Prevent deep recursions on nested COLLATE operators.
[sqlite.git] / src / vdbeaux.c
blobbe092b98b7659fbc1f49a33fa29e3b162735eab3
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
19 ** Create a new virtual database engine.
21 Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
23 Vdbe *p;
24 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
25 if( p==0 ) return 0;
26 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 p->pParse = pParse;
36 pParse->pVdbe = p;
37 assert( pParse->aLabel==0 );
38 assert( pParse->nLabel==0 );
39 assert( pParse->nOpAlloc==0 );
40 assert( pParse->szOpAlloc==0 );
41 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
42 return p;
46 ** Change the error string stored in Vdbe.zErrMsg
48 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
49 va_list ap;
50 sqlite3DbFree(p->db, p->zErrMsg);
51 va_start(ap, zFormat);
52 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
53 va_end(ap);
57 ** Remember the SQL string for a prepared statement.
59 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
60 if( p==0 ) return;
61 p->prepFlags = prepFlags;
62 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
63 p->expmask = 0;
65 assert( p->zSql==0 );
66 p->zSql = sqlite3DbStrNDup(p->db, z, n);
70 ** Swap all content between two VDBE structures.
72 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
73 Vdbe tmp, *pTmp;
74 char *zTmp;
75 assert( pA->db==pB->db );
76 tmp = *pA;
77 *pA = *pB;
78 *pB = tmp;
79 pTmp = pA->pNext;
80 pA->pNext = pB->pNext;
81 pB->pNext = pTmp;
82 pTmp = pA->pPrev;
83 pA->pPrev = pB->pPrev;
84 pB->pPrev = pTmp;
85 zTmp = pA->zSql;
86 pA->zSql = pB->zSql;
87 pB->zSql = zTmp;
88 pB->expmask = pA->expmask;
89 pB->prepFlags = pA->prepFlags;
90 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
91 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
95 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
96 ** than its current size. nOp is guaranteed to be less than or equal
97 ** to 1024/sizeof(Op).
99 ** If an out-of-memory error occurs while resizing the array, return
100 ** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
101 ** unchanged (this is so that any opcodes already allocated can be
102 ** correctly deallocated along with the rest of the Vdbe).
104 static int growOpArray(Vdbe *v, int nOp){
105 VdbeOp *pNew;
106 Parse *p = v->pParse;
108 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
109 ** more frequent reallocs and hence provide more opportunities for
110 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
111 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
112 ** by the minimum* amount required until the size reaches 512. Normal
113 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
114 ** size of the op array or add 1KB of space, whichever is smaller. */
115 #ifdef SQLITE_TEST_REALLOC_STRESS
116 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
117 #else
118 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
119 UNUSED_PARAMETER(nOp);
120 #endif
122 /* Ensure that the size of a VDBE does not grow too large */
123 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
124 sqlite3OomFault(p->db);
125 return SQLITE_NOMEM;
128 assert( nOp<=(1024/sizeof(Op)) );
129 assert( nNew>=(p->nOpAlloc+nOp) );
130 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
131 if( pNew ){
132 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
133 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
134 v->aOp = pNew;
136 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
139 #ifdef SQLITE_DEBUG
140 /* This routine is just a convenient place to set a breakpoint that will
141 ** fire after each opcode is inserted and displayed using
142 ** "PRAGMA vdbe_addoptrace=on".
144 static void test_addop_breakpoint(void){
145 static int n = 0;
146 n++;
148 #endif
151 ** Add a new instruction to the list of instructions current in the
152 ** VDBE. Return the address of the new instruction.
154 ** Parameters:
156 ** p Pointer to the VDBE
158 ** op The opcode for this instruction
160 ** p1, p2, p3 Operands
162 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
163 ** the sqlite3VdbeChangeP4() function to change the value of the P4
164 ** operand.
166 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
167 assert( p->pParse->nOpAlloc<=p->nOp );
168 if( growOpArray(p, 1) ) return 1;
169 assert( p->pParse->nOpAlloc>p->nOp );
170 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
172 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
173 int i;
174 VdbeOp *pOp;
176 i = p->nOp;
177 assert( p->magic==VDBE_MAGIC_INIT );
178 assert( op>=0 && op<0xff );
179 if( p->pParse->nOpAlloc<=i ){
180 return growOp3(p, op, p1, p2, p3);
182 p->nOp++;
183 pOp = &p->aOp[i];
184 pOp->opcode = (u8)op;
185 pOp->p5 = 0;
186 pOp->p1 = p1;
187 pOp->p2 = p2;
188 pOp->p3 = p3;
189 pOp->p4.p = 0;
190 pOp->p4type = P4_NOTUSED;
191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
192 pOp->zComment = 0;
193 #endif
194 #ifdef SQLITE_DEBUG
195 if( p->db->flags & SQLITE_VdbeAddopTrace ){
196 int jj, kk;
197 Parse *pParse = p->pParse;
198 for(jj=kk=0; jj<pParse->nColCache; jj++){
199 struct yColCache *x = pParse->aColCache + jj;
200 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
201 kk++;
203 if( kk ) printf("\n");
204 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
205 test_addop_breakpoint();
207 #endif
208 #ifdef VDBE_PROFILE
209 pOp->cycles = 0;
210 pOp->cnt = 0;
211 #endif
212 #ifdef SQLITE_VDBE_COVERAGE
213 pOp->iSrcLine = 0;
214 #endif
215 return i;
217 int sqlite3VdbeAddOp0(Vdbe *p, int op){
218 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
220 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
221 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
223 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
224 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
227 /* Generate code for an unconditional jump to instruction iDest
229 int sqlite3VdbeGoto(Vdbe *p, int iDest){
230 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
233 /* Generate code to cause the string zStr to be loaded into
234 ** register iDest
236 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
237 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
241 ** Generate code that initializes multiple registers to string or integer
242 ** constants. The registers begin with iDest and increase consecutively.
243 ** One register is initialized for each characgter in zTypes[]. For each
244 ** "s" character in zTypes[], the register is a string if the argument is
245 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
246 ** in zTypes[], the register is initialized to an integer.
248 ** If the input string does not end with "X" then an OP_ResultRow instruction
249 ** is generated for the values inserted.
251 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
252 va_list ap;
253 int i;
254 char c;
255 va_start(ap, zTypes);
256 for(i=0; (c = zTypes[i])!=0; i++){
257 if( c=='s' ){
258 const char *z = va_arg(ap, const char*);
259 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
260 }else if( c=='i' ){
261 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
262 }else{
263 goto skip_op_resultrow;
266 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
267 skip_op_resultrow:
268 va_end(ap);
272 ** Add an opcode that includes the p4 value as a pointer.
274 int sqlite3VdbeAddOp4(
275 Vdbe *p, /* Add the opcode to this VM */
276 int op, /* The new opcode */
277 int p1, /* The P1 operand */
278 int p2, /* The P2 operand */
279 int p3, /* The P3 operand */
280 const char *zP4, /* The P4 operand */
281 int p4type /* P4 operand type */
283 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
284 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
285 return addr;
289 ** Add an opcode that includes the p4 value with a P4_INT64 or
290 ** P4_REAL type.
292 int sqlite3VdbeAddOp4Dup8(
293 Vdbe *p, /* Add the opcode to this VM */
294 int op, /* The new opcode */
295 int p1, /* The P1 operand */
296 int p2, /* The P2 operand */
297 int p3, /* The P3 operand */
298 const u8 *zP4, /* The P4 operand */
299 int p4type /* P4 operand type */
301 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
302 if( p4copy ) memcpy(p4copy, zP4, 8);
303 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
307 ** Add an OP_ParseSchema opcode. This routine is broken out from
308 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
309 ** as having been used.
311 ** The zWhere string must have been obtained from sqlite3_malloc().
312 ** This routine will take ownership of the allocated memory.
314 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
315 int j;
316 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
317 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
321 ** Add an opcode that includes the p4 value as an integer.
323 int sqlite3VdbeAddOp4Int(
324 Vdbe *p, /* Add the opcode to this VM */
325 int op, /* The new opcode */
326 int p1, /* The P1 operand */
327 int p2, /* The P2 operand */
328 int p3, /* The P3 operand */
329 int p4 /* The P4 operand as an integer */
331 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
332 if( p->db->mallocFailed==0 ){
333 VdbeOp *pOp = &p->aOp[addr];
334 pOp->p4type = P4_INT32;
335 pOp->p4.i = p4;
337 return addr;
340 /* Insert the end of a co-routine
342 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
343 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
345 /* Clear the temporary register cache, thereby ensuring that each
346 ** co-routine has its own independent set of registers, because co-routines
347 ** might expect their registers to be preserved across an OP_Yield, and
348 ** that could cause problems if two or more co-routines are using the same
349 ** temporary register.
351 v->pParse->nTempReg = 0;
352 v->pParse->nRangeReg = 0;
356 ** Create a new symbolic label for an instruction that has yet to be
357 ** coded. The symbolic label is really just a negative number. The
358 ** label can be used as the P2 value of an operation. Later, when
359 ** the label is resolved to a specific address, the VDBE will scan
360 ** through its operation list and change all values of P2 which match
361 ** the label into the resolved address.
363 ** The VDBE knows that a P2 value is a label because labels are
364 ** always negative and P2 values are suppose to be non-negative.
365 ** Hence, a negative P2 value is a label that has yet to be resolved.
367 ** Zero is returned if a malloc() fails.
369 int sqlite3VdbeMakeLabel(Vdbe *v){
370 Parse *p = v->pParse;
371 int i = p->nLabel++;
372 assert( v->magic==VDBE_MAGIC_INIT );
373 if( (i & (i-1))==0 ){
374 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
375 (i*2+1)*sizeof(p->aLabel[0]));
377 if( p->aLabel ){
378 p->aLabel[i] = -1;
380 return ADDR(i);
384 ** Resolve label "x" to be the address of the next instruction to
385 ** be inserted. The parameter "x" must have been obtained from
386 ** a prior call to sqlite3VdbeMakeLabel().
388 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
389 Parse *p = v->pParse;
390 int j = ADDR(x);
391 assert( v->magic==VDBE_MAGIC_INIT );
392 assert( j<p->nLabel );
393 assert( j>=0 );
394 if( p->aLabel ){
395 #ifdef SQLITE_DEBUG
396 if( p->db->flags & SQLITE_VdbeAddopTrace ){
397 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
399 #endif
400 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
401 p->aLabel[j] = v->nOp;
405 #ifdef SQLITE_COVERAGE_TEST
407 ** Return TRUE if and only if the label x has already been resolved.
408 ** Return FALSE (zero) if label x is still unresolved.
410 ** This routine is only used inside of testcase() macros, and so it
411 ** only exists when measuring test coverage.
413 int sqlite3VdbeLabelHasBeenResolved(Vdbe *v, int x){
414 return v->pParse->aLabel && v->pParse->aLabel[ADDR(x)]>=0;
416 #endif /* SQLITE_COVERAGE_TEST */
419 ** Mark the VDBE as one that can only be run one time.
421 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
422 p->runOnlyOnce = 1;
426 ** Mark the VDBE as one that can only be run multiple times.
428 void sqlite3VdbeReusable(Vdbe *p){
429 p->runOnlyOnce = 0;
432 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
435 ** The following type and function are used to iterate through all opcodes
436 ** in a Vdbe main program and each of the sub-programs (triggers) it may
437 ** invoke directly or indirectly. It should be used as follows:
439 ** Op *pOp;
440 ** VdbeOpIter sIter;
442 ** memset(&sIter, 0, sizeof(sIter));
443 ** sIter.v = v; // v is of type Vdbe*
444 ** while( (pOp = opIterNext(&sIter)) ){
445 ** // Do something with pOp
446 ** }
447 ** sqlite3DbFree(v->db, sIter.apSub);
450 typedef struct VdbeOpIter VdbeOpIter;
451 struct VdbeOpIter {
452 Vdbe *v; /* Vdbe to iterate through the opcodes of */
453 SubProgram **apSub; /* Array of subprograms */
454 int nSub; /* Number of entries in apSub */
455 int iAddr; /* Address of next instruction to return */
456 int iSub; /* 0 = main program, 1 = first sub-program etc. */
458 static Op *opIterNext(VdbeOpIter *p){
459 Vdbe *v = p->v;
460 Op *pRet = 0;
461 Op *aOp;
462 int nOp;
464 if( p->iSub<=p->nSub ){
466 if( p->iSub==0 ){
467 aOp = v->aOp;
468 nOp = v->nOp;
469 }else{
470 aOp = p->apSub[p->iSub-1]->aOp;
471 nOp = p->apSub[p->iSub-1]->nOp;
473 assert( p->iAddr<nOp );
475 pRet = &aOp[p->iAddr];
476 p->iAddr++;
477 if( p->iAddr==nOp ){
478 p->iSub++;
479 p->iAddr = 0;
482 if( pRet->p4type==P4_SUBPROGRAM ){
483 int nByte = (p->nSub+1)*sizeof(SubProgram*);
484 int j;
485 for(j=0; j<p->nSub; j++){
486 if( p->apSub[j]==pRet->p4.pProgram ) break;
488 if( j==p->nSub ){
489 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
490 if( !p->apSub ){
491 pRet = 0;
492 }else{
493 p->apSub[p->nSub++] = pRet->p4.pProgram;
499 return pRet;
503 ** Check if the program stored in the VM associated with pParse may
504 ** throw an ABORT exception (causing the statement, but not entire transaction
505 ** to be rolled back). This condition is true if the main program or any
506 ** sub-programs contains any of the following:
508 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
509 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
510 ** * OP_Destroy
511 ** * OP_VUpdate
512 ** * OP_VRename
513 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
514 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
515 ** (for CREATE TABLE AS SELECT ...)
517 ** Then check that the value of Parse.mayAbort is true if an
518 ** ABORT may be thrown, or false otherwise. Return true if it does
519 ** match, or false otherwise. This function is intended to be used as
520 ** part of an assert statement in the compiler. Similar to:
522 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
524 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
525 int hasAbort = 0;
526 int hasFkCounter = 0;
527 int hasCreateTable = 0;
528 int hasInitCoroutine = 0;
529 Op *pOp;
530 VdbeOpIter sIter;
531 memset(&sIter, 0, sizeof(sIter));
532 sIter.v = v;
534 while( (pOp = opIterNext(&sIter))!=0 ){
535 int opcode = pOp->opcode;
536 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
537 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
538 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
540 hasAbort = 1;
541 break;
543 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
544 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
545 #ifndef SQLITE_OMIT_FOREIGN_KEY
546 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
547 hasFkCounter = 1;
549 #endif
551 sqlite3DbFree(v->db, sIter.apSub);
553 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
554 ** If malloc failed, then the while() loop above may not have iterated
555 ** through all opcodes and hasAbort may be set incorrectly. Return
556 ** true for this case to prevent the assert() in the callers frame
557 ** from failing. */
558 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
559 || (hasCreateTable && hasInitCoroutine) );
561 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
564 ** This routine is called after all opcodes have been inserted. It loops
565 ** through all the opcodes and fixes up some details.
567 ** (1) For each jump instruction with a negative P2 value (a label)
568 ** resolve the P2 value to an actual address.
570 ** (2) Compute the maximum number of arguments used by any SQL function
571 ** and store that value in *pMaxFuncArgs.
573 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
574 ** indicate what the prepared statement actually does.
576 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
578 ** (5) Reclaim the memory allocated for storing labels.
580 ** This routine will only function correctly if the mkopcodeh.tcl generator
581 ** script numbers the opcodes correctly. Changes to this routine must be
582 ** coordinated with changes to mkopcodeh.tcl.
584 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
585 int nMaxArgs = *pMaxFuncArgs;
586 Op *pOp;
587 Parse *pParse = p->pParse;
588 int *aLabel = pParse->aLabel;
589 p->readOnly = 1;
590 p->bIsReader = 0;
591 pOp = &p->aOp[p->nOp-1];
592 while(1){
594 /* Only JUMP opcodes and the short list of special opcodes in the switch
595 ** below need to be considered. The mkopcodeh.tcl generator script groups
596 ** all these opcodes together near the front of the opcode list. Skip
597 ** any opcode that does not need processing by virtual of the fact that
598 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
600 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
601 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
602 ** cases from this switch! */
603 switch( pOp->opcode ){
604 case OP_Transaction: {
605 if( pOp->p2!=0 ) p->readOnly = 0;
606 /* fall thru */
608 case OP_AutoCommit:
609 case OP_Savepoint: {
610 p->bIsReader = 1;
611 break;
613 #ifndef SQLITE_OMIT_WAL
614 case OP_Checkpoint:
615 #endif
616 case OP_Vacuum:
617 case OP_JournalMode: {
618 p->readOnly = 0;
619 p->bIsReader = 1;
620 break;
622 case OP_Next:
623 case OP_NextIfOpen:
624 case OP_SorterNext: {
625 pOp->p4.xAdvance = sqlite3BtreeNext;
626 pOp->p4type = P4_ADVANCE;
627 /* The code generator never codes any of these opcodes as a jump
628 ** to a label. They are always coded as a jump backwards to a
629 ** known address */
630 assert( pOp->p2>=0 );
631 break;
633 case OP_Prev:
634 case OP_PrevIfOpen: {
635 pOp->p4.xAdvance = sqlite3BtreePrevious;
636 pOp->p4type = P4_ADVANCE;
637 /* The code generator never codes any of these opcodes as a jump
638 ** to a label. They are always coded as a jump backwards to a
639 ** known address */
640 assert( pOp->p2>=0 );
641 break;
643 #ifndef SQLITE_OMIT_VIRTUALTABLE
644 case OP_VUpdate: {
645 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
646 break;
648 case OP_VFilter: {
649 int n;
650 assert( (pOp - p->aOp) >= 3 );
651 assert( pOp[-1].opcode==OP_Integer );
652 n = pOp[-1].p1;
653 if( n>nMaxArgs ) nMaxArgs = n;
654 /* Fall through into the default case */
656 #endif
657 default: {
658 if( pOp->p2<0 ){
659 /* The mkopcodeh.tcl script has so arranged things that the only
660 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
661 ** have non-negative values for P2. */
662 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
663 assert( ADDR(pOp->p2)<pParse->nLabel );
664 pOp->p2 = aLabel[ADDR(pOp->p2)];
666 break;
669 /* The mkopcodeh.tcl script has so arranged things that the only
670 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
671 ** have non-negative values for P2. */
672 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
674 if( pOp==p->aOp ) break;
675 pOp--;
677 sqlite3DbFree(p->db, pParse->aLabel);
678 pParse->aLabel = 0;
679 pParse->nLabel = 0;
680 *pMaxFuncArgs = nMaxArgs;
681 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
685 ** Return the address of the next instruction to be inserted.
