4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This module implements an object we call a "RowSet".
15 ** The RowSet object is a collection of rowids. Rowids
16 ** are inserted into the RowSet in an arbitrary order. Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order. Once this extraction
22 ** process has started, no new elements may be inserted.
24 ** Hence, the primitive operations for a RowSet are:
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously. The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet. SMALLEST
35 ** extracts the least value from the RowSet.
37 ** The INSERT primitive might allocate additional memory. Memory is
38 ** allocated in chunks so most INSERTs do no allocation. There is an
39 ** upper bound on the size of allocated memory. No memory is freed
42 ** The TEST primitive includes a "batch" number. The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number. In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch number, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if
53 ** The cost of an INSERT is roughly constant. (Sometimes new memory
54 ** has to be allocated on an INSERT.) The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN). The cost
57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
58 ** primitives are constant time. The cost of DESTROY is O(N).
60 ** TEST and SMALLEST may not be used by the same RowSet. This used to
61 ** be possible, but the feature was not used, so it was removed in order
62 ** to simplify the code.
64 #include "sqliteInt.h"
68 ** Target size for allocation chunks.
70 #define ROWSET_ALLOCATION_SIZE 1024
73 ** The number of rowset entries per allocation chunk.
75 #define ROWSET_ENTRY_PER_CHUNK \
76 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
79 ** Each entry in a RowSet is an instance of the following object.
81 ** This same object is reused to store a linked list of trees of RowSetEntry
82 ** objects. In that alternative use, pRight points to the next entry
83 ** in the list, pLeft points to the tree, and v is unused. The
84 ** RowSet.pForest value points to the head of this forest list.
87 i64 v
; /* ROWID value for this entry */
88 struct RowSetEntry
*pRight
; /* Right subtree (larger entries) or list */
89 struct RowSetEntry
*pLeft
; /* Left subtree (smaller entries) */
93 ** RowSetEntry objects are allocated in large chunks (instances of the
94 ** following structure) to reduce memory allocation overhead. The
95 ** chunks are kept on a linked list so that they can be deallocated
96 ** when the RowSet is destroyed.
99 struct RowSetChunk
*pNextChunk
; /* Next chunk on list of them all */
100 struct RowSetEntry aEntry
[ROWSET_ENTRY_PER_CHUNK
]; /* Allocated entries */
104 ** A RowSet in an instance of the following structure.
106 ** A typedef of this structure if found in sqliteInt.h.
109 struct RowSetChunk
*pChunk
; /* List of all chunk allocations */
110 sqlite3
*db
; /* The database connection */
111 struct RowSetEntry
*pEntry
; /* List of entries using pRight */
112 struct RowSetEntry
*pLast
; /* Last entry on the pEntry list */
113 struct RowSetEntry
*pFresh
; /* Source of new entry objects */
114 struct RowSetEntry
*pForest
; /* List of binary trees of entries */
115 u16 nFresh
; /* Number of objects on pFresh */
116 u16 rsFlags
; /* Various flags */
117 int iBatch
; /* Current insert batch */
121 ** Allowed values for RowSet.rsFlags
123 #define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
124 #define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
127 ** Allocate a RowSet object. Return NULL if a memory allocation
130 RowSet
*sqlite3RowSetInit(sqlite3
*db
){
131 RowSet
*p
= sqlite3DbMallocRawNN(db
, sizeof(*p
));
133 int N
= sqlite3DbMallocSize(db
, p
);
139 p
->pFresh
= (struct RowSetEntry
*)(ROUND8(sizeof(*p
)) + (char*)p
);
140 p
->nFresh
= (u16
)((N
- ROUND8(sizeof(*p
)))/sizeof(struct RowSetEntry
));
141 p
->rsFlags
= ROWSET_SORTED
;
148 ** Deallocate all chunks from a RowSet. This frees all memory that
149 ** the RowSet has allocated over its lifetime. This routine is
150 ** the destructor for the RowSet.
152 void sqlite3RowSetClear(void *pArg
){
153 RowSet
*p
= (RowSet
*)pArg
;
154 struct RowSetChunk
*pChunk
, *pNextChunk
;
155 for(pChunk
=p
->pChunk
; pChunk
; pChunk
= pNextChunk
){
156 pNextChunk
= pChunk
->pNextChunk
;
157 sqlite3DbFree(p
->db
, pChunk
);
164 p
->rsFlags
= ROWSET_SORTED
;
168 ** Deallocate all chunks from a RowSet. This frees all memory that
169 ** the RowSet has allocated over its lifetime. This routine is
170 ** the destructor for the RowSet.
172 void sqlite3RowSetDelete(void *pArg
){
173 sqlite3RowSetClear(pArg
);
174 sqlite3DbFree(((RowSet
*)pArg
)->db
, pArg
);
178 ** Allocate a new RowSetEntry object that is associated with the
179 ** given RowSet. Return a pointer to the new and completely uninitialized
182 ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
183 ** routine returns NULL.
185 static struct RowSetEntry
*rowSetEntryAlloc(RowSet
*p
){
187 if( p
->nFresh
==0 ){ /*OPTIMIZATION-IF-FALSE*/
188 /* We could allocate a fresh RowSetEntry each time one is needed, but it
189 ** is more efficient to pull a preallocated entry from the pool */
190 struct RowSetChunk
*pNew
;
191 pNew
= sqlite3DbMallocRawNN(p
->db
, sizeof(*pNew
));
195 pNew
->pNextChunk
= p
->pChunk
;
197 p
->pFresh
= pNew
->aEntry
;
198 p
->nFresh
= ROWSET_ENTRY_PER_CHUNK
;
205 ** Insert a new value into a RowSet.
207 ** The mallocFailed flag of the database connection is set if a
208 ** memory allocation fails.
210 void sqlite3RowSetInsert(RowSet
*p
, i64 rowid
){
211 struct RowSetEntry
*pEntry
; /* The new entry */
212 struct RowSetEntry
*pLast
; /* The last prior entry */
214 /* This routine is never called after sqlite3RowSetNext() */
215 assert( p
!=0 && (p
->rsFlags
& ROWSET_NEXT
)==0 );
217 pEntry
= rowSetEntryAlloc(p
);
218 if( pEntry
==0 ) return;
223 if( rowid
<=pLast
->v
){ /*OPTIMIZATION-IF-FALSE*/
224 /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
226 p
->rsFlags
&= ~ROWSET_SORTED
;
228 pLast
->pRight
= pEntry
;
236 ** Merge two lists of RowSetEntry objects. Remove duplicates.
238 ** The input lists are connected via pRight pointers and are
239 ** assumed to each already be in sorted order.
241 static struct RowSetEntry
*rowSetEntryMerge(
242 struct RowSetEntry
*pA
, /* First sorted list to be merged */
243 struct RowSetEntry
*pB
/* Second sorted list to be merged */
245 struct RowSetEntry head
;
246 struct RowSetEntry
*pTail
;
249 assert( pA
!=0 && pB
!=0 );
251 assert( pA
->pRight
==0 || pA
->v
<=pA
->pRight
->v
);
252 assert( pB
->pRight
==0 || pB
->v
<=pB
->pRight
->v
);
254 if( pA
->v
<pB
->v
) pTail
= pTail
->pRight
= pA
;
261 pTail
= pTail
->pRight
= pB
;
273 ** Sort all elements on the list of RowSetEntry objects into order of
276 static struct RowSetEntry
*rowSetEntrySort(struct RowSetEntry
*pIn
){
278 struct RowSetEntry
*pNext
, *aBucket
[40];
280 memset(aBucket
, 0, sizeof(aBucket
));
284 for(i
=0; aBucket
[i
]; i
++){
285 pIn
= rowSetEntryMerge(aBucket
[i
], pIn
);
292 for(i
=1; i
<sizeof(aBucket
)/sizeof(aBucket
[0]); i
++){
293 if( aBucket
[i
]==0 ) continue;
294 pIn
= pIn
? rowSetEntryMerge(pIn
, aBucket
[i
]) : aBucket
[i
];
301 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
302 ** Convert this tree into a linked list connected by the pRight pointers
303 ** and return pointers to the first and last elements of the new list.
305 static void rowSetTreeToList(
306 struct RowSetEntry
*pIn
, /* Root of the input tree */
307 struct RowSetEntry
**ppFirst
, /* Write head of the output list here */
308 struct RowSetEntry
**ppLast
/* Write tail of the output list here */
312 struct RowSetEntry
*p
;
313 rowSetTreeToList(pIn
->pLeft
, ppFirst
, &p
);
319 rowSetTreeToList(pIn
->pRight
, &pIn
->pRight
, ppLast
);
323 assert( (*ppLast
)->pRight
==0 );
328 ** Convert a sorted list of elements (connected by pRight) into a binary
329 ** tree with depth of iDepth. A depth of 1 means the tree contains a single
330 ** node taken from the head of *ppList. A depth of 2 means a tree with
331 ** three nodes. And so forth.
333 ** Use as many entries from the input list as required and update the
334 ** *ppList to point to the unused elements of the list. If the input
335 ** list contains too few elements, then construct an incomplete tree
336 ** and leave *ppList set to NULL.
338 ** Return a pointer to the root of the constructed binary tree.
