4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This is an SQLite module implementing full-text search.
17 ** The code in this file is only compiled if:
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
70 ** A doclist is stored like this:
73 ** varint docid; (delta from previous doclist)
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
81 ** varint position; (2 more than the delta from previous position)
84 ** varint POS_END; (marks end of positions for this document.
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the delta to next docid (357). It has one position 70
105 ** (72-2) and then terminates with the 0 at K.
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
261 ** MERGE_COUNT segments
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
295 # define SQLITE_CORE 1
307 # include "sqlite3ext.h"
308 SQLITE_EXTENSION_INIT1
311 typedef struct Fts3HashWrapper Fts3HashWrapper
;
312 struct Fts3HashWrapper
{
313 Fts3Hash hash
; /* Hash table */
314 int nRef
; /* Number of pointers to this object */
317 static int fts3EvalNext(Fts3Cursor
*pCsr
);
318 static int fts3EvalStart(Fts3Cursor
*pCsr
);
319 static int fts3TermSegReaderCursor(
320 Fts3Cursor
*, const char *, int, int, Fts3MultiSegReader
**);
323 ** This variable is set to false when running tests for which the on disk
324 ** structures should not be corrupt. Otherwise, true. If it is false, extra
325 ** assert() conditions in the fts3 code are activated - conditions that are
326 ** only true if it is guaranteed that the fts3 database is not corrupt.
329 int sqlite3_fts3_may_be_corrupt
= 1;
333 ** Write a 64-bit variable-length integer to memory starting at p[0].
334 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
335 ** The number of bytes written is returned.
337 int sqlite3Fts3PutVarint(char *p
, sqlite_int64 v
){
338 unsigned char *q
= (unsigned char *) p
;
339 sqlite_uint64 vu
= v
;
341 *q
++ = (unsigned char) ((vu
& 0x7f) | 0x80);
344 q
[-1] &= 0x7f; /* turn off high bit in final byte */
345 assert( q
- (unsigned char *)p
<= FTS3_VARINT_MAX
);
346 return (int) (q
- (unsigned char *)p
);
349 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \
350 v = (v & mask1) | ( (*(const unsigned char*)(ptr++)) << shift ); \
351 if( (v & mask2)==0 ){ var = v; return ret; }
352 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \
354 if( (v & mask2)==0 ){ var = v; return ret; }
356 int sqlite3Fts3GetVarintU(const char *pBuf
, sqlite_uint64
*v
){
357 const unsigned char *p
= (const unsigned char*)pBuf
;
358 const unsigned char *pStart
= p
;
363 GETVARINT_INIT(a
, p
, 0, 0x00, 0x80, *v
, 1);
364 GETVARINT_STEP(a
, p
, 7, 0x7F, 0x4000, *v
, 2);
365 GETVARINT_STEP(a
, p
, 14, 0x3FFF, 0x200000, *v
, 3);
366 GETVARINT_STEP(a
, p
, 21, 0x1FFFFF, 0x10000000, *v
, 4);
367 b
= (a
& 0x0FFFFFFF );
369 for(shift
=28; shift
<=63; shift
+=7){
371 b
+= (c
&0x7F) << shift
;
372 if( (c
& 0x80)==0 ) break;
375 return (int)(p
- pStart
);
379 ** Read a 64-bit variable-length integer from memory starting at p[0].
380 ** Return the number of bytes read, or 0 on error.
381 ** The value is stored in *v.
383 int sqlite3Fts3GetVarint(const char *pBuf
, sqlite_int64
*v
){
384 return sqlite3Fts3GetVarintU(pBuf
, (sqlite3_uint64
*)v
);
388 ** Read a 64-bit variable-length integer from memory starting at p[0] and
389 ** not extending past pEnd[-1].
390 ** Return the number of bytes read, or 0 on error.
391 ** The value is stored in *v.
393 int sqlite3Fts3GetVarintBounded(
398 const unsigned char *p
= (const unsigned char*)pBuf
;
399 const unsigned char *pStart
= p
;
400 const unsigned char *pX
= (const unsigned char*)pEnd
;
403 for(shift
=0; shift
<=63; shift
+=7){
404 u64 c
= p
<pX
? *p
: 0;
406 b
+= (c
&0x7F) << shift
;
407 if( (c
& 0x80)==0 ) break;
410 return (int)(p
- pStart
);
414 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to
415 ** a non-negative 32-bit integer before it is returned.
417 int sqlite3Fts3GetVarint32(const char *p
, int *pi
){
418 const unsigned char *ptr
= (const unsigned char*)p
;
421 #ifndef fts3GetVarint32
422 GETVARINT_INIT(a
, ptr
, 0, 0x00, 0x80, *pi
, 1);
428 GETVARINT_STEP(a
, ptr
, 7, 0x7F, 0x4000, *pi
, 2);
429 GETVARINT_STEP(a
, ptr
, 14, 0x3FFF, 0x200000, *pi
, 3);
430 GETVARINT_STEP(a
, ptr
, 21, 0x1FFFFF, 0x10000000, *pi
, 4);
431 a
= (a
& 0x0FFFFFFF );
432 *pi
= (int)(a
| ((u32
)(*ptr
& 0x07) << 28));
433 assert( 0==(a
& 0x80000000) );
439 ** Return the number of bytes required to encode v as a varint
441 int sqlite3Fts3VarintLen(sqlite3_uint64 v
){
451 ** Convert an SQL-style quoted string into a normal string by removing
452 ** the quote characters. The conversion is done in-place. If the
453 ** input does not begin with a quote character, then this routine
464 void sqlite3Fts3Dequote(char *z
){
465 char quote
; /* Quote character (if any ) */
468 if( quote
=='[' || quote
=='\'' || quote
=='"' || quote
=='`' ){
469 int iIn
= 1; /* Index of next byte to read from input */
470 int iOut
= 0; /* Index of next byte to write to output */
472 /* If the first byte was a '[', then the close-quote character is a ']' */
473 if( quote
=='[' ) quote
= ']';
477 if( z
[iIn
+1]!=quote
) break;
481 z
[iOut
++] = z
[iIn
++];
489 ** Read a single varint from the doclist at *pp and advance *pp to point
490 ** to the first byte past the end of the varint. Add the value of the varint
493 static void fts3GetDeltaVarint(char **pp
, sqlite3_int64
*pVal
){
495 *pp
+= sqlite3Fts3GetVarint(*pp
, &iVal
);
500 ** When this function is called, *pp points to the first byte following a
501 ** varint that is part of a doclist (or position-list, or any other list
502 ** of varints). This function moves *pp to point to the start of that varint,
503 ** and sets *pVal by the varint value.
505 ** Argument pStart points to the first byte of the doclist that the
506 ** varint is part of.
508 static void fts3GetReverseVarint(
516 /* Pointer p now points at the first byte past the varint we are
517 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is
518 ** clear on character p[-1]. */
519 for(p
= (*pp
)-2; p
>=pStart
&& *p
&0x80; p
--);
523 sqlite3Fts3GetVarint(p
, &iVal
);
528 ** The xDisconnect() virtual table method.
530 static int fts3DisconnectMethod(sqlite3_vtab
*pVtab
){
531 Fts3Table
*p
= (Fts3Table
*)pVtab
;
534 assert( p
->nPendingData
==0 );
535 assert( p
->pSegments
==0 );
537 /* Free any prepared statements held */
538 sqlite3_finalize(p
->pSeekStmt
);
539 for(i
=0; i
<SizeofArray(p
->aStmt
); i
++){
540 sqlite3_finalize(p
->aStmt
[i
]);
542 sqlite3_free(p
->zSegmentsTbl
);
543 sqlite3_free(p
->zReadExprlist
);
544 sqlite3_free(p
->zWriteExprlist
);
545 sqlite3_free(p
->zContentTbl
);
546 sqlite3_free(p
->zLanguageid
);
548 /* Invoke the tokenizer destructor to free the tokenizer. */
549 p
->pTokenizer
->pModule
->xDestroy(p
->pTokenizer
);
556 ** Write an error message into *pzErr
558 void sqlite3Fts3ErrMsg(char **pzErr
, const char *zFormat
, ...){
560 sqlite3_free(*pzErr
);
561 va_start(ap
, zFormat
);
562 *pzErr
= sqlite3_vmprintf(zFormat
, ap
);
567 ** Construct one or more SQL statements from the format string given
568 ** and then evaluate those statements. The success code is written
571 ** If *pRc is initially non-zero then this routine is a no-op.
573 static void fts3DbExec(
574 int *pRc
, /* Success code */
575 sqlite3
*db
, /* Database in which to run SQL */
576 const char *zFormat
, /* Format string for SQL */
577 ... /* Arguments to the format string */
582 va_start(ap
, zFormat
);
583 zSql
= sqlite3_vmprintf(zFormat
, ap
);
588 *pRc
= sqlite3_exec(db
, zSql
, 0, 0, 0);
594 ** The xDestroy() virtual table method.
596 static int fts3DestroyMethod(sqlite3_vtab
*pVtab
){
597 Fts3Table
*p
= (Fts3Table
*)pVtab
;
598 int rc
= SQLITE_OK
; /* Return code */
599 const char *zDb
= p
->zDb
; /* Name of database (e.g. "main", "temp") */
600 sqlite3
*db
= p
->db
; /* Database handle */
602 /* Drop the shadow tables */
604 "DROP TABLE IF EXISTS %Q.'%q_segments';"
605 "DROP TABLE IF EXISTS %Q.'%q_segdir';"
606 "DROP TABLE IF EXISTS %Q.'%q_docsize';"
607 "DROP TABLE IF EXISTS %Q.'%q_stat';"
608 "%s DROP TABLE IF EXISTS %Q.'%q_content';",
613 (p
->zContentTbl
? "--" : ""), zDb
,p
->zName
616 /* If everything has worked, invoke fts3DisconnectMethod() to free the
617 ** memory associated with the Fts3Table structure and return SQLITE_OK.
618 ** Otherwise, return an SQLite error code.
620 return (rc
==SQLITE_OK
? fts3DisconnectMethod(pVtab
) : rc
);
625 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
626 ** passed as the first argument. This is done as part of the xConnect()
627 ** and xCreate() methods.
629 ** If *pRc is non-zero when this function is called, it is a no-op.
630 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
633 static void fts3DeclareVtab(int *pRc
, Fts3Table
*p
){
634 if( *pRc
==SQLITE_OK
){
635 int i
; /* Iterator variable */
636 int rc
; /* Return code */
637 char *zSql
; /* SQL statement passed to declare_vtab() */
638 char *zCols
; /* List of user defined columns */
639 const char *zLanguageid
;
641 zLanguageid
= (p
->zLanguageid
? p
->zLanguageid
: "__langid");
642 sqlite3_vtab_config(p
->db
, SQLITE_VTAB_CONSTRAINT_SUPPORT
, 1);
643 sqlite3_vtab_config(p
->db
, SQLITE_VTAB_INNOCUOUS
);
645 /* Create a list of user columns for the virtual table */
646 zCols
= sqlite3_mprintf("%Q, ", p
->azColumn
[0]);
647 for(i
=1; zCols
&& i
<p
->nColumn
; i
++){
648 zCols
= sqlite3_mprintf("%z%Q, ", zCols
, p
->azColumn
[i
]);
651 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
652 zSql
= sqlite3_mprintf(
653 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)",
654 zCols
, p
->zName
, zLanguageid
656 if( !zCols
|| !zSql
){
659 rc
= sqlite3_declare_vtab(p
->db
, zSql
);
669 ** Create the %_stat table if it does not already exist.
671 void sqlite3Fts3CreateStatTable(int *pRc
, Fts3Table
*p
){
672 fts3DbExec(pRc
, p
->db
,
673 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'"
674 "(id INTEGER PRIMARY KEY, value BLOB);",
677 if( (*pRc
)==SQLITE_OK
) p
->bHasStat
= 1;
681 ** Create the backing store tables (%_content, %_segments and %_segdir)
682 ** required by the FTS3 table passed as the only argument. This is done
683 ** as part of the vtab xCreate() method.
685 ** If the p->bHasDocsize boolean is true (indicating that this is an
686 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
687 ** %_stat tables required by FTS4.
689 static int fts3CreateTables(Fts3Table
*p
){
690 int rc
= SQLITE_OK
; /* Return code */
691 int i
; /* Iterator variable */
692 sqlite3
*db
= p
->db
; /* The database connection */
694 if( p
->zContentTbl
==0 ){
695 const char *zLanguageid
= p
->zLanguageid
;
696 char *zContentCols
; /* Columns of %_content table */
698 /* Create a list of user columns for the content table */
699 zContentCols
= sqlite3_mprintf("docid INTEGER PRIMARY KEY");
700 for(i
=0; zContentCols
&& i
<p
->nColumn
; i
++){
701 char *z
= p
->azColumn
[i
];
702 zContentCols
= sqlite3_mprintf("%z, 'c%d%q'", zContentCols
, i
, z
);
704 if( zLanguageid
&& zContentCols
){
705 zContentCols
= sqlite3_mprintf("%z, langid", zContentCols
, zLanguageid
);
707 if( zContentCols
==0 ) rc
= SQLITE_NOMEM
;
709 /* Create the content table */
711 "CREATE TABLE %Q.'%q_content'(%s)",
712 p
->zDb
, p
->zName
, zContentCols
714 sqlite3_free(zContentCols
);
717 /* Create other tables */
719 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
723 "CREATE TABLE %Q.'%q_segdir'("
726 "start_block INTEGER,"
727 "leaves_end_block INTEGER,"
730 "PRIMARY KEY(level, idx)"
734 if( p
->bHasDocsize
){
736 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
740 assert( p
->bHasStat
==p
->bFts4
);
742 sqlite3Fts3CreateStatTable(&rc
, p
);
748 ** Store the current database page-size in bytes in p->nPgsz.
750 ** If *pRc is non-zero when this function is called, it is a no-op.
