Make the walIndexPage() routine about 3x faster by factoring out the seldom
[sqlite.git] / src / btree.c
blob22f8a50e59bdbf1b03eed87b534e6d3bd819ba6b
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
16 #include "btreeInt.h"
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
28 #if 0
29 int sqlite3BtreeTrace=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable){
90 sqlite3GlobalConfig.sharedCacheEnabled = enable;
91 return SQLITE_OK;
93 #endif
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
113 #endif
116 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
119 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122 ** with the page number and filename associated with the (MemPage*).
124 #ifdef SQLITE_DEBUG
125 int corruptPageError(int lineno, MemPage *p){
126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
131 sqlite3EndBenignMalloc();
132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
138 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139 #else
140 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141 #endif
143 #ifndef SQLITE_OMIT_SHARED_CACHE
145 #ifdef SQLITE_DEBUG
147 **** This function is only used as part of an assert() statement. ***
149 ** Check to see if pBtree holds the required locks to read or write to the
150 ** table with root page iRoot. Return 1 if it does and 0 if not.
152 ** For example, when writing to a table with root-page iRoot via
153 ** Btree connection pBtree:
155 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
157 ** When writing to an index that resides in a sharable database, the
158 ** caller should have first obtained a lock specifying the root page of
159 ** the corresponding table. This makes things a bit more complicated,
160 ** as this module treats each table as a separate structure. To determine
161 ** the table corresponding to the index being written, this
162 ** function has to search through the database schema.
164 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
165 ** hold a write-lock on the schema table (root page 1). This is also
166 ** acceptable.
168 static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
178 /* If this database is not shareable, or if the client is reading
179 ** and has the read-uncommitted flag set, then no lock is required.
180 ** Return true immediately.
182 if( (pBtree->sharable==0)
183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
185 return 1;
188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
194 return 1;
197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
205 if( pIdx->tnum==(int)iRoot ){
206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
212 iTab = pIdx->pTable->tnum;
215 }else{
216 iTab = iRoot;
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
227 return 1;
231 /* Failed to find the required lock. */
232 return 0;
234 #endif /* SQLITE_DEBUG */
236 #ifdef SQLITE_DEBUG
238 **** This function may be used as part of assert() statements only. ****
240 ** Return true if it would be illegal for pBtree to write into the
241 ** table or index rooted at iRoot because other shared connections are
242 ** simultaneously reading that same table or index.
244 ** It is illegal for pBtree to write if some other Btree object that
245 ** shares the same BtShared object is currently reading or writing
246 ** the iRoot table. Except, if the other Btree object has the
247 ** read-uncommitted flag set, then it is OK for the other object to
248 ** have a read cursor.
250 ** For example, before writing to any part of the table or index
251 ** rooted at page iRoot, one should call:
253 ** assert( !hasReadConflicts(pBtree, iRoot) );
255 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
262 return 1;
265 return 0;
267 #endif /* #ifdef SQLITE_DEBUG */
270 ** Query to see if Btree handle p may obtain a lock of type eLock
271 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
272 ** SQLITE_OK if the lock may be obtained (by calling
273 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
275 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
279 assert( sqlite3BtreeHoldsMutex(p) );
280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
291 /* This routine is a no-op if the shared-cache is not enabled */
292 if( !p->sharable ){
293 return SQLITE_OK;
296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
320 pBt->btsFlags |= BTS_PENDING;
322 return SQLITE_LOCKED_SHAREDCACHE;
325 return SQLITE_OK;
327 #endif /* !SQLITE_OMIT_SHARED_CACHE */
329 #ifndef SQLITE_OMIT_SHARED_CACHE
331 ** Add a lock on the table with root-page iTable to the shared-btree used
332 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
333 ** WRITE_LOCK.
335 ** This function assumes the following:
337 ** (a) The specified Btree object p is connected to a sharable
338 ** database (one with the BtShared.sharable flag set), and
340 ** (b) No other Btree objects hold a lock that conflicts
341 ** with the requested lock (i.e. querySharedCacheTableLock() has
342 ** already been called and returned SQLITE_OK).
344 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345 ** is returned if a malloc attempt fails.
347 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
352 assert( sqlite3BtreeHoldsMutex(p) );
353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
378 if( !pLock ){
379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
380 if( !pLock ){
381 return SQLITE_NOMEM_BKPT;
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
393 assert( WRITE_LOCK>READ_LOCK );
394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
398 return SQLITE_OK;
400 #endif /* !SQLITE_OMIT_SHARED_CACHE */
402 #ifndef SQLITE_OMIT_SHARED_CACHE
404 ** Release all the table locks (locks obtained via calls to
405 ** the setSharedCacheTableLock() procedure) held by Btree object p.
407 ** This function assumes that Btree p has an open read or write
408 ** transaction. If it does not, then the BTS_PENDING flag
409 ** may be incorrectly cleared.
411 static void clearAllSharedCacheTableLocks(Btree *p){
412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
415 assert( sqlite3BtreeHoldsMutex(p) );
416 assert( p->sharable || 0==*ppIter );
417 assert( p->inTrans>0 );
419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
422 assert( pLock->pBtree->inTrans>=pLock->eLock );
423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
429 }else{
430 ppIter = &pLock->pNext;
434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
438 }else if( pBt->nTransaction==2 ){
439 /* This function is called when Btree p is concluding its
440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
443 ** set the BTS_PENDING flag to 0.
445 ** If there is not currently a writer, then BTS_PENDING must
446 ** be zero already. So this next line is harmless in that case.
448 pBt->btsFlags &= ~BTS_PENDING;
453 ** This function changes all write-locks held by Btree p into read-locks.
455 static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
468 #endif /* SQLITE_OMIT_SHARED_CACHE */
470 static void releasePage(MemPage *pPage); /* Forward reference */
471 static void releasePageOne(MemPage *pPage); /* Forward reference */
472 static void releasePageNotNull(MemPage *pPage); /* Forward reference */
475 ***** This routine is used inside of assert() only ****
477 ** Verify that the cursor holds the mutex on its BtShared
479 #ifdef SQLITE_DEBUG
480 static int cursorHoldsMutex(BtCursor *p){
481 return sqlite3_mutex_held(p->pBt->mutex);
484 /* Verify that the cursor and the BtShared agree about what is the current
485 ** database connetion. This is important in shared-cache mode. If the database
486 ** connection pointers get out-of-sync, it is possible for routines like
487 ** btreeInitPage() to reference an stale connection pointer that references a
488 ** a connection that has already closed. This routine is used inside assert()
489 ** statements only and for the purpose of double-checking that the btree code
490 ** does keep the database connection pointers up-to-date.
492 static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
496 #endif
499 ** Invalidate the overflow cache of the cursor passed as the first argument.
500 ** on the shared btree structure pBt.
502 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
505 ** Invalidate the overflow page-list cache for all cursors opened
506 ** on the shared btree structure pBt.
508 static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
510 assert( sqlite3_mutex_held(pBt->mutex) );
511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
516 #ifndef SQLITE_OMIT_INCRBLOB
518 ** This function is called before modifying the contents of a table
519 ** to invalidate any incrblob cursors that are open on the
520 ** row or one of the rows being modified.
522 ** If argument isClearTable is true, then the entire contents of the
523 ** table is about to be deleted. In this case invalidate all incrblob
524 ** cursors open on any row within the table with root-page pgnoRoot.
526 ** Otherwise, if argument isClearTable is false, then the row with
527 ** rowid iRow is being replaced or deleted. In this case invalidate
528 ** only those incrblob cursors open on that specific row.
530 static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
532 Pgno pgnoRoot, /* The table that might be changing */
533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
536 BtCursor *p;
537 if( pBtree->hasIncrblobCur==0 ) return;
538 assert( sqlite3BtreeHoldsMutex(pBtree) );
539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
544 p->eState = CURSOR_INVALID;
550 #else
551 /* Stub function when INCRBLOB is omitted */
552 #define invalidateIncrblobCursors(w,x,y,z)
553 #endif /* SQLITE_OMIT_INCRBLOB */
556 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557 ** when a page that previously contained data becomes a free-list leaf
558 ** page.
560 ** The BtShared.pHasContent bitvec exists to work around an obscure
561 ** bug caused by the interaction of two useful IO optimizations surrounding
562 ** free-list leaf pages:
564 ** 1) When all data is deleted from a page and the page becomes
565 ** a free-list leaf page, the page is not written to the database
566 ** (as free-list leaf pages contain no meaningful data). Sometimes
567 ** such a page is not even journalled (as it will not be modified,
568 ** why bother journalling it?).
570 ** 2) When a free-list leaf page is reused, its content is not read
571 ** from the database or written to the journal file (why should it
572 ** be, if it is not at all meaningful?).
574 ** By themselves, these optimizations work fine and provide a handy
575 ** performance boost to bulk delete or insert operations. However, if
576 ** a page is moved to the free-list and then reused within the same
577 ** transaction, a problem comes up. If the page is not journalled when
578 ** it is moved to the free-list and it is also not journalled when it
579 ** is extracted from the free-list and reused, then the original data
580 ** may be lost. In the event of a rollback, it may not be possible
581 ** to restore the database to its original configuration.
583 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584 ** moved to become a free-list leaf page, the corresponding bit is
585 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
586 ** optimization 2 above is omitted if the corresponding bit is already
587 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
588 ** at the end of every transaction.
590 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
595 if( !pBt->pHasContent ){
596 rc = SQLITE_NOMEM_BKPT;
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
602 return rc;
606 ** Query the BtShared.pHasContent vector.
608 ** This function is called when a free-list leaf page is removed from the
609 ** free-list for reuse. It returns false if it is safe to retrieve the
610 ** page from the pager layer with the 'no-content' flag set. True otherwise.
612 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
618 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619 ** invoked at the conclusion of each write-transaction.
621 static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
627 ** Release all of the apPage[] pages for a cursor.
629 static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
641 ** The cursor passed as the only argument must point to a valid entry
642 ** when this function is called (i.e. have eState==CURSOR_VALID). This
643 ** function saves the current cursor key in variables pCur->nKey and
644 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645 ** code otherwise.
647 ** If the cursor is open on an intkey table, then the integer key
648 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650 ** set to point to a malloced buffer pCur->nKey bytes in size containing
651 ** the key.
653 static int saveCursorKey(BtCursor *pCur){
654 int rc = SQLITE_OK;
655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
663 /* For an index btree, save the complete key content */
664 void *pKey;
665 pCur->nKey = sqlite3BtreePayloadSize(pCur);
666 pKey = sqlite3Malloc( pCur->nKey );
667 if( pKey ){
668 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
669 if( rc==SQLITE_OK ){
670 pCur->pKey = pKey;
671 }else{
672 sqlite3_free(pKey);
674 }else{
675 rc = SQLITE_NOMEM_BKPT;
678 assert( !pCur->curIntKey || !pCur->pKey );
679 return rc;
683 ** Save the current cursor position in the variables BtCursor.nKey
684 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
686 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
687 ** prior to calling this routine.
689 static int saveCursorPosition(BtCursor *pCur){
690 int rc;
692 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
693 assert( 0==pCur->pKey );
694 assert( cursorHoldsMutex(pCur) );
696 if( pCur->eState==CURSOR_SKIPNEXT ){
697 pCur->eState = CURSOR_VALID;
698 }else{
699 pCur->skipNext = 0;
702 rc = saveCursorKey(pCur);
703 if( rc==SQLITE_OK ){
704 btreeReleaseAllCursorPages(pCur);
705 pCur->eState = CURSOR_REQUIRESEEK;
708 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
709 return rc;
712 /* Forward reference */
713 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
716 ** Save the positions of all cursors (except pExcept) that are open on
717 ** the table with root-page iRoot. "Saving the cursor position" means that
718 ** the location in the btree is remembered in such a way that it can be
719 ** moved back to the same spot after the btree has been modified. This
720 ** routine is called just before cursor pExcept is used to modify the
721 ** table, for example in BtreeDelete() or BtreeInsert().
723 ** If there are two or more cursors on the same btree, then all such
724 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
725 ** routine enforces that rule. This routine only needs to be called in
726 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
728 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
729 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
730 ** pointless call to this routine.
732 ** Implementation note: This routine merely checks to see if any cursors
733 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
734 ** event that cursors are in need to being saved.
736 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
737 BtCursor *p;
738 assert( sqlite3_mutex_held(pBt->mutex) );
739 assert( pExcept==0 || pExcept->pBt==pBt );
740 for(p=pBt->pCursor; p; p=p->pNext){
741 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
743 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
744 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
745 return SQLITE_OK;
748 /* This helper routine to saveAllCursors does the actual work of saving
749 ** the cursors if and when a cursor is found that actually requires saving.
750 ** The common case is that no cursors need to be saved, so this routine is
751 ** broken out from its caller to avoid unnecessary stack pointer movement.
753 static int SQLITE_NOINLINE saveCursorsOnList(
754 BtCursor *p, /* The first cursor that needs saving */
755 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
756 BtCursor *pExcept /* Do not save this cursor */
759 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
760 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
761 int rc = saveCursorPosition(p);
762 if( SQLITE_OK!=rc ){
763 return rc;
765 }else{
766 testcase( p->iPage>=0 );
767 btreeReleaseAllCursorPages(p);
770 p = p->pNext;
771 }while( p );
772 return SQLITE_OK;
776 ** Clear the current cursor position.
778 void sqlite3BtreeClearCursor(BtCursor *pCur){
779 assert( cursorHoldsMutex(pCur) );
780 sqlite3_free(pCur->pKey);
781 pCur->pKey = 0;
782 pCur->eState = CURSOR_INVALID;
786 ** In this version of BtreeMoveto, pKey is a packed index record
787 ** such as is generated by the OP_MakeRecord opcode. Unpack the
788 ** record and then call BtreeMovetoUnpacked() to do the work.
790 static int btreeMoveto(
791 BtCursor *pCur, /* Cursor open on the btree to be searched */
792 const void *pKey, /* Packed key if the btree is an index */
793 i64 nKey, /* Integer key for tables. Size of pKey for indices */
794 int bias, /* Bias search to the high end */
795 int *pRes /* Write search results here */
797 int rc; /* Status code */
798 UnpackedRecord *pIdxKey; /* Unpacked index key */
800 if( pKey ){
801 assert( nKey==(i64)(int)nKey );
802 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
803 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
804 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
805 if( pIdxKey->nField==0 ){
806 rc = SQLITE_CORRUPT_BKPT;
807 goto moveto_done;
809 }else{
810 pIdxKey = 0;
812 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
813 moveto_done:
814 if( pIdxKey ){
815 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
817 return rc;
821 ** Restore the cursor to the position it was in (or as close to as possible)
822 ** when saveCursorPosition() was called. Note that this call deletes the
823 ** saved position info stored by saveCursorPosition(), so there can be
824 ** at most one effective restoreCursorPosition() call after each
825 ** saveCursorPosition().
827 static int btreeRestoreCursorPosition(BtCursor *pCur){
828 int rc;
829 int skipNext;
830 assert( cursorOwnsBtShared(pCur) );
831 assert( pCur->eState>=CURSOR_REQUIRESEEK );
832 if( pCur->eState==CURSOR_FAULT ){
833 return pCur->skipNext;
835 pCur->eState = CURSOR_INVALID;
836 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
837 if( rc==SQLITE_OK ){
838 sqlite3_free(pCur->pKey);
839 pCur->pKey = 0;
840 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
841 pCur->skipNext |= skipNext;
842 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
843 pCur->eState = CURSOR_SKIPNEXT;
846 return rc;
849 #define restoreCursorPosition(p) \
850 (p->eState>=CURSOR_REQUIRESEEK ? \
851 btreeRestoreCursorPosition(p) : \
852 SQLITE_OK)
855 ** Determine whether or not a cursor has moved from the position where
856 ** it was last placed, or has been invalidated for any other reason.
857 ** Cursors can move when the row they are pointing at is deleted out
858 ** from under them, for example. Cursor might also move if a btree
859 ** is rebalanced.
861 ** Calling this routine with a NULL cursor pointer returns false.
863 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
864 ** back to where it ought to be if this routine returns true.
866 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
867 return pCur->eState!=CURSOR_VALID;
871 ** Return a pointer to a fake BtCursor object that will always answer
872 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
873 ** cursor returned must not be used with any other Btree interface.
875 BtCursor *sqlite3BtreeFakeValidCursor(void){
876 static u8 fakeCursor = CURSOR_VALID;
877 assert( offsetof(BtCursor, eState)==0 );
878 return (BtCursor*)&fakeCursor;
882 ** This routine restores a cursor back to its original position after it
883 ** has been moved by some outside activity (such as a btree rebalance or
884 ** a row having been deleted out from under the cursor).
886 ** On success, the *pDifferentRow parameter is false if the cursor is left
887 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
888 ** was pointing to has been deleted, forcing the cursor to point to some
889 ** nearby row.
891 ** This routine should only be called for a cursor that just returned
892 ** TRUE from sqlite3BtreeCursorHasMoved().
894 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
895 int rc;
897 assert( pCur!=0 );
898 assert( pCur->eState!=CURSOR_VALID );
899 rc = restoreCursorPosition(pCur);
900 if( rc ){
901 *pDifferentRow = 1;
902 return rc;
904 if( pCur->eState!=CURSOR_VALID ){
905 *pDifferentRow = 1;
906 }else{
907 assert( pCur->skipNext==0 );
908 *pDifferentRow = 0;
910 return SQLITE_OK;
913 #ifdef SQLITE_ENABLE_CURSOR_HINTS
915 ** Provide hints to the cursor. The particular hint given (and the type
916 ** and number of the varargs parameters) is determined by the eHintType
917 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
919 void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
920 /* Used only by system that substitute their own storage engine */
922 #endif
925 ** Provide flag hints to the cursor.
927 void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
928 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
929 pCur->hints = x;
933 #ifndef SQLITE_OMIT_AUTOVACUUM
935 ** Given a page number of a regular database page, return the page
936 ** number for the pointer-map page that contains the entry for the
937 ** input page number.
939 ** Return 0 (not a valid page) for pgno==1 since there is
940 ** no pointer map associated with page 1. The integrity_check logic
941 ** requires that ptrmapPageno(*,1)!=1.
943 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
944 int nPagesPerMapPage;
945 Pgno iPtrMap, ret;
946 assert( sqlite3_mutex_held(pBt->mutex) );
947 if( pgno<2 ) return 0;
948 nPagesPerMapPage = (pBt->usableSize/5)+1;
949 iPtrMap = (pgno-2)/nPagesPerMapPage;
950 ret = (iPtrMap*nPagesPerMapPage) + 2;
951 if( ret==PENDING_BYTE_PAGE(pBt) ){
952 ret++;
954 return ret;
958 ** Write an entry into the pointer map.
960 ** This routine updates the pointer map entry for page number 'key'
961 ** so that it maps to type 'eType' and parent page number 'pgno'.
963 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
964 ** a no-op. If an error occurs, the appropriate error code is written
965 ** into *pRC.
967 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
968 DbPage *pDbPage; /* The pointer map page */
969 u8 *pPtrmap; /* The pointer map data */
970 Pgno iPtrmap; /* The pointer map page number */
971 int offset; /* Offset in pointer map page */
972 int rc; /* Return code from subfunctions */
974 if( *pRC ) return;
976 assert( sqlite3_mutex_held(pBt->mutex) );
977 /* The master-journal page number must never be used as a pointer map page */
978 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
980 assert( pBt->autoVacuum );
981 if( key==0 ){
982 *pRC = SQLITE_CORRUPT_BKPT;
983 return;
985 iPtrmap = PTRMAP_PAGENO(pBt, key);
986 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
987 if( rc!=SQLITE_OK ){
988 *pRC = rc;
989 return;
991 offset = PTRMAP_PTROFFSET(iPtrmap, key);
992 if( offset<0 ){
993 *pRC = SQLITE_CORRUPT_BKPT;
994 goto ptrmap_exit;
996 assert( offset <= (int)pBt->usableSize-5 );
997 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
999 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1000 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
1001 *pRC= rc = sqlite3PagerWrite(pDbPage);
1002 if( rc==SQLITE_OK ){
1003 pPtrmap[offset] = eType;
1004 put4byte(&pPtrmap[offset+1], parent);
1008 ptrmap_exit:
1009 sqlite3PagerUnref(pDbPage);
1013 ** Read an entry from the pointer map.
1015 ** This routine retrieves the pointer map entry for page 'key', writing
1016 ** the type and parent page number to *pEType and *pPgno respectively.
1017 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1019 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
1020 DbPage *pDbPage; /* The pointer map page */
1021 int iPtrmap; /* Pointer map page index */
1022 u8 *pPtrmap; /* Pointer map page data */
1023 int offset; /* Offset of entry in pointer map */
1024 int rc;
1026 assert( sqlite3_mutex_held(pBt->mutex) );
1028 iPtrmap = PTRMAP_PAGENO(pBt, key);
1029 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
1030 if( rc!=0 ){
1031 return rc;
1033 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
1035 offset = PTRMAP_PTROFFSET(iPtrmap, key);
1036 if( offset<0 ){
1037 sqlite3PagerUnref(pDbPage);
1038 return SQLITE_CORRUPT_BKPT;
1040 assert( offset <= (int)pBt->usableSize-5 );
1041 assert( pEType!=0 );
1042 *pEType = pPtrmap[offset];
1043 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
1045 sqlite3PagerUnref(pDbPage);
1046 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
1047 return SQLITE_OK;
1050 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1051 #define ptrmapPut(w,x,y,z,rc)
1052 #define ptrmapGet(w,x,y,z) SQLITE_OK
1053 #define ptrmapPutOvflPtr(x, y, rc)
1054 #endif
1057 ** Given a btree page and a cell index (0 means the first cell on
1058 ** the page, 1 means the second cell, and so forth) return a pointer
1059 ** to the cell content.
1061 ** findCellPastPtr() does the same except it skips past the initial
1062 ** 4-byte child pointer found on interior pages, if there is one.
1064 ** This routine works only for pages that do not contain overflow cells.
1066 #define findCell(P,I) \
1067 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1068 #define findCellPastPtr(P,I) \
1069 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1073 ** This is common tail processing for btreeParseCellPtr() and
1074 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1075 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1076 ** structure.
1078 static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1079 MemPage *pPage, /* Page containing the cell */
1080 u8 *pCell, /* Pointer to the cell text. */
1081 CellInfo *pInfo /* Fill in this structure */
1083 /* If the payload will not fit completely on the local page, we have
1084 ** to decide how much to store locally and how much to spill onto
1085 ** overflow pages. The strategy is to minimize the amount of unused
1086 ** space on overflow pages while keeping the amount of local storage
1087 ** in between minLocal and maxLocal.
1089 ** Warning: changing the way overflow payload is distributed in any
1090 ** way will result in an incompatible file format.
1092 int minLocal; /* Minimum amount of payload held locally */
1093 int maxLocal; /* Maximum amount of payload held locally */
1094 int surplus; /* Overflow payload available for local storage */
1096 minLocal = pPage->minLocal;
1097 maxLocal = pPage->maxLocal;
1098 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1099 testcase( surplus==maxLocal );
1100 testcase( surplus==maxLocal+1 );
1101 if( surplus <= maxLocal ){
1102 pInfo->nLocal = (u16)surplus;
1103 }else{
1104 pInfo->nLocal = (u16)minLocal;
1106 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
1110 ** The following routines are implementations of the MemPage.xParseCell()
1111 ** method.
1113 ** Parse a cell content block and fill in the CellInfo structure.
1115 ** btreeParseCellPtr() => table btree leaf nodes
1116 ** btreeParseCellNoPayload() => table btree internal nodes
1117 ** btreeParseCellPtrIndex() => index btree nodes
1119 ** There is also a wrapper function btreeParseCell() that works for
1120 ** all MemPage types and that references the cell by index rather than
1121 ** by pointer.
1123 static void btreeParseCellPtrNoPayload(
1124 MemPage *pPage, /* Page containing the cell */
1125 u8 *pCell, /* Pointer to the cell text. */
1126 CellInfo *pInfo /* Fill in this structure */
1128 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1129 assert( pPage->leaf==0 );
1130 assert( pPage->childPtrSize==4 );
1131 #ifndef SQLITE_DEBUG
1132 UNUSED_PARAMETER(pPage);
1133 #endif
1134 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1135 pInfo->nPayload = 0;
1136 pInfo->nLocal = 0;
1137 pInfo->pPayload = 0;
1138 return;
1140 static void btreeParseCellPtr(
1141 MemPage *pPage, /* Page containing the cell */
1142 u8 *pCell, /* Pointer to the cell text. */
1143 CellInfo *pInfo /* Fill in this structure */
1145 u8 *pIter; /* For scanning through pCell */
1146 u32 nPayload; /* Number of bytes of cell payload */
1147 u64 iKey; /* Extracted Key value */
1149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1150 assert( pPage->leaf==0 || pPage->leaf==1 );
1151 assert( pPage->intKeyLeaf );
1152 assert( pPage->childPtrSize==0 );
1153 pIter = pCell;
1155 /* The next block of code is equivalent to:
1157 ** pIter += getVarint32(pIter, nPayload);
1159 ** The code is inlined to avoid a function call.
1161 nPayload = *pIter;
1162 if( nPayload>=0x80 ){
1163 u8 *pEnd = &pIter[8];
1164 nPayload &= 0x7f;
1166 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1167 }while( (*pIter)>=0x80 && pIter<pEnd );
1169 pIter++;
1171 /* The next block of code is equivalent to:
1173 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1175 ** The code is inlined to avoid a function call.
1177 iKey = *pIter;
1178 if( iKey>=0x80 ){
1179 u8 *pEnd = &pIter[7];
1180 iKey &= 0x7f;
1181 while(1){
1182 iKey = (iKey<<7) | (*++pIter & 0x7f);
1183 if( (*pIter)<0x80 ) break;
1184 if( pIter>=pEnd ){
1185 iKey = (iKey<<8) | *++pIter;
1186 break;
1190 pIter++;
1192 pInfo->nKey = *(i64*)&iKey;
1193 pInfo->nPayload = nPayload;
1194 pInfo->pPayload = pIter;
1195 testcase( nPayload==pPage->maxLocal );
1196 testcase( nPayload==pPage->maxLocal+1 );
1197 if( nPayload<=pPage->maxLocal ){
1198 /* This is the (easy) common case where the entire payload fits
1199 ** on the local page. No overflow is required.
1201 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1202 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1203 pInfo->nLocal = (u16)nPayload;
1204 }else{
1205 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1208 static void btreeParseCellPtrIndex(
1209 MemPage *pPage, /* Page containing the cell */
1210 u8 *pCell, /* Pointer to the cell text. */
1211 CellInfo *pInfo /* Fill in this structure */
1213 u8 *pIter; /* For scanning through pCell */
1214 u32 nPayload; /* Number of bytes of cell payload */
1216 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1217 assert( pPage->leaf==0 || pPage->leaf==1 );
1218 assert( pPage->intKeyLeaf==0 );
1219 pIter = pCell + pPage->childPtrSize;
1220 nPayload = *pIter;
1221 if( nPayload>=0x80 ){
1222 u8 *pEnd = &pIter[8];
1223 nPayload &= 0x7f;
1225 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1226 }while( *(pIter)>=0x80 && pIter<pEnd );
1228 pIter++;
1229 pInfo->nKey = nPayload;
1230 pInfo->nPayload = nPayload;
1231 pInfo->pPayload = pIter;
1232 testcase( nPayload==pPage->maxLocal );
1233 testcase( nPayload==pPage->maxLocal+1 );
1234 if( nPayload<=pPage->maxLocal ){
1235 /* This is the (easy) common case where the entire payload fits
1236 ** on the local page. No overflow is required.
1238 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1239 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1240 pInfo->nLocal = (u16)nPayload;
1241 }else{
1242 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1245 static void btreeParseCell(
1246 MemPage *pPage, /* Page containing the cell */
1247 int iCell, /* The cell index. First cell is 0 */
1248 CellInfo *pInfo /* Fill in this structure */
1250 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
1254 ** The following routines are implementations of the MemPage.xCellSize
1255 ** method.
1257 ** Compute the total number of bytes that a Cell needs in the cell
1258 ** data area of the btree-page. The return number includes the cell
1259 ** data header and the local payload, but not any overflow page or
1260 ** the space used by the cell pointer.
1262 ** cellSizePtrNoPayload() => table internal nodes
1263 ** cellSizePtr() => all index nodes & table leaf nodes
1265 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1266 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1267 u8 *pEnd; /* End mark for a varint */
1268 u32 nSize; /* Size value to return */
1270 #ifdef SQLITE_DEBUG
1271 /* The value returned by this function should always be the same as
1272 ** the (CellInfo.nSize) value found by doing a full parse of the
1273 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1274 ** this function verifies that this invariant is not violated. */
1275 CellInfo debuginfo;
1276 pPage->xParseCell(pPage, pCell, &debuginfo);
1277 #endif
1279 nSize = *pIter;
1280 if( nSize>=0x80 ){
1281 pEnd = &pIter[8];
1282 nSize &= 0x7f;
1284 nSize = (nSize<<7) | (*++pIter & 0x7f);
1285 }while( *(pIter)>=0x80 && pIter<pEnd );
1287 pIter++;
1288 if( pPage->intKey ){
1289 /* pIter now points at the 64-bit integer key value, a variable length
1290 ** integer. The following block moves pIter to point at the first byte
1291 ** past the end of the key value. */
1292 pEnd = &pIter[9];
1293 while( (*pIter++)&0x80 && pIter<pEnd );
1295 testcase( nSize==pPage->maxLocal );
1296 testcase( nSize==pPage->maxLocal+1 );
1297 if( nSize<=pPage->maxLocal ){
1298 nSize += (u32)(pIter - pCell);
1299 if( nSize<4 ) nSize = 4;
1300 }else{
1301 int minLocal = pPage->minLocal;
1302 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1303 testcase( nSize==pPage->maxLocal );
1304 testcase( nSize==pPage->maxLocal+1 );
1305 if( nSize>pPage->maxLocal ){
1306 nSize = minLocal;
1308 nSize += 4 + (u16)(pIter - pCell);
1310 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1311 return (u16)nSize;
1313 static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1314 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1315 u8 *pEnd; /* End mark for a varint */
1317 #ifdef SQLITE_DEBUG
1318 /* The value returned by this function should always be the same as
1319 ** the (CellInfo.nSize) value found by doing a full parse of the
1320 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1321 ** this function verifies that this invariant is not violated. */
1322 CellInfo debuginfo;
1323 pPage->xParseCell(pPage, pCell, &debuginfo);
1324 #else
1325 UNUSED_PARAMETER(pPage);
1326 #endif
1328 assert( pPage->childPtrSize==4 );
1329 pEnd = pIter + 9;
1330 while( (*pIter++)&0x80 && pIter<pEnd );
1331 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1332 return (u16)(pIter - pCell);
1336 #ifdef SQLITE_DEBUG
1337 /* This variation on cellSizePtr() is used inside of assert() statements
1338 ** only. */
1339 static u16 cellSize(MemPage *pPage, int iCell){
1340 return pPage->xCellSize(pPage, findCell(pPage, iCell));
1342 #endif
1344 #ifndef SQLITE_OMIT_AUTOVACUUM
1346 ** If the cell pCell, part of page pPage contains a pointer
1347 ** to an overflow page, insert an entry into the pointer-map
1348 ** for the overflow page.
1350 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1351 CellInfo info;
1352 if( *pRC ) return;
1353 assert( pCell!=0 );
1354 pPage->xParseCell(pPage, pCell, &info);
1355 if( info.nLocal<info.nPayload ){
1356 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
1357 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1360 #endif
1364 ** Defragment the page given. This routine reorganizes cells within the
1365 ** page so that there are no free-blocks on the free-block list.
1367 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1368 ** present in the page after this routine returns.
1370 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1371 ** b-tree page so that there are no freeblocks or fragment bytes, all
1372 ** unused bytes are contained in the unallocated space region, and all
1373 ** cells are packed tightly at the end of the page.
1375 static int defragmentPage(MemPage *pPage, int nMaxFrag){
1376 int i; /* Loop counter */
1377 int pc; /* Address of the i-th cell */
1378 int hdr; /* Offset to the page header */
1379 int size; /* Size of a cell */
1380 int usableSize; /* Number of usable bytes on a page */
1381 int cellOffset; /* Offset to the cell pointer array */
1382 int cbrk; /* Offset to the cell content area */
1383 int nCell; /* Number of cells on the page */
1384 unsigned char *data; /* The page data */
1385 unsigned char *temp; /* Temp area for cell content */
1386 unsigned char *src; /* Source of content */
1387 int iCellFirst; /* First allowable cell index */
1388 int iCellLast; /* Last possible cell index */
1390 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1391 assert( pPage->pBt!=0 );
1392 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1393 assert( pPage->nOverflow==0 );
1394 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1395 temp = 0;
1396 src = data = pPage->aData;
1397 hdr = pPage->hdrOffset;
1398 cellOffset = pPage->cellOffset;
1399 nCell = pPage->nCell;
1400 assert( nCell==get2byte(&data[hdr+3]) );
1401 iCellFirst = cellOffset + 2*nCell;
1402 usableSize = pPage->pBt->usableSize;
1404 /* This block handles pages with two or fewer free blocks and nMaxFrag
1405 ** or fewer fragmented bytes. In this case it is faster to move the
1406 ** two (or one) blocks of cells using memmove() and add the required
1407 ** offsets to each pointer in the cell-pointer array than it is to
1408 ** reconstruct the entire page. */
1409 if( (int)data[hdr+7]<=nMaxFrag ){
1410 int iFree = get2byte(&data[hdr+1]);
1411 if( iFree ){
1412 int iFree2 = get2byte(&data[iFree]);
1414 /* pageFindSlot() has already verified that free blocks are sorted
1415 ** in order of offset within the page, and that no block extends
1416 ** past the end of the page. Provided the two free slots do not
1417 ** overlap, this guarantees that the memmove() calls below will not
1418 ** overwrite the usableSize byte buffer, even if the database page
1419 ** is corrupt. */
1420 assert( iFree2==0 || iFree2>iFree );
1421 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1422 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1424 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1425 u8 *pEnd = &data[cellOffset + nCell*2];
1426 u8 *pAddr;
1427 int sz2 = 0;
1428 int sz = get2byte(&data[iFree+2]);
1429 int top = get2byte(&data[hdr+5]);
1430 if( top>=iFree ){
1431 return SQLITE_CORRUPT_PAGE(pPage);
1433 if( iFree2 ){
1434 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
1435 sz2 = get2byte(&data[iFree2+2]);
1436 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
1437 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1438 sz += sz2;
1440 cbrk = top+sz;
1441 assert( cbrk+(iFree-top) <= usableSize );
1442 memmove(&data[cbrk], &data[top], iFree-top);
1443 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1444 pc = get2byte(pAddr);
1445 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1446 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1448 goto defragment_out;
1453 cbrk = usableSize;
1454 iCellLast = usableSize - 4;
1455 for(i=0; i<nCell; i++){
1456 u8 *pAddr; /* The i-th cell pointer */
1457 pAddr = &data[cellOffset + i*2];
1458 pc = get2byte(pAddr);
1459 testcase( pc==iCellFirst );
1460 testcase( pc==iCellLast );
1461 /* These conditions have already been verified in btreeInitPage()
1462 ** if PRAGMA cell_size_check=ON.
1464 if( pc<iCellFirst || pc>iCellLast ){
1465 return SQLITE_CORRUPT_PAGE(pPage);
1467 assert( pc>=iCellFirst && pc<=iCellLast );
1468 size = pPage->xCellSize(pPage, &src[pc]);
1469 cbrk -= size;
1470 if( cbrk<iCellFirst || pc+size>usableSize ){
1471 return SQLITE_CORRUPT_PAGE(pPage);
1473 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1474 testcase( cbrk+size==usableSize );
1475 testcase( pc+size==usableSize );
1476 put2byte(pAddr, cbrk);
1477 if( temp==0 ){
1478 int x;
1479 if( cbrk==pc ) continue;
1480 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1481 x = get2byte(&data[hdr+5]);
1482 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1483 src = temp;
1485 memcpy(&data[cbrk], &src[pc], size);
1487 data[hdr+7] = 0;
1489 defragment_out:
1490 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1491 return SQLITE_CORRUPT_PAGE(pPage);
1493 assert( cbrk>=iCellFirst );
1494 put2byte(&data[hdr+5], cbrk);
1495 data[hdr+1] = 0;
1496 data[hdr+2] = 0;
1497 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1498 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1499 return SQLITE_OK;
1503 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1504 ** size. If one can be found, return a pointer to the space and remove it
1505 ** from the free-list.
1507 ** If no suitable space can be found on the free-list, return NULL.
1509 ** This function may detect corruption within pPg. If corruption is
1510 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1512 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1513 ** will be ignored if adding the extra space to the fragmentation count
1514 ** causes the fragmentation count to exceed 60.
1516 static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
1517 const int hdr = pPg->hdrOffset;
1518 u8 * const aData = pPg->aData;
1519 int iAddr = hdr + 1;
1520 int pc = get2byte(&aData[iAddr]);
1521 int x;
1522 int usableSize = pPg->pBt->usableSize;
1523 int size; /* Size of the free slot */
1525 assert( pc>0 );
1526 while( pc<=usableSize-4 ){
1527 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1528 ** freeblock form a big-endian integer which is the size of the freeblock
1529 ** in bytes, including the 4-byte header. */
1530 size = get2byte(&aData[pc+2]);
1531 if( (x = size - nByte)>=0 ){
1532 testcase( x==4 );
1533 testcase( x==3 );
1534 if( size+pc > usableSize ){
1535 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1536 return 0;
1537 }else if( x<4 ){
1538 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1539 ** number of bytes in fragments may not exceed 60. */
1540 if( aData[hdr+7]>57 ) return 0;
1542 /* Remove the slot from the free-list. Update the number of
1543 ** fragmented bytes within the page. */
1544 memcpy(&aData[iAddr], &aData[pc], 2);
1545 aData[hdr+7] += (u8)x;
1546 }else{
1547 /* The slot remains on the free-list. Reduce its size to account
1548 ** for the portion used by the new allocation. */
1549 put2byte(&aData[pc+2], x);
1551 return &aData[pc + x];
1553 iAddr = pc;
1554 pc = get2byte(&aData[pc]);
1555 if( pc<iAddr+size ) break;
1557 if( pc ){
1558 *pRc = SQLITE_CORRUPT_PAGE(pPg);
1561 return 0;
1565 ** Allocate nByte bytes of space from within the B-Tree page passed
1566 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1567 ** of the first byte of allocated space. Return either SQLITE_OK or
1568 ** an error code (usually SQLITE_CORRUPT).