687 int sqlite3VdbeCurrentAddr(Vdbe *p){
688 assert( p->magic==VDBE_MAGIC_INIT );
689 return p->nOp;
693 ** Verify that at least N opcode slots are available in p without
694 ** having to malloc for more space (except when compiled using
695 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
696 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
697 ** fail due to a OOM fault and hence that the return value from
698 ** sqlite3VdbeAddOpList() will always be non-NULL.
700 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
701 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
702 assert( p->nOp + N <= p->pParse->nOpAlloc );
704 #endif
707 ** Verify that the VM passed as the only argument does not contain
708 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
709 ** by code in pragma.c to ensure that the implementation of certain
710 ** pragmas comports with the flags specified in the mkpragmatab.tcl
711 ** script.
713 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
714 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
715 int i;
716 for(i=0; i<p->nOp; i++){
717 assert( p->aOp[i].opcode!=OP_ResultRow );
720 #endif
723 ** This function returns a pointer to the array of opcodes associated with
724 ** the Vdbe passed as the first argument. It is the callers responsibility
725 ** to arrange for the returned array to be eventually freed using the
726 ** vdbeFreeOpArray() function.
728 ** Before returning, *pnOp is set to the number of entries in the returned
729 ** array. Also, *pnMaxArg is set to the larger of its current value and
730 ** the number of entries in the Vdbe.apArg[] array required to execute the
731 ** returned program.
733 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
734 VdbeOp *aOp = p->aOp;
735 assert( aOp && !p->db->mallocFailed );
737 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
738 assert( DbMaskAllZero(p->btreeMask) );
740 resolveP2Values(p, pnMaxArg);
741 *pnOp = p->nOp;
742 p->aOp = 0;
743 return aOp;
747 ** Add a whole list of operations to the operation stack. Return a
748 ** pointer to the first operation inserted.
750 ** Non-zero P2 arguments to jump instructions are automatically adjusted
751 ** so that the jump target is relative to the first operation inserted.
753 VdbeOp *sqlite3VdbeAddOpList(
754 Vdbe *p, /* Add opcodes to the prepared statement */
755 int nOp, /* Number of opcodes to add */
756 VdbeOpList const *aOp, /* The opcodes to be added */
757 int iLineno /* Source-file line number of first opcode */
759 int i;
760 VdbeOp *pOut, *pFirst;
761 assert( nOp>0 );
762 assert( p->magic==VDBE_MAGIC_INIT );
763 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
764 return 0;
766 pFirst = pOut = &p->aOp[p->nOp];
767 for(i=0; i<nOp; i++, aOp++, pOut++){
768 pOut->opcode = aOp->opcode;
769 pOut->p1 = aOp->p1;
770 pOut->p2 = aOp->p2;
771 assert( aOp->p2>=0 );
772 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
773 pOut->p2 += p->nOp;
775 pOut->p3 = aOp->p3;
776 pOut->p4type = P4_NOTUSED;
777 pOut->p4.p = 0;
778 pOut->p5 = 0;
779 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
780 pOut->zComment = 0;
781 #endif
782 #ifdef SQLITE_VDBE_COVERAGE
783 pOut->iSrcLine = iLineno+i;
784 #else
785 (void)iLineno;
786 #endif
787 #ifdef SQLITE_DEBUG
788 if( p->db->flags & SQLITE_VdbeAddopTrace ){
789 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
791 #endif
793 p->nOp += nOp;
794 return pFirst;
797 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
799 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
801 void sqlite3VdbeScanStatus(
802 Vdbe *p, /* VM to add scanstatus() to */
803 int addrExplain, /* Address of OP_Explain (or 0) */
804 int addrLoop, /* Address of loop counter */
805 int addrVisit, /* Address of rows visited counter */
806 LogEst nEst, /* Estimated number of output rows */
807 const char *zName /* Name of table or index being scanned */
809 int nByte = (p->nScan+1) * sizeof(ScanStatus);
810 ScanStatus *aNew;
811 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
812 if( aNew ){
813 ScanStatus *pNew = &aNew[p->nScan++];
814 pNew->addrExplain = addrExplain;
815 pNew->addrLoop = addrLoop;
816 pNew->addrVisit = addrVisit;
817 pNew->nEst = nEst;
818 pNew->zName = sqlite3DbStrDup(p->db, zName);
819 p->aScan = aNew;
822 #endif
826 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
827 ** for a specific instruction.
829 void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
830 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
832 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
833 sqlite3VdbeGetOp(p,addr)->p1 = val;
835 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
836 sqlite3VdbeGetOp(p,addr)->p2 = val;
838 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
839 sqlite3VdbeGetOp(p,addr)->p3 = val;
841 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
842 assert( p->nOp>0 || p->db->mallocFailed );
843 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
847 ** Change the P2 operand of instruction addr so that it points to
848 ** the address of the next instruction to be coded.
850 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
851 sqlite3VdbeChangeP2(p, addr, p->nOp);
856 ** If the input FuncDef structure is ephemeral, then free it. If
857 ** the FuncDef is not ephermal, then do nothing.
859 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
860 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
861 sqlite3DbFreeNN(db, pDef);
865 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
868 ** Delete a P4 value if necessary.
870 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
871 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
872 sqlite3DbFreeNN(db, p);
874 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
875 freeEphemeralFunction(db, p->pFunc);
876 sqlite3DbFreeNN(db, p);
878 static void freeP4(sqlite3 *db, int p4type, void *p4){
879 assert( db );
880 switch( p4type ){
881 case P4_FUNCCTX: {
882 freeP4FuncCtx(db, (sqlite3_context*)p4);
883 break;
885 case P4_REAL:
886 case P4_INT64:
887 case P4_DYNAMIC:
888 case P4_DYNBLOB:
889 case P4_INTARRAY: {
890 sqlite3DbFree(db, p4);
891 break;
893 case P4_KEYINFO: {
894 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
895 break;
897 #ifdef SQLITE_ENABLE_CURSOR_HINTS
898 case P4_EXPR: {
899 sqlite3ExprDelete(db, (Expr*)p4);
900 break;
902 #endif
903 case P4_FUNCDEF: {
904 freeEphemeralFunction(db, (FuncDef*)p4);
905 break;
907 case P4_MEM: {
908 if( db->pnBytesFreed==0 ){
909 sqlite3ValueFree((sqlite3_value*)p4);
910 }else{
911 freeP4Mem(db, (Mem*)p4);
913 break;
915 case P4_VTAB : {
916 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
917 break;
923 ** Free the space allocated for aOp and any p4 values allocated for the
924 ** opcodes contained within. If aOp is not NULL it is assumed to contain
925 ** nOp entries.
927 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
928 if( aOp ){
929 Op *pOp;
930 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
931 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
932 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
933 sqlite3DbFree(db, pOp->zComment);
934 #endif
936 sqlite3DbFreeNN(db, aOp);
941 ** Link the SubProgram object passed as the second argument into the linked
942 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
943 ** objects when the VM is no longer required.
945 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
946 p->pNext = pVdbe->pProgram;
947 pVdbe->pProgram = p;
951 ** Change the opcode at addr into OP_Noop
953 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
954 VdbeOp *pOp;
955 if( p->db->mallocFailed ) return 0;
956 assert( addr>=0 && addr<p->nOp );
957 pOp = &p->aOp[addr];
958 freeP4(p->db, pOp->p4type, pOp->p4.p);
959 pOp->p4type = P4_NOTUSED;
960 pOp->p4.z = 0;
961 pOp->opcode = OP_Noop;
962 return 1;
966 ** If the last opcode is "op" and it is not a jump destination,
967 ** then remove it. Return true if and only if an opcode was removed.
969 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
970 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
971 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
972 }else{
973 return 0;
978 ** Change the value of the P4 operand for a specific instruction.
979 ** This routine is useful when a large program is loaded from a
980 ** static array using sqlite3VdbeAddOpList but we want to make a
981 ** few minor changes to the program.
983 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
984 ** the string is made into memory obtained from sqlite3_malloc().
985 ** A value of n==0 means copy bytes of zP4 up to and including the
986 ** first null byte. If n>0 then copy n+1 bytes of zP4.
988 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
989 ** to a string or structure that is guaranteed to exist for the lifetime of
990 ** the Vdbe. In these cases we can just copy the pointer.
992 ** If addr<0 then change P4 on the most recently inserted instruction.
994 static void SQLITE_NOINLINE vdbeChangeP4Full(
995 Vdbe *p,
996 Op *pOp,
997 const char *zP4,
998 int n
1000 if( pOp->p4type ){
1001 freeP4(p->db, pOp->p4type, pOp->p4.p);
1002 pOp->p4type = 0;
1003 pOp->p4.p = 0;
1005 if( n<0 ){
1006 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1007 }else{
1008 if( n==0 ) n = sqlite3Strlen30(zP4);
1009 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1010 pOp->p4type = P4_DYNAMIC;
1013 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1014 Op *pOp;
1015 sqlite3 *db;
1016 assert( p!=0 );
1017 db = p->db;
1018 assert( p->magic==VDBE_MAGIC_INIT );
1019 assert( p->aOp!=0 || db->mallocFailed );
1020 if( db->mallocFailed ){
1021 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1022 return;
1024 assert( p->nOp>0 );
1025 assert( addr<p->nOp );
1026 if( addr<0 ){
1027 addr = p->nOp - 1;
1029 pOp = &p->aOp[addr];
1030 if( n>=0 || pOp->p4type ){
1031 vdbeChangeP4Full(p, pOp, zP4, n);
1032 return;
1034 if( n==P4_INT32 ){
1035 /* Note: this cast is safe, because the origin data point was an int
1036 ** that was cast to a (const char *). */
1037 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1038 pOp->p4type = P4_INT32;
1039 }else if( zP4!=0 ){
1040 assert( n<0 );
1041 pOp->p4.p = (void*)zP4;
1042 pOp->p4type = (signed char)n;
1043 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1048 ** Change the P4 operand of the most recently coded instruction
1049 ** to the value defined by the arguments. This is a high-speed
1050 ** version of sqlite3VdbeChangeP4().
1052 ** The P4 operand must not have been previously defined. And the new
1053 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1054 ** those cases.
1056 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1057 VdbeOp *pOp;
1058 assert( n!=P4_INT32 && n!=P4_VTAB );
1059 assert( n<=0 );
1060 if( p->db->mallocFailed ){
1061 freeP4(p->db, n, pP4);
1062 }else{
1063 assert( pP4!=0 );
1064 assert( p->nOp>0 );
1065 pOp = &p->aOp[p->nOp-1];
1066 assert( pOp->p4type==P4_NOTUSED );
1067 pOp->p4type = n;
1068 pOp->p4.p = pP4;
1073 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1074 ** index given.
1076 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1077 Vdbe *v = pParse->pVdbe;
1078 KeyInfo *pKeyInfo;
1079 assert( v!=0 );
1080 assert( pIdx!=0 );
1081 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1082 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1085 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1087 ** Change the comment on the most recently coded instruction. Or
1088 ** insert a No-op and add the comment to that new instruction. This
1089 ** makes the code easier to read during debugging. None of this happens
1090 ** in a production build.
1092 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1093 assert( p->nOp>0 || p->aOp==0 );
1094 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
1095 if( p->nOp ){
1096 assert( p->aOp );
1097 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1098 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1101 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1102 va_list ap;
1103 if( p ){
1104 va_start(ap, zFormat);
1105 vdbeVComment(p, zFormat, ap);
1106 va_end(ap);
1109 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1110 va_list ap;
1111 if( p ){
1112 sqlite3VdbeAddOp0(p, OP_Noop);
1113 va_start(ap, zFormat);
1114 vdbeVComment(p, zFormat, ap);
1115 va_end(ap);
1118 #endif /* NDEBUG */
1120 #ifdef SQLITE_VDBE_COVERAGE
1122 ** Set the value if the iSrcLine field for the previously coded instruction.
1124 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1125 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1127 #endif /* SQLITE_VDBE_COVERAGE */
1130 ** Return the opcode for a given address. If the address is -1, then
1131 ** return the most recently inserted opcode.
1133 ** If a memory allocation error has occurred prior to the calling of this
1134 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1135 ** is readable but not writable, though it is cast to a writable value.
1136 ** The return of a dummy opcode allows the call to continue functioning
1137 ** after an OOM fault without having to check to see if the return from
1138 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1139 ** dummy will never be written to. This is verified by code inspection and
1140 ** by running with Valgrind.
1142 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1143 /* C89 specifies that the constant "dummy" will be initialized to all
1144 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1145 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1146 assert( p->magic==VDBE_MAGIC_INIT );
1147 if( addr<0 ){
1148 addr = p->nOp - 1;
1150 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1151 if( p->db->mallocFailed ){
1152 return (VdbeOp*)&dummy;
1153 }else{
1154 return &p->aOp[addr];
1158 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1160 ** Return an integer value for one of the parameters to the opcode pOp
1161 ** determined by character c.
1163 static int translateP(char c, const Op *pOp){
1164 if( c=='1' ) return pOp->p1;
1165 if( c=='2' ) return pOp->p2;
1166 if( c=='3' ) return pOp->p3;
1167 if( c=='4' ) return pOp->p4.i;
1168 return pOp->p5;
1172 ** Compute a string for the "comment" field of a VDBE opcode listing.
1174 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1175 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1176 ** absence of other comments, this synopsis becomes the comment on the opcode.
1177 ** Some translation occurs:
1179 ** "PX" -> "r[X]"
1180 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1181 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1182 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1184 static int displayComment(
1185 const Op *pOp, /* The opcode to be commented */
1186 const char *zP4, /* Previously obtained value for P4 */
1187 char *zTemp, /* Write result here */
1188 int nTemp /* Space available in zTemp[] */
1190 const char *zOpName;
1191 const char *zSynopsis;
1192 int nOpName;
1193 int ii, jj;
1194 char zAlt[50];
1195 zOpName = sqlite3OpcodeName(pOp->opcode);
1196 nOpName = sqlite3Strlen30(zOpName);
1197 if( zOpName[nOpName+1] ){
1198 int seenCom = 0;
1199 char c;
1200 zSynopsis = zOpName += nOpName + 1;
1201 if( strncmp(zSynopsis,"IF ",3)==0 ){
1202 if( pOp->p5 & SQLITE_STOREP2 ){
1203 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1204 }else{
1205 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1207 zSynopsis = zAlt;
1209 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1210 if( c=='P' ){
1211 c = zSynopsis[++ii];
1212 if( c=='4' ){
1213 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1214 }else if( c=='X' ){
1215 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1216 seenCom = 1;
1217 }else{
1218 int v1 = translateP(c, pOp);
1219 int v2;
1220 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1221 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1222 ii += 3;
1223 jj += sqlite3Strlen30(zTemp+jj);
1224 v2 = translateP(zSynopsis[ii], pOp);
1225 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1226 ii += 2;
1227 v2++;
1229 if( v2>1 ){
1230 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1232 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1233 ii += 4;
1236 jj += sqlite3Strlen30(zTemp+jj);
1237 }else{
1238 zTemp[jj++] = c;
1241 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1242 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1243 jj += sqlite3Strlen30(zTemp+jj);
1245 if( jj<nTemp ) zTemp[jj] = 0;
1246 }else if( pOp->zComment ){
1247 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1248 jj = sqlite3Strlen30(zTemp);
1249 }else{
1250 zTemp[0] = 0;
1251 jj = 0;
1253 return jj;
1255 #endif /* SQLITE_DEBUG */
1257 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1259 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1260 ** that can be displayed in the P4 column of EXPLAIN output.