340 static struct RowSetEntry
*rowSetNDeepTree(
341 struct RowSetEntry
**ppList
,
344 struct RowSetEntry
*p
; /* Root of the new tree */
345 struct RowSetEntry
*pLeft
; /* Left subtree */
346 if( *ppList
==0 ){ /*OPTIMIZATION-IF-TRUE*/
347 /* Prevent unnecessary deep recursion when we run out of entries */
350 if( iDepth
>1 ){ /*OPTIMIZATION-IF-TRUE*/
351 /* This branch causes a *balanced* tree to be generated. A valid tree
352 ** is still generated without this branch, but the tree is wildly
353 ** unbalanced and inefficient. */
354 pLeft
= rowSetNDeepTree(ppList
, iDepth
-1);
356 if( p
==0 ){ /*OPTIMIZATION-IF-FALSE*/
357 /* It is safe to always return here, but the resulting tree
358 ** would be unbalanced */
363 p
->pRight
= rowSetNDeepTree(ppList
, iDepth
-1);
367 p
->pLeft
= p
->pRight
= 0;
373 ** Convert a sorted list of elements into a binary tree. Make the tree
374 ** as deep as it needs to be in order to contain the entire list.
376 static struct RowSetEntry
*rowSetListToTree(struct RowSetEntry
*pList
){
377 int iDepth
; /* Depth of the tree so far */
378 struct RowSetEntry
*p
; /* Current tree root */
379 struct RowSetEntry
*pLeft
; /* Left subtree */
384 p
->pLeft
= p
->pRight
= 0;
385 for(iDepth
=1; pList
; iDepth
++){
390 p
->pRight
= rowSetNDeepTree(&pList
, iDepth
);
396 ** Extract the smallest element from the RowSet.
397 ** Write the element into *pRowid. Return 1 on success. Return
398 ** 0 if the RowSet is already empty.
400 ** After this routine has been called, the sqlite3RowSetInsert()
401 ** routine may not be called again.
403 ** This routine may not be called after sqlite3RowSetTest() has
404 ** been used. Older versions of RowSet allowed that, but as the
405 ** capability was not used by the code generator, it was removed
408 int sqlite3RowSetNext(RowSet
*p
, i64
*pRowid
){
410 assert( p
->pForest
==0 ); /* Cannot be used with sqlite3RowSetText() */
412 /* Merge the forest into a single sorted list on first call */
413 if( (p
->rsFlags
& ROWSET_NEXT
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
414 if( (p
->rsFlags
& ROWSET_SORTED
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
415 p
->pEntry
= rowSetEntrySort(p
->pEntry
);
417 p
->rsFlags
|= ROWSET_SORTED
|ROWSET_NEXT
;
420 /* Return the next entry on the list */
422 *pRowid
= p
->pEntry
->v
;
423 p
->pEntry
= p
->pEntry
->pRight
;
424 if( p
->pEntry
==0 ){ /*OPTIMIZATION-IF-TRUE*/
425 /* Free memory immediately, rather than waiting on sqlite3_finalize() */
426 sqlite3RowSetClear(p
);
435 ** Check to see if element iRowid was inserted into the rowset as
436 ** part of any insert batch prior to iBatch. Return 1 or 0.
438 ** If this is the first test of a new batch and if there exist entries
439 ** on pRowSet->pEntry, then sort those entries into the forest at
440 ** pRowSet->pForest so that they can be tested.
442 int sqlite3RowSetTest(RowSet
*pRowSet
, int iBatch
, sqlite3_int64 iRowid
){
443 struct RowSetEntry
*p
, *pTree
;
445 /* This routine is never called after sqlite3RowSetNext() */
446 assert( pRowSet
!=0 && (pRowSet
->rsFlags
& ROWSET_NEXT
)==0 );
448 /* Sort entries into the forest on the first test of a new batch.
449 ** To save unnecessary work, only do this when the batch number changes.
451 if( iBatch
!=pRowSet
->iBatch
){ /*OPTIMIZATION-IF-FALSE*/
454 struct RowSetEntry
**ppPrevTree
= &pRowSet
->pForest
;
455 if( (pRowSet
->rsFlags
& ROWSET_SORTED
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
456 /* Only sort the current set of entries if they need it */
457 p
= rowSetEntrySort(p
);
459 for(pTree
= pRowSet
->pForest
; pTree
; pTree
=pTree
->pRight
){
460 ppPrevTree
= &pTree
->pRight
;
461 if( pTree
->pLeft
==0 ){
462 pTree
->pLeft
= rowSetListToTree(p
);
465 struct RowSetEntry
*pAux
, *pTail
;
466 rowSetTreeToList(pTree
->pLeft
, &pAux
, &pTail
);
468 p
= rowSetEntryMerge(pAux
, p
);
472 *ppPrevTree
= pTree
= rowSetEntryAlloc(pRowSet
);
476 pTree
->pLeft
= rowSetListToTree(p
);
481 pRowSet
->rsFlags
|= ROWSET_SORTED
;
483 pRowSet
->iBatch
= iBatch
;
486 /* Test to see if the iRowid value appears anywhere in the forest.
487 ** Return 1 if it does and 0 if not.
489 for(pTree
= pRowSet
->pForest
; pTree
; pTree
=pTree
->pRight
){
494 }else if( p
->v
>iRowid
){