1570 ** The caller guarantees that there is sufficient space to make the
1571 ** allocation. This routine might need to defragment in order to bring
1572 ** all the space together, however. This routine will avoid using
1573 ** the first two bytes past the cell pointer area since presumably this
1574 ** allocation is being made in order to insert a new cell, so we will
1575 ** also end up needing a new cell pointer.
1577 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1578 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1579 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1580 int top; /* First byte of cell content area */
1581 int rc = SQLITE_OK; /* Integer return code */
1582 int gap; /* First byte of gap between cell pointers and cell content */
1584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1585 assert( pPage->pBt );
1586 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1587 assert( nByte>=0 ); /* Minimum cell size is 4 */
1588 assert( pPage->nFree>=nByte );
1589 assert( pPage->nOverflow==0 );
1590 assert( nByte < (int)(pPage->pBt->usableSize-8) );
1592 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1593 gap = pPage->cellOffset + 2*pPage->nCell;
1594 assert( gap<=65536 );
1595 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1596 ** and the reserved space is zero (the usual value for reserved space)
1597 ** then the cell content offset of an empty page wants to be 65536.
1598 ** However, that integer is too large to be stored in a 2-byte unsigned
1599 ** integer, so a value of 0 is used in its place. */
1600 top = get2byte(&data[hdr+5]);
1601 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
1602 if( gap>top ){
1603 if( top==0 && pPage->pBt->usableSize==65536 ){
1604 top = 65536;
1605 }else{
1606 return SQLITE_CORRUPT_PAGE(pPage);
1610 /* If there is enough space between gap and top for one more cell pointer
1611 ** array entry offset, and if the freelist is not empty, then search the
1612 ** freelist looking for a free slot big enough to satisfy the request.
1614 testcase( gap+2==top );
1615 testcase( gap+1==top );
1616 testcase( gap==top );
1617 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
1618 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
1619 if( pSpace ){
1620 assert( pSpace>=data && (pSpace - data)<65536 );
1621 *pIdx = (int)(pSpace - data);
1622 return SQLITE_OK;
1623 }else if( rc ){
1624 return rc;
1628 /* The request could not be fulfilled using a freelist slot. Check
1629 ** to see if defragmentation is necessary.
1631 testcase( gap+2+nByte==top );
1632 if( gap+2+nByte>top ){
1633 assert( pPage->nCell>0 || CORRUPT_DB );
1634 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
1635 if( rc ) return rc;
1636 top = get2byteNotZero(&data[hdr+5]);
1637 assert( gap+2+nByte<=top );
1641 /* Allocate memory from the gap in between the cell pointer array
1642 ** and the cell content area. The btreeInitPage() call has already
1643 ** validated the freelist. Given that the freelist is valid, there
1644 ** is no way that the allocation can extend off the end of the page.
1645 ** The assert() below verifies the previous sentence.
1647 top -= nByte;
1648 put2byte(&data[hdr+5], top);
1649 assert( top+nByte <= (int)pPage->pBt->usableSize );
1650 *pIdx = top;
1651 return SQLITE_OK;
1655 ** Return a section of the pPage->aData to the freelist.
1656 ** The first byte of the new free block is pPage->aData[iStart]
1657 ** and the size of the block is iSize bytes.
1659 ** Adjacent freeblocks are coalesced.
1661 ** Note that even though the freeblock list was checked by btreeInitPage(),
1662 ** that routine will not detect overlap between cells or freeblocks. Nor
1663 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1664 ** at the end of the page. So do additional corruption checks inside this
1665 ** routine and return SQLITE_CORRUPT if any problems are found.
1667 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1668 u16 iPtr; /* Address of ptr to next freeblock */
1669 u16 iFreeBlk; /* Address of the next freeblock */
1670 u8 hdr; /* Page header size. 0 or 100 */
1671 u8 nFrag = 0; /* Reduction in fragmentation */
1672 u16 iOrigSize = iSize; /* Original value of iSize */
1673 u16 x; /* Offset to cell content area */
1674 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1675 unsigned char *data = pPage->aData; /* Page content */
1677 assert( pPage->pBt!=0 );
1678 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1679 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1680 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
1681 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1682 assert( iSize>=4 ); /* Minimum cell size is 4 */
1683 assert( iStart<=pPage->pBt->usableSize-4 );
1685 /* The list of freeblocks must be in ascending order. Find the
1686 ** spot on the list where iStart should be inserted.
1688 hdr = pPage->hdrOffset;
1689 iPtr = hdr + 1;
1690 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1691 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1692 }else{
1693 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1694 if( iFreeBlk<iPtr+4 ){
1695 if( iFreeBlk==0 ) break;
1696 return SQLITE_CORRUPT_PAGE(pPage);
1698 iPtr = iFreeBlk;
1700 if( iFreeBlk>pPage->pBt->usableSize-4 ){
1701 return SQLITE_CORRUPT_PAGE(pPage);
1703 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1705 /* At this point:
1706 ** iFreeBlk: First freeblock after iStart, or zero if none
1707 ** iPtr: The address of a pointer to iFreeBlk
1709 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1711 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1712 nFrag = iFreeBlk - iEnd;
1713 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
1714 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1715 if( iEnd > pPage->pBt->usableSize ){
1716 return SQLITE_CORRUPT_PAGE(pPage);
1718 iSize = iEnd - iStart;
1719 iFreeBlk = get2byte(&data[iFreeBlk]);
1722 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1723 ** pointer in the page header) then check to see if iStart should be
1724 ** coalesced onto the end of iPtr.
1726 if( iPtr>hdr+1 ){
1727 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1728 if( iPtrEnd+3>=iStart ){
1729 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
1730 nFrag += iStart - iPtrEnd;
1731 iSize = iEnd - iPtr;
1732 iStart = iPtr;
1735 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
1736 data[hdr+7] -= nFrag;
1738 x = get2byte(&data[hdr+5]);
1739 if( iStart<=x ){
1740 /* The new freeblock is at the beginning of the cell content area,
1741 ** so just extend the cell content area rather than create another
1742 ** freelist entry */
1743 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
1744 put2byte(&data[hdr+1], iFreeBlk);
1745 put2byte(&data[hdr+5], iEnd);
1746 }else{
1747 /* Insert the new freeblock into the freelist */
1748 put2byte(&data[iPtr], iStart);
1750 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1751 /* Overwrite deleted information with zeros when the secure_delete
1752 ** option is enabled */
1753 memset(&data[iStart], 0, iSize);
1755 put2byte(&data[iStart], iFreeBlk);
1756 put2byte(&data[iStart+2], iSize);
1757 pPage->nFree += iOrigSize;
1758 return SQLITE_OK;
1762 ** Decode the flags byte (the first byte of the header) for a page
1763 ** and initialize fields of the MemPage structure accordingly.
1765 ** Only the following combinations are supported. Anything different
1766 ** indicates a corrupt database files:
1768 ** PTF_ZERODATA
1769 ** PTF_ZERODATA | PTF_LEAF
1770 ** PTF_LEAFDATA | PTF_INTKEY
1771 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1773 static int decodeFlags(MemPage *pPage, int flagByte){
1774 BtShared *pBt; /* A copy of pPage->pBt */
1776 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1777 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1778 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
1779 flagByte &= ~PTF_LEAF;
1780 pPage->childPtrSize = 4-4*pPage->leaf;
1781 pPage->xCellSize = cellSizePtr;
1782 pBt = pPage->pBt;
1783 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1784 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1785 ** interior table b-tree page. */
1786 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1787 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1788 ** leaf table b-tree page. */
1789 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
1790 pPage->intKey = 1;
1791 if( pPage->leaf ){
1792 pPage->intKeyLeaf = 1;
1793 pPage->xParseCell = btreeParseCellPtr;
1794 }else{
1795 pPage->intKeyLeaf = 0;
1796 pPage->xCellSize = cellSizePtrNoPayload;
1797 pPage->xParseCell = btreeParseCellPtrNoPayload;
1799 pPage->maxLocal = pBt->maxLeaf;
1800 pPage->minLocal = pBt->minLeaf;
1801 }else if( flagByte==PTF_ZERODATA ){
1802 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1803 ** interior index b-tree page. */
1804 assert( (PTF_ZERODATA)==2 );
1805 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1806 ** leaf index b-tree page. */
1807 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
1808 pPage->intKey = 0;
1809 pPage->intKeyLeaf = 0;
1810 pPage->xParseCell = btreeParseCellPtrIndex;
1811 pPage->maxLocal = pBt->maxLocal;
1812 pPage->minLocal = pBt->minLocal;
1813 }else{
1814 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1815 ** an error. */
1816 return SQLITE_CORRUPT_PAGE(pPage);
1818 pPage->max1bytePayload = pBt->max1bytePayload;
1819 return SQLITE_OK;
1823 ** Initialize the auxiliary information for a disk block.
1825 ** Return SQLITE_OK on success. If we see that the page does
1826 ** not contain a well-formed database page, then return
1827 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1828 ** guarantee that the page is well-formed. It only shows that
1829 ** we failed to detect any corruption.
1831 static int btreeInitPage(MemPage *pPage){
1832 int pc; /* Address of a freeblock within pPage->aData[] */
1833 u8 hdr; /* Offset to beginning of page header */
1834 u8 *data; /* Equal to pPage->aData */
1835 BtShared *pBt; /* The main btree structure */
1836 int usableSize; /* Amount of usable space on each page */
1837 u16 cellOffset; /* Offset from start of page to first cell pointer */
1838 int nFree; /* Number of unused bytes on the page */
1839 int top; /* First byte of the cell content area */
1840 int iCellFirst; /* First allowable cell or freeblock offset */
1841 int iCellLast; /* Last possible cell or freeblock offset */
1843 assert( pPage->pBt!=0 );
1844 assert( pPage->pBt->db!=0 );
1845 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1846 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1847 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1848 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1849 assert( pPage->isInit==0 );
1851 pBt = pPage->pBt;
1852 hdr = pPage->hdrOffset;
1853 data = pPage->aData;
1854 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1855 ** the b-tree page type. */
1856 if( decodeFlags(pPage, data[hdr]) ){
1857 return SQLITE_CORRUPT_PAGE(pPage);
1859 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1860 pPage->maskPage = (u16)(pBt->pageSize - 1);
1861 pPage->nOverflow = 0;
1862 usableSize = pBt->usableSize;
1863 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1864 pPage->aDataEnd = &data[usableSize];
1865 pPage->aCellIdx = &data[cellOffset];
1866 pPage->aDataOfst = &data[pPage->childPtrSize];
1867 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1868 ** the start of the cell content area. A zero value for this integer is
1869 ** interpreted as 65536. */
1870 top = get2byteNotZero(&data[hdr+5]);
1871 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1872 ** number of cells on the page. */
1873 pPage->nCell = get2byte(&data[hdr+3]);
1874 if( pPage->nCell>MX_CELL(pBt) ){
1875 /* To many cells for a single page. The page must be corrupt */
1876 return SQLITE_CORRUPT_PAGE(pPage);
1878 testcase( pPage->nCell==MX_CELL(pBt) );
1879 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1880 ** possible for a root page of a table that contains no rows) then the
1881 ** offset to the cell content area will equal the page size minus the
1882 ** bytes of reserved space. */
1883 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
1885 /* A malformed database page might cause us to read past the end
1886 ** of page when parsing a cell.
1888 ** The following block of code checks early to see if a cell extends
1889 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1890 ** returned if it does.
1892 iCellFirst = cellOffset + 2*pPage->nCell;
1893 iCellLast = usableSize - 4;
1894 if( pBt->db->flags & SQLITE_CellSizeCk ){
1895 int i; /* Index into the cell pointer array */
1896 int sz; /* Size of a cell */
1898 if( !pPage->leaf ) iCellLast--;
1899 for(i=0; i<pPage->nCell; i++){
1900 pc = get2byteAligned(&data[cellOffset+i*2]);
1901 testcase( pc==iCellFirst );
1902 testcase( pc==iCellLast );
1903 if( pc<iCellFirst || pc>iCellLast ){
1904 return SQLITE_CORRUPT_PAGE(pPage);
1906 sz = pPage->xCellSize(pPage, &data[pc]);
1907 testcase( pc+sz==usableSize );
1908 if( pc+sz>usableSize ){
1909 return SQLITE_CORRUPT_PAGE(pPage);
1912 if( !pPage->leaf ) iCellLast++;
1915 /* Compute the total free space on the page
1916 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1917 ** start of the first freeblock on the page, or is zero if there are no
1918 ** freeblocks. */
1919 pc = get2byte(&data[hdr+1]);
1920 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1921 if( pc>0 ){
1922 u32 next, size;
1923 if( pc<iCellFirst ){
1924 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1925 ** always be at least one cell before the first freeblock.
1927 return SQLITE_CORRUPT_PAGE(pPage);
1929 while( 1 ){
1930 if( pc>iCellLast ){
1931 /* Freeblock off the end of the page */
1932 return SQLITE_CORRUPT_PAGE(pPage);
1934 next = get2byte(&data[pc]);
1935 size = get2byte(&data[pc+2]);
1936 nFree = nFree + size;
1937 if( next<=pc+size+3 ) break;
1938 pc = next;
1940 if( next>0 ){
1941 /* Freeblock not in ascending order */
1942 return SQLITE_CORRUPT_PAGE(pPage);
1944 if( pc+size>(unsigned int)usableSize ){
1945 /* Last freeblock extends past page end */
1946 return SQLITE_CORRUPT_PAGE(pPage);
1950 /* At this point, nFree contains the sum of the offset to the start
1951 ** of the cell-content area plus the number of free bytes within
1952 ** the cell-content area. If this is greater than the usable-size
1953 ** of the page, then the page must be corrupted. This check also
1954 ** serves to verify that the offset to the start of the cell-content
1955 ** area, according to the page header, lies within the page.
1957 if( nFree>usableSize ){
1958 return SQLITE_CORRUPT_PAGE(pPage);
1960 pPage->nFree = (u16)(nFree - iCellFirst);
1961 pPage->isInit = 1;
1962 return SQLITE_OK;
1966 ** Set up a raw page so that it looks like a database page holding
1967 ** no entries.
1969 static void zeroPage(MemPage *pPage, int flags){
1970 unsigned char *data = pPage->aData;
1971 BtShared *pBt = pPage->pBt;
1972 u8 hdr = pPage->hdrOffset;
1973 u16 first;
1975 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1976 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1977 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1978 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1979 assert( sqlite3_mutex_held(pBt->mutex) );
1980 if( pBt->btsFlags & BTS_FAST_SECURE ){
1981 memset(&data[hdr], 0, pBt->usableSize - hdr);
1983 data[hdr] = (char)flags;
1984 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1985 memset(&data[hdr+1], 0, 4);
1986 data[hdr+7] = 0;
1987 put2byte(&data[hdr+5], pBt->usableSize);
1988 pPage->nFree = (u16)(pBt->usableSize - first);
1989 decodeFlags(pPage, flags);
1990 pPage->cellOffset = first;
1991 pPage->aDataEnd = &data[pBt->usableSize];
1992 pPage->aCellIdx = &data[first];
1993 pPage->aDataOfst = &data[pPage->childPtrSize];
1994 pPage->nOverflow = 0;
1995 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1996 pPage->maskPage = (u16)(pBt->pageSize - 1);
1997 pPage->nCell = 0;
1998 pPage->isInit = 1;
2003 ** Convert a DbPage obtained from the pager into a MemPage used by
2004 ** the btree layer.
2006 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2007 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2008 if( pgno!=pPage->pgno ){
2009 pPage->aData = sqlite3PagerGetData(pDbPage);
2010 pPage->pDbPage = pDbPage;
2011 pPage->pBt = pBt;
2012 pPage->pgno = pgno;
2013 pPage->hdrOffset = pgno==1 ? 100 : 0;
2015 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
2016 return pPage;
2020 ** Get a page from the pager. Initialize the MemPage.pBt and
2021 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2023 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2024 ** about the content of the page at this time. So do not go to the disk
2025 ** to fetch the content. Just fill in the content with zeros for now.
2026 ** If in the future we call sqlite3PagerWrite() on this page, that
2027 ** means we have started to be concerned about content and the disk
2028 ** read should occur at that point.
2030 static int btreeGetPage(
2031 BtShared *pBt, /* The btree */
2032 Pgno pgno, /* Number of the page to fetch */
2033 MemPage **ppPage, /* Return the page in this parameter */
2034 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2036 int rc;
2037 DbPage *pDbPage;
2039 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
2040 assert( sqlite3_mutex_held(pBt->mutex) );
2041 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
2042 if( rc ) return rc;
2043 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
2044 return SQLITE_OK;
2048 ** Retrieve a page from the pager cache. If the requested page is not
2049 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2050 ** MemPage.aData elements if needed.
2052 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2053 DbPage *pDbPage;
2054 assert( sqlite3_mutex_held(pBt->mutex) );
2055 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2056 if( pDbPage ){
2057 return btreePageFromDbPage(pDbPage, pgno, pBt);
2059 return 0;
2063 ** Return the size of the database file in pages. If there is any kind of
2064 ** error, return ((unsigned int)-1).
2066 static Pgno btreePagecount(BtShared *pBt){
2067 return pBt->nPage;
2069 u32 sqlite3BtreeLastPage(Btree *p){
2070 assert( sqlite3BtreeHoldsMutex(p) );
2071 assert( ((p->pBt->nPage)&0x80000000)==0 );
2072 return btreePagecount(p->pBt);
2076 ** Get a page from the pager and initialize it.
2078 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2079 ** call. Do additional sanity checking on the page in this case.
2080 ** And if the fetch fails, this routine must decrement pCur->iPage.
2082 ** The page is fetched as read-write unless pCur is not NULL and is
2083 ** a read-only cursor.
2085 ** If an error occurs, then *ppPage is undefined. It
2086 ** may remain unchanged, or it may be set to an invalid value.
2088 static int getAndInitPage(
2089 BtShared *pBt, /* The database file */
2090 Pgno pgno, /* Number of the page to get */
2091 MemPage **ppPage, /* Write the page pointer here */
2092 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2093 int bReadOnly /* True for a read-only page */
2095 int rc;
2096 DbPage *pDbPage;
2097 assert( sqlite3_mutex_held(pBt->mutex) );
2098 assert( pCur==0 || ppPage==&pCur->pPage );
2099 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
2100 assert( pCur==0 || pCur->iPage>0 );
2102 if( pgno>btreePagecount(pBt) ){
2103 rc = SQLITE_CORRUPT_BKPT;
2104 goto getAndInitPage_error;
2106 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
2107 if( rc ){
2108 goto getAndInitPage_error;
2110 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
2111 if( (*ppPage)->isInit==0 ){
2112 btreePageFromDbPage(pDbPage, pgno, pBt);
2113 rc = btreeInitPage(*ppPage);
2114 if( rc!=SQLITE_OK ){
2115 releasePage(*ppPage);
2116 goto getAndInitPage_error;
2119 assert( (*ppPage)->pgno==pgno );
2120 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
2122 /* If obtaining a child page for a cursor, we must verify that the page is
2123 ** compatible with the root page. */
2124 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
2125 rc = SQLITE_CORRUPT_PGNO(pgno);
2126 releasePage(*ppPage);
2127 goto getAndInitPage_error;
2129 return SQLITE_OK;
2131 getAndInitPage_error:
2132 if( pCur ){
2133 pCur->iPage--;
2134 pCur->pPage = pCur->apPage[pCur->iPage];
2136 testcase( pgno==0 );
2137 assert( pgno!=0 || rc==SQLITE_CORRUPT );
2138 return rc;
2142 ** Release a MemPage. This should be called once for each prior
2143 ** call to btreeGetPage.
2145 ** Page1 is a special case and must be released using releasePageOne().
2147 static void releasePageNotNull(MemPage *pPage){
2148 assert( pPage->aData );
2149 assert( pPage->pBt );
2150 assert( pPage->pDbPage!=0 );
2151 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2152 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2153 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2154 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2156 static void releasePage(MemPage *pPage){
2157 if( pPage ) releasePageNotNull(pPage);
2159 static void releasePageOne(MemPage *pPage){
2160 assert( pPage!=0 );
2161 assert( pPage->aData );
2162 assert( pPage->pBt );
2163 assert( pPage->pDbPage!=0 );
2164 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2165 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2166 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2167 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2171 ** Get an unused page.
2173 ** This works just like btreeGetPage() with the addition:
2175 ** * If the page is already in use for some other purpose, immediately
2176 ** release it and return an SQLITE_CURRUPT error.
2177 ** * Make sure the isInit flag is clear
2179 static int btreeGetUnusedPage(
2180 BtShared *pBt, /* The btree */
2181 Pgno pgno, /* Number of the page to fetch */
2182 MemPage **ppPage, /* Return the page in this parameter */
2183 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2185 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2186 if( rc==SQLITE_OK ){
2187 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2188 releasePage(*ppPage);
2189 *ppPage = 0;
2190 return SQLITE_CORRUPT_BKPT;
2192 (*ppPage)->isInit = 0;
2193 }else{
2194 *ppPage = 0;
2196 return rc;
2201 ** During a rollback, when the pager reloads information into the cache
2202 ** so that the cache is restored to its original state at the start of
2203 ** the transaction, for each page restored this routine is called.
2205 ** This routine needs to reset the extra data section at the end of the
2206 ** page to agree with the restored data.
2208 static void pageReinit(DbPage *pData){
2209 MemPage *pPage;
2210 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
2211 assert( sqlite3PagerPageRefcount(pData)>0 );
2212 if( pPage->isInit ){
2213 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2214 pPage->isInit = 0;
2215 if( sqlite3PagerPageRefcount(pData)>1 ){
2216 /* pPage might not be a btree page; it might be an overflow page
2217 ** or ptrmap page or a free page. In those cases, the following
2218 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2219 ** But no harm is done by this. And it is very important that
2220 ** btreeInitPage() be called on every btree page so we make
2221 ** the call for every page that comes in for re-initing. */
2222 btreeInitPage(pPage);
2228 ** Invoke the busy handler for a btree.
2230 static int btreeInvokeBusyHandler(void *pArg){
2231 BtShared *pBt = (BtShared*)pArg;
2232 assert( pBt->db );
2233 assert( sqlite3_mutex_held(pBt->db->mutex) );
2234 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2238 ** Open a database file.
2240 ** zFilename is the name of the database file. If zFilename is NULL
2241 ** then an ephemeral database is created. The ephemeral database might
2242 ** be exclusively in memory, or it might use a disk-based memory cache.
2243 ** Either way, the ephemeral database will be automatically deleted
2244 ** when sqlite3BtreeClose() is called.
2246 ** If zFilename is ":memory:" then an in-memory database is created
2247 ** that is automatically destroyed when it is closed.
2249 ** The "flags" parameter is a bitmask that might contain bits like
2250 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2252 ** If the database is already opened in the same database connection
2253 ** and we are in shared cache mode, then the open will fail with an
2254 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2255 ** objects in the same database connection since doing so will lead
2256 ** to problems with locking.
2258 int sqlite3BtreeOpen(
2259 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
2260 const char *zFilename, /* Name of the file containing the BTree database */
2261 sqlite3 *db, /* Associated database handle */
2262 Btree **ppBtree, /* Pointer to new Btree object written here */
2263 int flags, /* Options */
2264 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
2266 BtShared *pBt = 0; /* Shared part of btree structure */
2267 Btree *p; /* Handle to return */
2268 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2269 int rc = SQLITE_OK; /* Result code from this function */
2270 u8 nReserve; /* Byte of unused space on each page */
2271 unsigned char zDbHeader[100]; /* Database header content */
2273 /* True if opening an ephemeral, temporary database */
2274 const int isTempDb = zFilename==0 || zFilename[0]==0;
2276 /* Set the variable isMemdb to true for an in-memory database, or
2277 ** false for a file-based database.
2279 #ifdef SQLITE_OMIT_MEMORYDB
2280 const int isMemdb = 0;
2281 #else
2282 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
2283 || (isTempDb && sqlite3TempInMemory(db))
2284 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
2285 #endif
2287 assert( db!=0 );
2288 assert( pVfs!=0 );
2289 assert( sqlite3_mutex_held(db->mutex) );
2290 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2292 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2293 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2295 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2296 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
2298 if( isMemdb ){
2299 flags |= BTREE_MEMORY;
2301 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2302 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2304 p = sqlite3MallocZero(sizeof(Btree));
2305 if( !p ){
2306 return SQLITE_NOMEM_BKPT;
2308 p->inTrans = TRANS_NONE;
2309 p->db = db;
2310 #ifndef SQLITE_OMIT_SHARED_CACHE
2311 p->lock.pBtree = p;
2312 p->lock.iTable = 1;
2313 #endif
2315 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2317 ** If this Btree is a candidate for shared cache, try to find an
2318 ** existing BtShared object that we can share with
2320 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
2321 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
2322 int nFilename = sqlite3Strlen30(zFilename)+1;
2323 int nFullPathname = pVfs->mxPathname+1;
2324 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
2325 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2327 p->sharable = 1;
2328 if( !zFullPathname ){
2329 sqlite3_free(p);
2330 return SQLITE_NOMEM_BKPT;
2332 if( isMemdb ){
2333 memcpy(zFullPathname, zFilename, nFilename);
2334 }else{
2335 rc = sqlite3OsFullPathname(pVfs, zFilename,
2336 nFullPathname, zFullPathname);
2337 if( rc ){
2338 sqlite3_free(zFullPathname);
2339 sqlite3_free(p);
2340 return rc;
2343 #if SQLITE_THREADSAFE
2344 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2345 sqlite3_mutex_enter(mutexOpen);
2346 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
2347 sqlite3_mutex_enter(mutexShared);
2348 #endif
2349 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
2350 assert( pBt->nRef>0 );
2351 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
2352 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
2353 int iDb;
2354 for(iDb=db->nDb-1; iDb>=0; iDb--){
2355 Btree *pExisting = db->aDb[iDb].pBt;
2356 if( pExisting && pExisting->pBt==pBt ){
2357 sqlite3_mutex_leave(mutexShared);
2358 sqlite3_mutex_leave(mutexOpen);
2359 sqlite3_free(zFullPathname);
2360 sqlite3_free(p);
2361 return SQLITE_CONSTRAINT;
2364 p->pBt = pBt;
2365 pBt->nRef++;
2366 break;
2369 sqlite3_mutex_leave(mutexShared);
2370 sqlite3_free(zFullPathname);
2372 #ifdef SQLITE_DEBUG
2373 else{
2374 /* In debug mode, we mark all persistent databases as sharable
2375 ** even when they are not. This exercises the locking code and
2376 ** gives more opportunity for asserts(sqlite3_mutex_held())
2377 ** statements to find locking problems.
2379 p->sharable = 1;
2381 #endif
2383 #endif
2384 if( pBt==0 ){
2386 ** The following asserts make sure that structures used by the btree are
2387 ** the right size. This is to guard against size changes that result
2388 ** when compiling on a different architecture.
2390 assert( sizeof(i64)==8 );
2391 assert( sizeof(u64)==8 );
2392 assert( sizeof(u32)==4 );
2393 assert( sizeof(u16)==2 );
2394 assert( sizeof(Pgno)==4 );
2396 pBt = sqlite3MallocZero( sizeof(*pBt) );
2397 if( pBt==0 ){
2398 rc = SQLITE_NOMEM_BKPT;
2399 goto btree_open_out;
2401 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
2402 sizeof(MemPage), flags, vfsFlags, pageReinit);
2403 if( rc==SQLITE_OK ){
2404 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
2405 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2407 if( rc!=SQLITE_OK ){
2408 goto btree_open_out;
2410 pBt->openFlags = (u8)flags;
2411 pBt->db = db;
2412 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
2413 p->pBt = pBt;
2415 pBt->pCursor = 0;
2416 pBt->pPage1 = 0;
2417 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
2418 #if defined(SQLITE_SECURE_DELETE)
2419 pBt->btsFlags |= BTS_SECURE_DELETE;
2420 #elif defined(SQLITE_FAST_SECURE_DELETE)
2421 pBt->btsFlags |= BTS_OVERWRITE;
2422 #endif
2423 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2424 ** determined by the 2-byte integer located at an offset of 16 bytes from
2425 ** the beginning of the database file. */
2426 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
2427 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2428 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
2429 pBt->pageSize = 0;
2430 #ifndef SQLITE_OMIT_AUTOVACUUM
2431 /* If the magic name ":memory:" will create an in-memory database, then
2432 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2433 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2434 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2435 ** regular file-name. In this case the auto-vacuum applies as per normal.
2437 if( zFilename && !isMemdb ){
2438 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2439 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2441 #endif
2442 nReserve = 0;
2443 }else{
2444 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2445 ** determined by the one-byte unsigned integer found at an offset of 20
2446 ** into the database file header. */
2447 nReserve = zDbHeader[20];
2448 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2449 #ifndef SQLITE_OMIT_AUTOVACUUM
2450 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2451 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2452 #endif
2454 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2455 if( rc ) goto btree_open_out;
2456 pBt->usableSize = pBt->pageSize - nReserve;
2457 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
2459 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2460 /* Add the new BtShared object to the linked list sharable BtShareds.
2462 pBt->nRef = 1;
2463 if( p->sharable ){
2464 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
2465 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
2466 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
2467 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
2468 if( pBt->mutex==0 ){
2469 rc = SQLITE_NOMEM_BKPT;
2470 goto btree_open_out;
2473 sqlite3_mutex_enter(mutexShared);
2474 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2475 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2476 sqlite3_mutex_leave(mutexShared);
2478 #endif
2481 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2482 /* If the new Btree uses a sharable pBtShared, then link the new
2483 ** Btree into the list of all sharable Btrees for the same connection.
2484 ** The list is kept in ascending order by pBt address.
2486 if( p->sharable ){
2487 int i;
2488 Btree *pSib;
2489 for(i=0; i<db->nDb; i++){
2490 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2491 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2492 if( (uptr)p->pBt<(uptr)pSib->pBt ){
2493 p->pNext = pSib;
2494 p->pPrev = 0;
2495 pSib->pPrev = p;
2496 }else{
2497 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
2498 pSib = pSib->pNext;
2500 p->pNext = pSib->pNext;
2501 p->pPrev = pSib;
2502 if( p->pNext ){
2503 p->pNext->pPrev = p;
2505 pSib->pNext = p;
2507 break;
2511 #endif
2512 *ppBtree = p;
2514 btree_open_out:
2515 if( rc!=SQLITE_OK ){
2516 if( pBt && pBt->pPager ){
2517 sqlite3PagerClose(pBt->pPager, 0);
2519 sqlite3_free(pBt);
2520 sqlite3_free(p);
2521 *ppBtree = 0;
2522 }else{
2523 sqlite3_file *pFile;
2525 /* If the B-Tree was successfully opened, set the pager-cache size to the
2526 ** default value. Except, when opening on an existing shared pager-cache,
2527 ** do not change the pager-cache size.
2529 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2530 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2533 pFile = sqlite3PagerFile(pBt->pPager);
2534 if( pFile->pMethods ){
2535 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2538 if( mutexOpen ){
2539 assert( sqlite3_mutex_held(mutexOpen) );
2540 sqlite3_mutex_leave(mutexOpen);
2542 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
2543 return rc;
2547 ** Decrement the BtShared.nRef counter. When it reaches zero,
2548 ** remove the BtShared structure from the sharing list. Return
2549 ** true if the BtShared.nRef counter reaches zero and return
2550 ** false if it is still positive.
2552 static int removeFromSharingList(BtShared *pBt){
2553 #ifndef SQLITE_OMIT_SHARED_CACHE
2554 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2555 BtShared *pList;
2556 int removed = 0;
2558 assert( sqlite3_mutex_notheld(pBt->mutex) );
2559 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2560 sqlite3_mutex_enter(pMaster);
2561 pBt->nRef--;
2562 if( pBt->nRef<=0 ){
2563 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2564 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2565 }else{
2566 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2567 while( ALWAYS(pList) && pList->pNext!=pBt ){
2568 pList=pList->pNext;
2570 if( ALWAYS(pList) ){
2571 pList->pNext = pBt->pNext;
2574 if( SQLITE_THREADSAFE ){
2575 sqlite3_mutex_free(pBt->mutex);
2577 removed = 1;
2579 sqlite3_mutex_leave(pMaster);
2580 return removed;
2581 #else
2582 return 1;
2583 #endif
2587 ** Make sure pBt->pTmpSpace points to an allocation of
2588 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2589 ** pointer.
2591 static void allocateTempSpace(BtShared *pBt){
2592 if( !pBt->pTmpSpace ){
2593 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2595 /* One of the uses of pBt->pTmpSpace is to format cells before
2596 ** inserting them into a leaf page (function fillInCell()). If
2597 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2598 ** by the various routines that manipulate binary cells. Which
2599 ** can mean that fillInCell() only initializes the first 2 or 3
2600 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2601 ** it into a database page. This is not actually a problem, but it
2602 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2603 ** data is passed to system call write(). So to avoid this error,
2604 ** zero the first 4 bytes of temp space here.
2606 ** Also: Provide four bytes of initialized space before the
2607 ** beginning of pTmpSpace as an area available to prepend the
2608 ** left-child pointer to the beginning of a cell.
2610 if( pBt->pTmpSpace ){
2611 memset(pBt->pTmpSpace, 0, 8);
2612 pBt->pTmpSpace += 4;
2618 ** Free the pBt->pTmpSpace allocation
2620 static void freeTempSpace(BtShared *pBt){
2621 if( pBt->pTmpSpace ){
2622 pBt->pTmpSpace -= 4;
2623 sqlite3PageFree(pBt->pTmpSpace);
2624 pBt->pTmpSpace = 0;
2629 ** Close an open database and invalidate all cursors.
2631 int sqlite3BtreeClose(Btree *p){
2632 BtShared *pBt = p->pBt;
2633 BtCursor *pCur;
2635 /* Close all cursors opened via this handle. */
2636 assert( sqlite3_mutex_held(p->db->mutex) );
2637 sqlite3BtreeEnter(p);
2638 pCur = pBt->pCursor;
2639 while( pCur ){
2640 BtCursor *pTmp = pCur;
2641 pCur = pCur->pNext;
2642 if( pTmp->pBtree==p ){
2643 sqlite3BtreeCloseCursor(pTmp);
2647 /* Rollback any active transaction and free the handle structure.
2648 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2649 ** this handle.
2651 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2652 sqlite3BtreeLeave(p);
2654 /* If there are still other outstanding references to the shared-btree
2655 ** structure, return now. The remainder of this procedure cleans
2656 ** up the shared-btree.
2658 assert( p->wantToLock==0 && p->locked==0 );
2659 if( !p->sharable || removeFromSharingList(pBt) ){
2660 /* The pBt is no longer on the sharing list, so we can access
2661 ** it without having to hold the mutex.
2663 ** Clean out and delete the BtShared object.
2665 assert( !pBt->pCursor );
2666 sqlite3PagerClose(pBt->pPager, p->db);
2667 if( pBt->xFreeSchema && pBt->pSchema ){
2668 pBt->xFreeSchema(pBt->pSchema);
2670 sqlite3DbFree(0, pBt->pSchema);
2671 freeTempSpace(pBt);
2672 sqlite3_free(pBt);
2675 #ifndef SQLITE_OMIT_SHARED_CACHE
2676 assert( p->wantToLock==0 );
2677 assert( p->locked==0 );
2678 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2679 if( p->pNext ) p->pNext->pPrev = p->pPrev;
2680 #endif
2682 sqlite3_free(p);
2683 return SQLITE_OK;
2687 ** Change the "soft" limit on the number of pages in the cache.
2688 ** Unused and unmodified pages will be recycled when the number of
2689 ** pages in the cache exceeds this soft limit. But the size of the
2690 ** cache is allowed to grow larger than this limit if it contains
2691 ** dirty pages or pages still in active use.
2693 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2694 BtShared *pBt = p->pBt;
2695 assert( sqlite3_mutex_held(p->db->mutex) );
2696 sqlite3BtreeEnter(p);
2697 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2698 sqlite3BtreeLeave(p);
2699 return SQLITE_OK;
2703 ** Change the "spill" limit on the number of pages in the cache.
2704 ** If the number of pages exceeds this limit during a write transaction,
2705 ** the pager might attempt to "spill" pages to the journal early in
2706 ** order to free up memory.
2708 ** The value returned is the current spill size. If zero is passed
2709 ** as an argument, no changes are made to the spill size setting, so
2710 ** using mxPage of 0 is a way to query the current spill size.
2712 int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2713 BtShared *pBt = p->pBt;
2714 int res;
2715 assert( sqlite3_mutex_held(p->db->mutex) );
2716 sqlite3BtreeEnter(p);
2717 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2718 sqlite3BtreeLeave(p);
2719 return res;
2722 #if SQLITE_MAX_MMAP_SIZE>0
2724 ** Change the limit on the amount of the database file that may be
2725 ** memory mapped.
2727 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2728 BtShared *pBt = p->pBt;
2729 assert( sqlite3_mutex_held(p->db->mutex) );
2730 sqlite3BtreeEnter(p);
2731 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2732 sqlite3BtreeLeave(p);
2733 return SQLITE_OK;
2735 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2738 ** Change the way data is synced to disk in order to increase or decrease
2739 ** how well the database resists damage due to OS crashes and power
2740 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2741 ** there is a high probability of damage) Level 2 is the default. There
2742 ** is a very low but non-zero probability of damage. Level 3 reduces the
2743 ** probability of damage to near zero but with a write performance reduction.
2745 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2746 int sqlite3BtreeSetPagerFlags(
2747 Btree *p, /* The btree to set the safety level on */
2748 unsigned pgFlags /* Various PAGER_* flags */
2750 BtShared *pBt = p->pBt;
2751 assert( sqlite3_mutex_held(p->db->mutex) );
2752 sqlite3BtreeEnter(p);
2753 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2754 sqlite3BtreeLeave(p);
2755 return SQLITE_OK;
2757 #endif
2760 ** Change the default pages size and the number of reserved bytes per page.