1262 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1263 const char *zOp = 0;
1264 switch( pExpr->op ){
1265 case TK_STRING:
1266 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
1267 break;
1268 case TK_INTEGER:
1269 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
1270 break;
1271 case TK_NULL:
1272 sqlite3XPrintf(p, "NULL");
1273 break;
1274 case TK_REGISTER: {
1275 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
1276 break;
1278 case TK_COLUMN: {
1279 if( pExpr->iColumn<0 ){
1280 sqlite3XPrintf(p, "rowid");
1281 }else{
1282 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
1284 break;
1286 case TK_LT: zOp = "LT"; break;
1287 case TK_LE: zOp = "LE"; break;
1288 case TK_GT: zOp = "GT"; break;
1289 case TK_GE: zOp = "GE"; break;
1290 case TK_NE: zOp = "NE"; break;
1291 case TK_EQ: zOp = "EQ"; break;
1292 case TK_IS: zOp = "IS"; break;
1293 case TK_ISNOT: zOp = "ISNOT"; break;
1294 case TK_AND: zOp = "AND"; break;
1295 case TK_OR: zOp = "OR"; break;
1296 case TK_PLUS: zOp = "ADD"; break;
1297 case TK_STAR: zOp = "MUL"; break;
1298 case TK_MINUS: zOp = "SUB"; break;
1299 case TK_REM: zOp = "REM"; break;
1300 case TK_BITAND: zOp = "BITAND"; break;
1301 case TK_BITOR: zOp = "BITOR"; break;
1302 case TK_SLASH: zOp = "DIV"; break;
1303 case TK_LSHIFT: zOp = "LSHIFT"; break;
1304 case TK_RSHIFT: zOp = "RSHIFT"; break;
1305 case TK_CONCAT: zOp = "CONCAT"; break;
1306 case TK_UMINUS: zOp = "MINUS"; break;
1307 case TK_UPLUS: zOp = "PLUS"; break;
1308 case TK_BITNOT: zOp = "BITNOT"; break;
1309 case TK_NOT: zOp = "NOT"; break;
1310 case TK_ISNULL: zOp = "ISNULL"; break;
1311 case TK_NOTNULL: zOp = "NOTNULL"; break;
1313 default:
1314 sqlite3XPrintf(p, "%s", "expr");
1315 break;
1318 if( zOp ){
1319 sqlite3XPrintf(p, "%s(", zOp);
1320 displayP4Expr(p, pExpr->pLeft);
1321 if( pExpr->pRight ){
1322 sqlite3StrAccumAppend(p, ",", 1);
1323 displayP4Expr(p, pExpr->pRight);
1325 sqlite3StrAccumAppend(p, ")", 1);
1328 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1331 #if VDBE_DISPLAY_P4
1333 ** Compute a string that describes the P4 parameter for an opcode.
1334 ** Use zTemp for any required temporary buffer space.
1336 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1337 char *zP4 = zTemp;
1338 StrAccum x;
1339 assert( nTemp>=20 );
1340 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
1341 switch( pOp->p4type ){
1342 case P4_KEYINFO: {
1343 int j;
1344 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1345 assert( pKeyInfo->aSortOrder!=0 );
1346 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nKeyField);
1347 for(j=0; j<pKeyInfo->nKeyField; j++){
1348 CollSeq *pColl = pKeyInfo->aColl[j];
1349 const char *zColl = pColl ? pColl->zName : "";
1350 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1351 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
1353 sqlite3StrAccumAppend(&x, ")", 1);
1354 break;
1356 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1357 case P4_EXPR: {
1358 displayP4Expr(&x, pOp->p4.pExpr);
1359 break;
1361 #endif
1362 case P4_COLLSEQ: {
1363 CollSeq *pColl = pOp->p4.pColl;
1364 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
1365 break;
1367 case P4_FUNCDEF: {
1368 FuncDef *pDef = pOp->p4.pFunc;
1369 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1370 break;
1372 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1373 case P4_FUNCCTX: {
1374 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1375 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1376 break;
1378 #endif
1379 case P4_INT64: {
1380 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
1381 break;
1383 case P4_INT32: {
1384 sqlite3XPrintf(&x, "%d", pOp->p4.i);
1385 break;
1387 case P4_REAL: {
1388 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
1389 break;
1391 case P4_MEM: {
1392 Mem *pMem = pOp->p4.pMem;
1393 if( pMem->flags & MEM_Str ){
1394 zP4 = pMem->z;
1395 }else if( pMem->flags & MEM_Int ){
1396 sqlite3XPrintf(&x, "%lld", pMem->u.i);
1397 }else if( pMem->flags & MEM_Real ){
1398 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
1399 }else if( pMem->flags & MEM_Null ){
1400 zP4 = "NULL";
1401 }else{
1402 assert( pMem->flags & MEM_Blob );
1403 zP4 = "(blob)";
1405 break;
1407 #ifndef SQLITE_OMIT_VIRTUALTABLE
1408 case P4_VTAB: {
1409 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1410 sqlite3XPrintf(&x, "vtab:%p", pVtab);
1411 break;
1413 #endif
1414 case P4_INTARRAY: {
1415 int i;
1416 int *ai = pOp->p4.ai;
1417 int n = ai[0]; /* The first element of an INTARRAY is always the
1418 ** count of the number of elements to follow */
1419 for(i=1; i<=n; i++){
1420 sqlite3XPrintf(&x, ",%d", ai[i]);
1422 zTemp[0] = '[';
1423 sqlite3StrAccumAppend(&x, "]", 1);
1424 break;
1426 case P4_SUBPROGRAM: {
1427 sqlite3XPrintf(&x, "program");
1428 break;
1430 case P4_DYNBLOB:
1431 case P4_ADVANCE: {
1432 zTemp[0] = 0;
1433 break;
1435 case P4_TABLE: {
1436 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1437 break;
1439 default: {
1440 zP4 = pOp->p4.z;
1441 if( zP4==0 ){
1442 zP4 = zTemp;
1443 zTemp[0] = 0;
1447 sqlite3StrAccumFinish(&x);
1448 assert( zP4!=0 );
1449 return zP4;
1451 #endif /* VDBE_DISPLAY_P4 */
1454 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1456 ** The prepared statements need to know in advance the complete set of
1457 ** attached databases that will be use. A mask of these databases
1458 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1459 ** p->btreeMask of databases that will require a lock.
1461 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1462 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1463 assert( i<(int)sizeof(p->btreeMask)*8 );
1464 DbMaskSet(p->btreeMask, i);
1465 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1466 DbMaskSet(p->lockMask, i);
1470 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1472 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1473 ** this routine obtains the mutex associated with each BtShared structure
1474 ** that may be accessed by the VM passed as an argument. In doing so it also
1475 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1476 ** that the correct busy-handler callback is invoked if required.
1478 ** If SQLite is not threadsafe but does support shared-cache mode, then
1479 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1480 ** of all of BtShared structures accessible via the database handle
1481 ** associated with the VM.
1483 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1484 ** function is a no-op.
1486 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1487 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1488 ** corresponding to btrees that use shared cache. Then the runtime of
1489 ** this routine is N*N. But as N is rarely more than 1, this should not
1490 ** be a problem.
1492 void sqlite3VdbeEnter(Vdbe *p){
1493 int i;
1494 sqlite3 *db;
1495 Db *aDb;
1496 int nDb;
1497 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1498 db = p->db;
1499 aDb = db->aDb;
1500 nDb = db->nDb;
1501 for(i=0; i<nDb; i++){
1502 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1503 sqlite3BtreeEnter(aDb[i].pBt);
1507 #endif
1509 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1511 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1513 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1514 int i;
1515 sqlite3 *db;
1516 Db *aDb;
1517 int nDb;
1518 db = p->db;
1519 aDb = db->aDb;
1520 nDb = db->nDb;
1521 for(i=0; i<nDb; i++){
1522 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1523 sqlite3BtreeLeave(aDb[i].pBt);
1527 void sqlite3VdbeLeave(Vdbe *p){
1528 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1529 vdbeLeave(p);
1531 #endif
1533 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1535 ** Print a single opcode. This routine is used for debugging only.
1537 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1538 char *zP4;
1539 char zPtr[50];
1540 char zCom[100];
1541 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1542 if( pOut==0 ) pOut = stdout;
1543 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1544 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1545 displayComment(pOp, zP4, zCom, sizeof(zCom));
1546 #else
1547 zCom[0] = 0;
1548 #endif
1549 /* NB: The sqlite3OpcodeName() function is implemented by code created
1550 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1551 ** information from the vdbe.c source text */
1552 fprintf(pOut, zFormat1, pc,
1553 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1554 zCom
1556 fflush(pOut);
1558 #endif
1561 ** Initialize an array of N Mem element.
1563 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1564 while( (N--)>0 ){
1565 p->db = db;
1566 p->flags = flags;
1567 p->szMalloc = 0;
1568 #ifdef SQLITE_DEBUG
1569 p->pScopyFrom = 0;
1570 #endif
1571 p++;
1576 ** Release an array of N Mem elements
1578 static void releaseMemArray(Mem *p, int N){
1579 if( p && N ){
1580 Mem *pEnd = &p[N];
1581 sqlite3 *db = p->db;
1582 if( db->pnBytesFreed ){
1584 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1585 }while( (++p)<pEnd );
1586 return;
1589 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1590 assert( sqlite3VdbeCheckMemInvariants(p) );
1592 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1593 ** that takes advantage of the fact that the memory cell value is
1594 ** being set to NULL after releasing any dynamic resources.
1596 ** The justification for duplicating code is that according to
1597 ** callgrind, this causes a certain test case to hit the CPU 4.7
1598 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1599 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1600 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1601 ** with no indexes using a single prepared INSERT statement, bind()
1602 ** and reset(). Inserts are grouped into a transaction.
1604 testcase( p->flags & MEM_Agg );
1605 testcase( p->flags & MEM_Dyn );
1606 testcase( p->flags & MEM_Frame );
1607 testcase( p->flags & MEM_RowSet );
1608 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1609 sqlite3VdbeMemRelease(p);
1610 }else if( p->szMalloc ){
1611 sqlite3DbFreeNN(db, p->zMalloc);
1612 p->szMalloc = 0;
1615 p->flags = MEM_Undefined;
1616 }while( (++p)<pEnd );
1621 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1622 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1624 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1625 int i;
1626 Mem *aMem = VdbeFrameMem(p);
1627 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1628 for(i=0; i<p->nChildCsr; i++){
1629 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1631 releaseMemArray(aMem, p->nChildMem);
1632 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
1633 sqlite3DbFree(p->v->db, p);
1636 #ifndef SQLITE_OMIT_EXPLAIN
1638 ** Give a listing of the program in the virtual machine.
1640 ** The interface is the same as sqlite3VdbeExec(). But instead of
1641 ** running the code, it invokes the callback once for each instruction.
1642 ** This feature is used to implement "EXPLAIN".
1644 ** When p->explain==1, each instruction is listed. When
1645 ** p->explain==2, only OP_Explain instructions are listed and these
1646 ** are shown in a different format. p->explain==2 is used to implement
1647 ** EXPLAIN QUERY PLAN.
1648 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
1649 ** are also shown, so that the boundaries between the main program and
1650 ** each trigger are clear.
1652 ** When p->explain==1, first the main program is listed, then each of
1653 ** the trigger subprograms are listed one by one.
1655 int sqlite3VdbeList(
1656 Vdbe *p /* The VDBE */
1658 int nRow; /* Stop when row count reaches this */
1659 int nSub = 0; /* Number of sub-vdbes seen so far */
1660 SubProgram **apSub = 0; /* Array of sub-vdbes */
1661 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1662 sqlite3 *db = p->db; /* The database connection */
1663 int i; /* Loop counter */
1664 int rc = SQLITE_OK; /* Return code */
1665 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1666 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
1667 Op *pOp = 0;
1669 assert( p->explain );
1670 assert( p->magic==VDBE_MAGIC_RUN );
1671 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1673 /* Even though this opcode does not use dynamic strings for
1674 ** the result, result columns may become dynamic if the user calls
1675 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1677 releaseMemArray(pMem, 8);
1678 p->pResultSet = 0;
1680 if( p->rc==SQLITE_NOMEM ){
1681 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1682 ** sqlite3_column_text16() failed. */
1683 sqlite3OomFault(db);
1684 return SQLITE_ERROR;
1687 /* When the number of output rows reaches nRow, that means the
1688 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1689 ** nRow is the sum of the number of rows in the main program, plus
1690 ** the sum of the number of rows in all trigger subprograms encountered
1691 ** so far. The nRow value will increase as new trigger subprograms are
1692 ** encountered, but p->pc will eventually catch up to nRow.
1694 nRow = p->nOp;
1695 if( bListSubprogs ){
1696 /* The first 8 memory cells are used for the result set. So we will
1697 ** commandeer the 9th cell to use as storage for an array of pointers
1698 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1699 ** cells. */
1700 assert( p->nMem>9 );
1701 pSub = &p->aMem[9];
1702 if( pSub->flags&MEM_Blob ){
1703 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1704 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1705 nSub = pSub->n/sizeof(Vdbe*);
1706 apSub = (SubProgram **)pSub->z;
1708 for(i=0; i<nSub; i++){
1709 nRow += apSub[i]->nOp;
1713 while(1){ /* Loop exits via break */
1714 i = p->pc++;
1715 if( i>=nRow ){
1716 p->rc = SQLITE_OK;
1717 rc = SQLITE_DONE;
1718 break;
1720 if( i<p->nOp ){
1721 /* The output line number is small enough that we are still in the
1722 ** main program. */
1723 pOp = &p->aOp[i];
1724 }else{
1725 /* We are currently listing subprograms. Figure out which one and
1726 ** pick up the appropriate opcode. */
1727 int j;
1728 i -= p->nOp;
1729 for(j=0; i>=apSub[j]->nOp; j++){
1730 i -= apSub[j]->nOp;
1732 pOp = &apSub[j]->aOp[i];
1735 /* When an OP_Program opcode is encounter (the only opcode that has
1736 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1737 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1738 ** has not already been seen.
1740 if( bListSubprogs && pOp->p4type==P4_SUBPROGRAM ){
1741 int nByte = (nSub+1)*sizeof(SubProgram*);
1742 int j;
1743 for(j=0; j<nSub; j++){
1744 if( apSub[j]==pOp->p4.pProgram ) break;
1746 if( j==nSub ){
1747 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
1748 if( p->rc!=SQLITE_OK ){
1749 rc = SQLITE_ERROR;
1750 break;
1752 apSub = (SubProgram **)pSub->z;
1753 apSub[nSub++] = pOp->p4.pProgram;
1754 pSub->flags |= MEM_Blob;
1755 pSub->n = nSub*sizeof(SubProgram*);
1756 nRow += pOp->p4.pProgram->nOp;
1759 if( p->explain<2 ) break;
1760 if( pOp->opcode==OP_Explain ) break;
1761 if( pOp->opcode==OP_Init && p->pc>1 ) break;
1764 if( rc==SQLITE_OK ){
1765 if( db->u1.isInterrupted ){
1766 p->rc = SQLITE_INTERRUPT;
1767 rc = SQLITE_ERROR;
1768 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
1769 }else{
1770 char *zP4;
1771 if( p->explain==1 ){
1772 pMem->flags = MEM_Int;
1773 pMem->u.i = i; /* Program counter */
1774 pMem++;
1776 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1777 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1778 assert( pMem->z!=0 );
1779 pMem->n = sqlite3Strlen30(pMem->z);
1780 pMem->enc = SQLITE_UTF8;
1781 pMem++;
1784 pMem->flags = MEM_Int;
1785 pMem->u.i = pOp->p1; /* P1 */
1786 pMem++;
1788 pMem->flags = MEM_Int;
1789 pMem->u.i = pOp->p2; /* P2 */
1790 pMem++;
1792 pMem->flags = MEM_Int;
1793 pMem->u.i = pOp->p3; /* P3 */
1794 pMem++;
1796 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
1797 assert( p->db->mallocFailed );
1798 return SQLITE_ERROR;
1800 pMem->flags = MEM_Str|MEM_Term;
1801 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
1802 if( zP4!=pMem->z ){
1803 pMem->n = 0;
1804 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
1805 }else{
1806 assert( pMem->z!=0 );
1807 pMem->n = sqlite3Strlen30(pMem->z);
1808 pMem->enc = SQLITE_UTF8;
1810 pMem++;
1812 if( p->explain==1 ){
1813 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
1814 assert( p->db->mallocFailed );
1815 return SQLITE_ERROR;
1817 pMem->flags = MEM_Str|MEM_Term;
1818 pMem->n = 2;
1819 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1820 pMem->enc = SQLITE_UTF8;
1821 pMem++;
1823 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1824 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
1825 assert( p->db->mallocFailed );
1826 return SQLITE_ERROR;
1828 pMem->flags = MEM_Str|MEM_Term;
1829 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
1830 pMem->enc = SQLITE_UTF8;
1831 #else
1832 pMem->flags = MEM_Null; /* Comment */
1833 #endif
1836 p->nResColumn = 8 - 4*(p->explain-1);
1837 p->pResultSet = &p->aMem[1];
1838 p->rc = SQLITE_OK;
1839 rc = SQLITE_ROW;
1842 return rc;
1844 #endif /* SQLITE_OMIT_EXPLAIN */
1846 #ifdef SQLITE_DEBUG
1848 ** Print the SQL that was used to generate a VDBE program.
1850 void sqlite3VdbePrintSql(Vdbe *p){
1851 const char *z = 0;
1852 if( p->zSql ){
1853 z = p->zSql;
1854 }else if( p->nOp>=1 ){
1855 const VdbeOp *pOp = &p->aOp[0];
1856 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1857 z = pOp->p4.z;
1858 while( sqlite3Isspace(*z) ) z++;
1861 if( z ) printf("SQL: [%s]\n", z);
1863 #endif
1865 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1867 ** Print an IOTRACE message showing SQL content.
