Add tests for the new code on this branch.
[sqlite.git] / src / dbstat.c
blobc70d806370d80e7ca7c85d67e784e956fa754555
1 /*
2 ** 2010 July 12
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains an implementation of the "dbstat" virtual table.
15 ** The dbstat virtual table is used to extract low-level storage
16 ** information from an SQLite database in order to implement the
17 ** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script
18 ** for an example implementation.
20 ** Additional information is available on the "dbstat.html" page of the
21 ** official SQLite documentation.
24 #include "sqliteInt.h" /* Requires access to internal data structures */
25 #if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
26 && !defined(SQLITE_OMIT_VIRTUALTABLE)
29 ** The pager and btree modules arrange objects in memory so that there are
30 ** always approximately 200 bytes of addressable memory following each page
31 ** buffer. This way small buffer overreads caused by corrupt database pages
32 ** do not cause undefined behaviour. This module pads each page buffer
33 ** by the following number of bytes for the same purpose.
35 #define DBSTAT_PAGE_PADDING_BYTES 256
38 ** Page paths:
39 **
40 ** The value of the 'path' column describes the path taken from the
41 ** root-node of the b-tree structure to each page. The value of the
42 ** root-node path is '/'.
44 ** The value of the path for the left-most child page of the root of
45 ** a b-tree is '/000/'. (Btrees store content ordered from left to right
46 ** so the pages to the left have smaller keys than the pages to the right.)
47 ** The next to left-most child of the root page is
48 ** '/001', and so on, each sibling page identified by a 3-digit hex
49 ** value. The children of the 451st left-most sibling have paths such
50 ** as '/1c2/000/, '/1c2/001/' etc.
52 ** Overflow pages are specified by appending a '+' character and a
53 ** six-digit hexadecimal value to the path to the cell they are linked
54 ** from. For example, the three overflow pages in a chain linked from
55 ** the left-most cell of the 450th child of the root page are identified
56 ** by the paths:
58 ** '/1c2/000+000000' // First page in overflow chain
59 ** '/1c2/000+000001' // Second page in overflow chain
60 ** '/1c2/000+000002' // Third page in overflow chain
62 ** If the paths are sorted using the BINARY collation sequence, then
63 ** the overflow pages associated with a cell will appear earlier in the
64 ** sort-order than its child page:
66 ** '/1c2/000/' // Left-most child of 451st child of root
68 static const char zDbstatSchema[] =
69 "CREATE TABLE x("
70 " name TEXT," /* 0 Name of table or index */
71 " path TEXT," /* 1 Path to page from root (NULL for agg) */
72 " pageno INTEGER," /* 2 Page number (page count for aggregates) */
73 " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */
74 " ncell INTEGER," /* 4 Cells on page (0 for overflow) */
75 " payload INTEGER," /* 5 Bytes of payload on this page */
76 " unused INTEGER," /* 6 Bytes of unused space on this page */
77 " mx_payload INTEGER," /* 7 Largest payload size of all cells */
78 " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */
79 " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */
80 " schema TEXT HIDDEN," /* 10 Database schema being analyzed */
81 " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */
82 ")"
85 /* Forward reference to data structured used in this module */
86 typedef struct StatTable StatTable;
87 typedef struct StatCursor StatCursor;
88 typedef struct StatPage StatPage;
89 typedef struct StatCell StatCell;
91 /* Size information for a single cell within a btree page */
92 struct StatCell {
93 int nLocal; /* Bytes of local payload */
94 u32 iChildPg; /* Child node (or 0 if this is a leaf) */
95 int nOvfl; /* Entries in aOvfl[] */
96 u32 *aOvfl; /* Array of overflow page numbers */
97 int nLastOvfl; /* Bytes of payload on final overflow page */
98 int iOvfl; /* Iterates through aOvfl[] */
101 /* Size information for a single btree page */
102 struct StatPage {
103 u32 iPgno; /* Page number */
104 u8 *aPg; /* Page buffer from sqlite3_malloc() */
105 int iCell; /* Current cell */
106 char *zPath; /* Path to this page */
108 /* Variables populated by statDecodePage(): */
109 u8 flags; /* Copy of flags byte */
110 int nCell; /* Number of cells on page */
111 int nUnused; /* Number of unused bytes on page */
