Update test file walprotocol.test to account for the changes in the wal
[sqlite.git] / ext / lsm1 / lsm_ckpt.c
blobcf4c55bf84169fc4a99fe94ed49db4c796a97834
1 /*
2 ** 2011-09-11
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code to read and write checkpoints.
15 ** A checkpoint represents the database layout at a single point in time.
16 ** It includes a log offset. When an existing database is opened, the
17 ** current state is determined by reading the newest checkpoint and updating
18 ** it with all committed transactions from the log that follow the specified
19 ** offset.
21 #include "lsmInt.h"
24 ** CHECKPOINT BLOB FORMAT:
26 ** A checkpoint blob is a series of unsigned 32-bit integers stored in
27 ** big-endian byte order. As follows:
29 ** Checkpoint header (see the CKPT_HDR_XXX #defines):
31 ** 1. The checkpoint id MSW.
32 ** 2. The checkpoint id LSW.
33 ** 3. The number of integer values in the entire checkpoint, including
34 ** the two checksum values.
35 ** 4. The compression scheme id.
36 ** 5. The total number of blocks in the database.
37 ** 6. The block size.
38 ** 7. The number of levels.
39 ** 8. The nominal database page size.
40 ** 9. The number of pages (in total) written to the database file.
42 ** Log pointer:
44 ** 1. The log offset MSW.
45 ** 2. The log offset LSW.
46 ** 3. Log checksum 0.
47 ** 4. Log checksum 1.
49 ** Note that the "log offset" is not the literal byte offset. Instead,
50 ** it is the byte offset multiplied by 2, with least significant bit
51 ** toggled each time the log pointer value is changed. This is to make
52 ** sure that this field changes each time the log pointer is updated,
53 ** even if the log file itself is disabled. See lsmTreeMakeOld().
55 ** See ckptExportLog() and ckptImportLog().
57 ** Append points:
59 ** 8 integers (4 * 64-bit page numbers). See ckptExportAppendlist().
61 ** For each level in the database, a level record. Formatted as follows:
63 ** 0. Age of the level (least significant 16-bits). And flags mask (most
64 ** significant 16-bits).
65 ** 1. The number of right-hand segments (nRight, possibly 0),
66 ** 2. Segment record for left-hand segment (8 integers defined below),
67 ** 3. Segment record for each right-hand segment (8 integers defined below),
68 ** 4. If nRight>0, The number of segments involved in the merge
69 ** 5. if nRight>0, Current nSkip value (see Merge structure defn.),
70 ** 6. For each segment in the merge:
71 ** 5a. Page number of next cell to read during merge (this field
72 ** is 64-bits - 2 integers)
73 ** 5b. Cell number of next cell to read during merge
74 ** 7. Page containing current split-key (64-bits - 2 integers).
75 ** 8. Cell within page containing current split-key.
76 ** 9. Current pointer value (64-bits - 2 integers).
78 ** The block redirect array:
80 ** 1. Number of redirections (maximum LSM_MAX_BLOCK_REDIRECTS).
81 ** 2. For each redirection:
82 ** a. "from" block number
83 ** b. "to" block number
85 ** The in-memory freelist entries. Each entry is either an insert or a
86 ** delete. The in-memory freelist is to the free-block-list as the
87 ** in-memory tree is to the users database content.
89 ** 1. Number of free-list entries stored in checkpoint header.
90 ** 2. Number of free blocks (in total).
91 ** 3. Total number of blocks freed during database lifetime.
92 ** 4. For each entry:
93 ** 2a. Block number of free block.
94 ** 2b. A 64-bit integer (MSW followed by LSW). -1 for a delete entry,
95 ** or the associated checkpoint id for an insert.
97 ** The checksum:
99 ** 1. Checksum value 1.
100 ** 2. Checksum value 2.
102 ** In the above, a segment record consists of the following four 64-bit
103 ** fields (converted to 2 * u32 by storing the MSW followed by LSW):
105 ** 1. First page of array,
106 ** 2. Last page of array,
107 ** 3. Root page of array (or 0),
108 ** 4. Size of array in pages.
112 ** LARGE NUMBERS OF LEVEL RECORDS:
114 ** A limit on the number of rhs segments that may be present in the database
115 ** file. Defining this limit ensures that all level records fit within
116 ** the 4096 byte limit for checkpoint blobs.
118 ** The number of right-hand-side segments in a database is counted as
119 ** follows:
121 ** * For each level in the database not undergoing a merge, add 1.
123 ** * For each level in the database that is undergoing a merge, add
124 ** the number of segments on the rhs of the level.
126 ** A level record not undergoing a merge is 10 integers. A level record
127 ** with nRhs rhs segments and (nRhs+1) input segments (i.e. including the
128 ** separators from the next level) is (11*nRhs+20) integers. The maximum
129 ** per right-hand-side level is therefore 21 integers. So the maximum
130 ** size of all level records in a checkpoint is 21*40=820 integers.
132 ** TODO: Before pointer values were changed from 32 to 64 bits, the above
133 ** used to come to 420 bytes - leaving significant space for a free-list
134 ** prefix. No more. To fix this, reduce the size of the level records in
135 ** a db snapshot, and improve management of the free-list tail in
136 ** lsm_sorted.c.
138 #define LSM_MAX_RHS_SEGMENTS 40
141 ** LARGE NUMBERS OF FREELIST ENTRIES:
143 ** There is also a limit (LSM_MAX_FREELIST_ENTRIES - defined in lsmInt.h)
144 ** on the number of free-list entries stored in a checkpoint. Since each
145 ** free-list entry consists of 3 integers, the maximum free-list size is
146 ** 3*100=300 integers. Combined with the limit on rhs segments defined
147 ** above, this ensures that a checkpoint always fits within a 4096 byte
148 ** meta page.
150 ** If the database contains more than 100 free blocks, the "overflow" flag
151 ** in the checkpoint header is set and the remainder are stored in the
152 ** system FREELIST entry in the LSM (along with user data). The value
153 ** accompanying the FREELIST key in the LSM is, like a checkpoint, an array
154 ** of 32-bit big-endian integers. As follows:
156 ** For each entry:
157 ** a. Block number of free block.
158 ** b. MSW of associated checkpoint id.
159 ** c. LSW of associated checkpoint id.
161 ** The number of entries is not required - it is implied by the size of the
162 ** value blob containing the integer array.
164 ** Note that the limit defined by LSM_MAX_FREELIST_ENTRIES is a hard limit.
165 ** The actual value used may be configured using LSM_CONFIG_MAX_FREELIST.