1869 void sqlite3VdbeIOTraceSql(Vdbe *p){
1870 int nOp = p->nOp;
1871 VdbeOp *pOp;
1872 if( sqlite3IoTrace==0 ) return;
1873 if( nOp<1 ) return;
1874 pOp = &p->aOp[0];
1875 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
1876 int i, j;
1877 char z[1000];
1878 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1879 for(i=0; sqlite3Isspace(z[i]); i++){}
1880 for(j=0; z[i]; i++){
1881 if( sqlite3Isspace(z[i]) ){
1882 if( z[i-1]!=' ' ){
1883 z[j++] = ' ';
1885 }else{
1886 z[j++] = z[i];
1889 z[j] = 0;
1890 sqlite3IoTrace("SQL %s\n", z);
1893 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1895 /* An instance of this object describes bulk memory available for use
1896 ** by subcomponents of a prepared statement. Space is allocated out
1897 ** of a ReusableSpace object by the allocSpace() routine below.
1899 struct ReusableSpace {
1900 u8 *pSpace; /* Available memory */
1901 int nFree; /* Bytes of available memory */
1902 int nNeeded; /* Total bytes that could not be allocated */
1905 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1906 ** from the ReusableSpace object. Return a pointer to the allocated
1907 ** memory on success. If insufficient memory is available in the
1908 ** ReusableSpace object, increase the ReusableSpace.nNeeded
1909 ** value by the amount needed and return NULL.
1911 ** If pBuf is not initially NULL, that means that the memory has already
1912 ** been allocated by a prior call to this routine, so just return a copy
1913 ** of pBuf and leave ReusableSpace unchanged.
1915 ** This allocator is employed to repurpose unused slots at the end of the
1916 ** opcode array of prepared state for other memory needs of the prepared
1917 ** statement.
1919 static void *allocSpace(
1920 struct ReusableSpace *p, /* Bulk memory available for allocation */
1921 void *pBuf, /* Pointer to a prior allocation */
1922 int nByte /* Bytes of memory needed */
1924 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
1925 if( pBuf==0 ){
1926 nByte = ROUND8(nByte);
1927 if( nByte <= p->nFree ){
1928 p->nFree -= nByte;
1929 pBuf = &p->pSpace[p->nFree];
1930 }else{
1931 p->nNeeded += nByte;
1934 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
1935 return pBuf;
1939 ** Rewind the VDBE back to the beginning in preparation for
1940 ** running it.
1942 void sqlite3VdbeRewind(Vdbe *p){
1943 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1944 int i;
1945 #endif
1946 assert( p!=0 );
1947 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
1949 /* There should be at least one opcode.
1951 assert( p->nOp>0 );
1953 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1954 p->magic = VDBE_MAGIC_RUN;
1956 #ifdef SQLITE_DEBUG
1957 for(i=0; i<p->nMem; i++){
1958 assert( p->aMem[i].db==p->db );
1960 #endif
1961 p->pc = -1;
1962 p->rc = SQLITE_OK;
1963 p->errorAction = OE_Abort;
1964 p->nChange = 0;
1965 p->cacheCtr = 1;
1966 p->minWriteFileFormat = 255;
1967 p->iStatement = 0;
1968 p->nFkConstraint = 0;
1969 #ifdef VDBE_PROFILE
1970 for(i=0; i<p->nOp; i++){
1971 p->aOp[i].cnt = 0;
1972 p->aOp[i].cycles = 0;
1974 #endif
1978 ** Prepare a virtual machine for execution for the first time after
1979 ** creating the virtual machine. This involves things such
1980 ** as allocating registers and initializing the program counter.
1981 ** After the VDBE has be prepped, it can be executed by one or more
1982 ** calls to sqlite3VdbeExec().
1984 ** This function may be called exactly once on each virtual machine.
1985 ** After this routine is called the VM has been "packaged" and is ready
1986 ** to run. After this routine is called, further calls to
1987 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1988 ** the Vdbe from the Parse object that helped generate it so that the
1989 ** the Vdbe becomes an independent entity and the Parse object can be
1990 ** destroyed.
1992 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1993 ** to its initial state after it has been run.
1995 void sqlite3VdbeMakeReady(
1996 Vdbe *p, /* The VDBE */
1997 Parse *pParse /* Parsing context */
1999 sqlite3 *db; /* The database connection */
2000 int nVar; /* Number of parameters */
2001 int nMem; /* Number of VM memory registers */
2002 int nCursor; /* Number of cursors required */
2003 int nArg; /* Number of arguments in subprograms */
2004 int n; /* Loop counter */
2005 struct ReusableSpace x; /* Reusable bulk memory */
2007 assert( p!=0 );
2008 assert( p->nOp>0 );
2009 assert( pParse!=0 );
2010 assert( p->magic==VDBE_MAGIC_INIT );
2011 assert( pParse==p->pParse );
2012 db = p->db;
2013 assert( db->mallocFailed==0 );
2014 nVar = pParse->nVar;
2015 nMem = pParse->nMem;
2016 nCursor = pParse->nTab;
2017 nArg = pParse->nMaxArg;
2019 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2020 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2021 ** space at the end of aMem[] for cursors 1 and greater.
2022 ** See also: allocateCursor().
2024 nMem += nCursor;
2025 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2027 /* Figure out how much reusable memory is available at the end of the
2028 ** opcode array. This extra memory will be reallocated for other elements
2029 ** of the prepared statement.
2031 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2032 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2033 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2034 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2035 assert( x.nFree>=0 );
2036 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2038 resolveP2Values(p, &nArg);
2039 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2040 if( pParse->explain && nMem<10 ){
2041 nMem = 10;
2043 p->expired = 0;
2045 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2046 ** passes. On the first pass, we try to reuse unused memory at the
2047 ** end of the opcode array. If we are unable to satisfy all memory
2048 ** requirements by reusing the opcode array tail, then the second
2049 ** pass will fill in the remainder using a fresh memory allocation.
2051 ** This two-pass approach that reuses as much memory as possible from
2052 ** the leftover memory at the end of the opcode array. This can significantly
2053 ** reduce the amount of memory held by a prepared statement.
2055 do {
2056 x.nNeeded = 0;
2057 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2058 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2059 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2060 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2061 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2062 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2063 #endif
2064 if( x.nNeeded==0 ) break;
2065 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2066 x.nFree = x.nNeeded;
2067 }while( !db->mallocFailed );
2069 p->pVList = pParse->pVList;
2070 pParse->pVList = 0;
2071 p->explain = pParse->explain;
2072 if( db->mallocFailed ){
2073 p->nVar = 0;
2074 p->nCursor = 0;
2075 p->nMem = 0;
2076 }else{
2077 p->nCursor = nCursor;
2078 p->nVar = (ynVar)nVar;
2079 initMemArray(p->aVar, nVar, db, MEM_Null);
2080 p->nMem = nMem;
2081 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2082 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2083 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2084 memset(p->anExec, 0, p->nOp*sizeof(i64));
2085 #endif
2087 sqlite3VdbeRewind(p);
2091 ** Close a VDBE cursor and release all the resources that cursor
2092 ** happens to hold.
2094 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2095 if( pCx==0 ){
2096 return;
2098 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2099 switch( pCx->eCurType ){
2100 case CURTYPE_SORTER: {
2101 sqlite3VdbeSorterClose(p->db, pCx);
2102 break;
2104 case CURTYPE_BTREE: {
2105 if( pCx->isEphemeral ){
2106 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2107 /* The pCx->pCursor will be close automatically, if it exists, by
2108 ** the call above. */
2109 }else{
2110 assert( pCx->uc.pCursor!=0 );
2111 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2113 break;
2115 #ifndef SQLITE_OMIT_VIRTUALTABLE
2116 case CURTYPE_VTAB: {
2117 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2118 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2119 assert( pVCur->pVtab->nRef>0 );
2120 pVCur->pVtab->nRef--;
2121 pModule->xClose(pVCur);
2122 break;
2124 #endif
2129 ** Close all cursors in the current frame.
2131 static void closeCursorsInFrame(Vdbe *p){
2132 if( p->apCsr ){
2133 int i;
2134 for(i=0; i<p->nCursor; i++){
2135 VdbeCursor *pC = p->apCsr[i];
2136 if( pC ){
2137 sqlite3VdbeFreeCursor(p, pC);
2138 p->apCsr[i] = 0;
2145 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2146 ** is used, for example, when a trigger sub-program is halted to restore
2147 ** control to the main program.
2149 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2150 Vdbe *v = pFrame->v;
2151 closeCursorsInFrame(v);
2152 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2153 v->anExec = pFrame->anExec;
2154 #endif
2155 v->aOp = pFrame->aOp;
2156 v->nOp = pFrame->nOp;
2157 v->aMem = pFrame->aMem;
2158 v->nMem = pFrame->nMem;
2159 v->apCsr = pFrame->apCsr;
2160 v->nCursor = pFrame->nCursor;
2161 v->db->lastRowid = pFrame->lastRowid;
2162 v->nChange = pFrame->nChange;
2163 v->db->nChange = pFrame->nDbChange;
2164 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2165 v->pAuxData = pFrame->pAuxData;
2166 pFrame->pAuxData = 0;
2167 return pFrame->pc;
2171 ** Close all cursors.
2173 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2174 ** cell array. This is necessary as the memory cell array may contain
2175 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2176 ** open cursors.
2178 static void closeAllCursors(Vdbe *p){
2179 if( p->pFrame ){
2180 VdbeFrame *pFrame;
2181 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2182 sqlite3VdbeFrameRestore(pFrame);
2183 p->pFrame = 0;
2184 p->nFrame = 0;
2186 assert( p->nFrame==0 );
2187 closeCursorsInFrame(p);
2188 if( p->aMem ){
2189 releaseMemArray(p->aMem, p->nMem);
2191 while( p->pDelFrame ){
2192 VdbeFrame *pDel = p->pDelFrame;
2193 p->pDelFrame = pDel->pParent;
2194 sqlite3VdbeFrameDelete(pDel);
2197 /* Delete any auxdata allocations made by the VM */
2198 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2199 assert( p->pAuxData==0 );
2203 ** Set the number of result columns that will be returned by this SQL
2204 ** statement. This is now set at compile time, rather than during
2205 ** execution of the vdbe program so that sqlite3_column_count() can
2206 ** be called on an SQL statement before sqlite3_step().
2208 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2209 int n;
2210 sqlite3 *db = p->db;
2212 if( p->nResColumn ){
2213 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2214 sqlite3DbFree(db, p->aColName);
2216 n = nResColumn*COLNAME_N;
2217 p->nResColumn = (u16)nResColumn;
2218 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2219 if( p->aColName==0 ) return;
2220 initMemArray(p->aColName, n, db, MEM_Null);
2224 ** Set the name of the idx'th column to be returned by the SQL statement.
2225 ** zName must be a pointer to a nul terminated string.
2227 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2229 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2230 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2231 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2233 int sqlite3VdbeSetColName(
2234 Vdbe *p, /* Vdbe being configured */
2235 int idx, /* Index of column zName applies to */
2236 int var, /* One of the COLNAME_* constants */
2237 const char *zName, /* Pointer to buffer containing name */
2238 void (*xDel)(void*) /* Memory management strategy for zName */
2240 int rc;
2241 Mem *pColName;
2242 assert( idx<p->nResColumn );
2243 assert( var<COLNAME_N );
2244 if( p->db->mallocFailed ){
2245 assert( !zName || xDel!=SQLITE_DYNAMIC );
2246 return SQLITE_NOMEM_BKPT;
2248 assert( p->aColName!=0 );
2249 pColName = &(p->aColName[idx+var*p->nResColumn]);
2250 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2251 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2252 return rc;
2256 ** A read or write transaction may or may not be active on database handle
2257 ** db. If a transaction is active, commit it. If there is a
2258 ** write-transaction spanning more than one database file, this routine
2259 ** takes care of the master journal trickery.
2261 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2262 int i;
2263 int nTrans = 0; /* Number of databases with an active write-transaction
2264 ** that are candidates for a two-phase commit using a
2265 ** master-journal */
2266 int rc = SQLITE_OK;
2267 int needXcommit = 0;
2269 #ifdef SQLITE_OMIT_VIRTUALTABLE
2270 /* With this option, sqlite3VtabSync() is defined to be simply
2271 ** SQLITE_OK so p is not used.
2273 UNUSED_PARAMETER(p);
2274 #endif
2276 /* Before doing anything else, call the xSync() callback for any
2277 ** virtual module tables written in this transaction. This has to
2278 ** be done before determining whether a master journal file is
2279 ** required, as an xSync() callback may add an attached database
2280 ** to the transaction.
2282 rc = sqlite3VtabSync(db, p);
2284 /* This loop determines (a) if the commit hook should be invoked and
2285 ** (b) how many database files have open write transactions, not
2286 ** including the temp database. (b) is important because if more than
2287 ** one database file has an open write transaction, a master journal
2288 ** file is required for an atomic commit.
2290 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2291 Btree *pBt = db->aDb[i].pBt;
2292 if( sqlite3BtreeIsInTrans(pBt) ){
2293 /* Whether or not a database might need a master journal depends upon
2294 ** its journal mode (among other things). This matrix determines which
2295 ** journal modes use a master journal and which do not */
2296 static const u8 aMJNeeded[] = {
2297 /* DELETE */ 1,
2298 /* PERSIST */ 1,
2299 /* OFF */ 0,
2300 /* TRUNCATE */ 1,
2301 /* MEMORY */ 0,
2302 /* WAL */ 0
2304 Pager *pPager; /* Pager associated with pBt */
2305 needXcommit = 1;
2306 sqlite3BtreeEnter(pBt);
2307 pPager = sqlite3BtreePager(pBt);
2308 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2309 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2310 && sqlite3PagerIsMemdb(pPager)==0
2312 assert( i!=1 );
2313 nTrans++;
2315 rc = sqlite3PagerExclusiveLock(pPager);
2316 sqlite3BtreeLeave(pBt);
2319 if( rc!=SQLITE_OK ){
2320 return rc;
2323 /* If there are any write-transactions at all, invoke the commit hook */
2324 if( needXcommit && db->xCommitCallback ){
2325 rc = db->xCommitCallback(db->pCommitArg);
2326 if( rc ){
2327 return SQLITE_CONSTRAINT_COMMITHOOK;
2331 /* The simple case - no more than one database file (not counting the
2332 ** TEMP database) has a transaction active. There is no need for the
2333 ** master-journal.
2335 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2336 ** string, it means the main database is :memory: or a temp file. In
2337 ** that case we do not support atomic multi-file commits, so use the
2338 ** simple case then too.
2340 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2341 || nTrans<=1
2343 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2344 Btree *pBt = db->aDb[i].pBt;
2345 if( pBt ){
2346 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2350 /* Do the commit only if all databases successfully complete phase 1.
2351 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2352 ** IO error while deleting or truncating a journal file. It is unlikely,
2353 ** but could happen. In this case abandon processing and return the error.
2355 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2356 Btree *pBt = db->aDb[i].pBt;
2357 if( pBt ){
2358 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2361 if( rc==SQLITE_OK ){
2362 sqlite3VtabCommit(db);
2366 /* The complex case - There is a multi-file write-transaction active.
2367 ** This requires a master journal file to ensure the transaction is
2368 ** committed atomically.
2370 #ifndef SQLITE_OMIT_DISKIO
2371 else{
2372 sqlite3_vfs *pVfs = db->pVfs;
2373 char *zMaster = 0; /* File-name for the master journal */
2374 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2375 sqlite3_file *pMaster = 0;
2376 i64 offset = 0;
2377 int res;
2378 int retryCount = 0;
2379 int nMainFile;
2381 /* Select a master journal file name */
2382 nMainFile = sqlite3Strlen30(zMainFile);
2383 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
2384 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2385 do {
2386 u32 iRandom;
2387 if( retryCount ){
2388 if( retryCount>100 ){
2389 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2390 sqlite3OsDelete(pVfs, zMaster, 0);
2391 break;
2392 }else if( retryCount==1 ){
2393 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2396 retryCount++;
2397 sqlite3_randomness(sizeof(iRandom), &iRandom);
2398 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2399 (iRandom>>8)&0xffffff, iRandom&0xff);
2400 /* The antipenultimate character of the master journal name must
2401 ** be "9" to avoid name collisions when using 8+3 filenames. */
2402 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2403 sqlite3FileSuffix3(zMainFile, zMaster);
2404 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2405 }while( rc==SQLITE_OK && res );
2406 if( rc==SQLITE_OK ){
2407 /* Open the master journal. */
2408 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2409 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2410 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2413 if( rc!=SQLITE_OK ){
2414 sqlite3DbFree(db, zMaster);
2415 return rc;
2418 /* Write the name of each database file in the transaction into the new
2419 ** master journal file. If an error occurs at this point close
2420 ** and delete the master journal file. All the individual journal files
2421 ** still have 'null' as the master journal pointer, so they will roll
2422 ** back independently if a failure occurs.