112 StatCell *aCell; /* Array of parsed cells */
113 u32 iRightChildPg; /* Right-child page number (or 0) */
114 int nMxPayload; /* Largest payload of any cell on the page */
117 /* The cursor for scanning the dbstat virtual table */
118 struct StatCursor {
119 sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */
120 sqlite3_stmt *pStmt; /* Iterates through set of root pages */
121 u8 isEof; /* After pStmt has returned SQLITE_DONE */
122 u8 isAgg; /* Aggregate results for each table */
123 int iDb; /* Schema used for this query */
125 StatPage aPage[32]; /* Pages in path to current page */
126 int iPage; /* Current entry in aPage[] */
128 /* Values to return. */
129 u32 iPageno; /* Value of 'pageno' column */
130 char *zName; /* Value of 'name' column */
131 char *zPath; /* Value of 'path' column */
132 char *zPagetype; /* Value of 'pagetype' column */
133 int nPage; /* Number of pages in current btree */
134 int nCell; /* Value of 'ncell' column */
135 int nMxPayload; /* Value of 'mx_payload' column */
136 i64 nUnused; /* Value of 'unused' column */
137 i64 nPayload; /* Value of 'payload' column */
138 i64 iOffset; /* Value of 'pgOffset' column */
139 i64 szPage; /* Value of 'pgSize' column */
142 /* An instance of the DBSTAT virtual table */
143 struct StatTable {
144 sqlite3_vtab base; /* base class. MUST BE FIRST! */
145 sqlite3 *db; /* Database connection that owns this vtab */
146 int iDb; /* Index of database to analyze */
149 #ifndef get2byte
150 # define get2byte(x) ((x)[0]<<8 | (x)[1])
151 #endif
154 ** Connect to or create a new DBSTAT virtual table.
156 static int statConnect(
157 sqlite3 *db,
158 void *pAux,
159 int argc, const char *const*argv,
160 sqlite3_vtab **ppVtab,
161 char **pzErr
163 StatTable *pTab = 0;
164 int rc = SQLITE_OK;
165 int iDb;
166 (void)pAux;
168 if( argc>=4 ){
169 Token nm;
170 sqlite3TokenInit(&nm, (char*)argv[3]);
171 iDb = sqlite3FindDb(db, &nm);
172 if( iDb<0 ){
173 *pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
174 return SQLITE_ERROR;
176 }else{
177 iDb = 0;
179 sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
180 rc = sqlite3_declare_vtab(db, zDbstatSchema);
181 if( rc==SQLITE_OK ){
182 pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable));
183 if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
186 assert( rc==SQLITE_OK || pTab==0 );
187 if( rc==SQLITE_OK ){
188 memset(pTab, 0, sizeof(StatTable));
189 pTab->db = db;
190 pTab->iDb = iDb;
193 *ppVtab = (sqlite3_vtab*)pTab;
194 return rc;
198 ** Disconnect from or destroy the DBSTAT virtual table.
200 static int statDisconnect(sqlite3_vtab *pVtab){
201 sqlite3_free(pVtab);
202 return SQLITE_OK;
206 ** Compute the best query strategy and return the result in idxNum.
208 ** idxNum-Bit Meaning
209 ** ---------- ----------------------------------------------
210 ** 0x01 There is a schema=? term in the WHERE clause
211 ** 0x02 There is a name=? term in the WHERE clause
212 ** 0x04 There is an aggregate=? term in the WHERE clause
213 ** 0x08 Output should be ordered by name and path
215 static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
216 int i;
217 int iSchema = -1;
218 int iName = -1;
219 int iAgg = -1;
220 (void)tab;
222 /* Look for a valid schema=? constraint. If found, change the idxNum to
223 ** 1 and request the value of that constraint be sent to xFilter. And
224 ** lower the cost estimate to encourage the constrained version to be
225 ** used.
227 for(i=0; i<pIdxInfo->nConstraint; i++){
228 if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
229 if( pIdxInfo->aConstraint[i].usable==0 ){
230 /* Force DBSTAT table should always be the right-most table in a join */
231 return SQLITE_CONSTRAINT;
233 switch( pIdxInfo->aConstraint[i].iColumn ){
234 case 0: { /* name */
235 iName = i;
236 break;
238 case 10: { /* schema */
239 iSchema = i;
240 break;
242 case 11: { /* aggregate */
243 iAgg = i;
244 break;
248 i = 0;
249 if( iSchema>=0 ){
250 pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i;
251 pIdxInfo->aConstraintUsage[iSchema].omit = 1;
252 pIdxInfo->idxNum |= 0x01;
254 if( iName>=0 ){
255 pIdxInfo->aConstraintUsage[iName].argvIndex = ++i;
256 pIdxInfo->idxNum |= 0x02;
258 if( iAgg>=0 ){
259 pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i;
260 pIdxInfo->idxNum |= 0x04;
262 pIdxInfo->estimatedCost = 1.0;
264 /* Records are always returned in ascending order of (name, path).