169 ** The argument to this macro must be of type u32. On a little-endian
170 ** architecture, it returns the u32 value that results from interpreting
171 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
172 ** returns the value that would be produced by intepreting the 4 bytes
173 ** of the input value as a little-endian integer.
175 #define BYTESWAP32(x) ( \
176 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
177 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
180 static const int one = 1;
181 #define LSM_LITTLE_ENDIAN (*(u8 *)(&one))
183 /* Sizes, in integers, of various parts of the checkpoint. */
184 #define CKPT_HDR_SIZE 9
185 #define CKPT_LOGPTR_SIZE 4
186 #define CKPT_APPENDLIST_SIZE (LSM_APPLIST_SZ * 2)
188 /* A #define to describe each integer in the checkpoint header. */
189 #define CKPT_HDR_ID_MSW 0
190 #define CKPT_HDR_ID_LSW 1
191 #define CKPT_HDR_NCKPT 2
192 #define CKPT_HDR_CMPID 3
193 #define CKPT_HDR_NBLOCK 4
194 #define CKPT_HDR_BLKSZ 5
195 #define CKPT_HDR_NLEVEL 6
196 #define CKPT_HDR_PGSZ 7
197 #define CKPT_HDR_NWRITE 8
199 #define CKPT_HDR_LO_MSW 9
200 #define CKPT_HDR_LO_LSW 10
201 #define CKPT_HDR_LO_CKSUM1 11
202 #define CKPT_HDR_LO_CKSUM2 12
204 typedef struct CkptBuffer CkptBuffer;
207 ** Dynamic buffer used to accumulate data for a checkpoint.
209 struct CkptBuffer {
210 lsm_env *pEnv;
211 int nAlloc;
212 u32 *aCkpt;
216 ** Calculate the checksum of the checkpoint specified by arguments aCkpt and
217 ** nCkpt. Store the checksum in *piCksum1 and *piCksum2 before returning.
219 ** The value of the nCkpt parameter includes the two checksum values at
220 ** the end of the checkpoint. They are not used as inputs to the checksum
221 ** calculation. The checksum is based on the array of (nCkpt-2) integers
222 ** at aCkpt[].
224 static void ckptChecksum(u32 *aCkpt, u32 nCkpt, u32 *piCksum1, u32 *piCksum2){
225 u32 i;
226 u32 cksum1 = 1;
227 u32 cksum2 = 2;
229 if( nCkpt % 2 ){
230 cksum1 += aCkpt[nCkpt-3] & 0x0000FFFF;
231 cksum2 += aCkpt[nCkpt-3] & 0xFFFF0000;
234 for(i=0; (i+3)<nCkpt; i+=2){
235 cksum1 += cksum2 + aCkpt[i];
236 cksum2 += cksum1 + aCkpt[i+1];
239 *piCksum1 = cksum1;
240 *piCksum2 = cksum2;
244 ** Set integer iIdx of the checkpoint accumulating in buffer *p to iVal.
246 static void ckptSetValue(CkptBuffer *p, int iIdx, u32 iVal, int *pRc){
247 if( *pRc ) return;
248 if( iIdx>=p->nAlloc ){
249 int nNew = LSM_MAX(8, iIdx*2);
250 p->aCkpt = (u32 *)lsmReallocOrFree(p->pEnv, p->aCkpt, nNew*sizeof(u32));
251 if( !p->aCkpt ){
252 *pRc = LSM_NOMEM_BKPT;
253 return;
255 p->nAlloc = nNew;
257 p->aCkpt[iIdx] = iVal;
261 ** Argument aInt points to an array nInt elements in size. Switch the
262 ** endian-ness of each element of the array.
264 static void ckptChangeEndianness(u32 *aInt, int nInt){
265 if( LSM_LITTLE_ENDIAN ){
266 int i;
267 for(i=0; i<nInt; i++) aInt[i] = BYTESWAP32(aInt[i]);
272 ** Object *p contains a checkpoint in native byte-order. The checkpoint is
273 ** nCkpt integers in size, not including any checksum. This function sets
274 ** the two checksum elements of the checkpoint accordingly.
276 static void ckptAddChecksum(CkptBuffer *p, int nCkpt, int *pRc){
277 if( *pRc==LSM_OK ){
278 u32 aCksum[2] = {0, 0};
279 ckptChecksum(p->aCkpt, nCkpt+2, &aCksum[0], &aCksum[1]);
280 ckptSetValue(p, nCkpt, aCksum[0], pRc);
281 ckptSetValue(p, nCkpt+1, aCksum[1], pRc);
285 static void ckptAppend64(CkptBuffer *p, int *piOut, i64 iVal, int *pRc){
286 int iOut = *piOut;
287 ckptSetValue(p, iOut++, (iVal >> 32) & 0xFFFFFFFF, pRc);
288 ckptSetValue(p, iOut++, (iVal & 0xFFFFFFFF), pRc);
289 *piOut = iOut;
292 static i64 ckptRead64(u32 *a){
293 return (((i64)a[0]) << 32) + (i64)a[1];
296 static i64 ckptGobble64(u32 *a, int *piIn){
297 int iIn = *piIn;
298 *piIn += 2;
299 return ckptRead64(&a[iIn]);
304 ** Append a 6-value segment record corresponding to pSeg to the checkpoint
305 ** buffer passed as the third argument.
307 static void ckptExportSegment(
308 Segment *pSeg,
309 CkptBuffer *p,
310 int *piOut,
311 int *pRc
313 ckptAppend64(p, piOut, pSeg->iFirst, pRc);
314 ckptAppend64(p, piOut, pSeg->iLastPg, pRc);
315 ckptAppend64(p, piOut, pSeg->iRoot, pRc);
316 ckptAppend64(p, piOut, pSeg->nSize, pRc);
319 static void ckptExportLevel(
320 Level *pLevel, /* Level object to serialize */
321 CkptBuffer *p, /* Append new level record to this ckpt */
322 int *piOut, /* IN/OUT: Size of checkpoint so far */
323 int *pRc /* IN/OUT: Error code */
325 int iOut = *piOut;
326 Merge *pMerge;
328 pMerge = pLevel->pMerge;
329 ckptSetValue(p, iOut++, (u32)pLevel->iAge + (u32)(pLevel->flags<<16), pRc);
330 ckptSetValue(p, iOut++, pLevel->nRight, pRc);
331 ckptExportSegment(&pLevel->lhs, p, &iOut, pRc);
333 assert( (pLevel->nRight>0)==(pMerge!=0) );
334 if( pMerge ){
335 int i;
336 for(i=0; i<pLevel->nRight; i++){
337 ckptExportSegment(&pLevel->aRhs[i], p, &iOut, pRc);
339 assert( pMerge->nInput==pLevel->nRight
340 || pMerge->nInput==pLevel->nRight+1
342 ckptSetValue(p, iOut++, pMerge->nInput, pRc);
343 ckptSetValue(p, iOut++, pMerge->nSkip, pRc);
344 for(i=0; i<pMerge->nInput; i++){
345 ckptAppend64(p, &iOut, pMerge->aInput[i].iPg, pRc);
346 ckptSetValue(p, iOut++, pMerge->aInput[i].iCell, pRc);
348 ckptAppend64(p, &iOut, pMerge->splitkey.iPg, pRc);
349 ckptSetValue(p, iOut++, pMerge->splitkey.iCell, pRc);
350 ckptAppend64(p, &iOut, pMerge->iCurrentPtr, pRc);
353 *piOut = iOut;
357 ** Populate the log offset fields of the checkpoint buffer. 4 values.
359 static void ckptExportLog(
360 lsm_db *pDb,
361 int bFlush,
362 CkptBuffer *p,
363 int *piOut,
364 int *pRc
366 int iOut = *piOut;
368 assert( iOut==CKPT_HDR_LO_MSW );
370 if( bFlush ){
371 i64 iOff = pDb->treehdr.iOldLog;
372 ckptAppend64(p, &iOut, iOff, pRc);
373 ckptSetValue(p, iOut++, pDb->treehdr.oldcksum0, pRc);
374 ckptSetValue(p, iOut++, pDb->treehdr.oldcksum1, pRc);
375 }else{
376 for(; iOut<=CKPT_HDR_LO_CKSUM2; iOut++){
377 ckptSetValue(p, iOut, pDb->pShmhdr->aSnap2[iOut], pRc);
381 assert( *pRc || iOut==CKPT_HDR_LO_CKSUM2+1 );
382 *piOut = iOut;
385 static void ckptExportAppendlist(
386 lsm_db *db, /* Database connection */
387 CkptBuffer *p, /* Checkpoint buffer to write to */
388 int *piOut, /* IN/OUT: Offset within checkpoint buffer */
389 int *pRc /* IN/OUT: Error code */
391 int i;
392 Pgno *aiAppend = db->pWorker->aiAppend;
394 for(i=0; i<LSM_APPLIST_SZ; i++){
395 ckptAppend64(p, piOut, aiAppend[i], pRc);
399 static int ckptExportSnapshot(
400 lsm_db *pDb, /* Connection handle */
401 int bLog, /* True to update log-offset fields */
402 i64 iId, /* Checkpoint id */
403 int bCksum, /* If true, include checksums */
404 void **ppCkpt, /* OUT: Buffer containing checkpoint */
405 int *pnCkpt /* OUT: Size of checkpoint in bytes */
407 int rc = LSM_OK; /* Return Code */
408 FileSystem *pFS = pDb->pFS; /* File system object */
409 Snapshot *pSnap = pDb->pWorker; /* Worker snapshot */
410 int nLevel = 0; /* Number of levels in checkpoint */
411 int iLevel; /* Used to count out nLevel levels */
412 int iOut = 0; /* Current offset in aCkpt[] */
413 Level *pLevel; /* Level iterator */
414 int i; /* Iterator used while serializing freelist */
415 CkptBuffer ckpt;
417 /* Initialize the output buffer */
418 memset(&ckpt, 0, sizeof(CkptBuffer));
419 ckpt.pEnv = pDb->pEnv;
420 iOut = CKPT_HDR_SIZE;
422 /* Write the log offset into the checkpoint. */
423 ckptExportLog(pDb, bLog, &ckpt, &iOut, &rc);
425 /* Write the append-point list */
426 ckptExportAppendlist(pDb, &ckpt, &iOut, &rc);
428 /* Figure out how many levels will be written to the checkpoint. */
429 for(pLevel=lsmDbSnapshotLevel(pSnap); pLevel; pLevel=pLevel->pNext) nLevel++;
431 /* Serialize nLevel levels. */
432 iLevel = 0;
433 for(pLevel=lsmDbSnapshotLevel(pSnap); iLevel<nLevel; pLevel=pLevel->pNext){
434 ckptExportLevel(pLevel, &ckpt, &iOut, &rc);
435 iLevel++;
438 /* Write the block-redirect list */
439 ckptSetValue(&ckpt, iOut++, pSnap->redirect.n, &rc);
440 for(i=0; i<pSnap->redirect.n; i++){
441 ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iFrom, &rc);
442 ckptSetValue(&ckpt, iOut++, pSnap->redirect.a[i].iTo, &rc);
445 /* Write the freelist */
446 assert( pSnap->freelist.nEntry<=pDb->nMaxFreelist );
447 if( rc==LSM_OK ){
448 int nFree = pSnap->freelist.nEntry;
449 ckptSetValue(&ckpt, iOut++, nFree, &rc);
450 for(i=0; i<nFree; i++){
451 FreelistEntry *p = &pSnap->freelist.aEntry[i];
452 ckptSetValue(&ckpt, iOut++, p->iBlk, &rc);
453 ckptSetValue(&ckpt, iOut++, (p->iId >> 32) & 0xFFFFFFFF, &rc);
454 ckptSetValue(&ckpt, iOut++, p->iId & 0xFFFFFFFF, &rc);
458 /* Write the checkpoint header */
459 assert( iId>=0 );
460 assert( pSnap->iCmpId==pDb->compress.iId
461 || pSnap->iCmpId==LSM_COMPRESSION_EMPTY
463 ckptSetValue(&ckpt, CKPT_HDR_ID_MSW, (u32)(iId>>32), &rc);
464 ckptSetValue(&ckpt, CKPT_HDR_ID_LSW, (u32)(iId&0xFFFFFFFF), &rc);
465 ckptSetValue(&ckpt, CKPT_HDR_NCKPT, iOut+2, &rc);
466 ckptSetValue(&ckpt, CKPT_HDR_CMPID, pDb->compress.iId, &rc);
467 ckptSetValue(&ckpt, CKPT_HDR_NBLOCK, pSnap->nBlock, &rc);
468 ckptSetValue(&ckpt, CKPT_HDR_BLKSZ, lsmFsBlockSize(pFS), &rc);
469 ckptSetValue(&ckpt, CKPT_HDR_NLEVEL, nLevel, &rc);
470 ckptSetValue(&ckpt, CKPT_HDR_PGSZ, lsmFsPageSize(pFS), &rc);
471 ckptSetValue(&ckpt, CKPT_HDR_NWRITE, pSnap->nWrite, &rc);
473 if( bCksum ){
474 ckptAddChecksum(&ckpt, iOut, &rc);
475 }else{
476 ckptSetValue(&ckpt, iOut, 0, &rc);
477 ckptSetValue(&ckpt, iOut+1, 0, &rc);
479 iOut += 2;
480 assert( iOut<=1024 );
482 #ifdef LSM_LOG_FREELIST
483 lsmLogMessage(pDb, rc,
484 "ckptExportSnapshot(): id=%lld freelist: %d", iId, pSnap->freelist.nEntry
486 for(i=0; i<pSnap->freelist.nEntry; i++){
487 lsmLogMessage(pDb, rc,
488 "ckptExportSnapshot(): iBlk=%d id=%lld",
489 pSnap->freelist.aEntry[i].iBlk,
490 pSnap->freelist.aEntry[i].iId
493 #endif
495 *ppCkpt = (void *)ckpt.aCkpt;
496 if( pnCkpt ) *pnCkpt = sizeof(u32)*iOut;
497 return rc;
502 ** Helper function for ckptImport().