2424 for(i=0; i<db->nDb; i++){
2425 Btree *pBt = db->aDb[i].pBt;
2426 if( sqlite3BtreeIsInTrans(pBt) ){
2427 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2428 if( zFile==0 ){
2429 continue; /* Ignore TEMP and :memory: databases */
2431 assert( zFile[0]!=0 );
2432 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2433 offset += sqlite3Strlen30(zFile)+1;
2434 if( rc!=SQLITE_OK ){
2435 sqlite3OsCloseFree(pMaster);
2436 sqlite3OsDelete(pVfs, zMaster, 0);
2437 sqlite3DbFree(db, zMaster);
2438 return rc;
2443 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2444 ** flag is set this is not required.
2446 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2447 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2449 sqlite3OsCloseFree(pMaster);
2450 sqlite3OsDelete(pVfs, zMaster, 0);
2451 sqlite3DbFree(db, zMaster);
2452 return rc;
2455 /* Sync all the db files involved in the transaction. The same call
2456 ** sets the master journal pointer in each individual journal. If
2457 ** an error occurs here, do not delete the master journal file.
2459 ** If the error occurs during the first call to
2460 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2461 ** master journal file will be orphaned. But we cannot delete it,
2462 ** in case the master journal file name was written into the journal
2463 ** file before the failure occurred.
2465 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2466 Btree *pBt = db->aDb[i].pBt;
2467 if( pBt ){
2468 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2471 sqlite3OsCloseFree(pMaster);
2472 assert( rc!=SQLITE_BUSY );
2473 if( rc!=SQLITE_OK ){
2474 sqlite3DbFree(db, zMaster);
2475 return rc;
2478 /* Delete the master journal file. This commits the transaction. After
2479 ** doing this the directory is synced again before any individual
2480 ** transaction files are deleted.
2482 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2483 sqlite3DbFree(db, zMaster);
2484 zMaster = 0;
2485 if( rc ){
2486 return rc;
2489 /* All files and directories have already been synced, so the following
2490 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2491 ** deleting or truncating journals. If something goes wrong while
2492 ** this is happening we don't really care. The integrity of the
2493 ** transaction is already guaranteed, but some stray 'cold' journals
2494 ** may be lying around. Returning an error code won't help matters.
2496 disable_simulated_io_errors();
2497 sqlite3BeginBenignMalloc();
2498 for(i=0; i<db->nDb; i++){
2499 Btree *pBt = db->aDb[i].pBt;
2500 if( pBt ){
2501 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2504 sqlite3EndBenignMalloc();
2505 enable_simulated_io_errors();
2507 sqlite3VtabCommit(db);
2509 #endif
2511 return rc;
2515 ** This routine checks that the sqlite3.nVdbeActive count variable
2516 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2517 ** currently active. An assertion fails if the two counts do not match.
2518 ** This is an internal self-check only - it is not an essential processing
2519 ** step.
2521 ** This is a no-op if NDEBUG is defined.
2523 #ifndef NDEBUG
2524 static void checkActiveVdbeCnt(sqlite3 *db){
2525 Vdbe *p;
2526 int cnt = 0;
2527 int nWrite = 0;
2528 int nRead = 0;
2529 p = db->pVdbe;
2530 while( p ){
2531 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2532 cnt++;
2533 if( p->readOnly==0 ) nWrite++;
2534 if( p->bIsReader ) nRead++;
2536 p = p->pNext;
2538 assert( cnt==db->nVdbeActive );
2539 assert( nWrite==db->nVdbeWrite );
2540 assert( nRead==db->nVdbeRead );
2542 #else
2543 #define checkActiveVdbeCnt(x)
2544 #endif
2547 ** If the Vdbe passed as the first argument opened a statement-transaction,
2548 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2549 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2550 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2551 ** statement transaction is committed.
2553 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2554 ** Otherwise SQLITE_OK.
2556 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2557 sqlite3 *const db = p->db;
2558 int rc = SQLITE_OK;
2559 int i;
2560 const int iSavepoint = p->iStatement-1;
2562 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2563 assert( db->nStatement>0 );
2564 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2566 for(i=0; i<db->nDb; i++){
2567 int rc2 = SQLITE_OK;
2568 Btree *pBt = db->aDb[i].pBt;
2569 if( pBt ){
2570 if( eOp==SAVEPOINT_ROLLBACK ){
2571 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2573 if( rc2==SQLITE_OK ){
2574 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2576 if( rc==SQLITE_OK ){
2577 rc = rc2;
2581 db->nStatement--;
2582 p->iStatement = 0;
2584 if( rc==SQLITE_OK ){
2585 if( eOp==SAVEPOINT_ROLLBACK ){
2586 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2588 if( rc==SQLITE_OK ){
2589 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2593 /* If the statement transaction is being rolled back, also restore the
2594 ** database handles deferred constraint counter to the value it had when
2595 ** the statement transaction was opened. */
2596 if( eOp==SAVEPOINT_ROLLBACK ){
2597 db->nDeferredCons = p->nStmtDefCons;
2598 db->nDeferredImmCons = p->nStmtDefImmCons;
2600 return rc;
2602 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2603 if( p->db->nStatement && p->iStatement ){
2604 return vdbeCloseStatement(p, eOp);
2606 return SQLITE_OK;
2611 ** This function is called when a transaction opened by the database
2612 ** handle associated with the VM passed as an argument is about to be
2613 ** committed. If there are outstanding deferred foreign key constraint
2614 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2616 ** If there are outstanding FK violations and this function returns
2617 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2618 ** and write an error message to it. Then return SQLITE_ERROR.
2620 #ifndef SQLITE_OMIT_FOREIGN_KEY
2621 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2622 sqlite3 *db = p->db;
2623 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2624 || (!deferred && p->nFkConstraint>0)
2626 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2627 p->errorAction = OE_Abort;
2628 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2629 return SQLITE_ERROR;
2631 return SQLITE_OK;
2633 #endif
2636 ** This routine is called the when a VDBE tries to halt. If the VDBE
2637 ** has made changes and is in autocommit mode, then commit those
2638 ** changes. If a rollback is needed, then do the rollback.
2640 ** This routine is the only way to move the state of a VM from
2641 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2642 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2644 ** Return an error code. If the commit could not complete because of
2645 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2646 ** means the close did not happen and needs to be repeated.
2648 int sqlite3VdbeHalt(Vdbe *p){
2649 int rc; /* Used to store transient return codes */
2650 sqlite3 *db = p->db;
2652 /* This function contains the logic that determines if a statement or
2653 ** transaction will be committed or rolled back as a result of the
2654 ** execution of this virtual machine.
2656 ** If any of the following errors occur:
2658 ** SQLITE_NOMEM
2659 ** SQLITE_IOERR
2660 ** SQLITE_FULL
2661 ** SQLITE_INTERRUPT
2663 ** Then the internal cache might have been left in an inconsistent
2664 ** state. We need to rollback the statement transaction, if there is
2665 ** one, or the complete transaction if there is no statement transaction.
2668 if( p->magic!=VDBE_MAGIC_RUN ){
2669 return SQLITE_OK;
2671 if( db->mallocFailed ){
2672 p->rc = SQLITE_NOMEM_BKPT;
2674 closeAllCursors(p);
2675 checkActiveVdbeCnt(db);
2677 /* No commit or rollback needed if the program never started or if the
2678 ** SQL statement does not read or write a database file. */
2679 if( p->pc>=0 && p->bIsReader ){
2680 int mrc; /* Primary error code from p->rc */
2681 int eStatementOp = 0;
2682 int isSpecialError; /* Set to true if a 'special' error */
2684 /* Lock all btrees used by the statement */
2685 sqlite3VdbeEnter(p);
2687 /* Check for one of the special errors */
2688 mrc = p->rc & 0xff;
2689 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2690 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2691 if( isSpecialError ){
2692 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2693 ** no rollback is necessary. Otherwise, at least a savepoint
2694 ** transaction must be rolled back to restore the database to a
2695 ** consistent state.
2697 ** Even if the statement is read-only, it is important to perform
2698 ** a statement or transaction rollback operation. If the error
2699 ** occurred while writing to the journal, sub-journal or database
2700 ** file as part of an effort to free up cache space (see function
2701 ** pagerStress() in pager.c), the rollback is required to restore
2702 ** the pager to a consistent state.
2704 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2705 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2706 eStatementOp = SAVEPOINT_ROLLBACK;
2707 }else{
2708 /* We are forced to roll back the active transaction. Before doing
2709 ** so, abort any other statements this handle currently has active.
2711 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2712 sqlite3CloseSavepoints(db);
2713 db->autoCommit = 1;
2714 p->nChange = 0;
2719 /* Check for immediate foreign key violations. */
2720 if( p->rc==SQLITE_OK ){
2721 sqlite3VdbeCheckFk(p, 0);
2724 /* If the auto-commit flag is set and this is the only active writer
2725 ** VM, then we do either a commit or rollback of the current transaction.
2727 ** Note: This block also runs if one of the special errors handled
2728 ** above has occurred.
2730 if( !sqlite3VtabInSync(db)
2731 && db->autoCommit
2732 && db->nVdbeWrite==(p->readOnly==0)
2734 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2735 rc = sqlite3VdbeCheckFk(p, 1);
2736 if( rc!=SQLITE_OK ){
2737 if( NEVER(p->readOnly) ){
2738 sqlite3VdbeLeave(p);
2739 return SQLITE_ERROR;
2741 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2742 }else{
2743 /* The auto-commit flag is true, the vdbe program was successful
2744 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2745 ** key constraints to hold up the transaction. This means a commit
2746 ** is required. */
2747 rc = vdbeCommit(db, p);
2749 if( rc==SQLITE_BUSY && p->readOnly ){
2750 sqlite3VdbeLeave(p);
2751 return SQLITE_BUSY;
2752 }else if( rc!=SQLITE_OK ){
2753 p->rc = rc;
2754 sqlite3RollbackAll(db, SQLITE_OK);
2755 p->nChange = 0;
2756 }else{
2757 db->nDeferredCons = 0;
2758 db->nDeferredImmCons = 0;
2759 db->flags &= ~SQLITE_DeferFKs;
2760 sqlite3CommitInternalChanges(db);
2762 }else{
2763 sqlite3RollbackAll(db, SQLITE_OK);
2764 p->nChange = 0;
2766 db->nStatement = 0;
2767 }else if( eStatementOp==0 ){
2768 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2769 eStatementOp = SAVEPOINT_RELEASE;
2770 }else if( p->errorAction==OE_Abort ){
2771 eStatementOp = SAVEPOINT_ROLLBACK;
2772 }else{
2773 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2774 sqlite3CloseSavepoints(db);
2775 db->autoCommit = 1;
2776 p->nChange = 0;
2780 /* If eStatementOp is non-zero, then a statement transaction needs to
2781 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2782 ** do so. If this operation returns an error, and the current statement
2783 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2784 ** current statement error code.
2786 if( eStatementOp ){
2787 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2788 if( rc ){
2789 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
2790 p->rc = rc;
2791 sqlite3DbFree(db, p->zErrMsg);
2792 p->zErrMsg = 0;
2794 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2795 sqlite3CloseSavepoints(db);
2796 db->autoCommit = 1;
2797 p->nChange = 0;
2801 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2802 ** has been rolled back, update the database connection change-counter.
2804 if( p->changeCntOn ){
2805 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2806 sqlite3VdbeSetChanges(db, p->nChange);
2807 }else{
2808 sqlite3VdbeSetChanges(db, 0);
2810 p->nChange = 0;
2813 /* Release the locks */
2814 sqlite3VdbeLeave(p);
2817 /* We have successfully halted and closed the VM. Record this fact. */
2818 if( p->pc>=0 ){
2819 db->nVdbeActive--;
2820 if( !p->readOnly ) db->nVdbeWrite--;
2821 if( p->bIsReader ) db->nVdbeRead--;
2822 assert( db->nVdbeActive>=db->nVdbeRead );
2823 assert( db->nVdbeRead>=db->nVdbeWrite );
2824 assert( db->nVdbeWrite>=0 );
2826 p->magic = VDBE_MAGIC_HALT;
2827 checkActiveVdbeCnt(db);
2828 if( db->mallocFailed ){
2829 p->rc = SQLITE_NOMEM_BKPT;
2832 /* If the auto-commit flag is set to true, then any locks that were held
2833 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2834 ** to invoke any required unlock-notify callbacks.
2836 if( db->autoCommit ){
2837 sqlite3ConnectionUnlocked(db);
2840 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
2841 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2846 ** Each VDBE holds the result of the most recent sqlite3_step() call
2847 ** in p->rc. This routine sets that result back to SQLITE_OK.
2849 void sqlite3VdbeResetStepResult(Vdbe *p){
2850 p->rc = SQLITE_OK;
2854 ** Copy the error code and error message belonging to the VDBE passed
2855 ** as the first argument to its database handle (so that they will be
2856 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2858 ** This function does not clear the VDBE error code or message, just
2859 ** copies them to the database handle.
2861 int sqlite3VdbeTransferError(Vdbe *p){
2862 sqlite3 *db = p->db;
2863 int rc = p->rc;
2864 if( p->zErrMsg ){
2865 db->bBenignMalloc++;
2866 sqlite3BeginBenignMalloc();
2867 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
2868 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2869 sqlite3EndBenignMalloc();
2870 db->bBenignMalloc--;
2871 }else if( db->pErr ){
2872 sqlite3ValueSetNull(db->pErr);
2874 db->errCode = rc;
2875 return rc;
2878 #ifdef SQLITE_ENABLE_SQLLOG
2880 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2881 ** invoke it.
2883 static void vdbeInvokeSqllog(Vdbe *v){
2884 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2885 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2886 assert( v->db->init.busy==0 );
2887 if( zExpanded ){
2888 sqlite3GlobalConfig.xSqllog(
2889 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2891 sqlite3DbFree(v->db, zExpanded);
2895 #else
2896 # define vdbeInvokeSqllog(x)
2897 #endif
2900 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2901 ** Write any error messages into *pzErrMsg. Return the result code.
2903 ** After this routine is run, the VDBE should be ready to be executed
2904 ** again.
2906 ** To look at it another way, this routine resets the state of the
2907 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2908 ** VDBE_MAGIC_INIT.
2910 int sqlite3VdbeReset(Vdbe *p){
2911 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2912 int i;
2913 #endif
2915 sqlite3 *db;
2916 db = p->db;
2918 /* If the VM did not run to completion or if it encountered an
2919 ** error, then it might not have been halted properly. So halt
2920 ** it now.
2922 sqlite3VdbeHalt(p);
2924 /* If the VDBE has be run even partially, then transfer the error code
2925 ** and error message from the VDBE into the main database structure. But
2926 ** if the VDBE has just been set to run but has not actually executed any
2927 ** instructions yet, leave the main database error information unchanged.
2929 if( p->pc>=0 ){
2930 vdbeInvokeSqllog(p);
2931 sqlite3VdbeTransferError(p);
2932 if( p->runOnlyOnce ) p->expired = 1;
2933 }else if( p->rc && p->expired ){
2934 /* The expired flag was set on the VDBE before the first call
2935 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2936 ** called), set the database error in this case as well.
2938 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
2941 /* Reset register contents and reclaim error message memory.
2943 #ifdef SQLITE_DEBUG
2944 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2945 ** Vdbe.aMem[] arrays have already been cleaned up. */
2946 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2947 if( p->aMem ){
2948 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
2950 #endif
2951 sqlite3DbFree(db, p->zErrMsg);
2952 p->zErrMsg = 0;
2953 p->pResultSet = 0;
2955 /* Save profiling information from this VDBE run.
2957 #ifdef VDBE_PROFILE
2959 FILE *out = fopen("vdbe_profile.out", "a");
2960 if( out ){
2961 fprintf(out, "---- ");
2962 for(i=0; i<p->nOp; i++){
2963 fprintf(out, "%02x", p->aOp[i].opcode);
2965 fprintf(out, "\n");
2966 if( p->zSql ){
2967 char c, pc = 0;
2968 fprintf(out, "-- ");
2969 for(i=0; (c = p->zSql[i])!=0; i++){
2970 if( pc=='\n' ) fprintf(out, "-- ");
2971 putc(c, out);
2972 pc = c;
2974 if( pc!='\n' ) fprintf(out, "\n");
2976 for(i=0; i<p->nOp; i++){
2977 char zHdr[100];
2978 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
2979 p->aOp[i].cnt,
2980 p->aOp[i].cycles,
2981 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2983 fprintf(out, "%s", zHdr);
2984 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2986 fclose(out);
2989 #endif
2990 p->magic = VDBE_MAGIC_RESET;
2991 return p->rc & db->errMask;
2995 ** Clean up and delete a VDBE after execution. Return an integer which is
2996 ** the result code. Write any error message text into *pzErrMsg.
2998 int sqlite3VdbeFinalize(Vdbe *p){
2999 int rc = SQLITE_OK;
3000 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3001 rc = sqlite3VdbeReset(p);
3002 assert( (rc & p->db->errMask)==rc );
3004 sqlite3VdbeDelete(p);
3005 return rc;
3009 ** If parameter iOp is less than zero, then invoke the destructor for
3010 ** all auxiliary data pointers currently cached by the VM passed as
3011 ** the first argument.
3013 ** Or, if iOp is greater than or equal to zero, then the destructor is
3014 ** only invoked for those auxiliary data pointers created by the user
3015 ** function invoked by the OP_Function opcode at instruction iOp of
3016 ** VM pVdbe, and only then if:
3018 ** * the associated function parameter is the 32nd or later (counting
3019 ** from left to right), or
3021 ** * the corresponding bit in argument mask is clear (where the first
3022 ** function parameter corresponds to bit 0 etc.).