265 ** If this will satisfy the client, set the orderByConsumed flag so that
266 ** SQLite does not do an external sort.
268 if( ( pIdxInfo->nOrderBy==1
269 && pIdxInfo->aOrderBy[0].iColumn==0
270 && pIdxInfo->aOrderBy[0].desc==0
271 ) ||
272 ( pIdxInfo->nOrderBy==2
273 && pIdxInfo->aOrderBy[0].iColumn==0
274 && pIdxInfo->aOrderBy[0].desc==0
275 && pIdxInfo->aOrderBy[1].iColumn==1
276 && pIdxInfo->aOrderBy[1].desc==0
279 pIdxInfo->orderByConsumed = 1;
280 pIdxInfo->idxNum |= 0x08;
283 return SQLITE_OK;
287 ** Open a new DBSTAT cursor.
289 static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
290 StatTable *pTab = (StatTable *)pVTab;
291 StatCursor *pCsr;
293 pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
294 if( pCsr==0 ){
295 return SQLITE_NOMEM_BKPT;
296 }else{
297 memset(pCsr, 0, sizeof(StatCursor));
298 pCsr->base.pVtab = pVTab;
299 pCsr->iDb = pTab->iDb;
302 *ppCursor = (sqlite3_vtab_cursor *)pCsr;
303 return SQLITE_OK;
306 static void statClearCells(StatPage *p){
307 int i;
308 if( p->aCell ){
309 for(i=0; i<p->nCell; i++){
310 sqlite3_free(p->aCell[i].aOvfl);
312 sqlite3_free(p->aCell);
314 p->nCell = 0;
315 p->aCell = 0;
318 static void statClearPage(StatPage *p){
319 u8 *aPg = p->aPg;
320 statClearCells(p);
321 sqlite3_free(p->zPath);
322 memset(p, 0, sizeof(StatPage));
323 p->aPg = aPg;
326 static void statResetCsr(StatCursor *pCsr){
327 int i;
328 /* In some circumstances, specifically if an OOM has occurred, the call
329 ** to sqlite3_reset() may cause the pager to be reset (emptied). It is
330 ** important that statClearPage() is called to free any page refs before
331 ** this happens. dbsqlfuzz 9ed3e4e3816219d3509d711636c38542bf3f40b1. */
332 for(i=0; i<ArraySize(pCsr->aPage); i++){
333 statClearPage(&pCsr->aPage[i]);
334 sqlite3_free(pCsr->aPage[i].aPg);
335 pCsr->aPage[i].aPg = 0;
337 sqlite3_reset(pCsr->pStmt);
338 pCsr->iPage = 0;
339 sqlite3_free(pCsr->zPath);
340 pCsr->zPath = 0;
341 pCsr->isEof = 0;
344 /* Resize the space-used counters inside of the cursor */
345 static void statResetCounts(StatCursor *pCsr){
346 pCsr->nCell = 0;
347 pCsr->nMxPayload = 0;
348 pCsr->nUnused = 0;
349 pCsr->nPayload = 0;
350 pCsr->szPage = 0;
351 pCsr->nPage = 0;
355 ** Close a DBSTAT cursor.
357 static int statClose(sqlite3_vtab_cursor *pCursor){
358 StatCursor *pCsr = (StatCursor *)pCursor;
359 statResetCsr(pCsr);
360 sqlite3_finalize(pCsr->pStmt);
361 sqlite3_free(pCsr);
362 return SQLITE_OK;
366 ** For a single cell on a btree page, compute the number of bytes of
367 ** content (payload) stored on that page. That is to say, compute the
368 ** number of bytes of content not found on overflow pages.