504 static void ckptNewSegment(
505 u32 *aIn,
506 int *piIn,
507 Segment *pSegment /* Populate this structure */
509 assert( pSegment->iFirst==0 && pSegment->iLastPg==0 );
510 assert( pSegment->nSize==0 && pSegment->iRoot==0 );
511 pSegment->iFirst = ckptGobble64(aIn, piIn);
512 pSegment->iLastPg = ckptGobble64(aIn, piIn);
513 pSegment->iRoot = ckptGobble64(aIn, piIn);
514 pSegment->nSize = (int)ckptGobble64(aIn, piIn);
515 assert( pSegment->iFirst );
518 static int ckptSetupMerge(lsm_db *pDb, u32 *aInt, int *piIn, Level *pLevel){
519 Merge *pMerge; /* Allocated Merge object */
520 int nInput; /* Number of input segments in merge */
521 int iIn = *piIn; /* Next value to read from aInt[] */
522 int i; /* Iterator variable */
523 int nByte; /* Number of bytes to allocate */
525 /* Allocate the Merge object. If malloc() fails, return LSM_NOMEM. */
526 nInput = (int)aInt[iIn++];
527 nByte = sizeof(Merge) + sizeof(MergeInput) * nInput;
528 pMerge = (Merge *)lsmMallocZero(pDb->pEnv, nByte);
529 if( !pMerge ) return LSM_NOMEM_BKPT;
530 pLevel->pMerge = pMerge;
532 /* Populate the Merge object. */
533 pMerge->aInput = (MergeInput *)&pMerge[1];
534 pMerge->nInput = nInput;
535 pMerge->iOutputOff = -1;
536 pMerge->nSkip = (int)aInt[iIn++];
537 for(i=0; i<nInput; i++){
538 pMerge->aInput[i].iPg = ckptGobble64(aInt, &iIn);
539 pMerge->aInput[i].iCell = (int)aInt[iIn++];
541 pMerge->splitkey.iPg = ckptGobble64(aInt, &iIn);
542 pMerge->splitkey.iCell = (int)aInt[iIn++];
543 pMerge->iCurrentPtr = ckptGobble64(aInt, &iIn);
545 /* Set *piIn and return LSM_OK. */
546 *piIn = iIn;
547 return LSM_OK;
551 static int ckptLoadLevels(
552 lsm_db *pDb,
553 u32 *aIn,
554 int *piIn,
555 int nLevel,
556 Level **ppLevel
558 int i;
559 int rc = LSM_OK;
560 Level *pRet = 0;
561 Level **ppNext;
562 int iIn = *piIn;
564 ppNext = &pRet;
565 for(i=0; rc==LSM_OK && i<nLevel; i++){
566 int iRight;
567 Level *pLevel;
569 /* Allocate space for the Level structure and Level.apRight[] array */
570 pLevel = (Level *)lsmMallocZeroRc(pDb->pEnv, sizeof(Level), &rc);
571 if( rc==LSM_OK ){
572 pLevel->iAge = (u16)(aIn[iIn] & 0x0000FFFF);
573 pLevel->flags = (u16)((aIn[iIn]>>16) & 0x0000FFFF);
574 iIn++;
575 pLevel->nRight = aIn[iIn++];
576 if( pLevel->nRight ){
577 int nByte = sizeof(Segment) * pLevel->nRight;
578 pLevel->aRhs = (Segment *)lsmMallocZeroRc(pDb->pEnv, nByte, &rc);
580 if( rc==LSM_OK ){
581 *ppNext = pLevel;
582 ppNext = &pLevel->pNext;
584 /* Allocate the main segment */
585 ckptNewSegment(aIn, &iIn, &pLevel->lhs);
587 /* Allocate each of the right-hand segments, if any */
588 for(iRight=0; iRight<pLevel->nRight; iRight++){
589 ckptNewSegment(aIn, &iIn, &pLevel->aRhs[iRight]);
592 /* Set up the Merge object, if required */
593 if( pLevel->nRight>0 ){
594 rc = ckptSetupMerge(pDb, aIn, &iIn, pLevel);
600 if( rc!=LSM_OK ){
601 /* An OOM must have occurred. Free any level structures allocated and
602 ** return the error to the caller. */
603 lsmSortedFreeLevel(pDb->pEnv, pRet);
604 pRet = 0;
607 *ppLevel = pRet;
608 *piIn = iIn;
609 return rc;
613 int lsmCheckpointLoadLevels(lsm_db *pDb, void *pVal, int nVal){
614 int rc = LSM_OK;
615 if( nVal>0 ){
616 u32 *aIn;
618 aIn = lsmMallocRc(pDb->pEnv, nVal, &rc);
619 if( aIn ){
620 Level *pLevel = 0;
621 Level *pParent;
623 int nIn;
624 int nLevel;
625 int iIn = 1;
626 memcpy(aIn, pVal, nVal);
627 nIn = nVal / sizeof(u32);
629 ckptChangeEndianness(aIn, nIn);
630 nLevel = aIn[0];
631 rc = ckptLoadLevels(pDb, aIn, &iIn, nLevel, &pLevel);
632 lsmFree(pDb->pEnv, aIn);
633 assert( rc==LSM_OK || pLevel==0 );
634 if( rc==LSM_OK ){
635 pParent = lsmDbSnapshotLevel(pDb->pWorker);
636 assert( pParent );
637 while( pParent->pNext ) pParent = pParent->pNext;
638 pParent->pNext = pLevel;
643 return rc;
647 ** Return the data for the LEVELS record.
649 ** The size of the checkpoint that can be stored in the database header
650 ** must not exceed 1024 32-bit integers. Normally, it does not. However,
651 ** if it does, part of the checkpoint must be stored in the LSM. This
652 ** routine returns that part.
654 int lsmCheckpointLevels(
655 lsm_db *pDb, /* Database handle */
656 int nLevel, /* Number of levels to write to blob */
657 void **paVal, /* OUT: Pointer to LEVELS blob */
658 int *pnVal /* OUT: Size of LEVELS blob in bytes */
660 Level *p; /* Used to iterate through levels */
661 int nAll= 0;
662 int rc;
663 int i;
664 int iOut;
665 CkptBuffer ckpt;
666 assert( nLevel>0 );
668 for(p=lsmDbSnapshotLevel(pDb->pWorker); p; p=p->pNext) nAll++;
670 assert( nAll>nLevel );
671 nAll -= nLevel;
672 for(p=lsmDbSnapshotLevel(pDb->pWorker); p && nAll>0; p=p->pNext) nAll--;
674 memset(&ckpt, 0, sizeof(CkptBuffer));
675 ckpt.pEnv = pDb->pEnv;
677 ckptSetValue(&ckpt, 0, nLevel, &rc);
678 iOut = 1;
679 for(i=0; rc==LSM_OK && i<nLevel; i++){
680 ckptExportLevel(p, &ckpt, &iOut, &rc);
681 p = p->pNext;
683 assert( rc!=LSM_OK || p==0 );
685 if( rc==LSM_OK ){
686 ckptChangeEndianness(ckpt.aCkpt, iOut);
687 *paVal = (void *)ckpt.aCkpt;
688 *pnVal = iOut * sizeof(u32);
689 }else{
690 *pnVal = 0;
691 *paVal = 0;
694 return rc;
698 ** Read the checkpoint id from meta-page pPg.
700 static i64 ckptLoadId(MetaPage *pPg){
701 i64 ret = 0;
702 if( pPg ){
703 int nData;
704 u8 *aData = lsmFsMetaPageData(pPg, &nData);
705 ret = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32) +
706 ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4]));
708 return ret;
712 ** Return true if the buffer passed as an argument contains a valid
713 ** checkpoint.
715 static int ckptChecksumOk(u32 *aCkpt){
716 u32 nCkpt = aCkpt[CKPT_HDR_NCKPT];
717 u32 cksum1;
718 u32 cksum2;
720 if( nCkpt<CKPT_HDR_NCKPT || nCkpt>(LSM_META_RW_PAGE_SIZE)/sizeof(u32) ){
721 return 0;
723 ckptChecksum(aCkpt, nCkpt, &cksum1, &cksum2);
724 return (cksum1==aCkpt[nCkpt-2] && cksum2==aCkpt[nCkpt-1]);
728 ** Attempt to load a checkpoint from meta page iMeta.
730 ** This function is a no-op if *pRc is set to any value other than LSM_OK
731 ** when it is called. If an error occurs, *pRc is set to an LSM error code
732 ** before returning.
734 ** If no error occurs and the checkpoint is successfully loaded, copy it to
735 ** ShmHeader.aSnap1[] and ShmHeader.aSnap2[], and set ShmHeader.iMetaPage
736 ** to indicate its origin. In this case return 1. Or, if the checkpoint
737 ** cannot be loaded (because the checksum does not compute), return 0.
739 static int ckptTryLoad(lsm_db *pDb, MetaPage *pPg, u32 iMeta, int *pRc){
740 int bLoaded = 0; /* Return value */
741 if( *pRc==LSM_OK ){
742 int rc = LSM_OK; /* Error code */
743 u32 *aCkpt = 0; /* Pointer to buffer containing checkpoint */
744 u32 nCkpt; /* Number of elements in aCkpt[] */
745 int nData; /* Bytes of data in aData[] */
746 u8 *aData; /* Meta page data */
748 aData = lsmFsMetaPageData(pPg, &nData);
749 nCkpt = (u32)lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]);
750 if( nCkpt<=nData/sizeof(u32) && nCkpt>CKPT_HDR_NCKPT ){
751 aCkpt = (u32 *)lsmMallocRc(pDb->pEnv, nCkpt*sizeof(u32), &rc);
753 if( aCkpt ){
754 memcpy(aCkpt, aData, nCkpt*sizeof(u32));
755 ckptChangeEndianness(aCkpt, nCkpt);
756 if( ckptChecksumOk(aCkpt) ){
757 ShmHeader *pShm = pDb->pShmhdr;
758 memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32));
759 memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32));
760 memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32));
761 pShm->iMetaPage = iMeta;
762 bLoaded = 1;
766 lsmFree(pDb->pEnv, aCkpt);
767 *pRc = rc;
769 return bLoaded;
773 ** Initialize the shared-memory header with an empty snapshot. This function
774 ** is called when no valid snapshot can be found in the database header.
776 static void ckptLoadEmpty(lsm_db *pDb){
777 u32 aCkpt[] = {
778 0, /* CKPT_HDR_ID_MSW */
779 10, /* CKPT_HDR_ID_LSW */
780 0, /* CKPT_HDR_NCKPT */
781 LSM_COMPRESSION_EMPTY, /* CKPT_HDR_CMPID */
782 0, /* CKPT_HDR_NBLOCK */
783 0, /* CKPT_HDR_BLKSZ */
784 0, /* CKPT_HDR_NLEVEL */
785 0, /* CKPT_HDR_PGSZ */
786 0, /* CKPT_HDR_NWRITE */
787 0, 0, 1234, 5678, /* The log pointer and initial checksum */
788 0,0,0,0, 0,0,0,0, /* The append list */
789 0, /* The redirected block list */
790 0, /* The free block list */
791 0, 0 /* Space for checksum values */
793 u32 nCkpt = array_size(aCkpt);
794 ShmHeader *pShm = pDb->pShmhdr;
796 aCkpt[CKPT_HDR_NCKPT] = nCkpt;
797 aCkpt[CKPT_HDR_BLKSZ] = pDb->nDfltBlksz;
798 aCkpt[CKPT_HDR_PGSZ] = pDb->nDfltPgsz;
799 ckptChecksum(aCkpt, array_size(aCkpt), &aCkpt[nCkpt-2], &aCkpt[nCkpt-1]);
801 memcpy(pShm->aSnap1, aCkpt, nCkpt*sizeof(u32));
802 memcpy(pShm->aSnap2, aCkpt, nCkpt*sizeof(u32));
803 memcpy(pDb->aSnapshot, aCkpt, nCkpt*sizeof(u32));
807 ** This function is called as part of database recovery to initialize the
808 ** ShmHeader.aSnap1[] and ShmHeader.aSnap2[] snapshots.