3024 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3025 while( *pp ){
3026 AuxData *pAux = *pp;
3027 if( (iOp<0)
3028 || (pAux->iAuxOp==iOp
3029 && pAux->iAuxArg>=0
3030 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3032 testcase( pAux->iAuxArg==31 );
3033 if( pAux->xDeleteAux ){
3034 pAux->xDeleteAux(pAux->pAux);
3036 *pp = pAux->pNextAux;
3037 sqlite3DbFree(db, pAux);
3038 }else{
3039 pp= &pAux->pNextAux;
3045 ** Free all memory associated with the Vdbe passed as the second argument,
3046 ** except for object itself, which is preserved.
3048 ** The difference between this function and sqlite3VdbeDelete() is that
3049 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3050 ** the database connection and frees the object itself.
3052 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3053 SubProgram *pSub, *pNext;
3054 assert( p->db==0 || p->db==db );
3055 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3056 for(pSub=p->pProgram; pSub; pSub=pNext){
3057 pNext = pSub->pNext;
3058 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3059 sqlite3DbFree(db, pSub);
3061 if( p->magic!=VDBE_MAGIC_INIT ){
3062 releaseMemArray(p->aVar, p->nVar);
3063 sqlite3DbFree(db, p->pVList);
3064 sqlite3DbFree(db, p->pFree);
3066 vdbeFreeOpArray(db, p->aOp, p->nOp);
3067 sqlite3DbFree(db, p->aColName);
3068 sqlite3DbFree(db, p->zSql);
3069 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3071 int i;
3072 for(i=0; i<p->nScan; i++){
3073 sqlite3DbFree(db, p->aScan[i].zName);
3075 sqlite3DbFree(db, p->aScan);
3077 #endif
3081 ** Delete an entire VDBE.
3083 void sqlite3VdbeDelete(Vdbe *p){
3084 sqlite3 *db;
3086 assert( p!=0 );
3087 db = p->db;
3088 assert( sqlite3_mutex_held(db->mutex) );
3089 sqlite3VdbeClearObject(db, p);
3090 if( p->pPrev ){
3091 p->pPrev->pNext = p->pNext;
3092 }else{
3093 assert( db->pVdbe==p );
3094 db->pVdbe = p->pNext;
3096 if( p->pNext ){
3097 p->pNext->pPrev = p->pPrev;
3099 p->magic = VDBE_MAGIC_DEAD;
3100 p->db = 0;
3101 sqlite3DbFreeNN(db, p);
3105 ** The cursor "p" has a pending seek operation that has not yet been
3106 ** carried out. Seek the cursor now. If an error occurs, return
3107 ** the appropriate error code.
3109 static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3110 int res, rc;
3111 #ifdef SQLITE_TEST
3112 extern int sqlite3_search_count;
3113 #endif
3114 assert( p->deferredMoveto );
3115 assert( p->isTable );
3116 assert( p->eCurType==CURTYPE_BTREE );
3117 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3118 if( rc ) return rc;
3119 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3120 #ifdef SQLITE_TEST
3121 sqlite3_search_count++;
3122 #endif
3123 p->deferredMoveto = 0;
3124 p->cacheStatus = CACHE_STALE;
3125 return SQLITE_OK;
3129 ** Something has moved cursor "p" out of place. Maybe the row it was
3130 ** pointed to was deleted out from under it. Or maybe the btree was
3131 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3132 ** is supposed to be pointing. If the row was deleted out from under the
3133 ** cursor, set the cursor to point to a NULL row.
3135 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3136 int isDifferentRow, rc;
3137 assert( p->eCurType==CURTYPE_BTREE );
3138 assert( p->uc.pCursor!=0 );
3139 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3140 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3141 p->cacheStatus = CACHE_STALE;
3142 if( isDifferentRow ) p->nullRow = 1;
3143 return rc;
3147 ** Check to ensure that the cursor is valid. Restore the cursor
3148 ** if need be. Return any I/O error from the restore operation.
3150 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3151 assert( p->eCurType==CURTYPE_BTREE );
3152 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3153 return handleMovedCursor(p);
3155 return SQLITE_OK;
3159 ** Make sure the cursor p is ready to read or write the row to which it
3160 ** was last positioned. Return an error code if an OOM fault or I/O error
3161 ** prevents us from positioning the cursor to its correct position.
3163 ** If a MoveTo operation is pending on the given cursor, then do that
3164 ** MoveTo now. If no move is pending, check to see if the row has been
3165 ** deleted out from under the cursor and if it has, mark the row as
3166 ** a NULL row.
3168 ** If the cursor is already pointing to the correct row and that row has
3169 ** not been deleted out from under the cursor, then this routine is a no-op.
3171 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3172 VdbeCursor *p = *pp;
3173 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3174 if( p->deferredMoveto ){
3175 int iMap;
3176 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
3177 *pp = p->pAltCursor;
3178 *piCol = iMap - 1;
3179 return SQLITE_OK;
3181 return handleDeferredMoveto(p);
3183 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3184 return handleMovedCursor(p);
3186 return SQLITE_OK;
3190 ** The following functions:
3192 ** sqlite3VdbeSerialType()
3193 ** sqlite3VdbeSerialTypeLen()
3194 ** sqlite3VdbeSerialLen()
3195 ** sqlite3VdbeSerialPut()
3196 ** sqlite3VdbeSerialGet()
3198 ** encapsulate the code that serializes values for storage in SQLite
3199 ** data and index records. Each serialized value consists of a
3200 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3201 ** integer, stored as a varint.
3203 ** In an SQLite index record, the serial type is stored directly before
3204 ** the blob of data that it corresponds to. In a table record, all serial
3205 ** types are stored at the start of the record, and the blobs of data at
3206 ** the end. Hence these functions allow the caller to handle the
3207 ** serial-type and data blob separately.
3209 ** The following table describes the various storage classes for data:
3211 ** serial type bytes of data type
3212 ** -------------- --------------- ---------------
3213 ** 0 0 NULL
3214 ** 1 1 signed integer
3215 ** 2 2 signed integer
3216 ** 3 3 signed integer
3217 ** 4 4 signed integer
3218 ** 5 6 signed integer
3219 ** 6 8 signed integer
3220 ** 7 8 IEEE float
3221 ** 8 0 Integer constant 0
3222 ** 9 0 Integer constant 1
3223 ** 10,11 reserved for expansion
3224 ** N>=12 and even (N-12)/2 BLOB
3225 ** N>=13 and odd (N-13)/2 text
3227 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3228 ** of SQLite will not understand those serial types.
3232 ** Return the serial-type for the value stored in pMem.
3234 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3235 int flags = pMem->flags;
3236 u32 n;
3238 assert( pLen!=0 );
3239 if( flags&MEM_Null ){
3240 *pLen = 0;
3241 return 0;
3243 if( flags&MEM_Int ){
3244 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3245 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3246 i64 i = pMem->u.i;
3247 u64 u;
3248 if( i<0 ){
3249 u = ~i;
3250 }else{
3251 u = i;
3253 if( u<=127 ){
3254 if( (i&1)==i && file_format>=4 ){
3255 *pLen = 0;
3256 return 8+(u32)u;
3257 }else{
3258 *pLen = 1;
3259 return 1;
3262 if( u<=32767 ){ *pLen = 2; return 2; }
3263 if( u<=8388607 ){ *pLen = 3; return 3; }
3264 if( u<=2147483647 ){ *pLen = 4; return 4; }
3265 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3266 *pLen = 8;
3267 return 6;
3269 if( flags&MEM_Real ){
3270 *pLen = 8;
3271 return 7;
3273 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3274 assert( pMem->n>=0 );
3275 n = (u32)pMem->n;
3276 if( flags & MEM_Zero ){
3277 n += pMem->u.nZero;
3279 *pLen = n;
3280 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3284 ** The sizes for serial types less than 128
3286 static const u8 sqlite3SmallTypeSizes[] = {
3287 /* 0 1 2 3 4 5 6 7 8 9 */
3288 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3289 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3290 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3291 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3292 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3293 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3294 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3295 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3296 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3297 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3298 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3299 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3300 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3304 ** Return the length of the data corresponding to the supplied serial-type.
3306 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3307 if( serial_type>=128 ){
3308 return (serial_type-12)/2;
3309 }else{
3310 assert( serial_type<12
3311 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3312 return sqlite3SmallTypeSizes[serial_type];
3315 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3316 assert( serial_type<128 );
3317 return sqlite3SmallTypeSizes[serial_type];
3321 ** If we are on an architecture with mixed-endian floating
3322 ** points (ex: ARM7) then swap the lower 4 bytes with the
3323 ** upper 4 bytes. Return the result.
3325 ** For most architectures, this is a no-op.
3327 ** (later): It is reported to me that the mixed-endian problem
3328 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3329 ** that early versions of GCC stored the two words of a 64-bit
3330 ** float in the wrong order. And that error has been propagated
3331 ** ever since. The blame is not necessarily with GCC, though.
3332 ** GCC might have just copying the problem from a prior compiler.
3333 ** I am also told that newer versions of GCC that follow a different
3334 ** ABI get the byte order right.
3336 ** Developers using SQLite on an ARM7 should compile and run their
3337 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3338 ** enabled, some asserts below will ensure that the byte order of
3339 ** floating point values is correct.
3341 ** (2007-08-30) Frank van Vugt has studied this problem closely
3342 ** and has send his findings to the SQLite developers. Frank
3343 ** writes that some Linux kernels offer floating point hardware
3344 ** emulation that uses only 32-bit mantissas instead of a full
3345 ** 48-bits as required by the IEEE standard. (This is the
3346 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3347 ** byte swapping becomes very complicated. To avoid problems,
3348 ** the necessary byte swapping is carried out using a 64-bit integer
3349 ** rather than a 64-bit float. Frank assures us that the code here
3350 ** works for him. We, the developers, have no way to independently
3351 ** verify this, but Frank seems to know what he is talking about
3352 ** so we trust him.
3354 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3355 static u64 floatSwap(u64 in){
3356 union {
3357 u64 r;
3358 u32 i[2];
3359 } u;
3360 u32 t;
3362 u.r = in;
3363 t = u.i[0];
3364 u.i[0] = u.i[1];
3365 u.i[1] = t;
3366 return u.r;
3368 # define swapMixedEndianFloat(X) X = floatSwap(X)
3369 #else
3370 # define swapMixedEndianFloat(X)
3371 #endif
3374 ** Write the serialized data blob for the value stored in pMem into
3375 ** buf. It is assumed that the caller has allocated sufficient space.
3376 ** Return the number of bytes written.
3378 ** nBuf is the amount of space left in buf[]. The caller is responsible
3379 ** for allocating enough space to buf[] to hold the entire field, exclusive
3380 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3382 ** Return the number of bytes actually written into buf[]. The number
3383 ** of bytes in the zero-filled tail is included in the return value only
3384 ** if those bytes were zeroed in buf[].
3386 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3387 u32 len;
3389 /* Integer and Real */
3390 if( serial_type<=7 && serial_type>0 ){
3391 u64 v;
3392 u32 i;
3393 if( serial_type==7 ){
3394 assert( sizeof(v)==sizeof(pMem->u.r) );
3395 memcpy(&v, &pMem->u.r, sizeof(v));
3396 swapMixedEndianFloat(v);
3397 }else{
3398 v = pMem->u.i;
3400 len = i = sqlite3SmallTypeSizes[serial_type];
3401 assert( i>0 );
3403 buf[--i] = (u8)(v&0xFF);
3404 v >>= 8;
3405 }while( i );
3406 return len;
3409 /* String or blob */
3410 if( serial_type>=12 ){
3411 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3412 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3413 len = pMem->n;
3414 if( len>0 ) memcpy(buf, pMem->z, len);
3415 return len;
3418 /* NULL or constants 0 or 1 */
3419 return 0;
3422 /* Input "x" is a sequence of unsigned characters that represent a
3423 ** big-endian integer. Return the equivalent native integer
3425 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3426 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3427 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3428 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3429 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3432 ** Deserialize the data blob pointed to by buf as serial type serial_type
3433 ** and store the result in pMem. Return the number of bytes read.
3435 ** This function is implemented as two separate routines for performance.
3436 ** The few cases that require local variables are broken out into a separate
3437 ** routine so that in most cases the overhead of moving the stack pointer
3438 ** is avoided.
3440 static u32 SQLITE_NOINLINE serialGet(
3441 const unsigned char *buf, /* Buffer to deserialize from */
3442 u32 serial_type, /* Serial type to deserialize */
3443 Mem *pMem /* Memory cell to write value into */
3445 u64 x = FOUR_BYTE_UINT(buf);
3446 u32 y = FOUR_BYTE_UINT(buf+4);
3447 x = (x<<32) + y;
3448 if( serial_type==6 ){
3449 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3450 ** twos-complement integer. */
3451 pMem->u.i = *(i64*)&x;
3452 pMem->flags = MEM_Int;
3453 testcase( pMem->u.i<0 );
3454 }else{
3455 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3456 ** floating point number. */
3457 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3458 /* Verify that integers and floating point values use the same
3459 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3460 ** defined that 64-bit floating point values really are mixed
3461 ** endian.
3463 static const u64 t1 = ((u64)0x3ff00000)<<32;
3464 static const double r1 = 1.0;
3465 u64 t2 = t1;
3466 swapMixedEndianFloat(t2);
3467 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3468 #endif
3469 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3470 swapMixedEndianFloat(x);
3471 memcpy(&pMem->u.r, &x, sizeof(x));
3472 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
3474 return 8;
3476 u32 sqlite3VdbeSerialGet(
3477 const unsigned char *buf, /* Buffer to deserialize from */
3478 u32 serial_type, /* Serial type to deserialize */
3479 Mem *pMem /* Memory cell to write value into */
3481 switch( serial_type ){
3482 case 10: { /* Internal use only: NULL with virtual table
3483 ** UPDATE no-change flag set */
3484 pMem->flags = MEM_Null|MEM_Zero;
3485 pMem->n = 0;
3486 pMem->u.nZero = 0;
3487 break;
3489 case 11: /* Reserved for future use */
3490 case 0: { /* Null */
3491 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3492 pMem->flags = MEM_Null;
3493 break;
3495 case 1: {
3496 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3497 ** integer. */
3498 pMem->u.i = ONE_BYTE_INT(buf);
3499 pMem->flags = MEM_Int;
3500 testcase( pMem->u.i<0 );
3501 return 1;
3503 case 2: { /* 2-byte signed integer */
3504 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3505 ** twos-complement integer. */
3506 pMem->u.i = TWO_BYTE_INT(buf);
3507 pMem->flags = MEM_Int;
3508 testcase( pMem->u.i<0 );
3509 return 2;
3511 case 3: { /* 3-byte signed integer */
3512 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3513 ** twos-complement integer. */
3514 pMem->u.i = THREE_BYTE_INT(buf);
3515 pMem->flags = MEM_Int;
3516 testcase( pMem->u.i<0 );
3517 return 3;
3519 case 4: { /* 4-byte signed integer */
3520 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3521 ** twos-complement integer. */
3522 pMem->u.i = FOUR_BYTE_INT(buf);
3523 #ifdef __HP_cc
3524 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3525 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3526 #endif
3527 pMem->flags = MEM_Int;
3528 testcase( pMem->u.i<0 );
3529 return 4;
3531 case 5: { /* 6-byte signed integer */
3532 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3533 ** twos-complement integer. */
3534 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3535 pMem->flags = MEM_Int;
3536 testcase( pMem->u.i<0 );
3537 return 6;
3539 case 6: /* 8-byte signed integer */
3540 case 7: { /* IEEE floating point */
3541 /* These use local variables, so do them in a separate routine
3542 ** to avoid having to move the frame pointer in the common case */
3543 return serialGet(buf,serial_type,pMem);
3545 case 8: /* Integer 0 */
3546 case 9: { /* Integer 1 */
3547 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3548 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3549 pMem->u.i = serial_type-8;
3550 pMem->flags = MEM_Int;
3551 return 0;
3553 default: {
3554 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3555 ** length.
3556 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3557 ** (N-13)/2 bytes in length. */
3558 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3559 pMem->z = (char *)buf;
3560 pMem->n = (serial_type-12)/2;
3561 pMem->flags = aFlag[serial_type&1];
3562 return pMem->n;
3565 return 0;
3568 ** This routine is used to allocate sufficient space for an UnpackedRecord
3569 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3570 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3572 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3573 ** the unaligned buffer passed via the second and third arguments (presumably
3574 ** stack space). If the former, then *ppFree is set to a pointer that should
3575 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3576 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3577 ** before returning.
3579 ** If an OOM error occurs, NULL is returned.
3581 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3582 KeyInfo *pKeyInfo /* Description of the record */
3584 UnpackedRecord *p; /* Unpacked record to return */
3585 int nByte; /* Number of bytes required for *p */
3586 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3587 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3588 if( !p ) return 0;
3589 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3590 assert( pKeyInfo->aSortOrder!=0 );
3591 p->pKeyInfo = pKeyInfo;
3592 p->nField = pKeyInfo->nKeyField + 1;
3593 return p;
3597 ** Given the nKey-byte encoding of a record in pKey[], populate the
3598 ** UnpackedRecord structure indicated by the fourth argument with the
3599 ** contents of the decoded record.