751 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
754 static void fts3DatabasePageSize(int *pRc
, Fts3Table
*p
){
755 if( *pRc
==SQLITE_OK
){
756 int rc
; /* Return code */
757 char *zSql
; /* SQL text "PRAGMA %Q.page_size" */
758 sqlite3_stmt
*pStmt
; /* Compiled "PRAGMA %Q.page_size" statement */
760 zSql
= sqlite3_mprintf("PRAGMA %Q.page_size", p
->zDb
);
764 rc
= sqlite3_prepare(p
->db
, zSql
, -1, &pStmt
, 0);
767 p
->nPgsz
= sqlite3_column_int(pStmt
, 0);
768 rc
= sqlite3_finalize(pStmt
);
769 }else if( rc
==SQLITE_AUTH
){
774 assert( p
->nPgsz
>0 || rc
!=SQLITE_OK
);
781 ** "Special" FTS4 arguments are column specifications of the following form:
785 ** There may not be whitespace surrounding the "=" character. The <value>
786 ** term may be quoted, but the <key> may not.
788 static int fts3IsSpecialColumn(
794 const char *zCsr
= z
;
797 if( *zCsr
=='\0' ) return 0;
801 *pnKey
= (int)(zCsr
-z
);
802 zValue
= sqlite3_mprintf("%s", &zCsr
[1]);
804 sqlite3Fts3Dequote(zValue
);
811 ** Append the output of a printf() style formatting to an existing string.
813 static void fts3Appendf(
814 int *pRc
, /* IN/OUT: Error code */
815 char **pz
, /* IN/OUT: Pointer to string buffer */
816 const char *zFormat
, /* Printf format string to append */
817 ... /* Arguments for printf format string */
819 if( *pRc
==SQLITE_OK
){
822 va_start(ap
, zFormat
);
823 z
= sqlite3_vmprintf(zFormat
, ap
);
826 char *z2
= sqlite3_mprintf("%s%s", *pz
, z
);
830 if( z
==0 ) *pRc
= SQLITE_NOMEM
;
837 ** Return a copy of input string zInput enclosed in double-quotes (") and
838 ** with all double quote characters escaped. For example:
840 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
842 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
843 ** is the callers responsibility to call sqlite3_free() to release this
846 static char *fts3QuoteId(char const *zInput
){
849 nRet
= 2 + (int)strlen(zInput
)*2 + 1;
850 zRet
= sqlite3_malloc64(nRet
);
855 for(i
=0; zInput
[i
]; i
++){
856 if( zInput
[i
]=='"' ) *(z
++) = '"';
866 ** Return a list of comma separated SQL expressions and a FROM clause that
867 ** could be used in a SELECT statement such as the following:
869 ** SELECT <list of expressions> FROM %_content AS x ...
871 ** to return the docid, followed by each column of text data in order
872 ** from left to write. If parameter zFunc is not NULL, then instead of
873 ** being returned directly each column of text data is passed to an SQL
874 ** function named zFunc first. For example, if zFunc is "unzip" and the
875 ** table has the three user-defined columns "a", "b", and "c", the following
876 ** string is returned:
878 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x"
880 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
881 ** is the responsibility of the caller to eventually free it.
883 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
884 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
885 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
886 ** no error occurs, *pRc is left unmodified.
888 static char *fts3ReadExprList(Fts3Table
*p
, const char *zFunc
, int *pRc
){
894 if( p
->zContentTbl
==0 ){
898 zFree
= zFunction
= fts3QuoteId(zFunc
);
900 fts3Appendf(pRc
, &zRet
, "docid");
901 for(i
=0; i
<p
->nColumn
; i
++){
902 fts3Appendf(pRc
, &zRet
, ",%s(x.'c%d%q')", zFunction
, i
, p
->azColumn
[i
]);
904 if( p
->zLanguageid
){
905 fts3Appendf(pRc
, &zRet
, ", x.%Q", "langid");
909 fts3Appendf(pRc
, &zRet
, "rowid");
910 for(i
=0; i
<p
->nColumn
; i
++){
911 fts3Appendf(pRc
, &zRet
, ", x.'%q'", p
->azColumn
[i
]);
913 if( p
->zLanguageid
){
914 fts3Appendf(pRc
, &zRet
, ", x.%Q", p
->zLanguageid
);
917 fts3Appendf(pRc
, &zRet
, " FROM '%q'.'%q%s' AS x",
919 (p
->zContentTbl
? p
->zContentTbl
: p
->zName
),
920 (p
->zContentTbl
? "" : "_content")
926 ** Return a list of N comma separated question marks, where N is the number
927 ** of columns in the %_content table (one for the docid plus one for each
928 ** user-defined text column).
930 ** If argument zFunc is not NULL, then all but the first question mark
931 ** is preceded by zFunc and an open bracket, and followed by a closed
932 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
933 ** user-defined text columns, the following string is returned:
935 ** "?, zip(?), zip(?), zip(?)"
937 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
938 ** is the responsibility of the caller to eventually free it.
940 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
941 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
942 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
943 ** no error occurs, *pRc is left unmodified.
945 static char *fts3WriteExprList(Fts3Table
*p
, const char *zFunc
, int *pRc
){
954 zFree
= zFunction
= fts3QuoteId(zFunc
);
956 fts3Appendf(pRc
, &zRet
, "?");
957 for(i
=0; i
<p
->nColumn
; i
++){
958 fts3Appendf(pRc
, &zRet
, ",%s(?)", zFunction
);
960 if( p
->zLanguageid
){
961 fts3Appendf(pRc
, &zRet
, ", ?");
968 ** Buffer z contains a positive integer value encoded as utf-8 text.
969 ** Decode this value and store it in *pnOut, returning the number of bytes
970 ** consumed. If an overflow error occurs return a negative value.
972 int sqlite3Fts3ReadInt(const char *z
, int *pnOut
){
975 for(i
=0; z
[i
]>='0' && z
[i
]<='9'; i
++){
976 iVal
= iVal
*10 + (z
[i
] - '0');
977 if( iVal
>0x7FFFFFFF ) return -1;
984 ** This function interprets the string at (*pp) as a non-negative integer
985 ** value. It reads the integer and sets *pnOut to the value read, then
986 ** sets *pp to point to the byte immediately following the last byte of
987 ** the integer value.
989 ** Only decimal digits ('0'..'9') may be part of an integer value.
991 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
992 ** the output value undefined. Otherwise SQLITE_OK is returned.
994 ** This function is used when parsing the "prefix=" FTS4 parameter.
996 static int fts3GobbleInt(const char **pp
, int *pnOut
){
997 const int MAX_NPREFIX
= 10000000;
998 int nInt
= 0; /* Output value */
1000 nByte
= sqlite3Fts3ReadInt(*pp
, &nInt
);
1001 if( nInt
>MAX_NPREFIX
){
1005 return SQLITE_ERROR
;
1013 ** This function is called to allocate an array of Fts3Index structures
1014 ** representing the indexes maintained by the current FTS table. FTS tables
1015 ** always maintain the main "terms" index, but may also maintain one or
1016 ** more "prefix" indexes, depending on the value of the "prefix=" parameter
1017 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
1019 ** Argument zParam is passed the value of the "prefix=" option if one was
1020 ** specified, or NULL otherwise.
1022 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
1023 ** the allocated array. *pnIndex is set to the number of elements in the
1024 ** array. If an error does occur, an SQLite error code is returned.
1026 ** Regardless of whether or not an error is returned, it is the responsibility
1027 ** of the caller to call sqlite3_free() on the output array to free it.
1029 static int fts3PrefixParameter(
1030 const char *zParam
, /* ABC in prefix=ABC parameter to parse */
1031 int *pnIndex
, /* OUT: size of *apIndex[] array */
1032 struct Fts3Index
**apIndex
/* OUT: Array of indexes for this table */
1034 struct Fts3Index
*aIndex
; /* Allocated array */
1035 int nIndex
= 1; /* Number of entries in array */
1037 if( zParam
&& zParam
[0] ){
1040 for(p
=zParam
; *p
; p
++){
1041 if( *p
==',' ) nIndex
++;
1045 aIndex
= sqlite3_malloc64(sizeof(struct Fts3Index
) * nIndex
);
1048 return SQLITE_NOMEM
;
1051 memset(aIndex
, 0, sizeof(struct Fts3Index
) * nIndex
);
1053 const char *p
= zParam
;
1055 for(i
=1; i
<nIndex
; i
++){
1057 if( fts3GobbleInt(&p
, &nPrefix
) ) return SQLITE_ERROR
;
1058 assert( nPrefix
>=0 );
1063 aIndex
[i
].nPrefix
= nPrefix
;
1074 ** This function is called when initializing an FTS4 table that uses the
1075 ** content=xxx option. It determines the number of and names of the columns
1076 ** of the new FTS4 table.
1078 ** The third argument passed to this function is the value passed to the
1079 ** config=xxx option (i.e. "xxx"). This function queries the database for
1080 ** a table of that name. If found, the output variables are populated
1083 ** *pnCol: Set to the number of columns table xxx has,
1085 ** *pnStr: Set to the total amount of space required to store a copy
1086 ** of each columns name, including the nul-terminator.
1088 ** *pazCol: Set to point to an array of *pnCol strings. Each string is
1089 ** the name of the corresponding column in table xxx. The array
1090 ** and its contents are allocated using a single allocation. It
1091 ** is the responsibility of the caller to free this allocation
1092 ** by eventually passing the *pazCol value to sqlite3_free().
1094 ** If the table cannot be found, an error code is returned and the output
1095 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is
1096 ** returned (and the output variables are undefined).
1098 static int fts3ContentColumns(
1099 sqlite3
*db
, /* Database handle */
1100 const char *zDb
, /* Name of db (i.e. "main", "temp" etc.) */
1101 const char *zTbl
, /* Name of content table */
1102 const char ***pazCol
, /* OUT: Malloc'd array of column names */
1103 int *pnCol
, /* OUT: Size of array *pazCol */
1104 int *pnStr
, /* OUT: Bytes of string content */
1105 char **pzErr
/* OUT: error message */
1107 int rc
= SQLITE_OK
; /* Return code */
1108 char *zSql
; /* "SELECT *" statement on zTbl */
1109 sqlite3_stmt
*pStmt
= 0; /* Compiled version of zSql */
1111 zSql
= sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb
, zTbl
);
1115 rc
= sqlite3_prepare(db
, zSql
, -1, &pStmt
, 0);
1116 if( rc
!=SQLITE_OK
){
1117 sqlite3Fts3ErrMsg(pzErr
, "%s", sqlite3_errmsg(db
));
1122 if( rc
==SQLITE_OK
){
1123 const char **azCol
; /* Output array */
1124 sqlite3_int64 nStr
= 0; /* Size of all column names (incl. 0x00) */
1125 int nCol
; /* Number of table columns */
1126 int i
; /* Used to iterate through columns */
1128 /* Loop through the returned columns. Set nStr to the number of bytes of
1129 ** space required to store a copy of each column name, including the
1130 ** nul-terminator byte. */
1131 nCol
= sqlite3_column_count(pStmt
);
1132 for(i
=0; i
<nCol
; i
++){
1133 const char *zCol
= sqlite3_column_name(pStmt
, i
);
1134 nStr
+= strlen(zCol
) + 1;
1137 /* Allocate and populate the array to return. */
1138 azCol
= (const char **)sqlite3_malloc64(sizeof(char *) * nCol
+ nStr
);
1142 char *p
= (char *)&azCol
[nCol
];
1143 for(i
=0; i
<nCol
; i
++){
1144 const char *zCol
= sqlite3_column_name(pStmt
, i
);
1145 int n
= (int)strlen(zCol
)+1;
1151 sqlite3_finalize(pStmt
);
1153 /* Set the output variables. */
1163 ** This function is the implementation of both the xConnect and xCreate
1164 ** methods of the FTS3 virtual table.
1166 ** The argv[] array contains the following:
1168 ** argv[0] -> module name ("fts3" or "fts4")
1169 ** argv[1] -> database name
1170 ** argv[2] -> table name
1171 ** argv[...] -> "column name" and other module argument fields.
1173 static int fts3InitVtab(
1174 int isCreate
, /* True for xCreate, false for xConnect */
1175 sqlite3
*db
, /* The SQLite database connection */
1176 void *pAux
, /* Hash table containing tokenizers */
1177 int argc
, /* Number of elements in argv array */
1178 const char * const *argv
, /* xCreate/xConnect argument array */
1179 sqlite3_vtab
**ppVTab
, /* Write the resulting vtab structure here */
1180 char **pzErr
/* Write any error message here */
1182 Fts3Hash
*pHash
= &((Fts3HashWrapper
*)pAux
)->hash
;
1183 Fts3Table
*p
= 0; /* Pointer to allocated vtab */
1184 int rc
= SQLITE_OK
; /* Return code */
1185 int i
; /* Iterator variable */
1186 sqlite3_int64 nByte
; /* Size of allocation used for *p */
1187 int iCol
; /* Column index */
1188 int nString
= 0; /* Bytes required to hold all column names */
1189 int nCol
= 0; /* Number of columns in the FTS table */
1190 char *zCsr
; /* Space for holding column names */
1191 int nDb
; /* Bytes required to hold database name */
1192 int nName
; /* Bytes required to hold table name */
1193 int isFts4
= (argv
[0][3]=='4'); /* True for FTS4, false for FTS3 */
1194 const char **aCol
; /* Array of column names */
1195 sqlite3_tokenizer
*pTokenizer
= 0; /* Tokenizer for this table */
1197 int nIndex
= 0; /* Size of aIndex[] array */
1198 struct Fts3Index
*aIndex
= 0; /* Array of indexes for this table */
1200 /* The results of parsing supported FTS4 key=value options: */
1201 int bNoDocsize
= 0; /* True to omit %_docsize table */
1202 int bDescIdx
= 0; /* True to store descending indexes */
1203 char *zPrefix
= 0; /* Prefix parameter value (or NULL) */
1204 char *zCompress
= 0; /* compress=? parameter (or NULL) */
1205 char *zUncompress
= 0; /* uncompress=? parameter (or NULL) */
1206 char *zContent
= 0; /* content=? parameter (or NULL) */
1207 char *zLanguageid
= 0; /* languageid=? parameter (or NULL) */
1208 char **azNotindexed
= 0; /* The set of notindexed= columns */
1209 int nNotindexed
= 0; /* Size of azNotindexed[] array */
1211 assert( strlen(argv
[0])==4 );
1212 assert( (sqlite3_strnicmp(argv
[0], "fts4", 4)==0 && isFts4
)
1213 || (sqlite3_strnicmp(argv
[0], "fts3", 4)==0 && !isFts4
)
1216 nDb
= (int)strlen(argv
[1]) + 1;
1217 nName
= (int)strlen(argv
[2]) + 1;
1219 nByte
= sizeof(const char *) * (argc
-2);
1220 aCol
= (const char **)sqlite3_malloc64(nByte
);
1222 memset((void*)aCol
, 0, nByte
);
1223 azNotindexed
= (char **)sqlite3_malloc64(nByte
);
1226 memset(azNotindexed
, 0, nByte
);
1228 if( !aCol
|| !azNotindexed
){
1233 /* Loop through all of the arguments passed by the user to the FTS3/4
1234 ** module (i.e. all the column names and special arguments). This loop
1235 ** does the following:
1237 ** + Figures out the number of columns the FTSX table will have, and
1238 ** the number of bytes of space that must be allocated to store copies
1239 ** of the column names.