2761 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2762 ** without changing anything.
2764 ** The page size must be a power of 2 between 512 and 65536. If the page
2765 ** size supplied does not meet this constraint then the page size is not
2766 ** changed.
2768 ** Page sizes are constrained to be a power of two so that the region
2769 ** of the database file used for locking (beginning at PENDING_BYTE,
2770 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2771 ** at the beginning of a page.
2773 ** If parameter nReserve is less than zero, then the number of reserved
2774 ** bytes per page is left unchanged.
2776 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2777 ** and autovacuum mode can no longer be changed.
2779 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2780 int rc = SQLITE_OK;
2781 BtShared *pBt = p->pBt;
2782 assert( nReserve>=-1 && nReserve<=255 );
2783 sqlite3BtreeEnter(p);
2784 #if SQLITE_HAS_CODEC
2785 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2786 #endif
2787 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2788 sqlite3BtreeLeave(p);
2789 return SQLITE_READONLY;
2791 if( nReserve<0 ){
2792 nReserve = pBt->pageSize - pBt->usableSize;
2794 assert( nReserve>=0 && nReserve<=255 );
2795 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2796 ((pageSize-1)&pageSize)==0 ){
2797 assert( (pageSize & 7)==0 );
2798 assert( !pBt->pCursor );
2799 pBt->pageSize = (u32)pageSize;
2800 freeTempSpace(pBt);
2802 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2803 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2804 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2805 sqlite3BtreeLeave(p);
2806 return rc;
2810 ** Return the currently defined page size
2812 int sqlite3BtreeGetPageSize(Btree *p){
2813 return p->pBt->pageSize;
2817 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2818 ** may only be called if it is guaranteed that the b-tree mutex is already
2819 ** held.
2821 ** This is useful in one special case in the backup API code where it is
2822 ** known that the shared b-tree mutex is held, but the mutex on the
2823 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2824 ** were to be called, it might collide with some other operation on the
2825 ** database handle that owns *p, causing undefined behavior.
2827 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2828 int n;
2829 assert( sqlite3_mutex_held(p->pBt->mutex) );
2830 n = p->pBt->pageSize - p->pBt->usableSize;
2831 return n;
2835 ** Return the number of bytes of space at the end of every page that
2836 ** are intentually left unused. This is the "reserved" space that is
2837 ** sometimes used by extensions.
2839 ** If SQLITE_HAS_MUTEX is defined then the number returned is the
2840 ** greater of the current reserved space and the maximum requested
2841 ** reserve space.
2843 int sqlite3BtreeGetOptimalReserve(Btree *p){
2844 int n;
2845 sqlite3BtreeEnter(p);
2846 n = sqlite3BtreeGetReserveNoMutex(p);
2847 #ifdef SQLITE_HAS_CODEC
2848 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2849 #endif
2850 sqlite3BtreeLeave(p);
2851 return n;
2856 ** Set the maximum page count for a database if mxPage is positive.
2857 ** No changes are made if mxPage is 0 or negative.
2858 ** Regardless of the value of mxPage, return the maximum page count.
2860 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2861 int n;
2862 sqlite3BtreeEnter(p);
2863 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2864 sqlite3BtreeLeave(p);
2865 return n;
2869 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2871 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2872 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2873 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2874 ** newFlag==(-1) No changes
2876 ** This routine acts as a query if newFlag is less than zero
2878 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2879 ** freelist leaf pages are not written back to the database. Thus in-page
2880 ** deleted content is cleared, but freelist deleted content is not.
2882 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2883 ** that freelist leaf pages are written back into the database, increasing
2884 ** the amount of disk I/O.
2886 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2887 int b;
2888 if( p==0 ) return 0;
2889 sqlite3BtreeEnter(p);
2890 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2891 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
2892 if( newFlag>=0 ){
2893 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2894 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2896 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
2897 sqlite3BtreeLeave(p);
2898 return b;
2902 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2903 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2904 ** is disabled. The default value for the auto-vacuum property is
2905 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2907 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2908 #ifdef SQLITE_OMIT_AUTOVACUUM
2909 return SQLITE_READONLY;
2910 #else
2911 BtShared *pBt = p->pBt;
2912 int rc = SQLITE_OK;
2913 u8 av = (u8)autoVacuum;
2915 sqlite3BtreeEnter(p);
2916 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2917 rc = SQLITE_READONLY;
2918 }else{
2919 pBt->autoVacuum = av ?1:0;
2920 pBt->incrVacuum = av==2 ?1:0;
2922 sqlite3BtreeLeave(p);
2923 return rc;
2924 #endif
2928 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2929 ** enabled 1 is returned. Otherwise 0.
2931 int sqlite3BtreeGetAutoVacuum(Btree *p){
2932 #ifdef SQLITE_OMIT_AUTOVACUUM
2933 return BTREE_AUTOVACUUM_NONE;
2934 #else
2935 int rc;
2936 sqlite3BtreeEnter(p);
2937 rc = (
2938 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2939 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2940 BTREE_AUTOVACUUM_INCR
2942 sqlite3BtreeLeave(p);
2943 return rc;
2944 #endif
2948 ** If the user has not set the safety-level for this database connection
2949 ** using "PRAGMA synchronous", and if the safety-level is not already
2950 ** set to the value passed to this function as the second parameter,
2951 ** set it so.
2953 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2954 && !defined(SQLITE_OMIT_WAL)
2955 static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2956 sqlite3 *db;
2957 Db *pDb;
2958 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2959 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2960 if( pDb->bSyncSet==0
2961 && pDb->safety_level!=safety_level
2962 && pDb!=&db->aDb[1]
2964 pDb->safety_level = safety_level;
2965 sqlite3PagerSetFlags(pBt->pPager,
2966 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2970 #else
2971 # define setDefaultSyncFlag(pBt,safety_level)
2972 #endif
2975 ** Get a reference to pPage1 of the database file. This will
2976 ** also acquire a readlock on that file.
2978 ** SQLITE_OK is returned on success. If the file is not a
2979 ** well-formed database file, then SQLITE_CORRUPT is returned.
2980 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
2981 ** is returned if we run out of memory.
2983 static int lockBtree(BtShared *pBt){
2984 int rc; /* Result code from subfunctions */
2985 MemPage *pPage1; /* Page 1 of the database file */
2986 int nPage; /* Number of pages in the database */
2987 int nPageFile = 0; /* Number of pages in the database file */
2988 int nPageHeader; /* Number of pages in the database according to hdr */
2990 assert( sqlite3_mutex_held(pBt->mutex) );
2991 assert( pBt->pPage1==0 );
2992 rc = sqlite3PagerSharedLock(pBt->pPager);
2993 if( rc!=SQLITE_OK ) return rc;
2994 rc = btreeGetPage(pBt, 1, &pPage1, 0);
2995 if( rc!=SQLITE_OK ) return rc;
2997 /* Do some checking to help insure the file we opened really is
2998 ** a valid database file.
3000 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
3001 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
3002 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
3003 nPage = nPageFile;
3005 if( nPage>0 ){
3006 u32 pageSize;
3007 u32 usableSize;
3008 u8 *page1 = pPage1->aData;
3009 rc = SQLITE_NOTADB;
3010 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3011 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3012 ** 61 74 20 33 00. */
3013 if( memcmp(page1, zMagicHeader, 16)!=0 ){
3014 goto page1_init_failed;
3017 #ifdef SQLITE_OMIT_WAL
3018 if( page1[18]>1 ){
3019 pBt->btsFlags |= BTS_READ_ONLY;
3021 if( page1[19]>1 ){
3022 goto page1_init_failed;
3024 #else
3025 if( page1[18]>2 ){
3026 pBt->btsFlags |= BTS_READ_ONLY;
3028 if( page1[19]>2 ){
3029 goto page1_init_failed;
3032 /* If the write version is set to 2, this database should be accessed
3033 ** in WAL mode. If the log is not already open, open it now. Then
3034 ** return SQLITE_OK and return without populating BtShared.pPage1.
3035 ** The caller detects this and calls this function again. This is
3036 ** required as the version of page 1 currently in the page1 buffer
3037 ** may not be the latest version - there may be a newer one in the log
3038 ** file.
3040 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
3041 int isOpen = 0;
3042 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
3043 if( rc!=SQLITE_OK ){
3044 goto page1_init_failed;
3045 }else{
3046 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
3047 if( isOpen==0 ){
3048 releasePageOne(pPage1);
3049 return SQLITE_OK;
3052 rc = SQLITE_NOTADB;
3053 }else{
3054 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
3056 #endif
3058 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3059 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3061 ** The original design allowed these amounts to vary, but as of
3062 ** version 3.6.0, we require them to be fixed.
3064 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3065 goto page1_init_failed;
3067 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3068 ** determined by the 2-byte integer located at an offset of 16 bytes from
3069 ** the beginning of the database file. */
3070 pageSize = (page1[16]<<8) | (page1[17]<<16);
3071 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3072 ** between 512 and 65536 inclusive. */
3073 if( ((pageSize-1)&pageSize)!=0
3074 || pageSize>SQLITE_MAX_PAGE_SIZE
3075 || pageSize<=256
3077 goto page1_init_failed;
3079 assert( (pageSize & 7)==0 );
3080 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3081 ** integer at offset 20 is the number of bytes of space at the end of
3082 ** each page to reserve for extensions.
3084 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3085 ** determined by the one-byte unsigned integer found at an offset of 20
3086 ** into the database file header. */
3087 usableSize = pageSize - page1[20];
3088 if( (u32)pageSize!=pBt->pageSize ){
3089 /* After reading the first page of the database assuming a page size
3090 ** of BtShared.pageSize, we have discovered that the page-size is
3091 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3092 ** zero and return SQLITE_OK. The caller will call this function
3093 ** again with the correct page-size.
3095 releasePageOne(pPage1);
3096 pBt->usableSize = usableSize;
3097 pBt->pageSize = pageSize;
3098 freeTempSpace(pBt);
3099 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3100 pageSize-usableSize);
3101 return rc;
3103 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
3104 rc = SQLITE_CORRUPT_BKPT;
3105 goto page1_init_failed;
3107 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3108 ** be less than 480. In other words, if the page size is 512, then the
3109 ** reserved space size cannot exceed 32. */
3110 if( usableSize<480 ){
3111 goto page1_init_failed;
3113 pBt->pageSize = pageSize;
3114 pBt->usableSize = usableSize;
3115 #ifndef SQLITE_OMIT_AUTOVACUUM
3116 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
3117 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
3118 #endif
3121 /* maxLocal is the maximum amount of payload to store locally for
3122 ** a cell. Make sure it is small enough so that at least minFanout
3123 ** cells can will fit on one page. We assume a 10-byte page header.
3124 ** Besides the payload, the cell must store:
3125 ** 2-byte pointer to the cell
3126 ** 4-byte child pointer
3127 ** 9-byte nKey value
3128 ** 4-byte nData value
3129 ** 4-byte overflow page pointer
3130 ** So a cell consists of a 2-byte pointer, a header which is as much as
3131 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3132 ** page pointer.
3134 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3135 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3136 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3137 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
3138 if( pBt->maxLocal>127 ){
3139 pBt->max1bytePayload = 127;
3140 }else{
3141 pBt->max1bytePayload = (u8)pBt->maxLocal;
3143 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
3144 pBt->pPage1 = pPage1;
3145 pBt->nPage = nPage;
3146 return SQLITE_OK;
3148 page1_init_failed:
3149 releasePageOne(pPage1);
3150 pBt->pPage1 = 0;
3151 return rc;
3154 #ifndef NDEBUG
3156 ** Return the number of cursors open on pBt. This is for use
3157 ** in assert() expressions, so it is only compiled if NDEBUG is not
3158 ** defined.
3160 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3161 ** false then all cursors are counted.
3163 ** For the purposes of this routine, a cursor is any cursor that
3164 ** is capable of reading or writing to the database. Cursors that
3165 ** have been tripped into the CURSOR_FAULT state are not counted.
3167 static int countValidCursors(BtShared *pBt, int wrOnly){
3168 BtCursor *pCur;
3169 int r = 0;
3170 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
3171 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3172 && pCur->eState!=CURSOR_FAULT ) r++;
3174 return r;
3176 #endif
3179 ** If there are no outstanding cursors and we are not in the middle
3180 ** of a transaction but there is a read lock on the database, then
3181 ** this routine unrefs the first page of the database file which
3182 ** has the effect of releasing the read lock.
3184 ** If there is a transaction in progress, this routine is a no-op.
3186 static void unlockBtreeIfUnused(BtShared *pBt){
3187 assert( sqlite3_mutex_held(pBt->mutex) );
3188 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
3189 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
3190 MemPage *pPage1 = pBt->pPage1;
3191 assert( pPage1->aData );
3192 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
3193 pBt->pPage1 = 0;
3194 releasePageOne(pPage1);
3199 ** If pBt points to an empty file then convert that empty file
3200 ** into a new empty database by initializing the first page of
3201 ** the database.
3203 static int newDatabase(BtShared *pBt){
3204 MemPage *pP1;
3205 unsigned char *data;
3206 int rc;
3208 assert( sqlite3_mutex_held(pBt->mutex) );
3209 if( pBt->nPage>0 ){
3210 return SQLITE_OK;
3212 pP1 = pBt->pPage1;
3213 assert( pP1!=0 );
3214 data = pP1->aData;
3215 rc = sqlite3PagerWrite(pP1->pDbPage);
3216 if( rc ) return rc;
3217 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3218 assert( sizeof(zMagicHeader)==16 );
3219 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3220 data[17] = (u8)((pBt->pageSize>>16)&0xff);
3221 data[18] = 1;
3222 data[19] = 1;
3223 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3224 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
3225 data[21] = 64;
3226 data[22] = 32;
3227 data[23] = 32;
3228 memset(&data[24], 0, 100-24);
3229 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
3230 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
3231 #ifndef SQLITE_OMIT_AUTOVACUUM
3232 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
3233 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
3234 put4byte(&data[36 + 4*4], pBt->autoVacuum);
3235 put4byte(&data[36 + 7*4], pBt->incrVacuum);
3236 #endif
3237 pBt->nPage = 1;
3238 data[31] = 1;
3239 return SQLITE_OK;
3243 ** Initialize the first page of the database file (creating a database
3244 ** consisting of a single page and no schema objects). Return SQLITE_OK
3245 ** if successful, or an SQLite error code otherwise.
3247 int sqlite3BtreeNewDb(Btree *p){
3248 int rc;
3249 sqlite3BtreeEnter(p);
3250 p->pBt->nPage = 0;
3251 rc = newDatabase(p->pBt);
3252 sqlite3BtreeLeave(p);
3253 return rc;
3257 ** Attempt to start a new transaction. A write-transaction
3258 ** is started if the second argument is nonzero, otherwise a read-
3259 ** transaction. If the second argument is 2 or more and exclusive
3260 ** transaction is started, meaning that no other process is allowed
3261 ** to access the database. A preexisting transaction may not be
3262 ** upgraded to exclusive by calling this routine a second time - the
3263 ** exclusivity flag only works for a new transaction.
3265 ** A write-transaction must be started before attempting any
3266 ** changes to the database. None of the following routines
3267 ** will work unless a transaction is started first:
3269 ** sqlite3BtreeCreateTable()
3270 ** sqlite3BtreeCreateIndex()
3271 ** sqlite3BtreeClearTable()
3272 ** sqlite3BtreeDropTable()
3273 ** sqlite3BtreeInsert()
3274 ** sqlite3BtreeDelete()
3275 ** sqlite3BtreeUpdateMeta()
3277 ** If an initial attempt to acquire the lock fails because of lock contention
3278 ** and the database was previously unlocked, then invoke the busy handler
3279 ** if there is one. But if there was previously a read-lock, do not
3280 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3281 ** returned when there is already a read-lock in order to avoid a deadlock.
3283 ** Suppose there are two processes A and B. A has a read lock and B has
3284 ** a reserved lock. B tries to promote to exclusive but is blocked because
3285 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3286 ** One or the other of the two processes must give way or there can be
3287 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3288 ** when A already has a read lock, we encourage A to give up and let B
3289 ** proceed.
3291 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3292 BtShared *pBt = p->pBt;
3293 int rc = SQLITE_OK;
3295 sqlite3BtreeEnter(p);
3296 btreeIntegrity(p);
3298 /* If the btree is already in a write-transaction, or it
3299 ** is already in a read-transaction and a read-transaction
3300 ** is requested, this is a no-op.
3302 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
3303 goto trans_begun;
3305 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
3307 /* Write transactions are not possible on a read-only database */
3308 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
3309 rc = SQLITE_READONLY;
3310 goto trans_begun;
3313 #ifndef SQLITE_OMIT_SHARED_CACHE
3315 sqlite3 *pBlock = 0;
3316 /* If another database handle has already opened a write transaction
3317 ** on this shared-btree structure and a second write transaction is
3318 ** requested, return SQLITE_LOCKED.
3320 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3321 || (pBt->btsFlags & BTS_PENDING)!=0
3323 pBlock = pBt->pWriter->db;
3324 }else if( wrflag>1 ){
3325 BtLock *pIter;
3326 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3327 if( pIter->pBtree!=p ){
3328 pBlock = pIter->pBtree->db;
3329 break;
3333 if( pBlock ){
3334 sqlite3ConnectionBlocked(p->db, pBlock);
3335 rc = SQLITE_LOCKED_SHAREDCACHE;
3336 goto trans_begun;
3339 #endif
3341 /* Any read-only or read-write transaction implies a read-lock on
3342 ** page 1. So if some other shared-cache client already has a write-lock
3343 ** on page 1, the transaction cannot be opened. */
3344 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3345 if( SQLITE_OK!=rc ) goto trans_begun;
3347 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3348 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
3349 do {
3350 /* Call lockBtree() until either pBt->pPage1 is populated or
3351 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3352 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3353 ** reading page 1 it discovers that the page-size of the database
3354 ** file is not pBt->pageSize. In this case lockBtree() will update
3355 ** pBt->pageSize to the page-size of the file on disk.
3357 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
3359 if( rc==SQLITE_OK && wrflag ){
3360 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
3361 rc = SQLITE_READONLY;
3362 }else{
3363 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
3364 if( rc==SQLITE_OK ){
3365 rc = newDatabase(pBt);
3370 if( rc!=SQLITE_OK ){
3371 unlockBtreeIfUnused(pBt);
3373 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
3374 btreeInvokeBusyHandler(pBt) );
3376 if( rc==SQLITE_OK ){
3377 if( p->inTrans==TRANS_NONE ){
3378 pBt->nTransaction++;
3379 #ifndef SQLITE_OMIT_SHARED_CACHE
3380 if( p->sharable ){
3381 assert( p->lock.pBtree==p && p->lock.iTable==1 );
3382 p->lock.eLock = READ_LOCK;
3383 p->lock.pNext = pBt->pLock;
3384 pBt->pLock = &p->lock;
3386 #endif
3388 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3389 if( p->inTrans>pBt->inTransaction ){
3390 pBt->inTransaction = p->inTrans;
3392 if( wrflag ){
3393 MemPage *pPage1 = pBt->pPage1;
3394 #ifndef SQLITE_OMIT_SHARED_CACHE
3395 assert( !pBt->pWriter );
3396 pBt->pWriter = p;
3397 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3398 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
3399 #endif
3401 /* If the db-size header field is incorrect (as it may be if an old
3402 ** client has been writing the database file), update it now. Doing
3403 ** this sooner rather than later means the database size can safely
3404 ** re-read the database size from page 1 if a savepoint or transaction
3405 ** rollback occurs within the transaction.
3407 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3408 rc = sqlite3PagerWrite(pPage1->pDbPage);
3409 if( rc==SQLITE_OK ){
3410 put4byte(&pPage1->aData[28], pBt->nPage);
3417 trans_begun:
3418 if( rc==SQLITE_OK && wrflag ){
3419 /* This call makes sure that the pager has the correct number of
3420 ** open savepoints. If the second parameter is greater than 0 and
3421 ** the sub-journal is not already open, then it will be opened here.
3423 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3426 btreeIntegrity(p);
3427 sqlite3BtreeLeave(p);
3428 return rc;
3431 #ifndef SQLITE_OMIT_AUTOVACUUM
3434 ** Set the pointer-map entries for all children of page pPage. Also, if
3435 ** pPage contains cells that point to overflow pages, set the pointer
3436 ** map entries for the overflow pages as well.
3438 static int setChildPtrmaps(MemPage *pPage){
3439 int i; /* Counter variable */
3440 int nCell; /* Number of cells in page pPage */
3441 int rc; /* Return code */
3442 BtShared *pBt = pPage->pBt;
3443 Pgno pgno = pPage->pgno;
3445 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3446 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3447 if( rc!=SQLITE_OK ) return rc;
3448 nCell = pPage->nCell;
3450 for(i=0; i<nCell; i++){
3451 u8 *pCell = findCell(pPage, i);
3453 ptrmapPutOvflPtr(pPage, pCell, &rc);
3455 if( !pPage->leaf ){
3456 Pgno childPgno = get4byte(pCell);
3457 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3461 if( !pPage->leaf ){
3462 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
3463 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
3466 return rc;
3470 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3471 ** that it points to iTo. Parameter eType describes the type of pointer to
3472 ** be modified, as follows:
3474 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3475 ** page of pPage.
3477 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3478 ** page pointed to by one of the cells on pPage.
3480 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3481 ** overflow page in the list.
3483 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
3484 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
3485 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
3486 if( eType==PTRMAP_OVERFLOW2 ){
3487 /* The pointer is always the first 4 bytes of the page in this case. */
3488 if( get4byte(pPage->aData)!=iFrom ){
3489 return SQLITE_CORRUPT_PAGE(pPage);
3491 put4byte(pPage->aData, iTo);
3492 }else{
3493 int i;
3494 int nCell;
3495 int rc;
3497 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
3498 if( rc ) return rc;
3499 nCell = pPage->nCell;
3501 for(i=0; i<nCell; i++){
3502 u8 *pCell = findCell(pPage, i);
3503 if( eType==PTRMAP_OVERFLOW1 ){
3504 CellInfo info;
3505 pPage->xParseCell(pPage, pCell, &info);
3506 if( info.nLocal<info.nPayload ){
3507 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3508 return SQLITE_CORRUPT_PAGE(pPage);
3510 if( iFrom==get4byte(pCell+info.nSize-4) ){
3511 put4byte(pCell+info.nSize-4, iTo);
3512 break;
3515 }else{
3516 if( get4byte(pCell)==iFrom ){
3517 put4byte(pCell, iTo);
3518 break;
3523 if( i==nCell ){
3524 if( eType!=PTRMAP_BTREE ||
3525 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
3526 return SQLITE_CORRUPT_PAGE(pPage);
3528 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3531 return SQLITE_OK;
3536 ** Move the open database page pDbPage to location iFreePage in the
3537 ** database. The pDbPage reference remains valid.
3539 ** The isCommit flag indicates that there is no need to remember that
3540 ** the journal needs to be sync()ed before database page pDbPage->pgno
3541 ** can be written to. The caller has already promised not to write to that
3542 ** page.
3544 static int relocatePage(
3545 BtShared *pBt, /* Btree */
3546 MemPage *pDbPage, /* Open page to move */
3547 u8 eType, /* Pointer map 'type' entry for pDbPage */
3548 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
3549 Pgno iFreePage, /* The location to move pDbPage to */
3550 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
3552 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3553 Pgno iDbPage = pDbPage->pgno;
3554 Pager *pPager = pBt->pPager;
3555 int rc;
3557 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3558 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3559 assert( sqlite3_mutex_held(pBt->mutex) );
3560 assert( pDbPage->pBt==pBt );
3562 /* Move page iDbPage from its current location to page number iFreePage */
3563 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3564 iDbPage, iFreePage, iPtrPage, eType));
3565 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3566 if( rc!=SQLITE_OK ){
3567 return rc;
3569 pDbPage->pgno = iFreePage;
3571 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3572 ** that point to overflow pages. The pointer map entries for all these
3573 ** pages need to be changed.
3575 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3576 ** pointer to a subsequent overflow page. If this is the case, then
3577 ** the pointer map needs to be updated for the subsequent overflow page.
3579 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3580 rc = setChildPtrmaps(pDbPage);
3581 if( rc!=SQLITE_OK ){
3582 return rc;
3584 }else{
3585 Pgno nextOvfl = get4byte(pDbPage->aData);
3586 if( nextOvfl!=0 ){
3587 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3588 if( rc!=SQLITE_OK ){
3589 return rc;
3594 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3595 ** that it points at iFreePage. Also fix the pointer map entry for
3596 ** iPtrPage.
3598 if( eType!=PTRMAP_ROOTPAGE ){
3599 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3600 if( rc!=SQLITE_OK ){
3601 return rc;
3603 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3604 if( rc!=SQLITE_OK ){
3605 releasePage(pPtrPage);
3606 return rc;
3608 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3609 releasePage(pPtrPage);
3610 if( rc==SQLITE_OK ){
3611 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3614 return rc;
3617 /* Forward declaration required by incrVacuumStep(). */
3618 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3621 ** Perform a single step of an incremental-vacuum. If successful, return
3622 ** SQLITE_OK. If there is no work to do (and therefore no point in
3623 ** calling this function again), return SQLITE_DONE. Or, if an error
3624 ** occurs, return some other error code.
3626 ** More specifically, this function attempts to re-organize the database so
3627 ** that the last page of the file currently in use is no longer in use.
3629 ** Parameter nFin is the number of pages that this database would contain
3630 ** were this function called until it returns SQLITE_DONE.
3632 ** If the bCommit parameter is non-zero, this function assumes that the
3633 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3634 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3635 ** operation, or false for an incremental vacuum.
3637 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3638 Pgno nFreeList; /* Number of pages still on the free-list */
3639 int rc;
3641 assert( sqlite3_mutex_held(pBt->mutex) );
3642 assert( iLastPg>nFin );
3644 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3645 u8 eType;
3646 Pgno iPtrPage;
3648 nFreeList = get4byte(&pBt->pPage1->aData[36]);
3649 if( nFreeList==0 ){
3650 return SQLITE_DONE;
3653 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3654 if( rc!=SQLITE_OK ){
3655 return rc;
3657 if( eType==PTRMAP_ROOTPAGE ){
3658 return SQLITE_CORRUPT_BKPT;
3661 if( eType==PTRMAP_FREEPAGE ){
3662 if( bCommit==0 ){
3663 /* Remove the page from the files free-list. This is not required
3664 ** if bCommit is non-zero. In that case, the free-list will be
3665 ** truncated to zero after this function returns, so it doesn't
3666 ** matter if it still contains some garbage entries.
3668 Pgno iFreePg;
3669 MemPage *pFreePg;
3670 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3671 if( rc!=SQLITE_OK ){
3672 return rc;
3674 assert( iFreePg==iLastPg );
3675 releasePage(pFreePg);
3677 } else {
3678 Pgno iFreePg; /* Index of free page to move pLastPg to */
3679 MemPage *pLastPg;
3680 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3681 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
3683 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3684 if( rc!=SQLITE_OK ){
3685 return rc;
3688 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3689 ** is swapped with the first free page pulled off the free list.
3691 ** On the other hand, if bCommit is greater than zero, then keep
3692 ** looping until a free-page located within the first nFin pages
3693 ** of the file is found.
3695 if( bCommit==0 ){
3696 eMode = BTALLOC_LE;
3697 iNear = nFin;
3699 do {
3700 MemPage *pFreePg;
3701 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3702 if( rc!=SQLITE_OK ){
3703 releasePage(pLastPg);
3704 return rc;
3706 releasePage(pFreePg);
3707 }while( bCommit && iFreePg>nFin );
3708 assert( iFreePg<iLastPg );
3710 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3711 releasePage(pLastPg);
3712 if( rc!=SQLITE_OK ){
3713 return rc;
3718 if( bCommit==0 ){
3719 do {
3720 iLastPg--;
3721 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3722 pBt->bDoTruncate = 1;
3723 pBt->nPage = iLastPg;
3725 return SQLITE_OK;
3729 ** The database opened by the first argument is an auto-vacuum database
3730 ** nOrig pages in size containing nFree free pages. Return the expected
3731 ** size of the database in pages following an auto-vacuum operation.
3733 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3734 int nEntry; /* Number of entries on one ptrmap page */
3735 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3736 Pgno nFin; /* Return value */
3738 nEntry = pBt->usableSize/5;
3739 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3740 nFin = nOrig - nFree - nPtrmap;
3741 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3742 nFin--;
3744 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3745 nFin--;
3748 return nFin;
3752 ** A write-transaction must be opened before calling this function.
3753 ** It performs a single unit of work towards an incremental vacuum.
3755 ** If the incremental vacuum is finished after this function has run,
3756 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3757 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3759 int sqlite3BtreeIncrVacuum(Btree *p){
3760 int rc;
3761 BtShared *pBt = p->pBt;
3763 sqlite3BtreeEnter(p);
3764 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3765 if( !pBt->autoVacuum ){
3766 rc = SQLITE_DONE;
3767 }else{
3768 Pgno nOrig = btreePagecount(pBt);
3769 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3770 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3772 if( nOrig<nFin ){
3773 rc = SQLITE_CORRUPT_BKPT;
3774 }else if( nFree>0 ){
3775 rc = saveAllCursors(pBt, 0, 0);
3776 if( rc==SQLITE_OK ){
3777 invalidateAllOverflowCache(pBt);
3778 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3780 if( rc==SQLITE_OK ){
3781 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3782 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3784 }else{
3785 rc = SQLITE_DONE;
3788 sqlite3BtreeLeave(p);
3789 return rc;
3793 ** This routine is called prior to sqlite3PagerCommit when a transaction
3794 ** is committed for an auto-vacuum database.
3796 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3797 ** the database file should be truncated to during the commit process.
3798 ** i.e. the database has been reorganized so that only the first *pnTrunc
3799 ** pages are in use.
3801 static int autoVacuumCommit(BtShared *pBt){
3802 int rc = SQLITE_OK;
3803 Pager *pPager = pBt->pPager;
3804 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
3806 assert( sqlite3_mutex_held(pBt->mutex) );
3807 invalidateAllOverflowCache(pBt);
3808 assert(pBt->autoVacuum);
3809 if( !pBt->incrVacuum ){
3810 Pgno nFin; /* Number of pages in database after autovacuuming */
3811 Pgno nFree; /* Number of pages on the freelist initially */
3812 Pgno iFree; /* The next page to be freed */
3813 Pgno nOrig; /* Database size before freeing */
3815 nOrig = btreePagecount(pBt);
3816 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3817 /* It is not possible to create a database for which the final page
3818 ** is either a pointer-map page or the pending-byte page. If one
3819 ** is encountered, this indicates corruption.
3821 return SQLITE_CORRUPT_BKPT;
3824 nFree = get4byte(&pBt->pPage1->aData[36]);
3825 nFin = finalDbSize(pBt, nOrig, nFree);
3826 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3827 if( nFin<nOrig ){
3828 rc = saveAllCursors(pBt, 0, 0);
3830 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3831 rc = incrVacuumStep(pBt, nFin, iFree, 1);
3833 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3834 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3835 put4byte(&pBt->pPage1->aData[32], 0);
3836 put4byte(&pBt->pPage1->aData[36], 0);
3837 put4byte(&pBt->pPage1->aData[28], nFin);
3838 pBt->bDoTruncate = 1;
3839 pBt->nPage = nFin;
3841 if( rc!=SQLITE_OK ){
3842 sqlite3PagerRollback(pPager);
3846 assert( nRef>=sqlite3PagerRefcount(pPager) );
3847 return rc;
3850 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3851 # define setChildPtrmaps(x) SQLITE_OK
3852 #endif
3855 ** This routine does the first phase of a two-phase commit. This routine
3856 ** causes a rollback journal to be created (if it does not already exist)
3857 ** and populated with enough information so that if a power loss occurs
3858 ** the database can be restored to its original state by playing back
3859 ** the journal. Then the contents of the journal are flushed out to
3860 ** the disk. After the journal is safely on oxide, the changes to the
3861 ** database are written into the database file and flushed to oxide.
3862 ** At the end of this call, the rollback journal still exists on the
3863 ** disk and we are still holding all locks, so the transaction has not
3864 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3865 ** commit process.
3867 ** This call is a no-op if no write-transaction is currently active on pBt.
3869 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3870 ** the name of a master journal file that should be written into the
3871 ** individual journal file, or is NULL, indicating no master journal file
3872 ** (single database transaction).
3874 ** When this is called, the master journal should already have been
3875 ** created, populated with this journal pointer and synced to disk.
3877 ** Once this is routine has returned, the only thing required to commit
3878 ** the write-transaction for this database file is to delete the journal.
3880 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3881 int rc = SQLITE_OK;
3882 if( p->inTrans==TRANS_WRITE ){
3883 BtShared *pBt = p->pBt;
3884 sqlite3BtreeEnter(p);
3885 #ifndef SQLITE_OMIT_AUTOVACUUM
3886 if( pBt->autoVacuum ){
3887 rc = autoVacuumCommit(pBt);
3888 if( rc!=SQLITE_OK ){
3889 sqlite3BtreeLeave(p);
3890 return rc;
3893 if( pBt->bDoTruncate ){
3894 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3896 #endif
3897 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3898 sqlite3BtreeLeave(p);
3900 return rc;
3904 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3905 ** at the conclusion of a transaction.
3907 static void btreeEndTransaction(Btree *p){
3908 BtShared *pBt = p->pBt;
3909 sqlite3 *db = p->db;
3910 assert( sqlite3BtreeHoldsMutex(p) );
3912 #ifndef SQLITE_OMIT_AUTOVACUUM
3913 pBt->bDoTruncate = 0;
3914 #endif
3915 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3916 /* If there are other active statements that belong to this database
3917 ** handle, downgrade to a read-only transaction. The other statements
3918 ** may still be reading from the database. */
3919 downgradeAllSharedCacheTableLocks(p);
3920 p->inTrans = TRANS_READ;
3921 }else{
3922 /* If the handle had any kind of transaction open, decrement the
3923 ** transaction count of the shared btree. If the transaction count
3924 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3925 ** call below will unlock the pager. */
3926 if( p->inTrans!=TRANS_NONE ){
3927 clearAllSharedCacheTableLocks(p);
3928 pBt->nTransaction--;
3929 if( 0==pBt->nTransaction ){
3930 pBt->inTransaction = TRANS_NONE;
3934 /* Set the current transaction state to TRANS_NONE and unlock the
3935 ** pager if this call closed the only read or write transaction. */
3936 p->inTrans = TRANS_NONE;
3937 unlockBtreeIfUnused(pBt);
3940 btreeIntegrity(p);
3944 ** Commit the transaction currently in progress.
3946 ** This routine implements the second phase of a 2-phase commit. The
3947 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3948 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3949 ** routine did all the work of writing information out to disk and flushing the
3950 ** contents so that they are written onto the disk platter. All this
3951 ** routine has to do is delete or truncate or zero the header in the
3952 ** the rollback journal (which causes the transaction to commit) and
3953 ** drop locks.
3955 ** Normally, if an error occurs while the pager layer is attempting to
3956 ** finalize the underlying journal file, this function returns an error and
3957 ** the upper layer will attempt a rollback. However, if the second argument
3958 ** is non-zero then this b-tree transaction is part of a multi-file
3959 ** transaction. In this case, the transaction has already been committed
3960 ** (by deleting a master journal file) and the caller will ignore this
3961 ** functions return code. So, even if an error occurs in the pager layer,
3962 ** reset the b-tree objects internal state to indicate that the write
3963 ** transaction has been closed. This is quite safe, as the pager will have
3964 ** transitioned to the error state.
3966 ** This will release the write lock on the database file. If there
3967 ** are no active cursors, it also releases the read lock.
3969 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3971 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3972 sqlite3BtreeEnter(p);
3973 btreeIntegrity(p);
3975 /* If the handle has a write-transaction open, commit the shared-btrees
3976 ** transaction and set the shared state to TRANS_READ.
3978 if( p->inTrans==TRANS_WRITE ){
3979 int rc;
3980 BtShared *pBt = p->pBt;
3981 assert( pBt->inTransaction==TRANS_WRITE );
3982 assert( pBt->nTransaction>0 );
3983 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3984 if( rc!=SQLITE_OK && bCleanup==0 ){
3985 sqlite3BtreeLeave(p);
3986 return rc;
3988 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
3989 pBt->inTransaction = TRANS_READ;
3990 btreeClearHasContent(pBt);
3993 btreeEndTransaction(p);
3994 sqlite3BtreeLeave(p);
3995 return SQLITE_OK;
3999 ** Do both phases of a commit.
4001 int sqlite3BtreeCommit(Btree *p){
4002 int rc;
4003 sqlite3BtreeEnter(p);
4004 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4005 if( rc==SQLITE_OK ){
4006 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
4008 sqlite3BtreeLeave(p);
4009 return rc;
4013 ** This routine sets the state to CURSOR_FAULT and the error
4014 ** code to errCode for every cursor on any BtShared that pBtree
4015 ** references. Or if the writeOnly flag is set to 1, then only
4016 ** trip write cursors and leave read cursors unchanged.
4018 ** Every cursor is a candidate to be tripped, including cursors
4019 ** that belong to other database connections that happen to be
4020 ** sharing the cache with pBtree.
4022 ** This routine gets called when a rollback occurs. If the writeOnly
4023 ** flag is true, then only write-cursors need be tripped - read-only
4024 ** cursors save their current positions so that they may continue
4025 ** following the rollback. Or, if writeOnly is false, all cursors are
4026 ** tripped. In general, writeOnly is false if the transaction being
4027 ** rolled back modified the database schema. In this case b-tree root
4028 ** pages may be moved or deleted from the database altogether, making
4029 ** it unsafe for read cursors to continue.
4031 ** If the writeOnly flag is true and an error is encountered while
4032 ** saving the current position of a read-only cursor, all cursors,
4033 ** including all read-cursors are tripped.
4035 ** SQLITE_OK is returned if successful, or if an error occurs while
4036 ** saving a cursor position, an SQLite error code.
4038 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
4039 BtCursor *p;
4040 int rc = SQLITE_OK;
4042 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
4043 if( pBtree ){
4044 sqlite3BtreeEnter(pBtree);
4045 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
4046 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
4047 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
4048 rc = saveCursorPosition(p);
4049 if( rc!=SQLITE_OK ){
4050 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4051 break;
4054 }else{
4055 sqlite3BtreeClearCursor(p);
4056 p->eState = CURSOR_FAULT;
4057 p->skipNext = errCode;
4059 btreeReleaseAllCursorPages(p);
4061 sqlite3BtreeLeave(pBtree);
4063 return rc;
4067 ** Rollback the transaction in progress.
4069 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4070 ** Only write cursors are tripped if writeOnly is true but all cursors are
4071 ** tripped if writeOnly is false. Any attempt to use
4072 ** a tripped cursor will result in an error.
4074 ** This will release the write lock on the database file. If there
4075 ** are no active cursors, it also releases the read lock.
4077 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
4078 int rc;
4079 BtShared *pBt = p->pBt;
4080 MemPage *pPage1;
4082 assert( writeOnly==1 || writeOnly==0 );
4083 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
4084 sqlite3BtreeEnter(p);
4085 if( tripCode==SQLITE_OK ){
4086 rc = tripCode = saveAllCursors(pBt, 0, 0);
4087 if( rc ) writeOnly = 0;
4088 }else{
4089 rc = SQLITE_OK;
4091 if( tripCode ){
4092 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4093 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4094 if( rc2!=SQLITE_OK ) rc = rc2;
4096 btreeIntegrity(p);
4098 if( p->inTrans==TRANS_WRITE ){
4099 int rc2;
4101 assert( TRANS_WRITE==pBt->inTransaction );
4102 rc2 = sqlite3PagerRollback(pBt->pPager);
4103 if( rc2!=SQLITE_OK ){
4104 rc = rc2;
4107 /* The rollback may have destroyed the pPage1->aData value. So
4108 ** call btreeGetPage() on page 1 again to make
4109 ** sure pPage1->aData is set correctly. */
4110 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
4111 int nPage = get4byte(28+(u8*)pPage1->aData);
4112 testcase( nPage==0 );
4113 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4114 testcase( pBt->nPage!=nPage );
4115 pBt->nPage = nPage;
4116 releasePageOne(pPage1);
4118 assert( countValidCursors(pBt, 1)==0 );
4119 pBt->inTransaction = TRANS_READ;
4120 btreeClearHasContent(pBt);
4123 btreeEndTransaction(p);
4124 sqlite3BtreeLeave(p);
4125 return rc;
4129 ** Start a statement subtransaction. The subtransaction can be rolled
4130 ** back independently of the main transaction. You must start a transaction
4131 ** before starting a subtransaction. The subtransaction is ended automatically
4132 ** if the main transaction commits or rolls back.
4134 ** Statement subtransactions are used around individual SQL statements
4135 ** that are contained within a BEGIN...COMMIT block. If a constraint
4136 ** error occurs within the statement, the effect of that one statement
4137 ** can be rolled back without having to rollback the entire transaction.
4139 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4140 ** value passed as the second parameter is the total number of savepoints,
4141 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4142 ** are no active savepoints and no other statement-transactions open,
4143 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4144 ** using the sqlite3BtreeSavepoint() function.
4146 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
4147 int rc;
4148 BtShared *pBt = p->pBt;
4149 sqlite3BtreeEnter(p);
4150 assert( p->inTrans==TRANS_WRITE );
4151 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
4152 assert( iStatement>0 );
4153 assert( iStatement>p->db->nSavepoint );
4154 assert( pBt->inTransaction==TRANS_WRITE );
4155 /* At the pager level, a statement transaction is a savepoint with
4156 ** an index greater than all savepoints created explicitly using
4157 ** SQL statements. It is illegal to open, release or rollback any
4158 ** such savepoints while the statement transaction savepoint is active.
4160 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
4161 sqlite3BtreeLeave(p);
4162 return rc;
4166 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4167 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4168 ** savepoint identified by parameter iSavepoint, depending on the value
4169 ** of op.
4171 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4172 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4173 ** contents of the entire transaction are rolled back. This is different
4174 ** from a normal transaction rollback, as no locks are released and the
4175 ** transaction remains open.
4177 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4178 int rc = SQLITE_OK;
4179 if( p && p->inTrans==TRANS_WRITE ){
4180 BtShared *pBt = p->pBt;
4181 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4182 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4183 sqlite3BtreeEnter(p);
4184 if( op==SAVEPOINT_ROLLBACK ){
4185 rc = saveAllCursors(pBt, 0, 0);
4187 if( rc==SQLITE_OK ){
4188 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4190 if( rc==SQLITE_OK ){
4191 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4192 pBt->nPage = 0;
4194 rc = newDatabase(pBt);
4195 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
4197 /* The database size was written into the offset 28 of the header
4198 ** when the transaction started, so we know that the value at offset
4199 ** 28 is nonzero. */
4200 assert( pBt->nPage>0 );
4202 sqlite3BtreeLeave(p);
4204 return rc;
4208 ** Create a new cursor for the BTree whose root is on the page
4209 ** iTable. If a read-only cursor is requested, it is assumed that
4210 ** the caller already has at least a read-only transaction open
4211 ** on the database already. If a write-cursor is requested, then
4212 ** the caller is assumed to have an open write transaction.
4214 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4215 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4216 ** can be used for reading or for writing if other conditions for writing
4217 ** are also met. These are the conditions that must be met in order
4218 ** for writing to be allowed:
4220 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4222 ** 2: Other database connections that share the same pager cache
4223 ** but which are not in the READ_UNCOMMITTED state may not have
4224 ** cursors open with wrFlag==0 on the same table. Otherwise
4225 ** the changes made by this write cursor would be visible to
4226 ** the read cursors in the other database connection.
4228 ** 3: The database must be writable (not on read-only media)
4230 ** 4: There must be an active transaction.
4232 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4233 ** is set. If FORDELETE is set, that is a hint to the implementation that
4234 ** this cursor will only be used to seek to and delete entries of an index
4235 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4236 ** this implementation. But in a hypothetical alternative storage engine
4237 ** in which index entries are automatically deleted when corresponding table
4238 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4239 ** operations on this cursor can be no-ops and all READ operations can
4240 ** return a null row (2-bytes: 0x01 0x00).
4242 ** No checking is done to make sure that page iTable really is the
4243 ** root page of a b-tree. If it is not, then the cursor acquired
4244 ** will not work correctly.
4246 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4247 ** on pCur to initialize the memory space prior to invoking this routine.
4249 static int btreeCursor(
4250 Btree *p, /* The btree */
4251 int iTable, /* Root page of table to open */
4252 int wrFlag, /* 1 to write. 0 read-only */
4253 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4254 BtCursor *pCur /* Space for new cursor */
4256 BtShared *pBt = p->pBt; /* Shared b-tree handle */
4257 BtCursor *pX; /* Looping over other all cursors */
4259 assert( sqlite3BtreeHoldsMutex(p) );
4260 assert( wrFlag==0
4261 || wrFlag==BTREE_WRCSR
4262 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4265 /* The following assert statements verify that if this is a sharable
4266 ** b-tree database, the connection is holding the required table locks,
4267 ** and that no other connection has any open cursor that conflicts with
4268 ** this lock. */
4269 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
4270 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4272 /* Assert that the caller has opened the required transaction. */
4273 assert( p->inTrans>TRANS_NONE );
4274 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4275 assert( pBt->pPage1 && pBt->pPage1->aData );
4276 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
4278 if( wrFlag ){
4279 allocateTempSpace(pBt);
4280 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
4282 if( iTable==1 && btreePagecount(pBt)==0 ){
4283 assert( wrFlag==0 );
4284 iTable = 0;
4287 /* Now that no other errors can occur, finish filling in the BtCursor
4288 ** variables and link the cursor into the BtShared list. */
4289 pCur->pgnoRoot = (Pgno)iTable;
4290 pCur->iPage = -1;
4291 pCur->pKeyInfo = pKeyInfo;
4292 pCur->pBtree = p;
4293 pCur->pBt = pBt;
4294 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
4295 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
4296 /* If there are two or more cursors on the same btree, then all such
4297 ** cursors *must* have the BTCF_Multiple flag set. */
4298 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4299 if( pX->pgnoRoot==(Pgno)iTable ){
4300 pX->curFlags |= BTCF_Multiple;
4301 pCur->curFlags |= BTCF_Multiple;
4304 pCur->pNext = pBt->pCursor;
4305 pBt->pCursor = pCur;
4306 pCur->eState = CURSOR_INVALID;
4307 return SQLITE_OK;
4309 int sqlite3BtreeCursor(
4310 Btree *p, /* The btree */
4311 int iTable, /* Root page of table to open */
4312 int wrFlag, /* 1 to write. 0 read-only */
4313 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4314 BtCursor *pCur /* Write new cursor here */
4316 int rc;
4317 if( iTable<1 ){
4318 rc = SQLITE_CORRUPT_BKPT;
4319 }else{
4320 sqlite3BtreeEnter(p);
4321 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4322 sqlite3BtreeLeave(p);
4324 return rc;
4328 ** Return the size of a BtCursor object in bytes.
4330 ** This interfaces is needed so that users of cursors can preallocate
4331 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4332 ** to users so they cannot do the sizeof() themselves - they must call
4333 ** this routine.
4335 int sqlite3BtreeCursorSize(void){
4336 return ROUND8(sizeof(BtCursor));
4340 ** Initialize memory that will be converted into a BtCursor object.
4342 ** The simple approach here would be to memset() the entire object
4343 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4344 ** do not need to be zeroed and they are large, so we can save a lot
4345 ** of run-time by skipping the initialization of those elements.
4347 void sqlite3BtreeCursorZero(BtCursor *p){
4348 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
4352 ** Close a cursor. The read lock on the database file is released
4353 ** when the last cursor is closed.
4355 int sqlite3BtreeCloseCursor(BtCursor *pCur){
4356 Btree *pBtree = pCur->pBtree;
4357 if( pBtree ){
4358 BtShared *pBt = pCur->pBt;
4359 sqlite3BtreeEnter(pBtree);
4360 assert( pBt->pCursor!=0 );
4361 if( pBt->pCursor==pCur ){
4362 pBt->pCursor = pCur->pNext;
4363 }else{
4364 BtCursor *pPrev = pBt->pCursor;
4366 if( pPrev->pNext==pCur ){
4367 pPrev->pNext = pCur->pNext;
4368 break;
4370 pPrev = pPrev->pNext;
4371 }while( ALWAYS(pPrev) );
4373 btreeReleaseAllCursorPages(pCur);
4374 unlockBtreeIfUnused(pBt);
4375 sqlite3_free(pCur->aOverflow);
4376 sqlite3_free(pCur->pKey);
4377 sqlite3BtreeLeave(pBtree);
4379 return SQLITE_OK;
4383 ** Make sure the BtCursor* given in the argument has a valid
4384 ** BtCursor.info structure. If it is not already valid, call
4385 ** btreeParseCell() to fill it in.
4387 ** BtCursor.info is a cache of the information in the current cell.
4388 ** Using this cache reduces the number of calls to btreeParseCell().
4390 #ifndef NDEBUG
4391 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4392 if( a->nKey!=b->nKey ) return 0;
4393 if( a->pPayload!=b->pPayload ) return 0;
4394 if( a->nPayload!=b->nPayload ) return 0;
4395 if( a->nLocal!=b->nLocal ) return 0;
4396 if( a->nSize!=b->nSize ) return 0;
4397 return 1;
4399 static void assertCellInfo(BtCursor *pCur){
4400 CellInfo info;
4401 memset(&info, 0, sizeof(info));
4402 btreeParseCell(pCur->pPage, pCur->ix, &info);
4403 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
4405 #else
4406 #define assertCellInfo(x)
4407 #endif
4408 static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4409 if( pCur->info.nSize==0 ){
4410 pCur->curFlags |= BTCF_ValidNKey;
4411 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
4412 }else{
4413 assertCellInfo(pCur);
4417 #ifndef NDEBUG /* The next routine used only within assert() statements */
4419 ** Return true if the given BtCursor is valid. A valid cursor is one
4420 ** that is currently pointing to a row in a (non-empty) table.
4421 ** This is a verification routine is used only within assert() statements.
4423 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4424 return pCur && pCur->eState==CURSOR_VALID;
4426 #endif /* NDEBUG */
4427 int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4428 assert( pCur!=0 );
4429 return pCur->eState==CURSOR_VALID;
4433 ** Return the value of the integer key or "rowid" for a table btree.
4434 ** This routine is only valid for a cursor that is pointing into a
4435 ** ordinary table btree. If the cursor points to an index btree or
4436 ** is invalid, the result of this routine is undefined.
4438 i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
4439 assert( cursorHoldsMutex(pCur) );
4440 assert( pCur->eState==CURSOR_VALID );
4441 assert( pCur->curIntKey );
4442 getCellInfo(pCur);
4443 return pCur->info.nKey;
4446 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4448 ** Return the offset into the database file for the start of the
4449 ** payload to which the cursor is pointing.
4451 i64 sqlite3BtreeOffset(BtCursor *pCur){
4452 assert( cursorHoldsMutex(pCur) );
4453 assert( pCur->eState==CURSOR_VALID );
4454 getCellInfo(pCur);
4455 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
4456 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4458 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4461 ** Return the number of bytes of payload for the entry that pCur is
4462 ** currently pointing to. For table btrees, this will be the amount
4463 ** of data. For index btrees, this will be the size of the key.
4465 ** The caller must guarantee that the cursor is pointing to a non-NULL
4466 ** valid entry. In other words, the calling procedure must guarantee
4467 ** that the cursor has Cursor.eState==CURSOR_VALID.
4469 u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4470 assert( cursorHoldsMutex(pCur) );
4471 assert( pCur->eState==CURSOR_VALID );
4472 getCellInfo(pCur);
4473 return pCur->info.nPayload;
4477 ** Given the page number of an overflow page in the database (parameter
4478 ** ovfl), this function finds the page number of the next page in the
4479 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4480 ** pointer-map data instead of reading the content of page ovfl to do so.
4482 ** If an error occurs an SQLite error code is returned. Otherwise:
4484 ** The page number of the next overflow page in the linked list is
4485 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4486 ** list, *pPgnoNext is set to zero.
4488 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4489 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4490 ** reference. It is the responsibility of the caller to call releasePage()
4491 ** on *ppPage to free the reference. In no reference was obtained (because
4492 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4493 ** *ppPage is set to zero.
4495 static int getOverflowPage(
4496 BtShared *pBt, /* The database file */
4497 Pgno ovfl, /* Current overflow page number */
4498 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
4499 Pgno *pPgnoNext /* OUT: Next overflow page number */
4501 Pgno next = 0;
4502 MemPage *pPage = 0;
4503 int rc = SQLITE_OK;
4505 assert( sqlite3_mutex_held(pBt->mutex) );
4506 assert(pPgnoNext);
4508 #ifndef SQLITE_OMIT_AUTOVACUUM
4509 /* Try to find the next page in the overflow list using the
4510 ** autovacuum pointer-map pages. Guess that the next page in
4511 ** the overflow list is page number (ovfl+1). If that guess turns
4512 ** out to be wrong, fall back to loading the data of page
4513 ** number ovfl to determine the next page number.
4515 if( pBt->autoVacuum ){
4516 Pgno pgno;
4517 Pgno iGuess = ovfl+1;
4518 u8 eType;
4520 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4521 iGuess++;
4524 if( iGuess<=btreePagecount(pBt) ){
4525 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
4526 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
4527 next = iGuess;
4528 rc = SQLITE_DONE;
4532 #endif
4534 assert( next==0 || rc==SQLITE_DONE );
4535 if( rc==SQLITE_OK ){
4536 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
4537 assert( rc==SQLITE_OK || pPage==0 );
4538 if( rc==SQLITE_OK ){
4539 next = get4byte(pPage->aData);
4543 *pPgnoNext = next;
4544 if( ppPage ){
4545 *ppPage = pPage;
4546 }else{
4547 releasePage(pPage);
4549 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
4553 ** Copy data from a buffer to a page, or from a page to a buffer.
4555 ** pPayload is a pointer to data stored on database page pDbPage.
4556 ** If argument eOp is false, then nByte bytes of data are copied
4557 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4558 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4559 ** of data are copied from the buffer pBuf to pPayload.
4561 ** SQLITE_OK is returned on success, otherwise an error code.
4563 static int copyPayload(
4564 void *pPayload, /* Pointer to page data */
4565 void *pBuf, /* Pointer to buffer */
4566 int nByte, /* Number of bytes to copy */
4567 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4568 DbPage *pDbPage /* Page containing pPayload */
4570 if( eOp ){
4571 /* Copy data from buffer to page (a write operation) */
4572 int rc = sqlite3PagerWrite(pDbPage);
4573 if( rc!=SQLITE_OK ){
4574 return rc;
4576 memcpy(pPayload, pBuf, nByte);
4577 }else{
4578 /* Copy data from page to buffer (a read operation) */
4579 memcpy(pBuf, pPayload, nByte);
4581 return SQLITE_OK;
4585 ** This function is used to read or overwrite payload information
4586 ** for the entry that the pCur cursor is pointing to. The eOp
4587 ** argument is interpreted as follows:
4589 ** 0: The operation is a read. Populate the overflow cache.
4590 ** 1: The operation is a write. Populate the overflow cache.
4592 ** A total of "amt" bytes are read or written beginning at "offset".
4593 ** Data is read to or from the buffer pBuf.
4595 ** The content being read or written might appear on the main page
4596 ** or be scattered out on multiple overflow pages.
4598 ** If the current cursor entry uses one or more overflow pages
4599 ** this function may allocate space for and lazily populate
4600 ** the overflow page-list cache array (BtCursor.aOverflow).
4601 ** Subsequent calls use this cache to make seeking to the supplied offset
4602 ** more efficient.
4604 ** Once an overflow page-list cache has been allocated, it must be
4605 ** invalidated if some other cursor writes to the same table, or if
4606 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4607 ** mode, the following events may invalidate an overflow page-list cache.
4609 ** * An incremental vacuum,
4610 ** * A commit in auto_vacuum="full" mode,
4611 ** * Creating a table (may require moving an overflow page).
4613 static int accessPayload(
4614 BtCursor *pCur, /* Cursor pointing to entry to read from */
4615 u32 offset, /* Begin reading this far into payload */
4616 u32 amt, /* Read this many bytes */
4617 unsigned char *pBuf, /* Write the bytes into this buffer */
4618 int eOp /* zero to read. non-zero to write. */
4620 unsigned char *aPayload;
4621 int rc = SQLITE_OK;
4622 int iIdx = 0;
4623 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
4624 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4625 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4626 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
4627 #endif
4629 assert( pPage );
4630 assert( eOp==0 || eOp==1 );
4631 assert( pCur->eState==CURSOR_VALID );
4632 assert( pCur->ix<pPage->nCell );
4633 assert( cursorHoldsMutex(pCur) );
4635 getCellInfo(pCur);
4636 aPayload = pCur->info.pPayload;
4637 assert( offset+amt <= pCur->info.nPayload );
4639 assert( aPayload > pPage->aData );
4640 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
4641 /* Trying to read or write past the end of the data is an error. The
4642 ** conditional above is really:
4643 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4644 ** but is recast into its current form to avoid integer overflow problems
4646 return SQLITE_CORRUPT_PAGE(pPage);
4649 /* Check if data must be read/written to/from the btree page itself. */
4650 if( offset<pCur->info.nLocal ){
4651 int a = amt;
4652 if( a+offset>pCur->info.nLocal ){
4653 a = pCur->info.nLocal - offset;
4655 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
4656 offset = 0;
4657 pBuf += a;
4658 amt -= a;
4659 }else{
4660 offset -= pCur->info.nLocal;
4664 if( rc==SQLITE_OK && amt>0 ){
4665 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
4666 Pgno nextPage;
4668 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4670 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4672 ** The aOverflow[] array is sized at one entry for each overflow page
4673 ** in the overflow chain. The page number of the first overflow page is
4674 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4675 ** means "not yet known" (the cache is lazily populated).
4677 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4678 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4679 if( pCur->aOverflow==0
4680 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
4682 Pgno *aNew = (Pgno*)sqlite3Realloc(
4683 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4685 if( aNew==0 ){
4686 return SQLITE_NOMEM_BKPT;
4687 }else{
4688 pCur->aOverflow = aNew;
4691 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4692 pCur->curFlags |= BTCF_ValidOvfl;
4693 }else{
4694 /* If the overflow page-list cache has been allocated and the
4695 ** entry for the first required overflow page is valid, skip
4696 ** directly to it.
4698 if( pCur->aOverflow[offset/ovflSize] ){
4699 iIdx = (offset/ovflSize);
4700 nextPage = pCur->aOverflow[iIdx];
4701 offset = (offset%ovflSize);
4705 assert( rc==SQLITE_OK && amt>0 );
4706 while( nextPage ){
4707 /* If required, populate the overflow page-list cache. */
4708 assert( pCur->aOverflow[iIdx]==0
4709 || pCur->aOverflow[iIdx]==nextPage
4710 || CORRUPT_DB );
4711 pCur->aOverflow[iIdx] = nextPage;
4713 if( offset>=ovflSize ){
4714 /* The only reason to read this page is to obtain the page
4715 ** number for the next page in the overflow chain. The page
4716 ** data is not required. So first try to lookup the overflow
4717 ** page-list cache, if any, then fall back to the getOverflowPage()
4718 ** function.
4720 assert( pCur->curFlags & BTCF_ValidOvfl );
4721 assert( pCur->pBtree->db==pBt->db );
4722 if( pCur->aOverflow[iIdx+1] ){
4723 nextPage = pCur->aOverflow[iIdx+1];
4724 }else{
4725 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4727 offset -= ovflSize;
4728 }else{
4729 /* Need to read this page properly. It contains some of the
4730 ** range of data that is being read (eOp==0) or written (eOp!=0).
4732 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4733 sqlite3_file *fd; /* File from which to do direct overflow read */
4734 #endif
4735 int a = amt;
4736 if( a + offset > ovflSize ){
4737 a = ovflSize - offset;
4740 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4741 /* If all the following are true:
4743 ** 1) this is a read operation, and
4744 ** 2) data is required from the start of this overflow page, and
4745 ** 3) there is no open write-transaction, and
4746 ** 4) the database is file-backed, and
4747 ** 5) the page is not in the WAL file
4748 ** 6) at least 4 bytes have already been read into the output buffer
4750 ** then data can be read directly from the database file into the
4751 ** output buffer, bypassing the page-cache altogether. This speeds
4752 ** up loading large records that span many overflow pages.
4754 if( eOp==0 /* (1) */
4755 && offset==0 /* (2) */
4756 && pBt->inTransaction==TRANS_READ /* (3) */
4757 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
4758 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
4759 && &pBuf[-4]>=pBufStart /* (6) */
4761 u8 aSave[4];
4762 u8 *aWrite = &pBuf[-4];
4763 assert( aWrite>=pBufStart ); /* due to (6) */
4764 memcpy(aSave, aWrite, 4);
4765 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4766 nextPage = get4byte(aWrite);
4767 memcpy(aWrite, aSave, 4);
4768 }else
4769 #endif
4772 DbPage *pDbPage;
4773 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
4774 (eOp==0 ? PAGER_GET_READONLY : 0)
4776 if( rc==SQLITE_OK ){
4777 aPayload = sqlite3PagerGetData(pDbPage);
4778 nextPage = get4byte(aPayload);
4779 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4780 sqlite3PagerUnref(pDbPage);
4781 offset = 0;
4784 amt -= a;
4785 if( amt==0 ) return rc;
4786 pBuf += a;
4788 if( rc ) break;
4789 iIdx++;
4793 if( rc==SQLITE_OK && amt>0 ){
4794 /* Overflow chain ends prematurely */
4795 return SQLITE_CORRUPT_PAGE(pPage);
4797 return rc;
4801 ** Read part of the payload for the row at which that cursor pCur is currently
4802 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
4803 ** begins at "offset".
4805 ** pCur can be pointing to either a table or an index b-tree.
4806 ** If pointing to a table btree, then the content section is read. If
4807 ** pCur is pointing to an index b-tree then the key section is read.
4809 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4810 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4811 ** cursor might be invalid or might need to be restored before being read.
4813 ** Return SQLITE_OK on success or an error code if anything goes
4814 ** wrong. An error is returned if "offset+amt" is larger than
4815 ** the available payload.
4817 int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4818 assert( cursorHoldsMutex(pCur) );
4819 assert( pCur->eState==CURSOR_VALID );
4820 assert( pCur->iPage>=0 && pCur->pPage );
4821 assert( pCur->ix<pCur->pPage->nCell );
4822 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4826 ** This variant of sqlite3BtreePayload() works even if the cursor has not
4827 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4828 ** interface.
4830 #ifndef SQLITE_OMIT_INCRBLOB
4831 static SQLITE_NOINLINE int accessPayloadChecked(
4832 BtCursor *pCur,
4833 u32 offset,
4834 u32 amt,
4835 void *pBuf
4837 int rc;
4838 if ( pCur->eState==CURSOR_INVALID ){
4839 return SQLITE_ABORT;
4841 assert( cursorOwnsBtShared(pCur) );
4842 rc = btreeRestoreCursorPosition(pCur);
4843 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4845 int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4846 if( pCur->eState==CURSOR_VALID ){
4847 assert( cursorOwnsBtShared(pCur) );
4848 return accessPayload(pCur, offset, amt, pBuf, 0);
4849 }else{
4850 return accessPayloadChecked(pCur, offset, amt, pBuf);
4853 #endif /* SQLITE_OMIT_INCRBLOB */
4856 ** Return a pointer to payload information from the entry that the
4857 ** pCur cursor is pointing to. The pointer is to the beginning of
4858 ** the key if index btrees (pPage->intKey==0) and is the data for
4859 ** table btrees (pPage->intKey==1). The number of bytes of available
4860 ** key/data is written into *pAmt. If *pAmt==0, then the value
4861 ** returned will not be a valid pointer.
4863 ** This routine is an optimization. It is common for the entire key
4864 ** and data to fit on the local page and for there to be no overflow
4865 ** pages. When that is so, this routine can be used to access the
4866 ** key and data without making a copy. If the key and/or data spills
4867 ** onto overflow pages, then accessPayload() must be used to reassemble
4868 ** the key/data and copy it into a preallocated buffer.
4870 ** The pointer returned by this routine looks directly into the cached
4871 ** page of the database. The data might change or move the next time
4872 ** any btree routine is called.
4874 static const void *fetchPayload(
4875 BtCursor *pCur, /* Cursor pointing to entry to read from */
4876 u32 *pAmt /* Write the number of available bytes here */
4878 int amt;
4879 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
4880 assert( pCur->eState==CURSOR_VALID );
4881 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4882 assert( cursorOwnsBtShared(pCur) );
4883 assert( pCur->ix<pCur->pPage->nCell );
4884 assert( pCur->info.nSize>0 );
4885 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4886 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
4887 amt = pCur->info.nLocal;
4888 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4889 /* There is too little space on the page for the expected amount
4890 ** of local content. Database must be corrupt. */
4891 assert( CORRUPT_DB );
4892 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4894 *pAmt = (u32)amt;
4895 return (void*)pCur->info.pPayload;
4900 ** For the entry that cursor pCur is point to, return as
4901 ** many bytes of the key or data as are available on the local
4902 ** b-tree page. Write the number of available bytes into *pAmt.
4904 ** The pointer returned is ephemeral. The key/data may move
4905 ** or be destroyed on the next call to any Btree routine,
4906 ** including calls from other threads against the same cache.
4907 ** Hence, a mutex on the BtShared should be held prior to calling
4908 ** this routine.
4910 ** These routines is used to get quick access to key and data
4911 ** in the common case where no overflow pages are used.
4913 const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
4914 return fetchPayload(pCur, pAmt);
4919 ** Move the cursor down to a new child page. The newPgno argument is the
4920 ** page number of the child page to move to.
4922 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4923 ** the new child page does not match the flags field of the parent (i.e.
4924 ** if an intkey page appears to be the parent of a non-intkey page, or
4925 ** vice-versa).
4927 static int moveToChild(BtCursor *pCur, u32 newPgno){
4928 BtShared *pBt = pCur->pBt;
4930 assert( cursorOwnsBtShared(pCur) );
4931 assert( pCur->eState==CURSOR_VALID );
4932 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4933 assert( pCur->iPage>=0 );
4934 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4935 return SQLITE_CORRUPT_BKPT;
4937 pCur->info.nSize = 0;
4938 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4939 pCur->aiIdx[pCur->iPage] = pCur->ix;
4940 pCur->apPage[pCur->iPage] = pCur->pPage;
4941 pCur->ix = 0;
4942 pCur->iPage++;
4943 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
4946 #ifdef SQLITE_DEBUG
4948 ** Page pParent is an internal (non-leaf) tree page. This function
4949 ** asserts that page number iChild is the left-child if the iIdx'th
4950 ** cell in page pParent. Or, if iIdx is equal to the total number of
4951 ** cells in pParent, that page number iChild is the right-child of
4952 ** the page.
4954 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4955 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4956 ** in a corrupt database */
4957 assert( iIdx<=pParent->nCell );
4958 if( iIdx==pParent->nCell ){
4959 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4960 }else{
4961 assert( get4byte(findCell(pParent, iIdx))==iChild );
4964 #else
4965 # define assertParentIndex(x,y,z)
4966 #endif
4969 ** Move the cursor up to the parent page.
4971 ** pCur->idx is set to the cell index that contains the pointer
4972 ** to the page we are coming from. If we are coming from the
4973 ** right-most child page then pCur->idx is set to one more than
4974 ** the largest cell index.
4976 static void moveToParent(BtCursor *pCur){
4977 MemPage *pLeaf;
4978 assert( cursorOwnsBtShared(pCur) );
4979 assert( pCur->eState==CURSOR_VALID );
4980 assert( pCur->iPage>0 );
4981 assert( pCur->pPage );
4982 assertParentIndex(
4983 pCur->apPage[pCur->iPage-1],
4984 pCur->aiIdx[pCur->iPage-1],
4985 pCur->pPage->pgno
4987 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4988 pCur->info.nSize = 0;
4989 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4990 pCur->ix = pCur->aiIdx[pCur->iPage-1];
4991 pLeaf = pCur->pPage;
4992 pCur->pPage = pCur->apPage[--pCur->iPage];
4993 releasePageNotNull(pLeaf);
4997 ** Move the cursor to point to the root page of its b-tree structure.
4999 ** If the table has a virtual root page, then the cursor is moved to point
5000 ** to the virtual root page instead of the actual root page. A table has a
5001 ** virtual root page when the actual root page contains no cells and a
5002 ** single child page. This can only happen with the table rooted at page 1.
5004 ** If the b-tree structure is empty, the cursor state is set to
5005 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5006 ** the cursor is set to point to the first cell located on the root
5007 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5009 ** If this function returns successfully, it may be assumed that the
5010 ** page-header flags indicate that the [virtual] root-page is the expected
5011 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5012 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5013 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5014 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5015 ** b-tree).
5017 static int moveToRoot(BtCursor *pCur){
5018 MemPage *pRoot;
5019 int rc = SQLITE_OK;
5021 assert( cursorOwnsBtShared(pCur) );
5022 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5023 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5024 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
5025 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
5026 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
5028 if( pCur->iPage>=0 ){
5029 if( pCur->iPage ){
5030 releasePageNotNull(pCur->pPage);
5031 while( --pCur->iPage ){
5032 releasePageNotNull(pCur->apPage[pCur->iPage]);
5034 pCur->pPage = pCur->apPage[0];
5035 goto skip_init;
5037 }else if( pCur->pgnoRoot==0 ){
5038 pCur->eState = CURSOR_INVALID;
5039 return SQLITE_EMPTY;
5040 }else{
5041 assert( pCur->iPage==(-1) );
5042 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5043 if( pCur->eState==CURSOR_FAULT ){
5044 assert( pCur->skipNext!=SQLITE_OK );
5045 return pCur->skipNext;
5047 sqlite3BtreeClearCursor(pCur);
5049 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
5050 0, pCur->curPagerFlags);
5051 if( rc!=SQLITE_OK ){
5052 pCur->eState = CURSOR_INVALID;
5053 return rc;
5055 pCur->iPage = 0;
5056 pCur->curIntKey = pCur->pPage->intKey;
5058 pRoot = pCur->pPage;
5059 assert( pRoot->pgno==pCur->pgnoRoot );
5061 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5062 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5063 ** NULL, the caller expects a table b-tree. If this is not the case,
5064 ** return an SQLITE_CORRUPT error.
5066 ** Earlier versions of SQLite assumed that this test could not fail
5067 ** if the root page was already loaded when this function was called (i.e.
5068 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5069 ** in such a way that page pRoot is linked into a second b-tree table
5070 ** (or the freelist). */
5071 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5072 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
5073 return SQLITE_CORRUPT_PAGE(pCur->pPage);
5076 skip_init:
5077 pCur->ix = 0;
5078 pCur->info.nSize = 0;
5079 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
5081 pRoot = pCur->pPage;
5082 if( pRoot->nCell>0 ){
5083 pCur->eState = CURSOR_VALID;
5084 }else if( !pRoot->leaf ){
5085 Pgno subpage;
5086 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
5087 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
5088 pCur->eState = CURSOR_VALID;
5089 rc = moveToChild(pCur, subpage);
5090 }else{
5091 pCur->eState = CURSOR_INVALID;
5092 rc = SQLITE_EMPTY;
5094 return rc;
5098 ** Move the cursor down to the left-most leaf entry beneath the
5099 ** entry to which it is currently pointing.
5101 ** The left-most leaf is the one with the smallest key - the first
5102 ** in ascending order.
5104 static int moveToLeftmost(BtCursor *pCur){
5105 Pgno pgno;
5106 int rc = SQLITE_OK;
5107 MemPage *pPage;
5109 assert( cursorOwnsBtShared(pCur) );
5110 assert( pCur->eState==CURSOR_VALID );
5111 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
5112 assert( pCur->ix<pPage->nCell );
5113 pgno = get4byte(findCell(pPage, pCur->ix));
5114 rc = moveToChild(pCur, pgno);
5116 return rc;
5120 ** Move the cursor down to the right-most leaf entry beneath the
5121 ** page to which it is currently pointing. Notice the difference
5122 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5123 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5124 ** finds the right-most entry beneath the *page*.
5126 ** The right-most entry is the one with the largest key - the last
5127 ** key in ascending order.
5129 static int moveToRightmost(BtCursor *pCur){
5130 Pgno pgno;
5131 int rc = SQLITE_OK;
5132 MemPage *pPage = 0;
5134 assert( cursorOwnsBtShared(pCur) );
5135 assert( pCur->eState==CURSOR_VALID );
5136 while( !(pPage = pCur->pPage)->leaf ){
5137 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5138 pCur->ix = pPage->nCell;
5139 rc = moveToChild(pCur, pgno);
5140 if( rc ) return rc;
5142 pCur->ix = pPage->nCell-1;
5143 assert( pCur->info.nSize==0 );
5144 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5145 return SQLITE_OK;
5148 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5149 ** on success. Set *pRes to 0 if the cursor actually points to something
5150 ** or set *pRes to 1 if the table is empty.
5152 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
5153 int rc;
5155 assert( cursorOwnsBtShared(pCur) );
5156 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5157 rc = moveToRoot(pCur);
5158 if( rc==SQLITE_OK ){
5159 assert( pCur->pPage->nCell>0 );
5160 *pRes = 0;
5161 rc = moveToLeftmost(pCur);
5162 }else if( rc==SQLITE_EMPTY ){
5163 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5164 *pRes = 1;
5165 rc = SQLITE_OK;
5167 return rc;
5170 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5171 ** on success. Set *pRes to 0 if the cursor actually points to something
5172 ** or set *pRes to 1 if the table is empty.
5174 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
5175 int rc;
5177 assert( cursorOwnsBtShared(pCur) );
5178 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5180 /* If the cursor already points to the last entry, this is a no-op. */
5181 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
5182 #ifdef SQLITE_DEBUG
5183 /* This block serves to assert() that the cursor really does point
5184 ** to the last entry in the b-tree. */
5185 int ii;
5186 for(ii=0; ii<pCur->iPage; ii++){
5187 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5189 assert( pCur->ix==pCur->pPage->nCell-1 );
5190 assert( pCur->pPage->leaf );
5191 #endif
5192 return SQLITE_OK;
5195 rc = moveToRoot(pCur);
5196 if( rc==SQLITE_OK ){
5197 assert( pCur->eState==CURSOR_VALID );
5198 *pRes = 0;
5199 rc = moveToRightmost(pCur);
5200 if( rc==SQLITE_OK ){
5201 pCur->curFlags |= BTCF_AtLast;
5202 }else{
5203 pCur->curFlags &= ~BTCF_AtLast;
5205 }else if( rc==SQLITE_EMPTY ){
5206 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5207 *pRes = 1;
5208 rc = SQLITE_OK;
5210 return rc;
5213 /* Move the cursor so that it points to an entry near the key
5214 ** specified by pIdxKey or intKey. Return a success code.
5216 ** For INTKEY tables, the intKey parameter is used. pIdxKey
5217 ** must be NULL. For index tables, pIdxKey is used and intKey
5218 ** is ignored.
5220 ** If an exact match is not found, then the cursor is always
5221 ** left pointing at a leaf page which would hold the entry if it
5222 ** were present. The cursor might point to an entry that comes
5223 ** before or after the key.
5225 ** An integer is written into *pRes which is the result of
5226 ** comparing the key with the entry to which the cursor is
5227 ** pointing. The meaning of the integer written into
5228 ** *pRes is as follows:
5230 ** *pRes<0 The cursor is left pointing at an entry that
5231 ** is smaller than intKey/pIdxKey or if the table is empty
5232 ** and the cursor is therefore left point to nothing.
5234 ** *pRes==0 The cursor is left pointing at an entry that
5235 ** exactly matches intKey/pIdxKey.
5237 ** *pRes>0 The cursor is left pointing at an entry that
5238 ** is larger than intKey/pIdxKey.
5240 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5241 ** exists an entry in the table that exactly matches pIdxKey.
5243 int sqlite3BtreeMovetoUnpacked(
5244 BtCursor *pCur, /* The cursor to be moved */
5245 UnpackedRecord *pIdxKey, /* Unpacked index key */
5246 i64 intKey, /* The table key */
5247 int biasRight, /* If true, bias the search to the high end */
5248 int *pRes /* Write search results here */
5250 int rc;
5251 RecordCompare xRecordCompare;
5253 assert( cursorOwnsBtShared(pCur) );
5254 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5255 assert( pRes );
5256 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
5257 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
5259 /* If the cursor is already positioned at the point we are trying
5260 ** to move to, then just return without doing any work */
5261 if( pIdxKey==0
5262 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
5264 if( pCur->info.nKey==intKey ){
5265 *pRes = 0;
5266 return SQLITE_OK;
5268 if( pCur->info.nKey<intKey ){
5269 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5270 *pRes = -1;
5271 return SQLITE_OK;
5273 /* If the requested key is one more than the previous key, then
5274 ** try to get there using sqlite3BtreeNext() rather than a full
5275 ** binary search. This is an optimization only. The correct answer
5276 ** is still obtained without this case, only a little more slowely */
5277 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5278 *pRes = 0;
5279 rc = sqlite3BtreeNext(pCur, 0);
5280 if( rc==SQLITE_OK ){
5281 getCellInfo(pCur);
5282 if( pCur->info.nKey==intKey ){
5283 return SQLITE_OK;
5285 }else if( rc==SQLITE_DONE ){
5286 rc = SQLITE_OK;
5287 }else{
5288 return rc;
5294 if( pIdxKey ){
5295 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
5296 pIdxKey->errCode = 0;
5297 assert( pIdxKey->default_rc==1
5298 || pIdxKey->default_rc==0
5299 || pIdxKey->default_rc==-1
5301 }else{
5302 xRecordCompare = 0; /* All keys are integers */
5305 rc = moveToRoot(pCur);
5306 if( rc ){
5307 if( rc==SQLITE_EMPTY ){
5308 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
5309 *pRes = -1;
5310 return SQLITE_OK;
5312 return rc;
5314 assert( pCur->pPage );
5315 assert( pCur->pPage->isInit );
5316 assert( pCur->eState==CURSOR_VALID );
5317 assert( pCur->pPage->nCell > 0 );
5318 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
5319 assert( pCur->curIntKey || pIdxKey );
5320 for(;;){
5321 int lwr, upr, idx, c;
5322 Pgno chldPg;
5323 MemPage *pPage = pCur->pPage;
5324 u8 *pCell; /* Pointer to current cell in pPage */
5326 /* pPage->nCell must be greater than zero. If this is the root-page
5327 ** the cursor would have been INVALID above and this for(;;) loop
5328 ** not run. If this is not the root-page, then the moveToChild() routine
5329 ** would have already detected db corruption. Similarly, pPage must
5330 ** be the right kind (index or table) of b-tree page. Otherwise
5331 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5332 assert( pPage->nCell>0 );
5333 assert( pPage->intKey==(pIdxKey==0) );
5334 lwr = 0;
5335 upr = pPage->nCell-1;
5336 assert( biasRight==0 || biasRight==1 );
5337 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
5338 pCur->ix = (u16)idx;
5339 if( xRecordCompare==0 ){
5340 for(;;){
5341 i64 nCellKey;
5342 pCell = findCellPastPtr(pPage, idx);
5343 if( pPage->intKeyLeaf ){
5344 while( 0x80 <= *(pCell++) ){
5345 if( pCell>=pPage->aDataEnd ){
5346 return SQLITE_CORRUPT_PAGE(pPage);
5350 getVarint(pCell, (u64*)&nCellKey);
5351 if( nCellKey<intKey ){
5352 lwr = idx+1;
5353 if( lwr>upr ){ c = -1; break; }
5354 }else if( nCellKey>intKey ){
5355 upr = idx-1;
5356 if( lwr>upr ){ c = +1; break; }
5357 }else{
5358 assert( nCellKey==intKey );
5359 pCur->ix = (u16)idx;
5360 if( !pPage->leaf ){
5361 lwr = idx;
5362 goto moveto_next_layer;
5363 }else{
5364 pCur->curFlags |= BTCF_ValidNKey;
5365 pCur->info.nKey = nCellKey;
5366 pCur->info.nSize = 0;
5367 *pRes = 0;
5368 return SQLITE_OK;
5371 assert( lwr+upr>=0 );
5372 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
5374 }else{
5375 for(;;){
5376 int nCell; /* Size of the pCell cell in bytes */
5377 pCell = findCellPastPtr(pPage, idx);
5379 /* The maximum supported page-size is 65536 bytes. This means that
5380 ** the maximum number of record bytes stored on an index B-Tree
5381 ** page is less than 16384 bytes and may be stored as a 2-byte
5382 ** varint. This information is used to attempt to avoid parsing
5383 ** the entire cell by checking for the cases where the record is
5384 ** stored entirely within the b-tree page by inspecting the first
5385 ** 2 bytes of the cell.
5387 nCell = pCell[0];
5388 if( nCell<=pPage->max1bytePayload ){
5389 /* This branch runs if the record-size field of the cell is a
5390 ** single byte varint and the record fits entirely on the main
5391 ** b-tree page. */
5392 testcase( pCell+nCell+1==pPage->aDataEnd );
5393 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
5394 }else if( !(pCell[1] & 0x80)
5395 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5397 /* The record-size field is a 2 byte varint and the record
5398 ** fits entirely on the main b-tree page. */
5399 testcase( pCell+nCell+2==pPage->aDataEnd );
5400 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
5401 }else{
5402 /* The record flows over onto one or more overflow pages. In
5403 ** this case the whole cell needs to be parsed, a buffer allocated
5404 ** and accessPayload() used to retrieve the record into the
5405 ** buffer before VdbeRecordCompare() can be called.
5407 ** If the record is corrupt, the xRecordCompare routine may read
5408 ** up to two varints past the end of the buffer. An extra 18
5409 ** bytes of padding is allocated at the end of the buffer in
5410 ** case this happens. */
5411 void *pCellKey;
5412 u8 * const pCellBody = pCell - pPage->childPtrSize;
5413 pPage->xParseCell(pPage, pCellBody, &pCur->info);
5414 nCell = (int)pCur->info.nKey;
5415 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5416 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5417 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5418 testcase( nCell==2 ); /* Minimum legal index key size */
5419 if( nCell<2 ){
5420 rc = SQLITE_CORRUPT_PAGE(pPage);
5421 goto moveto_finish;
5423 pCellKey = sqlite3Malloc( nCell+18 );
5424 if( pCellKey==0 ){
5425 rc = SQLITE_NOMEM_BKPT;
5426 goto moveto_finish;
5428 pCur->ix = (u16)idx;
5429 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5430 pCur->curFlags &= ~BTCF_ValidOvfl;
5431 if( rc ){
5432 sqlite3_free(pCellKey);
5433 goto moveto_finish;
5435 c = xRecordCompare(nCell, pCellKey, pIdxKey);
5436 sqlite3_free(pCellKey);
5438 assert(
5439 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
5440 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
5442 if( c<0 ){
5443 lwr = idx+1;
5444 }else if( c>0 ){
5445 upr = idx-1;
5446 }else{
5447 assert( c==0 );
5448 *pRes = 0;
5449 rc = SQLITE_OK;
5450 pCur->ix = (u16)idx;
5451 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
5452 goto moveto_finish;
5454 if( lwr>upr ) break;
5455 assert( lwr+upr>=0 );
5456 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
5459 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
5460 assert( pPage->isInit );
5461 if( pPage->leaf ){
5462 assert( pCur->ix<pCur->pPage->nCell );
5463 pCur->ix = (u16)idx;
5464 *pRes = c;
5465 rc = SQLITE_OK;
5466 goto moveto_finish;
5468 moveto_next_layer:
5469 if( lwr>=pPage->nCell ){
5470 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5471 }else{
5472 chldPg = get4byte(findCell(pPage, lwr));
5474 pCur->ix = (u16)lwr;
5475 rc = moveToChild(pCur, chldPg);
5476 if( rc ) break;
5478 moveto_finish:
5479 pCur->info.nSize = 0;
5480 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5481 return rc;
5486 ** Return TRUE if the cursor is not pointing at an entry of the table.
5488 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5489 ** past the last entry in the table or sqlite3BtreePrev() moves past
5490 ** the first entry. TRUE is also returned if the table is empty.
5492 int sqlite3BtreeEof(BtCursor *pCur){
5493 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5494 ** have been deleted? This API will need to change to return an error code
5495 ** as well as the boolean result value.
5497 return (CURSOR_VALID!=pCur->eState);
5501 ** Return an estimate for the number of rows in the table that pCur is
5502 ** pointing to. Return a negative number if no estimate is currently
5503 ** available.
5505 i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5506 i64 n;
5507 u8 i;
5509 assert( cursorOwnsBtShared(pCur) );
5510 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
5512 /* Currently this interface is only called by the OP_IfSmaller
5513 ** opcode, and it that case the cursor will always be valid and
5514 ** will always point to a leaf node. */
5515 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5516 if( NEVER(pCur->pPage->leaf==0) ) return -1;
5518 n = pCur->pPage->nCell;
5519 for(i=0; i<pCur->iPage; i++){
5520 n *= pCur->apPage[i]->nCell;
5522 return n;
5526 ** Advance the cursor to the next entry in the database.
5527 ** Return value:
5529 ** SQLITE_OK success
5530 ** SQLITE_DONE cursor is already pointing at the last element
5531 ** otherwise some kind of error occurred
5533 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5534 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5535 ** to the next cell on the current page. The (slower) btreeNext() helper
5536 ** routine is called when it is necessary to move to a different page or
5537 ** to restore the cursor.
5539 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5540 ** cursor corresponds to an SQL index and this routine could have been
5541 ** skipped if the SQL index had been a unique index. The F argument
5542 ** is a hint to the implement. SQLite btree implementation does not use
5543 ** this hint, but COMDB2 does.
5545 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
5546 int rc;
5547 int idx;
5548 MemPage *pPage;
5550 assert( cursorOwnsBtShared(pCur) );
5551 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5552 if( pCur->eState!=CURSOR_VALID ){
5553 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
5554 rc = restoreCursorPosition(pCur);
5555 if( rc!=SQLITE_OK ){
5556 return rc;
5558 if( CURSOR_INVALID==pCur->eState ){
5559 return SQLITE_DONE;
5561 if( pCur->skipNext ){
5562 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5563 pCur->eState = CURSOR_VALID;
5564 if( pCur->skipNext>0 ){
5565 pCur->skipNext = 0;
5566 return SQLITE_OK;
5568 pCur->skipNext = 0;
5572 pPage = pCur->pPage;
5573 idx = ++pCur->ix;
5574 assert( pPage->isInit );
5576 /* If the database file is corrupt, it is possible for the value of idx
5577 ** to be invalid here. This can only occur if a second cursor modifies
5578 ** the page while cursor pCur is holding a reference to it. Which can
5579 ** only happen if the database is corrupt in such a way as to link the
5580 ** page into more than one b-tree structure. */
5581 testcase( idx>pPage->nCell );
5583 if( idx>=pPage->nCell ){
5584 if( !pPage->leaf ){
5585 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
5586 if( rc ) return rc;
5587 return moveToLeftmost(pCur);
5590 if( pCur->iPage==0 ){
5591 pCur->eState = CURSOR_INVALID;
5592 return SQLITE_DONE;
5594 moveToParent(pCur);
5595 pPage = pCur->pPage;
5596 }while( pCur->ix>=pPage->nCell );
5597 if( pPage->intKey ){
5598 return sqlite3BtreeNext(pCur, 0);
5599 }else{
5600 return SQLITE_OK;
5603 if( pPage->leaf ){
5604 return SQLITE_OK;
5605 }else{
5606 return moveToLeftmost(pCur);
5609 int sqlite3BtreeNext(BtCursor *pCur, int flags){
5610 MemPage *pPage;
5611 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5612 assert( cursorOwnsBtShared(pCur) );
5613 assert( flags==0 || flags==1 );
5614 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5615 pCur->info.nSize = 0;
5616 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5617 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
5618 pPage = pCur->pPage;
5619 if( (++pCur->ix)>=pPage->nCell ){
5620 pCur->ix--;
5621 return btreeNext(pCur);
5623 if( pPage->leaf ){
5624 return SQLITE_OK;
5625 }else{
5626 return moveToLeftmost(pCur);
5631 ** Step the cursor to the back to the previous entry in the database.
5632 ** Return values:
5634 ** SQLITE_OK success
5635 ** SQLITE_DONE the cursor is already on the first element of the table
5636 ** otherwise some kind of error occurred
5638 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5639 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5640 ** to the previous cell on the current page. The (slower) btreePrevious()
5641 ** helper routine is called when it is necessary to move to a different page
5642 ** or to restore the cursor.
5644 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5645 ** the cursor corresponds to an SQL index and this routine could have been
5646 ** skipped if the SQL index had been a unique index. The F argument is a
5647 ** hint to the implement. The native SQLite btree implementation does not
5648 ** use this hint, but COMDB2 does.
5650 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
5651 int rc;
5652 MemPage *pPage;
5654 assert( cursorOwnsBtShared(pCur) );
5655 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5656 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5657 assert( pCur->info.nSize==0 );
5658 if( pCur->eState!=CURSOR_VALID ){
5659 rc = restoreCursorPosition(pCur);
5660 if( rc!=SQLITE_OK ){
5661 return rc;
5663 if( CURSOR_INVALID==pCur->eState ){
5664 return SQLITE_DONE;
5666 if( pCur->skipNext ){
5667 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5668 pCur->eState = CURSOR_VALID;
5669 if( pCur->skipNext<0 ){
5670 pCur->skipNext = 0;
5671 return SQLITE_OK;
5673 pCur->skipNext = 0;
5677 pPage = pCur->pPage;
5678 assert( pPage->isInit );
5679 if( !pPage->leaf ){
5680 int idx = pCur->ix;
5681 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5682 if( rc ) return rc;
5683 rc = moveToRightmost(pCur);
5684 }else{
5685 while( pCur->ix==0 ){
5686 if( pCur->iPage==0 ){
5687 pCur->eState = CURSOR_INVALID;
5688 return SQLITE_DONE;
5690 moveToParent(pCur);
5692 assert( pCur->info.nSize==0 );
5693 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
5695 pCur->ix--;
5696 pPage = pCur->pPage;
5697 if( pPage->intKey && !pPage->leaf ){
5698 rc = sqlite3BtreePrevious(pCur, 0);
5699 }else{
5700 rc = SQLITE_OK;
5703 return rc;
5705 int sqlite3BtreePrevious(BtCursor *pCur, int flags){
5706 assert( cursorOwnsBtShared(pCur) );
5707 assert( flags==0 || flags==1 );
5708 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5709 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
5710 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5711 pCur->info.nSize = 0;
5712 if( pCur->eState!=CURSOR_VALID
5713 || pCur->ix==0
5714 || pCur->pPage->leaf==0
5716 return btreePrevious(pCur);
5718 pCur->ix--;
5719 return SQLITE_OK;
5723 ** Allocate a new page from the database file.
5725 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5726 ** has already been called on the new page.) The new page has also
5727 ** been referenced and the calling routine is responsible for calling
5728 ** sqlite3PagerUnref() on the new page when it is done.
5730 ** SQLITE_OK is returned on success. Any other return value indicates
5731 ** an error. *ppPage is set to NULL in the event of an error.
5733 ** If the "nearby" parameter is not 0, then an effort is made to
5734 ** locate a page close to the page number "nearby". This can be used in an
5735 ** attempt to keep related pages close to each other in the database file,
5736 ** which in turn can make database access faster.
5738 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5739 ** anywhere on the free-list, then it is guaranteed to be returned. If
5740 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5741 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5742 ** are no restrictions on which page is returned.
5744 static int allocateBtreePage(
5745 BtShared *pBt, /* The btree */
5746 MemPage **ppPage, /* Store pointer to the allocated page here */
5747 Pgno *pPgno, /* Store the page number here */
5748 Pgno nearby, /* Search for a page near this one */
5749 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5751 MemPage *pPage1;
5752 int rc;
5753 u32 n; /* Number of pages on the freelist */
5754 u32 k; /* Number of leaves on the trunk of the freelist */
5755 MemPage *pTrunk = 0;
5756 MemPage *pPrevTrunk = 0;
5757 Pgno mxPage; /* Total size of the database file */
5759 assert( sqlite3_mutex_held(pBt->mutex) );
5760 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5761 pPage1 = pBt->pPage1;
5762 mxPage = btreePagecount(pBt);
5763 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5764 ** stores stores the total number of pages on the freelist. */
5765 n = get4byte(&pPage1->aData[36]);
5766 testcase( n==mxPage-1 );
5767 if( n>=mxPage ){
5768 return SQLITE_CORRUPT_BKPT;
5770 if( n>0 ){
5771 /* There are pages on the freelist. Reuse one of those pages. */
5772 Pgno iTrunk;
5773 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5774 u32 nSearch = 0; /* Count of the number of search attempts */
5776 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5777 ** shows that the page 'nearby' is somewhere on the free-list, then
5778 ** the entire-list will be searched for that page.
5780 #ifndef SQLITE_OMIT_AUTOVACUUM
5781 if( eMode==BTALLOC_EXACT ){
5782 if( nearby<=mxPage ){
5783 u8 eType;
5784 assert( nearby>0 );
5785 assert( pBt->autoVacuum );
5786 rc = ptrmapGet(pBt, nearby, &eType, 0);
5787 if( rc ) return rc;
5788 if( eType==PTRMAP_FREEPAGE ){
5789 searchList = 1;
5792 }else if( eMode==BTALLOC_LE ){
5793 searchList = 1;
5795 #endif
5797 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5798 ** first free-list trunk page. iPrevTrunk is initially 1.
5800 rc = sqlite3PagerWrite(pPage1->pDbPage);
5801 if( rc ) return rc;
5802 put4byte(&pPage1->aData[36], n-1);
5804 /* The code within this loop is run only once if the 'searchList' variable
5805 ** is not true. Otherwise, it runs once for each trunk-page on the
5806 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5807 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5809 do {
5810 pPrevTrunk = pTrunk;
5811 if( pPrevTrunk ){
5812 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5813 ** is the page number of the next freelist trunk page in the list or
5814 ** zero if this is the last freelist trunk page. */
5815 iTrunk = get4byte(&pPrevTrunk->aData[0]);
5816 }else{
5817 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5818 ** stores the page number of the first page of the freelist, or zero if
5819 ** the freelist is empty. */
5820 iTrunk = get4byte(&pPage1->aData[32]);
5822 testcase( iTrunk==mxPage );
5823 if( iTrunk>mxPage || nSearch++ > n ){
5824 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
5825 }else{
5826 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
5828 if( rc ){
5829 pTrunk = 0;
5830 goto end_allocate_page;
5832 assert( pTrunk!=0 );
5833 assert( pTrunk->aData!=0 );
5834 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5835 ** is the number of leaf page pointers to follow. */
5836 k = get4byte(&pTrunk->aData[4]);
5837 if( k==0 && !searchList ){
5838 /* The trunk has no leaves and the list is not being searched.
5839 ** So extract the trunk page itself and use it as the newly
5840 ** allocated page */
5841 assert( pPrevTrunk==0 );
5842 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5843 if( rc ){
5844 goto end_allocate_page;
5846 *pPgno = iTrunk;
5847 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5848 *ppPage = pTrunk;
5849 pTrunk = 0;
5850 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5851 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5852 /* Value of k is out of range. Database corruption */
5853 rc = SQLITE_CORRUPT_PGNO(iTrunk);
5854 goto end_allocate_page;
5855 #ifndef SQLITE_OMIT_AUTOVACUUM
5856 }else if( searchList
5857 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5859 /* The list is being searched and this trunk page is the page
5860 ** to allocate, regardless of whether it has leaves.
5862 *pPgno = iTrunk;
5863 *ppPage = pTrunk;
5864 searchList = 0;
5865 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5866 if( rc ){
5867 goto end_allocate_page;
5869 if( k==0 ){
5870 if( !pPrevTrunk ){
5871 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5872 }else{
5873 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5874 if( rc!=SQLITE_OK ){
5875 goto end_allocate_page;
5877 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5879 }else{
5880 /* The trunk page is required by the caller but it contains
5881 ** pointers to free-list leaves. The first leaf becomes a trunk
5882 ** page in this case.
5884 MemPage *pNewTrunk;
5885 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5886 if( iNewTrunk>mxPage ){
5887 rc = SQLITE_CORRUPT_PGNO(iTrunk);
5888 goto end_allocate_page;
5890 testcase( iNewTrunk==mxPage );
5891 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
5892 if( rc!=SQLITE_OK ){
5893 goto end_allocate_page;
5895 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5896 if( rc!=SQLITE_OK ){
5897 releasePage(pNewTrunk);
5898 goto end_allocate_page;
5900 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5901 put4byte(&pNewTrunk->aData[4], k-1);
5902 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5903 releasePage(pNewTrunk);
5904 if( !pPrevTrunk ){
5905 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5906 put4byte(&pPage1->aData[32], iNewTrunk);
5907 }else{
5908 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5909 if( rc ){
5910 goto end_allocate_page;
5912 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5915 pTrunk = 0;
5916 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5917 #endif
5918 }else if( k>0 ){
5919 /* Extract a leaf from the trunk */
5920 u32 closest;
5921 Pgno iPage;
5922 unsigned char *aData = pTrunk->aData;
5923 if( nearby>0 ){
5924 u32 i;
5925 closest = 0;
5926 if( eMode==BTALLOC_LE ){
5927 for(i=0; i<k; i++){
5928 iPage = get4byte(&aData[8+i*4]);
5929 if( iPage<=nearby ){
5930 closest = i;
5931 break;
5934 }else{
5935 int dist;
5936 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5937 for(i=1; i<k; i++){
5938 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5939 if( d2<dist ){
5940 closest = i;
5941 dist = d2;
5945 }else{
5946 closest = 0;
5949 iPage = get4byte(&aData[8+closest*4]);
5950 testcase( iPage==mxPage );
5951 if( iPage>mxPage ){
5952 rc = SQLITE_CORRUPT_PGNO(iTrunk);
5953 goto end_allocate_page;
5955 testcase( iPage==mxPage );
5956 if( !searchList
5957 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5959 int noContent;
5960 *pPgno = iPage;
5961 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5962 ": %d more free pages\n",
5963 *pPgno, closest+1, k, pTrunk->pgno, n-1));
5964 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5965 if( rc ) goto end_allocate_page;
5966 if( closest<k-1 ){
5967 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5969 put4byte(&aData[4], k-1);
5970 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5971 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
5972 if( rc==SQLITE_OK ){
5973 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5974 if( rc!=SQLITE_OK ){
5975 releasePage(*ppPage);
5976 *ppPage = 0;
5979 searchList = 0;
5982 releasePage(pPrevTrunk);
5983 pPrevTrunk = 0;
5984 }while( searchList );
5985 }else{
5986 /* There are no pages on the freelist, so append a new page to the
5987 ** database image.
5989 ** Normally, new pages allocated by this block can be requested from the
5990 ** pager layer with the 'no-content' flag set. This prevents the pager
5991 ** from trying to read the pages content from disk. However, if the
5992 ** current transaction has already run one or more incremental-vacuum
5993 ** steps, then the page we are about to allocate may contain content
5994 ** that is required in the event of a rollback. In this case, do
5995 ** not set the no-content flag. This causes the pager to load and journal
5996 ** the current page content before overwriting it.
5998 ** Note that the pager will not actually attempt to load or journal
5999 ** content for any page that really does lie past the end of the database
6000 ** file on disk. So the effects of disabling the no-content optimization
6001 ** here are confined to those pages that lie between the end of the
6002 ** database image and the end of the database file.
6004 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
6006 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6007 if( rc ) return rc;
6008 pBt->nPage++;
6009 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
6011 #ifndef SQLITE_OMIT_AUTOVACUUM
6012 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
6013 /* If *pPgno refers to a pointer-map page, allocate two new pages
6014 ** at the end of the file instead of one. The first allocated page
6015 ** becomes a new pointer-map page, the second is used by the caller.
6017 MemPage *pPg = 0;
6018 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6019 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
6020 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
6021 if( rc==SQLITE_OK ){
6022 rc = sqlite3PagerWrite(pPg->pDbPage);
6023 releasePage(pPg);
6025 if( rc ) return rc;
6026 pBt->nPage++;
6027 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
6029 #endif
6030 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6031 *pPgno = pBt->nPage;
6033 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6034 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
6035 if( rc ) return rc;
6036 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
6037 if( rc!=SQLITE_OK ){
6038 releasePage(*ppPage);
6039 *ppPage = 0;
6041 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
6044 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
6046 end_allocate_page:
6047 releasePage(pTrunk);
6048 releasePage(pPrevTrunk);
6049 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6050 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
6051 return rc;
6055 ** This function is used to add page iPage to the database file free-list.
6056 ** It is assumed that the page is not already a part of the free-list.
6058 ** The value passed as the second argument to this function is optional.
6059 ** If the caller happens to have a pointer to the MemPage object
6060 ** corresponding to page iPage handy, it may pass it as the second value.
6061 ** Otherwise, it may pass NULL.
6063 ** If a pointer to a MemPage object is passed as the second argument,
6064 ** its reference count is not altered by this function.
6066 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6067 MemPage *pTrunk = 0; /* Free-list trunk page */
6068 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6069 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6070 MemPage *pPage; /* Page being freed. May be NULL. */
6071 int rc; /* Return Code */
6072 int nFree; /* Initial number of pages on free-list */
6074 assert( sqlite3_mutex_held(pBt->mutex) );
6075 assert( CORRUPT_DB || iPage>1 );
6076 assert( !pMemPage || pMemPage->pgno==iPage );
6078 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
6079 if( pMemPage ){
6080 pPage = pMemPage;
6081 sqlite3PagerRef(pPage->pDbPage);
6082 }else{
6083 pPage = btreePageLookup(pBt, iPage);
6086 /* Increment the free page count on pPage1 */
6087 rc = sqlite3PagerWrite(pPage1->pDbPage);
6088 if( rc ) goto freepage_out;
6089 nFree = get4byte(&pPage1->aData[36]);
6090 put4byte(&pPage1->aData[36], nFree+1);
6092 if( pBt->btsFlags & BTS_SECURE_DELETE ){
6093 /* If the secure_delete option is enabled, then
6094 ** always fully overwrite deleted information with zeros.
6096 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6097 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
6099 goto freepage_out;
6101 memset(pPage->aData, 0, pPage->pBt->pageSize);
6104 /* If the database supports auto-vacuum, write an entry in the pointer-map
6105 ** to indicate that the page is free.
6107 if( ISAUTOVACUUM ){
6108 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
6109 if( rc ) goto freepage_out;
6112 /* Now manipulate the actual database free-list structure. There are two
6113 ** possibilities. If the free-list is currently empty, or if the first
6114 ** trunk page in the free-list is full, then this page will become a
6115 ** new free-list trunk page. Otherwise, it will become a leaf of the
6116 ** first trunk page in the current free-list. This block tests if it
6117 ** is possible to add the page as a new free-list leaf.
6119 if( nFree!=0 ){
6120 u32 nLeaf; /* Initial number of leaf cells on trunk page */
6122 iTrunk = get4byte(&pPage1->aData[32]);
6123 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
6124 if( rc!=SQLITE_OK ){
6125 goto freepage_out;
6128 nLeaf = get4byte(&pTrunk->aData[4]);
6129 assert( pBt->usableSize>32 );
6130 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
6131 rc = SQLITE_CORRUPT_BKPT;
6132 goto freepage_out;
6134 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
6135 /* In this case there is room on the trunk page to insert the page
6136 ** being freed as a new leaf.
6138 ** Note that the trunk page is not really full until it contains
6139 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6140 ** coded. But due to a coding error in versions of SQLite prior to
6141 ** 3.6.0, databases with freelist trunk pages holding more than
6142 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6143 ** to maintain backwards compatibility with older versions of SQLite,
6144 ** we will continue to restrict the number of entries to usableSize/4 - 8
6145 ** for now. At some point in the future (once everyone has upgraded
6146 ** to 3.6.0 or later) we should consider fixing the conditional above
6147 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6149 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6150 ** avoid using the last six entries in the freelist trunk page array in
6151 ** order that database files created by newer versions of SQLite can be
6152 ** read by older versions of SQLite.
6154 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6155 if( rc==SQLITE_OK ){
6156 put4byte(&pTrunk->aData[4], nLeaf+1);
6157 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
6158 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
6159 sqlite3PagerDontWrite(pPage->pDbPage);
6161 rc = btreeSetHasContent(pBt, iPage);
6163 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
6164 goto freepage_out;
6168 /* If control flows to this point, then it was not possible to add the
6169 ** the page being freed as a leaf page of the first trunk in the free-list.
6170 ** Possibly because the free-list is empty, or possibly because the
6171 ** first trunk in the free-list is full. Either way, the page being freed
6172 ** will become the new first trunk page in the free-list.
6174 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6175 goto freepage_out;
6177 rc = sqlite3PagerWrite(pPage->pDbPage);
6178 if( rc!=SQLITE_OK ){
6179 goto freepage_out;
6181 put4byte(pPage->aData, iTrunk);
6182 put4byte(&pPage->aData[4], 0);
6183 put4byte(&pPage1->aData[32], iPage);
6184 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6186 freepage_out:
6187 if( pPage ){
6188 pPage->isInit = 0;
6190 releasePage(pPage);
6191 releasePage(pTrunk);
6192 return rc;
6194 static void freePage(MemPage *pPage, int *pRC){
6195 if( (*pRC)==SQLITE_OK ){
6196 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6201 ** Free any overflow pages associated with the given Cell. Store
6202 ** size information about the cell in pInfo.
6204 static int clearCell(
6205 MemPage *pPage, /* The page that contains the Cell */
6206 unsigned char *pCell, /* First byte of the Cell */
6207 CellInfo *pInfo /* Size information about the cell */
6209 BtShared *pBt;
6210 Pgno ovflPgno;
6211 int rc;
6212 int nOvfl;
6213 u32 ovflPageSize;
6215 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6216 pPage->xParseCell(pPage, pCell, pInfo);
6217 if( pInfo->nLocal==pInfo->nPayload ){
6218 return SQLITE_OK; /* No overflow pages. Return without doing anything */
6220 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
6221 /* Cell extends past end of page */
6222 return SQLITE_CORRUPT_PAGE(pPage);
6224 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
6225 pBt = pPage->pBt;
6226 assert( pBt->usableSize > 4 );
6227 ovflPageSize = pBt->usableSize - 4;
6228 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
6229 assert( nOvfl>0 ||
6230 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
6232 while( nOvfl-- ){
6233 Pgno iNext = 0;
6234 MemPage *pOvfl = 0;
6235 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
6236 /* 0 is not a legal page number and page 1 cannot be an
6237 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6238 ** file the database must be corrupt. */
6239 return SQLITE_CORRUPT_BKPT;
6241 if( nOvfl ){
6242 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6243 if( rc ) return rc;
6246 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
6247 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6249 /* There is no reason any cursor should have an outstanding reference
6250 ** to an overflow page belonging to a cell that is being deleted/updated.
6251 ** So if there exists more than one reference to this page, then it
6252 ** must not really be an overflow page and the database must be corrupt.
6253 ** It is helpful to detect this before calling freePage2(), as
6254 ** freePage2() may zero the page contents if secure-delete mode is
6255 ** enabled. If this 'overflow' page happens to be a page that the
6256 ** caller is iterating through or using in some other way, this
6257 ** can be problematic.
6259 rc = SQLITE_CORRUPT_BKPT;
6260 }else{
6261 rc = freePage2(pBt, pOvfl, ovflPgno);
6264 if( pOvfl ){
6265 sqlite3PagerUnref(pOvfl->pDbPage);
6267 if( rc ) return rc;
6268 ovflPgno = iNext;
6270 return SQLITE_OK;
6274 ** Create the byte sequence used to represent a cell on page pPage
6275 ** and write that byte sequence into pCell[]. Overflow pages are
6276 ** allocated and filled in as necessary. The calling procedure
6277 ** is responsible for making sure sufficient space has been allocated
6278 ** for pCell[].
6280 ** Note that pCell does not necessary need to point to the pPage->aData
6281 ** area. pCell might point to some temporary storage. The cell will
6282 ** be constructed in this temporary area then copied into pPage->aData
6283 ** later.
6285 static int fillInCell(
6286 MemPage *pPage, /* The page that contains the cell */
6287 unsigned char *pCell, /* Complete text of the cell */
6288 const BtreePayload *pX, /* Payload with which to construct the cell */
6289 int *pnSize /* Write cell size here */
6291 int nPayload;
6292 const u8 *pSrc;
6293 int nSrc, n, rc, mn;
6294 int spaceLeft;
6295 MemPage *pToRelease;
6296 unsigned char *pPrior;
6297 unsigned char *pPayload;
6298 BtShared *pBt;
6299 Pgno pgnoOvfl;
6300 int nHeader;
6302 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6304 /* pPage is not necessarily writeable since pCell might be auxiliary
6305 ** buffer space that is separate from the pPage buffer area */
6306 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
6307 || sqlite3PagerIswriteable(pPage->pDbPage) );
6309 /* Fill in the header. */
6310 nHeader = pPage->childPtrSize;
6311 if( pPage->intKey ){
6312 nPayload = pX->nData + pX->nZero;
6313 pSrc = pX->pData;
6314 nSrc = pX->nData;
6315 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
6316 nHeader += putVarint32(&pCell[nHeader], nPayload);
6317 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
6318 }else{
6319 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6320 nSrc = nPayload = (int)pX->nKey;
6321 pSrc = pX->pKey;
6322 nHeader += putVarint32(&pCell[nHeader], nPayload);
6325 /* Fill in the payload */
6326 pPayload = &pCell[nHeader];
6327 if( nPayload<=pPage->maxLocal ){
6328 /* This is the common case where everything fits on the btree page
6329 ** and no overflow pages are required. */
6330 n = nHeader + nPayload;
6331 testcase( n==3 );
6332 testcase( n==4 );
6333 if( n<4 ) n = 4;
6334 *pnSize = n;
6335 assert( nSrc<=nPayload );
6336 testcase( nSrc<nPayload );
6337 memcpy(pPayload, pSrc, nSrc);
6338 memset(pPayload+nSrc, 0, nPayload-nSrc);
6339 return SQLITE_OK;
6342 /* If we reach this point, it means that some of the content will need
6343 ** to spill onto overflow pages.
6345 mn = pPage->minLocal;
6346 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6347 testcase( n==pPage->maxLocal );
6348 testcase( n==pPage->maxLocal+1 );
6349 if( n > pPage->maxLocal ) n = mn;
6350 spaceLeft = n;
6351 *pnSize = n + nHeader + 4;
6352 pPrior = &pCell[nHeader+n];
6353 pToRelease = 0;
6354 pgnoOvfl = 0;
6355 pBt = pPage->pBt;
6357 /* At this point variables should be set as follows:
6359 ** nPayload Total payload size in bytes
6360 ** pPayload Begin writing payload here
6361 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6362 ** that means content must spill into overflow pages.
6363 ** *pnSize Size of the local cell (not counting overflow pages)
6364 ** pPrior Where to write the pgno of the first overflow page
6366 ** Use a call to btreeParseCellPtr() to verify that the values above
6367 ** were computed correctly.
6369 #ifdef SQLITE_DEBUG
6371 CellInfo info;
6372 pPage->xParseCell(pPage, pCell, &info);
6373 assert( nHeader==(int)(info.pPayload - pCell) );
6374 assert( info.nKey==pX->nKey );
6375 assert( *pnSize == info.nSize );
6376 assert( spaceLeft == info.nLocal );
6378 #endif
6380 /* Write the payload into the local Cell and any extra into overflow pages */
6381 while( 1 ){
6382 n = nPayload;
6383 if( n>spaceLeft ) n = spaceLeft;
6385 /* If pToRelease is not zero than pPayload points into the data area
6386 ** of pToRelease. Make sure pToRelease is still writeable. */
6387 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6389 /* If pPayload is part of the data area of pPage, then make sure pPage
6390 ** is still writeable */
6391 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6392 || sqlite3PagerIswriteable(pPage->pDbPage) );
6394 if( nSrc>=n ){
6395 memcpy(pPayload, pSrc, n);
6396 }else if( nSrc>0 ){
6397 n = nSrc;
6398 memcpy(pPayload, pSrc, n);
6399 }else{
6400 memset(pPayload, 0, n);
6402 nPayload -= n;
6403 if( nPayload<=0 ) break;
6404 pPayload += n;
6405 pSrc += n;
6406 nSrc -= n;
6407 spaceLeft -= n;
6408 if( spaceLeft==0 ){
6409 MemPage *pOvfl = 0;
6410 #ifndef SQLITE_OMIT_AUTOVACUUM
6411 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
6412 if( pBt->autoVacuum ){
6414 pgnoOvfl++;
6415 } while(
6416 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6419 #endif
6420 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
6421 #ifndef SQLITE_OMIT_AUTOVACUUM
6422 /* If the database supports auto-vacuum, and the second or subsequent
6423 ** overflow page is being allocated, add an entry to the pointer-map
6424 ** for that page now.
6426 ** If this is the first overflow page, then write a partial entry
6427 ** to the pointer-map. If we write nothing to this pointer-map slot,
6428 ** then the optimistic overflow chain processing in clearCell()
6429 ** may misinterpret the uninitialized values and delete the
6430 ** wrong pages from the database.
6432 if( pBt->autoVacuum && rc==SQLITE_OK ){
6433 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
6434 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
6435 if( rc ){
6436 releasePage(pOvfl);
6439 #endif
6440 if( rc ){
6441 releasePage(pToRelease);
6442 return rc;
6445 /* If pToRelease is not zero than pPrior points into the data area
6446 ** of pToRelease. Make sure pToRelease is still writeable. */
6447 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6449 /* If pPrior is part of the data area of pPage, then make sure pPage
6450 ** is still writeable */
6451 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6452 || sqlite3PagerIswriteable(pPage->pDbPage) );
6454 put4byte(pPrior, pgnoOvfl);
6455 releasePage(pToRelease);
6456 pToRelease = pOvfl;
6457 pPrior = pOvfl->aData;
6458 put4byte(pPrior, 0);
6459 pPayload = &pOvfl->aData[4];
6460 spaceLeft = pBt->usableSize - 4;
6463 releasePage(pToRelease);
6464 return SQLITE_OK;
6468 ** Remove the i-th cell from pPage. This routine effects pPage only.
6469 ** The cell content is not freed or deallocated. It is assumed that
6470 ** the cell content has been copied someplace else. This routine just
6471 ** removes the reference to the cell from pPage.
6473 ** "sz" must be the number of bytes in the cell.
6475 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
6476 u32 pc; /* Offset to cell content of cell being deleted */
6477 u8 *data; /* pPage->aData */
6478 u8 *ptr; /* Used to move bytes around within data[] */
6479 int rc; /* The return code */
6480 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
6482 if( *pRC ) return;
6483 assert( idx>=0 && idx<pPage->nCell );
6484 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
6485 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6486 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6487 data = pPage->aData;
6488 ptr = &pPage->aCellIdx[2*idx];
6489 pc = get2byte(ptr);
6490 hdr = pPage->hdrOffset;
6491 testcase( pc==get2byte(&data[hdr+5]) );
6492 testcase( pc+sz==pPage->pBt->usableSize );
6493 if( pc+sz > pPage->pBt->usableSize ){
6494 *pRC = SQLITE_CORRUPT_BKPT;
6495 return;
6497 rc = freeSpace(pPage, pc, sz);
6498 if( rc ){
6499 *pRC = rc;
6500 return;
6502 pPage->nCell--;
6503 if( pPage->nCell==0 ){
6504 memset(&data[hdr+1], 0, 4);
6505 data[hdr+7] = 0;
6506 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6507 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6508 - pPage->childPtrSize - 8;
6509 }else{
6510 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6511 put2byte(&data[hdr+3], pPage->nCell);
6512 pPage->nFree += 2;
6517 ** Insert a new cell on pPage at cell index "i". pCell points to the
6518 ** content of the cell.
6520 ** If the cell content will fit on the page, then put it there. If it
6521 ** will not fit, then make a copy of the cell content into pTemp if
6522 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6523 ** in pPage->apOvfl[] and make it point to the cell content (either
6524 ** in pTemp or the original pCell) and also record its index.
6525 ** Allocating a new entry in pPage->aCell[] implies that
6526 ** pPage->nOverflow is incremented.
6528 ** *pRC must be SQLITE_OK when this routine is called.
6530 static void insertCell(
6531 MemPage *pPage, /* Page into which we are copying */
6532 int i, /* New cell becomes the i-th cell of the page */
6533 u8 *pCell, /* Content of the new cell */
6534 int sz, /* Bytes of content in pCell */
6535 u8 *pTemp, /* Temp storage space for pCell, if needed */
6536 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6537 int *pRC /* Read and write return code from here */
6539 int idx = 0; /* Where to write new cell content in data[] */
6540 int j; /* Loop counter */
6541 u8 *data; /* The content of the whole page */
6542 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
6544 assert( *pRC==SQLITE_OK );
6545 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
6546 assert( MX_CELL(pPage->pBt)<=10921 );
6547 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
6548 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6549 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
6550 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6551 /* The cell should normally be sized correctly. However, when moving a
6552 ** malformed cell from a leaf page to an interior page, if the cell size
6553 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6554 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6555 ** the term after the || in the following assert(). */
6556 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
6557 if( pPage->nOverflow || sz+2>pPage->nFree ){
6558 if( pTemp ){
6559 memcpy(pTemp, pCell, sz);
6560 pCell = pTemp;
6562 if( iChild ){
6563 put4byte(pCell, iChild);
6565 j = pPage->nOverflow++;
6566 /* Comparison against ArraySize-1 since we hold back one extra slot
6567 ** as a contingency. In other words, never need more than 3 overflow
6568 ** slots but 4 are allocated, just to be safe. */
6569 assert( j < ArraySize(pPage->apOvfl)-1 );
6570 pPage->apOvfl[j] = pCell;
6571 pPage->aiOvfl[j] = (u16)i;
6573 /* When multiple overflows occur, they are always sequential and in
6574 ** sorted order. This invariants arise because multiple overflows can
6575 ** only occur when inserting divider cells into the parent page during
6576 ** balancing, and the dividers are adjacent and sorted.
6578 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6579 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
6580 }else{
6581 int rc = sqlite3PagerWrite(pPage->pDbPage);
6582 if( rc!=SQLITE_OK ){
6583 *pRC = rc;
6584 return;
6586 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
6587 data = pPage->aData;
6588 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
6589 rc = allocateSpace(pPage, sz, &idx);
6590 if( rc ){ *pRC = rc; return; }
6591 /* The allocateSpace() routine guarantees the following properties
6592 ** if it returns successfully */
6593 assert( idx >= 0 );
6594 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
6595 assert( idx+sz <= (int)pPage->pBt->usableSize );
6596 pPage->nFree -= (u16)(2 + sz);
6597 memcpy(&data[idx], pCell, sz);
6598 if( iChild ){
6599 put4byte(&data[idx], iChild);
6601 pIns = pPage->aCellIdx + i*2;
6602 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6603 put2byte(pIns, idx);
6604 pPage->nCell++;
6605 /* increment the cell count */
6606 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6607 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
6608 #ifndef SQLITE_OMIT_AUTOVACUUM
6609 if( pPage->pBt->autoVacuum ){
6610 /* The cell may contain a pointer to an overflow page. If so, write
6611 ** the entry for the overflow page into the pointer map.
6613 ptrmapPutOvflPtr(pPage, pCell, pRC);
6615 #endif
6620 ** A CellArray object contains a cache of pointers and sizes for a
6621 ** consecutive sequence of cells that might be held on multiple pages.
6623 typedef struct CellArray CellArray;
6624 struct CellArray {
6625 int nCell; /* Number of cells in apCell[] */
6626 MemPage *pRef; /* Reference page */
6627 u8 **apCell; /* All cells begin balanced */
6628 u16 *szCell; /* Local size of all cells in apCell[] */
6632 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6633 ** computed.
6635 static void populateCellCache(CellArray *p, int idx, int N){
6636 assert( idx>=0 && idx+N<=p->nCell );
6637 while( N>0 ){
6638 assert( p->apCell[idx]!=0 );
6639 if( p->szCell[idx]==0 ){
6640 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6641 }else{
6642 assert( CORRUPT_DB ||
6643 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6645 idx++;
6646 N--;
6651 ** Return the size of the Nth element of the cell array
6653 static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6654 assert( N>=0 && N<p->nCell );
6655 assert( p->szCell[N]==0 );
6656 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6657 return p->szCell[N];
6659 static u16 cachedCellSize(CellArray *p, int N){
6660 assert( N>=0 && N<p->nCell );
6661 if( p->szCell[N] ) return p->szCell[N];
6662 return computeCellSize(p, N);
6666 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6667 ** szCell[] array contains the size in bytes of each cell. This function
6668 ** replaces the current contents of page pPg with the contents of the cell
6669 ** array.
6671 ** Some of the cells in apCell[] may currently be stored in pPg. This
6672 ** function works around problems caused by this by making a copy of any
6673 ** such cells before overwriting the page data.
6675 ** The MemPage.nFree field is invalidated by this function. It is the
6676 ** responsibility of the caller to set it correctly.
6678 static int rebuildPage(
6679 MemPage *pPg, /* Edit this page */
6680 int nCell, /* Final number of cells on page */
6681 u8 **apCell, /* Array of cells */
6682 u16 *szCell /* Array of cell sizes */
6684 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6685 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6686 const int usableSize = pPg->pBt->usableSize;
6687 u8 * const pEnd = &aData[usableSize];
6688 int i;
6689 u8 *pCellptr = pPg->aCellIdx;
6690 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6691 u8 *pData;
6693 i = get2byte(&aData[hdr+5]);
6694 memcpy(&pTmp[i], &aData[i], usableSize - i);
6696 pData = pEnd;
6697 for(i=0; i<nCell; i++){
6698 u8 *pCell = apCell[i];
6699 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
6700 pCell = &pTmp[pCell - aData];
6702 pData -= szCell[i];
6703 put2byte(pCellptr, (pData - aData));
6704 pCellptr += 2;
6705 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6706 memcpy(pData, pCell, szCell[i]);
6707 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
6708 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
6711 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
6712 pPg->nCell = nCell;
6713 pPg->nOverflow = 0;
6715 put2byte(&aData[hdr+1], 0);
6716 put2byte(&aData[hdr+3], pPg->nCell);
6717 put2byte(&aData[hdr+5], pData - aData);
6718 aData[hdr+7] = 0x00;
6719 return SQLITE_OK;
6723 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6724 ** contains the size in bytes of each such cell. This function attempts to
6725 ** add the cells stored in the array to page pPg. If it cannot (because
6726 ** the page needs to be defragmented before the cells will fit), non-zero
6727 ** is returned. Otherwise, if the cells are added successfully, zero is
6728 ** returned.
6730 ** Argument pCellptr points to the first entry in the cell-pointer array
6731 ** (part of page pPg) to populate. After cell apCell[0] is written to the
6732 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
6733 ** cell in the array. It is the responsibility of the caller to ensure
6734 ** that it is safe to overwrite this part of the cell-pointer array.
6736 ** When this function is called, *ppData points to the start of the
6737 ** content area on page pPg. If the size of the content area is extended,
6738 ** *ppData is updated to point to the new start of the content area
6739 ** before returning.
6741 ** Finally, argument pBegin points to the byte immediately following the
6742 ** end of the space required by this page for the cell-pointer area (for
6743 ** all cells - not just those inserted by the current call). If the content
6744 ** area must be extended to before this point in order to accomodate all
6745 ** cells in apCell[], then the cells do not fit and non-zero is returned.
6747 static int pageInsertArray(
6748 MemPage *pPg, /* Page to add cells to */
6749 u8 *pBegin, /* End of cell-pointer array */
6750 u8 **ppData, /* IN/OUT: Page content -area pointer */
6751 u8 *pCellptr, /* Pointer to cell-pointer area */
6752 int iFirst, /* Index of first cell to add */
6753 int nCell, /* Number of cells to add to pPg */
6754 CellArray *pCArray /* Array of cells */
6756 int i;
6757 u8 *aData = pPg->aData;
6758 u8 *pData = *ppData;
6759 int iEnd = iFirst + nCell;
6760 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
6761 for(i=iFirst; i<iEnd; i++){
6762 int sz, rc;
6763 u8 *pSlot;
6764 sz = cachedCellSize(pCArray, i);
6765 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
6766 if( (pData - pBegin)<sz ) return 1;
6767 pData -= sz;
6768 pSlot = pData;
6770 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6771 ** database. But they might for a corrupt database. Hence use memmove()
6772 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6773 assert( (pSlot+sz)<=pCArray->apCell[i]
6774 || pSlot>=(pCArray->apCell[i]+sz)
6775 || CORRUPT_DB );
6776 memmove(pSlot, pCArray->apCell[i], sz);
6777 put2byte(pCellptr, (pSlot - aData));
6778 pCellptr += 2;
6780 *ppData = pData;
6781 return 0;
6785 ** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6786 ** contains the size in bytes of each such cell. This function adds the
6787 ** space associated with each cell in the array that is currently stored
6788 ** within the body of pPg to the pPg free-list. The cell-pointers and other
6789 ** fields of the page are not updated.
6791 ** This function returns the total number of cells added to the free-list.
6793 static int pageFreeArray(
6794 MemPage *pPg, /* Page to edit */
6795 int iFirst, /* First cell to delete */
6796 int nCell, /* Cells to delete */
6797 CellArray *pCArray /* Array of cells */
6799 u8 * const aData = pPg->aData;
6800 u8 * const pEnd = &aData[pPg->pBt->usableSize];
6801 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
6802 int nRet = 0;
6803 int i;
6804 int iEnd = iFirst + nCell;
6805 u8 *pFree = 0;
6806 int szFree = 0;
6808 for(i=iFirst; i<iEnd; i++){
6809 u8 *pCell = pCArray->apCell[i];
6810 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
6811 int sz;
6812 /* No need to use cachedCellSize() here. The sizes of all cells that
6813 ** are to be freed have already been computing while deciding which
6814 ** cells need freeing */
6815 sz = pCArray->szCell[i]; assert( sz>0 );
6816 if( pFree!=(pCell + sz) ){
6817 if( pFree ){
6818 assert( pFree>aData && (pFree - aData)<65536 );
6819 freeSpace(pPg, (u16)(pFree - aData), szFree);
6821 pFree = pCell;
6822 szFree = sz;
6823 if( pFree+sz>pEnd ) return 0;
6824 }else{
6825 pFree = pCell;
6826 szFree += sz;
6828 nRet++;
6831 if( pFree ){
6832 assert( pFree>aData && (pFree - aData)<65536 );
6833 freeSpace(pPg, (u16)(pFree - aData), szFree);
6835 return nRet;
6839 ** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6840 ** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6841 ** with apCell[iOld]. After balancing, this page should hold nNew cells
6842 ** starting at apCell[iNew].
6844 ** This routine makes the necessary adjustments to pPg so that it contains
6845 ** the correct cells after being balanced.
6847 ** The pPg->nFree field is invalid when this function returns. It is the
6848 ** responsibility of the caller to set it correctly.
6850 static int editPage(
6851 MemPage *pPg, /* Edit this page */
6852 int iOld, /* Index of first cell currently on page */
6853 int iNew, /* Index of new first cell on page */
6854 int nNew, /* Final number of cells on page */
6855 CellArray *pCArray /* Array of cells and sizes */
6857 u8 * const aData = pPg->aData;
6858 const int hdr = pPg->hdrOffset;
6859 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6860 int nCell = pPg->nCell; /* Cells stored on pPg */
6861 u8 *pData;
6862 u8 *pCellptr;
6863 int i;
6864 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6865 int iNewEnd = iNew + nNew;
6867 #ifdef SQLITE_DEBUG
6868 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6869 memcpy(pTmp, aData, pPg->pBt->usableSize);
6870 #endif
6872 /* Remove cells from the start and end of the page */
6873 if( iOld<iNew ){
6874 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
6875 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6876 nCell -= nShift;
6878 if( iNewEnd < iOldEnd ){
6879 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
6882 pData = &aData[get2byteNotZero(&aData[hdr+5])];
6883 if( pData<pBegin ) goto editpage_fail;
6885 /* Add cells to the start of the page */
6886 if( iNew<iOld ){
6887 int nAdd = MIN(nNew,iOld-iNew);
6888 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
6889 pCellptr = pPg->aCellIdx;
6890 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6891 if( pageInsertArray(
6892 pPg, pBegin, &pData, pCellptr,
6893 iNew, nAdd, pCArray
6894 ) ) goto editpage_fail;
6895 nCell += nAdd;
6898 /* Add any overflow cells */
6899 for(i=0; i<pPg->nOverflow; i++){
6900 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6901 if( iCell>=0 && iCell<nNew ){
6902 pCellptr = &pPg->aCellIdx[iCell * 2];
6903 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6904 nCell++;
6905 if( pageInsertArray(
6906 pPg, pBegin, &pData, pCellptr,
6907 iCell+iNew, 1, pCArray
6908 ) ) goto editpage_fail;
6912 /* Append cells to the end of the page */
6913 pCellptr = &pPg->aCellIdx[nCell*2];
6914 if( pageInsertArray(
6915 pPg, pBegin, &pData, pCellptr,
6916 iNew+nCell, nNew-nCell, pCArray
6917 ) ) goto editpage_fail;
6919 pPg->nCell = nNew;
6920 pPg->nOverflow = 0;
6922 put2byte(&aData[hdr+3], pPg->nCell);
6923 put2byte(&aData[hdr+5], pData - aData);
6925 #ifdef SQLITE_DEBUG
6926 for(i=0; i<nNew && !CORRUPT_DB; i++){
6927 u8 *pCell = pCArray->apCell[i+iNew];
6928 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
6929 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
6930 pCell = &pTmp[pCell - aData];
6932 assert( 0==memcmp(pCell, &aData[iOff],
6933 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
6935 #endif
6937 return SQLITE_OK;
6938 editpage_fail:
6939 /* Unable to edit this page. Rebuild it from scratch instead. */
6940 populateCellCache(pCArray, iNew, nNew);
6941 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
6945 ** The following parameters determine how many adjacent pages get involved
6946 ** in a balancing operation. NN is the number of neighbors on either side
6947 ** of the page that participate in the balancing operation. NB is the
6948 ** total number of pages that participate, including the target page and
6949 ** NN neighbors on either side.
6951 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6952 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6953 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6954 ** The value of NN appears to give the best results overall.
6956 #define NN 1 /* Number of neighbors on either side of pPage */
6957 #define NB (NN*2+1) /* Total pages involved in the balance */
6960 #ifndef SQLITE_OMIT_QUICKBALANCE
6962 ** This version of balance() handles the common special case where
6963 ** a new entry is being inserted on the extreme right-end of the
6964 ** tree, in other words, when the new entry will become the largest
6965 ** entry in the tree.
6967 ** Instead of trying to balance the 3 right-most leaf pages, just add
6968 ** a new page to the right-hand side and put the one new entry in
6969 ** that page. This leaves the right side of the tree somewhat
6970 ** unbalanced. But odds are that we will be inserting new entries
6971 ** at the end soon afterwards so the nearly empty page will quickly
6972 ** fill up. On average.
6974 ** pPage is the leaf page which is the right-most page in the tree.
6975 ** pParent is its parent. pPage must have a single overflow entry
6976 ** which is also the right-most entry on the page.
6978 ** The pSpace buffer is used to store a temporary copy of the divider
6979 ** cell that will be inserted into pParent. Such a cell consists of a 4
6980 ** byte page number followed by a variable length integer. In other
6981 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6982 ** least 13 bytes in size.
6984 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6985 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
6986 MemPage *pNew; /* Newly allocated page */
6987 int rc; /* Return Code */
6988 Pgno pgnoNew; /* Page number of pNew */
6990 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6991 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6992 assert( pPage->nOverflow==1 );
6994 /* This error condition is now caught prior to reaching this function */
6995 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
6997 /* Allocate a new page. This page will become the right-sibling of
6998 ** pPage. Make the parent page writable, so that the new divider cell
6999 ** may be inserted. If both these operations are successful, proceed.
7001 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
7003 if( rc==SQLITE_OK ){
7005 u8 *pOut = &pSpace[4];
7006 u8 *pCell = pPage->apOvfl[0];
7007 u16 szCell = pPage->xCellSize(pPage, pCell);
7008 u8 *pStop;
7010 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
7011 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7012 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
7013 rc = rebuildPage(pNew, 1, &pCell, &szCell);
7014 if( NEVER(rc) ) return rc;
7015 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
7017 /* If this is an auto-vacuum database, update the pointer map
7018 ** with entries for the new page, and any pointer from the
7019 ** cell on the page to an overflow page. If either of these
7020 ** operations fails, the return code is set, but the contents
7021 ** of the parent page are still manipulated by thh code below.
7022 ** That is Ok, at this point the parent page is guaranteed to
7023 ** be marked as dirty. Returning an error code will cause a
7024 ** rollback, undoing any changes made to the parent page.
7026 if( ISAUTOVACUUM ){
7027 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7028 if( szCell>pNew->minLocal ){
7029 ptrmapPutOvflPtr(pNew, pCell, &rc);
7033 /* Create a divider cell to insert into pParent. The divider cell
7034 ** consists of a 4-byte page number (the page number of pPage) and
7035 ** a variable length key value (which must be the same value as the
7036 ** largest key on pPage).
7038 ** To find the largest key value on pPage, first find the right-most
7039 ** cell on pPage. The first two fields of this cell are the
7040 ** record-length (a variable length integer at most 32-bits in size)
7041 ** and the key value (a variable length integer, may have any value).
7042 ** The first of the while(...) loops below skips over the record-length
7043 ** field. The second while(...) loop copies the key value from the
7044 ** cell on pPage into the pSpace buffer.
7046 pCell = findCell(pPage, pPage->nCell-1);
7047 pStop = &pCell[9];
7048 while( (*(pCell++)&0x80) && pCell<pStop );
7049 pStop = &pCell[9];
7050 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7052 /* Insert the new divider cell into pParent. */
7053 if( rc==SQLITE_OK ){
7054 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7055 0, pPage->pgno, &rc);
7058 /* Set the right-child pointer of pParent to point to the new page. */
7059 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7061 /* Release the reference to the new page. */
7062 releasePage(pNew);
7065 return rc;
7067 #endif /* SQLITE_OMIT_QUICKBALANCE */
7069 #if 0
7071 ** This function does not contribute anything to the operation of SQLite.
7072 ** it is sometimes activated temporarily while debugging code responsible
7073 ** for setting pointer-map entries.
7075 static int ptrmapCheckPages(MemPage **apPage, int nPage){
7076 int i, j;
7077 for(i=0; i<nPage; i++){
7078 Pgno n;
7079 u8 e;
7080 MemPage *pPage = apPage[i];
7081 BtShared *pBt = pPage->pBt;
7082 assert( pPage->isInit );
7084 for(j=0; j<pPage->nCell; j++){
7085 CellInfo info;
7086 u8 *z;
7088 z = findCell(pPage, j);
7089 pPage->xParseCell(pPage, z, &info);
7090 if( info.nLocal<info.nPayload ){
7091 Pgno ovfl = get4byte(&z[info.nSize-4]);
7092 ptrmapGet(pBt, ovfl, &e, &n);
7093 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7095 if( !pPage->leaf ){
7096 Pgno child = get4byte(z);
7097 ptrmapGet(pBt, child, &e, &n);
7098 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7101 if( !pPage->leaf ){
7102 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7103 ptrmapGet(pBt, child, &e, &n);
7104 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7107 return 1;
7109 #endif
7112 ** This function is used to copy the contents of the b-tree node stored
7113 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7114 ** the pointer-map entries for each child page are updated so that the
7115 ** parent page stored in the pointer map is page pTo. If pFrom contained
7116 ** any cells with overflow page pointers, then the corresponding pointer
7117 ** map entries are also updated so that the parent page is page pTo.
7119 ** If pFrom is currently carrying any overflow cells (entries in the
7120 ** MemPage.apOvfl[] array), they are not copied to pTo.
7122 ** Before returning, page pTo is reinitialized using btreeInitPage().
7124 ** The performance of this function is not critical. It is only used by
7125 ** the balance_shallower() and balance_deeper() procedures, neither of
7126 ** which are called often under normal circumstances.
7128 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7129 if( (*pRC)==SQLITE_OK ){
7130 BtShared * const pBt = pFrom->pBt;
7131 u8 * const aFrom = pFrom->aData;
7132 u8 * const aTo = pTo->aData;
7133 int const iFromHdr = pFrom->hdrOffset;
7134 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
7135 int rc;
7136 int iData;
7139 assert( pFrom->isInit );
7140 assert( pFrom->nFree>=iToHdr );
7141 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
7143 /* Copy the b-tree node content from page pFrom to page pTo. */
7144 iData = get2byte(&aFrom[iFromHdr+5]);
7145 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7146 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7148 /* Reinitialize page pTo so that the contents of the MemPage structure
7149 ** match the new data. The initialization of pTo can actually fail under
7150 ** fairly obscure circumstances, even though it is a copy of initialized
7151 ** page pFrom.
7153 pTo->isInit = 0;
7154 rc = btreeInitPage(pTo);
7155 if( rc!=SQLITE_OK ){
7156 *pRC = rc;
7157 return;
7160 /* If this is an auto-vacuum database, update the pointer-map entries
7161 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7163 if( ISAUTOVACUUM ){
7164 *pRC = setChildPtrmaps(pTo);
7170 ** This routine redistributes cells on the iParentIdx'th child of pParent
7171 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7172 ** same amount of free space. Usually a single sibling on either side of the
7173 ** page are used in the balancing, though both siblings might come from one
7174 ** side if the page is the first or last child of its parent. If the page
7175 ** has fewer than 2 siblings (something which can only happen if the page
7176 ** is a root page or a child of a root page) then all available siblings
7177 ** participate in the balancing.
7179 ** The number of siblings of the page might be increased or decreased by
7180 ** one or two in an effort to keep pages nearly full but not over full.
7182 ** Note that when this routine is called, some of the cells on the page
7183 ** might not actually be stored in MemPage.aData[]. This can happen
7184 ** if the page is overfull. This routine ensures that all cells allocated
7185 ** to the page and its siblings fit into MemPage.aData[] before returning.
7187 ** In the course of balancing the page and its siblings, cells may be
7188 ** inserted into or removed from the parent page (pParent). Doing so
7189 ** may cause the parent page to become overfull or underfull. If this
7190 ** happens, it is the responsibility of the caller to invoke the correct
7191 ** balancing routine to fix this problem (see the balance() routine).
7193 ** If this routine fails for any reason, it might leave the database
7194 ** in a corrupted state. So if this routine fails, the database should
7195 ** be rolled back.
7197 ** The third argument to this function, aOvflSpace, is a pointer to a
7198 ** buffer big enough to hold one page. If while inserting cells into the parent
7199 ** page (pParent) the parent page becomes overfull, this buffer is
7200 ** used to store the parent's overflow cells. Because this function inserts
7201 ** a maximum of four divider cells into the parent page, and the maximum
7202 ** size of a cell stored within an internal node is always less than 1/4
7203 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7204 ** enough for all overflow cells.
7206 ** If aOvflSpace is set to a null pointer, this function returns
7207 ** SQLITE_NOMEM.
7209 static int balance_nonroot(
7210 MemPage *pParent, /* Parent page of siblings being balanced */
7211 int iParentIdx, /* Index of "the page" in pParent */
7212 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
7213 int isRoot, /* True if pParent is a root-page */
7214 int bBulk /* True if this call is part of a bulk load */
7216 BtShared *pBt; /* The whole database */
7217 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
7218 int nNew = 0; /* Number of pages in apNew[] */
7219 int nOld; /* Number of pages in apOld[] */
7220 int i, j, k; /* Loop counters */
7221 int nxDiv; /* Next divider slot in pParent->aCell[] */
7222 int rc = SQLITE_OK; /* The return code */
7223 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
7224 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
7225 int usableSpace; /* Bytes in pPage beyond the header */
7226 int pageFlags; /* Value of pPage->aData[0] */
7227 int iSpace1 = 0; /* First unused byte of aSpace1[] */
7228 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
7229 int szScratch; /* Size of scratch memory requested */
7230 MemPage *apOld[NB]; /* pPage and up to two siblings */
7231 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
7232 u8 *pRight; /* Location in parent of right-sibling pointer */
7233 u8 *apDiv[NB-1]; /* Divider cells in pParent */
7234 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7235 int cntOld[NB+2]; /* Old index in b.apCell[] */
7236 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
7237 u8 *aSpace1; /* Space for copies of dividers cells */
7238 Pgno pgno; /* Temp var to store a page number in */
7239 u8 abDone[NB+2]; /* True after i'th new page is populated */
7240 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
7241 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
7242 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
7243 CellArray b; /* Parsed information on cells being balanced */
7245 memset(abDone, 0, sizeof(abDone));
7246 b.nCell = 0;
7247 b.apCell = 0;
7248 pBt = pParent->pBt;
7249 assert( sqlite3_mutex_held(pBt->mutex) );
7250 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7252 #if 0
7253 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
7254 #endif
7256 /* At this point pParent may have at most one overflow cell. And if
7257 ** this overflow cell is present, it must be the cell with
7258 ** index iParentIdx. This scenario comes about when this function
7259 ** is called (indirectly) from sqlite3BtreeDelete().
7261 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
7262 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
7264 if( !aOvflSpace ){
7265 return SQLITE_NOMEM_BKPT;
7268 /* Find the sibling pages to balance. Also locate the cells in pParent
7269 ** that divide the siblings. An attempt is made to find NN siblings on
7270 ** either side of pPage. More siblings are taken from one side, however,
7271 ** if there are fewer than NN siblings on the other side. If pParent
7272 ** has NB or fewer children then all children of pParent are taken.
7274 ** This loop also drops the divider cells from the parent page. This
7275 ** way, the remainder of the function does not have to deal with any
7276 ** overflow cells in the parent page, since if any existed they will
7277 ** have already been removed.
7279 i = pParent->nOverflow + pParent->nCell;
7280 if( i<2 ){
7281 nxDiv = 0;
7282 }else{
7283 assert( bBulk==0 || bBulk==1 );
7284 if( iParentIdx==0 ){
7285 nxDiv = 0;
7286 }else if( iParentIdx==i ){
7287 nxDiv = i-2+bBulk;
7288 }else{
7289 nxDiv = iParentIdx-1;
7291 i = 2-bBulk;
7293 nOld = i+1;
7294 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7295 pRight = &pParent->aData[pParent->hdrOffset+8];
7296 }else{
7297 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7299 pgno = get4byte(pRight);
7300 while( 1 ){
7301 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
7302 if( rc ){
7303 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7304 goto balance_cleanup;
7306 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
7307 if( (i--)==0 ) break;
7309 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
7310 apDiv[i] = pParent->apOvfl[0];
7311 pgno = get4byte(apDiv[i]);
7312 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7313 pParent->nOverflow = 0;
7314 }else{
7315 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7316 pgno = get4byte(apDiv[i]);
7317 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
7319 /* Drop the cell from the parent page. apDiv[i] still points to
7320 ** the cell within the parent, even though it has been dropped.
7321 ** This is safe because dropping a cell only overwrites the first
7322 ** four bytes of it, and this function does not need the first
7323 ** four bytes of the divider cell. So the pointer is safe to use
7324 ** later on.
7326 ** But not if we are in secure-delete mode. In secure-delete mode,
7327 ** the dropCell() routine will overwrite the entire cell with zeroes.
7328 ** In this case, temporarily copy the cell into the aOvflSpace[]
7329 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7330 ** is allocated. */
7331 if( pBt->btsFlags & BTS_FAST_SECURE ){
7332 int iOff;
7334 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
7335 if( (iOff+szNew[i])>(int)pBt->usableSize ){
7336 rc = SQLITE_CORRUPT_BKPT;
7337 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7338 goto balance_cleanup;
7339 }else{
7340 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7341 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7344 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
7348 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7349 ** alignment */
7350 nMaxCells = (nMaxCells + 3)&~3;
7353 ** Allocate space for memory structures
7355 szScratch =
7356 nMaxCells*sizeof(u8*) /* b.apCell */
7357 + nMaxCells*sizeof(u16) /* b.szCell */
7358 + pBt->pageSize; /* aSpace1 */
7360 assert( szScratch<=6*(int)pBt->pageSize );
7361 b.apCell = sqlite3StackAllocRaw(0, szScratch );
7362 if( b.apCell==0 ){
7363 rc = SQLITE_NOMEM_BKPT;
7364 goto balance_cleanup;
7366 b.szCell = (u16*)&b.apCell[nMaxCells];
7367 aSpace1 = (u8*)&b.szCell[nMaxCells];
7368 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
7371 ** Load pointers to all cells on sibling pages and the divider cells
7372 ** into the local b.apCell[] array. Make copies of the divider cells
7373 ** into space obtained from aSpace1[]. The divider cells have already
7374 ** been removed from pParent.
7376 ** If the siblings are on leaf pages, then the child pointers of the
7377 ** divider cells are stripped from the cells before they are copied
7378 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7379 ** child pointers. If siblings are not leaves, then all cell in
7380 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7381 ** are alike.
7383 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7384 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7386 b.pRef = apOld[0];
7387 leafCorrection = b.pRef->leaf*4;
7388 leafData = b.pRef->intKeyLeaf;
7389 for(i=0; i<nOld; i++){
7390 MemPage *pOld = apOld[i];
7391 int limit = pOld->nCell;
7392 u8 *aData = pOld->aData;
7393 u16 maskPage = pOld->maskPage;
7394 u8 *piCell = aData + pOld->cellOffset;
7395 u8 *piEnd;
7397 /* Verify that all sibling pages are of the same "type" (table-leaf,
7398 ** table-interior, index-leaf, or index-interior).
7400 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7401 rc = SQLITE_CORRUPT_BKPT;
7402 goto balance_cleanup;
7405 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7406 ** contains overflow cells, include them in the b.apCell[] array
7407 ** in the correct spot.
7409 ** Note that when there are multiple overflow cells, it is always the
7410 ** case that they are sequential and adjacent. This invariant arises
7411 ** because multiple overflows can only occurs when inserting divider
7412 ** cells into a parent on a prior balance, and divider cells are always
7413 ** adjacent and are inserted in order. There is an assert() tagged
7414 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7415 ** invariant.
7417 ** This must be done in advance. Once the balance starts, the cell
7418 ** offset section of the btree page will be overwritten and we will no
7419 ** long be able to find the cells if a pointer to each cell is not saved
7420 ** first.
7422 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
7423 if( pOld->nOverflow>0 ){
7424 limit = pOld->aiOvfl[0];
7425 for(j=0; j<limit; j++){
7426 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7427 piCell += 2;
7428 b.nCell++;
7430 for(k=0; k<pOld->nOverflow; k++){
7431 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
7432 b.apCell[b.nCell] = pOld->apOvfl[k];
7433 b.nCell++;
7436 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7437 while( piCell<piEnd ){
7438 assert( b.nCell<nMaxCells );
7439 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
7440 piCell += 2;
7441 b.nCell++;
7444 cntOld[i] = b.nCell;
7445 if( i<nOld-1 && !leafData){
7446 u16 sz = (u16)szNew[i];
7447 u8 *pTemp;
7448 assert( b.nCell<nMaxCells );
7449 b.szCell[b.nCell] = sz;
7450 pTemp = &aSpace1[iSpace1];
7451 iSpace1 += sz;
7452 assert( sz<=pBt->maxLocal+23 );
7453 assert( iSpace1 <= (int)pBt->pageSize );
7454 memcpy(pTemp, apDiv[i], sz);
7455 b.apCell[b.nCell] = pTemp+leafCorrection;
7456 assert( leafCorrection==0 || leafCorrection==4 );
7457 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
7458 if( !pOld->leaf ){
7459 assert( leafCorrection==0 );
7460 assert( pOld->hdrOffset==0 );
7461 /* The right pointer of the child page pOld becomes the left
7462 ** pointer of the divider cell */
7463 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
7464 }else{
7465 assert( leafCorrection==4 );
7466 while( b.szCell[b.nCell]<4 ){
7467 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7468 ** does exist, pad it with 0x00 bytes. */
7469 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7470 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
7471 aSpace1[iSpace1++] = 0x00;
7472 b.szCell[b.nCell]++;
7475 b.nCell++;
7480 ** Figure out the number of pages needed to hold all b.nCell cells.
7481 ** Store this number in "k". Also compute szNew[] which is the total
7482 ** size of all cells on the i-th page and cntNew[] which is the index
7483 ** in b.apCell[] of the cell that divides page i from page i+1.
7484 ** cntNew[k] should equal b.nCell.
7486 ** Values computed by this block:
7488 ** k: The total number of sibling pages
7489 ** szNew[i]: Spaced used on the i-th sibling page.
7490 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7491 ** the right of the i-th sibling page.
7492 ** usableSpace: Number of bytes of space available on each sibling.
7495 usableSpace = pBt->usableSize - 12 + leafCorrection;
7496 for(i=0; i<nOld; i++){
7497 MemPage *p = apOld[i];
7498 szNew[i] = usableSpace - p->nFree;
7499 for(j=0; j<p->nOverflow; j++){
7500 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7502 cntNew[i] = cntOld[i];
7504 k = nOld;
7505 for(i=0; i<k; i++){
7506 int sz;
7507 while( szNew[i]>usableSpace ){
7508 if( i+1>=k ){
7509 k = i+2;
7510 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7511 szNew[k-1] = 0;
7512 cntNew[k-1] = b.nCell;
7514 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
7515 szNew[i] -= sz;
7516 if( !leafData ){
7517 if( cntNew[i]<b.nCell ){
7518 sz = 2 + cachedCellSize(&b, cntNew[i]);
7519 }else{
7520 sz = 0;
7523 szNew[i+1] += sz;
7524 cntNew[i]--;
7526 while( cntNew[i]<b.nCell ){
7527 sz = 2 + cachedCellSize(&b, cntNew[i]);
7528 if( szNew[i]+sz>usableSpace ) break;
7529 szNew[i] += sz;
7530 cntNew[i]++;
7531 if( !leafData ){
7532 if( cntNew[i]<b.nCell ){
7533 sz = 2 + cachedCellSize(&b, cntNew[i]);
7534 }else{
7535 sz = 0;
7538 szNew[i+1] -= sz;
7540 if( cntNew[i]>=b.nCell ){
7541 k = i+1;
7542 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
7543 rc = SQLITE_CORRUPT_BKPT;
7544 goto balance_cleanup;
7549 ** The packing computed by the previous block is biased toward the siblings
7550 ** on the left side (siblings with smaller keys). The left siblings are
7551 ** always nearly full, while the right-most sibling might be nearly empty.
7552 ** The next block of code attempts to adjust the packing of siblings to
7553 ** get a better balance.
7555 ** This adjustment is more than an optimization. The packing above might
7556 ** be so out of balance as to be illegal. For example, the right-most
7557 ** sibling might be completely empty. This adjustment is not optional.
7559 for(i=k-1; i>0; i--){
7560 int szRight = szNew[i]; /* Size of sibling on the right */
7561 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7562 int r; /* Index of right-most cell in left sibling */
7563 int d; /* Index of first cell to the left of right sibling */
7565 r = cntNew[i-1] - 1;
7566 d = r + 1 - leafData;
7567 (void)cachedCellSize(&b, d);
7569 assert( d<nMaxCells );
7570 assert( r<nMaxCells );
7571 (void)cachedCellSize(&b, r);
7572 if( szRight!=0
7573 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
7574 break;
7576 szRight += b.szCell[d] + 2;
7577 szLeft -= b.szCell[r] + 2;
7578 cntNew[i-1] = r;
7579 r--;
7580 d--;
7581 }while( r>=0 );
7582 szNew[i] = szRight;
7583 szNew[i-1] = szLeft;
7584 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7585 rc = SQLITE_CORRUPT_BKPT;
7586 goto balance_cleanup;
7590 /* Sanity check: For a non-corrupt database file one of the follwing
7591 ** must be true:
7592 ** (1) We found one or more cells (cntNew[0])>0), or
7593 ** (2) pPage is a virtual root page. A virtual root page is when
7594 ** the real root page is page 1 and we are the only child of
7595 ** that page.
7597 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
7598 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7599 apOld[0]->pgno, apOld[0]->nCell,
7600 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7601 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
7605 ** Allocate k new pages. Reuse old pages where possible.
7607 pageFlags = apOld[0]->aData[0];
7608 for(i=0; i<k; i++){
7609 MemPage *pNew;
7610 if( i<nOld ){
7611 pNew = apNew[i] = apOld[i];
7612 apOld[i] = 0;
7613 rc = sqlite3PagerWrite(pNew->pDbPage);
7614 nNew++;
7615 if( rc ) goto balance_cleanup;
7616 }else{
7617 assert( i>0 );
7618 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
7619 if( rc ) goto balance_cleanup;
7620 zeroPage(pNew, pageFlags);
7621 apNew[i] = pNew;
7622 nNew++;
7623 cntOld[i] = b.nCell;
7625 /* Set the pointer-map entry for the new sibling page. */
7626 if( ISAUTOVACUUM ){
7627 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
7628 if( rc!=SQLITE_OK ){
7629 goto balance_cleanup;
7636 ** Reassign page numbers so that the new pages are in ascending order.
7637 ** This helps to keep entries in the disk file in order so that a scan
7638 ** of the table is closer to a linear scan through the file. That in turn
7639 ** helps the operating system to deliver pages from the disk more rapidly.
7641 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7642 ** than (NB+2) (a small constant), that should not be a problem.
7644 ** When NB==3, this one optimization makes the database about 25% faster
7645 ** for large insertions and deletions.
7647 for(i=0; i<nNew; i++){
7648 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
7649 aPgFlags[i] = apNew[i]->pDbPage->flags;
7650 for(j=0; j<i; j++){
7651 if( aPgno[j]==aPgno[i] ){
7652 /* This branch is taken if the set of sibling pages somehow contains
7653 ** duplicate entries. This can happen if the database is corrupt.
7654 ** It would be simpler to detect this as part of the loop below, but
7655 ** we do the detection here in order to avoid populating the pager
7656 ** cache with two separate objects associated with the same
7657 ** page number. */
7658 assert( CORRUPT_DB );
7659 rc = SQLITE_CORRUPT_BKPT;
7660 goto balance_cleanup;
7664 for(i=0; i<nNew; i++){
7665 int iBest = 0; /* aPgno[] index of page number to use */
7666 for(j=1; j<nNew; j++){
7667 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
7669 pgno = aPgOrder[iBest];
7670 aPgOrder[iBest] = 0xffffffff;
7671 if( iBest!=i ){
7672 if( iBest>i ){
7673 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7675 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7676 apNew[i]->pgno = pgno;
7680 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7681 "%d(%d nc=%d) %d(%d nc=%d)\n",
7682 apNew[0]->pgno, szNew[0], cntNew[0],
7683 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
7684 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
7685 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
7686 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
7687 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
7688 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7689 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7690 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7693 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7694 put4byte(pRight, apNew[nNew-1]->pgno);
7696 /* If the sibling pages are not leaves, ensure that the right-child pointer
7697 ** of the right-most new sibling page is set to the value that was
7698 ** originally in the same field of the right-most old sibling page. */
7699 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7700 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7701 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7704 /* Make any required updates to pointer map entries associated with
7705 ** cells stored on sibling pages following the balance operation. Pointer
7706 ** map entries associated with divider cells are set by the insertCell()
7707 ** routine. The associated pointer map entries are:
7709 ** a) if the cell contains a reference to an overflow chain, the
7710 ** entry associated with the first page in the overflow chain, and
7712 ** b) if the sibling pages are not leaves, the child page associated
7713 ** with the cell.
7715 ** If the sibling pages are not leaves, then the pointer map entry
7716 ** associated with the right-child of each sibling may also need to be
7717 ** updated. This happens below, after the sibling pages have been
7718 ** populated, not here.
7720 if( ISAUTOVACUUM ){
7721 MemPage *pNew = apNew[0];
7722 u8 *aOld = pNew->aData;
7723 int cntOldNext = pNew->nCell + pNew->nOverflow;
7724 int usableSize = pBt->usableSize;
7725 int iNew = 0;
7726 int iOld = 0;
7728 for(i=0; i<b.nCell; i++){
7729 u8 *pCell = b.apCell[i];
7730 if( i==cntOldNext ){
7731 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7732 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7733 aOld = pOld->aData;
7735 if( i==cntNew[iNew] ){
7736 pNew = apNew[++iNew];
7737 if( !leafData ) continue;
7740 /* Cell pCell is destined for new sibling page pNew. Originally, it
7741 ** was either part of sibling page iOld (possibly an overflow cell),
7742 ** or else the divider cell to the left of sibling page iOld. So,
7743 ** if sibling page iOld had the same page number as pNew, and if
7744 ** pCell really was a part of sibling page iOld (not a divider or
7745 ** overflow cell), we can skip updating the pointer map entries. */
7746 if( iOld>=nNew
7747 || pNew->pgno!=aPgno[iOld]
7748 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
7750 if( !leafCorrection ){
7751 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7753 if( cachedCellSize(&b,i)>pNew->minLocal ){
7754 ptrmapPutOvflPtr(pNew, pCell, &rc);
7756 if( rc ) goto balance_cleanup;
7761 /* Insert new divider cells into pParent. */
7762 for(i=0; i<nNew-1; i++){
7763 u8 *pCell;
7764 u8 *pTemp;
7765 int sz;
7766 MemPage *pNew = apNew[i];
7767 j = cntNew[i];
7769 assert( j<nMaxCells );
7770 assert( b.apCell[j]!=0 );
7771 pCell = b.apCell[j];
7772 sz = b.szCell[j] + leafCorrection;
7773 pTemp = &aOvflSpace[iOvflSpace];
7774 if( !pNew->leaf ){
7775 memcpy(&pNew->aData[8], pCell, 4);
7776 }else if( leafData ){
7777 /* If the tree is a leaf-data tree, and the siblings are leaves,
7778 ** then there is no divider cell in b.apCell[]. Instead, the divider
7779 ** cell consists of the integer key for the right-most cell of
7780 ** the sibling-page assembled above only.
7782 CellInfo info;
7783 j--;
7784 pNew->xParseCell(pNew, b.apCell[j], &info);
7785 pCell = pTemp;
7786 sz = 4 + putVarint(&pCell[4], info.nKey);
7787 pTemp = 0;
7788 }else{
7789 pCell -= 4;
7790 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7791 ** previously stored on a leaf node, and its reported size was 4
7792 ** bytes, then it may actually be smaller than this
7793 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7794 ** any cell). But it is important to pass the correct size to
7795 ** insertCell(), so reparse the cell now.
7797 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7798 ** and WITHOUT ROWID tables with exactly one column which is the
7799 ** primary key.
7801 if( b.szCell[j]==4 ){
7802 assert(leafCorrection==4);
7803 sz = pParent->xCellSize(pParent, pCell);
7806 iOvflSpace += sz;
7807 assert( sz<=pBt->maxLocal+23 );
7808 assert( iOvflSpace <= (int)pBt->pageSize );
7809 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7810 if( rc!=SQLITE_OK ) goto balance_cleanup;
7811 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7814 /* Now update the actual sibling pages. The order in which they are updated
7815 ** is important, as this code needs to avoid disrupting any page from which
7816 ** cells may still to be read. In practice, this means:
7818 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7819 ** then it is not safe to update page apNew[iPg] until after
7820 ** the left-hand sibling apNew[iPg-1] has been updated.
7822 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7823 ** then it is not safe to update page apNew[iPg] until after
7824 ** the right-hand sibling apNew[iPg+1] has been updated.
7826 ** If neither of the above apply, the page is safe to update.
7828 ** The iPg value in the following loop starts at nNew-1 goes down
7829 ** to 0, then back up to nNew-1 again, thus making two passes over
7830 ** the pages. On the initial downward pass, only condition (1) above
7831 ** needs to be tested because (2) will always be true from the previous
7832 ** step. On the upward pass, both conditions are always true, so the
7833 ** upwards pass simply processes pages that were missed on the downward
7834 ** pass.
7836 for(i=1-nNew; i<nNew; i++){
7837 int iPg = i<0 ? -i : i;
7838 assert( iPg>=0 && iPg<nNew );
7839 if( abDone[iPg] ) continue; /* Skip pages already processed */
7840 if( i>=0 /* On the upwards pass, or... */
7841 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
7843 int iNew;
7844 int iOld;
7845 int nNewCell;
7847 /* Verify condition (1): If cells are moving left, update iPg
7848 ** only after iPg-1 has already been updated. */
7849 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7851 /* Verify condition (2): If cells are moving right, update iPg
7852 ** only after iPg+1 has already been updated. */
7853 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7855 if( iPg==0 ){
7856 iNew = iOld = 0;
7857 nNewCell = cntNew[0];
7858 }else{
7859 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
7860 iNew = cntNew[iPg-1] + !leafData;
7861 nNewCell = cntNew[iPg] - iNew;
7864 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
7865 if( rc ) goto balance_cleanup;
7866 abDone[iPg]++;
7867 apNew[iPg]->nFree = usableSpace-szNew[iPg];
7868 assert( apNew[iPg]->nOverflow==0 );
7869 assert( apNew[iPg]->nCell==nNewCell );
7873 /* All pages have been processed exactly once */
7874 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7876 assert( nOld>0 );
7877 assert( nNew>0 );
7879 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7880 /* The root page of the b-tree now contains no cells. The only sibling
7881 ** page is the right-child of the parent. Copy the contents of the
7882 ** child page into the parent, decreasing the overall height of the
7883 ** b-tree structure by one. This is described as the "balance-shallower"
7884 ** sub-algorithm in some documentation.
7886 ** If this is an auto-vacuum database, the call to copyNodeContent()
7887 ** sets all pointer-map entries corresponding to database image pages
7888 ** for which the pointer is stored within the content being copied.
7890 ** It is critical that the child page be defragmented before being
7891 ** copied into the parent, because if the parent is page 1 then it will
7892 ** by smaller than the child due to the database header, and so all the
7893 ** free space needs to be up front.
7895 assert( nNew==1 || CORRUPT_DB );
7896 rc = defragmentPage(apNew[0], -1);
7897 testcase( rc!=SQLITE_OK );
7898 assert( apNew[0]->nFree ==
7899 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7900 || rc!=SQLITE_OK
7902 copyNodeContent(apNew[0], pParent, &rc);
7903 freePage(apNew[0], &rc);
7904 }else if( ISAUTOVACUUM && !leafCorrection ){
7905 /* Fix the pointer map entries associated with the right-child of each
7906 ** sibling page. All other pointer map entries have already been taken
7907 ** care of. */
7908 for(i=0; i<nNew; i++){
7909 u32 key = get4byte(&apNew[i]->aData[8]);
7910 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
7914 assert( pParent->isInit );
7915 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7916 nOld, nNew, b.nCell));
7918 /* Free any old pages that were not reused as new pages.
7920 for(i=nNew; i<nOld; i++){
7921 freePage(apOld[i], &rc);
7924 #if 0
7925 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
7926 /* The ptrmapCheckPages() contains assert() statements that verify that
7927 ** all pointer map pages are set correctly. This is helpful while
7928 ** debugging. This is usually disabled because a corrupt database may
7929 ** cause an assert() statement to fail. */
7930 ptrmapCheckPages(apNew, nNew);
7931 ptrmapCheckPages(&pParent, 1);
7933 #endif
7936 ** Cleanup before returning.
7938 balance_cleanup:
7939 sqlite3StackFree(0, b.apCell);
7940 for(i=0; i<nOld; i++){
7941 releasePage(apOld[i]);
7943 for(i=0; i<nNew; i++){
7944 releasePage(apNew[i]);
7947 return rc;
7952 ** This function is called when the root page of a b-tree structure is
7953 ** overfull (has one or more overflow pages).
7955 ** A new child page is allocated and the contents of the current root
7956 ** page, including overflow cells, are copied into the child. The root
7957 ** page is then overwritten to make it an empty page with the right-child
7958 ** pointer pointing to the new page.
7960 ** Before returning, all pointer-map entries corresponding to pages
7961 ** that the new child-page now contains pointers to are updated. The
7962 ** entry corresponding to the new right-child pointer of the root
7963 ** page is also updated.
7965 ** If successful, *ppChild is set to contain a reference to the child
7966 ** page and SQLITE_OK is returned. In this case the caller is required
7967 ** to call releasePage() on *ppChild exactly once. If an error occurs,
7968 ** an error code is returned and *ppChild is set to 0.
7970 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7971 int rc; /* Return value from subprocedures */
7972 MemPage *pChild = 0; /* Pointer to a new child page */
7973 Pgno pgnoChild = 0; /* Page number of the new child page */
7974 BtShared *pBt = pRoot->pBt; /* The BTree */
7976 assert( pRoot->nOverflow>0 );
7977 assert( sqlite3_mutex_held(pBt->mutex) );
7979 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7980 ** page that will become the new right-child of pPage. Copy the contents
7981 ** of the node stored on pRoot into the new child page.
7983 rc = sqlite3PagerWrite(pRoot->pDbPage);
7984 if( rc==SQLITE_OK ){
7985 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
7986 copyNodeContent(pRoot, pChild, &rc);
7987 if( ISAUTOVACUUM ){
7988 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
7991 if( rc ){
7992 *ppChild = 0;
7993 releasePage(pChild);
7994 return rc;
7996 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7997 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7998 assert( pChild->nCell==pRoot->nCell );
8000 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8002 /* Copy the overflow cells from pRoot to pChild */
8003 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8004 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8005 memcpy(pChild->apOvfl, pRoot->apOvfl,
8006 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
8007 pChild->nOverflow = pRoot->nOverflow;
8009 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8010 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8011 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8013 *ppChild = pChild;
8014 return SQLITE_OK;
8018 ** The page that pCur currently points to has just been modified in
8019 ** some way. This function figures out if this modification means the
8020 ** tree needs to be balanced, and if so calls the appropriate balancing
8021 ** routine. Balancing routines are:
8023 ** balance_quick()
8024 ** balance_deeper()
8025 ** balance_nonroot()
8027 static int balance(BtCursor *pCur){
8028 int rc = SQLITE_OK;
8029 const int nMin = pCur->pBt->usableSize * 2 / 3;
8030 u8 aBalanceQuickSpace[13];
8031 u8 *pFree = 0;
8033 VVA_ONLY( int balance_quick_called = 0 );
8034 VVA_ONLY( int balance_deeper_called = 0 );
8036 do {
8037 int iPage = pCur->iPage;
8038 MemPage *pPage = pCur->pPage;
8040 if( iPage==0 ){
8041 if( pPage->nOverflow ){
8042 /* The root page of the b-tree is overfull. In this case call the
8043 ** balance_deeper() function to create a new child for the root-page
8044 ** and copy the current contents of the root-page to it. The
8045 ** next iteration of the do-loop will balance the child page.
8047 assert( balance_deeper_called==0 );
8048 VVA_ONLY( balance_deeper_called++ );
8049 rc = balance_deeper(pPage, &pCur->apPage[1]);
8050 if( rc==SQLITE_OK ){
8051 pCur->iPage = 1;
8052 pCur->ix = 0;
8053 pCur->aiIdx[0] = 0;
8054 pCur->apPage[0] = pPage;
8055 pCur->pPage = pCur->apPage[1];
8056 assert( pCur->pPage->nOverflow );
8058 }else{
8059 break;
8061 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8062 break;
8063 }else{
8064 MemPage * const pParent = pCur->apPage[iPage-1];
8065 int const iIdx = pCur->aiIdx[iPage-1];
8067 rc = sqlite3PagerWrite(pParent->pDbPage);
8068 if( rc==SQLITE_OK ){
8069 #ifndef SQLITE_OMIT_QUICKBALANCE
8070 if( pPage->intKeyLeaf
8071 && pPage->nOverflow==1
8072 && pPage->aiOvfl[0]==pPage->nCell
8073 && pParent->pgno!=1
8074 && pParent->nCell==iIdx
8076 /* Call balance_quick() to create a new sibling of pPage on which
8077 ** to store the overflow cell. balance_quick() inserts a new cell
8078 ** into pParent, which may cause pParent overflow. If this
8079 ** happens, the next iteration of the do-loop will balance pParent
8080 ** use either balance_nonroot() or balance_deeper(). Until this
8081 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8082 ** buffer.
8084 ** The purpose of the following assert() is to check that only a
8085 ** single call to balance_quick() is made for each call to this
8086 ** function. If this were not verified, a subtle bug involving reuse
8087 ** of the aBalanceQuickSpace[] might sneak in.
8089 assert( balance_quick_called==0 );
8090 VVA_ONLY( balance_quick_called++ );
8091 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8092 }else
8093 #endif
8095 /* In this case, call balance_nonroot() to redistribute cells
8096 ** between pPage and up to 2 of its sibling pages. This involves
8097 ** modifying the contents of pParent, which may cause pParent to
8098 ** become overfull or underfull. The next iteration of the do-loop
8099 ** will balance the parent page to correct this.
8101 ** If the parent page becomes overfull, the overflow cell or cells
8102 ** are stored in the pSpace buffer allocated immediately below.
8103 ** A subsequent iteration of the do-loop will deal with this by
8104 ** calling balance_nonroot() (balance_deeper() may be called first,
8105 ** but it doesn't deal with overflow cells - just moves them to a
8106 ** different page). Once this subsequent call to balance_nonroot()
8107 ** has completed, it is safe to release the pSpace buffer used by
8108 ** the previous call, as the overflow cell data will have been
8109 ** copied either into the body of a database page or into the new
8110 ** pSpace buffer passed to the latter call to balance_nonroot().
8112 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
8113 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8114 pCur->hints&BTREE_BULKLOAD);
8115 if( pFree ){
8116 /* If pFree is not NULL, it points to the pSpace buffer used
8117 ** by a previous call to balance_nonroot(). Its contents are
8118 ** now stored either on real database pages or within the
8119 ** new pSpace buffer, so it may be safely freed here. */
8120 sqlite3PageFree(pFree);
8123 /* The pSpace buffer will be freed after the next call to
8124 ** balance_nonroot(), or just before this function returns, whichever
8125 ** comes first. */
8126 pFree = pSpace;
8130 pPage->nOverflow = 0;
8132 /* The next iteration of the do-loop balances the parent page. */
8133 releasePage(pPage);
8134 pCur->iPage--;
8135 assert( pCur->iPage>=0 );
8136 pCur->pPage = pCur->apPage[pCur->iPage];
8138 }while( rc==SQLITE_OK );
8140 if( pFree ){
8141 sqlite3PageFree(pFree);
8143 return rc;
8148 ** Insert a new record into the BTree. The content of the new record
8149 ** is described by the pX object. The pCur cursor is used only to
8150 ** define what table the record should be inserted into, and is left
8151 ** pointing at a random location.
8153 ** For a table btree (used for rowid tables), only the pX.nKey value of
8154 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8155 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8156 ** hold the content of the row.
8158 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8159 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8160 ** pX.pData,nData,nZero fields must be zero.
8162 ** If the seekResult parameter is non-zero, then a successful call to
8163 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8164 ** been performed. In other words, if seekResult!=0 then the cursor
8165 ** is currently pointing to a cell that will be adjacent to the cell
8166 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8167 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8168 ** that is larger than (pKey,nKey).
8170 ** If seekResult==0, that means pCur is pointing at some unknown location.
8171 ** In that case, this routine must seek the cursor to the correct insertion
8172 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8173 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8174 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8175 ** to decode the key.
8177 int sqlite3BtreeInsert(
8178 BtCursor *pCur, /* Insert data into the table of this cursor */
8179 const BtreePayload *pX, /* Content of the row to be inserted */
8180 int flags, /* True if this is likely an append */
8181 int seekResult /* Result of prior MovetoUnpacked() call */
8183 int rc;
8184 int loc = seekResult; /* -1: before desired location +1: after */
8185 int szNew = 0;
8186 int idx;
8187 MemPage *pPage;
8188 Btree *p = pCur->pBtree;
8189 BtShared *pBt = p->pBt;
8190 unsigned char *oldCell;
8191 unsigned char *newCell = 0;
8193 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8195 if( pCur->eState==CURSOR_FAULT ){
8196 assert( pCur->skipNext!=SQLITE_OK );
8197 return pCur->skipNext;
8200 assert( cursorOwnsBtShared(pCur) );
8201 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8202 && pBt->inTransaction==TRANS_WRITE
8203 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
8204 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8206 /* Assert that the caller has been consistent. If this cursor was opened
8207 ** expecting an index b-tree, then the caller should be inserting blob
8208 ** keys with no associated data. If the cursor was opened expecting an
8209 ** intkey table, the caller should be inserting integer keys with a
8210 ** blob of associated data. */
8211 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
8213 /* Save the positions of any other cursors open on this table.
8215 ** In some cases, the call to btreeMoveto() below is a no-op. For
8216 ** example, when inserting data into a table with auto-generated integer
8217 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8218 ** integer key to use. It then calls this function to actually insert the
8219 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8220 ** that the cursor is already where it needs to be and returns without
8221 ** doing any work. To avoid thwarting these optimizations, it is important
8222 ** not to clear the cursor here.
8224 if( pCur->curFlags & BTCF_Multiple ){
8225 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8226 if( rc ) return rc;
8229 if( pCur->pKeyInfo==0 ){
8230 assert( pX->pKey==0 );
8231 /* If this is an insert into a table b-tree, invalidate any incrblob
8232 ** cursors open on the row being replaced */
8233 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
8235 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8236 ** to a row with the same key as the new entry being inserted. */
8237 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8238 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8240 /* If the cursor is currently on the last row and we are appending a
8241 ** new row onto the end, set the "loc" to avoid an unnecessary
8242 ** btreeMoveto() call */
8243 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8244 loc = 0;
8245 }else if( loc==0 ){
8246 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
8247 if( rc ) return rc;
8249 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8250 if( pX->nMem ){
8251 UnpackedRecord r;
8252 r.pKeyInfo = pCur->pKeyInfo;
8253 r.aMem = pX->aMem;
8254 r.nField = pX->nMem;
8255 r.default_rc = 0;
8256 r.errCode = 0;
8257 r.r1 = 0;
8258 r.r2 = 0;
8259 r.eqSeen = 0;
8260 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8261 }else{
8262 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8264 if( rc ) return rc;
8266 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
8268 pPage = pCur->pPage;
8269 assert( pPage->intKey || pX->nKey>=0 );
8270 assert( pPage->leaf || !pPage->intKey );
8272 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8273 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
8274 loc==0 ? "overwrite" : "new entry"));
8275 assert( pPage->isInit );
8276 newCell = pBt->pTmpSpace;
8277 assert( newCell!=0 );
8278 rc = fillInCell(pPage, newCell, pX, &szNew);
8279 if( rc ) goto end_insert;
8280 assert( szNew==pPage->xCellSize(pPage, newCell) );
8281 assert( szNew <= MX_CELL_SIZE(pBt) );
8282 idx = pCur->ix;
8283 if( loc==0 ){
8284 CellInfo info;
8285 assert( idx<pPage->nCell );
8286 rc = sqlite3PagerWrite(pPage->pDbPage);
8287 if( rc ){
8288 goto end_insert;
8290 oldCell = findCell(pPage, idx);
8291 if( !pPage->leaf ){
8292 memcpy(newCell, oldCell, 4);
8294 rc = clearCell(pPage, oldCell, &info);
8295 if( info.nSize==szNew && info.nLocal==info.nPayload
8296 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8298 /* Overwrite the old cell with the new if they are the same size.
8299 ** We could also try to do this if the old cell is smaller, then add
8300 ** the leftover space to the free list. But experiments show that
8301 ** doing that is no faster then skipping this optimization and just
8302 ** calling dropCell() and insertCell().
8304 ** This optimization cannot be used on an autovacuum database if the
8305 ** new entry uses overflow pages, as the insertCell() call below is
8306 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
8307 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
8308 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
8309 memcpy(oldCell, newCell, szNew);
8310 return SQLITE_OK;
8312 dropCell(pPage, idx, info.nSize, &rc);
8313 if( rc ) goto end_insert;
8314 }else if( loc<0 && pPage->nCell>0 ){
8315 assert( pPage->leaf );
8316 idx = ++pCur->ix;
8317 pCur->curFlags &= ~BTCF_ValidNKey;
8318 }else{
8319 assert( pPage->leaf );
8321 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
8322 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
8323 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
8325 /* If no error has occurred and pPage has an overflow cell, call balance()
8326 ** to redistribute the cells within the tree. Since balance() may move
8327 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8328 ** variables.
8330 ** Previous versions of SQLite called moveToRoot() to move the cursor
8331 ** back to the root page as balance() used to invalidate the contents
8332 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8333 ** set the cursor state to "invalid". This makes common insert operations
8334 ** slightly faster.
8336 ** There is a subtle but important optimization here too. When inserting
8337 ** multiple records into an intkey b-tree using a single cursor (as can
8338 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8339 ** is advantageous to leave the cursor pointing to the last entry in
8340 ** the b-tree if possible. If the cursor is left pointing to the last
8341 ** entry in the table, and the next row inserted has an integer key
8342 ** larger than the largest existing key, it is possible to insert the
8343 ** row without seeking the cursor. This can be a big performance boost.
8345 pCur->info.nSize = 0;
8346 if( pPage->nOverflow ){
8347 assert( rc==SQLITE_OK );
8348 pCur->curFlags &= ~(BTCF_ValidNKey);
8349 rc = balance(pCur);
8351 /* Must make sure nOverflow is reset to zero even if the balance()
8352 ** fails. Internal data structure corruption will result otherwise.
8353 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8354 ** from trying to save the current position of the cursor. */
8355 pCur->pPage->nOverflow = 0;
8356 pCur->eState = CURSOR_INVALID;
8357 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8358 btreeReleaseAllCursorPages(pCur);
8359 if( pCur->pKeyInfo ){
8360 assert( pCur->pKey==0 );
8361 pCur->pKey = sqlite3Malloc( pX->nKey );
8362 if( pCur->pKey==0 ){
8363 rc = SQLITE_NOMEM;
8364 }else{
8365 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8368 pCur->eState = CURSOR_REQUIRESEEK;
8369 pCur->nKey = pX->nKey;
8372 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
8374 end_insert:
8375 return rc;
8379 ** Delete the entry that the cursor is pointing to.
8381 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8382 ** the cursor is left pointing at an arbitrary location after the delete.
8383 ** But if that bit is set, then the cursor is left in a state such that
8384 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
8385 ** as it would have been on if the call to BtreeDelete() had been omitted.
8387 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8388 ** associated with a single table entry and its indexes. Only one of those
8389 ** deletes is considered the "primary" delete. The primary delete occurs
8390 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8391 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8392 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
8393 ** but which might be used by alternative storage engines.
8395 int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
8396 Btree *p = pCur->pBtree;
8397 BtShared *pBt = p->pBt;
8398 int rc; /* Return code */
8399 MemPage *pPage; /* Page to delete cell from */
8400 unsigned char *pCell; /* Pointer to cell to delete */
8401 int iCellIdx; /* Index of cell to delete */
8402 int iCellDepth; /* Depth of node containing pCell */
8403 CellInfo info; /* Size of the cell being deleted */
8404 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
8405 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
8407 assert( cursorOwnsBtShared(pCur) );
8408 assert( pBt->inTransaction==TRANS_WRITE );
8409 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8410 assert( pCur->curFlags & BTCF_WriteFlag );
8411 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8412 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
8413 assert( pCur->ix<pCur->pPage->nCell );
8414 assert( pCur->eState==CURSOR_VALID );
8415 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
8417 iCellDepth = pCur->iPage;
8418 iCellIdx = pCur->ix;
8419 pPage = pCur->pPage;
8420 pCell = findCell(pPage, iCellIdx);
8422 /* If the bPreserve flag is set to true, then the cursor position must
8423 ** be preserved following this delete operation. If the current delete
8424 ** will cause a b-tree rebalance, then this is done by saving the cursor
8425 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8426 ** returning.
8428 ** Or, if the current delete will not cause a rebalance, then the cursor
8429 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8430 ** before or after the deleted entry. In this case set bSkipnext to true. */
8431 if( bPreserve ){
8432 if( !pPage->leaf
8433 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8435 /* A b-tree rebalance will be required after deleting this entry.
8436 ** Save the cursor key. */
8437 rc = saveCursorKey(pCur);
8438 if( rc ) return rc;
8439 }else{
8440 bSkipnext = 1;
8444 /* If the page containing the entry to delete is not a leaf page, move
8445 ** the cursor to the largest entry in the tree that is smaller than
8446 ** the entry being deleted. This cell will replace the cell being deleted
8447 ** from the internal node. The 'previous' entry is used for this instead
8448 ** of the 'next' entry, as the previous entry is always a part of the
8449 ** sub-tree headed by the child page of the cell being deleted. This makes
8450 ** balancing the tree following the delete operation easier. */
8451 if( !pPage->leaf ){
8452 rc = sqlite3BtreePrevious(pCur, 0);
8453 assert( rc!=SQLITE_DONE );
8454 if( rc ) return rc;
8457 /* Save the positions of any other cursors open on this table before
8458 ** making any modifications. */
8459 if( pCur->curFlags & BTCF_Multiple ){
8460 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8461 if( rc ) return rc;
8464 /* If this is a delete operation to remove a row from a table b-tree,
8465 ** invalidate any incrblob cursors open on the row being deleted. */
8466 if( pCur->pKeyInfo==0 ){
8467 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
8470 /* Make the page containing the entry to be deleted writable. Then free any
8471 ** overflow pages associated with the entry and finally remove the cell
8472 ** itself from within the page. */
8473 rc = sqlite3PagerWrite(pPage->pDbPage);
8474 if( rc ) return rc;
8475 rc = clearCell(pPage, pCell, &info);
8476 dropCell(pPage, iCellIdx, info.nSize, &rc);
8477 if( rc ) return rc;
8479 /* If the cell deleted was not located on a leaf page, then the cursor
8480 ** is currently pointing to the largest entry in the sub-tree headed
8481 ** by the child-page of the cell that was just deleted from an internal
8482 ** node. The cell from the leaf node needs to be moved to the internal
8483 ** node to replace the deleted cell. */
8484 if( !pPage->leaf ){
8485 MemPage *pLeaf = pCur->pPage;
8486 int nCell;
8487 Pgno n;
8488 unsigned char *pTmp;
8490 if( iCellDepth<pCur->iPage-1 ){
8491 n = pCur->apPage[iCellDepth+1]->pgno;
8492 }else{
8493 n = pCur->pPage->pgno;
8495 pCell = findCell(pLeaf, pLeaf->nCell-1);
8496 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
8497 nCell = pLeaf->xCellSize(pLeaf, pCell);
8498 assert( MX_CELL_SIZE(pBt) >= nCell );
8499 pTmp = pBt->pTmpSpace;
8500 assert( pTmp!=0 );
8501 rc = sqlite3PagerWrite(pLeaf->pDbPage);
8502 if( rc==SQLITE_OK ){
8503 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8505 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
8506 if( rc ) return rc;
8509 /* Balance the tree. If the entry deleted was located on a leaf page,
8510 ** then the cursor still points to that page. In this case the first
8511 ** call to balance() repairs the tree, and the if(...) condition is
8512 ** never true.
8514 ** Otherwise, if the entry deleted was on an internal node page, then
8515 ** pCur is pointing to the leaf page from which a cell was removed to
8516 ** replace the cell deleted from the internal node. This is slightly
8517 ** tricky as the leaf node may be underfull, and the internal node may
8518 ** be either under or overfull. In this case run the balancing algorithm
8519 ** on the leaf node first. If the balance proceeds far enough up the
8520 ** tree that we can be sure that any problem in the internal node has
8521 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8522 ** walk the cursor up the tree to the internal node and balance it as
8523 ** well. */
8524 rc = balance(pCur);
8525 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8526 releasePageNotNull(pCur->pPage);
8527 pCur->iPage--;
8528 while( pCur->iPage>iCellDepth ){
8529 releasePage(pCur->apPage[pCur->iPage--]);
8531 pCur->pPage = pCur->apPage[pCur->iPage];
8532 rc = balance(pCur);
8535 if( rc==SQLITE_OK ){
8536 if( bSkipnext ){
8537 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
8538 assert( pPage==pCur->pPage || CORRUPT_DB );
8539 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
8540 pCur->eState = CURSOR_SKIPNEXT;
8541 if( iCellIdx>=pPage->nCell ){
8542 pCur->skipNext = -1;
8543 pCur->ix = pPage->nCell-1;
8544 }else{
8545 pCur->skipNext = 1;
8547 }else{
8548 rc = moveToRoot(pCur);
8549 if( bPreserve ){
8550 btreeReleaseAllCursorPages(pCur);
8551 pCur->eState = CURSOR_REQUIRESEEK;
8553 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
8556 return rc;
8560 ** Create a new BTree table. Write into *piTable the page
8561 ** number for the root page of the new table.
8563 ** The type of type is determined by the flags parameter. Only the
8564 ** following values of flags are currently in use. Other values for
8565 ** flags might not work:
8567 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8568 ** BTREE_ZERODATA Used for SQL indices
8570 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
8571 BtShared *pBt = p->pBt;
8572 MemPage *pRoot;
8573 Pgno pgnoRoot;
8574 int rc;
8575 int ptfFlags; /* Page-type flage for the root page of new table */
8577 assert( sqlite3BtreeHoldsMutex(p) );
8578 assert( pBt->inTransaction==TRANS_WRITE );
8579 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
8581 #ifdef SQLITE_OMIT_AUTOVACUUM
8582 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8583 if( rc ){
8584 return rc;
8586 #else
8587 if( pBt->autoVacuum ){
8588 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8589 MemPage *pPageMove; /* The page to move to. */
8591 /* Creating a new table may probably require moving an existing database
8592 ** to make room for the new tables root page. In case this page turns
8593 ** out to be an overflow page, delete all overflow page-map caches
8594 ** held by open cursors.
8596 invalidateAllOverflowCache(pBt);
8598 /* Read the value of meta[3] from the database to determine where the
8599 ** root page of the new table should go. meta[3] is the largest root-page
8600 ** created so far, so the new root-page is (meta[3]+1).
8602 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
8603 pgnoRoot++;
8605 /* The new root-page may not be allocated on a pointer-map page, or the
8606 ** PENDING_BYTE page.
8608 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
8609 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
8610 pgnoRoot++;
8612 assert( pgnoRoot>=3 || CORRUPT_DB );
8613 testcase( pgnoRoot<3 );
8615 /* Allocate a page. The page that currently resides at pgnoRoot will
8616 ** be moved to the allocated page (unless the allocated page happens
8617 ** to reside at pgnoRoot).
8619 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
8620 if( rc!=SQLITE_OK ){
8621 return rc;
8624 if( pgnoMove!=pgnoRoot ){
8625 /* pgnoRoot is the page that will be used for the root-page of
8626 ** the new table (assuming an error did not occur). But we were
8627 ** allocated pgnoMove. If required (i.e. if it was not allocated
8628 ** by extending the file), the current page at position pgnoMove
8629 ** is already journaled.
8631 u8 eType = 0;
8632 Pgno iPtrPage = 0;
8634 /* Save the positions of any open cursors. This is required in
8635 ** case they are holding a reference to an xFetch reference
8636 ** corresponding to page pgnoRoot. */
8637 rc = saveAllCursors(pBt, 0, 0);
8638 releasePage(pPageMove);
8639 if( rc!=SQLITE_OK ){
8640 return rc;
8643 /* Move the page currently at pgnoRoot to pgnoMove. */
8644 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8645 if( rc!=SQLITE_OK ){
8646 return rc;
8648 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
8649 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8650 rc = SQLITE_CORRUPT_BKPT;
8652 if( rc!=SQLITE_OK ){
8653 releasePage(pRoot);
8654 return rc;
8656 assert( eType!=PTRMAP_ROOTPAGE );
8657 assert( eType!=PTRMAP_FREEPAGE );
8658 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
8659 releasePage(pRoot);
8661 /* Obtain the page at pgnoRoot */
8662 if( rc!=SQLITE_OK ){
8663 return rc;
8665 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
8666 if( rc!=SQLITE_OK ){
8667 return rc;
8669 rc = sqlite3PagerWrite(pRoot->pDbPage);
8670 if( rc!=SQLITE_OK ){
8671 releasePage(pRoot);
8672 return rc;
8674 }else{
8675 pRoot = pPageMove;
8678 /* Update the pointer-map and meta-data with the new root-page number. */
8679 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
8680 if( rc ){
8681 releasePage(pRoot);
8682 return rc;
8685 /* When the new root page was allocated, page 1 was made writable in
8686 ** order either to increase the database filesize, or to decrement the
8687 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8689 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
8690 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
8691 if( NEVER(rc) ){
8692 releasePage(pRoot);
8693 return rc;
8696 }else{
8697 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
8698 if( rc ) return rc;
8700 #endif
8701 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8702 if( createTabFlags & BTREE_INTKEY ){
8703 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8704 }else{
8705 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8707 zeroPage(pRoot, ptfFlags);
8708 sqlite3PagerUnref(pRoot->pDbPage);
8709 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
8710 *piTable = (int)pgnoRoot;
8711 return SQLITE_OK;
8713 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8714 int rc;
8715 sqlite3BtreeEnter(p);
8716 rc = btreeCreateTable(p, piTable, flags);
8717 sqlite3BtreeLeave(p);
8718 return rc;
8722 ** Erase the given database page and all its children. Return
8723 ** the page to the freelist.
8725 static int clearDatabasePage(
8726 BtShared *pBt, /* The BTree that contains the table */
8727 Pgno pgno, /* Page number to clear */
8728 int freePageFlag, /* Deallocate page if true */
8729 int *pnChange /* Add number of Cells freed to this counter */
8731 MemPage *pPage;
8732 int rc;
8733 unsigned char *pCell;
8734 int i;
8735 int hdr;
8736 CellInfo info;
8738 assert( sqlite3_mutex_held(pBt->mutex) );
8739 if( pgno>btreePagecount(pBt) ){
8740 return SQLITE_CORRUPT_BKPT;
8742 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
8743 if( rc ) return rc;
8744 if( pPage->bBusy ){
8745 rc = SQLITE_CORRUPT_BKPT;
8746 goto cleardatabasepage_out;
8748 pPage->bBusy = 1;
8749 hdr = pPage->hdrOffset;
8750 for(i=0; i<pPage->nCell; i++){
8751 pCell = findCell(pPage, i);
8752 if( !pPage->leaf ){
8753 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
8754 if( rc ) goto cleardatabasepage_out;
8756 rc = clearCell(pPage, pCell, &info);
8757 if( rc ) goto cleardatabasepage_out;
8759 if( !pPage->leaf ){
8760 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
8761 if( rc ) goto cleardatabasepage_out;
8762 }else if( pnChange ){
8763 assert( pPage->intKey || CORRUPT_DB );
8764 testcase( !pPage->intKey );
8765 *pnChange += pPage->nCell;
8767 if( freePageFlag ){
8768 freePage(pPage, &rc);
8769 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
8770 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
8773 cleardatabasepage_out:
8774 pPage->bBusy = 0;
8775 releasePage(pPage);
8776 return rc;
8780 ** Delete all information from a single table in the database. iTable is
8781 ** the page number of the root of the table. After this routine returns,
8782 ** the root page is empty, but still exists.
8784 ** This routine will fail with SQLITE_LOCKED if there are any open
8785 ** read cursors on the table. Open write cursors are moved to the
8786 ** root of the table.
8788 ** If pnChange is not NULL, then table iTable must be an intkey table. The
8789 ** integer value pointed to by pnChange is incremented by the number of
8790 ** entries in the table.
8792 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
8793 int rc;
8794 BtShared *pBt = p->pBt;
8795 sqlite3BtreeEnter(p);
8796 assert( p->inTrans==TRANS_WRITE );
8798 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
8800 if( SQLITE_OK==rc ){
8801 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8802 ** is the root of a table b-tree - if it is not, the following call is
8803 ** a no-op). */
8804 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
8805 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
8807 sqlite3BtreeLeave(p);
8808 return rc;
8812 ** Delete all information from the single table that pCur is open on.
8814 ** This routine only work for pCur on an ephemeral table.
8816 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8817 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8821 ** Erase all information in a table and add the root of the table to
8822 ** the freelist. Except, the root of the principle table (the one on
8823 ** page 1) is never added to the freelist.
8825 ** This routine will fail with SQLITE_LOCKED if there are any open
8826 ** cursors on the table.
8828 ** If AUTOVACUUM is enabled and the page at iTable is not the last
8829 ** root page in the database file, then the last root page
8830 ** in the database file is moved into the slot formerly occupied by
8831 ** iTable and that last slot formerly occupied by the last root page
8832 ** is added to the freelist instead of iTable. In this say, all
8833 ** root pages are kept at the beginning of the database file, which
8834 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8835 ** page number that used to be the last root page in the file before
8836 ** the move. If no page gets moved, *piMoved is set to 0.
8837 ** The last root page is recorded in meta[3] and the value of
8838 ** meta[3] is updated by this procedure.
8840 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
8841 int rc;
8842 MemPage *pPage = 0;
8843 BtShared *pBt = p->pBt;
8845 assert( sqlite3BtreeHoldsMutex(p) );
8846 assert( p->inTrans==TRANS_WRITE );
8847 assert( iTable>=2 );
8849 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
8850 if( rc ) return rc;
8851 rc = sqlite3BtreeClearTable(p, iTable, 0);
8852 if( rc ){
8853 releasePage(pPage);
8854 return rc;
8857 *piMoved = 0;
8859 #ifdef SQLITE_OMIT_AUTOVACUUM
8860 freePage(pPage, &rc);
8861 releasePage(pPage);
8862 #else
8863 if( pBt->autoVacuum ){
8864 Pgno maxRootPgno;
8865 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
8867 if( iTable==maxRootPgno ){
8868 /* If the table being dropped is the table with the largest root-page
8869 ** number in the database, put the root page on the free list.
8871 freePage(pPage, &rc);
8872 releasePage(pPage);
8873 if( rc!=SQLITE_OK ){
8874 return rc;
8876 }else{
8877 /* The table being dropped does not have the largest root-page
8878 ** number in the database. So move the page that does into the
8879 ** gap left by the deleted root-page.
8881 MemPage *pMove;
8882 releasePage(pPage);
8883 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8884 if( rc!=SQLITE_OK ){
8885 return rc;
8887 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8888 releasePage(pMove);
8889 if( rc!=SQLITE_OK ){
8890 return rc;
8892 pMove = 0;
8893 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8894 freePage(pMove, &rc);
8895 releasePage(pMove);
8896 if( rc!=SQLITE_OK ){
8897 return rc;
8899 *piMoved = maxRootPgno;
8902 /* Set the new 'max-root-page' value in the database header. This
8903 ** is the old value less one, less one more if that happens to
8904 ** be a root-page number, less one again if that is the
8905 ** PENDING_BYTE_PAGE.
8907 maxRootPgno--;
8908 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8909 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8910 maxRootPgno--;
8912 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8914 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8915 }else{
8916 freePage(pPage, &rc);
8917 releasePage(pPage);
8919 #endif
8920 return rc;
8922 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8923 int rc;
8924 sqlite3BtreeEnter(p);
8925 rc = btreeDropTable(p, iTable, piMoved);
8926 sqlite3BtreeLeave(p);
8927 return rc;
8932 ** This function may only be called if the b-tree connection already
8933 ** has a read or write transaction open on the database.
8935 ** Read the meta-information out of a database file. Meta[0]
8936 ** is the number of free pages currently in the database. Meta[1]
8937 ** through meta[15] are available for use by higher layers. Meta[0]
8938 ** is read-only, the others are read/write.
8940 ** The schema layer numbers meta values differently. At the schema
8941 ** layer (and the SetCookie and ReadCookie opcodes) the number of
8942 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
8944 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8945 ** of reading the value out of the header, it instead loads the "DataVersion"
8946 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8947 ** database file. It is a number computed by the pager. But its access
8948 ** pattern is the same as header meta values, and so it is convenient to
8949 ** read it from this routine.
8951 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
8952 BtShared *pBt = p->pBt;
8954 sqlite3BtreeEnter(p);
8955 assert( p->inTrans>TRANS_NONE );
8956 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
8957 assert( pBt->pPage1 );
8958 assert( idx>=0 && idx<=15 );
8960 if( idx==BTREE_DATA_VERSION ){
8961 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
8962 }else{
8963 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8966 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8967 ** database, mark the database as read-only. */
8968 #ifdef SQLITE_OMIT_AUTOVACUUM
8969 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8970 pBt->btsFlags |= BTS_READ_ONLY;
8972 #endif
8974 sqlite3BtreeLeave(p);
8978 ** Write meta-information back into the database. Meta[0] is
8979 ** read-only and may not be written.
8981 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8982 BtShared *pBt = p->pBt;
8983 unsigned char *pP1;
8984 int rc;
8985 assert( idx>=1 && idx<=15 );
8986 sqlite3BtreeEnter(p);
8987 assert( p->inTrans==TRANS_WRITE );
8988 assert( pBt->pPage1!=0 );
8989 pP1 = pBt->pPage1->aData;
8990 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8991 if( rc==SQLITE_OK ){
8992 put4byte(&pP1[36 + idx*4], iMeta);
8993 #ifndef SQLITE_OMIT_AUTOVACUUM
8994 if( idx==BTREE_INCR_VACUUM ){
8995 assert( pBt->autoVacuum || iMeta==0 );
8996 assert( iMeta==0 || iMeta==1 );
8997 pBt->incrVacuum = (u8)iMeta;
8999 #endif
9001 sqlite3BtreeLeave(p);
9002 return rc;
9005 #ifndef SQLITE_OMIT_BTREECOUNT
9007 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9008 ** number of entries in the b-tree and write the result to *pnEntry.
9010 ** SQLITE_OK is returned if the operation is successfully executed.
9011 ** Otherwise, if an error is encountered (i.e. an IO error or database
9012 ** corruption) an SQLite error code is returned.
9014 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9015 i64 nEntry = 0; /* Value to return in *pnEntry */
9016 int rc; /* Return code */
9018 rc = moveToRoot(pCur);
9019 if( rc==SQLITE_EMPTY ){
9020 *pnEntry = 0;
9021 return SQLITE_OK;
9024 /* Unless an error occurs, the following loop runs one iteration for each
9025 ** page in the B-Tree structure (not including overflow pages).
9027 while( rc==SQLITE_OK ){
9028 int iIdx; /* Index of child node in parent */
9029 MemPage *pPage; /* Current page of the b-tree */
9031 /* If this is a leaf page or the tree is not an int-key tree, then
9032 ** this page contains countable entries. Increment the entry counter
9033 ** accordingly.
9035 pPage = pCur->pPage;
9036 if( pPage->leaf || !pPage->intKey ){
9037 nEntry += pPage->nCell;
9040 /* pPage is a leaf node. This loop navigates the cursor so that it
9041 ** points to the first interior cell that it points to the parent of
9042 ** the next page in the tree that has not yet been visited. The
9043 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9044 ** of the page, or to the number of cells in the page if the next page
9045 ** to visit is the right-child of its parent.
9047 ** If all pages in the tree have been visited, return SQLITE_OK to the
9048 ** caller.
9050 if( pPage->leaf ){
9051 do {
9052 if( pCur->iPage==0 ){
9053 /* All pages of the b-tree have been visited. Return successfully. */
9054 *pnEntry = nEntry;
9055 return moveToRoot(pCur);
9057 moveToParent(pCur);
9058 }while ( pCur->ix>=pCur->pPage->nCell );
9060 pCur->ix++;
9061 pPage = pCur->pPage;
9064 /* Descend to the child node of the cell that the cursor currently
9065 ** points at. This is the right-child if (iIdx==pPage->nCell).
9067 iIdx = pCur->ix;
9068 if( iIdx==pPage->nCell ){
9069 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9070 }else{
9071 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9075 /* An error has occurred. Return an error code. */
9076 return rc;
9078 #endif
9081 ** Return the pager associated with a BTree. This routine is used for
9082 ** testing and debugging only.
9084 Pager *sqlite3BtreePager(Btree *p){
9085 return p->pBt->pPager;
9088 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9090 ** Append a message to the error message string.
9092 static void checkAppendMsg(
9093 IntegrityCk *pCheck,
9094 const char *zFormat,
9097 va_list ap;
9098 if( !pCheck->mxErr ) return;
9099 pCheck->mxErr--;
9100 pCheck->nErr++;
9101 va_start(ap, zFormat);
9102 if( pCheck->errMsg.nChar ){
9103 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
9105 if( pCheck->zPfx ){
9106 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
9108 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
9109 va_end(ap);
9110 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
9111 pCheck->mallocFailed = 1;
9114 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9116 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9119 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9120 ** corresponds to page iPg is already set.
9122 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9123 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9124 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9128 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9130 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9131 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9132 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9137 ** Add 1 to the reference count for page iPage. If this is the second
9138 ** reference to the page, add an error message to pCheck->zErrMsg.
9139 ** Return 1 if there are 2 or more references to the page and 0 if
9140 ** if this is the first reference to the page.
9142 ** Also check that the page number is in bounds.
9144 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
9145 if( iPage==0 ) return 1;
9146 if( iPage>pCheck->nPage ){
9147 checkAppendMsg(pCheck, "invalid page number %d", iPage);
9148 return 1;
9150 if( getPageReferenced(pCheck, iPage) ){
9151 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
9152 return 1;
9154 setPageReferenced(pCheck, iPage);
9155 return 0;
9158 #ifndef SQLITE_OMIT_AUTOVACUUM
9160 ** Check that the entry in the pointer-map for page iChild maps to
9161 ** page iParent, pointer type ptrType. If not, append an error message
9162 ** to pCheck.
9164 static void checkPtrmap(
9165 IntegrityCk *pCheck, /* Integrity check context */
9166 Pgno iChild, /* Child page number */
9167 u8 eType, /* Expected pointer map type */
9168 Pgno iParent /* Expected pointer map parent page number */
9170 int rc;
9171 u8 ePtrmapType;
9172 Pgno iPtrmapParent;
9174 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9175 if( rc!=SQLITE_OK ){
9176 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
9177 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
9178 return;
9181 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
9182 checkAppendMsg(pCheck,
9183 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9184 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9187 #endif
9190 ** Check the integrity of the freelist or of an overflow page list.
9191 ** Verify that the number of pages on the list is N.
9193 static void checkList(
9194 IntegrityCk *pCheck, /* Integrity checking context */
9195 int isFreeList, /* True for a freelist. False for overflow page list */
9196 int iPage, /* Page number for first page in the list */
9197 int N /* Expected number of pages in the list */
9199 int i;
9200 int expected = N;
9201 int iFirst = iPage;
9202 while( N-- > 0 && pCheck->mxErr ){
9203 DbPage *pOvflPage;
9204 unsigned char *pOvflData;
9205 if( iPage<1 ){
9206 checkAppendMsg(pCheck,
9207 "%d of %d pages missing from overflow list starting at %d",
9208 N+1, expected, iFirst);
9209 break;
9211 if( checkRef(pCheck, iPage) ) break;
9212 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
9213 checkAppendMsg(pCheck, "failed to get page %d", iPage);
9214 break;
9216 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
9217 if( isFreeList ){
9218 int n = get4byte(&pOvflData[4]);
9219 #ifndef SQLITE_OMIT_AUTOVACUUM
9220 if( pCheck->pBt->autoVacuum ){
9221 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
9223 #endif
9224 if( n>(int)pCheck->pBt->usableSize/4-2 ){
9225 checkAppendMsg(pCheck,
9226 "freelist leaf count too big on page %d", iPage);
9227 N--;
9228 }else{
9229 for(i=0; i<n; i++){
9230 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
9231 #ifndef SQLITE_OMIT_AUTOVACUUM
9232 if( pCheck->pBt->autoVacuum ){
9233 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
9235 #endif
9236 checkRef(pCheck, iFreePage);
9238 N -= n;
9241 #ifndef SQLITE_OMIT_AUTOVACUUM
9242 else{
9243 /* If this database supports auto-vacuum and iPage is not the last
9244 ** page in this overflow list, check that the pointer-map entry for
9245 ** the following page matches iPage.
9247 if( pCheck->pBt->autoVacuum && N>0 ){
9248 i = get4byte(pOvflData);
9249 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
9252 #endif
9253 iPage = get4byte(pOvflData);
9254 sqlite3PagerUnref(pOvflPage);
9256 if( isFreeList && N<(iPage!=0) ){
9257 checkAppendMsg(pCheck, "free-page count in header is too small");
9261 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9264 ** An implementation of a min-heap.
9266 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
9267 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
9268 ** and aHeap[N*2+1].
9270 ** The heap property is this: Every node is less than or equal to both
9271 ** of its daughter nodes. A consequence of the heap property is that the
9272 ** root node aHeap[1] is always the minimum value currently in the heap.
9274 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9275 ** the heap, preserving the heap property. The btreeHeapPull() routine
9276 ** removes the root element from the heap (the minimum value in the heap)
9277 ** and then moves other nodes around as necessary to preserve the heap
9278 ** property.
9280 ** This heap is used for cell overlap and coverage testing. Each u32
9281 ** entry represents the span of a cell or freeblock on a btree page.
9282 ** The upper 16 bits are the index of the first byte of a range and the
9283 ** lower 16 bits are the index of the last byte of that range.
9285 static void btreeHeapInsert(u32 *aHeap, u32 x){
9286 u32 j, i = ++aHeap[0];
9287 aHeap[i] = x;
9288 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
9289 x = aHeap[j];
9290 aHeap[j] = aHeap[i];
9291 aHeap[i] = x;
9292 i = j;
9295 static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9296 u32 j, i, x;
9297 if( (x = aHeap[0])==0 ) return 0;
9298 *pOut = aHeap[1];
9299 aHeap[1] = aHeap[x];
9300 aHeap[x] = 0xffffffff;
9301 aHeap[0]--;
9302 i = 1;
9303 while( (j = i*2)<=aHeap[0] ){
9304 if( aHeap[j]>aHeap[j+1] ) j++;
9305 if( aHeap[i]<aHeap[j] ) break;
9306 x = aHeap[i];
9307 aHeap[i] = aHeap[j];
9308 aHeap[j] = x;
9309 i = j;
9311 return 1;
9314 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9316 ** Do various sanity checks on a single page of a tree. Return
9317 ** the tree depth. Root pages return 0. Parents of root pages
9318 ** return 1, and so forth.
9320 ** These checks are done:
9322 ** 1. Make sure that cells and freeblocks do not overlap
9323 ** but combine to completely cover the page.
9324 ** 2. Make sure integer cell keys are in order.
9325 ** 3. Check the integrity of overflow pages.
9326 ** 4. Recursively call checkTreePage on all children.
9327 ** 5. Verify that the depth of all children is the same.
9329 static int checkTreePage(
9330 IntegrityCk *pCheck, /* Context for the sanity check */
9331 int iPage, /* Page number of the page to check */
9332 i64 *piMinKey, /* Write minimum integer primary key here */
9333 i64 maxKey /* Error if integer primary key greater than this */
9335 MemPage *pPage = 0; /* The page being analyzed */
9336 int i; /* Loop counter */
9337 int rc; /* Result code from subroutine call */
9338 int depth = -1, d2; /* Depth of a subtree */
9339 int pgno; /* Page number */
9340 int nFrag; /* Number of fragmented bytes on the page */
9341 int hdr; /* Offset to the page header */
9342 int cellStart; /* Offset to the start of the cell pointer array */
9343 int nCell; /* Number of cells */
9344 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9345 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9346 ** False if IPK must be strictly less than maxKey */
9347 u8 *data; /* Page content */
9348 u8 *pCell; /* Cell content */
9349 u8 *pCellIdx; /* Next element of the cell pointer array */
9350 BtShared *pBt; /* The BtShared object that owns pPage */
9351 u32 pc; /* Address of a cell */
9352 u32 usableSize; /* Usable size of the page */
9353 u32 contentOffset; /* Offset to the start of the cell content area */
9354 u32 *heap = 0; /* Min-heap used for checking cell coverage */
9355 u32 x, prev = 0; /* Next and previous entry on the min-heap */
9356 const char *saved_zPfx = pCheck->zPfx;
9357 int saved_v1 = pCheck->v1;
9358 int saved_v2 = pCheck->v2;
9359 u8 savedIsInit = 0;
9361 /* Check that the page exists
9363 pBt = pCheck->pBt;
9364 usableSize = pBt->usableSize;
9365 if( iPage==0 ) return 0;
9366 if( checkRef(pCheck, iPage) ) return 0;
9367 pCheck->zPfx = "Page %d: ";
9368 pCheck->v1 = iPage;
9369 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
9370 checkAppendMsg(pCheck,
9371 "unable to get the page. error code=%d", rc);
9372 goto end_of_check;
9375 /* Clear MemPage.isInit to make sure the corruption detection code in
9376 ** btreeInitPage() is executed. */
9377 savedIsInit = pPage->isInit;
9378 pPage->isInit = 0;
9379 if( (rc = btreeInitPage(pPage))!=0 ){
9380 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
9381 checkAppendMsg(pCheck,
9382 "btreeInitPage() returns error code %d", rc);
9383 goto end_of_check;
9385 data = pPage->aData;
9386 hdr = pPage->hdrOffset;
9388 /* Set up for cell analysis */
9389 pCheck->zPfx = "On tree page %d cell %d: ";
9390 contentOffset = get2byteNotZero(&data[hdr+5]);
9391 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9393 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9394 ** number of cells on the page. */
9395 nCell = get2byte(&data[hdr+3]);
9396 assert( pPage->nCell==nCell );
9398 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9399 ** immediately follows the b-tree page header. */
9400 cellStart = hdr + 12 - 4*pPage->leaf;
9401 assert( pPage->aCellIdx==&data[cellStart] );
9402 pCellIdx = &data[cellStart + 2*(nCell-1)];
9404 if( !pPage->leaf ){
9405 /* Analyze the right-child page of internal pages */
9406 pgno = get4byte(&data[hdr+8]);
9407 #ifndef SQLITE_OMIT_AUTOVACUUM
9408 if( pBt->autoVacuum ){
9409 pCheck->zPfx = "On page %d at right child: ";
9410 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9412 #endif
9413 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9414 keyCanBeEqual = 0;
9415 }else{
9416 /* For leaf pages, the coverage check will occur in the same loop
9417 ** as the other cell checks, so initialize the heap. */
9418 heap = pCheck->heap;
9419 heap[0] = 0;
9422 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9423 ** integer offsets to the cell contents. */
9424 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
9425 CellInfo info;
9427 /* Check cell size */
9428 pCheck->v2 = i;
9429 assert( pCellIdx==&data[cellStart + i*2] );
9430 pc = get2byteAligned(pCellIdx);
9431 pCellIdx -= 2;
9432 if( pc<contentOffset || pc>usableSize-4 ){
9433 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9434 pc, contentOffset, usableSize-4);
9435 doCoverageCheck = 0;
9436 continue;
9438 pCell = &data[pc];
9439 pPage->xParseCell(pPage, pCell, &info);
9440 if( pc+info.nSize>usableSize ){
9441 checkAppendMsg(pCheck, "Extends off end of page");
9442 doCoverageCheck = 0;
9443 continue;
9446 /* Check for integer primary key out of range */
9447 if( pPage->intKey ){
9448 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9449 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9451 maxKey = info.nKey;
9452 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
9455 /* Check the content overflow list */
9456 if( info.nPayload>info.nLocal ){
9457 int nPage; /* Number of pages on the overflow chain */
9458 Pgno pgnoOvfl; /* First page of the overflow chain */
9459 assert( pc + info.nSize - 4 <= usableSize );
9460 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9461 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
9462 #ifndef SQLITE_OMIT_AUTOVACUUM
9463 if( pBt->autoVacuum ){
9464 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
9466 #endif
9467 checkList(pCheck, 0, pgnoOvfl, nPage);
9470 if( !pPage->leaf ){
9471 /* Check sanity of left child page for internal pages */
9472 pgno = get4byte(pCell);
9473 #ifndef SQLITE_OMIT_AUTOVACUUM
9474 if( pBt->autoVacuum ){
9475 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9477 #endif
9478 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9479 keyCanBeEqual = 0;
9480 if( d2!=depth ){
9481 checkAppendMsg(pCheck, "Child page depth differs");
9482 depth = d2;
9484 }else{
9485 /* Populate the coverage-checking heap for leaf pages */
9486 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
9489 *piMinKey = maxKey;
9491 /* Check for complete coverage of the page
9493 pCheck->zPfx = 0;
9494 if( doCoverageCheck && pCheck->mxErr>0 ){
9495 /* For leaf pages, the min-heap has already been initialized and the
9496 ** cells have already been inserted. But for internal pages, that has
9497 ** not yet been done, so do it now */
9498 if( !pPage->leaf ){
9499 heap = pCheck->heap;
9500 heap[0] = 0;
9501 for(i=nCell-1; i>=0; i--){
9502 u32 size;
9503 pc = get2byteAligned(&data[cellStart+i*2]);
9504 size = pPage->xCellSize(pPage, &data[pc]);
9505 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
9508 /* Add the freeblocks to the min-heap
9510 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
9511 ** is the offset of the first freeblock, or zero if there are no
9512 ** freeblocks on the page.
9514 i = get2byte(&data[hdr+1]);
9515 while( i>0 ){
9516 int size, j;
9517 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
9518 size = get2byte(&data[i+2]);
9519 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
9520 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
9521 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9522 ** big-endian integer which is the offset in the b-tree page of the next
9523 ** freeblock in the chain, or zero if the freeblock is the last on the
9524 ** chain. */
9525 j = get2byte(&data[i]);
9526 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9527 ** increasing offset. */
9528 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
9529 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
9530 i = j;
9532 /* Analyze the min-heap looking for overlap between cells and/or
9533 ** freeblocks, and counting the number of untracked bytes in nFrag.
9535 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9536 ** There is an implied first entry the covers the page header, the cell
9537 ** pointer index, and the gap between the cell pointer index and the start
9538 ** of cell content.
9540 ** The loop below pulls entries from the min-heap in order and compares
9541 ** the start_address against the previous end_address. If there is an
9542 ** overlap, that means bytes are used multiple times. If there is a gap,
9543 ** that gap is added to the fragmentation count.
9545 nFrag = 0;
9546 prev = contentOffset - 1; /* Implied first min-heap entry */
9547 while( btreeHeapPull(heap,&x) ){
9548 if( (prev&0xffff)>=(x>>16) ){
9549 checkAppendMsg(pCheck,
9550 "Multiple uses for byte %u of page %d", x>>16, iPage);
9551 break;
9552 }else{
9553 nFrag += (x>>16) - (prev&0xffff) - 1;
9554 prev = x;
9557 nFrag += usableSize - (prev&0xffff) - 1;
9558 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9559 ** is stored in the fifth field of the b-tree page header.
9560 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9561 ** number of fragmented free bytes within the cell content area.
9563 if( heap[0]==0 && nFrag!=data[hdr+7] ){
9564 checkAppendMsg(pCheck,
9565 "Fragmentation of %d bytes reported as %d on page %d",
9566 nFrag, data[hdr+7], iPage);
9570 end_of_check:
9571 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
9572 releasePage(pPage);
9573 pCheck->zPfx = saved_zPfx;
9574 pCheck->v1 = saved_v1;
9575 pCheck->v2 = saved_v2;
9576 return depth+1;
9578 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9580 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9582 ** This routine does a complete check of the given BTree file. aRoot[] is
9583 ** an array of pages numbers were each page number is the root page of
9584 ** a table. nRoot is the number of entries in aRoot.
9586 ** A read-only or read-write transaction must be opened before calling
9587 ** this function.
9589 ** Write the number of error seen in *pnErr. Except for some memory
9590 ** allocation errors, an error message held in memory obtained from
9591 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
9592 ** returned. If a memory allocation error occurs, NULL is returned.
9594 char *sqlite3BtreeIntegrityCheck(
9595 Btree *p, /* The btree to be checked */
9596 int *aRoot, /* An array of root pages numbers for individual trees */
9597 int nRoot, /* Number of entries in aRoot[] */
9598 int mxErr, /* Stop reporting errors after this many */
9599 int *pnErr /* Write number of errors seen to this variable */
9601 Pgno i;
9602 IntegrityCk sCheck;
9603 BtShared *pBt = p->pBt;
9604 int savedDbFlags = pBt->db->flags;
9605 char zErr[100];
9606 VVA_ONLY( int nRef );
9608 sqlite3BtreeEnter(p);
9609 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
9610 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9611 assert( nRef>=0 );
9612 sCheck.pBt = pBt;
9613 sCheck.pPager = pBt->pPager;
9614 sCheck.nPage = btreePagecount(sCheck.pBt);
9615 sCheck.mxErr = mxErr;
9616 sCheck.nErr = 0;
9617 sCheck.mallocFailed = 0;
9618 sCheck.zPfx = 0;
9619 sCheck.v1 = 0;
9620 sCheck.v2 = 0;
9621 sCheck.aPgRef = 0;
9622 sCheck.heap = 0;
9623 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
9624 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
9625 if( sCheck.nPage==0 ){
9626 goto integrity_ck_cleanup;
9629 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9630 if( !sCheck.aPgRef ){
9631 sCheck.mallocFailed = 1;
9632 goto integrity_ck_cleanup;
9634 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9635 if( sCheck.heap==0 ){
9636 sCheck.mallocFailed = 1;
9637 goto integrity_ck_cleanup;
9640 i = PENDING_BYTE_PAGE(pBt);
9641 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
9643 /* Check the integrity of the freelist
9645 sCheck.zPfx = "Main freelist: ";
9646 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
9647 get4byte(&pBt->pPage1->aData[36]));
9648 sCheck.zPfx = 0;
9650 /* Check all the tables.
9652 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9653 pBt->db->flags &= ~SQLITE_CellSizeCk;
9654 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
9655 i64 notUsed;
9656 if( aRoot[i]==0 ) continue;
9657 #ifndef SQLITE_OMIT_AUTOVACUUM
9658 if( pBt->autoVacuum && aRoot[i]>1 ){
9659 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
9661 #endif
9662 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
9664 pBt->db->flags = savedDbFlags;
9666 /* Make sure every page in the file is referenced
9668 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
9669 #ifdef SQLITE_OMIT_AUTOVACUUM
9670 if( getPageReferenced(&sCheck, i)==0 ){
9671 checkAppendMsg(&sCheck, "Page %d is never used", i);
9673 #else
9674 /* If the database supports auto-vacuum, make sure no tables contain
9675 ** references to pointer-map pages.
9677 if( getPageReferenced(&sCheck, i)==0 &&
9678 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
9679 checkAppendMsg(&sCheck, "Page %d is never used", i);
9681 if( getPageReferenced(&sCheck, i)!=0 &&
9682 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
9683 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
9685 #endif
9688 /* Clean up and report errors.
9690 integrity_ck_cleanup:
9691 sqlite3PageFree(sCheck.heap);
9692 sqlite3_free(sCheck.aPgRef);
9693 if( sCheck.mallocFailed ){
9694 sqlite3StrAccumReset(&sCheck.errMsg);
9695 sCheck.nErr++;
9697 *pnErr = sCheck.nErr;
9698 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
9699 /* Make sure this analysis did not leave any unref() pages. */
9700 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9701 sqlite3BtreeLeave(p);
9702 return sqlite3StrAccumFinish(&sCheck.errMsg);
9704 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9707 ** Return the full pathname of the underlying database file. Return
9708 ** an empty string if the database is in-memory or a TEMP database.
9710 ** The pager filename is invariant as long as the pager is
9711 ** open so it is safe to access without the BtShared mutex.
9713 const char *sqlite3BtreeGetFilename(Btree *p){
9714 assert( p->pBt->pPager!=0 );
9715 return sqlite3PagerFilename(p->pBt->pPager, 1);
9719 ** Return the pathname of the journal file for this database. The return
9720 ** value of this routine is the same regardless of whether the journal file
9721 ** has been created or not.
9723 ** The pager journal filename is invariant as long as the pager is
9724 ** open so it is safe to access without the BtShared mutex.
9726 const char *sqlite3BtreeGetJournalname(Btree *p){
9727 assert( p->pBt->pPager!=0 );
9728 return sqlite3PagerJournalname(p->pBt->pPager);
9732 ** Return non-zero if a transaction is active.
9734 int sqlite3BtreeIsInTrans(Btree *p){
9735 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
9736 return (p && (p->inTrans==TRANS_WRITE));
9739 #ifndef SQLITE_OMIT_WAL
9741 ** Run a checkpoint on the Btree passed as the first argument.
9743 ** Return SQLITE_LOCKED if this or any other connection has an open
9744 ** transaction on the shared-cache the argument Btree is connected to.
9746 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
9748 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
9749 int rc = SQLITE_OK;
9750 if( p ){
9751 BtShared *pBt = p->pBt;
9752 sqlite3BtreeEnter(p);
9753 if( pBt->inTransaction!=TRANS_NONE ){
9754 rc = SQLITE_LOCKED;
9755 }else{
9756 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
9758 sqlite3BtreeLeave(p);
9760 return rc;
9762 #endif
9765 ** Return non-zero if a read (or write) transaction is active.
9767 int sqlite3BtreeIsInReadTrans(Btree *p){
9768 assert( p );
9769 assert( sqlite3_mutex_held(p->db->mutex) );
9770 return p->inTrans!=TRANS_NONE;
9773 int sqlite3BtreeIsInBackup(Btree *p){
9774 assert( p );
9775 assert( sqlite3_mutex_held(p->db->mutex) );
9776 return p->nBackup!=0;
9780 ** This function returns a pointer to a blob of memory associated with
9781 ** a single shared-btree. The memory is used by client code for its own
9782 ** purposes (for example, to store a high-level schema associated with
9783 ** the shared-btree). The btree layer manages reference counting issues.
9785 ** The first time this is called on a shared-btree, nBytes bytes of memory
9786 ** are allocated, zeroed, and returned to the caller. For each subsequent
9787 ** call the nBytes parameter is ignored and a pointer to the same blob
9788 ** of memory returned.
9790 ** If the nBytes parameter is 0 and the blob of memory has not yet been
9791 ** allocated, a null pointer is returned. If the blob has already been
9792 ** allocated, it is returned as normal.
9794 ** Just before the shared-btree is closed, the function passed as the
9795 ** xFree argument when the memory allocation was made is invoked on the
9796 ** blob of allocated memory. The xFree function should not call sqlite3_free()
9797 ** on the memory, the btree layer does that.
9799 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9800 BtShared *pBt = p->pBt;
9801 sqlite3BtreeEnter(p);
9802 if( !pBt->pSchema && nBytes ){
9803 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
9804 pBt->xFreeSchema = xFree;
9806 sqlite3BtreeLeave(p);
9807 return pBt->pSchema;
9811 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9812 ** btree as the argument handle holds an exclusive lock on the
9813 ** sqlite_master table. Otherwise SQLITE_OK.
9815 int sqlite3BtreeSchemaLocked(Btree *p){
9816 int rc;
9817 assert( sqlite3_mutex_held(p->db->mutex) );
9818 sqlite3BtreeEnter(p);
9819 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9820 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
9821 sqlite3BtreeLeave(p);
9822 return rc;
9826 #ifndef SQLITE_OMIT_SHARED_CACHE
9828 ** Obtain a lock on the table whose root page is iTab. The
9829 ** lock is a write lock if isWritelock is true or a read lock
9830 ** if it is false.
9832 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
9833 int rc = SQLITE_OK;
9834 assert( p->inTrans!=TRANS_NONE );
9835 if( p->sharable ){
9836 u8 lockType = READ_LOCK + isWriteLock;
9837 assert( READ_LOCK+1==WRITE_LOCK );
9838 assert( isWriteLock==0 || isWriteLock==1 );
9840 sqlite3BtreeEnter(p);
9841 rc = querySharedCacheTableLock(p, iTab, lockType);
9842 if( rc==SQLITE_OK ){
9843 rc = setSharedCacheTableLock(p, iTab, lockType);
9845 sqlite3BtreeLeave(p);
9847 return rc;
9849 #endif
9851 #ifndef SQLITE_OMIT_INCRBLOB
9853 ** Argument pCsr must be a cursor opened for writing on an
9854 ** INTKEY table currently pointing at a valid table entry.
9855 ** This function modifies the data stored as part of that entry.
9857 ** Only the data content may only be modified, it is not possible to
9858 ** change the length of the data stored. If this function is called with
9859 ** parameters that attempt to write past the end of the existing data,
9860 ** no modifications are made and SQLITE_CORRUPT is returned.
9862 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
9863 int rc;
9864 assert( cursorOwnsBtShared(pCsr) );
9865 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
9866 assert( pCsr->curFlags & BTCF_Incrblob );
9868 rc = restoreCursorPosition(pCsr);
9869 if( rc!=SQLITE_OK ){
9870 return rc;
9872 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9873 if( pCsr->eState!=CURSOR_VALID ){
9874 return SQLITE_ABORT;
9877 /* Save the positions of all other cursors open on this table. This is
9878 ** required in case any of them are holding references to an xFetch
9879 ** version of the b-tree page modified by the accessPayload call below.
9881 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
9882 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9883 ** saveAllCursors can only return SQLITE_OK.
9885 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9886 assert( rc==SQLITE_OK );
9888 /* Check some assumptions:
9889 ** (a) the cursor is open for writing,
9890 ** (b) there is a read/write transaction open,
9891 ** (c) the connection holds a write-lock on the table (if required),
9892 ** (d) there are no conflicting read-locks, and
9893 ** (e) the cursor points at a valid row of an intKey table.
9895 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
9896 return SQLITE_READONLY;
9898 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9899 && pCsr->pBt->inTransaction==TRANS_WRITE );
9900 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9901 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
9902 assert( pCsr->pPage->intKey );
9904 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
9908 ** Mark this cursor as an incremental blob cursor.
9910 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
9911 pCur->curFlags |= BTCF_Incrblob;
9912 pCur->pBtree->hasIncrblobCur = 1;
9914 #endif
9917 ** Set both the "read version" (single byte at byte offset 18) and
9918 ** "write version" (single byte at byte offset 19) fields in the database
9919 ** header to iVersion.
9921 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9922 BtShared *pBt = pBtree->pBt;
9923 int rc; /* Return code */
9925 assert( iVersion==1 || iVersion==2 );
9927 /* If setting the version fields to 1, do not automatically open the
9928 ** WAL connection, even if the version fields are currently set to 2.
9930 pBt->btsFlags &= ~BTS_NO_WAL;
9931 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
9933 rc = sqlite3BtreeBeginTrans(pBtree, 0);
9934 if( rc==SQLITE_OK ){
9935 u8 *aData = pBt->pPage1->aData;
9936 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
9937 rc = sqlite3BtreeBeginTrans(pBtree, 2);
9938 if( rc==SQLITE_OK ){
9939 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9940 if( rc==SQLITE_OK ){
9941 aData[18] = (u8)iVersion;
9942 aData[19] = (u8)iVersion;
9948 pBt->btsFlags &= ~BTS_NO_WAL;
9949 return rc;
9953 ** Return true if the cursor has a hint specified. This routine is
9954 ** only used from within assert() statements
9956 int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9957 return (pCsr->hints & mask)!=0;
9961 ** Return true if the given Btree is read-only.
9963 int sqlite3BtreeIsReadonly(Btree *p){
9964 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9968 ** Return the size of the header added to each page by this module.
9970 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
9972 #if !defined(SQLITE_OMIT_SHARED_CACHE)
9974 ** Return true if the Btree passed as the only argument is sharable.
9976 int sqlite3BtreeSharable(Btree *p){
9977 return p->sharable;
9981 ** Return the number of connections to the BtShared object accessed by
9982 ** the Btree handle passed as the only argument. For private caches
9983 ** this is always 1. For shared caches it may be 1 or greater.
9985 int sqlite3BtreeConnectionCount(Btree *p){
9986 testcase( p->sharable );
9987 return p->pBt->nRef;
9989 #endif