3601 void sqlite3VdbeRecordUnpack(
3602 KeyInfo *pKeyInfo, /* Information about the record format */
3603 int nKey, /* Size of the binary record */
3604 const void *pKey, /* The binary record */
3605 UnpackedRecord *p /* Populate this structure before returning. */
3607 const unsigned char *aKey = (const unsigned char *)pKey;
3608 int d;
3609 u32 idx; /* Offset in aKey[] to read from */
3610 u16 u; /* Unsigned loop counter */
3611 u32 szHdr;
3612 Mem *pMem = p->aMem;
3614 p->default_rc = 0;
3615 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
3616 idx = getVarint32(aKey, szHdr);
3617 d = szHdr;
3618 u = 0;
3619 while( idx<szHdr && d<=nKey ){
3620 u32 serial_type;
3622 idx += getVarint32(&aKey[idx], serial_type);
3623 pMem->enc = pKeyInfo->enc;
3624 pMem->db = pKeyInfo->db;
3625 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
3626 pMem->szMalloc = 0;
3627 pMem->z = 0;
3628 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
3629 pMem++;
3630 if( (++u)>=p->nField ) break;
3632 assert( u<=pKeyInfo->nKeyField + 1 );
3633 p->nField = u;
3636 #ifdef SQLITE_DEBUG
3638 ** This function compares two index or table record keys in the same way
3639 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3640 ** this function deserializes and compares values using the
3641 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3642 ** in assert() statements to ensure that the optimized code in
3643 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
3645 ** Return true if the result of comparison is equivalent to desiredResult.
3646 ** Return false if there is a disagreement.
3648 static int vdbeRecordCompareDebug(
3649 int nKey1, const void *pKey1, /* Left key */
3650 const UnpackedRecord *pPKey2, /* Right key */
3651 int desiredResult /* Correct answer */
3653 u32 d1; /* Offset into aKey[] of next data element */
3654 u32 idx1; /* Offset into aKey[] of next header element */
3655 u32 szHdr1; /* Number of bytes in header */
3656 int i = 0;
3657 int rc = 0;
3658 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3659 KeyInfo *pKeyInfo;
3660 Mem mem1;
3662 pKeyInfo = pPKey2->pKeyInfo;
3663 if( pKeyInfo->db==0 ) return 1;
3664 mem1.enc = pKeyInfo->enc;
3665 mem1.db = pKeyInfo->db;
3666 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
3667 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
3669 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3670 ** We could initialize it, as shown here, to silence those complaints.
3671 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3672 ** the unnecessary initialization has a measurable negative performance
3673 ** impact, since this routine is a very high runner. And so, we choose
3674 ** to ignore the compiler warnings and leave this variable uninitialized.
3676 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3678 idx1 = getVarint32(aKey1, szHdr1);
3679 if( szHdr1>98307 ) return SQLITE_CORRUPT;
3680 d1 = szHdr1;
3681 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
3682 assert( pKeyInfo->aSortOrder!=0 );
3683 assert( pKeyInfo->nKeyField>0 );
3684 assert( idx1<=szHdr1 || CORRUPT_DB );
3686 u32 serial_type1;
3688 /* Read the serial types for the next element in each key. */
3689 idx1 += getVarint32( aKey1+idx1, serial_type1 );
3691 /* Verify that there is enough key space remaining to avoid
3692 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3693 ** always be greater than or equal to the amount of required key space.
3694 ** Use that approximation to avoid the more expensive call to
3695 ** sqlite3VdbeSerialTypeLen() in the common case.
3697 if( d1+serial_type1+2>(u32)nKey1
3698 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3700 break;
3703 /* Extract the values to be compared.
3705 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3707 /* Do the comparison
3709 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3710 if( rc!=0 ){
3711 assert( mem1.szMalloc==0 ); /* See comment below */
3712 if( pKeyInfo->aSortOrder[i] ){
3713 rc = -rc; /* Invert the result for DESC sort order. */
3715 goto debugCompareEnd;
3717 i++;
3718 }while( idx1<szHdr1 && i<pPKey2->nField );
3720 /* No memory allocation is ever used on mem1. Prove this using
3721 ** the following assert(). If the assert() fails, it indicates a
3722 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3724 assert( mem1.szMalloc==0 );
3726 /* rc==0 here means that one of the keys ran out of fields and
3727 ** all the fields up to that point were equal. Return the default_rc
3728 ** value. */
3729 rc = pPKey2->default_rc;
3731 debugCompareEnd:
3732 if( desiredResult==0 && rc==0 ) return 1;
3733 if( desiredResult<0 && rc<0 ) return 1;
3734 if( desiredResult>0 && rc>0 ) return 1;
3735 if( CORRUPT_DB ) return 1;
3736 if( pKeyInfo->db->mallocFailed ) return 1;
3737 return 0;
3739 #endif
3741 #ifdef SQLITE_DEBUG
3743 ** Count the number of fields (a.k.a. columns) in the record given by
3744 ** pKey,nKey. The verify that this count is less than or equal to the
3745 ** limit given by pKeyInfo->nAllField.
3747 ** If this constraint is not satisfied, it means that the high-speed
3748 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3749 ** not work correctly. If this assert() ever fires, it probably means
3750 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
3751 ** incorrectly.
3753 static void vdbeAssertFieldCountWithinLimits(
3754 int nKey, const void *pKey, /* The record to verify */
3755 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3757 int nField = 0;
3758 u32 szHdr;
3759 u32 idx;
3760 u32 notUsed;
3761 const unsigned char *aKey = (const unsigned char*)pKey;
3763 if( CORRUPT_DB ) return;
3764 idx = getVarint32(aKey, szHdr);
3765 assert( nKey>=0 );
3766 assert( szHdr<=(u32)nKey );
3767 while( idx<szHdr ){
3768 idx += getVarint32(aKey+idx, notUsed);
3769 nField++;
3771 assert( nField <= pKeyInfo->nAllField );
3773 #else
3774 # define vdbeAssertFieldCountWithinLimits(A,B,C)
3775 #endif
3778 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
3779 ** using the collation sequence pColl. As usual, return a negative , zero
3780 ** or positive value if *pMem1 is less than, equal to or greater than
3781 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3783 static int vdbeCompareMemString(
3784 const Mem *pMem1,
3785 const Mem *pMem2,
3786 const CollSeq *pColl,
3787 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
3789 if( pMem1->enc==pColl->enc ){
3790 /* The strings are already in the correct encoding. Call the
3791 ** comparison function directly */
3792 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3793 }else{
3794 int rc;
3795 const void *v1, *v2;
3796 Mem c1;
3797 Mem c2;
3798 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3799 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
3800 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3801 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3802 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3803 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3804 if( (v1==0 || v2==0) ){
3805 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
3806 rc = 0;
3807 }else{
3808 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
3810 sqlite3VdbeMemRelease(&c1);
3811 sqlite3VdbeMemRelease(&c2);
3812 return rc;
3817 ** The input pBlob is guaranteed to be a Blob that is not marked
3818 ** with MEM_Zero. Return true if it could be a zero-blob.
3820 static int isAllZero(const char *z, int n){
3821 int i;
3822 for(i=0; i<n; i++){
3823 if( z[i] ) return 0;
3825 return 1;
3829 ** Compare two blobs. Return negative, zero, or positive if the first
3830 ** is less than, equal to, or greater than the second, respectively.
3831 ** If one blob is a prefix of the other, then the shorter is the lessor.
3833 static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3834 int c;
3835 int n1 = pB1->n;
3836 int n2 = pB2->n;
3838 /* It is possible to have a Blob value that has some non-zero content
3839 ** followed by zero content. But that only comes up for Blobs formed
3840 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3841 ** sqlite3MemCompare(). */
3842 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3843 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3845 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3846 if( pB1->flags & pB2->flags & MEM_Zero ){
3847 return pB1->u.nZero - pB2->u.nZero;
3848 }else if( pB1->flags & MEM_Zero ){
3849 if( !isAllZero(pB2->z, pB2->n) ) return -1;
3850 return pB1->u.nZero - n2;
3851 }else{
3852 if( !isAllZero(pB1->z, pB1->n) ) return +1;
3853 return n1 - pB2->u.nZero;
3856 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
3857 if( c ) return c;
3858 return n1 - n2;
3862 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3863 ** number. Return negative, zero, or positive if the first (i64) is less than,
3864 ** equal to, or greater than the second (double).
3866 static int sqlite3IntFloatCompare(i64 i, double r){
3867 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3868 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3869 if( x<r ) return -1;
3870 if( x>r ) return +1;
3871 return 0;
3872 }else{
3873 i64 y;
3874 double s;
3875 if( r<-9223372036854775808.0 ) return +1;
3876 if( r>9223372036854775807.0 ) return -1;
3877 y = (i64)r;
3878 if( i<y ) return -1;
3879 if( i>y ){
3880 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3881 return +1;
3883 s = (double)i;
3884 if( s<r ) return -1;
3885 if( s>r ) return +1;
3886 return 0;
3891 ** Compare the values contained by the two memory cells, returning
3892 ** negative, zero or positive if pMem1 is less than, equal to, or greater
3893 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3894 ** and reals) sorted numerically, followed by text ordered by the collating
3895 ** sequence pColl and finally blob's ordered by memcmp().
3897 ** Two NULL values are considered equal by this function.
3899 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
3900 int f1, f2;
3901 int combined_flags;
3903 f1 = pMem1->flags;
3904 f2 = pMem2->flags;
3905 combined_flags = f1|f2;
3906 assert( (combined_flags & MEM_RowSet)==0 );
3908 /* If one value is NULL, it is less than the other. If both values
3909 ** are NULL, return 0.
3911 if( combined_flags&MEM_Null ){
3912 return (f2&MEM_Null) - (f1&MEM_Null);
3915 /* At least one of the two values is a number
3917 if( combined_flags&(MEM_Int|MEM_Real) ){
3918 if( (f1 & f2 & MEM_Int)!=0 ){
3919 if( pMem1->u.i < pMem2->u.i ) return -1;
3920 if( pMem1->u.i > pMem2->u.i ) return +1;
3921 return 0;
3923 if( (f1 & f2 & MEM_Real)!=0 ){
3924 if( pMem1->u.r < pMem2->u.r ) return -1;
3925 if( pMem1->u.r > pMem2->u.r ) return +1;
3926 return 0;
3928 if( (f1&MEM_Int)!=0 ){
3929 if( (f2&MEM_Real)!=0 ){
3930 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3931 }else{
3932 return -1;
3935 if( (f1&MEM_Real)!=0 ){
3936 if( (f2&MEM_Int)!=0 ){
3937 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3938 }else{
3939 return -1;
3942 return +1;
3945 /* If one value is a string and the other is a blob, the string is less.
3946 ** If both are strings, compare using the collating functions.
3948 if( combined_flags&MEM_Str ){
3949 if( (f1 & MEM_Str)==0 ){
3950 return 1;
3952 if( (f2 & MEM_Str)==0 ){
3953 return -1;
3956 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
3957 assert( pMem1->enc==SQLITE_UTF8 ||
3958 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3960 /* The collation sequence must be defined at this point, even if
3961 ** the user deletes the collation sequence after the vdbe program is
3962 ** compiled (this was not always the case).
3964 assert( !pColl || pColl->xCmp );
3966 if( pColl ){
3967 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
3969 /* If a NULL pointer was passed as the collate function, fall through
3970 ** to the blob case and use memcmp(). */
3973 /* Both values must be blobs. Compare using memcmp(). */
3974 return sqlite3BlobCompare(pMem1, pMem2);
3979 ** The first argument passed to this function is a serial-type that
3980 ** corresponds to an integer - all values between 1 and 9 inclusive
3981 ** except 7. The second points to a buffer containing an integer value
3982 ** serialized according to serial_type. This function deserializes
3983 ** and returns the value.
3985 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
3986 u32 y;
3987 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
3988 switch( serial_type ){
3989 case 0:
3990 case 1:
3991 testcase( aKey[0]&0x80 );
3992 return ONE_BYTE_INT(aKey);
3993 case 2:
3994 testcase( aKey[0]&0x80 );
3995 return TWO_BYTE_INT(aKey);
3996 case 3:
3997 testcase( aKey[0]&0x80 );
3998 return THREE_BYTE_INT(aKey);
3999 case 4: {
4000 testcase( aKey[0]&0x80 );
4001 y = FOUR_BYTE_UINT(aKey);
4002 return (i64)*(int*)&y;
4004 case 5: {
4005 testcase( aKey[0]&0x80 );
4006 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4008 case 6: {
4009 u64 x = FOUR_BYTE_UINT(aKey);
4010 testcase( aKey[0]&0x80 );
4011 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4012 return (i64)*(i64*)&x;
4016 return (serial_type - 8);
4020 ** This function compares the two table rows or index records
4021 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4022 ** or positive integer if key1 is less than, equal to or
4023 ** greater than key2. The {nKey1, pKey1} key must be a blob
4024 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4025 ** key must be a parsed key such as obtained from
4026 ** sqlite3VdbeParseRecord.
4028 ** If argument bSkip is non-zero, it is assumed that the caller has already
4029 ** determined that the first fields of the keys are equal.
4031 ** Key1 and Key2 do not have to contain the same number of fields. If all
4032 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4033 ** returned.
4035 ** If database corruption is discovered, set pPKey2->errCode to
4036 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4037 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4038 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4040 int sqlite3VdbeRecordCompareWithSkip(
4041 int nKey1, const void *pKey1, /* Left key */
4042 UnpackedRecord *pPKey2, /* Right key */
4043 int bSkip /* If true, skip the first field */
4045 u32 d1; /* Offset into aKey[] of next data element */
4046 int i; /* Index of next field to compare */
4047 u32 szHdr1; /* Size of record header in bytes */
4048 u32 idx1; /* Offset of first type in header */
4049 int rc = 0; /* Return value */
4050 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4051 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
4052 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4053 Mem mem1;
4055 /* If bSkip is true, then the caller has already determined that the first
4056 ** two elements in the keys are equal. Fix the various stack variables so
4057 ** that this routine begins comparing at the second field. */
4058 if( bSkip ){
4059 u32 s1;
4060 idx1 = 1 + getVarint32(&aKey1[1], s1);
4061 szHdr1 = aKey1[0];
4062 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4063 i = 1;
4064 pRhs++;
4065 }else{
4066 idx1 = getVarint32(aKey1, szHdr1);
4067 d1 = szHdr1;
4068 if( d1>(unsigned)nKey1 ){
4069 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4070 return 0; /* Corruption */
4072 i = 0;
4075 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4076 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4077 || CORRUPT_DB );
4078 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4079 assert( pPKey2->pKeyInfo->nKeyField>0 );
4080 assert( idx1<=szHdr1 || CORRUPT_DB );
4082 u32 serial_type;
4084 /* RHS is an integer */
4085 if( pRhs->flags & MEM_Int ){
4086 serial_type = aKey1[idx1];
4087 testcase( serial_type==12 );
4088 if( serial_type>=10 ){
4089 rc = +1;
4090 }else if( serial_type==0 ){
4091 rc = -1;
4092 }else if( serial_type==7 ){
4093 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4094 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4095 }else{
4096 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4097 i64 rhs = pRhs->u.i;
4098 if( lhs<rhs ){
4099 rc = -1;
4100 }else if( lhs>rhs ){
4101 rc = +1;
4106 /* RHS is real */
4107 else if( pRhs->flags & MEM_Real ){
4108 serial_type = aKey1[idx1];
4109 if( serial_type>=10 ){
4110 /* Serial types 12 or greater are strings and blobs (greater than
4111 ** numbers). Types 10 and 11 are currently "reserved for future
4112 ** use", so it doesn't really matter what the results of comparing
4113 ** them to numberic values are. */
4114 rc = +1;
4115 }else if( serial_type==0 ){
4116 rc = -1;
4117 }else{
4118 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4119 if( serial_type==7 ){
4120 if( mem1.u.r<pRhs->u.r ){
4121 rc = -1;
4122 }else if( mem1.u.r>pRhs->u.r ){
4123 rc = +1;
4125 }else{
4126 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4131 /* RHS is a string */
4132 else if( pRhs->flags & MEM_Str ){
4133 getVarint32(&aKey1[idx1], serial_type);
4134 testcase( serial_type==12 );
4135 if( serial_type<12 ){
4136 rc = -1;
4137 }else if( !(serial_type & 0x01) ){
4138 rc = +1;
4139 }else{
4140 mem1.n = (serial_type - 12) / 2;
4141 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4142 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4143 if( (d1+mem1.n) > (unsigned)nKey1 ){
4144 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4145 return 0; /* Corruption */
4146 }else if( pKeyInfo->aColl[i] ){
4147 mem1.enc = pKeyInfo->enc;
4148 mem1.db = pKeyInfo->db;
4149 mem1.flags = MEM_Str;
4150 mem1.z = (char*)&aKey1[d1];
4151 rc = vdbeCompareMemString(
4152 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4154 }else{
4155 int nCmp = MIN(mem1.n, pRhs->n);
4156 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4157 if( rc==0 ) rc = mem1.n - pRhs->n;
4162 /* RHS is a blob */
4163 else if( pRhs->flags & MEM_Blob ){
4164 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4165 getVarint32(&aKey1[idx1], serial_type);
4166 testcase( serial_type==12 );
4167 if( serial_type<12 || (serial_type & 0x01) ){
4168 rc = -1;
4169 }else{
4170 int nStr = (serial_type - 12) / 2;
4171 testcase( (d1+nStr)==(unsigned)nKey1 );
4172 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4173 if( (d1+nStr) > (unsigned)nKey1 ){
4174 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4175 return 0; /* Corruption */
4176 }else if( pRhs->flags & MEM_Zero ){
4177 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4178 rc = 1;
4179 }else{
4180 rc = nStr - pRhs->u.nZero;
4182 }else{
4183 int nCmp = MIN(nStr, pRhs->n);
4184 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4185 if( rc==0 ) rc = nStr - pRhs->n;
4190 /* RHS is null */
4191 else{
4192 serial_type = aKey1[idx1];
4193 rc = (serial_type!=0);
4196 if( rc!=0 ){
4197 if( pKeyInfo->aSortOrder[i] ){
4198 rc = -rc;
4200 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4201 assert( mem1.szMalloc==0 ); /* See comment below */
4202 return rc;
4205 i++;
4206 pRhs++;
4207 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4208 idx1 += sqlite3VarintLen(serial_type);
4209 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
4211 /* No memory allocation is ever used on mem1. Prove this using
4212 ** the following assert(). If the assert() fails, it indicates a
4213 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4214 assert( mem1.szMalloc==0 );
4216 /* rc==0 here means that one or both of the keys ran out of fields and
4217 ** all the fields up to that point were equal. Return the default_rc
4218 ** value. */
4219 assert( CORRUPT_DB
4220 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4221 || pKeyInfo->db->mallocFailed
4223 pPKey2->eqSeen = 1;
4224 return pPKey2->default_rc;
4226 int sqlite3VdbeRecordCompare(
4227 int nKey1, const void *pKey1, /* Left key */
4228 UnpackedRecord *pPKey2 /* Right key */
4230 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4235 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4236 ** that (a) the first field of pPKey2 is an integer, and (b) the
4237 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4238 ** byte (i.e. is less than 128).