370 static int getLocalPayload(
371 int nUsable, /* Usable bytes per page */
372 u8 flags, /* Page flags */
373 int nTotal /* Total record (payload) size */
375 int nLocal;
376 int nMinLocal;
377 int nMaxLocal;
379 if( flags==0x0D ){ /* Table leaf node */
380 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
381 nMaxLocal = nUsable - 35;
382 }else{ /* Index interior and leaf nodes */
383 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
384 nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
387 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
388 if( nLocal>nMaxLocal ) nLocal = nMinLocal;
389 return nLocal;
392 /* Populate the StatPage object with information about the all
393 ** cells found on the page currently under analysis.
395 static int statDecodePage(Btree *pBt, StatPage *p){
396 int nUnused;
397 int iOff;
398 int nHdr;
399 int isLeaf;
400 int szPage;
402 u8 *aData = p->aPg;
403 u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];
405 p->flags = aHdr[0];
406 if( p->flags==0x0A || p->flags==0x0D ){
407 isLeaf = 1;
408 nHdr = 8;
409 }else if( p->flags==0x05 || p->flags==0x02 ){
410 isLeaf = 0;
411 nHdr = 12;
412 }else{
413 goto statPageIsCorrupt;
415 if( p->iPgno==1 ) nHdr += 100;
416 p->nCell = get2byte(&aHdr[3]);
417 p->nMxPayload = 0;
418 szPage = sqlite3BtreeGetPageSize(pBt);
420 nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
421 nUnused += (int)aHdr[7];
422 iOff = get2byte(&aHdr[1]);
423 while( iOff ){
424 int iNext;
425 if( iOff>=szPage ) goto statPageIsCorrupt;
426 nUnused += get2byte(&aData[iOff+2]);
427 iNext = get2byte(&aData[iOff]);
428 if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt;
429 iOff = iNext;
431 p->nUnused = nUnused;
432 p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);
434 if( p->nCell ){
435 int i; /* Used to iterate through cells */
436 int nUsable; /* Usable bytes per page */
438 sqlite3BtreeEnter(pBt);
439 nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
440 sqlite3BtreeLeave(pBt);
441 p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
442 if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
443 memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));
445 for(i=0; i<p->nCell; i++){
446 StatCell *pCell = &p->aCell[i];
448 iOff = get2byte(&aData[nHdr+i*2]);
449 if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt;
450 if( !isLeaf ){
451 pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
452 iOff += 4;
454 if( p->flags==0x05 ){
455 /* A table interior node. nPayload==0. */
456 }else{
457 u32 nPayload; /* Bytes of payload total (local+overflow) */
458 int nLocal; /* Bytes of payload stored locally */
459 iOff += getVarint32(&aData[iOff], nPayload);
460 if( p->flags==0x0D ){
461 u64 dummy;
462 iOff += sqlite3GetVarint(&aData[iOff], &dummy);
464 if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
465 nLocal = getLocalPayload(nUsable, p->flags, nPayload);
466 if( nLocal<0 ) goto statPageIsCorrupt;
467 pCell->nLocal = nLocal;
468 assert( nPayload>=(u32)nLocal );
469 assert( nLocal<=(nUsable-35) );
470 if( nPayload>(u32)nLocal ){
471 int j;
472 int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);
473 if( iOff+nLocal+4>nUsable || nPayload>0x7fffffff ){
474 goto statPageIsCorrupt;
476 pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
477 pCell->nOvfl = nOvfl;
478 pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
479 if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
480 pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
481 for(j=1; j<nOvfl; j++){
482 int rc;
483 u32 iPrev = pCell->aOvfl[j-1];
484 DbPage *pPg = 0;
485 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0);
486 if( rc!=SQLITE_OK ){
487 assert( pPg==0 );
488 return rc;
490 pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
491 sqlite3PagerUnref(pPg);
498 return SQLITE_OK;
500 statPageIsCorrupt:
501 p->flags = 0;
502 statClearCells(p);
503 return SQLITE_OK;
507 ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
508 ** the current value of pCsr->iPageno.
510 static void statSizeAndOffset(StatCursor *pCsr){
511 StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab;
512 Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
513 Pager *pPager = sqlite3BtreePager(pBt);
514 sqlite3_file *fd;
515 sqlite3_int64 x[2];
517 /* If connected to a ZIPVFS backend, find the page size and
518 ** offset from ZIPVFS.
520 fd = sqlite3PagerFile(pPager);
521 x[0] = pCsr->iPageno;
522 if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){
523 pCsr->iOffset = x[0];
524 pCsr->szPage += x[1];
525 }else{
526 /* Not ZIPVFS: The default page size and offset */
527 pCsr->szPage += sqlite3BtreeGetPageSize(pBt);
528 pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1);
533 ** Load a copy of the page data for page iPg into the buffer belonging
534 ** to page object pPg. Allocate the buffer if necessary. Return SQLITE_OK
535 ** if successful, or an SQLite error code otherwise.
537 static int statGetPage(
538 Btree *pBt, /* Load page from this b-tree */
539 u32 iPg, /* Page number to load */
540 StatPage *pPg /* Load page into this object */
542 int pgsz = sqlite3BtreeGetPageSize(pBt);
543 DbPage *pDbPage = 0;
544 int rc;
546 if( pPg->aPg==0 ){
547 pPg->aPg = (u8*)sqlite3_malloc(pgsz + DBSTAT_PAGE_PADDING_BYTES);
548 if( pPg->aPg==0 ){
549 return SQLITE_NOMEM_BKPT;
551 memset(&pPg->aPg[pgsz], 0, DBSTAT_PAGE_PADDING_BYTES);
554 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPg, &pDbPage, 0);
555 if( rc==SQLITE_OK ){
556 const u8 *a = sqlite3PagerGetData(pDbPage);
557 memcpy(pPg->aPg, a, pgsz);
558 sqlite3PagerUnref(pDbPage);
561 return rc;
565 ** Move a DBSTAT cursor to the next entry. Normally, the next
566 ** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0),
567 ** the next entry is the next btree.
569 static int statNext(sqlite3_vtab_cursor *pCursor){
570 int rc;
571 int nPayload;
572 char *z;
573 StatCursor *pCsr = (StatCursor *)pCursor;
574 StatTable *pTab = (StatTable *)pCursor->pVtab;
575 Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
576 Pager *pPager = sqlite3BtreePager(pBt);
578 sqlite3_free(pCsr->zPath);
579 pCsr->zPath = 0;
581 statNextRestart:
582 if( pCsr->iPage<0 ){
583 /* Start measuring space on the next btree */
584 statResetCounts(pCsr);
585 rc = sqlite3_step(pCsr->pStmt);
586 if( rc==SQLITE_ROW ){
587 int nPage;
588 u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
589 sqlite3PagerPagecount(pPager, &nPage);
590 if( nPage==0 ){
591 pCsr->isEof = 1;
592 return sqlite3_reset(pCsr->pStmt);
594 rc = statGetPage(pBt, iRoot, &pCsr->aPage[0]);
595 pCsr->aPage[0].iPgno = iRoot;
596 pCsr->aPage[0].iCell = 0;
597 if( !pCsr->isAgg ){
598 pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
599 if( z==0 ) rc = SQLITE_NOMEM_BKPT;
601 pCsr->iPage = 0;
602 pCsr->nPage = 1;
603 }else{
604 pCsr->isEof = 1;
605 return sqlite3_reset(pCsr->pStmt);
607 }else{
608 /* Continue analyzing the btree previously started */
609 StatPage *p = &pCsr->aPage[pCsr->iPage];
610 if( !pCsr->isAgg ) statResetCounts(pCsr);
611 while( p->iCell<p->nCell ){
612 StatCell *pCell = &p->aCell[p->iCell];
613 while( pCell->iOvfl<pCell->nOvfl ){
614 int nUsable, iOvfl;
615 sqlite3BtreeEnter(pBt);
616 nUsable = sqlite3BtreeGetPageSize(pBt) -
617 sqlite3BtreeGetReserveNoMutex(pBt);
618 sqlite3BtreeLeave(pBt);
619 pCsr->nPage++;
620 statSizeAndOffset(pCsr);
621 if( pCell->iOvfl<pCell->nOvfl-1 ){
622 pCsr->nPayload += nUsable - 4;
623 }else{
624 pCsr->nPayload += pCell->nLastOvfl;
625 pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl;
627 iOvfl = pCell->iOvfl;
628 pCell->iOvfl++;
629 if( !pCsr->isAgg ){
630 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
631 pCsr->iPageno = pCell->aOvfl[iOvfl];
632 pCsr->zPagetype = "overflow";
633 pCsr->zPath = z = sqlite3_mprintf(
634 "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl
636 return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
639 if( p->iRightChildPg ) break;
640 p->iCell++;
643 if( !p->iRightChildPg || p->iCell>p->nCell ){
644 statClearPage(p);
645 pCsr->iPage--;
646 if( pCsr->isAgg && pCsr->iPage<0 ){
647 /* label-statNext-done: When computing aggregate space usage over
648 ** an entire btree, this is the exit point from this function */
649 return SQLITE_OK;
651 goto statNextRestart; /* Tail recursion */
653 pCsr->iPage++;
654 if( pCsr->iPage>=ArraySize(pCsr->aPage) ){
655 statResetCsr(pCsr);
656 return SQLITE_CORRUPT_BKPT;
658 assert( p==&pCsr->aPage[pCsr->iPage-1] );
660 if( p->iCell==p->nCell ){
661 p[1].iPgno = p->iRightChildPg;
662 }else{
663 p[1].iPgno = p->aCell[p->iCell].iChildPg;
665 rc = statGetPage(pBt, p[1].iPgno, &p[1]);
666 pCsr->nPage++;
667 p[1].iCell = 0;
668 if( !pCsr->isAgg ){
669 p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
670 if( z==0 ) rc = SQLITE_NOMEM_BKPT;
672 p->iCell++;
676 /* Populate the StatCursor fields with the values to be returned
677 ** by the xColumn() and xRowid() methods.
679 if( rc==SQLITE_OK ){
680 int i;
681 StatPage *p = &pCsr->aPage[pCsr->iPage];
682 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
683 pCsr->iPageno = p->iPgno;
685 rc = statDecodePage(pBt, p);
686 if( rc==SQLITE_OK ){
687 statSizeAndOffset(pCsr);
689 switch( p->flags ){
690 case 0x05: /* table internal */
691 case 0x02: /* index internal */
692 pCsr->zPagetype = "internal";
693 break;
694 case 0x0D: /* table leaf */
695 case 0x0A: /* index leaf */
696 pCsr->zPagetype = "leaf";
697 break;
698 default:
699 pCsr->zPagetype = "corrupted";
700 break;
702 pCsr->nCell += p->nCell;
703 pCsr->nUnused += p->nUnused;
704 if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload;
705 if( !pCsr->isAgg ){
706 pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath);
707 if( z==0 ) rc = SQLITE_NOMEM_BKPT;
709 nPayload = 0;
710 for(i=0; i<p->nCell; i++){
711 nPayload += p->aCell[i].nLocal;
713 pCsr->nPayload += nPayload;
715 /* If computing aggregate space usage by btree, continue with the
716 ** next page. The loop will exit via the return at label-statNext-done
718 if( pCsr->isAgg ) goto statNextRestart;
722 return rc;
725 static int statEof(sqlite3_vtab_cursor *pCursor){
726 StatCursor *pCsr = (StatCursor *)pCursor;
727 return pCsr->isEof;
730 /* Initialize a cursor according to the query plan idxNum using the
731 ** arguments in argv[0]. See statBestIndex() for a description of the
732 ** meaning of the bits in idxNum.
734 static int statFilter(
735 sqlite3_vtab_cursor *pCursor,
736 int idxNum, const char *idxStr,
737 int argc, sqlite3_value **argv
739 StatCursor *pCsr = (StatCursor *)pCursor;
740 StatTable *pTab = (StatTable*)(pCursor->pVtab);
741 sqlite3_str *pSql; /* Query of btrees to analyze */
742 char *zSql; /* String value of pSql */
743 int iArg = 0; /* Count of argv[] parameters used so far */
744 int rc = SQLITE_OK; /* Result of this operation */
745 const char *zName = 0; /* Only provide analysis of this table */
746 (void)argc;
747 (void)idxStr;
749 statResetCsr(pCsr);
750 sqlite3_finalize(pCsr->pStmt);
751 pCsr->pStmt = 0;
752 if( idxNum & 0x01 ){
753 /* schema=? constraint is present. Get its value */
754 const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]);
755 pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
756 if( pCsr->iDb<0 ){
757 pCsr->iDb = 0;
758 pCsr->isEof = 1;
759 return SQLITE_OK;
761 }else{
762 pCsr->iDb = pTab->iDb;
764 if( idxNum & 0x02 ){
765 /* name=? constraint is present */
766 zName = (const char*)sqlite3_value_text(argv[iArg++]);
768 if( idxNum & 0x04 ){
769 /* aggregate=? constraint is present */
770 pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0;
771 }else{
772 pCsr->isAgg = 0;
774 pSql = sqlite3_str_new(pTab->db);
775 sqlite3_str_appendf(pSql,
776 "SELECT * FROM ("
777 "SELECT 'sqlite_schema' AS name,1 AS rootpage,'table' AS type"
778 " UNION ALL "
779 "SELECT name,rootpage,type"
780 " FROM \"%w\".sqlite_schema WHERE rootpage!=0)",
781 pTab->db->aDb[pCsr->iDb].zDbSName);
782 if( zName ){
783 sqlite3_str_appendf(pSql, "WHERE name=%Q", zName);
785 if( idxNum & 0x08 ){
786 sqlite3_str_appendf(pSql, " ORDER BY name");
788 zSql = sqlite3_str_finish(pSql);
789 if( zSql==0 ){
790 return SQLITE_NOMEM_BKPT;
791 }else{
792 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
793 sqlite3_free(zSql);
796 if( rc==SQLITE_OK ){
797 pCsr->iPage = -1;
798 rc = statNext(pCursor);
800 return rc;
803 static int statColumn(
804 sqlite3_vtab_cursor *pCursor,
805 sqlite3_context *ctx,
806 int i
808 StatCursor *pCsr = (StatCursor *)pCursor;
809 switch( i ){
810 case 0: /* name */
811 sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT);
812 break;
813 case 1: /* path */
814 if( !pCsr->isAgg ){
815 sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT);
817 break;
818 case 2: /* pageno */
819 if( pCsr->isAgg ){
820 sqlite3_result_int64(ctx, pCsr->nPage);
821 }else{
822 sqlite3_result_int64(ctx, pCsr->iPageno);
824 break;
825 case 3: /* pagetype */
826 if( !pCsr->isAgg ){
827 sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC);
829 break;
830 case 4: /* ncell */
831 sqlite3_result_int64(ctx, pCsr->nCell);
832 break;
833 case 5: /* payload */
834 sqlite3_result_int64(ctx, pCsr->nPayload);
835 break;
836 case 6: /* unused */
837 sqlite3_result_int64(ctx, pCsr->nUnused);
838 break;
839 case 7: /* mx_payload */
840 sqlite3_result_int64(ctx, pCsr->nMxPayload);
841 break;
842 case 8: /* pgoffset */
843 if( !pCsr->isAgg ){
844 sqlite3_result_int64(ctx, pCsr->iOffset);
846 break;
847 case 9: /* pgsize */
848 sqlite3_result_int64(ctx, pCsr->szPage);
849 break;
850 case 10: { /* schema */
851 sqlite3 *db = sqlite3_context_db_handle(ctx);
852 int iDb = pCsr->iDb;
853 sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC);
854 break;
856 default: { /* aggregate */
857 sqlite3_result_int(ctx, pCsr->isAgg);
858 break;
861 return SQLITE_OK;
864 static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
865 StatCursor *pCsr = (StatCursor *)pCursor;
866 *pRowid = pCsr->iPageno;
867 return SQLITE_OK;
871 ** Invoke this routine to register the "dbstat" virtual table module
873 int sqlite3DbstatRegister(sqlite3 *db){
874 static sqlite3_module dbstat_module = {
875 0, /* iVersion */
876 statConnect, /* xCreate */
877 statConnect, /* xConnect */
878 statBestIndex, /* xBestIndex */
879 statDisconnect, /* xDisconnect */
880 statDisconnect, /* xDestroy */
881 statOpen, /* xOpen - open a cursor */
882 statClose, /* xClose - close a cursor */
883 statFilter, /* xFilter - configure scan constraints */
884 statNext, /* xNext - advance a cursor */
885 statEof, /* xEof - check for end of scan */
886 statColumn, /* xColumn - read data */
887 statRowid, /* xRowid - read data */
888 0, /* xUpdate */
889 0, /* xBegin */
890 0, /* xSync */
891 0, /* xCommit */
892 0, /* xRollback */
893 0, /* xFindMethod */
894 0, /* xRename */
895 0, /* xSavepoint */
896 0, /* xRelease */
897 0, /* xRollbackTo */
898 0, /* xShadowName */
899 0 /* xIntegrity */
901 return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
903 #elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
904 int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
905 #endif /* SQLITE_ENABLE_DBSTAT_VTAB */