810 int lsmCheckpointRecover(lsm_db *pDb){
811 int rc = LSM_OK; /* Return Code */
812 i64 iId1; /* Id of checkpoint on meta-page 1 */
813 i64 iId2; /* Id of checkpoint on meta-page 2 */
814 int bLoaded = 0; /* True once checkpoint has been loaded */
815 int cmp; /* True if (iId2>iId1) */
816 MetaPage *apPg[2] = {0, 0}; /* Meta-pages 1 and 2 */
818 rc = lsmFsMetaPageGet(pDb->pFS, 0, 1, &apPg[0]);
819 if( rc==LSM_OK ) rc = lsmFsMetaPageGet(pDb->pFS, 0, 2, &apPg[1]);
821 iId1 = ckptLoadId(apPg[0]);
822 iId2 = ckptLoadId(apPg[1]);
823 cmp = (iId2 > iId1);
824 bLoaded = ckptTryLoad(pDb, apPg[cmp?1:0], (cmp?2:1), &rc);
825 if( bLoaded==0 ){
826 bLoaded = ckptTryLoad(pDb, apPg[cmp?0:1], (cmp?1:2), &rc);
829 /* The database does not contain a valid checkpoint. Initialize the shared
830 ** memory header with an empty checkpoint. */
831 if( bLoaded==0 ){
832 ckptLoadEmpty(pDb);
835 lsmFsMetaPageRelease(apPg[0]);
836 lsmFsMetaPageRelease(apPg[1]);
838 return rc;
842 ** Store the snapshot in pDb->aSnapshot[] in meta-page iMeta.
844 int lsmCheckpointStore(lsm_db *pDb, int iMeta){
845 MetaPage *pPg = 0;
846 int rc;
848 assert( iMeta==1 || iMeta==2 );
849 rc = lsmFsMetaPageGet(pDb->pFS, 1, iMeta, &pPg);
850 if( rc==LSM_OK ){
851 u8 *aData;
852 int nData;
853 int nCkpt;
855 nCkpt = (int)pDb->aSnapshot[CKPT_HDR_NCKPT];
856 aData = lsmFsMetaPageData(pPg, &nData);
857 memcpy(aData, pDb->aSnapshot, nCkpt*sizeof(u32));
858 ckptChangeEndianness((u32 *)aData, nCkpt);
859 rc = lsmFsMetaPageRelease(pPg);
862 return rc;
866 ** Copy the current client snapshot from shared-memory to pDb->aSnapshot[].
868 int lsmCheckpointLoad(lsm_db *pDb, int *piRead){
869 int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
870 ShmHeader *pShm = pDb->pShmhdr;
871 while( (nRem--)>0 ){
872 int nInt;
874 nInt = pShm->aSnap1[CKPT_HDR_NCKPT];
875 if( nInt<=(LSM_META_RW_PAGE_SIZE / sizeof(u32)) ){
876 memcpy(pDb->aSnapshot, pShm->aSnap1, nInt*sizeof(u32));
877 if( ckptChecksumOk(pDb->aSnapshot) ){
878 if( piRead ) *piRead = 1;
879 return LSM_OK;
883 nInt = pShm->aSnap2[CKPT_HDR_NCKPT];
884 if( nInt<=(LSM_META_RW_PAGE_SIZE / sizeof(u32)) ){
885 memcpy(pDb->aSnapshot, pShm->aSnap2, nInt*sizeof(u32));
886 if( ckptChecksumOk(pDb->aSnapshot) ){
887 if( piRead ) *piRead = 2;
888 return LSM_OK;
892 lsmShmBarrier(pDb);
894 return LSM_PROTOCOL_BKPT;
897 int lsmInfoCompressionId(lsm_db *db, u32 *piCmpId){
898 int rc;
900 assert( db->pClient==0 && db->pWorker==0 );
901 rc = lsmCheckpointLoad(db, 0);
902 if( rc==LSM_OK ){
903 *piCmpId = db->aSnapshot[CKPT_HDR_CMPID];
906 return rc;
909 int lsmCheckpointLoadOk(lsm_db *pDb, int iSnap){
910 u32 *aShm;
911 assert( iSnap==1 || iSnap==2 );
912 aShm = (iSnap==1) ? pDb->pShmhdr->aSnap1 : pDb->pShmhdr->aSnap2;
913 return (lsmCheckpointId(pDb->aSnapshot, 0)==lsmCheckpointId(aShm, 0) );
916 int lsmCheckpointClientCacheOk(lsm_db *pDb){
917 return ( pDb->pClient
918 && pDb->pClient->iId==lsmCheckpointId(pDb->aSnapshot, 0)
919 && pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap1, 0)
920 && pDb->pClient->iId==lsmCheckpointId(pDb->pShmhdr->aSnap2, 0)
924 int lsmCheckpointLoadWorker(lsm_db *pDb){
925 int rc;
926 ShmHeader *pShm = pDb->pShmhdr;
927 int nInt1;
928 int nInt2;
930 /* Must be holding the WORKER lock to do this. Or DMS2. */
931 assert(
932 lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL)
933 || lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL)
936 /* Check that the two snapshots match. If not, repair them. */
937 nInt1 = pShm->aSnap1[CKPT_HDR_NCKPT];
938 nInt2 = pShm->aSnap2[CKPT_HDR_NCKPT];
939 if( nInt1!=nInt2 || memcmp(pShm->aSnap1, pShm->aSnap2, nInt2*sizeof(u32)) ){
940 if( ckptChecksumOk(pShm->aSnap1) ){
941 memcpy(pShm->aSnap2, pShm->aSnap1, sizeof(u32)*nInt1);
942 }else if( ckptChecksumOk(pShm->aSnap2) ){
943 memcpy(pShm->aSnap1, pShm->aSnap2, sizeof(u32)*nInt2);
944 }else{
945 return LSM_PROTOCOL_BKPT;
949 rc = lsmCheckpointDeserialize(pDb, 1, pShm->aSnap1, &pDb->pWorker);
950 if( pDb->pWorker ) pDb->pWorker->pDatabase = pDb->pDatabase;
952 if( rc==LSM_OK ){
953 rc = lsmCheckCompressionId(pDb, pDb->pWorker->iCmpId);
956 #if 0
957 assert( rc!=LSM_OK || lsmFsIntegrityCheck(pDb) );
958 #endif
959 return rc;
962 int lsmCheckpointDeserialize(
963 lsm_db *pDb,
964 int bInclFreelist, /* If true, deserialize free-list */
965 u32 *aCkpt,
966 Snapshot **ppSnap
968 int rc = LSM_OK;
969 Snapshot *pNew;
971 pNew = (Snapshot *)lsmMallocZeroRc(pDb->pEnv, sizeof(Snapshot), &rc);
972 if( rc==LSM_OK ){
973 Level *pLvl;
974 int nFree;
975 int i;
976 int nLevel = (int)aCkpt[CKPT_HDR_NLEVEL];
977 int iIn = CKPT_HDR_SIZE + CKPT_APPENDLIST_SIZE + CKPT_LOGPTR_SIZE;
979 pNew->iId = lsmCheckpointId(aCkpt, 0);
980 pNew->nBlock = aCkpt[CKPT_HDR_NBLOCK];
981 pNew->nWrite = aCkpt[CKPT_HDR_NWRITE];
982 rc = ckptLoadLevels(pDb, aCkpt, &iIn, nLevel, &pNew->pLevel);
983 pNew->iLogOff = lsmCheckpointLogOffset(aCkpt);
984 pNew->iCmpId = aCkpt[CKPT_HDR_CMPID];
986 /* Make a copy of the append-list */
987 for(i=0; i<LSM_APPLIST_SZ; i++){
988 u32 *a = &aCkpt[CKPT_HDR_SIZE + CKPT_LOGPTR_SIZE + i*2];
989 pNew->aiAppend[i] = ckptRead64(a);
992 /* Read the block-redirect list */
993 pNew->redirect.n = aCkpt[iIn++];
994 if( pNew->redirect.n ){
995 pNew->redirect.a = lsmMallocZeroRc(pDb->pEnv,
996 (sizeof(struct RedirectEntry) * LSM_MAX_BLOCK_REDIRECTS), &rc
998 if( rc==LSM_OK ){
999 for(i=0; i<pNew->redirect.n; i++){
1000 pNew->redirect.a[i].iFrom = aCkpt[iIn++];
1001 pNew->redirect.a[i].iTo = aCkpt[iIn++];
1004 for(pLvl=pNew->pLevel; pLvl->pNext; pLvl=pLvl->pNext);
1005 if( pLvl->nRight ){
1006 pLvl->aRhs[pLvl->nRight-1].pRedirect = &pNew->redirect;
1007 }else{
1008 pLvl->lhs.pRedirect = &pNew->redirect;
1012 /* Copy the free-list */
1013 if( rc==LSM_OK && bInclFreelist ){
1014 nFree = aCkpt[iIn++];
1015 if( nFree ){
1016 pNew->freelist.aEntry = (FreelistEntry *)lsmMallocZeroRc(
1017 pDb->pEnv, sizeof(FreelistEntry)*nFree, &rc
1019 if( rc==LSM_OK ){
1020 int j;
1021 for(j=0; j<nFree; j++){
1022 FreelistEntry *p = &pNew->freelist.aEntry[j];
1023 p->iBlk = aCkpt[iIn++];
1024 p->iId = ((i64)(aCkpt[iIn])<<32) + aCkpt[iIn+1];
1025 iIn += 2;
1027 pNew->freelist.nEntry = pNew->freelist.nAlloc = nFree;
1033 if( rc!=LSM_OK ){
1034 lsmFreeSnapshot(pDb->pEnv, pNew);
1035 pNew = 0;
1038 *ppSnap = pNew;
1039 return rc;
1043 ** Connection pDb must be the worker connection in order to call this
1044 ** function. It returns true if the database already contains the maximum
1045 ** number of levels or false otherwise.
1047 ** This is used when flushing the in-memory tree to disk. If the database
1048 ** is already full, then the caller should invoke lsm_work() or similar
1049 ** until it is not full before creating a new level by flushing the in-memory
1050 ** tree to disk. Limiting the number of levels in the database ensures that
1051 ** the records describing them always fit within the checkpoint blob.
1053 int lsmDatabaseFull(lsm_db *pDb){
1054 Level *p;
1055 int nRhs = 0;
1057 assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL) );
1058 assert( pDb->pWorker );
1060 for(p=pDb->pWorker->pLevel; p; p=p->pNext){
1061 nRhs += (p->nRight ? p->nRight : 1);
1064 return (nRhs >= LSM_MAX_RHS_SEGMENTS);
1068 ** The connection passed as the only argument is currently the worker
1069 ** connection. Some work has been performed on the database by the connection,
1070 ** but no new snapshot has been written into shared memory.
1072 ** This function updates the shared-memory worker and client snapshots with
1073 ** the new snapshot produced by the work performed by pDb.
1075 ** If successful, LSM_OK is returned. Otherwise, if an error occurs, an LSM
1076 ** error code is returned.
1078 int lsmCheckpointSaveWorker(lsm_db *pDb, int bFlush){
1079 Snapshot *pSnap = pDb->pWorker;
1080 ShmHeader *pShm = pDb->pShmhdr;
1081 void *p = 0;
1082 int n = 0;
1083 int rc;
1085 pSnap->iId++;
1086 rc = ckptExportSnapshot(pDb, bFlush, pSnap->iId, 1, &p, &n);
1087 if( rc!=LSM_OK ) return rc;
1088 assert( ckptChecksumOk((u32 *)p) );
1090 assert( n<=LSM_META_RW_PAGE_SIZE );
1091 memcpy(pShm->aSnap2, p, n);
1092 lsmShmBarrier(pDb);
1093 memcpy(pShm->aSnap1, p, n);
1094 lsmFree(pDb->pEnv, p);
1096 /* assert( lsmFsIntegrityCheck(pDb) ); */
1097 return LSM_OK;
1101 ** This function is used to determine the snapshot-id of the most recently
1102 ** checkpointed snapshot. Variable ShmHeader.iMetaPage indicates which of
1103 ** the two meta-pages said snapshot resides on (if any).
1105 ** If successful, this function loads the snapshot from the meta-page,
1106 ** verifies its checksum and sets *piId to the snapshot-id before returning
1107 ** LSM_OK. Or, if the checksum attempt fails, *piId is set to zero and
1108 ** LSM_OK returned. If an error occurs, an LSM error code is returned and
1109 ** the final value of *piId is undefined.
1111 int lsmCheckpointSynced(lsm_db *pDb, i64 *piId, i64 *piLog, u32 *pnWrite){
1112 int rc = LSM_OK;
1113 MetaPage *pPg;
1114 u32 iMeta;
1116 iMeta = pDb->pShmhdr->iMetaPage;
1117 if( iMeta==1 || iMeta==2 ){
1118 rc = lsmFsMetaPageGet(pDb->pFS, 0, iMeta, &pPg);
1119 if( rc==LSM_OK ){
1120 int nCkpt;
1121 int nData;
1122 u8 *aData;
1124 aData = lsmFsMetaPageData(pPg, &nData);
1125 assert( nData==LSM_META_RW_PAGE_SIZE );
1126 nCkpt = lsmGetU32(&aData[CKPT_HDR_NCKPT*sizeof(u32)]);
1127 if( nCkpt<(LSM_META_RW_PAGE_SIZE/sizeof(u32)) ){
1128 u32 *aCopy = lsmMallocRc(pDb->pEnv, sizeof(u32) * nCkpt, &rc);
1129 if( aCopy ){
1130 memcpy(aCopy, aData, nCkpt*sizeof(u32));
1131 ckptChangeEndianness(aCopy, nCkpt);
1132 if( ckptChecksumOk(aCopy) ){
1133 if( piId ) *piId = lsmCheckpointId(aCopy, 0);
1134 if( piLog ) *piLog = (lsmCheckpointLogOffset(aCopy) >> 1);
1135 if( pnWrite ) *pnWrite = aCopy[CKPT_HDR_NWRITE];
1137 lsmFree(pDb->pEnv, aCopy);
1140 lsmFsMetaPageRelease(pPg);
1144 if( (iMeta!=1 && iMeta!=2) || rc!=LSM_OK || pDb->pShmhdr->iMetaPage!=iMeta ){
1145 if( piId ) *piId = 0;
1146 if( piLog ) *piLog = 0;
1147 if( pnWrite ) *pnWrite = 0;
1149 return rc;
1153 ** Return the checkpoint-id of the checkpoint array passed as the first
1154 ** argument to this function. If the second argument is true, then assume
1155 ** that the checkpoint is made up of 32-bit big-endian integers. If it
1156 ** is false, assume that the integers are in machine byte order.
1158 i64 lsmCheckpointId(u32 *aCkpt, int bDisk){
1159 i64 iId;
1160 if( bDisk ){
1161 u8 *aData = (u8 *)aCkpt;
1162 iId = (((i64)lsmGetU32(&aData[CKPT_HDR_ID_MSW*4])) << 32);
1163 iId += ((i64)lsmGetU32(&aData[CKPT_HDR_ID_LSW*4]));
1164 }else{
1165 iId = ((i64)aCkpt[CKPT_HDR_ID_MSW] << 32) + (i64)aCkpt[CKPT_HDR_ID_LSW];
1167 return iId;
1170 u32 lsmCheckpointNBlock(u32 *aCkpt){
1171 return aCkpt[CKPT_HDR_NBLOCK];
1174 u32 lsmCheckpointNWrite(u32 *aCkpt, int bDisk){
1175 if( bDisk ){
1176 return lsmGetU32((u8 *)&aCkpt[CKPT_HDR_NWRITE]);
1177 }else{
1178 return aCkpt[CKPT_HDR_NWRITE];
1182 i64 lsmCheckpointLogOffset(u32 *aCkpt){
1183 return ((i64)aCkpt[CKPT_HDR_LO_MSW] << 32) + (i64)aCkpt[CKPT_HDR_LO_LSW];
1186 int lsmCheckpointPgsz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_PGSZ]; }
1188 int lsmCheckpointBlksz(u32 *aCkpt){ return (int)aCkpt[CKPT_HDR_BLKSZ]; }
1190 void lsmCheckpointLogoffset(
1191 u32 *aCkpt,
1192 DbLog *pLog
1194 pLog->aRegion[2].iStart = (lsmCheckpointLogOffset(aCkpt) >> 1);
1196 pLog->cksum0 = aCkpt[CKPT_HDR_LO_CKSUM1];
1197 pLog->cksum1 = aCkpt[CKPT_HDR_LO_CKSUM2];
1198 pLog->iSnapshotId = lsmCheckpointId(aCkpt, 0);
1201 void lsmCheckpointZeroLogoffset(lsm_db *pDb){
1202 u32 nCkpt;
1204 nCkpt = pDb->aSnapshot[CKPT_HDR_NCKPT];
1205 assert( nCkpt>CKPT_HDR_NCKPT );
1206 assert( nCkpt==pDb->pShmhdr->aSnap1[CKPT_HDR_NCKPT] );
1207 assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap1, nCkpt*sizeof(u32)) );
1208 assert( 0==memcmp(pDb->aSnapshot, pDb->pShmhdr->aSnap2, nCkpt*sizeof(u32)) );
1210 pDb->aSnapshot[CKPT_HDR_LO_MSW] = 0;
1211 pDb->aSnapshot[CKPT_HDR_LO_LSW] = 0;
1212 ckptChecksum(pDb->aSnapshot, nCkpt,
1213 &pDb->aSnapshot[nCkpt-2], &pDb->aSnapshot[nCkpt-1]
1216 memcpy(pDb->pShmhdr->aSnap1, pDb->aSnapshot, nCkpt*sizeof(u32));
1217 memcpy(pDb->pShmhdr->aSnap2, pDb->aSnapshot, nCkpt*sizeof(u32));
1221 ** Set the output variable to the number of KB of data written into the
1222 ** database file since the most recent checkpoint.
1224 int lsmCheckpointSize(lsm_db *db, int *pnKB){
1225 int rc = LSM_OK;
1226 u32 nSynced;
1228 /* Set nSynced to the number of pages that had been written when the
1229 ** database was last checkpointed. */
1230 rc = lsmCheckpointSynced(db, 0, 0, &nSynced);
1232 if( rc==LSM_OK ){
1233 u32 nPgsz = db->pShmhdr->aSnap1[CKPT_HDR_PGSZ];
1234 u32 nWrite = db->pShmhdr->aSnap1[CKPT_HDR_NWRITE];
1235 *pnKB = (int)(( ((i64)(nWrite - nSynced) * nPgsz) + 1023) / 1024);
1238 return rc;