4240 ** To avoid concerns about buffer overreads, this routine is only used
4241 ** on schemas where the maximum valid header size is 63 bytes or less.
4243 static int vdbeRecordCompareInt(
4244 int nKey1, const void *pKey1, /* Left key */
4245 UnpackedRecord *pPKey2 /* Right key */
4247 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4248 int serial_type = ((const u8*)pKey1)[1];
4249 int res;
4250 u32 y;
4251 u64 x;
4252 i64 v;
4253 i64 lhs;
4255 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4256 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4257 switch( serial_type ){
4258 case 1: { /* 1-byte signed integer */
4259 lhs = ONE_BYTE_INT(aKey);
4260 testcase( lhs<0 );
4261 break;
4263 case 2: { /* 2-byte signed integer */
4264 lhs = TWO_BYTE_INT(aKey);
4265 testcase( lhs<0 );
4266 break;
4268 case 3: { /* 3-byte signed integer */
4269 lhs = THREE_BYTE_INT(aKey);
4270 testcase( lhs<0 );
4271 break;
4273 case 4: { /* 4-byte signed integer */
4274 y = FOUR_BYTE_UINT(aKey);
4275 lhs = (i64)*(int*)&y;
4276 testcase( lhs<0 );
4277 break;
4279 case 5: { /* 6-byte signed integer */
4280 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4281 testcase( lhs<0 );
4282 break;
4284 case 6: { /* 8-byte signed integer */
4285 x = FOUR_BYTE_UINT(aKey);
4286 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4287 lhs = *(i64*)&x;
4288 testcase( lhs<0 );
4289 break;
4291 case 8:
4292 lhs = 0;
4293 break;
4294 case 9:
4295 lhs = 1;
4296 break;
4298 /* This case could be removed without changing the results of running
4299 ** this code. Including it causes gcc to generate a faster switch
4300 ** statement (since the range of switch targets now starts at zero and
4301 ** is contiguous) but does not cause any duplicate code to be generated
4302 ** (as gcc is clever enough to combine the two like cases). Other
4303 ** compilers might be similar. */
4304 case 0: case 7:
4305 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4307 default:
4308 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4311 v = pPKey2->aMem[0].u.i;
4312 if( v>lhs ){
4313 res = pPKey2->r1;
4314 }else if( v<lhs ){
4315 res = pPKey2->r2;
4316 }else if( pPKey2->nField>1 ){
4317 /* The first fields of the two keys are equal. Compare the trailing
4318 ** fields. */
4319 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4320 }else{
4321 /* The first fields of the two keys are equal and there are no trailing
4322 ** fields. Return pPKey2->default_rc in this case. */
4323 res = pPKey2->default_rc;
4324 pPKey2->eqSeen = 1;
4327 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4328 return res;
4332 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4333 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4334 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4335 ** at the start of (pKey1/nKey1) fits in a single byte.
4337 static int vdbeRecordCompareString(
4338 int nKey1, const void *pKey1, /* Left key */
4339 UnpackedRecord *pPKey2 /* Right key */
4341 const u8 *aKey1 = (const u8*)pKey1;
4342 int serial_type;
4343 int res;
4345 assert( pPKey2->aMem[0].flags & MEM_Str );
4346 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4347 getVarint32(&aKey1[1], serial_type);
4348 if( serial_type<12 ){
4349 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4350 }else if( !(serial_type & 0x01) ){
4351 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4352 }else{
4353 int nCmp;
4354 int nStr;
4355 int szHdr = aKey1[0];
4357 nStr = (serial_type-12) / 2;
4358 if( (szHdr + nStr) > nKey1 ){
4359 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4360 return 0; /* Corruption */
4362 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4363 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4365 if( res==0 ){
4366 res = nStr - pPKey2->aMem[0].n;
4367 if( res==0 ){
4368 if( pPKey2->nField>1 ){
4369 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4370 }else{
4371 res = pPKey2->default_rc;
4372 pPKey2->eqSeen = 1;
4374 }else if( res>0 ){
4375 res = pPKey2->r2;
4376 }else{
4377 res = pPKey2->r1;
4379 }else if( res>0 ){
4380 res = pPKey2->r2;
4381 }else{
4382 res = pPKey2->r1;
4386 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4387 || CORRUPT_DB
4388 || pPKey2->pKeyInfo->db->mallocFailed
4390 return res;
4394 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4395 ** suitable for comparing serialized records to the unpacked record passed
4396 ** as the only argument.
4398 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4399 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4400 ** that the size-of-header varint that occurs at the start of each record
4401 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4402 ** also assumes that it is safe to overread a buffer by at least the
4403 ** maximum possible legal header size plus 8 bytes. Because there is
4404 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4405 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4406 ** limit the size of the header to 64 bytes in cases where the first field
4407 ** is an integer.
4409 ** The easiest way to enforce this limit is to consider only records with
4410 ** 13 fields or less. If the first field is an integer, the maximum legal
4411 ** header size is (12*5 + 1 + 1) bytes. */
4412 if( p->pKeyInfo->nAllField<=13 ){
4413 int flags = p->aMem[0].flags;
4414 if( p->pKeyInfo->aSortOrder[0] ){
4415 p->r1 = 1;
4416 p->r2 = -1;
4417 }else{
4418 p->r1 = -1;
4419 p->r2 = 1;
4421 if( (flags & MEM_Int) ){
4422 return vdbeRecordCompareInt;
4424 testcase( flags & MEM_Real );
4425 testcase( flags & MEM_Null );
4426 testcase( flags & MEM_Blob );
4427 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4428 assert( flags & MEM_Str );
4429 return vdbeRecordCompareString;
4433 return sqlite3VdbeRecordCompare;
4437 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4438 ** Read the rowid (the last field in the record) and store it in *rowid.
4439 ** Return SQLITE_OK if everything works, or an error code otherwise.
4441 ** pCur might be pointing to text obtained from a corrupt database file.
4442 ** So the content cannot be trusted. Do appropriate checks on the content.
4444 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4445 i64 nCellKey = 0;
4446 int rc;
4447 u32 szHdr; /* Size of the header */
4448 u32 typeRowid; /* Serial type of the rowid */
4449 u32 lenRowid; /* Size of the rowid */
4450 Mem m, v;
4452 /* Get the size of the index entry. Only indices entries of less
4453 ** than 2GiB are support - anything large must be database corruption.
4454 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4455 ** this code can safely assume that nCellKey is 32-bits
4457 assert( sqlite3BtreeCursorIsValid(pCur) );
4458 nCellKey = sqlite3BtreePayloadSize(pCur);
4459 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4461 /* Read in the complete content of the index entry */
4462 sqlite3VdbeMemInit(&m, db, 0);
4463 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4464 if( rc ){
4465 return rc;
4468 /* The index entry must begin with a header size */
4469 (void)getVarint32((u8*)m.z, szHdr);
4470 testcase( szHdr==3 );
4471 testcase( szHdr==m.n );
4472 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
4473 goto idx_rowid_corruption;
4476 /* The last field of the index should be an integer - the ROWID.
4477 ** Verify that the last entry really is an integer. */
4478 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
4479 testcase( typeRowid==1 );
4480 testcase( typeRowid==2 );
4481 testcase( typeRowid==3 );
4482 testcase( typeRowid==4 );
4483 testcase( typeRowid==5 );
4484 testcase( typeRowid==6 );
4485 testcase( typeRowid==8 );
4486 testcase( typeRowid==9 );
4487 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4488 goto idx_rowid_corruption;
4490 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4491 testcase( (u32)m.n==szHdr+lenRowid );
4492 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4493 goto idx_rowid_corruption;
4496 /* Fetch the integer off the end of the index record */
4497 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4498 *rowid = v.u.i;
4499 sqlite3VdbeMemRelease(&m);
4500 return SQLITE_OK;
4502 /* Jump here if database corruption is detected after m has been
4503 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4504 idx_rowid_corruption:
4505 testcase( m.szMalloc!=0 );
4506 sqlite3VdbeMemRelease(&m);
4507 return SQLITE_CORRUPT_BKPT;
4511 ** Compare the key of the index entry that cursor pC is pointing to against
4512 ** the key string in pUnpacked. Write into *pRes a number
4513 ** that is negative, zero, or positive if pC is less than, equal to,
4514 ** or greater than pUnpacked. Return SQLITE_OK on success.
4516 ** pUnpacked is either created without a rowid or is truncated so that it
4517 ** omits the rowid at the end. The rowid at the end of the index entry
4518 ** is ignored as well. Hence, this routine only compares the prefixes
4519 ** of the keys prior to the final rowid, not the entire key.
4521 int sqlite3VdbeIdxKeyCompare(
4522 sqlite3 *db, /* Database connection */
4523 VdbeCursor *pC, /* The cursor to compare against */
4524 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4525 int *res /* Write the comparison result here */
4527 i64 nCellKey = 0;
4528 int rc;
4529 BtCursor *pCur;
4530 Mem m;
4532 assert( pC->eCurType==CURTYPE_BTREE );
4533 pCur = pC->uc.pCursor;
4534 assert( sqlite3BtreeCursorIsValid(pCur) );
4535 nCellKey = sqlite3BtreePayloadSize(pCur);
4536 /* nCellKey will always be between 0 and 0xffffffff because of the way
4537 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4538 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4539 *res = 0;
4540 return SQLITE_CORRUPT_BKPT;
4542 sqlite3VdbeMemInit(&m, db, 0);
4543 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
4544 if( rc ){
4545 return rc;
4547 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
4548 sqlite3VdbeMemRelease(&m);
4549 return SQLITE_OK;
4553 ** This routine sets the value to be returned by subsequent calls to
4554 ** sqlite3_changes() on the database handle 'db'.
4556 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
4557 assert( sqlite3_mutex_held(db->mutex) );
4558 db->nChange = nChange;
4559 db->nTotalChange += nChange;
4563 ** Set a flag in the vdbe to update the change counter when it is finalised
4564 ** or reset.
4566 void sqlite3VdbeCountChanges(Vdbe *v){
4567 v->changeCntOn = 1;
4571 ** Mark every prepared statement associated with a database connection
4572 ** as expired.
4574 ** An expired statement means that recompilation of the statement is
4575 ** recommend. Statements expire when things happen that make their
4576 ** programs obsolete. Removing user-defined functions or collating
4577 ** sequences, or changing an authorization function are the types of
4578 ** things that make prepared statements obsolete.
4580 void sqlite3ExpirePreparedStatements(sqlite3 *db){
4581 Vdbe *p;
4582 for(p = db->pVdbe; p; p=p->pNext){
4583 p->expired = 1;
4588 ** Return the database associated with the Vdbe.
4590 sqlite3 *sqlite3VdbeDb(Vdbe *v){
4591 return v->db;
4595 ** Return the SQLITE_PREPARE flags for a Vdbe.
4597 u8 sqlite3VdbePrepareFlags(Vdbe *v){
4598 return v->prepFlags;
4602 ** Return a pointer to an sqlite3_value structure containing the value bound
4603 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4604 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4605 ** constants) to the value before returning it.
4607 ** The returned value must be freed by the caller using sqlite3ValueFree().
4609 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
4610 assert( iVar>0 );
4611 if( v ){
4612 Mem *pMem = &v->aVar[iVar-1];
4613 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4614 if( 0==(pMem->flags & MEM_Null) ){
4615 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4616 if( pRet ){
4617 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4618 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
4620 return pRet;
4623 return 0;
4627 ** Configure SQL variable iVar so that binding a new value to it signals
4628 ** to sqlite3_reoptimize() that re-preparing the statement may result
4629 ** in a better query plan.
4631 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
4632 assert( iVar>0 );
4633 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
4634 if( iVar>=32 ){
4635 v->expmask |= 0x80000000;
4636 }else{
4637 v->expmask |= ((u32)1 << (iVar-1));
4642 ** Cause a function to throw an error if it was call from OP_PureFunc
4643 ** rather than OP_Function.
4645 ** OP_PureFunc means that the function must be deterministic, and should
4646 ** throw an error if it is given inputs that would make it non-deterministic.
4647 ** This routine is invoked by date/time functions that use non-deterministic
4648 ** features such as 'now'.
4650 int sqlite3NotPureFunc(sqlite3_context *pCtx){
4651 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4652 if( pCtx->pVdbe==0 ) return 1;
4653 #endif
4654 if( pCtx->pVdbe->aOp[pCtx->iOp].opcode==OP_PureFunc ){
4655 sqlite3_result_error(pCtx,
4656 "non-deterministic function in index expression or CHECK constraint",
4657 -1);
4658 return 0;
4660 return 1;
4663 #ifndef SQLITE_OMIT_VIRTUALTABLE
4665 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4666 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4667 ** in memory obtained from sqlite3DbMalloc).
4669 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4670 if( pVtab->zErrMsg ){
4671 sqlite3 *db = p->db;
4672 sqlite3DbFree(db, p->zErrMsg);
4673 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4674 sqlite3_free(pVtab->zErrMsg);
4675 pVtab->zErrMsg = 0;
4678 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4680 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4683 ** If the second argument is not NULL, release any allocations associated
4684 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4685 ** structure itself, using sqlite3DbFree().
4687 ** This function is used to free UnpackedRecord structures allocated by
4688 ** the vdbeUnpackRecord() function found in vdbeapi.c.
4690 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
4691 if( p ){
4692 int i;
4693 for(i=0; i<nField; i++){
4694 Mem *pMem = &p->aMem[i];
4695 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4697 sqlite3DbFreeNN(db, p);
4700 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
4702 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
4704 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4705 ** then cursor passed as the second argument should point to the row about
4706 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4707 ** the required value will be read from the row the cursor points to.
4709 void sqlite3VdbePreUpdateHook(
4710 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4711 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4712 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4713 const char *zDb, /* Database name */
4714 Table *pTab, /* Modified table */
4715 i64 iKey1, /* Initial key value */
4716 int iReg /* Register for new.* record */
4718 sqlite3 *db = v->db;
4719 i64 iKey2;
4720 PreUpdate preupdate;
4721 const char *zTbl = pTab->zName;
4722 static const u8 fakeSortOrder = 0;
4724 assert( db->pPreUpdate==0 );
4725 memset(&preupdate, 0, sizeof(PreUpdate));
4726 if( HasRowid(pTab)==0 ){
4727 iKey1 = iKey2 = 0;
4728 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
4729 }else{
4730 if( op==SQLITE_UPDATE ){
4731 iKey2 = v->aMem[iReg].u.i;
4732 }else{
4733 iKey2 = iKey1;
4737 assert( pCsr->nField==pTab->nCol
4738 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4741 preupdate.v = v;
4742 preupdate.pCsr = pCsr;
4743 preupdate.op = op;
4744 preupdate.iNewReg = iReg;
4745 preupdate.keyinfo.db = db;
4746 preupdate.keyinfo.enc = ENC(db);
4747 preupdate.keyinfo.nKeyField = pTab->nCol;
4748 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
4749 preupdate.iKey1 = iKey1;
4750 preupdate.iKey2 = iKey2;
4751 preupdate.pTab = pTab;
4753 db->pPreUpdate = &preupdate;
4754 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4755 db->pPreUpdate = 0;
4756 sqlite3DbFree(db, preupdate.aRecord);
4757 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
4758 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
4759 if( preupdate.aNew ){
4760 int i;
4761 for(i=0; i<pCsr->nField; i++){
4762 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4764 sqlite3DbFreeNN(db, preupdate.aNew);
4767 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */