** been seen on a column. This routine sets the notNull flag on
1105 ** the column currently under construction.
1107 void sqlite3AddNotNull(Parse *pParse, int onError){
1108 Table *p;
1109 p = pParse->pNewTable;
1110 if( p==0 || NEVER(p->nCol<1) ) return;
1111 p->aCol[p->nCol-1].notNull = (u8)onError;
1115 ** Scan the column type name zType (length nType) and return the
1116 ** associated affinity type.
1118 ** This routine does a case-independent search of zType for the
1119 ** substrings in the following table. If one of the substrings is
1120 ** found, the corresponding affinity is returned. If zType contains
1121 ** more than one of the substrings, entries toward the top of
1122 ** the table take priority. For example, if zType is 'BLOBINT',
1123 ** SQLITE_AFF_INTEGER is returned.
1125 ** Substring | Affinity
1126 ** --------------------------------
1127 ** 'INT' | SQLITE_AFF_INTEGER
1128 ** 'CHAR' | SQLITE_AFF_TEXT
1129 ** 'CLOB' | SQLITE_AFF_TEXT
1130 ** 'TEXT' | SQLITE_AFF_TEXT
1131 ** 'BLOB' | SQLITE_AFF_BLOB
1132 ** 'REAL' | SQLITE_AFF_REAL
1133 ** 'FLOA' | SQLITE_AFF_REAL
1134 ** 'DOUB' | SQLITE_AFF_REAL
1136 ** If none of the substrings in the above table are found,
1137 ** SQLITE_AFF_NUMERIC is returned.
1139 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1140 u32 h = 0;
1141 char aff = SQLITE_AFF_NUMERIC;
1142 const char *zChar = 0;
1144 assert( zIn!=0 );
1145 while( zIn[0] ){
1146 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1147 zIn++;
1148 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1149 aff = SQLITE_AFF_TEXT;
1150 zChar = zIn;
1151 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1152 aff = SQLITE_AFF_TEXT;
1153 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1154 aff = SQLITE_AFF_TEXT;
1155 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1156 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1157 aff = SQLITE_AFF_BLOB;
1158 if( zIn[0]=='(' ) zChar = zIn;
1159 #ifndef SQLITE_OMIT_FLOATING_POINT
1160 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1161 && aff==SQLITE_AFF_NUMERIC ){
1162 aff = SQLITE_AFF_REAL;
1163 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1164 && aff==SQLITE_AFF_NUMERIC ){
1165 aff = SQLITE_AFF_REAL;
1166 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1167 && aff==SQLITE_AFF_NUMERIC ){
1168 aff = SQLITE_AFF_REAL;
1169 #endif
1170 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1171 aff = SQLITE_AFF_INTEGER;
1172 break;
1176 /* If pszEst is not NULL, store an estimate of the field size. The
1177 ** estimate is scaled so that the size of an integer is 1. */
1178 if( pszEst ){
1179 *pszEst = 1; /* default size is approx 4 bytes */
1180 if( aff<SQLITE_AFF_NUMERIC ){
1181 if( zChar ){
1182 while( zChar[0] ){
1183 if( sqlite3Isdigit(zChar[0]) ){
1184 int v = 0;
1185 sqlite3GetInt32(zChar, &v);
1186 v = v/4 + 1;
1187 if( v>255 ) v = 255;
1188 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1189 break;
1191 zChar++;
1193 }else{
1194 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1198 return aff;
1202 ** The expression is the default value for the most recently added column
1203 ** of the table currently under construction.
1205 ** Default value expressions must be constant. Raise an exception if this
1206 ** is not the case.
1208 ** This routine is called by the parser while in the middle of
1209 ** parsing a CREATE TABLE statement.
1211 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1212 Table *p;
1213 Column *pCol;
1214 sqlite3 *db = pParse->db;
1215 p = pParse->pNewTable;
1216 if( p!=0 ){
1217 pCol = &(p->aCol[p->nCol-1]);
1218 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1219 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1220 pCol->zName);
1221 }else{
1222 /* A copy of pExpr is used instead of the original, as pExpr contains
1223 ** tokens that point to volatile memory. The 'span' of the expression
1224 ** is required by pragma table_info.
1226 Expr x;
1227 sqlite3ExprDelete(db, pCol->pDflt);
1228 memset(&x, 0, sizeof(x));
1229 x.op = TK_SPAN;
1230 x.u.zToken = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1231 (int)(pSpan->zEnd - pSpan->zStart));
1232 x.pLeft = pSpan->pExpr;
1233 x.flags = EP_Skip;
1234 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1235 sqlite3DbFree(db, x.u.zToken);
1238 sqlite3ExprDelete(db, pSpan->pExpr);
1242 ** Backwards Compatibility Hack:
1244 ** Historical versions of SQLite accepted strings as column names in
1245 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1247 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1248 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1250 ** This is goofy. But to preserve backwards compatibility we continue to
1251 ** accept it. This routine does the necessary conversion. It converts
1252 ** the expression given in its argument from a TK_STRING into a TK_ID
1253 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1254 ** If the epxression is anything other than TK_STRING, the expression is
1255 ** unchanged.
1257 static void sqlite3StringToId(Expr *p){
1258 if( p->op==TK_STRING ){
1259 p->op = TK_ID;
1260 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1261 p->pLeft->op = TK_ID;
1266 ** Designate the PRIMARY KEY for the table. pList is a list of names
1267 ** of columns that form the primary key. If pList is NULL, then the
1268 ** most recently added column of the table is the primary key.
1270 ** A table can have at most one primary key. If the table already has
1271 ** a primary key (and this is the second primary key) then create an
1272 ** error.
1274 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1275 ** then we will try to use that column as the rowid. Set the Table.iPKey
1276 ** field of the table under construction to be the index of the
1277 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1278 ** no INTEGER PRIMARY KEY.
1280 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1281 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1283 void sqlite3AddPrimaryKey(
1284 Parse *pParse, /* Parsing context */
1285 ExprList *pList, /* List of field names to be indexed */
1286 int onError, /* What to do with a uniqueness conflict */
1287 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1288 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1290 Table *pTab = pParse->pNewTable;
1291 Column *pCol = 0;
1292 int iCol = -1, i;
1293 int nTerm;
1294 if( pTab==0 ) goto primary_key_exit;
1295 if( pTab->tabFlags & TF_HasPrimaryKey ){
1296 sqlite3ErrorMsg(pParse,
1297 "table \"%s\" has more than one primary key", pTab->zName);
1298 goto primary_key_exit;
1300 pTab->tabFlags |= TF_HasPrimaryKey;
1301 if( pList==0 ){
1302 iCol = pTab->nCol - 1;
1303 pCol = &pTab->aCol[iCol];
1304 pCol->colFlags |= COLFLAG_PRIMKEY;
1305 nTerm = 1;
1306 }else{
1307 nTerm = pList->nExpr;
1308 for(i=0; i<nTerm; i++){
1309 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1310 assert( pCExpr!=0 );
1311 sqlite3StringToId(pCExpr);
1312 if( pCExpr->op==TK_ID ){
1313 const char *zCName = pCExpr->u.zToken;
1314 for(iCol=0; iCol<pTab->nCol; iCol++){
1315 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1316 pCol = &pTab->aCol[iCol];
1317 pCol->colFlags |= COLFLAG_PRIMKEY;
1318 break;
1324 if( nTerm==1
1325 && pCol
1326 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1327 && sortOrder!=SQLITE_SO_DESC
1329 pTab->iPKey = iCol;
1330 pTab->keyConf = (u8)onError;
1331 assert( autoInc==0 || autoInc==1 );
1332 pTab->tabFlags |= autoInc*TF_Autoincrement;
1333 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1334 }else if( autoInc ){
1335 #ifndef SQLITE_OMIT_AUTOINCREMENT
1336 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1337 "INTEGER PRIMARY KEY");
1338 #endif
1339 }else{
1340 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1341 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1342 pList = 0;
1345 primary_key_exit:
1346 sqlite3ExprListDelete(pParse->db, pList);
1347 return;
1351 ** Add a new CHECK constraint to the table currently under construction.
1353 void sqlite3AddCheckConstraint(
1354 Parse *pParse, /* Parsing context */
1355 Expr *pCheckExpr /* The check expression */
1357 #ifndef SQLITE_OMIT_CHECK
1358 Table *pTab = pParse->pNewTable;
1359 sqlite3 *db = pParse->db;
1360 if( pTab && !IN_DECLARE_VTAB
1361 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1363 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1364 if( pParse->constraintName.n ){
1365 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1367 }else
1368 #endif
1370 sqlite3ExprDelete(pParse->db, pCheckExpr);
1375 ** Set the collation function of the most recently parsed table column
1376 ** to the CollSeq given.
1378 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1379 Table *p;
1380 int i;
1381 char *zColl; /* Dequoted name of collation sequence */
1382 sqlite3 *db;
1384 if( (p = pParse->pNewTable)==0 ) return;
1385 i = p->nCol-1;
1386 db = pParse->db;
1387 zColl = sqlite3NameFromToken(db, pToken);
1388 if( !zColl ) return;
1390 if( sqlite3LocateCollSeq(pParse, zColl) ){
1391 Index *pIdx;
1392 sqlite3DbFree(db, p->aCol[i].zColl);
1393 p->aCol[i].zColl = zColl;
1395 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1396 ** then an index may have been created on this column before the
1397 ** collation type was added. Correct this if it is the case.
1399 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1400 assert( pIdx->nKeyCol==1 );
1401 if( pIdx->aiColumn[0]==i ){
1402 pIdx->azColl[0] = p->aCol[i].zColl;
1405 }else{
1406 sqlite3DbFree(db, zColl);
1411 ** This function returns the collation sequence for database native text
1412 ** encoding identified by the string zName, length nName.
1414 ** If the requested collation sequence is not available, or not available
1415 ** in the database native encoding, the collation factory is invoked to
1416 ** request it. If the collation factory does not supply such a sequence,
1417 ** and the sequence is available in another text encoding, then that is
1418 ** returned instead.
1420 ** If no versions of the requested collations sequence are available, or
1421 ** another error occurs, NULL is returned and an error message written into
1422 ** pParse.
1424 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1425 ** invokes the collation factory if the named collation cannot be found
1426 ** and generates an error message.
1428 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1430 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1431 sqlite3 *db = pParse->db;
1432 u8 enc = ENC(db);
1433 u8 initbusy = db->init.busy;
1434 CollSeq *pColl;
1436 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1437 if( !initbusy && (!pColl || !pColl->xCmp) ){
1438 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1441 return pColl;
1446 ** Generate code that will increment the schema cookie.
1448 ** The schema cookie is used to determine when the schema for the
1449 ** database changes. After each schema change, the cookie value
1450 ** changes. When a process first reads the schema it records the
1451 ** cookie. Thereafter, whenever it goes to access the database,
1452 ** it checks the cookie to make sure the schema has not changed
1453 ** since it was last read.
1455 ** This plan is not completely bullet-proof. It is possible for
1456 ** the schema to change multiple times and for the cookie to be
1457 ** set back to prior value. But schema changes are infrequent
1458 ** and the probability of hitting the same cookie value is only
1459 ** 1 chance in 2^32. So we're safe enough.
1461 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1462 sqlite3 *db = pParse->db;
1463 Vdbe *v = pParse->pVdbe;
1464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1465 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1466 db->aDb[iDb].pSchema->schema_cookie+1);
1470 ** Measure the number of characters needed to output the given
1471 ** identifier. The number returned includes any quotes used
1472 ** but does not include the null terminator.
1474 ** The estimate is conservative. It might be larger that what is
1475 ** really needed.
1477 static int identLength(const char *z){
1478 int n;
1479 for(n=0; *z; n++, z++){
1480 if( *z=='"' ){ n++; }
1482 return n + 2;
1486 ** The first parameter is a pointer to an output buffer. The second
1487 ** parameter is a pointer to an integer that contains the offset at
1488 ** which to write into the output buffer. This function copies the
1489 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1490 ** to the specified offset in the buffer and updates *pIdx to refer
1491 ** to the first byte after the last byte written before returning.
1493 ** If the string zSignedIdent consists entirely of alpha-numeric
1494 ** characters, does not begin with a digit and is not an SQL keyword,
1495 ** then it is copied to the output buffer exactly as it is. Otherwise,
1496 ** it is quoted using double-quotes.
1498 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1499 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1500 int i, j, needQuote;
1501 i = *pIdx;
1503 for(j=0; zIdent[j]; j++){
1504 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1506 needQuote = sqlite3Isdigit(zIdent[0])
1507 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1508 || zIdent[j]!=0
1509 || j==0;
1511 if( needQuote ) z[i++] = '"';
1512 for(j=0; zIdent[j]; j++){
1513 z[i++] = zIdent[j];
1514 if( zIdent[j]=='"' ) z[i++] = '"';
1516 if( needQuote ) z[i++] = '"';
1517 z[i] = 0;
1518 *pIdx = i;
1522 ** Generate a CREATE TABLE statement appropriate for the given
1523 ** table. Memory to hold the text of the statement is obtained
1524 ** from sqliteMalloc() and must be freed by the calling function.
1526 static char *createTableStmt(sqlite3 *db, Table *p){
1527 int i, k, n;
1528 char *zStmt;
1529 char *zSep, *zSep2, *zEnd;
1530 Column *pCol;
1531 n = 0;
1532 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1533 n += identLength(pCol->zName) + 5;
1535 n += identLength(p->zName);
1536 if( n<50 ){
1537 zSep = "";
1538 zSep2 = ",";
1539 zEnd = ")";
1540 }else{
1541 zSep = "\n ";
1542 zSep2 = ",\n ";
1543 zEnd = "\n)";
1545 n += 35 + 6*p->nCol;
1546 zStmt = sqlite3DbMallocRaw(0, n);
1547 if( zStmt==0 ){
1548 sqlite3OomFault(db);
1549 return 0;
1551 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1552 k = sqlite3Strlen30(zStmt);
1553 identPut(zStmt, &k, p->zName);
1554 zStmt[k++] = '(';
1555 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1556 static const char * const azType[] = {
1557 /* SQLITE_AFF_BLOB */ "",
1558 /* SQLITE_AFF_TEXT */ " TEXT",
1559 /* SQLITE_AFF_NUMERIC */ " NUM",
1560 /* SQLITE_AFF_INTEGER */ " INT",
1561 /* SQLITE_AFF_REAL */ " REAL"
1563 int len;
1564 const char *zType;
1566 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1567 k += sqlite3Strlen30(&zStmt[k]);
1568 zSep = zSep2;
1569 identPut(zStmt, &k, pCol->zName);
1570 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1571 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1572 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1573 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1574 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1575 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1576 testcase( pCol->affinity==SQLITE_AFF_REAL );
1578 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1579 len = sqlite3Strlen30(zType);
1580 assert( pCol->affinity==SQLITE_AFF_BLOB
1581 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1582 memcpy(&zStmt[k], zType, len);
1583 k += len;
1584 assert( k<=n );
1586 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1587 return zStmt;
1591 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1592 ** on success and SQLITE_NOMEM on an OOM error.
1594 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1595 char *zExtra;
1596 int nByte;
1597 if( pIdx->nColumn>=N ) return SQLITE_OK;
1598 assert( pIdx->isResized==0 );
1599 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1600 zExtra = sqlite3DbMallocZero(db, nByte);
1601 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1602 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1603 pIdx->azColl = (const char**)zExtra;
1604 zExtra += sizeof(char*)*N;
1605 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1606 pIdx->aiColumn = (i16*)zExtra;
1607 zExtra += sizeof(i16)*N;
1608 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1609 pIdx->aSortOrder = (u8*)zExtra;
1610 pIdx->nColumn = N;
1611 pIdx->isResized = 1;
1612 return SQLITE_OK;
1616 ** Estimate the total row width for a table.
1618 static void estimateTableWidth(Table *pTab){
1619 unsigned wTable = 0;
1620 const Column *pTabCol;
1621 int i;
1622 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1623 wTable += pTabCol->szEst;
1625 if( pTab->iPKey<0 ) wTable++;
1626 pTab->szTabRow = sqlite3LogEst(wTable*4);
1630 ** Estimate the average size of a row for an index.
1632 static void estimateIndexWidth(Index *pIdx){
1633 unsigned wIndex = 0;
1634 int i;
1635 const Column *aCol = pIdx->pTable->aCol;
1636 for(i=0; i<pIdx->nColumn; i++){
1637 i16 x = pIdx->aiColumn[i];
1638 assert( x<pIdx->pTable->nCol );
1639 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1641 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1644 /* Return true if value x is found any of the first nCol entries of aiCol[]
1646 static int hasColumn(const i16 *aiCol, int nCol, int x){
1647 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1648 return 0;
1652 ** This routine runs at the end of parsing a CREATE TABLE statement that
1653 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1654 ** internal schema data structures and the generated VDBE code so that they
1655 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1656 ** Changes include:
1658 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1659 ** (2) Convert the OP_CreateTable into an OP_CreateIndex. There is
1660 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1661 ** data storage is a covering index btree.
1662 ** (3) Bypass the creation of the sqlite_master table entry
1663 ** for the PRIMARY KEY as the primary key index is now
1664 ** identified by the sqlite_master table entry of the table itself.
1665 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
1666 ** schema to the rootpage from the main table.
1667 ** (5) Add all table columns to the PRIMARY KEY Index object
1668 ** so that the PRIMARY KEY is a covering index. The surplus
1669 ** columns are part of KeyInfo.nXField and are not used for
1670 ** sorting or lookup or uniqueness checks.
1671 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1672 ** indices with the PRIMARY KEY columns.
1674 ** For virtual tables, only (1) is performed.
1676 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1677 Index *pIdx;
1678 Index *pPk;
1679 int nPk;
1680 int i, j;
1681 sqlite3 *db = pParse->db;
1682 Vdbe *v = pParse->pVdbe;
1684 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
1686 if( !db->init.imposterTable ){
1687 for(i=0; i<pTab->nCol; i++){
1688 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
1689 pTab->aCol[i].notNull = OE_Abort;
1694 /* The remaining transformations only apply to b-tree tables, not to
1695 ** virtual tables */
1696 if( IN_DECLARE_VTAB ) return;
1698 /* Convert the OP_CreateTable opcode that would normally create the
1699 ** root-page for the table into an OP_CreateIndex opcode. The index
1700 ** created will become the PRIMARY KEY index.
1702 if( pParse->addrCrTab ){
1703 assert( v );
1704 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1707 /* Locate the PRIMARY KEY index. Or, if this table was originally
1708 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1710 if( pTab->iPKey>=0 ){
1711 ExprList *pList;
1712 Token ipkToken;
1713 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
1714 pList = sqlite3ExprListAppend(pParse, 0,
1715 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1716 if( pList==0 ) return;
1717 pList->a[0].sortOrder = pParse->iPkSortOrder;
1718 assert( pParse->pNewTable==pTab );
1719 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
1720 SQLITE_IDXTYPE_PRIMARYKEY);
1721 if( db->mallocFailed ) return;
1722 pPk = sqlite3PrimaryKeyIndex(pTab);
1723 pTab->iPKey = -1;
1724 }else{
1725 pPk = sqlite3PrimaryKeyIndex(pTab);
1727 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1728 ** table entry. This is only required if currently generating VDBE
1729 ** code for a CREATE TABLE (not when parsing one as part of reading
1730 ** a database schema). */
1731 if( v ){
1732 assert( db->init.busy==0 );
1733 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1737 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1738 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1739 ** code assumes the PRIMARY KEY contains no repeated columns.
1741 for(i=j=1; i<pPk->nKeyCol; i++){
1742 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1743 pPk->nColumn--;
1744 }else{
1745 pPk->aiColumn[j++] = pPk->aiColumn[i];
1748 pPk->nKeyCol = j;
1750 assert( pPk!=0 );
1751 pPk->isCovering = 1;
1752 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
1753 nPk = pPk->nKeyCol;
1755 /* The root page of the PRIMARY KEY is the table root page */
1756 pPk->tnum = pTab->tnum;
1758 /* Update the in-memory representation of all UNIQUE indices by converting
1759 ** the final rowid column into one or more columns of the PRIMARY KEY.
1761 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1762 int n;
1763 if( IsPrimaryKeyIndex(pIdx) ) continue;
1764 for(i=n=0; i<nPk; i++){
1765 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1767 if( n==0 ){
1768 /* This index is a superset of the primary key */
1769 pIdx->nColumn = pIdx->nKeyCol;
1770 continue;
1772 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1773 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1774 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1775 pIdx->aiColumn[j] = pPk->aiColumn[i];
1776 pIdx->azColl[j] = pPk->azColl[i];
1777 j++;
1780 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1781 assert( pIdx->nColumn>=j );
1784 /* Add all table columns to the PRIMARY KEY index
1786 if( nPk<pTab->nCol ){
1787 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1788 for(i=0, j=nPk; i<pTab->nCol; i++){
1789 if( !hasColumn(pPk->aiColumn, j, i) ){
1790 assert( j<pPk->nColumn );
1791 pPk->aiColumn[j] = i;
1792 pPk->azColl[j] = sqlite3StrBINARY;
1793 j++;
1796 assert( pPk->nColumn==j );
1797 assert( pTab->nCol==j );
1798 }else{
1799 pPk->nColumn = pTab->nCol;
1804 ** This routine is called to report the final ")" that terminates
1805 ** a CREATE TABLE statement.
1807 ** The table structure that other action routines have been building
1808 ** is added to the internal hash tables, assuming no errors have
1809 ** occurred.
1811 ** An entry for the table is made in the master table on disk, unless
1812 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1813 ** it means we are reading the sqlite_master table because we just
1814 ** connected to the database or because the sqlite_master table has
1815 ** recently changed, so the entry for this table already exists in
1816 ** the sqlite_master table. We do not want to create it again.
1818 ** If the pSelect argument is not NULL, it means that this routine
1819 ** was called to create a table generated from a
1820 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1821 ** the new table will match the result set of the SELECT.
1823 void sqlite3EndTable(
1824 Parse *pParse, /* Parse context */
1825 Token *pCons, /* The ',' token after the last column defn. */
1826 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1827 u8 tabOpts, /* Extra table options. Usually 0. */
1828 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1830 Table *p; /* The new table */
1831 sqlite3 *db = pParse->db; /* The database connection */
1832 int iDb; /* Database in which the table lives */
1833 Index *pIdx; /* An implied index of the table */
1835 if( pEnd==0 && pSelect==0 ){
1836 return;
1838 assert( !db->mallocFailed );
1839 p = pParse->pNewTable;
1840 if( p==0 ) return;
1842 assert( !db->init.busy || !pSelect );
1844 /* If the db->init.busy is 1 it means we are reading the SQL off the
1845 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1846 ** So do not write to the disk again. Extract the root page number
1847 ** for the table from the db->init.newTnum field. (The page number
1848 ** should have been put there by the sqliteOpenCb routine.)
1850 ** If the root page number is 1, that means this is the sqlite_master
1851 ** table itself. So mark it read-only.
1853 if( db->init.busy ){
1854 p->tnum = db->init.newTnum;
1855 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
1858 /* Special processing for WITHOUT ROWID Tables */
1859 if( tabOpts & TF_WithoutRowid ){
1860 if( (p->tabFlags & TF_Autoincrement) ){
1861 sqlite3ErrorMsg(pParse,
1862 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1863 return;
1865 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1866 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1867 }else{
1868 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1869 convertToWithoutRowidTable(pParse, p);
1873 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1875 #ifndef SQLITE_OMIT_CHECK
1876 /* Resolve names in all CHECK constraint expressions.
1878 if( p->pCheck ){
1879 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1881 #endif /* !defined(SQLITE_OMIT_CHECK) */
1883 /* Estimate the average row size for the table and for all implied indices */
1884 estimateTableWidth(p);
1885 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1886 estimateIndexWidth(pIdx);
1889 /* If not initializing, then create a record for the new table
1890 ** in the SQLITE_MASTER table of the database.
1892 ** If this is a TEMPORARY table, write the entry into the auxiliary
1893 ** file instead of into the main database file.
1895 if( !db->init.busy ){
1896 int n;
1897 Vdbe *v;
1898 char *zType; /* "view" or "table" */
1899 char *zType2; /* "VIEW" or "TABLE" */
1900 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1902 v = sqlite3GetVdbe(pParse);
1903 if( NEVER(v==0) ) return;
1905 sqlite3VdbeAddOp1(v, OP_Close, 0);
1908 ** Initialize zType for the new view or table.
1910 if( p->pSelect==0 ){
1911 /* A regular table */
1912 zType = "table";
1913 zType2 = "TABLE";
1914 #ifndef SQLITE_OMIT_VIEW
1915 }else{
1916 /* A view */
1917 zType = "view";
1918 zType2 = "VIEW";
1919 #endif
1922 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1923 ** statement to populate the new table. The root-page number for the
1924 ** new table is in register pParse->regRoot.
1926 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1927 ** suitable state to query for the column names and types to be used
1928 ** by the new table.
1930 ** A shared-cache write-lock is not required to write to the new table,
1931 ** as a schema-lock must have already been obtained to create it. Since
1932 ** a schema-lock excludes all other database users, the write-lock would
1933 ** be redundant.
1935 if( pSelect ){
1936 SelectDest dest; /* Where the SELECT should store results */
1937 int regYield; /* Register holding co-routine entry-point */
1938 int addrTop; /* Top of the co-routine */
1939 int regRec; /* A record to be insert into the new table */
1940 int regRowid; /* Rowid of the next row to insert */
1941 int addrInsLoop; /* Top of the loop for inserting rows */
1942 Table *pSelTab; /* A table that describes the SELECT results */
1944 regYield = ++pParse->nMem;
1945 regRec = ++pParse->nMem;
1946 regRowid = ++pParse->nMem;
1947 assert(pParse->nTab==1);
1948 sqlite3MayAbort(pParse);
1949 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1950 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1951 pParse->nTab = 2;
1952 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1953 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1954 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1955 sqlite3Select(pParse, pSelect, &dest);
1956 sqlite3VdbeEndCoroutine(v, regYield);
1957 sqlite3VdbeJumpHere(v, addrTop - 1);
1958 if( pParse->nErr ) return;
1959 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1960 if( pSelTab==0 ) return;
1961 assert( p->aCol==0 );
1962 p->nCol = pSelTab->nCol;
1963 p->aCol = pSelTab->aCol;
1964 pSelTab->nCol = 0;
1965 pSelTab->aCol = 0;
1966 sqlite3DeleteTable(db, pSelTab);
1967 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1968 VdbeCoverage(v);
1969 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1970 sqlite3TableAffinity(v, p, 0);
1971 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1972 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1973 sqlite3VdbeGoto(v, addrInsLoop);
1974 sqlite3VdbeJumpHere(v, addrInsLoop);
1975 sqlite3VdbeAddOp1(v, OP_Close, 1);
1978 /* Compute the complete text of the CREATE statement */
1979 if( pSelect ){
1980 zStmt = createTableStmt(db, p);
1981 }else{
1982 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
1983 n = (int)(pEnd2->z - pParse->sNameToken.z);
1984 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
1985 zStmt = sqlite3MPrintf(db,
1986 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1990 /* A slot for the record has already been allocated in the
1991 ** SQLITE_MASTER table. We just need to update that slot with all
1992 ** the information we've collected.
1994 sqlite3NestedParse(pParse,
1995 "UPDATE %Q.%s "
1996 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1997 "WHERE rowid=#%d",
1998 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1999 zType,
2000 p->zName,
2001 p->zName,
2002 pParse->regRoot,
2003 zStmt,
2004 pParse->regRowid
2006 sqlite3DbFree(db, zStmt);
2007 sqlite3ChangeCookie(pParse, iDb);
2009 #ifndef SQLITE_OMIT_AUTOINCREMENT
2010 /* Check to see if we need to create an sqlite_sequence table for
2011 ** keeping track of autoincrement keys.
2013 if( p->tabFlags & TF_Autoincrement ){
2014 Db *pDb = &db->aDb[iDb];
2015 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2016 if( pDb->pSchema->pSeqTab==0 ){
2017 sqlite3NestedParse(pParse,
2018 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2019 pDb->zName
2023 #endif
2025 /* Reparse everything to update our internal data structures */
2026 sqlite3VdbeAddParseSchemaOp(v, iDb,
2027 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2031 /* Add the table to the in-memory representation of the database.
2033 if( db->init.busy ){
2034 Table *pOld;
2035 Schema *pSchema = p->pSchema;
2036 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2037 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2038 if( pOld ){
2039 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2040 sqlite3OomFault(db);
2041 return;
2043 pParse->pNewTable = 0;
2044 db->flags |= SQLITE_InternChanges;
2046 #ifndef SQLITE_OMIT_ALTERTABLE
2047 if( !p->pSelect ){
2048 const char *zName = (const char *)pParse->sNameToken.z;
2049 int nName;
2050 assert( !pSelect && pCons && pEnd );
2051 if( pCons->z==0 ){
2052 pCons = pEnd;
2054 nName = (int)((const char *)pCons->z - zName);
2055 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2057 #endif
2061 #ifndef SQLITE_OMIT_VIEW
2063 ** The parser calls this routine in order to create a new VIEW
2065 void sqlite3CreateView(
2066 Parse *pParse, /* The parsing context */
2067 Token *pBegin, /* The CREATE token that begins the statement */
2068 Token *pName1, /* The token that holds the name of the view */
2069 Token *pName2, /* The token that holds the name of the view */
2070 ExprList *pCNames, /* Optional list of view column names */
2071 Select *pSelect, /* A SELECT statement that will become the new view */
2072 int isTemp, /* TRUE for a TEMPORARY view */
2073 int noErr /* Suppress error messages if VIEW already exists */
2075 Table *p;
2076 int n;
2077 const char *z;
2078 Token sEnd;
2079 DbFixer sFix;
2080 Token *pName = 0;
2081 int iDb;
2082 sqlite3 *db = pParse->db;
2084 if( pParse->nVar>0 ){
2085 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2086 goto create_view_fail;
2088 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2089 p = pParse->pNewTable;
2090 if( p==0 || pParse->nErr ) goto create_view_fail;
2091 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2092 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2093 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2094 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2096 /* Make a copy of the entire SELECT statement that defines the view.
2097 ** This will force all the Expr.token.z values to be dynamically
2098 ** allocated rather than point to the input string - which means that
2099 ** they will persist after the current sqlite3_exec() call returns.
2101 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2102 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2103 if( db->mallocFailed ) goto create_view_fail;
2105 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2106 ** the end.
2108 sEnd = pParse->sLastToken;
2109 assert( sEnd.z[0]!=0 );
2110 if( sEnd.z[0]!=';' ){
2111 sEnd.z += sEnd.n;
2113 sEnd.n = 0;
2114 n = (int)(sEnd.z - pBegin->z);
2115 assert( n>0 );
2116 z = pBegin->z;
2117 while( sqlite3Isspace(z[n-1]) ){ n--; }
2118 sEnd.z = &z[n-1];
2119 sEnd.n = 1;
2121 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2122 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2124 create_view_fail:
2125 sqlite3SelectDelete(db, pSelect);
2126 sqlite3ExprListDelete(db, pCNames);
2127 return;
2129 #endif /* SQLITE_OMIT_VIEW */
2131 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2133 ** The Table structure pTable is really a VIEW. Fill in the names of
2134 ** the columns of the view in the pTable structure. Return the number
2135 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2137 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2138 Table *pSelTab; /* A fake table from which we get the result set */
2139 Select *pSel; /* Copy of the SELECT that implements the view */
2140 int nErr = 0; /* Number of errors encountered */
2141 int n; /* Temporarily holds the number of cursors assigned */
2142 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2143 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2145 assert( pTable );
2147 #ifndef SQLITE_OMIT_VIRTUALTABLE
2148 if( sqlite3VtabCallConnect(pParse, pTable) ){
2149 return SQLITE_ERROR;
2151 if( IsVirtual(pTable) ) return 0;
2152 #endif
2154 #ifndef SQLITE_OMIT_VIEW
2155 /* A positive nCol means the columns names for this view are
2156 ** already known.
2158 if( pTable->nCol>0 ) return 0;
2160 /* A negative nCol is a special marker meaning that we are currently
2161 ** trying to compute the column names. If we enter this routine with
2162 ** a negative nCol, it means two or more views form a loop, like this:
2164 ** CREATE VIEW one AS SELECT * FROM two;
2165 ** CREATE VIEW two AS SELECT * FROM one;
2167 ** Actually, the error above is now caught prior to reaching this point.
2168 ** But the following test is still important as it does come up
2169 ** in the following:
2171 ** CREATE TABLE main.ex1(a);
2172 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2173 ** SELECT * FROM temp.ex1;
2175 if( pTable->nCol<0 ){
2176 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2177 return 1;
2179 assert( pTable->nCol>=0 );
2181 /* If we get this far, it means we need to compute the table names.
2182 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2183 ** "*" elements in the results set of the view and will assign cursors
2184 ** to the elements of the FROM clause. But we do not want these changes
2185 ** to be permanent. So the computation is done on a copy of the SELECT
2186 ** statement that defines the view.
2188 assert( pTable->pSelect );
2189 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2190 if( pSel ){
2191 n = pParse->nTab;
2192 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2193 pTable->nCol = -1;
2194 db->lookaside.bDisable++;
2195 #ifndef SQLITE_OMIT_AUTHORIZATION
2196 xAuth = db->xAuth;
2197 db->xAuth = 0;
2198 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2199 db->xAuth = xAuth;
2200 #else
2201 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2202 #endif
2203 pParse->nTab = n;
2204 if( pTable->pCheck ){
2205 /* CREATE VIEW name(arglist) AS ...
2206 ** The names of the columns in the table are taken from
2207 ** arglist which is stored in pTable->pCheck. The pCheck field
2208 ** normally holds CHECK constraints on an ordinary table, but for
2209 ** a VIEW it holds the list of column names.
2211 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2212 &pTable->nCol, &pTable->aCol);
2213 if( db->mallocFailed==0
2214 && pParse->nErr==0
2215 && pTable->nCol==pSel->pEList->nExpr
2217 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel);
2219 }else if( pSelTab ){
2220 /* CREATE VIEW name AS... without an argument list. Construct
2221 ** the column names from the SELECT statement that defines the view.
2223 assert( pTable->aCol==0 );
2224 pTable->nCol = pSelTab->nCol;
2225 pTable->aCol = pSelTab->aCol;
2226 pSelTab->nCol = 0;
2227 pSelTab->aCol = 0;
2228 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2229 }else{
2230 pTable->nCol = 0;
2231 nErr++;
2233 sqlite3DeleteTable(db, pSelTab);
2234 sqlite3SelectDelete(db, pSel);
2235 db->lookaside.bDisable--;
2236 } else {
2237 nErr++;
2239 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2240 #endif /* SQLITE_OMIT_VIEW */
2241 return nErr;
2243 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2245 #ifndef SQLITE_OMIT_VIEW
2247 ** Clear the column names from every VIEW in database idx.
2249 static void sqliteViewResetAll(sqlite3 *db, int idx){
2250 HashElem *i;
2251 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2252 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2253 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2254 Table *pTab = sqliteHashData(i);
2255 if( pTab->pSelect ){
2256 sqlite3DeleteColumnNames(db, pTab);
2257 pTab->aCol = 0;
2258 pTab->nCol = 0;
2261 DbClearProperty(db, idx, DB_UnresetViews);
2263 #else
2264 # define sqliteViewResetAll(A,B)
2265 #endif /* SQLITE_OMIT_VIEW */
2268 ** This function is called by the VDBE to adjust the internal schema
2269 ** used by SQLite when the btree layer moves a table root page. The
2270 ** root-page of a table or index in database iDb has changed from iFrom
2271 ** to iTo.
2273 ** Ticket #1728: The symbol table might still contain information
2274 ** on tables and/or indices that are the process of being deleted.
2275 ** If you are unlucky, one of those deleted indices or tables might
2276 ** have the same rootpage number as the real table or index that is
2277 ** being moved. So we cannot stop searching after the first match
2278 ** because the first match might be for one of the deleted indices
2279 ** or tables and not the table/index that is actually being moved.
2280 ** We must continue looping until all tables and indices with
2281 ** rootpage==iFrom have been converted to have a rootpage of iTo
2282 ** in order to be certain that we got the right one.
2284 #ifndef SQLITE_OMIT_AUTOVACUUM
2285 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2286 HashElem *pElem;
2287 Hash *pHash;
2288 Db *pDb;
2290 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2291 pDb = &db->aDb[iDb];
2292 pHash = &pDb->pSchema->tblHash;
2293 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2294 Table *pTab = sqliteHashData(pElem);
2295 if( pTab->tnum==iFrom ){
2296 pTab->tnum = iTo;
2299 pHash = &pDb->pSchema->idxHash;
2300 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2301 Index *pIdx = sqliteHashData(pElem);
2302 if( pIdx->tnum==iFrom ){
2303 pIdx->tnum = iTo;
2307 #endif
2310 ** Write code to erase the table with root-page iTable from database iDb.
2311 ** Also write code to modify the sqlite_master table and internal schema
2312 ** if a root-page of another table is moved by the btree-layer whilst
2313 ** erasing iTable (this can happen with an auto-vacuum database).
2315 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2316 Vdbe *v = sqlite3GetVdbe(pParse);
2317 int r1 = sqlite3GetTempReg(pParse);
2318 assert( iTable>1 );
2319 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2320 sqlite3MayAbort(pParse);
2321 #ifndef SQLITE_OMIT_AUTOVACUUM
2322 /* OP_Destroy stores an in integer r1. If this integer
2323 ** is non-zero, then it is the root page number of a table moved to
2324 ** location iTable. The following code modifies the sqlite_master table to
2325 ** reflect this.
2327 ** The "#NNN" in the SQL is a special constant that means whatever value
2328 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2329 ** token for additional information.
2331 sqlite3NestedParse(pParse,
2332 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2333 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2334 #endif
2335 sqlite3ReleaseTempReg(pParse, r1);
2339 ** Write VDBE code to erase table pTab and all associated indices on disk.
2340 ** Code to update the sqlite_master tables and internal schema definitions
2341 ** in case a root-page belonging to another table is moved by the btree layer
2342 ** is also added (this can happen with an auto-vacuum database).
2344 static void destroyTable(Parse *pParse, Table *pTab){
2345 #ifdef SQLITE_OMIT_AUTOVACUUM
2346 Index *pIdx;
2347 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2348 destroyRootPage(pParse, pTab->tnum, iDb);
2349 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2350 destroyRootPage(pParse, pIdx->tnum, iDb);
2352 #else
2353 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2354 ** is not defined), then it is important to call OP_Destroy on the
2355 ** table and index root-pages in order, starting with the numerically
2356 ** largest root-page number. This guarantees that none of the root-pages
2357 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2358 ** following were coded:
2360 ** OP_Destroy 4 0
2361 ** ...
2362 ** OP_Destroy 5 0
2364 ** and root page 5 happened to be the largest root-page number in the
2365 ** database, then root page 5 would be moved to page 4 by the
2366 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2367 ** a free-list page.
2369 int iTab = pTab->tnum;
2370 int iDestroyed = 0;
2372 while( 1 ){
2373 Index *pIdx;
2374 int iLargest = 0;
2376 if( iDestroyed==0 || iTab<iDestroyed ){
2377 iLargest = iTab;
2379 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2380 int iIdx = pIdx->tnum;
2381 assert( pIdx->pSchema==pTab->pSchema );
2382 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2383 iLargest = iIdx;
2386 if( iLargest==0 ){
2387 return;
2388 }else{
2389 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2390 assert( iDb>=0 && iDb<pParse->db->nDb );
2391 destroyRootPage(pParse, iLargest, iDb);
2392 iDestroyed = iLargest;
2395 #endif
2399 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2400 ** after a DROP INDEX or DROP TABLE command.
2402 static void sqlite3ClearStatTables(
2403 Parse *pParse, /* The parsing context */
2404 int iDb, /* The database number */
2405 const char *zType, /* "idx" or "tbl" */
2406 const char *zName /* Name of index or table */
2408 int i;
2409 const char *zDbName = pParse->db->aDb[iDb].zName;
2410 for(i=1; i<=4; i++){
2411 char zTab[24];
2412 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2413 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2414 sqlite3NestedParse(pParse,
2415 "DELETE FROM %Q.%s WHERE %s=%Q",
2416 zDbName, zTab, zType, zName
2423 ** Generate code to drop a table.
2425 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2426 Vdbe *v;
2427 sqlite3 *db = pParse->db;
2428 Trigger *pTrigger;
2429 Db *pDb = &db->aDb[iDb];
2431 v = sqlite3GetVdbe(pParse);
2432 assert( v!=0 );
2433 sqlite3BeginWriteOperation(pParse, 1, iDb);
2435 #ifndef SQLITE_OMIT_VIRTUALTABLE
2436 if( IsVirtual(pTab) ){
2437 sqlite3VdbeAddOp0(v, OP_VBegin);
2439 #endif
2441 /* Drop all triggers associated with the table being dropped. Code
2442 ** is generated to remove entries from sqlite_master and/or
2443 ** sqlite_temp_master if required.
2445 pTrigger = sqlite3TriggerList(pParse, pTab);
2446 while( pTrigger ){
2447 assert( pTrigger->pSchema==pTab->pSchema ||
2448 pTrigger->pSchema==db->aDb[1].pSchema );
2449 sqlite3DropTriggerPtr(pParse, pTrigger);
2450 pTrigger = pTrigger->pNext;
2453 #ifndef SQLITE_OMIT_AUTOINCREMENT
2454 /* Remove any entries of the sqlite_sequence table associated with
2455 ** the table being dropped. This is done before the table is dropped
2456 ** at the btree level, in case the sqlite_sequence table needs to
2457 ** move as a result of the drop (can happen in auto-vacuum mode).
2459 if( pTab->tabFlags & TF_Autoincrement ){
2460 sqlite3NestedParse(pParse,
2461 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2462 pDb->zName, pTab->zName
2465 #endif
2467 /* Drop all SQLITE_MASTER table and index entries that refer to the
2468 ** table. The program name loops through the master table and deletes
2469 ** every row that refers to a table of the same name as the one being
2470 ** dropped. Triggers are handled separately because a trigger can be
2471 ** created in the temp database that refers to a table in another
2472 ** database.
2474 sqlite3NestedParse(pParse,
2475 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2476 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2477 if( !isView && !IsVirtual(pTab) ){
2478 destroyTable(pParse, pTab);
2481 /* Remove the table entry from SQLite's internal schema and modify
2482 ** the schema cookie.
2484 if( IsVirtual(pTab) ){
2485 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2487 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2488 sqlite3ChangeCookie(pParse, iDb);
2489 sqliteViewResetAll(db, iDb);
2493 ** This routine is called to do the work of a DROP TABLE statement.
2494 ** pName is the name of the table to be dropped.
2496 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2497 Table *pTab;
2498 Vdbe *v;
2499 sqlite3 *db = pParse->db;
2500 int iDb;
2502 if( db->mallocFailed ){
2503 goto exit_drop_table;
2505 assert( pParse->nErr==0 );
2506 assert( pName->nSrc==1 );
2507 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2508 if( noErr ) db->suppressErr++;
2509 assert( isView==0 || isView==LOCATE_VIEW );
2510 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2511 if( noErr ) db->suppressErr--;
2513 if( pTab==0 ){
2514 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2515 goto exit_drop_table;
2517 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2518 assert( iDb>=0 && iDb<db->nDb );
2520 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2521 ** it is initialized.
2523 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2524 goto exit_drop_table;
2526 #ifndef SQLITE_OMIT_AUTHORIZATION
2528 int code;
2529 const char *zTab = SCHEMA_TABLE(iDb);
2530 const char *zDb = db->aDb[iDb].zName;
2531 const char *zArg2 = 0;
2532 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2533 goto exit_drop_table;
2535 if( isView ){
2536 if( !OMIT_TEMPDB && iDb==1 ){
2537 code = SQLITE_DROP_TEMP_VIEW;
2538 }else{
2539 code = SQLITE_DROP_VIEW;
2541 #ifndef SQLITE_OMIT_VIRTUALTABLE
2542 }else if( IsVirtual(pTab) ){
2543 code = SQLITE_DROP_VTABLE;
2544 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2545 #endif
2546 }else{
2547 if( !OMIT_TEMPDB && iDb==1 ){
2548 code = SQLITE_DROP_TEMP_TABLE;
2549 }else{
2550 code = SQLITE_DROP_TABLE;
2553 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2554 goto exit_drop_table;
2556 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2557 goto exit_drop_table;
2560 #endif
2561 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2562 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2563 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2564 goto exit_drop_table;
2567 #ifndef SQLITE_OMIT_VIEW
2568 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2569 ** on a table.
2571 if( isView && pTab->pSelect==0 ){
2572 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2573 goto exit_drop_table;
2575 if( !isView && pTab->pSelect ){
2576 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2577 goto exit_drop_table;
2579 #endif
2581 /* Generate code to remove the table from the master table
2582 ** on disk.
2584 v = sqlite3GetVdbe(pParse);
2585 if( v ){
2586 sqlite3BeginWriteOperation(pParse, 1, iDb);
2587 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2588 sqlite3FkDropTable(pParse, pName, pTab);
2589 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2592 exit_drop_table:
2593 sqlite3SrcListDelete(db, pName);
2597 ** This routine is called to create a new foreign key on the table
2598 ** currently under construction. pFromCol determines which columns
2599 ** in the current table point to the foreign key. If pFromCol==0 then
2600 ** connect the key to the last column inserted. pTo is the name of
2601 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2602 ** of tables in the parent pTo table. flags contains all
2603 ** information about the conflict resolution algorithms specified
2604 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2606 ** An FKey structure is created and added to the table currently
2607 ** under construction in the pParse->pNewTable field.
2609 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2610 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2612 void sqlite3CreateForeignKey(
2613 Parse *pParse, /* Parsing context */
2614 ExprList *pFromCol, /* Columns in this table that point to other table */
2615 Token *pTo, /* Name of the other table */
2616 ExprList *pToCol, /* Columns in the other table */
2617 int flags /* Conflict resolution algorithms. */
2619 sqlite3 *db = pParse->db;
2620 #ifndef SQLITE_OMIT_FOREIGN_KEY
2621 FKey *pFKey = 0;
2622 FKey *pNextTo;
2623 Table *p = pParse->pNewTable;
2624 int nByte;
2625 int i;
2626 int nCol;
2627 char *z;
2629 assert( pTo!=0 );
2630 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2631 if( pFromCol==0 ){
2632 int iCol = p->nCol-1;
2633 if( NEVER(iCol<0) ) goto fk_end;
2634 if( pToCol && pToCol->nExpr!=1 ){
2635 sqlite3ErrorMsg(pParse, "foreign key on %s"
2636 " should reference only one column of table %T",
2637 p->aCol[iCol].zName, pTo);
2638 goto fk_end;
2640 nCol = 1;
2641 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2642 sqlite3ErrorMsg(pParse,
2643 "number of columns in foreign key does not match the number of "
2644 "columns in the referenced table");
2645 goto fk_end;
2646 }else{
2647 nCol = pFromCol->nExpr;
2649 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2650 if( pToCol ){
2651 for(i=0; i<pToCol->nExpr; i++){
2652 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2655 pFKey = sqlite3DbMallocZero(db, nByte );
2656 if( pFKey==0 ){
2657 goto fk_end;
2659 pFKey->pFrom = p;
2660 pFKey->pNextFrom = p->pFKey;
2661 z = (char*)&pFKey->aCol[nCol];
2662 pFKey->zTo = z;
2663 memcpy(z, pTo->z, pTo->n);
2664 z[pTo->n] = 0;
2665 sqlite3Dequote(z);
2666 z += pTo->n+1;
2667 pFKey->nCol = nCol;
2668 if( pFromCol==0 ){
2669 pFKey->aCol[0].iFrom = p->nCol-1;
2670 }else{
2671 for(i=0; i<nCol; i++){
2672 int j;
2673 for(j=0; j<p->nCol; j++){
2674 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2675 pFKey->aCol[i].iFrom = j;
2676 break;
2679 if( j>=p->nCol ){
2680 sqlite3ErrorMsg(pParse,
2681 "unknown column \"%s\" in foreign key definition",
2682 pFromCol->a[i].zName);
2683 goto fk_end;
2687 if( pToCol ){
2688 for(i=0; i<nCol; i++){
2689 int n = sqlite3Strlen30(pToCol->a[i].zName);
2690 pFKey->aCol[i].zCol = z;
2691 memcpy(z, pToCol->a[i].zName, n);
2692 z[n] = 0;
2693 z += n+1;
2696 pFKey->isDeferred = 0;
2697 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2698 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2700 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2701 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2702 pFKey->zTo, (void *)pFKey
2704 if( pNextTo==pFKey ){
2705 sqlite3OomFault(db);
2706 goto fk_end;
2708 if( pNextTo ){
2709 assert( pNextTo->pPrevTo==0 );
2710 pFKey->pNextTo = pNextTo;
2711 pNextTo->pPrevTo = pFKey;
2714 /* Link the foreign key to the table as the last step.
2716 p->pFKey = pFKey;
2717 pFKey = 0;
2719 fk_end:
2720 sqlite3DbFree(db, pFKey);
2721 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2722 sqlite3ExprListDelete(db, pFromCol);
2723 sqlite3ExprListDelete(db, pToCol);
2727 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2728 ** clause is seen as part of a foreign key definition. The isDeferred
2729 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2730 ** The behavior of the most recently created foreign key is adjusted
2731 ** accordingly.
2733 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2734 #ifndef SQLITE_OMIT_FOREIGN_KEY
2735 Table *pTab;
2736 FKey *pFKey;
2737 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2738 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2739 pFKey->isDeferred = (u8)isDeferred;
2740 #endif
2744 ** Generate code that will erase and refill index *pIdx. This is
2745 ** used to initialize a newly created index or to recompute the
2746 ** content of an index in response to a REINDEX command.
2748 ** if memRootPage is not negative, it means that the index is newly
2749 ** created. The register specified by memRootPage contains the
2750 ** root page number of the index. If memRootPage is negative, then
2751 ** the index already exists and must be cleared before being refilled and
2752 ** the root page number of the index is taken from pIndex->tnum.