1241 ** + If there is a tokenizer specification included in the arguments,
1242 ** initializes the tokenizer pTokenizer.
1244 for(i
=3; rc
==SQLITE_OK
&& i
<argc
; i
++){
1245 char const *z
= argv
[i
];
1249 /* Check if this is a tokenizer specification */
1252 && 0==sqlite3_strnicmp(z
, "tokenize", 8)
1253 && 0==sqlite3Fts3IsIdChar(z
[8])
1255 rc
= sqlite3Fts3InitTokenizer(pHash
, &z
[9], &pTokenizer
, pzErr
);
1258 /* Check if it is an FTS4 special argument. */
1259 else if( isFts4
&& fts3IsSpecialColumn(z
, &nKey
, &zVal
) ){
1264 { "matchinfo", 9 }, /* 0 -> MATCHINFO */
1265 { "prefix", 6 }, /* 1 -> PREFIX */
1266 { "compress", 8 }, /* 2 -> COMPRESS */
1267 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */
1268 { "order", 5 }, /* 4 -> ORDER */
1269 { "content", 7 }, /* 5 -> CONTENT */
1270 { "languageid", 10 }, /* 6 -> LANGUAGEID */
1271 { "notindexed", 10 } /* 7 -> NOTINDEXED */
1278 for(iOpt
=0; iOpt
<SizeofArray(aFts4Opt
); iOpt
++){
1279 struct Fts4Option
*pOp
= &aFts4Opt
[iOpt
];
1280 if( nKey
==pOp
->nOpt
&& !sqlite3_strnicmp(z
, pOp
->zOpt
, pOp
->nOpt
) ){
1285 case 0: /* MATCHINFO */
1286 if( strlen(zVal
)!=4 || sqlite3_strnicmp(zVal
, "fts3", 4) ){
1287 sqlite3Fts3ErrMsg(pzErr
, "unrecognized matchinfo: %s", zVal
);
1293 case 1: /* PREFIX */
1294 sqlite3_free(zPrefix
);
1299 case 2: /* COMPRESS */
1300 sqlite3_free(zCompress
);
1305 case 3: /* UNCOMPRESS */
1306 sqlite3_free(zUncompress
);
1312 if( (strlen(zVal
)!=3 || sqlite3_strnicmp(zVal
, "asc", 3))
1313 && (strlen(zVal
)!=4 || sqlite3_strnicmp(zVal
, "desc", 4))
1315 sqlite3Fts3ErrMsg(pzErr
, "unrecognized order: %s", zVal
);
1318 bDescIdx
= (zVal
[0]=='d' || zVal
[0]=='D');
1321 case 5: /* CONTENT */
1322 sqlite3_free(zContent
);
1327 case 6: /* LANGUAGEID */
1329 sqlite3_free(zLanguageid
);
1334 case 7: /* NOTINDEXED */
1335 azNotindexed
[nNotindexed
++] = zVal
;
1340 assert( iOpt
==SizeofArray(aFts4Opt
) );
1341 sqlite3Fts3ErrMsg(pzErr
, "unrecognized parameter: %s", z
);
1349 /* Otherwise, the argument is a column name. */
1351 nString
+= (int)(strlen(z
) + 1);
1356 /* If a content=xxx option was specified, the following:
1358 ** 1. Ignore any compress= and uncompress= options.
1360 ** 2. If no column names were specified as part of the CREATE VIRTUAL
1361 ** TABLE statement, use all columns from the content table.
1363 if( rc
==SQLITE_OK
&& zContent
){
1364 sqlite3_free(zCompress
);
1365 sqlite3_free(zUncompress
);
1369 sqlite3_free((void*)aCol
);
1371 rc
= fts3ContentColumns(db
, argv
[1], zContent
,&aCol
,&nCol
,&nString
,pzErr
);
1373 /* If a languageid= option was specified, remove the language id
1374 ** column from the aCol[] array. */
1375 if( rc
==SQLITE_OK
&& zLanguageid
){
1377 for(j
=0; j
<nCol
; j
++){
1378 if( sqlite3_stricmp(zLanguageid
, aCol
[j
])==0 ){
1380 for(k
=j
; k
<nCol
; k
++) aCol
[k
] = aCol
[k
+1];
1388 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1391 assert( nString
==0 );
1392 aCol
[0] = "content";
1397 if( pTokenizer
==0 ){
1398 rc
= sqlite3Fts3InitTokenizer(pHash
, "simple", &pTokenizer
, pzErr
);
1399 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1401 assert( pTokenizer
);
1403 rc
= fts3PrefixParameter(zPrefix
, &nIndex
, &aIndex
);
1404 if( rc
==SQLITE_ERROR
){
1406 sqlite3Fts3ErrMsg(pzErr
, "error parsing prefix parameter: %s", zPrefix
);
1408 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1410 /* Allocate and populate the Fts3Table structure. */
1411 nByte
= sizeof(Fts3Table
) + /* Fts3Table */
1412 nCol
* sizeof(char *) + /* azColumn */
1413 nIndex
* sizeof(struct Fts3Index
) + /* aIndex */
1414 nCol
* sizeof(u8
) + /* abNotindexed */
1417 nString
; /* Space for azColumn strings */
1418 p
= (Fts3Table
*)sqlite3_malloc64(nByte
);
1423 memset(p
, 0, nByte
);
1426 p
->nPendingData
= 0;
1427 p
->azColumn
= (char **)&p
[1];
1428 p
->pTokenizer
= pTokenizer
;
1429 p
->nMaxPendingData
= FTS3_MAX_PENDING_DATA
;
1430 p
->bHasDocsize
= (isFts4
&& bNoDocsize
==0);
1431 p
->bHasStat
= (u8
)isFts4
;
1432 p
->bFts4
= (u8
)isFts4
;
1433 p
->bDescIdx
= (u8
)bDescIdx
;
1434 p
->nAutoincrmerge
= 0xff; /* 0xff means setting unknown */
1435 p
->zContentTbl
= zContent
;
1436 p
->zLanguageid
= zLanguageid
;
1439 TESTONLY( p
->inTransaction
= -1 );
1440 TESTONLY( p
->mxSavepoint
= -1 );
1442 p
->aIndex
= (struct Fts3Index
*)&p
->azColumn
[nCol
];
1443 memcpy(p
->aIndex
, aIndex
, sizeof(struct Fts3Index
) * nIndex
);
1445 for(i
=0; i
<nIndex
; i
++){
1446 fts3HashInit(&p
->aIndex
[i
].hPending
, FTS3_HASH_STRING
, 1);
1448 p
->abNotindexed
= (u8
*)&p
->aIndex
[nIndex
];
1450 /* Fill in the zName and zDb fields of the vtab structure. */
1451 zCsr
= (char *)&p
->abNotindexed
[nCol
];
1453 memcpy(zCsr
, argv
[2], nName
);
1456 memcpy(zCsr
, argv
[1], nDb
);
1459 /* Fill in the azColumn array */
1460 for(iCol
=0; iCol
<nCol
; iCol
++){
1463 z
= (char *)sqlite3Fts3NextToken(aCol
[iCol
], &n
);
1468 sqlite3Fts3Dequote(zCsr
);
1469 p
->azColumn
[iCol
] = zCsr
;
1471 assert( zCsr
<= &((char *)p
)[nByte
] );
1474 /* Fill in the abNotindexed array */
1475 for(iCol
=0; iCol
<nCol
; iCol
++){
1476 int n
= (int)strlen(p
->azColumn
[iCol
]);
1477 for(i
=0; i
<nNotindexed
; i
++){
1478 char *zNot
= azNotindexed
[i
];
1479 if( zNot
&& n
==(int)strlen(zNot
)
1480 && 0==sqlite3_strnicmp(p
->azColumn
[iCol
], zNot
, n
)
1482 p
->abNotindexed
[iCol
] = 1;
1484 azNotindexed
[i
] = 0;
1488 for(i
=0; i
<nNotindexed
; i
++){
1489 if( azNotindexed
[i
] ){
1490 sqlite3Fts3ErrMsg(pzErr
, "no such column: %s", azNotindexed
[i
]);
1495 if( rc
==SQLITE_OK
&& (zCompress
==0)!=(zUncompress
==0) ){
1496 char const *zMiss
= (zCompress
==0 ? "compress" : "uncompress");
1498 sqlite3Fts3ErrMsg(pzErr
, "missing %s parameter in fts4 constructor", zMiss
);
1500 p
->zReadExprlist
= fts3ReadExprList(p
, zUncompress
, &rc
);
1501 p
->zWriteExprlist
= fts3WriteExprList(p
, zCompress
, &rc
);
1502 if( rc
!=SQLITE_OK
) goto fts3_init_out
;
1504 /* If this is an xCreate call, create the underlying tables in the
1505 ** database. TODO: For xConnect(), it could verify that said tables exist.
1508 rc
= fts3CreateTables(p
);
1511 /* Check to see if a legacy fts3 table has been "upgraded" by the
1512 ** addition of a %_stat table so that it can use incremental merge.
1514 if( !isFts4
&& !isCreate
){
1518 /* Figure out the page-size for the database. This is required in order to
1519 ** estimate the cost of loading large doclists from the database. */
1520 fts3DatabasePageSize(&rc
, p
);
1521 p
->nNodeSize
= p
->nPgsz
-35;
1523 #if defined(SQLITE_DEBUG)||defined(SQLITE_TEST)
1524 p
->nMergeCount
= FTS3_MERGE_COUNT
;
1527 /* Declare the table schema to SQLite. */
1528 fts3DeclareVtab(&rc
, p
);
1531 sqlite3_free(zPrefix
);
1532 sqlite3_free(aIndex
);
1533 sqlite3_free(zCompress
);
1534 sqlite3_free(zUncompress
);
1535 sqlite3_free(zContent
);
1536 sqlite3_free(zLanguageid
);
1537 for(i
=0; i
<nNotindexed
; i
++) sqlite3_free(azNotindexed
[i
]);
1538 sqlite3_free((void *)aCol
);
1539 sqlite3_free((void *)azNotindexed
);
1540 if( rc
!=SQLITE_OK
){
1542 fts3DisconnectMethod((sqlite3_vtab
*)p
);
1543 }else if( pTokenizer
){
1544 pTokenizer
->pModule
->xDestroy(pTokenizer
);
1547 assert( p
->pSegments
==0 );
1554 ** The xConnect() and xCreate() methods for the virtual table. All the
1555 ** work is done in function fts3InitVtab().
1557 static int fts3ConnectMethod(
1558 sqlite3
*db
, /* Database connection */
1559 void *pAux
, /* Pointer to tokenizer hash table */
1560 int argc
, /* Number of elements in argv array */
1561 const char * const *argv
, /* xCreate/xConnect argument array */
1562 sqlite3_vtab
**ppVtab
, /* OUT: New sqlite3_vtab object */
1563 char **pzErr
/* OUT: sqlite3_malloc'd error message */
1565 return fts3InitVtab(0, db
, pAux
, argc
, argv
, ppVtab
, pzErr
);
1567 static int fts3CreateMethod(
1568 sqlite3
*db
, /* Database connection */
1569 void *pAux
, /* Pointer to tokenizer hash table */
1570 int argc
, /* Number of elements in argv array */
1571 const char * const *argv
, /* xCreate/xConnect argument array */
1572 sqlite3_vtab
**ppVtab
, /* OUT: New sqlite3_vtab object */
1573 char **pzErr
/* OUT: sqlite3_malloc'd error message */
1575 return fts3InitVtab(1, db
, pAux
, argc
, argv
, ppVtab
, pzErr
);
1579 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this
1580 ** extension is currently being used by a version of SQLite too old to
1581 ** support estimatedRows. In that case this function is a no-op.
1583 static void fts3SetEstimatedRows(sqlite3_index_info
*pIdxInfo
, i64 nRow
){
1584 #if SQLITE_VERSION_NUMBER>=3008002
1585 if( sqlite3_libversion_number()>=3008002 ){
1586 pIdxInfo
->estimatedRows
= nRow
;
1592 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
1593 ** extension is currently being used by a version of SQLite too old to
1594 ** support index-info flags. In that case this function is a no-op.
1596 static void fts3SetUniqueFlag(sqlite3_index_info
*pIdxInfo
){
1597 #if SQLITE_VERSION_NUMBER>=3008012
1598 if( sqlite3_libversion_number()>=3008012 ){
1599 pIdxInfo
->idxFlags
|= SQLITE_INDEX_SCAN_UNIQUE
;
1605 ** Implementation of the xBestIndex method for FTS3 tables. There
1606 ** are three possible strategies, in order of preference:
1608 ** 1. Direct lookup by rowid or docid.
1609 ** 2. Full-text search using a MATCH operator on a non-docid column.
1610 ** 3. Linear scan of %_content table.
1612 static int fts3BestIndexMethod(sqlite3_vtab
*pVTab
, sqlite3_index_info
*pInfo
){
1613 Fts3Table
*p
= (Fts3Table
*)pVTab
;
1614 int i
; /* Iterator variable */
1615 int iCons
= -1; /* Index of constraint to use */
1617 int iLangidCons
= -1; /* Index of langid=x constraint, if present */
1618 int iDocidGe
= -1; /* Index of docid>=x constraint, if present */
1619 int iDocidLe
= -1; /* Index of docid<=x constraint, if present */
1623 return SQLITE_ERROR
;
1626 /* By default use a full table scan. This is an expensive option,
1627 ** so search through the constraints to see if a more efficient
1628 ** strategy is possible.
1630 pInfo
->idxNum
= FTS3_FULLSCAN_SEARCH
;
1631 pInfo
->estimatedCost
= 5000000;
1632 for(i
=0; i
<pInfo
->nConstraint
; i
++){
1633 int bDocid
; /* True if this constraint is on docid */
1634 struct sqlite3_index_constraint
*pCons
= &pInfo
->aConstraint
[i
];
1635 if( pCons
->usable
==0 ){
1636 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
){
1637 /* There exists an unusable MATCH constraint. This means that if
1638 ** the planner does elect to use the results of this call as part
1639 ** of the overall query plan the user will see an "unable to use
1640 ** function MATCH in the requested context" error. To discourage
1641 ** this, return a very high cost here. */
1642 pInfo
->idxNum
= FTS3_FULLSCAN_SEARCH
;
1643 pInfo
->estimatedCost
= 1e50
;
1644 fts3SetEstimatedRows(pInfo
, ((sqlite3_int64
)1) << 50);
1650 bDocid
= (pCons
->iColumn
<0 || pCons
->iColumn
==p
->nColumn
+1);
1652 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1653 if( iCons
<0 && pCons
->op
==SQLITE_INDEX_CONSTRAINT_EQ
&& bDocid
){
1654 pInfo
->idxNum
= FTS3_DOCID_SEARCH
;
1655 pInfo
->estimatedCost
= 1.0;
1659 /* A MATCH constraint. Use a full-text search.
1661 ** If there is more than one MATCH constraint available, use the first
1662 ** one encountered. If there is both a MATCH constraint and a direct
1663 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1664 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1665 ** it would lead to an "unable to use function MATCH in the requested
1668 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_MATCH
1669 && pCons
->iColumn
>=0 && pCons
->iColumn
<=p
->nColumn
1671 pInfo
->idxNum
= FTS3_FULLTEXT_SEARCH
+ pCons
->iColumn
;
1672 pInfo
->estimatedCost
= 2.0;
1676 /* Equality constraint on the langid column */
1677 if( pCons
->op
==SQLITE_INDEX_CONSTRAINT_EQ
1678 && pCons
->iColumn
==p
->nColumn
+ 2
1684 switch( pCons
->op
){
1685 case SQLITE_INDEX_CONSTRAINT_GE
:
1686 case SQLITE_INDEX_CONSTRAINT_GT
:
1690 case SQLITE_INDEX_CONSTRAINT_LE
:
1691 case SQLITE_INDEX_CONSTRAINT_LT
:
1698 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */
1699 if( pInfo
->idxNum
==FTS3_DOCID_SEARCH
) fts3SetUniqueFlag(pInfo
);
1703 pInfo
->aConstraintUsage
[iCons
].argvIndex
= iIdx
++;
1704 pInfo
->aConstraintUsage
[iCons
].omit
= 1;
1706 if( iLangidCons
>=0 ){
1707 pInfo
->idxNum
|= FTS3_HAVE_LANGID
;
1708 pInfo
->aConstraintUsage
[iLangidCons
].argvIndex
= iIdx
++;
1711 pInfo
->idxNum
|= FTS3_HAVE_DOCID_GE
;
1712 pInfo
->aConstraintUsage
[iDocidGe
].argvIndex
= iIdx
++;
1715 pInfo
->idxNum
|= FTS3_HAVE_DOCID_LE
;
1716 pInfo
->aConstraintUsage
[iDocidLe
].argvIndex
= iIdx
++;
1719 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or
1720 ** docid) order. Both ascending and descending are possible.
1722 if( pInfo
->nOrderBy
==1 ){
1723 struct sqlite3_index_orderby
*pOrder
= &pInfo
->aOrderBy
[0];
1724 if( pOrder
->iColumn
<0 || pOrder
->iColumn
==p
->nColumn
+1 ){
1726 pInfo
->idxStr
= "DESC";
1728 pInfo
->idxStr
= "ASC";
1730 pInfo
->orderByConsumed
= 1;
1734 assert( p
->pSegments
==0 );
1739 ** Implementation of xOpen method.
1741 static int fts3OpenMethod(sqlite3_vtab
*pVTab
, sqlite3_vtab_cursor
**ppCsr
){
1742 sqlite3_vtab_cursor
*pCsr
; /* Allocated cursor */
1744 UNUSED_PARAMETER(pVTab
);
1746 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1747 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1748 ** if the allocation fails, return SQLITE_NOMEM.
1750 *ppCsr
= pCsr
= (sqlite3_vtab_cursor
*)sqlite3_malloc(sizeof(Fts3Cursor
));
1752 return SQLITE_NOMEM
;
1754 memset(pCsr
, 0, sizeof(Fts3Cursor
));
1759 ** Finalize the statement handle at pCsr->pStmt.
1761 ** Or, if that statement handle is one created by fts3CursorSeekStmt(),
1762 ** and the Fts3Table.pSeekStmt slot is currently NULL, save the statement
1763 ** pointer there instead of finalizing it.
1765 static void fts3CursorFinalizeStmt(Fts3Cursor
*pCsr
){
1766 if( pCsr
->bSeekStmt
){
1767 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1768 if( p
->pSeekStmt
==0 ){
1769 p
->pSeekStmt
= pCsr
->pStmt
;
1770 sqlite3_reset(pCsr
->pStmt
);
1773 pCsr
->bSeekStmt
= 0;
1775 sqlite3_finalize(pCsr
->pStmt
);
1779 ** Free all resources currently held by the cursor passed as the only
1782 static void fts3ClearCursor(Fts3Cursor
*pCsr
){
1783 fts3CursorFinalizeStmt(pCsr
);
1784 sqlite3Fts3FreeDeferredTokens(pCsr
);
1785 sqlite3_free(pCsr
->aDoclist
);
1786 sqlite3Fts3MIBufferFree(pCsr
->pMIBuffer
);
1787 sqlite3Fts3ExprFree(pCsr
->pExpr
);
1788 memset(&(&pCsr
->base
)[1], 0, sizeof(Fts3Cursor
)-sizeof(sqlite3_vtab_cursor
));
1792 ** Close the cursor. For additional information see the documentation
1793 ** on the xClose method of the virtual table interface.
1795 static int fts3CloseMethod(sqlite3_vtab_cursor
*pCursor
){
1796 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
1797 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
1798 fts3ClearCursor(pCsr
);
1799 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
1805 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then
1806 ** compose and prepare an SQL statement of the form:
1808 ** "SELECT <columns> FROM %_content WHERE rowid = ?"
1810 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to
1811 ** it. If an error occurs, return an SQLite error code.
1813 static int fts3CursorSeekStmt(Fts3Cursor
*pCsr
){
1815 if( pCsr
->pStmt
==0 ){
1816 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
1819 pCsr
->pStmt
= p
->pSeekStmt
;
1822 zSql
= sqlite3_mprintf("SELECT %s WHERE rowid = ?", p
->zReadExprlist
);
1823 if( !zSql
) return SQLITE_NOMEM
;
1825 rc
= sqlite3_prepare_v3(
1826 p
->db
, zSql
,-1,SQLITE_PREPARE_PERSISTENT
,&pCsr
->pStmt
,0
1831 if( rc
==SQLITE_OK
) pCsr
->bSeekStmt
= 1;
1837 ** Position the pCsr->pStmt statement so that it is on the row
1838 ** of the %_content table that contains the last match. Return
1839 ** SQLITE_OK on success.
1841 static int fts3CursorSeek(sqlite3_context
*pContext
, Fts3Cursor
*pCsr
){
1843 if( pCsr
->isRequireSeek
){
1844 rc
= fts3CursorSeekStmt(pCsr
);
1845 if( rc
==SQLITE_OK
){
1846 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
1848 sqlite3_bind_int64(pCsr
->pStmt
, 1, pCsr
->iPrevId
);
1849 pCsr
->isRequireSeek
= 0;
1850 if( SQLITE_ROW
==sqlite3_step(pCsr
->pStmt
) ){
1855 rc
= sqlite3_reset(pCsr
->pStmt
);
1856 if( rc
==SQLITE_OK
&& ((Fts3Table
*)pCsr
->base
.pVtab
)->zContentTbl
==0 ){
1857 /* If no row was found and no error has occurred, then the %_content
1858 ** table is missing a row that is present in the full-text index.
1859 ** The data structures are corrupt. */
1860 rc
= FTS_CORRUPT_VTAB
;
1867 if( rc
!=SQLITE_OK
&& pContext
){
1868 sqlite3_result_error_code(pContext
, rc
);
1874 ** This function is used to process a single interior node when searching
1875 ** a b-tree for a term or term prefix. The node data is passed to this
1876 ** function via the zNode/nNode parameters. The term to search for is
1877 ** passed in zTerm/nTerm.
1879 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1880 ** of the child node that heads the sub-tree that may contain the term.
1882 ** If piLast is not NULL, then *piLast is set to the right-most child node
1883 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1886 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1888 static int fts3ScanInteriorNode(
1889 const char *zTerm
, /* Term to select leaves for */
1890 int nTerm
, /* Size of term zTerm in bytes */
1891 const char *zNode
, /* Buffer containing segment interior node */
1892 int nNode
, /* Size of buffer at zNode */
1893 sqlite3_int64
*piFirst
, /* OUT: Selected child node */
1894 sqlite3_int64
*piLast
/* OUT: Selected child node */
1896 int rc
= SQLITE_OK
; /* Return code */
1897 const char *zCsr
= zNode
; /* Cursor to iterate through node */
1898 const char *zEnd
= &zCsr
[nNode
];/* End of interior node buffer */
1899 char *zBuffer
= 0; /* Buffer to load terms into */
1900 i64 nAlloc
= 0; /* Size of allocated buffer */
1901 int isFirstTerm
= 1; /* True when processing first term on page */
1902 u64 iChild
; /* Block id of child node to descend to */
1903 int nBuffer
= 0; /* Total term size */
1905 /* Skip over the 'height' varint that occurs at the start of every
1906 ** interior node. Then load the blockid of the left-child of the b-tree
1907 ** node into variable iChild.
1909 ** Even if the data structure on disk is corrupted, this (reading two
1910 ** varints from the buffer) does not risk an overread. If zNode is a
1911 ** root node, then the buffer comes from a SELECT statement. SQLite does
1912 ** not make this guarantee explicitly, but in practice there are always
1913 ** either more than 20 bytes of allocated space following the nNode bytes of
1914 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1915 ** table, then there are always 20 bytes of zeroed padding following the
1916 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1918 zCsr
+= sqlite3Fts3GetVarintU(zCsr
, &iChild
);
1919 zCsr
+= sqlite3Fts3GetVarintU(zCsr
, &iChild
);
1921 return FTS_CORRUPT_VTAB
;
1924 while( zCsr
<zEnd
&& (piFirst
|| piLast
) ){
1925 int cmp
; /* memcmp() result */
1926 int nSuffix
; /* Size of term suffix */
1927 int nPrefix
= 0; /* Size of term prefix */
1929 /* Load the next term on the node into zBuffer. Use realloc() to expand
1930 ** the size of zBuffer if required. */
1932 zCsr
+= fts3GetVarint32(zCsr
, &nPrefix
);
1933 if( nPrefix
>nBuffer
){
1934 rc
= FTS_CORRUPT_VTAB
;
1939 zCsr
+= fts3GetVarint32(zCsr
, &nSuffix
);
1941 assert( nPrefix
>=0 && nSuffix
>=0 );
1942 if( nPrefix
>zCsr
-zNode
|| nSuffix
>zEnd
-zCsr
|| nSuffix
==0 ){
1943 rc
= FTS_CORRUPT_VTAB
;
1946 if( (i64
)nPrefix
+nSuffix
>nAlloc
){
1948 nAlloc
= ((i64
)nPrefix
+nSuffix
) * 2;
1949 zNew
= (char *)sqlite3_realloc64(zBuffer
, nAlloc
);
1957 memcpy(&zBuffer
[nPrefix
], zCsr
, nSuffix
);
1958 nBuffer
= nPrefix
+ nSuffix
;
1961 /* Compare the term we are searching for with the term just loaded from
1962 ** the interior node. If the specified term is greater than or equal
1963 ** to the term from the interior node, then all terms on the sub-tree
1964 ** headed by node iChild are smaller than zTerm. No need to search
1967 ** If the interior node term is larger than the specified term, then
1968 ** the tree headed by iChild may contain the specified term.
1970 cmp
= memcmp(zTerm
, zBuffer
, (nBuffer
>nTerm
? nTerm
: nBuffer
));
1971 if( piFirst
&& (cmp
<0 || (cmp
==0 && nBuffer
>nTerm
)) ){
1972 *piFirst
= (i64
)iChild
;
1976 if( piLast
&& cmp
<0 ){
1977 *piLast
= (i64
)iChild
;
1984 if( piFirst
) *piFirst
= (i64
)iChild
;
1985 if( piLast
) *piLast
= (i64
)iChild
;
1988 sqlite3_free(zBuffer
);
1994 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1995 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1996 ** contains a term. This function searches the sub-tree headed by the zNode
1997 ** node for the range of leaf nodes that may contain the specified term
1998 ** or terms for which the specified term is a prefix.
2000 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
2001 ** left-most leaf node in the tree that may contain the specified term.
2002 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
2003 ** right-most leaf node that may contain a term for which the specified
2004 ** term is a prefix.
2006 ** It is possible that the range of returned leaf nodes does not contain
2007 ** the specified term or any terms for which it is a prefix. However, if the
2008 ** segment does contain any such terms, they are stored within the identified
2009 ** range. Because this function only inspects interior segment nodes (and
2010 ** never loads leaf nodes into memory), it is not possible to be sure.
2012 ** If an error occurs, an error code other than SQLITE_OK is returned.
2014 static int fts3SelectLeaf(
2015 Fts3Table
*p
, /* Virtual table handle */
2016 const char *zTerm
, /* Term to select leaves for */
2017 int nTerm
, /* Size of term zTerm in bytes */
2018 const char *zNode
, /* Buffer containing segment interior node */
2019 int nNode
, /* Size of buffer at zNode */
2020 sqlite3_int64
*piLeaf
, /* Selected leaf node */
2021 sqlite3_int64
*piLeaf2
/* Selected leaf node */
2023 int rc
= SQLITE_OK
; /* Return code */
2024 int iHeight
; /* Height of this node in tree */
2026 assert( piLeaf
|| piLeaf2
);
2028 fts3GetVarint32(zNode
, &iHeight
);
2029 rc
= fts3ScanInteriorNode(zTerm
, nTerm
, zNode
, nNode
, piLeaf
, piLeaf2
);
2030 assert_fts3_nc( !piLeaf2
|| !piLeaf
|| rc
!=SQLITE_OK
|| (*piLeaf
<=*piLeaf2
) );
2032 if( rc
==SQLITE_OK
&& iHeight
>1 ){
2033 char *zBlob
= 0; /* Blob read from %_segments table */
2034 int nBlob
= 0; /* Size of zBlob in bytes */
2036 if( piLeaf
&& piLeaf2
&& (*piLeaf
!=*piLeaf2
) ){
2037 rc
= sqlite3Fts3ReadBlock(p
, *piLeaf
, &zBlob
, &nBlob
, 0);
2038 if( rc
==SQLITE_OK
){
2039 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zBlob
, nBlob
, piLeaf
, 0);
2041 sqlite3_free(zBlob
);
2046 if( rc
==SQLITE_OK
){
2047 rc
= sqlite3Fts3ReadBlock(p
, piLeaf
?*piLeaf
:*piLeaf2
, &zBlob
, &nBlob
, 0);
2049 if( rc
==SQLITE_OK
){
2051 fts3GetVarint32(zBlob
, &iNewHeight
);
2052 if( iNewHeight
>=iHeight
){
2053 rc
= FTS_CORRUPT_VTAB
;
2055 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zBlob
, nBlob
, piLeaf
, piLeaf2
);
2058 sqlite3_free(zBlob
);
2065 ** This function is used to create delta-encoded serialized lists of FTS3
2066 ** varints. Each call to this function appends a single varint to a list.
2068 static void fts3PutDeltaVarint(
2069 char **pp
, /* IN/OUT: Output pointer */
2070 sqlite3_int64
*piPrev
, /* IN/OUT: Previous value written to list */
2071 sqlite3_int64 iVal
/* Write this value to the list */
2073 assert_fts3_nc( iVal
-*piPrev
> 0 || (*piPrev
==0 && iVal
==0) );
2074 *pp
+= sqlite3Fts3PutVarint(*pp
, iVal
-*piPrev
);
2079 ** When this function is called, *ppPoslist is assumed to point to the
2080 ** start of a position-list. After it returns, *ppPoslist points to the
2081 ** first byte after the position-list.
2083 ** A position list is list of positions (delta encoded) and columns for
2084 ** a single document record of a doclist. So, in other words, this
2085 ** routine advances *ppPoslist so that it points to the next docid in
2086 ** the doclist, or to the first byte past the end of the doclist.
2088 ** If pp is not NULL, then the contents of the position list are copied
2089 ** to *pp. *pp is set to point to the first byte past the last byte copied
2090 ** before this function returns.
2092 static void fts3PoslistCopy(char **pp
, char **ppPoslist
){
2093 char *pEnd
= *ppPoslist
;
2096 /* The end of a position list is marked by a zero encoded as an FTS3
2097 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
2098 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
2099 ** of some other, multi-byte, value.
2101 ** The following while-loop moves pEnd to point to the first byte that is not
2102 ** immediately preceded by a byte with the 0x80 bit set. Then increments
2103 ** pEnd once more so that it points to the byte immediately following the
2104 ** last byte in the position-list.
2108 testcase( c
!=0 && (*pEnd
)==0 );
2110 pEnd
++; /* Advance past the POS_END terminator byte */
2113 int n
= (int)(pEnd
- *ppPoslist
);
2115 memcpy(p
, *ppPoslist
, n
);
2123 ** When this function is called, *ppPoslist is assumed to point to the
2124 ** start of a column-list. After it returns, *ppPoslist points to the
2125 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
2127 ** A column-list is list of delta-encoded positions for a single column
2128 ** within a single document within a doclist.
2130 ** The column-list is terminated either by a POS_COLUMN varint (1) or
2131 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
2132 ** the POS_COLUMN or POS_END that terminates the column-list.
2134 ** If pp is not NULL, then the contents of the column-list are copied
2135 ** to *pp. *pp is set to point to the first byte past the last byte copied
2136 ** before this function returns. The POS_COLUMN or POS_END terminator
2137 ** is not copied into *pp.
2139 static void fts3ColumnlistCopy(char **pp
, char **ppPoslist
){
2140 char *pEnd
= *ppPoslist
;
2143 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
2144 ** not part of a multi-byte varint.
2146 while( 0xFE & (*pEnd
| c
) ){
2148 testcase( c
!=0 && ((*pEnd
)&0xfe)==0 );
2151 int n
= (int)(pEnd
- *ppPoslist
);
2153 memcpy(p
, *ppPoslist
, n
);
2161 ** Value used to signify the end of an position-list. This must be
2162 ** as large or larger than any value that might appear on the
2163 ** position-list, even a position list that has been corrupted.
2165 #define POSITION_LIST_END LARGEST_INT64
2168 ** This function is used to help parse position-lists. When this function is
2169 ** called, *pp may point to the start of the next varint in the position-list
2170 ** being parsed, or it may point to 1 byte past the end of the position-list
2171 ** (in which case **pp will be a terminator bytes POS_END (0) or
2174 ** If *pp points past the end of the current position-list, set *pi to
2175 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
2176 ** increment the current value of *pi by the value read, and set *pp to
2177 ** point to the next value before returning.
2179 ** Before calling this routine *pi must be initialized to the value of
2180 ** the previous position, or zero if we are reading the first position
2181 ** in the position-list. Because positions are delta-encoded, the value
2182 ** of the previous position is needed in order to compute the value of
2183 ** the next position.
2185 static void fts3ReadNextPos(
2186 char **pp
, /* IN/OUT: Pointer into position-list buffer */
2187 sqlite3_int64
*pi
/* IN/OUT: Value read from position-list */
2191 *pp
+= fts3GetVarint32((*pp
), &iVal
);
2195 *pi
= POSITION_LIST_END
;
2200 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
2201 ** the value of iCol encoded as a varint to *pp. This will start a new
2204 ** Set *pp to point to the byte just after the last byte written before
2205 ** returning (do not modify it if iCol==0). Return the total number of bytes
2206 ** written (0 if iCol==0).
2208 static int fts3PutColNumber(char **pp
, int iCol
){
2209 int n
= 0; /* Number of bytes written */
2211 char *p
= *pp
; /* Output pointer */
2212 n
= 1 + sqlite3Fts3PutVarint(&p
[1], iCol
);
2220 ** Compute the union of two position lists. The output written
2221 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
2222 ** order and with any duplicates removed. All pointers are
2223 ** updated appropriately. The caller is responsible for insuring
2224 ** that there is enough space in *pp to hold the complete output.
2226 static int fts3PoslistMerge(
2227 char **pp
, /* Output buffer */
2228 char **pp1
, /* Left input list */
2229 char **pp2
/* Right input list */
2235 while( *p1
|| *p2
){
2236 int iCol1
; /* The current column index in pp1 */
2237 int iCol2
; /* The current column index in pp2 */
2239 if( *p1
==POS_COLUMN
){
2240 fts3GetVarint32(&p1
[1], &iCol1
);
2241 if( iCol1
==0 ) return FTS_CORRUPT_VTAB
;
2243 else if( *p1
==POS_END
) iCol1
= 0x7fffffff;
2246 if( *p2
==POS_COLUMN
){
2247 fts3GetVarint32(&p2
[1], &iCol2
);
2248 if( iCol2
==0 ) return FTS_CORRUPT_VTAB
;
2250 else if( *p2
==POS_END
) iCol2
= 0x7fffffff;
2254 sqlite3_int64 i1
= 0; /* Last position from pp1 */
2255 sqlite3_int64 i2
= 0; /* Last position from pp2 */
2256 sqlite3_int64 iPrev
= 0;
2257 int n
= fts3PutColNumber(&p
, iCol1
);
2261 /* At this point, both p1 and p2 point to the start of column-lists
2262 ** for the same column (the column with index iCol1 and iCol2).
2263 ** A column-list is a list of non-negative delta-encoded varints, each
2264 ** incremented by 2 before being stored. Each list is terminated by a
2265 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
2266 ** and writes the results to buffer p. p is left pointing to the byte
2267 ** after the list written. No terminator (POS_END or POS_COLUMN) is
2268 ** written to the output.
2270 fts3GetDeltaVarint(&p1
, &i1
);
2271 fts3GetDeltaVarint(&p2
, &i2
);
2276 fts3PutDeltaVarint(&p
, &iPrev
, (i1
<i2
) ? i1
: i2
);
2279 fts3ReadNextPos(&p1
, &i1
);
2280 fts3ReadNextPos(&p2
, &i2
);
2282 fts3ReadNextPos(&p1
, &i1
);
2284 fts3ReadNextPos(&p2
, &i2
);
2286 }while( i1
!=POSITION_LIST_END
|| i2
!=POSITION_LIST_END
);
2287 }else if( iCol1
<iCol2
){
2288 p1
+= fts3PutColNumber(&p
, iCol1
);
2289 fts3ColumnlistCopy(&p
, &p1
);
2291 p2
+= fts3PutColNumber(&p
, iCol2
);
2292 fts3ColumnlistCopy(&p
, &p2
);
2304 ** This function is used to merge two position lists into one. When it is
2305 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
2306 ** the part of a doclist that follows each document id. For example, if a row
2309 ** 'a b c'|'x y z'|'a b b a'
2311 ** Then the position list for this row for token 'b' would consist of:
2313 ** 0x02 0x01 0x02 0x03 0x03 0x00
2315 ** When this function returns, both *pp1 and *pp2 are left pointing to the
2316 ** byte following the 0x00 terminator of their respective position lists.
2318 ** If isSaveLeft is 0, an entry is added to the output position list for
2319 ** each position in *pp2 for which there exists one or more positions in
2320 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
2321 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
2324 ** e.g. nToken==1 searches for adjacent positions.
2326 static int fts3PoslistPhraseMerge(
2327 char **pp
, /* IN/OUT: Preallocated output buffer */
2328 int nToken
, /* Maximum difference in token positions */
2329 int isSaveLeft
, /* Save the left position */
2330 int isExact
, /* If *pp1 is exactly nTokens before *pp2 */
2331 char **pp1
, /* IN/OUT: Left input list */
2332 char **pp2
/* IN/OUT: Right input list */
2340 /* Never set both isSaveLeft and isExact for the same invocation. */
2341 assert( isSaveLeft
==0 || isExact
==0 );
2343 assert_fts3_nc( p
!=0 && *p1
!=0 && *p2
!=0 );
2344 if( *p1
==POS_COLUMN
){
2346 p1
+= fts3GetVarint32(p1
, &iCol1
);
2348 if( *p2
==POS_COLUMN
){
2350 p2
+= fts3GetVarint32(p2
, &iCol2
);
2356 sqlite3_int64 iPrev
= 0;
2357 sqlite3_int64 iPos1
= 0;
2358 sqlite3_int64 iPos2
= 0;
2362 p
+= sqlite3Fts3PutVarint(p
, iCol1
);
2365 fts3GetDeltaVarint(&p1
, &iPos1
); iPos1
-= 2;
2366 fts3GetDeltaVarint(&p2
, &iPos2
); iPos2
-= 2;
2367 if( iPos1
<0 || iPos2
<0 ) break;
2370 if( iPos2
==iPos1
+nToken
2371 || (isExact
==0 && iPos2
>iPos1
&& iPos2
<=iPos1
+nToken
)
2373 sqlite3_int64 iSave
;
2374 iSave
= isSaveLeft
? iPos1
: iPos2
;
2375 fts3PutDeltaVarint(&p
, &iPrev
, iSave
+2); iPrev
-= 2;
2379 if( (!isSaveLeft
&& iPos2
<=(iPos1
+nToken
)) || iPos2
<=iPos1
){
2380 if( (*p2
&0xFE)==0 ) break;
2381 fts3GetDeltaVarint(&p2
, &iPos2
); iPos2
-= 2;
2383 if( (*p1
&0xFE)==0 ) break;
2384 fts3GetDeltaVarint(&p1
, &iPos1
); iPos1
-= 2;
2393 fts3ColumnlistCopy(0, &p1
);
2394 fts3ColumnlistCopy(0, &p2
);
2395 assert( (*p1
&0xFE)==0 && (*p2
&0xFE)==0 );
2396 if( 0==*p1
|| 0==*p2
) break;
2399 p1
+= fts3GetVarint32(p1
, &iCol1
);
2401 p2
+= fts3GetVarint32(p2
, &iCol2
);
2404 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
2405 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
2406 ** end of the position list, or the 0x01 that precedes the next
2407 ** column-number in the position list.
2409 else if( iCol1
<iCol2
){
2410 fts3ColumnlistCopy(0, &p1
);
2413 p1
+= fts3GetVarint32(p1
, &iCol1
);
2415 fts3ColumnlistCopy(0, &p2
);
2418 p2
+= fts3GetVarint32(p2
, &iCol2
);
2422 fts3PoslistCopy(0, &p2
);
2423 fts3PoslistCopy(0, &p1
);
2435 ** Merge two position-lists as required by the NEAR operator. The argument
2436 ** position lists correspond to the left and right phrases of an expression
2439 ** "phrase 1" NEAR "phrase number 2"
2441 ** Position list *pp1 corresponds to the left-hand side of the NEAR
2442 ** expression and *pp2 to the right. As usual, the indexes in the position
2443 ** lists are the offsets of the last token in each phrase (tokens "1" and "2"
2444 ** in the example above).
2446 ** The output position list - written to *pp - is a copy of *pp2 with those
2447 ** entries that are not sufficiently NEAR entries in *pp1 removed.
2449 static int fts3PoslistNearMerge(
2450 char **pp
, /* Output buffer */
2451 char *aTmp
, /* Temporary buffer space */
2452 int nRight
, /* Maximum difference in token positions */
2453 int nLeft
, /* Maximum difference in token positions */
2454 char **pp1
, /* IN/OUT: Left input list */
2455 char **pp2
/* IN/OUT: Right input list */
2465 fts3PoslistPhraseMerge(&pTmp1
, nRight
, 0, 0, pp1
, pp2
);
2466 aTmp2
= pTmp2
= pTmp1
;
2469 fts3PoslistPhraseMerge(&pTmp2
, nLeft
, 1, 0, pp2
, pp1
);
2470 if( pTmp1
!=aTmp
&& pTmp2
!=aTmp2
){
2471 fts3PoslistMerge(pp
, &aTmp
, &aTmp2
);
2472 }else if( pTmp1
!=aTmp
){
2473 fts3PoslistCopy(pp
, &aTmp
);
2474 }else if( pTmp2
!=aTmp2
){
2475 fts3PoslistCopy(pp
, &aTmp2
);
2484 ** An instance of this function is used to merge together the (potentially
2485 ** large number of) doclists for each term that matches a prefix query.
2486 ** See function fts3TermSelectMerge() for details.
2488 typedef struct TermSelect TermSelect
;
2490 char *aaOutput
[16]; /* Malloc'd output buffers */
2491 int anOutput
[16]; /* Size each output buffer in bytes */
2495 ** This function is used to read a single varint from a buffer. Parameter
2496 ** pEnd points 1 byte past the end of the buffer. When this function is
2497 ** called, if *pp points to pEnd or greater, then the end of the buffer
2498 ** has been reached. In this case *pp is set to 0 and the function returns.
2500 ** If *pp does not point to or past pEnd, then a single varint is read
2501 ** from *pp. *pp is then set to point 1 byte past the end of the read varint.
2503 ** If bDescIdx is false, the value read is added to *pVal before returning.
2504 ** If it is true, the value read is subtracted from *pVal before this
2505 ** function returns.
2507 static void fts3GetDeltaVarint3(
2508 char **pp
, /* IN/OUT: Point to read varint from */
2509 char *pEnd
, /* End of buffer */
2510 int bDescIdx
, /* True if docids are descending */
2511 sqlite3_int64
*pVal
/* IN/OUT: Integer value */
2517 *pp
+= sqlite3Fts3GetVarintU(*pp
, &iVal
);
2519 *pVal
= (i64
)((u64
)*pVal
- iVal
);
2521 *pVal
= (i64
)((u64
)*pVal
+ iVal
);
2527 ** This function is used to write a single varint to a buffer. The varint
2528 ** is written to *pp. Before returning, *pp is set to point 1 byte past the
2529 ** end of the value written.
2531 ** If *pbFirst is zero when this function is called, the value written to
2532 ** the buffer is that of parameter iVal.
2534 ** If *pbFirst is non-zero when this function is called, then the value
2535 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
2536 ** (if bDescIdx is non-zero).
2538 ** Before returning, this function always sets *pbFirst to 1 and *piPrev
2539 ** to the value of parameter iVal.
2541 static void fts3PutDeltaVarint3(
2542 char **pp
, /* IN/OUT: Output pointer */
2543 int bDescIdx
, /* True for descending docids */
2544 sqlite3_int64
*piPrev
, /* IN/OUT: Previous value written to list */
2545 int *pbFirst
, /* IN/OUT: True after first int written */
2546 sqlite3_int64 iVal
/* Write this value to the list */
2548 sqlite3_uint64 iWrite
;
2549 if( bDescIdx
==0 || *pbFirst
==0 ){
2550 assert_fts3_nc( *pbFirst
==0 || iVal
>=*piPrev
);
2551 iWrite
= (u64
)iVal
- (u64
)*piPrev
;
2553 assert_fts3_nc( *piPrev
>=iVal
);
2554 iWrite
= (u64
)*piPrev
- (u64
)iVal
;
2556 assert( *pbFirst
|| *piPrev
==0 );
2557 assert_fts3_nc( *pbFirst
==0 || iWrite
>0 );
2558 *pp
+= sqlite3Fts3PutVarint(*pp
, iWrite
);
2565 ** This macro is used by various functions that merge doclists. The two
2566 ** arguments are 64-bit docid values. If the value of the stack variable
2567 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2).
2568 ** Otherwise, (i2-i1).
2570 ** Using this makes it easier to write code that can merge doclists that are
2571 ** sorted in either ascending or descending order.
2573 /* #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i64)((u64)i1-i2)) */
2574 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1>i2?1:((i1==i2)?0:-1)))
2577 ** This function does an "OR" merge of two doclists (output contains all
2578 ** positions contained in either argument doclist). If the docids in the
2579 ** input doclists are sorted in ascending order, parameter bDescDoclist
2580 ** should be false. If they are sorted in ascending order, it should be
2581 ** passed a non-zero value.
2583 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
2584 ** containing the output doclist and SQLITE_OK is returned. In this case
2585 ** *pnOut is set to the number of bytes in the output doclist.
2587 ** If an error occurs, an SQLite error code is returned. The output values
2588 ** are undefined in this case.
2590 static int fts3DoclistOrMerge(
2591 int bDescDoclist
, /* True if arguments are desc */
2592 char *a1
, int n1
, /* First doclist */
2593 char *a2
, int n2
, /* Second doclist */
2594 char **paOut
, int *pnOut
/* OUT: Malloc'd doclist */
2597 sqlite3_int64 i1
= 0;
2598 sqlite3_int64 i2
= 0;
2599 sqlite3_int64 iPrev
= 0;
2600 char *pEnd1
= &a1
[n1
];
2601 char *pEnd2
= &a2
[n2
];
2611 /* Allocate space for the output. Both the input and output doclists
2612 ** are delta encoded. If they are in ascending order (bDescDoclist==0),
2613 ** then the first docid in each list is simply encoded as a varint. For
2614 ** each subsequent docid, the varint stored is the difference between the
2615 ** current and previous docid (a positive number - since the list is in
2616 ** ascending order).
2618 ** The first docid written to the output is therefore encoded using the
2619 ** same number of bytes as it is in whichever of the input lists it is
2620 ** read from. And each subsequent docid read from the same input list
2621 ** consumes either the same or less bytes as it did in the input (since
2622 ** the difference between it and the previous value in the output must
2623 ** be a positive value less than or equal to the delta value read from
2624 ** the input list). The same argument applies to all but the first docid
2625 ** read from the 'other' list. And to the contents of all position lists
2626 ** that will be copied and merged from the input to the output.
2628 ** However, if the first docid copied to the output is a negative number,
2629 ** then the encoding of the first docid from the 'other' input list may
2630 ** be larger in the output than it was in the input (since the delta value
2631 ** may be a larger positive integer than the actual docid).
2633 ** The space required to store the output is therefore the sum of the
2634 ** sizes of the two inputs, plus enough space for exactly one of the input
2637 ** A symetric argument may be made if the doclists are in descending
2640 aOut
= sqlite3_malloc64((i64
)n1
+n2
+FTS3_VARINT_MAX
-1+FTS3_BUFFER_PADDING
);
2641 if( !aOut
) return SQLITE_NOMEM
;
2644 fts3GetDeltaVarint3(&p1
, pEnd1
, 0, &i1
);
2645 fts3GetDeltaVarint3(&p2
, pEnd2
, 0, &i2
);
2647 sqlite3_int64 iDiff
= DOCID_CMP(i1
, i2
);
2649 if( p2
&& p1
&& iDiff
==0 ){
2650 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i1
);
2651 rc
= fts3PoslistMerge(&p
, &p1
, &p2
);
2653 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2654 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2655 }else if( !p2
|| (p1
&& iDiff
<0) ){
2656 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i1
);
2657 fts3PoslistCopy(&p
, &p1
);
2658 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2660 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i2
);
2661 fts3PoslistCopy(&p
, &p2
);
2662 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2665 assert( (p
-aOut
)<=((p1
?(p1
-a1
):n1
)+(p2
?(p2
-a2
):n2
)+FTS3_VARINT_MAX
-1) );
2668 if( rc
!=SQLITE_OK
){
2672 assert( (p
-aOut
)<=n1
+n2
+FTS3_VARINT_MAX
-1 );
2673 memset(&aOut
[(p
-aOut
)], 0, FTS3_BUFFER_PADDING
);
2676 *pnOut
= (int)(p
-aOut
);
2681 ** This function does a "phrase" merge of two doclists. In a phrase merge,
2682 ** the output contains a copy of each position from the right-hand input
2683 ** doclist for which there is a position in the left-hand input doclist
2684 ** exactly nDist tokens before it.
2686 ** If the docids in the input doclists are sorted in ascending order,
2687 ** parameter bDescDoclist should be false. If they are sorted in ascending
2688 ** order, it should be passed a non-zero value.
2690 ** The right-hand input doclist is overwritten by this function.
2692 static int fts3DoclistPhraseMerge(
2693 int bDescDoclist
, /* True if arguments are desc */
2694 int nDist
, /* Distance from left to right (1=adjacent) */
2695 char *aLeft
, int nLeft
, /* Left doclist */
2696 char **paRight
, int *pnRight
/* IN/OUT: Right/output doclist */
2698 sqlite3_int64 i1
= 0;
2699 sqlite3_int64 i2
= 0;
2700 sqlite3_int64 iPrev
= 0;
2701 char *aRight
= *paRight
;
2702 char *pEnd1
= &aLeft
[nLeft
];
2703 char *pEnd2
= &aRight
[*pnRight
];
2712 aOut
= sqlite3_malloc64((sqlite3_int64
)*pnRight
+ FTS3_VARINT_MAX
);
2713 if( aOut
==0 ) return SQLITE_NOMEM
;
2719 fts3GetDeltaVarint3(&p1
, pEnd1
, 0, &i1
);
2720 fts3GetDeltaVarint3(&p2
, pEnd2
, 0, &i2
);
2723 sqlite3_int64 iDiff
= DOCID_CMP(i1
, i2
);
2726 sqlite3_int64 iPrevSave
= iPrev
;
2727 int bFirstOutSave
= bFirstOut
;
2729 fts3PutDeltaVarint3(&p
, bDescDoclist
, &iPrev
, &bFirstOut
, i1
);
2730 if( 0==fts3PoslistPhraseMerge(&p
, nDist
, 0, 1, &p1
, &p2
) ){
2733 bFirstOut
= bFirstOutSave
;
2735 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2736 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2737 }else if( iDiff
<0 ){
2738 fts3PoslistCopy(0, &p1
);
2739 fts3GetDeltaVarint3(&p1
, pEnd1
, bDescDoclist
, &i1
);
2741 fts3PoslistCopy(0, &p2
);
2742 fts3GetDeltaVarint3(&p2
, pEnd2
, bDescDoclist
, &i2
);
2746 *pnRight
= (int)(p
- aOut
);
2748 sqlite3_free(aRight
);
2756 ** Argument pList points to a position list nList bytes in size. This
2757 ** function checks to see if the position list contains any entries for
2758 ** a token in position 0 (of any column). If so, it writes argument iDelta
2759 ** to the output buffer pOut, followed by a position list consisting only
2760 ** of the entries from pList at position 0, and terminated by an 0x00 byte.
2761 ** The value returned is the number of bytes written to pOut (if any).
2763 int sqlite3Fts3FirstFilter(
2764 sqlite3_int64 iDelta
, /* Varint that may be written to pOut */
2765 char *pList
, /* Position list (no 0x00 term) */
2766 int nList
, /* Size of pList in bytes */
2767 char *pOut
/* Write output here */
2770 int bWritten
= 0; /* True once iDelta has been written */
2772 char *pEnd
= &pList
[nList
];
2776 nOut
+= sqlite3Fts3PutVarint(&pOut
[nOut
], iDelta
);
2777 pOut
[nOut
++] = 0x02;
2780 fts3ColumnlistCopy(0, &p
);
2786 p
+= sqlite3Fts3GetVarint(p
, &iCol
);
2789 nOut
+= sqlite3Fts3PutVarint(&pOut
[nOut
], iDelta
);
2792 pOut
[nOut
++] = 0x01;
2793 nOut
+= sqlite3Fts3PutVarint(&pOut
[nOut
], iCol
);
2794 pOut
[nOut
++] = 0x02;
2796 fts3ColumnlistCopy(0, &p
);
2799 pOut
[nOut
++] = 0x00;
2807 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
2808 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
2809 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
2811 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
2812 ** the responsibility of the caller to free any doclists left in the
2813 ** TermSelect.aaOutput[] array.
2815 static int fts3TermSelectFinishMerge(Fts3Table
*p
, TermSelect
*pTS
){
2820 /* Loop through the doclists in the aaOutput[] array. Merge them all
2821 ** into a single doclist.
2823 for(i
=0; i
<SizeofArray(pTS
->aaOutput
); i
++){
2824 if( pTS
->aaOutput
[i
] ){
2826 aOut
= pTS
->aaOutput
[i
];
2827 nOut
= pTS
->anOutput
[i
];
2828 pTS
->aaOutput
[i
] = 0;
2833 int rc
= fts3DoclistOrMerge(p
->bDescIdx
,
2834 pTS
->aaOutput
[i
], pTS
->anOutput
[i
], aOut
, nOut
, &aNew
, &nNew
2836 if( rc
!=SQLITE_OK
){
2841 sqlite3_free(pTS
->aaOutput
[i
]);
2843 pTS
->aaOutput
[i
] = 0;
2850 pTS
->aaOutput
[0] = aOut
;
2851 pTS
->anOutput
[0] = nOut
;
2856 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
2857 ** as the first argument. The merge is an "OR" merge (see function
2858 ** fts3DoclistOrMerge() for details).