2754 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2755 Table *pTab = pIndex->pTable; /* The table that is indexed */
2756 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2757 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2758 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2759 int addr1; /* Address of top of loop */
2760 int addr2; /* Address to jump to for next iteration */
2761 int tnum; /* Root page of index */
2762 int iPartIdxLabel; /* Jump to this label to skip a row */
2763 Vdbe *v; /* Generate code into this virtual machine */
2764 KeyInfo *pKey; /* KeyInfo for index */
2765 int regRecord; /* Register holding assembled index record */
2766 sqlite3 *db = pParse->db; /* The database connection */
2767 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2769 #ifndef SQLITE_OMIT_AUTHORIZATION
2770 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2771 db->aDb[iDb].zName ) ){
2772 return;
2774 #endif
2776 /* Require a write-lock on the table to perform this operation */
2777 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2779 v = sqlite3GetVdbe(pParse);
2780 if( v==0 ) return;
2781 if( memRootPage>=0 ){
2782 tnum = memRootPage;
2783 }else{
2784 tnum = pIndex->tnum;
2786 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2787 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2789 /* Open the sorter cursor if we are to use one. */
2790 iSorter = pParse->nTab++;
2791 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2792 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2794 /* Open the table. Loop through all rows of the table, inserting index
2795 ** records into the sorter. */
2796 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2797 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2798 regRecord = sqlite3GetTempReg(pParse);
2800 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2801 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2802 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2803 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2804 sqlite3VdbeJumpHere(v, addr1);
2805 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2806 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2807 (char *)pKey, P4_KEYINFO);
2808 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2810 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2811 if( IsUniqueIndex(pIndex) ){
2812 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2813 sqlite3VdbeGoto(v, j2);
2814 addr2 = sqlite3VdbeCurrentAddr(v);
2815 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2816 pIndex->nKeyCol); VdbeCoverage(v);
2817 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2818 }else{
2819 addr2 = sqlite3VdbeCurrentAddr(v);
2821 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2822 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2823 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2824 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2825 sqlite3ReleaseTempReg(pParse, regRecord);
2826 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2827 sqlite3VdbeJumpHere(v, addr1);
2829 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2830 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2831 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2835 ** Allocate heap space to hold an Index object with nCol columns.
2837 ** Increase the allocation size to provide an extra nExtra bytes
2838 ** of 8-byte aligned space after the Index object and return a
2839 ** pointer to this extra space in *ppExtra.
2841 Index *sqlite3AllocateIndexObject(
2842 sqlite3 *db, /* Database connection */
2843 i16 nCol, /* Total number of columns in the index */
2844 int nExtra, /* Number of bytes of extra space to alloc */
2845 char **ppExtra /* Pointer to the "extra" space */
2847 Index *p; /* Allocated index object */
2848 int nByte; /* Bytes of space for Index object + arrays */
2850 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2851 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2852 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2853 sizeof(i16)*nCol + /* Index.aiColumn */
2854 sizeof(u8)*nCol); /* Index.aSortOrder */
2855 p = sqlite3DbMallocZero(db, nByte + nExtra);
2856 if( p ){
2857 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2858 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2859 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2860 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2861 p->aSortOrder = (u8*)pExtra;
2862 p->nColumn = nCol;
2863 p->nKeyCol = nCol - 1;
2864 *ppExtra = ((char*)p) + nByte;
2866 return p;
2870 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2871 ** and pTblList is the name of the table that is to be indexed. Both will
2872 ** be NULL for a primary key or an index that is created to satisfy a
2873 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2874 ** as the table to be indexed. pParse->pNewTable is a table that is
2875 ** currently being constructed by a CREATE TABLE statement.
2877 ** pList is a list of columns to be indexed. pList will be NULL if this
2878 ** is a primary key or unique-constraint on the most recent column added
2879 ** to the table currently under construction.
2881 void sqlite3CreateIndex(
2882 Parse *pParse, /* All information about this parse */
2883 Token *pName1, /* First part of index name. May be NULL */
2884 Token *pName2, /* Second part of index name. May be NULL */
2885 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2886 ExprList *pList, /* A list of columns to be indexed */
2887 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2888 Token *pStart, /* The CREATE token that begins this statement */
2889 Expr *pPIWhere, /* WHERE clause for partial indices */
2890 int sortOrder, /* Sort order of primary key when pList==NULL */
2891 int ifNotExist, /* Omit error if index already exists */
2892 u8 idxType /* The index type */
2894 Table *pTab = 0; /* Table to be indexed */
2895 Index *pIndex = 0; /* The index to be created */
2896 char *zName = 0; /* Name of the index */
2897 int nName; /* Number of characters in zName */
2898 int i, j;
2899 DbFixer sFix; /* For assigning database names to pTable */
2900 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2901 sqlite3 *db = pParse->db;
2902 Db *pDb; /* The specific table containing the indexed database */
2903 int iDb; /* Index of the database that is being written */
2904 Token *pName = 0; /* Unqualified name of the index to create */
2905 struct ExprList_item *pListItem; /* For looping over pList */
2906 int nExtra = 0; /* Space allocated for zExtra[] */
2907 int nExtraCol; /* Number of extra columns needed */
2908 char *zExtra = 0; /* Extra space after the Index object */
2909 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2911 if( db->mallocFailed || pParse->nErr>0 ){
2912 goto exit_create_index;
2914 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
2915 goto exit_create_index;
2917 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2918 goto exit_create_index;
2922 ** Find the table that is to be indexed. Return early if not found.
2924 if( pTblName!=0 ){
2926 /* Use the two-part index name to determine the database
2927 ** to search for the table. 'Fix' the table name to this db
2928 ** before looking up the table.
2930 assert( pName1 && pName2 );
2931 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2932 if( iDb<0 ) goto exit_create_index;
2933 assert( pName && pName->z );
2935 #ifndef SQLITE_OMIT_TEMPDB
2936 /* If the index name was unqualified, check if the table
2937 ** is a temp table. If so, set the database to 1. Do not do this
2938 ** if initialising a database schema.
2940 if( !db->init.busy ){
2941 pTab = sqlite3SrcListLookup(pParse, pTblName);
2942 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2943 iDb = 1;
2946 #endif
2948 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2949 if( sqlite3FixSrcList(&sFix, pTblName) ){
2950 /* Because the parser constructs pTblName from a single identifier,
2951 ** sqlite3FixSrcList can never fail. */
2952 assert(0);
2954 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2955 assert( db->mallocFailed==0 || pTab==0 );
2956 if( pTab==0 ) goto exit_create_index;
2957 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2958 sqlite3ErrorMsg(pParse,
2959 "cannot create a TEMP index on non-TEMP table \"%s\"",
2960 pTab->zName);
2961 goto exit_create_index;
2963 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2964 }else{
2965 assert( pName==0 );
2966 assert( pStart==0 );
2967 pTab = pParse->pNewTable;
2968 if( !pTab ) goto exit_create_index;
2969 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2971 pDb = &db->aDb[iDb];
2973 assert( pTab!=0 );
2974 assert( pParse->nErr==0 );
2975 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2976 && db->init.busy==0
2977 #if SQLITE_USER_AUTHENTICATION
2978 && sqlite3UserAuthTable(pTab->zName)==0
2979 #endif
2980 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2981 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2982 goto exit_create_index;
2984 #ifndef SQLITE_OMIT_VIEW
2985 if( pTab->pSelect ){
2986 sqlite3ErrorMsg(pParse, "views may not be indexed");
2987 goto exit_create_index;
2989 #endif
2990 #ifndef SQLITE_OMIT_VIRTUALTABLE
2991 if( IsVirtual(pTab) ){
2992 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2993 goto exit_create_index;
2995 #endif
2998 ** Find the name of the index. Make sure there is not already another
2999 ** index or table with the same name.
3001 ** Exception: If we are reading the names of permanent indices from the
3002 ** sqlite_master table (because some other process changed the schema) and
3003 ** one of the index names collides with the name of a temporary table or
3004 ** index, then we will continue to process this index.
3006 ** If pName==0 it means that we are
3007 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3008 ** own name.
3010 if( pName ){
3011 zName = sqlite3NameFromToken(db, pName);
3012 if( zName==0 ) goto exit_create_index;
3013 assert( pName->z!=0 );
3014 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3015 goto exit_create_index;
3017 if( !db->init.busy ){
3018 if( sqlite3FindTable(db, zName, 0)!=0 ){
3019 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3020 goto exit_create_index;
3023 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3024 if( !ifNotExist ){
3025 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3026 }else{
3027 assert( !db->init.busy );
3028 sqlite3CodeVerifySchema(pParse, iDb);
3030 goto exit_create_index;
3032 }else{
3033 int n;
3034 Index *pLoop;
3035 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3036 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3037 if( zName==0 ){
3038 goto exit_create_index;
3042 /* Check for authorization to create an index.
3044 #ifndef SQLITE_OMIT_AUTHORIZATION
3046 const char *zDb = pDb->zName;
3047 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3048 goto exit_create_index;
3050 i = SQLITE_CREATE_INDEX;
3051 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3052 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3053 goto exit_create_index;
3056 #endif
3058 /* If pList==0, it means this routine was called to make a primary
3059 ** key out of the last column added to the table under construction.
3060 ** So create a fake list to simulate this.
3062 if( pList==0 ){
3063 Token prevCol;
3064 sqlite3TokenInit(&prevCol, pTab->aCol[pTab->nCol-1].zName);
3065 pList = sqlite3ExprListAppend(pParse, 0,
3066 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3067 if( pList==0 ) goto exit_create_index;
3068 assert( pList->nExpr==1 );
3069 sqlite3ExprListSetSortOrder(pList, sortOrder);
3070 }else{
3071 sqlite3ExprListCheckLength(pParse, pList, "index");
3074 /* Figure out how many bytes of space are required to store explicitly
3075 ** specified collation sequence names.
3077 for(i=0; i<pList->nExpr; i++){
3078 Expr *pExpr = pList->a[i].pExpr;
3079 assert( pExpr!=0 );
3080 if( pExpr->op==TK_COLLATE ){
3081 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3086 ** Allocate the index structure.
3088 nName = sqlite3Strlen30(zName);
3089 nExtraCol = pPk ? pPk->nKeyCol : 1;
3090 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3091 nName + nExtra + 1, &zExtra);
3092 if( db->mallocFailed ){
3093 goto exit_create_index;
3095 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3096 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3097 pIndex->zName = zExtra;
3098 zExtra += nName + 1;
3099 memcpy(pIndex->zName, zName, nName+1);
3100 pIndex->pTable = pTab;
3101 pIndex->onError = (u8)onError;
3102 pIndex->uniqNotNull = onError!=OE_None;
3103 pIndex->idxType = idxType;
3104 pIndex->pSchema = db->aDb[iDb].pSchema;
3105 pIndex->nKeyCol = pList->nExpr;
3106 if( pPIWhere ){
3107 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3108 pIndex->pPartIdxWhere = pPIWhere;
3109 pPIWhere = 0;
3111 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3113 /* Check to see if we should honor DESC requests on index columns
3115 if( pDb->pSchema->file_format>=4 ){
3116 sortOrderMask = -1; /* Honor DESC */
3117 }else{
3118 sortOrderMask = 0; /* Ignore DESC */
3121 /* Analyze the list of expressions that form the terms of the index and
3122 ** report any errors. In the common case where the expression is exactly
3123 ** a table column, store that column in aiColumn[]. For general expressions,
3124 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3126 ** TODO: Issue a warning if two or more columns of the index are identical.
3127 ** TODO: Issue a warning if the table primary key is used as part of the
3128 ** index key.
3130 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3131 Expr *pCExpr; /* The i-th index expression */
3132 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3133 const char *zColl; /* Collation sequence name */
3135 sqlite3StringToId(pListItem->pExpr);
3136 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3137 if( pParse->nErr ) goto exit_create_index;
3138 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3139 if( pCExpr->op!=TK_COLUMN ){
3140 if( pTab==pParse->pNewTable ){
3141 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3142 "UNIQUE constraints");
3143 goto exit_create_index;
3145 if( pIndex->aColExpr==0 ){
3146 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3147 pIndex->aColExpr = pCopy;
3148 if( !db->mallocFailed ){
3149 assert( pCopy!=0 );
3150 pListItem = &pCopy->a[i];
3153 j = XN_EXPR;
3154 pIndex->aiColumn[i] = XN_EXPR;
3155 pIndex->uniqNotNull = 0;
3156 }else{
3157 j = pCExpr->iColumn;
3158 assert( j<=0x7fff );
3159 if( j<0 ){
3160 j = pTab->iPKey;
3161 }else if( pTab->aCol[j].notNull==0 ){
3162 pIndex->uniqNotNull = 0;
3164 pIndex->aiColumn[i] = (i16)j;
3166 zColl = 0;
3167 if( pListItem->pExpr->op==TK_COLLATE ){
3168 int nColl;
3169 zColl = pListItem->pExpr->u.zToken;
3170 nColl = sqlite3Strlen30(zColl) + 1;
3171 assert( nExtra>=nColl );
3172 memcpy(zExtra, zColl, nColl);
3173 zColl = zExtra;
3174 zExtra += nColl;
3175 nExtra -= nColl;
3176 }else if( j>=0 ){
3177 zColl = pTab->aCol[j].zColl;
3179 if( !zColl ) zColl = sqlite3StrBINARY;
3180 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3181 goto exit_create_index;
3183 pIndex->azColl[i] = zColl;
3184 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3185 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3188 /* Append the table key to the end of the index. For WITHOUT ROWID
3189 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3190 ** normal tables (when pPk==0) this will be the rowid.
3192 if( pPk ){
3193 for(j=0; j<pPk->nKeyCol; j++){
3194 int x = pPk->aiColumn[j];
3195 assert( x>=0 );
3196 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3197 pIndex->nColumn--;
3198 }else{
3199 pIndex->aiColumn[i] = x;
3200 pIndex->azColl[i] = pPk->azColl[j];
3201 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3202 i++;
3205 assert( i==pIndex->nColumn );
3206 }else{
3207 pIndex->aiColumn[i] = XN_ROWID;
3208 pIndex->azColl[i] = sqlite3StrBINARY;
3210 sqlite3DefaultRowEst(pIndex);
3211 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3213 /* If this index contains every column of its table, then mark
3214 ** it as a covering index */
3215 assert( HasRowid(pTab)
3216 || pTab->iPKey<0 || sqlite3ColumnOfIndex(pIndex, pTab->iPKey)>=0 );
3217 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3218 pIndex->isCovering = 1;
3219 for(j=0; j<pTab->nCol; j++){
3220 if( j==pTab->iPKey ) continue;
3221 if( sqlite3ColumnOfIndex(pIndex,j)>=0 ) continue;
3222 pIndex->isCovering = 0;
3223 break;
3227 if( pTab==pParse->pNewTable ){
3228 /* This routine has been called to create an automatic index as a
3229 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3230 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3231 ** i.e. one of:
3233 ** CREATE TABLE t(x PRIMARY KEY, y);
3234 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3236 ** Either way, check to see if the table already has such an index. If
3237 ** so, don't bother creating this one. This only applies to
3238 ** automatically created indices. Users can do as they wish with
3239 ** explicit indices.
3241 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3242 ** (and thus suppressing the second one) even if they have different
3243 ** sort orders.
3245 ** If there are different collating sequences or if the columns of
3246 ** the constraint occur in different orders, then the constraints are
3247 ** considered distinct and both result in separate indices.
3249 Index *pIdx;
3250 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3251 int k;
3252 assert( IsUniqueIndex(pIdx) );
3253 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3254 assert( IsUniqueIndex(pIndex) );
3256 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3257 for(k=0; k<pIdx->nKeyCol; k++){
3258 const char *z1;
3259 const char *z2;
3260 assert( pIdx->aiColumn[k]>=0 );
3261 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3262 z1 = pIdx->azColl[k];
3263 z2 = pIndex->azColl[k];
3264 if( sqlite3StrICmp(z1, z2) ) break;
3266 if( k==pIdx->nKeyCol ){
3267 if( pIdx->onError!=pIndex->onError ){
3268 /* This constraint creates the same index as a previous
3269 ** constraint specified somewhere in the CREATE TABLE statement.
3270 ** However the ON CONFLICT clauses are different. If both this
3271 ** constraint and the previous equivalent constraint have explicit
3272 ** ON CONFLICT clauses this is an error. Otherwise, use the
3273 ** explicitly specified behavior for the index.
3275 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3276 sqlite3ErrorMsg(pParse,
3277 "conflicting ON CONFLICT clauses specified", 0);
3279 if( pIdx->onError==OE_Default ){
3280 pIdx->onError = pIndex->onError;
3283 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3284 goto exit_create_index;
3289 /* Link the new Index structure to its table and to the other
3290 ** in-memory database structures.
3292 assert( pParse->nErr==0 );
3293 if( db->init.busy ){
3294 Index *p;
3295 assert( !IN_DECLARE_VTAB );
3296 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3297 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3298 pIndex->zName, pIndex);
3299 if( p ){
3300 assert( p==pIndex ); /* Malloc must have failed */
3301 sqlite3OomFault(db);
3302 goto exit_create_index;
3304 db->flags |= SQLITE_InternChanges;
3305 if( pTblName!=0 ){
3306 pIndex->tnum = db->init.newTnum;
3310 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3311 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3312 ** emit code to allocate the index rootpage on disk and make an entry for
3313 ** the index in the sqlite_master table and populate the index with
3314 ** content. But, do not do this if we are simply reading the sqlite_master
3315 ** table to parse the schema, or if this index is the PRIMARY KEY index
3316 ** of a WITHOUT ROWID table.
3318 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3319 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3320 ** has just been created, it contains no data and the index initialization
3321 ** step can be skipped.
3323 else if( HasRowid(pTab) || pTblName!=0 ){
3324 Vdbe *v;
3325 char *zStmt;
3326 int iMem = ++pParse->nMem;
3328 v = sqlite3GetVdbe(pParse);
3329 if( v==0 ) goto exit_create_index;
3331 sqlite3BeginWriteOperation(pParse, 1, iDb);
3333 /* Create the rootpage for the index using CreateIndex. But before
3334 ** doing so, code a Noop instruction and store its address in
3335 ** Index.tnum. This is required in case this index is actually a
3336 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3337 ** that case the convertToWithoutRowidTable() routine will replace
3338 ** the Noop with a Goto to jump over the VDBE code generated below. */
3339 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3340 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3342 /* Gather the complete text of the CREATE INDEX statement into
3343 ** the zStmt variable
3345 if( pStart ){
3346 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3347 if( pName->z[n-1]==';' ) n--;
3348 /* A named index with an explicit CREATE INDEX statement */
3349 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3350 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3351 }else{
3352 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3353 /* zStmt = sqlite3MPrintf(""); */
3354 zStmt = 0;
3357 /* Add an entry in sqlite_master for this index
3359 sqlite3NestedParse(pParse,
3360 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3361 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3362 pIndex->zName,
3363 pTab->zName,
3364 iMem,
3365 zStmt
3367 sqlite3DbFree(db, zStmt);
3369 /* Fill the index with data and reparse the schema. Code an OP_Expire
3370 ** to invalidate all pre-compiled statements.
3372 if( pTblName ){
3373 sqlite3RefillIndex(pParse, pIndex, iMem);
3374 sqlite3ChangeCookie(pParse, iDb);
3375 sqlite3VdbeAddParseSchemaOp(v, iDb,
3376 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3377 sqlite3VdbeAddOp0(v, OP_Expire);
3380 sqlite3VdbeJumpHere(v, pIndex->tnum);
3383 /* When adding an index to the list of indices for a table, make
3384 ** sure all indices labeled OE_Replace come after all those labeled
3385 ** OE_Ignore. This is necessary for the correct constraint check
3386 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3387 ** UPDATE and INSERT statements.
3389 if( db->init.busy || pTblName==0 ){
3390 if( onError!=OE_Replace || pTab->pIndex==0
3391 || pTab->pIndex->onError==OE_Replace){
3392 pIndex->pNext = pTab->pIndex;
3393 pTab->pIndex = pIndex;
3394 }else{
3395 Index *pOther = pTab->pIndex;
3396 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3397 pOther = pOther->pNext;
3399 pIndex->pNext = pOther->pNext;
3400 pOther->pNext = pIndex;
3402 pIndex = 0;
3405 /* Clean up before exiting */
3406 exit_create_index:
3407 if( pIndex ) freeIndex(db, pIndex);
3408 sqlite3ExprDelete(db, pPIWhere);
3409 sqlite3ExprListDelete(db, pList);
3410 sqlite3SrcListDelete(db, pTblName);
3411 sqlite3DbFree(db, zName);
3415 ** Fill the Index.aiRowEst[] array with default information - information
3416 ** to be used when we have not run the ANALYZE command.
3418 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3419 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3420 ** number of rows in the table that match any particular value of the
3421 ** first column of the index. aiRowEst[2] is an estimate of the number
3422 ** of rows that match any particular combination of the first 2 columns
3423 ** of the index. And so forth. It must always be the case that
3425 ** aiRowEst[N]<=aiRowEst[N-1]
3426 ** aiRowEst[N]>=1
3428 ** Apart from that, we have little to go on besides intuition as to
3429 ** how aiRowEst[] should be initialized. The numbers generated here
3430 ** are based on typical values found in actual indices.
3432 void sqlite3DefaultRowEst(Index *pIdx){
3433 /* 10, 9, 8, 7, 6 */
3434 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3435 LogEst *a = pIdx->aiRowLogEst;
3436 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3437 int i;
3439 /* Set the first entry (number of rows in the index) to the estimated
3440 ** number of rows in the table, or half the number of rows in the table
3441 ** for a partial index. But do not let the estimate drop below 10. */
3442 a[0] = pIdx->pTable->nRowLogEst;
3443 if( pIdx->pPartIdxWhere!=0 ) a[0] -= 10; assert( 10==sqlite3LogEst(2) );
3444 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3446 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3447 ** 6 and each subsequent value (if any) is 5. */
3448 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3449 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3450 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3453 assert( 0==sqlite3LogEst(1) );
3454 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3458 ** This routine will drop an existing named index. This routine
3459 ** implements the DROP INDEX statement.
3461 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3462 Index *pIndex;
3463 Vdbe *v;
3464 sqlite3 *db = pParse->db;
3465 int iDb;
3467 assert( pParse->nErr==0 ); /* Never called with prior errors */
3468 if( db->mallocFailed ){
3469 goto exit_drop_index;
3471 assert( pName->nSrc==1 );
3472 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3473 goto exit_drop_index;
3475 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3476 if( pIndex==0 ){
3477 if( !ifExists ){
3478 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3479 }else{
3480 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3482 pParse->checkSchema = 1;
3483 goto exit_drop_index;
3485 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3486 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3487 "or PRIMARY KEY constraint cannot be dropped", 0);
3488 goto exit_drop_index;
3490 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3491 #ifndef SQLITE_OMIT_AUTHORIZATION
3493 int code = SQLITE_DROP_INDEX;
3494 Table *pTab = pIndex->pTable;
3495 const char *zDb = db->aDb[iDb].zName;
3496 const char *zTab = SCHEMA_TABLE(iDb);
3497 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3498 goto exit_drop_index;
3500 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3501 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3502 goto exit_drop_index;
3505 #endif
3507 /* Generate code to remove the index and from the master table */
3508 v = sqlite3GetVdbe(pParse);
3509 if( v ){
3510 sqlite3BeginWriteOperation(pParse, 1, iDb);
3511 sqlite3NestedParse(pParse,
3512 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3513 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3515 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3516 sqlite3ChangeCookie(pParse, iDb);
3517 destroyRootPage(pParse, pIndex->tnum, iDb);
3518 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3521 exit_drop_index:
3522 sqlite3SrcListDelete(db, pName);
3526 ** pArray is a pointer to an array of objects. Each object in the
3527 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3528 ** to extend the array so that there is space for a new object at the end.
3530 ** When this function is called, *pnEntry contains the current size of
3531 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3532 ** in total).
3534 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3535 ** space allocated for the new object is zeroed, *pnEntry updated to
3536 ** reflect the new size of the array and a pointer to the new allocation
3537 ** returned. *pIdx is set to the index of the new array entry in this case.
3539 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3540 ** unchanged and a copy of pArray returned.
3542 void *sqlite3ArrayAllocate(
3543 sqlite3 *db, /* Connection to notify of malloc failures */
3544 void *pArray, /* Array of objects. Might be reallocated */
3545 int szEntry, /* Size of each object in the array */
3546 int *pnEntry, /* Number of objects currently in use */
3547 int *pIdx /* Write the index of a new slot here */
3549 char *z;
3550 int n = *pnEntry;
3551 if( (n & (n-1))==0 ){
3552 int sz = (n==0) ? 1 : 2*n;
3553 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3554 if( pNew==0 ){
3555 *pIdx = -1;
3556 return pArray;
3558 pArray = pNew;
3560 z = (char*)pArray;
3561 memset(&z[n * szEntry], 0, szEntry);
3562 *pIdx = n;
3563 ++*pnEntry;
3564 return pArray;
3568 ** Append a new element to the given IdList. Create a new IdList if
3569 ** need be.
3571 ** A new IdList is returned, or NULL if malloc() fails.
3573 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3574 int i;
3575 if( pList==0 ){
3576 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3577 if( pList==0 ) return 0;
3579 pList->a = sqlite3ArrayAllocate(
3581 pList->a,
3582 sizeof(pList->a[0]),
3583 &pList->nId,
3586 if( i<0 ){
3587 sqlite3IdListDelete(db, pList);
3588 return 0;
3590 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3591 return pList;
3595 ** Delete an IdList.
3597 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3598 int i;
3599 if( pList==0 ) return;
3600 for(i=0; i<pList->nId; i++){
3601 sqlite3DbFree(db, pList->a[i].zName);
3603 sqlite3DbFree(db, pList->a);
3604 sqlite3DbFree(db, pList);
3608 ** Return the index in pList of the identifier named zId. Return -1
3609 ** if not found.
3611 int sqlite3IdListIndex(IdList *pList, const char *zName){
3612 int i;
3613 if( pList==0 ) return -1;
3614 for(i=0; i<pList->nId; i++){
3615 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3617 return -1;
3621 ** Expand the space allocated for the given SrcList object by
3622 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3623 ** New slots are zeroed.
3625 ** For example, suppose a SrcList initially contains two entries: A,B.
3626 ** To append 3 new entries onto the end, do this:
3628 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3630 ** After the call above it would contain: A, B, nil, nil, nil.
3631 ** If the iStart argument had been 1 instead of 2, then the result
3632 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3633 ** the iStart value would be 0. The result then would
3634 ** be: nil, nil, nil, A, B.
3636 ** If a memory allocation fails the SrcList is unchanged. The
3637 ** db->mallocFailed flag will be set to true.
3639 SrcList *sqlite3SrcListEnlarge(
3640 sqlite3 *db, /* Database connection to notify of OOM errors */
3641 SrcList *pSrc, /* The SrcList to be enlarged */
3642 int nExtra, /* Number of new slots to add to pSrc->a[] */
3643 int iStart /* Index in pSrc->a[] of first new slot */
3645 int i;
3647 /* Sanity checking on calling parameters */
3648 assert( iStart>=0 );
3649 assert( nExtra>=1 );
3650 assert( pSrc!=0 );
3651 assert( iStart<=pSrc->nSrc );
3653 /* Allocate additional space if needed */
3654 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3655 SrcList *pNew;
3656 int nAlloc = pSrc->nSrc+nExtra;
3657 int nGot;
3658 pNew = sqlite3DbRealloc(db, pSrc,
3659 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3660 if( pNew==0 ){
3661 assert( db->mallocFailed );
3662 return pSrc;
3664 pSrc = pNew;
3665 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3666 pSrc->nAlloc = nGot;
3669 /* Move existing slots that come after the newly inserted slots
3670 ** out of the way */
3671 for(i=pSrc->nSrc-1; i>=iStart; i--){
3672 pSrc->a[i+nExtra] = pSrc->a[i];
3674 pSrc->nSrc += nExtra;
3676 /* Zero the newly allocated slots */
3677 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3678 for(i=iStart; i<iStart+nExtra; i++){
3679 pSrc->a[i].iCursor = -1;
3682 /* Return a pointer to the enlarged SrcList */
3683 return pSrc;
3688 ** Append a new table name to the given SrcList. Create a new SrcList if
3689 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3691 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3692 ** SrcList might be the same as the SrcList that was input or it might be
3693 ** a new one. If an OOM error does occurs, then the prior value of pList
3694 ** that is input to this routine is automatically freed.
3696 ** If pDatabase is not null, it means that the table has an optional
3697 ** database name prefix. Like this: "database.table". The pDatabase
3698 ** points to the table name and the pTable points to the database name.
3699 ** The SrcList.a[].zName field is filled with the table name which might
3700 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3701 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3702 ** or with NULL if no database is specified.
3704 ** In other words, if call like this:
3706 ** sqlite3SrcListAppend(D,A,B,0);
3708 ** Then B is a table name and the database name is unspecified. If called
3709 ** like this:
3711 ** sqlite3SrcListAppend(D,A,B,C);
3713 ** Then C is the table name and B is the database name. If C is defined
3714 ** then so is B. In other words, we never have a case where:
3716 ** sqlite3SrcListAppend(D,A,0,C);
3718 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3719 ** before being added to the SrcList.
3721 SrcList *sqlite3SrcListAppend(
3722 sqlite3 *db, /* Connection to notify of malloc failures */
3723 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3724 Token *pTable, /* Table to append */
3725 Token *pDatabase /* Database of the table */
3727 struct SrcList_item *pItem;
3728 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3729 assert( db!=0 );
3730 if( pList==0 ){
3731 pList = sqlite3DbMallocRawNN(db, sizeof(SrcList) );
3732 if( pList==0 ) return 0;
3733 pList->nAlloc = 1;
3734 pList->nSrc = 0;
3736 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3737 if( db->mallocFailed ){
3738 sqlite3SrcListDelete(db, pList);
3739 return 0;
3741 pItem = &pList->a[pList->nSrc-1];
3742 if( pDatabase && pDatabase->z==0 ){
3743 pDatabase = 0;
3745 if( pDatabase ){
3746 Token *pTemp = pDatabase;
3747 pDatabase = pTable;
3748 pTable = pTemp;
3750 pItem->zName = sqlite3NameFromToken(db, pTable);
3751 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3752 return pList;
3756 ** Assign VdbeCursor index numbers to all tables in a SrcList
3758 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3759 int i;
3760 struct SrcList_item *pItem;
3761 assert(pList || pParse->db->mallocFailed );
3762 if( pList ){
3763 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3764 if( pItem->iCursor>=0 ) break;
3765 pItem->iCursor = pParse->nTab++;
3766 if( pItem->pSelect ){
3767 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3774 ** Delete an entire SrcList including all its substructure.
3776 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3777 int i;
3778 struct SrcList_item *pItem;
3779 if( pList==0 ) return;
3780 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3781 sqlite3DbFree(db, pItem->zDatabase);
3782 sqlite3DbFree(db, pItem->zName);
3783 sqlite3DbFree(db, pItem->zAlias);
3784 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3785 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3786 sqlite3DeleteTable(db, pItem->pTab);
3787 sqlite3SelectDelete(db, pItem->pSelect);
3788 sqlite3ExprDelete(db, pItem->pOn);
3789 sqlite3IdListDelete(db, pItem->pUsing);
3791 sqlite3DbFree(db, pList);
3795 ** This routine is called by the parser to add a new term to the
3796 ** end of a growing FROM clause. The "p" parameter is the part of
3797 ** the FROM clause that has already been constructed. "p" is NULL
3798 ** if this is the first term of the FROM clause. pTable and pDatabase
3799 ** are the name of the table and database named in the FROM clause term.
3800 ** pDatabase is NULL if the database name qualifier is missing - the
3801 ** usual case. If the term has an alias, then pAlias points to the
3802 ** alias token. If the term is a subquery, then pSubquery is the
3803 ** SELECT statement that the subquery encodes. The pTable and
3804 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3805 ** parameters are the content of the ON and USING clauses.
3807 ** Return a new SrcList which encodes is the FROM with the new
3808 ** term added.
3810 SrcList *sqlite3SrcListAppendFromTerm(
3811 Parse *pParse, /* Parsing context */
3812 SrcList *p, /* The left part of the FROM clause already seen */
3813 Token *pTable, /* Name of the table to add to the FROM clause */
3814 Token *pDatabase, /* Name of the database containing pTable */
3815 Token *pAlias, /* The right-hand side of the AS subexpression */
3816 Select *pSubquery, /* A subquery used in place of a table name */
3817 Expr *pOn, /* The ON clause of a join */
3818 IdList *pUsing /* The USING clause of a join */
3820 struct SrcList_item *pItem;
3821 sqlite3 *db = pParse->db;
3822 if( !p && (pOn || pUsing) ){
3823 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3824 (pOn ? "ON" : "USING")
3826 goto append_from_error;
3828 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3829 if( p==0 || NEVER(p->nSrc==0) ){
3830 goto append_from_error;
3832 pItem = &p->a[p->nSrc-1];
3833 assert( pAlias!=0 );
3834 if( pAlias->n ){
3835 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3837 pItem->pSelect = pSubquery;
3838 pItem->pOn = pOn;
3839 pItem->pUsing = pUsing;
3840 return p;
3842 append_from_error:
3843 assert( p==0 );
3844 sqlite3ExprDelete(db, pOn);
3845 sqlite3IdListDelete(db, pUsing);
3846 sqlite3SelectDelete(db, pSubquery);
3847 return 0;
3851 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3852 ** element of the source-list passed as the second argument.
3854 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3855 assert( pIndexedBy!=0 );
3856 if( p && ALWAYS(p->nSrc>0) ){
3857 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3858 assert( pItem->fg.notIndexed==0 );
3859 assert( pItem->fg.isIndexedBy==0 );
3860 assert( pItem->fg.isTabFunc==0 );
3861 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3862 /* A "NOT INDEXED" clause was supplied. See parse.y
3863 ** construct "indexed_opt" for details. */
3864 pItem->fg.notIndexed = 1;
3865 }else{
3866 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3867 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3873 ** Add the list of function arguments to the SrcList entry for a
3874 ** table-valued-function.
3876 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3877 if( p ){
3878 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3879 assert( pItem->fg.notIndexed==0 );
3880 assert( pItem->fg.isIndexedBy==0 );
3881 assert( pItem->fg.isTabFunc==0 );
3882 pItem->u1.pFuncArg = pList;
3883 pItem->fg.isTabFunc = 1;
3884 }else{
3885 sqlite3ExprListDelete(pParse->db, pList);
3890 ** When building up a FROM clause in the parser, the join operator
3891 ** is initially attached to the left operand. But the code generator
3892 ** expects the join operator to be on the right operand. This routine
3893 ** Shifts all join operators from left to right for an entire FROM
3894 ** clause.
3896 ** Example: Suppose the join is like this:
3898 ** A natural cross join B
3900 ** The operator is "natural cross join". The A and B operands are stored
3901 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3902 ** operator with A. This routine shifts that operator over to B.
3904 void sqlite3SrcListShiftJoinType(SrcList *p){
3905 if( p ){
3906 int i;
3907 for(i=p->nSrc-1; i>0; i--){
3908 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3910 p->a[0].fg.jointype = 0;
3915 ** Generate VDBE code for a BEGIN statement.
3917 void sqlite3BeginTransaction(Parse *pParse, int type){
3918 sqlite3 *db;
3919 Vdbe *v;
3920 int i;
3922 assert( pParse!=0 );
3923 db = pParse->db;
3924 assert( db!=0 );
3925 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3926 return;
3928 v = sqlite3GetVdbe(pParse);
3929 if( !v ) return;
3930 if( type!=TK_DEFERRED ){
3931 for(i=0; i<db->nDb; i++){
3932 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3933 sqlite3VdbeUsesBtree(v, i);
3936 sqlite3VdbeAddOp0(v, OP_AutoCommit);
3940 ** Generate VDBE code for a COMMIT statement.
3942 void sqlite3CommitTransaction(Parse *pParse){
3943 Vdbe *v;
3945 assert( pParse!=0 );
3946 assert( pParse->db!=0 );
3947 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3948 return;
3950 v = sqlite3GetVdbe(pParse);
3951 if( v ){
3952 sqlite3VdbeAddOp1(v, OP_AutoCommit, 1);
3957 ** Generate VDBE code for a ROLLBACK statement.
3959 void sqlite3RollbackTransaction(Parse *pParse){
3960 Vdbe *v;
3962 assert( pParse!=0 );
3963 assert( pParse->db!=0 );
3964 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3965 return;
3967 v = sqlite3GetVdbe(pParse);
3968 if( v ){
3969 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3974 ** This function is called by the parser when it parses a command to create,
3975 ** release or rollback an SQL savepoint.
3977 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3978 char *zName = sqlite3NameFromToken(pParse->db, pName);
3979 if( zName ){
3980 Vdbe *v = sqlite3GetVdbe(pParse);
3981 #ifndef SQLITE_OMIT_AUTHORIZATION
3982 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3983 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3984 #endif
3985 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3986 sqlite3DbFree(pParse->db, zName);
3987 return;
3989 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3994 ** Make sure the TEMP database is open and available for use. Return
3995 ** the number of errors. Leave any error messages in the pParse structure.
3997 int sqlite3OpenTempDatabase(Parse *pParse){
3998 sqlite3 *db = pParse->db;
3999 if( db->aDb[1].pBt==0 && !pParse->explain ){
4000 int rc;
4001 Btree *pBt;
4002 static const int flags =
4003 SQLITE_OPEN_READWRITE |
4004 SQLITE_OPEN_CREATE |
4005 SQLITE_OPEN_EXCLUSIVE |
4006 SQLITE_OPEN_DELETEONCLOSE |
4007 SQLITE_OPEN_TEMP_DB;
4009 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4010 if( rc!=SQLITE_OK ){
4011 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4012 "file for storing temporary tables");
4013 pParse->rc = rc;
4014 return 1;
4016 db->aDb[1].pBt = pBt;
4017 assert( db->aDb[1].pSchema );
4018 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4019 sqlite3OomFault(db);
4020 return 1;
4023 return 0;
4027 ** Record the fact that the schema cookie will need to be verified
4028 ** for database iDb. The code to actually verify the schema cookie
4029 ** will occur at the end of the top-level VDBE and will be generated
4030 ** later, by sqlite3FinishCoding().
4032 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4033 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4034 sqlite3 *db = pToplevel->db;
4036 assert( iDb>=0 && iDb<db->nDb );
4037 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4038 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4039 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4040 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4041 DbMaskSet(pToplevel->cookieMask, iDb);
4042 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4043 if( !OMIT_TEMPDB && iDb==1 ){
4044 sqlite3OpenTempDatabase(pToplevel);
4050 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4051 ** attached database. Otherwise, invoke it for the database named zDb only.
4053 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4054 sqlite3 *db = pParse->db;
4055 int i;
4056 for(i=0; i<db->nDb; i++){
4057 Db *pDb = &db->aDb[i];
4058 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4059 sqlite3CodeVerifySchema(pParse, i);
4065 ** Generate VDBE code that prepares for doing an operation that
4066 ** might change the database.
4068 ** This routine starts a new transaction if we are not already within
4069 ** a transaction. If we are already within a transaction, then a checkpoint
4070 ** is set if the setStatement parameter is true. A checkpoint should
4071 ** be set for operations that might fail (due to a constraint) part of
4072 ** the way through and which will need to undo some writes without having to
4073 ** rollback the whole transaction. For operations where all constraints
4074 ** can be checked before any changes are made to the database, it is never
4075 ** necessary to undo a write and the checkpoint should not be set.
4077 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4078 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4079 sqlite3CodeVerifySchema(pParse, iDb);
4080 DbMaskSet(pToplevel->writeMask, iDb);
4081 pToplevel->isMultiWrite |= setStatement;
4085 ** Indicate that the statement currently under construction might write
4086 ** more than one entry (example: deleting one row then inserting another,
4087 ** inserting multiple rows in a table, or inserting a row and index entries.)
4088 ** If an abort occurs after some of these writes have completed, then it will
4089 ** be necessary to undo the completed writes.
4091 void sqlite3MultiWrite(Parse *pParse){
4092 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4093 pToplevel->isMultiWrite = 1;
4097 ** The code generator calls this routine if is discovers that it is
4098 ** possible to abort a statement prior to completion. In order to
4099 ** perform this abort without corrupting the database, we need to make
4100 ** sure that the statement is protected by a statement transaction.
4102 ** Technically, we only need to set the mayAbort flag if the
4103 ** isMultiWrite flag was previously set. There is a time dependency
4104 ** such that the abort must occur after the multiwrite. This makes
4105 ** some statements involving the REPLACE conflict resolution algorithm
4106 ** go a little faster. But taking advantage of this time dependency
4107 ** makes it more difficult to prove that the code is correct (in
4108 ** particular, it prevents us from writing an effective
4109 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4110 ** to take the safe route and skip the optimization.
4112 void sqlite3MayAbort(Parse *pParse){
4113 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4114 pToplevel->mayAbort = 1;
4118 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4119 ** error. The onError parameter determines which (if any) of the statement
4120 ** and/or current transaction is rolled back.
4122 void sqlite3HaltConstraint(
4123 Parse *pParse, /* Parsing context */
4124 int errCode, /* extended error code */
4125 int onError, /* Constraint type */
4126 char *p4, /* Error message */
4127 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4128 u8 p5Errmsg /* P5_ErrMsg type */
4130 Vdbe *v = sqlite3GetVdbe(pParse);
4131 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4132 if( onError==OE_Abort ){
4133 sqlite3MayAbort(pParse);
4135 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4136 sqlite3VdbeChangeP5(v, p5Errmsg);
4140 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4142 void sqlite3UniqueConstraint(
4143 Parse *pParse, /* Parsing context */
4144 int onError, /* Constraint type */
4145 Index *pIdx /* The index that triggers the constraint */
4147 char *zErr;
4148 int j;
4149 StrAccum errMsg;
4150 Table *pTab = pIdx->pTable;
4152 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4153 if( pIdx->aColExpr ){
4154 sqlite3XPrintf(&errMsg, "index '%q'", pIdx->zName);
4155 }else{
4156 for(j=0; j<pIdx->nKeyCol; j++){
4157 char *zCol;
4158 assert( pIdx->aiColumn[j]>=0 );
4159 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4160 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4161 sqlite3XPrintf(&errMsg, "%s.%s", pTab->zName, zCol);
4164 zErr = sqlite3StrAccumFinish(&errMsg);
4165 sqlite3HaltConstraint(pParse,
4166 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4167 : SQLITE_CONSTRAINT_UNIQUE,
4168 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4173 ** Code an OP_Halt due to non-unique rowid.
4175 void sqlite3RowidConstraint(
4176 Parse *pParse, /* Parsing context */
4177 int onError, /* Conflict resolution algorithm */
4178 Table *pTab /* The table with the non-unique rowid */
4180 char *zMsg;
4181 int rc;
4182 if( pTab->iPKey>=0 ){
4183 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4184 pTab->aCol[pTab->iPKey].zName);
4185 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4186 }else{
4187 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4188 rc = SQLITE_CONSTRAINT_ROWID;
4190 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4191 P5_ConstraintUnique);
4195 ** Check to see if pIndex uses the collating sequence pColl. Return
4196 ** true if it does and false if it does not.
4198 #ifndef SQLITE_OMIT_REINDEX
4199 static int collationMatch(const char *zColl, Index *pIndex){
4200 int i;
4201 assert( zColl!=0 );
4202 for(i=0; i<pIndex->nColumn; i++){
4203 const char *z = pIndex->azColl[i];
4204 assert( z!=0 || pIndex->aiColumn[i]<0 );
4205 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4206 return 1;
4209 return 0;
4211 #endif
4214 ** Recompute all indices of pTab that use the collating sequence pColl.
4215 ** If pColl==0 then recompute all indices of pTab.
4217 #ifndef SQLITE_OMIT_REINDEX
4218 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4219 Index *pIndex; /* An index associated with pTab */
4221 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4222 if( zColl==0 || collationMatch(zColl, pIndex) ){
4223 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4224 sqlite3BeginWriteOperation(pParse, 0, iDb);
4225 sqlite3RefillIndex(pParse, pIndex, -1);
4229 #endif
4232 ** Recompute all indices of all tables in all databases where the
4233 ** indices use the collating sequence pColl. If pColl==0 then recompute
4234 ** all indices everywhere.
4236 #ifndef SQLITE_OMIT_REINDEX
4237 static void reindexDatabases(Parse *pParse, char const *zColl){
4238 Db *pDb; /* A single database */
4239 int iDb; /* The database index number */
4240 sqlite3 *db = pParse->db; /* The database connection */
4241 HashElem *k; /* For looping over tables in pDb */
4242 Table *pTab; /* A table in the database */
4244 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4245 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4246 assert( pDb!=0 );
4247 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4248 pTab = (Table*)sqliteHashData(k);
4249 reindexTable(pParse, pTab, zColl);
4253 #endif
4256 ** Generate code for the REINDEX command.
4258 ** REINDEX -- 1
4259 ** REINDEX <collation> -- 2
4260 ** REINDEX ?<database>.?<tablename> -- 3
4261 ** REINDEX ?<database>.?<indexname> -- 4
4263 ** Form 1 causes all indices in all attached databases to be rebuilt.
4264 ** Form 2 rebuilds all indices in all databases that use the named
4265 ** collating function. Forms 3 and 4 rebuild the named index or all
4266 ** indices associated with the named table.
4268 #ifndef SQLITE_OMIT_REINDEX
4269 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4270 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4271 char *z; /* Name of a table or index */
4272 const char *zDb; /* Name of the database */
4273 Table *pTab; /* A table in the database */
4274 Index *pIndex; /* An index associated with pTab */
4275 int iDb; /* The database index number */
4276 sqlite3 *db = pParse->db; /* The database connection */
4277 Token *pObjName; /* Name of the table or index to be reindexed */
4279 /* Read the database schema. If an error occurs, leave an error message
4280 ** and code in pParse and return NULL. */
4281 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4282 return;
4285 if( pName1==0 ){
4286 reindexDatabases(pParse, 0);
4287 return;
4288 }else if( NEVER(pName2==0) || pName2->z==0 ){
4289 char *zColl;
4290 assert( pName1->z );
4291 zColl = sqlite3NameFromToken(pParse->db, pName1);
4292 if( !zColl ) return;
4293 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4294 if( pColl ){
4295 reindexDatabases(pParse, zColl);
4296 sqlite3DbFree(db, zColl);
4297 return;
4299 sqlite3DbFree(db, zColl);
4301 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4302 if( iDb<0 ) return;
4303 z = sqlite3NameFromToken(db, pObjName);
4304 if( z==0 ) return;
4305 zDb = db->aDb[iDb].zName;
4306 pTab = sqlite3FindTable(db, z, zDb);
4307 if( pTab ){
4308 reindexTable(pParse, pTab, 0);
4309 sqlite3DbFree(db, z);
4310 return;
4312 pIndex = sqlite3FindIndex(db, z, zDb);
4313 sqlite3DbFree(db, z);
4314 if( pIndex ){
4315 sqlite3BeginWriteOperation(pParse, 0, iDb);
4316 sqlite3RefillIndex(pParse, pIndex, -1);
4317 return;
4319 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4321 #endif
4324 ** Return a KeyInfo structure that is appropriate for the given Index.
4326 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4327 ** when it has finished using it.
4329 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4330 int i;
4331 int nCol = pIdx->nColumn;
4332 int nKey = pIdx->nKeyCol;
4333 KeyInfo *pKey;
4334 if( pParse->nErr ) return 0;
4335 if( pIdx->uniqNotNull ){
4336 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4337 }else{
4338 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4340 if( pKey ){
4341 assert( sqlite3KeyInfoIsWriteable(pKey) );
4342 for(i=0; i<nCol; i++){
4343 const char *zColl = pIdx->azColl[i];
4344 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4345 sqlite3LocateCollSeq(pParse, zColl);
4346 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4348 if( pParse->nErr ){
4349 sqlite3KeyInfoUnref(pKey);
4350 pKey = 0;
4353 return pKey;
4356 #ifndef SQLITE_OMIT_CTE
4358 ** This routine is invoked once per CTE by the parser while parsing a
4359 ** WITH clause.
4361 With *sqlite3WithAdd(
4362 Parse *pParse, /* Parsing context */
4363 With *pWith, /* Existing WITH clause, or NULL */
4364 Token *pName, /* Name of the common-table */
4365 ExprList *pArglist, /* Optional column name list for the table */
4366 Select *pQuery /* Query used to initialize the table */
4368 sqlite3 *db = pParse->db;
4369 With *pNew;
4370 char *zName;
4372 /* Check that the CTE name is unique within this WITH clause. If
4373 ** not, store an error in the Parse structure. */
4374 zName = sqlite3NameFromToken(pParse->db, pName);
4375 if( zName && pWith ){
4376 int i;
4377 for(i=0; i<pWith->nCte; i++){
4378 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4379 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4384 if( pWith ){
4385 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4386 pNew = sqlite3DbRealloc(db, pWith, nByte);
4387 }else{
4388 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4390 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
4392 if( db->mallocFailed ){
4393 sqlite3ExprListDelete(db, pArglist);
4394 sqlite3SelectDelete(db, pQuery);
4395 sqlite3DbFree(db, zName);
4396 pNew = pWith;
4397 }else{
4398 pNew->a[pNew->nCte].pSelect = pQuery;
4399 pNew->a[pNew->nCte].pCols = pArglist;
4400 pNew->a[pNew->nCte].zName = zName;
4401 pNew->a[pNew->nCte].zCteErr = 0;
4402 pNew->nCte++;
4405 return pNew;
4409 ** Free the contents of the With object passed as the second argument.
4411 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4412 if( pWith ){
4413 int i;
4414 for(i=0; i<pWith->nCte; i++){
4415 struct Cte *pCte = &pWith->a[i];
4416 sqlite3ExprListDelete(db, pCte->pCols);
4417 sqlite3SelectDelete(db, pCte->pSelect);
4418 sqlite3DbFree(db, pCte->zName);
4420 sqlite3DbFree(db, pWith);
4423 #endif /* !defined(SQLITE_OMIT_CTE) */