2860 ** This function is called with the doclist for each term that matches
2861 ** a queried prefix. It merges all these doclists into one, the doclist
2862 ** for the specified prefix. Since there can be a very large number of
2863 ** doclists to merge, the merging is done pair-wise using the TermSelect
2866 ** This function returns SQLITE_OK if the merge is successful, or an
2867 ** SQLite error code (SQLITE_NOMEM) if an error occurs.
2869 static int fts3TermSelectMerge(
2870 Fts3Table
*p
, /* FTS table handle */
2871 TermSelect
*pTS
, /* TermSelect object to merge into */
2872 char *aDoclist
, /* Pointer to doclist */
2873 int nDoclist
/* Size of aDoclist in bytes */
2875 if( pTS
->aaOutput
[0]==0 ){
2876 /* If this is the first term selected, copy the doclist to the output
2877 ** buffer using memcpy().
2879 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the
2880 ** allocation. This is so as to ensure that the buffer is big enough
2881 ** to hold the current doclist AND'd with any other doclist. If the
2882 ** doclists are stored in order=ASC order, this padding would not be
2883 ** required (since the size of [doclistA AND doclistB] is always less
2884 ** than or equal to the size of [doclistA] in that case). But this is
2885 ** not true for order=DESC. For example, a doclist containing (1, -1)
2886 ** may be smaller than (-1), as in the first example the -1 may be stored
2887 ** as a single-byte delta, whereas in the second it must be stored as a
2888 ** FTS3_VARINT_MAX byte varint.
2890 ** Similar padding is added in the fts3DoclistOrMerge() function.
2892 pTS
->aaOutput
[0] = sqlite3_malloc64((i64
)nDoclist
+ FTS3_VARINT_MAX
+ 1);
2893 pTS
->anOutput
[0] = nDoclist
;
2894 if( pTS
->aaOutput
[0] ){
2895 memcpy(pTS
->aaOutput
[0], aDoclist
, nDoclist
);
2896 memset(&pTS
->aaOutput
[0][nDoclist
], 0, FTS3_VARINT_MAX
);
2898 return SQLITE_NOMEM
;
2901 char *aMerge
= aDoclist
;
2902 int nMerge
= nDoclist
;
2905 for(iOut
=0; iOut
<SizeofArray(pTS
->aaOutput
); iOut
++){
2906 if( pTS
->aaOutput
[iOut
]==0 ){
2908 pTS
->aaOutput
[iOut
] = aMerge
;
2909 pTS
->anOutput
[iOut
] = nMerge
;
2915 int rc
= fts3DoclistOrMerge(p
->bDescIdx
, aMerge
, nMerge
,
2916 pTS
->aaOutput
[iOut
], pTS
->anOutput
[iOut
], &aNew
, &nNew
2918 if( rc
!=SQLITE_OK
){
2919 if( aMerge
!=aDoclist
) sqlite3_free(aMerge
);
2923 if( aMerge
!=aDoclist
) sqlite3_free(aMerge
);
2924 sqlite3_free(pTS
->aaOutput
[iOut
]);
2925 pTS
->aaOutput
[iOut
] = 0;
2929 if( (iOut
+1)==SizeofArray(pTS
->aaOutput
) ){
2930 pTS
->aaOutput
[iOut
] = aMerge
;
2931 pTS
->anOutput
[iOut
] = nMerge
;
2940 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array.
2942 static int fts3SegReaderCursorAppend(
2943 Fts3MultiSegReader
*pCsr
,
2946 if( (pCsr
->nSegment
%16)==0 ){
2947 Fts3SegReader
**apNew
;
2948 sqlite3_int64 nByte
= (pCsr
->nSegment
+ 16)*sizeof(Fts3SegReader
*);
2949 apNew
= (Fts3SegReader
**)sqlite3_realloc64(pCsr
->apSegment
, nByte
);
2951 sqlite3Fts3SegReaderFree(pNew
);
2952 return SQLITE_NOMEM
;
2954 pCsr
->apSegment
= apNew
;
2956 pCsr
->apSegment
[pCsr
->nSegment
++] = pNew
;
2961 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the
2964 ** This function returns SQLITE_OK if successful, or an SQLite error code
2967 static int fts3SegReaderCursor(
2968 Fts3Table
*p
, /* FTS3 table handle */
2969 int iLangid
, /* Language id */
2970 int iIndex
, /* Index to search (from 0 to p->nIndex-1) */
2971 int iLevel
, /* Level of segments to scan */
2972 const char *zTerm
, /* Term to query for */
2973 int nTerm
, /* Size of zTerm in bytes */
2974 int isPrefix
, /* True for a prefix search */
2975 int isScan
, /* True to scan from zTerm to EOF */
2976 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
2978 int rc
= SQLITE_OK
; /* Error code */
2979 sqlite3_stmt
*pStmt
= 0; /* Statement to iterate through segments */
2980 int rc2
; /* Result of sqlite3_reset() */
2982 /* If iLevel is less than 0 and this is not a scan, include a seg-reader
2983 ** for the pending-terms. If this is a scan, then this call must be being
2984 ** made by an fts4aux module, not an FTS table. In this case calling
2985 ** Fts3SegReaderPending might segfault, as the data structures used by
2986 ** fts4aux are not completely populated. So it's easiest to filter these
2987 ** calls out here. */
2988 if( iLevel
<0 && p
->aIndex
&& p
->iPrevLangid
==iLangid
){
2989 Fts3SegReader
*pSeg
= 0;
2990 rc
= sqlite3Fts3SegReaderPending(p
, iIndex
, zTerm
, nTerm
, isPrefix
||isScan
, &pSeg
);
2991 if( rc
==SQLITE_OK
&& pSeg
){
2992 rc
= fts3SegReaderCursorAppend(pCsr
, pSeg
);
2996 if( iLevel
!=FTS3_SEGCURSOR_PENDING
){
2997 if( rc
==SQLITE_OK
){
2998 rc
= sqlite3Fts3AllSegdirs(p
, iLangid
, iIndex
, iLevel
, &pStmt
);
3001 while( rc
==SQLITE_OK
&& SQLITE_ROW
==(rc
= sqlite3_step(pStmt
)) ){
3002 Fts3SegReader
*pSeg
= 0;
3004 /* Read the values returned by the SELECT into local variables. */
3005 sqlite3_int64 iStartBlock
= sqlite3_column_int64(pStmt
, 1);
3006 sqlite3_int64 iLeavesEndBlock
= sqlite3_column_int64(pStmt
, 2);
3007 sqlite3_int64 iEndBlock
= sqlite3_column_int64(pStmt
, 3);
3008 int nRoot
= sqlite3_column_bytes(pStmt
, 4);
3009 char const *zRoot
= sqlite3_column_blob(pStmt
, 4);
3011 /* If zTerm is not NULL, and this segment is not stored entirely on its
3012 ** root node, the range of leaves scanned can be reduced. Do this. */
3013 if( iStartBlock
&& zTerm
&& zRoot
){
3014 sqlite3_int64
*pi
= (isPrefix
? &iLeavesEndBlock
: 0);
3015 rc
= fts3SelectLeaf(p
, zTerm
, nTerm
, zRoot
, nRoot
, &iStartBlock
, pi
);
3016 if( rc
!=SQLITE_OK
) goto finished
;
3017 if( isPrefix
==0 && isScan
==0 ) iLeavesEndBlock
= iStartBlock
;
3020 rc
= sqlite3Fts3SegReaderNew(pCsr
->nSegment
+1,
3021 (isPrefix
==0 && isScan
==0),
3022 iStartBlock
, iLeavesEndBlock
,
3023 iEndBlock
, zRoot
, nRoot
, &pSeg
3025 if( rc
!=SQLITE_OK
) goto finished
;
3026 rc
= fts3SegReaderCursorAppend(pCsr
, pSeg
);
3031 rc2
= sqlite3_reset(pStmt
);
3032 if( rc
==SQLITE_DONE
) rc
= rc2
;
3038 ** Set up a cursor object for iterating through a full-text index or a
3039 ** single level therein.
3041 int sqlite3Fts3SegReaderCursor(
3042 Fts3Table
*p
, /* FTS3 table handle */
3043 int iLangid
, /* Language-id to search */
3044 int iIndex
, /* Index to search (from 0 to p->nIndex-1) */
3045 int iLevel
, /* Level of segments to scan */
3046 const char *zTerm
, /* Term to query for */
3047 int nTerm
, /* Size of zTerm in bytes */
3048 int isPrefix
, /* True for a prefix search */
3049 int isScan
, /* True to scan from zTerm to EOF */
3050 Fts3MultiSegReader
*pCsr
/* Cursor object to populate */
3052 assert( iIndex
>=0 && iIndex
<p
->nIndex
);
3053 assert( iLevel
==FTS3_SEGCURSOR_ALL
3054 || iLevel
==FTS3_SEGCURSOR_PENDING
3057 assert( iLevel
<FTS3_SEGDIR_MAXLEVEL
);
3058 assert( FTS3_SEGCURSOR_ALL
<0 && FTS3_SEGCURSOR_PENDING
<0 );
3059 assert( isPrefix
==0 || isScan
==0 );
3061 memset(pCsr
, 0, sizeof(Fts3MultiSegReader
));
3062 return fts3SegReaderCursor(
3063 p
, iLangid
, iIndex
, iLevel
, zTerm
, nTerm
, isPrefix
, isScan
, pCsr
3068 ** In addition to its current configuration, have the Fts3MultiSegReader
3069 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
3071 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
3073 static int fts3SegReaderCursorAddZero(
3074 Fts3Table
*p
, /* FTS virtual table handle */
3076 const char *zTerm
, /* Term to scan doclist of */
3077 int nTerm
, /* Number of bytes in zTerm */
3078 Fts3MultiSegReader
*pCsr
/* Fts3MultiSegReader to modify */
3080 return fts3SegReaderCursor(p
,
3081 iLangid
, 0, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, 0, 0,pCsr
3086 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
3087 ** if isPrefix is true, to scan the doclist for all terms for which
3088 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
3089 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
3090 ** an SQLite error code.
3092 ** It is the responsibility of the caller to free this object by eventually
3093 ** passing it to fts3SegReaderCursorFree()
3095 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
3096 ** Output parameter *ppSegcsr is set to 0 if an error occurs.
3098 static int fts3TermSegReaderCursor(
3099 Fts3Cursor
*pCsr
, /* Virtual table cursor handle */
3100 const char *zTerm
, /* Term to query for */
3101 int nTerm
, /* Size of zTerm in bytes */
3102 int isPrefix
, /* True for a prefix search */
3103 Fts3MultiSegReader
**ppSegcsr
/* OUT: Allocated seg-reader cursor */
3105 Fts3MultiSegReader
*pSegcsr
; /* Object to allocate and return */
3106 int rc
= SQLITE_NOMEM
; /* Return code */
3108 pSegcsr
= sqlite3_malloc(sizeof(Fts3MultiSegReader
));
3111 int bFound
= 0; /* True once an index has been found */
3112 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
3115 for(i
=1; bFound
==0 && i
<p
->nIndex
; i
++){
3116 if( p
->aIndex
[i
].nPrefix
==nTerm
){
3118 rc
= sqlite3Fts3SegReaderCursor(p
, pCsr
->iLangid
,
3119 i
, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, 0, 0, pSegcsr
3121 pSegcsr
->bLookup
= 1;
3125 for(i
=1; bFound
==0 && i
<p
->nIndex
; i
++){
3126 if( p
->aIndex
[i
].nPrefix
==nTerm
+1 ){
3128 rc
= sqlite3Fts3SegReaderCursor(p
, pCsr
->iLangid
,
3129 i
, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, 1, 0, pSegcsr
3131 if( rc
==SQLITE_OK
){
3132 rc
= fts3SegReaderCursorAddZero(
3133 p
, pCsr
->iLangid
, zTerm
, nTerm
, pSegcsr
3141 rc
= sqlite3Fts3SegReaderCursor(p
, pCsr
->iLangid
,
3142 0, FTS3_SEGCURSOR_ALL
, zTerm
, nTerm
, isPrefix
, 0, pSegcsr
3144 pSegcsr
->bLookup
= !isPrefix
;
3148 *ppSegcsr
= pSegcsr
;
3153 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
3155 static void fts3SegReaderCursorFree(Fts3MultiSegReader
*pSegcsr
){
3156 sqlite3Fts3SegReaderFinish(pSegcsr
);
3157 sqlite3_free(pSegcsr
);
3161 ** This function retrieves the doclist for the specified term (or term
3162 ** prefix) from the database.
3164 static int fts3TermSelect(
3165 Fts3Table
*p
, /* Virtual table handle */
3166 Fts3PhraseToken
*pTok
, /* Token to query for */
3167 int iColumn
, /* Column to query (or -ve for all columns) */
3168 int *pnOut
, /* OUT: Size of buffer at *ppOut */
3169 char **ppOut
/* OUT: Malloced result buffer */
3171 int rc
; /* Return code */
3172 Fts3MultiSegReader
*pSegcsr
; /* Seg-reader cursor for this term */
3173 TermSelect tsc
; /* Object for pair-wise doclist merging */
3174 Fts3SegFilter filter
; /* Segment term filter configuration */
3176 pSegcsr
= pTok
->pSegcsr
;
3177 memset(&tsc
, 0, sizeof(TermSelect
));
3179 filter
.flags
= FTS3_SEGMENT_IGNORE_EMPTY
| FTS3_SEGMENT_REQUIRE_POS
3180 | (pTok
->isPrefix
? FTS3_SEGMENT_PREFIX
: 0)
3181 | (pTok
->bFirst
? FTS3_SEGMENT_FIRST
: 0)
3182 | (iColumn
<p
->nColumn
? FTS3_SEGMENT_COLUMN_FILTER
: 0);
3183 filter
.iCol
= iColumn
;
3184 filter
.zTerm
= pTok
->z
;
3185 filter
.nTerm
= pTok
->n
;
3187 rc
= sqlite3Fts3SegReaderStart(p
, pSegcsr
, &filter
);
3188 while( SQLITE_OK
==rc
3189 && SQLITE_ROW
==(rc
= sqlite3Fts3SegReaderStep(p
, pSegcsr
))
3191 rc
= fts3TermSelectMerge(p
, &tsc
, pSegcsr
->aDoclist
, pSegcsr
->nDoclist
);
3194 if( rc
==SQLITE_OK
){
3195 rc
= fts3TermSelectFinishMerge(p
, &tsc
);
3197 if( rc
==SQLITE_OK
){
3198 *ppOut
= tsc
.aaOutput
[0];
3199 *pnOut
= tsc
.anOutput
[0];
3202 for(i
=0; i
<SizeofArray(tsc
.aaOutput
); i
++){
3203 sqlite3_free(tsc
.aaOutput
[i
]);
3207 fts3SegReaderCursorFree(pSegcsr
);
3213 ** This function counts the total number of docids in the doclist stored
3214 ** in buffer aList[], size nList bytes.
3216 ** If the isPoslist argument is true, then it is assumed that the doclist
3217 ** contains a position-list following each docid. Otherwise, it is assumed
3218 ** that the doclist is simply a list of docids stored as delta encoded
3221 static int fts3DoclistCountDocids(char *aList
, int nList
){
3222 int nDoc
= 0; /* Return value */
3224 char *aEnd
= &aList
[nList
]; /* Pointer to one byte after EOF */
3225 char *p
= aList
; /* Cursor */
3228 while( (*p
++)&0x80 ); /* Skip docid varint */
3229 fts3PoslistCopy(0, &p
); /* Skip over position list */
3237 ** Advance the cursor to the next row in the %_content table that
3238 ** matches the search criteria. For a MATCH search, this will be
3239 ** the next row that matches. For a full-table scan, this will be
3240 ** simply the next row in the %_content table. For a docid lookup,
3241 ** this routine simply sets the EOF flag.
3243 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
3244 ** even if we reach end-of-file. The fts3EofMethod() will be called
3245 ** subsequently to determine whether or not an EOF was hit.
3247 static int fts3NextMethod(sqlite3_vtab_cursor
*pCursor
){
3249 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3250 if( pCsr
->eSearch
==FTS3_DOCID_SEARCH
|| pCsr
->eSearch
==FTS3_FULLSCAN_SEARCH
){
3251 Fts3Table
*pTab
= (Fts3Table
*)pCursor
->pVtab
;
3253 if( SQLITE_ROW
!=sqlite3_step(pCsr
->pStmt
) ){
3255 rc
= sqlite3_reset(pCsr
->pStmt
);
3257 pCsr
->iPrevId
= sqlite3_column_int64(pCsr
->pStmt
, 0);
3262 rc
= fts3EvalNext((Fts3Cursor
*)pCursor
);
3264 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
3269 ** If the numeric type of argument pVal is "integer", then return it
3270 ** converted to a 64-bit signed integer. Otherwise, return a copy of
3271 ** the second parameter, iDefault.
3273 static sqlite3_int64
fts3DocidRange(sqlite3_value
*pVal
, i64 iDefault
){
3275 int eType
= sqlite3_value_numeric_type(pVal
);
3276 if( eType
==SQLITE_INTEGER
){
3277 return sqlite3_value_int64(pVal
);
3284 ** This is the xFilter interface for the virtual table. See
3285 ** the virtual table xFilter method documentation for additional
3288 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3289 ** the %_content table.
3291 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3292 ** in the %_content table.
3294 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3295 ** column on the left-hand side of the MATCH operator is column
3296 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3297 ** side of the MATCH operator.
3299 static int fts3FilterMethod(
3300 sqlite3_vtab_cursor
*pCursor
, /* The cursor used for this query */
3301 int idxNum
, /* Strategy index */
3302 const char *idxStr
, /* Unused */
3303 int nVal
, /* Number of elements in apVal */
3304 sqlite3_value
**apVal
/* Arguments for the indexing scheme */
3307 char *zSql
; /* SQL statement used to access %_content */
3309 Fts3Table
*p
= (Fts3Table
*)pCursor
->pVtab
;
3310 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3312 sqlite3_value
*pCons
= 0; /* The MATCH or rowid constraint, if any */
3313 sqlite3_value
*pLangid
= 0; /* The "langid = ?" constraint, if any */
3314 sqlite3_value
*pDocidGe
= 0; /* The "docid >= ?" constraint, if any */
3315 sqlite3_value
*pDocidLe
= 0; /* The "docid <= ?" constraint, if any */
3318 UNUSED_PARAMETER(idxStr
);
3319 UNUSED_PARAMETER(nVal
);
3322 return SQLITE_ERROR
;
3325 eSearch
= (idxNum
& 0x0000FFFF);
3326 assert( eSearch
>=0 && eSearch
<=(FTS3_FULLTEXT_SEARCH
+p
->nColumn
) );
3327 assert( p
->pSegments
==0 );
3329 /* Collect arguments into local variables */
3331 if( eSearch
!=FTS3_FULLSCAN_SEARCH
) pCons
= apVal
[iIdx
++];
3332 if( idxNum
& FTS3_HAVE_LANGID
) pLangid
= apVal
[iIdx
++];
3333 if( idxNum
& FTS3_HAVE_DOCID_GE
) pDocidGe
= apVal
[iIdx
++];
3334 if( idxNum
& FTS3_HAVE_DOCID_LE
) pDocidLe
= apVal
[iIdx
++];
3335 assert( iIdx
==nVal
);
3337 /* In case the cursor has been used before, clear it now. */
3338 fts3ClearCursor(pCsr
);
3340 /* Set the lower and upper bounds on docids to return */
3341 pCsr
->iMinDocid
= fts3DocidRange(pDocidGe
, SMALLEST_INT64
);
3342 pCsr
->iMaxDocid
= fts3DocidRange(pDocidLe
, LARGEST_INT64
);
3345 pCsr
->bDesc
= (idxStr
[0]=='D');
3347 pCsr
->bDesc
= p
->bDescIdx
;
3349 pCsr
->eSearch
= (i16
)eSearch
;
3351 if( eSearch
!=FTS3_DOCID_SEARCH
&& eSearch
!=FTS3_FULLSCAN_SEARCH
){
3352 int iCol
= eSearch
-FTS3_FULLTEXT_SEARCH
;
3353 const char *zQuery
= (const char *)sqlite3_value_text(pCons
);
3355 if( zQuery
==0 && sqlite3_value_type(pCons
)!=SQLITE_NULL
){
3356 return SQLITE_NOMEM
;
3360 if( pLangid
) pCsr
->iLangid
= sqlite3_value_int(pLangid
);
3362 assert( p
->base
.zErrMsg
==0 );
3363 rc
= sqlite3Fts3ExprParse(p
->pTokenizer
, pCsr
->iLangid
,
3364 p
->azColumn
, p
->bFts4
, p
->nColumn
, iCol
, zQuery
, -1, &pCsr
->pExpr
,
3367 if( rc
!=SQLITE_OK
){
3371 rc
= fts3EvalStart(pCsr
);
3372 sqlite3Fts3SegmentsClose(p
);
3373 if( rc
!=SQLITE_OK
) return rc
;
3374 pCsr
->pNextId
= pCsr
->aDoclist
;
3378 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3379 ** statement loops through all rows of the %_content table. For a
3380 ** full-text query or docid lookup, the statement retrieves a single
3383 if( eSearch
==FTS3_FULLSCAN_SEARCH
){
3384 if( pDocidGe
|| pDocidLe
){
3385 zSql
= sqlite3_mprintf(
3386 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
3387 p
->zReadExprlist
, pCsr
->iMinDocid
, pCsr
->iMaxDocid
,
3388 (pCsr
->bDesc
? "DESC" : "ASC")
3391 zSql
= sqlite3_mprintf("SELECT %s ORDER BY rowid %s",
3392 p
->zReadExprlist
, (pCsr
->bDesc
? "DESC" : "ASC")
3397 rc
= sqlite3_prepare_v3(
3398 p
->db
,zSql
,-1,SQLITE_PREPARE_PERSISTENT
,&pCsr
->pStmt
,0
3405 }else if( eSearch
==FTS3_DOCID_SEARCH
){
3406 rc
= fts3CursorSeekStmt(pCsr
);
3407 if( rc
==SQLITE_OK
){
3408 rc
= sqlite3_bind_value(pCsr
->pStmt
, 1, pCons
);
3411 if( rc
!=SQLITE_OK
) return rc
;
3413 return fts3NextMethod(pCursor
);
3417 ** This is the xEof method of the virtual table. SQLite calls this
3418 ** routine to find out if it has reached the end of a result set.
3420 static int fts3EofMethod(sqlite3_vtab_cursor
*pCursor
){
3421 Fts3Cursor
*pCsr
= (Fts3Cursor
*)pCursor
;
3423 fts3ClearCursor(pCsr
);
3430 ** This is the xRowid method. The SQLite core calls this routine to
3431 ** retrieve the rowid for the current row of the result set. fts3
3432 ** exposes %_content.docid as the rowid for the virtual table. The
3433 ** rowid should be written to *pRowid.
3435 static int fts3RowidMethod(sqlite3_vtab_cursor
*pCursor
, sqlite_int64
*pRowid
){
3436 Fts3Cursor
*pCsr
= (Fts3Cursor
*) pCursor
;
3437 *pRowid
= pCsr
->iPrevId
;
3442 ** This is the xColumn method, called by SQLite to request a value from
3443 ** the row that the supplied cursor currently points to.
3447 ** (iCol < p->nColumn) -> The value of the iCol'th user column.
3448 ** (iCol == p->nColumn) -> Magic column with the same name as the table.
3449 ** (iCol == p->nColumn+1) -> Docid column
3450 ** (iCol == p->nColumn+2) -> Langid column
3452 static int fts3ColumnMethod(
3453 sqlite3_vtab_cursor
*pCursor
, /* Cursor to retrieve value from */
3454 sqlite3_context
*pCtx
, /* Context for sqlite3_result_xxx() calls */
3455 int iCol
/* Index of column to read value from */
3457 int rc
= SQLITE_OK
; /* Return Code */
3458 Fts3Cursor
*pCsr
= (Fts3Cursor
*) pCursor
;
3459 Fts3Table
*p
= (Fts3Table
*)pCursor
->pVtab
;
3461 /* The column value supplied by SQLite must be in range. */
3462 assert( iCol
>=0 && iCol
<=p
->nColumn
+2 );
3464 switch( iCol
-p
->nColumn
){
3466 /* The special 'table-name' column */
3467 sqlite3_result_pointer(pCtx
, pCsr
, "fts3cursor", 0);
3471 /* The docid column */
3472 sqlite3_result_int64(pCtx
, pCsr
->iPrevId
);
3477 sqlite3_result_int64(pCtx
, pCsr
->iLangid
);
3479 }else if( p
->zLanguageid
==0 ){
3480 sqlite3_result_int(pCtx
, 0);
3484 /* no break */ deliberate_fall_through
3488 /* A user column. Or, if this is a full-table scan, possibly the
3489 ** language-id column. Seek the cursor. */
3490 rc
= fts3CursorSeek(0, pCsr
);
3491 if( rc
==SQLITE_OK
&& sqlite3_data_count(pCsr
->pStmt
)-1>iCol
){
3492 sqlite3_result_value(pCtx
, sqlite3_column_value(pCsr
->pStmt
, iCol
+1));
3497 assert( ((Fts3Table
*)pCsr
->base
.pVtab
)->pSegments
==0 );
3502 ** This function is the implementation of the xUpdate callback used by
3503 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3504 ** inserted, updated or deleted.
3506 static int fts3UpdateMethod(
3507 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3508 int nArg
, /* Size of argument array */
3509 sqlite3_value
**apVal
, /* Array of arguments */
3510 sqlite_int64
*pRowid
/* OUT: The affected (or effected) rowid */
3512 return sqlite3Fts3UpdateMethod(pVtab
, nArg
, apVal
, pRowid
);
3516 ** Implementation of xSync() method. Flush the contents of the pending-terms
3517 ** hash-table to the database.
3519 static int fts3SyncMethod(sqlite3_vtab
*pVtab
){
3521 /* Following an incremental-merge operation, assuming that the input
3522 ** segments are not completely consumed (the usual case), they are updated
3523 ** in place to remove the entries that have already been merged. This
3524 ** involves updating the leaf block that contains the smallest unmerged
3525 ** entry and each block (if any) between the leaf and the root node. So
3526 ** if the height of the input segment b-trees is N, and input segments
3527 ** are merged eight at a time, updating the input segments at the end
3528 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually
3529 ** small - often between 0 and 2. So the overhead of the incremental
3530 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead
3531 ** dwarfing the actual productive work accomplished, the incremental merge
3532 ** is only attempted if it will write at least 64 leaf blocks. Hence
3535 ** Of course, updating the input segments also involves deleting a bunch
3536 ** of blocks from the segments table. But this is not considered overhead
3537 ** as it would also be required by a crisis-merge that used the same input
3540 const u32 nMinMerge
= 64; /* Minimum amount of incr-merge work to do */
3542 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3544 i64 iLastRowid
= sqlite3_last_insert_rowid(p
->db
);
3546 rc
= sqlite3Fts3PendingTermsFlush(p
);
3548 && p
->nLeafAdd
>(nMinMerge
/16)
3549 && p
->nAutoincrmerge
&& p
->nAutoincrmerge
!=0xff
3551 int mxLevel
= 0; /* Maximum relative level value in db */
3552 int A
; /* Incr-merge parameter A */
3554 rc
= sqlite3Fts3MaxLevel(p
, &mxLevel
);
3555 assert( rc
==SQLITE_OK
|| mxLevel
==0 );
3556 A
= p
->nLeafAdd
* mxLevel
;
3558 if( A
>(int)nMinMerge
) rc
= sqlite3Fts3Incrmerge(p
, A
, p
->nAutoincrmerge
);
3560 sqlite3Fts3SegmentsClose(p
);
3561 sqlite3_set_last_insert_rowid(p
->db
, iLastRowid
);
3566 ** If it is currently unknown whether or not the FTS table has an %_stat
3567 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat
3568 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code
3569 ** if an error occurs.
3571 static int fts3SetHasStat(Fts3Table
*p
){
3573 if( p
->bHasStat
==2 ){
3574 char *zTbl
= sqlite3_mprintf("%s_stat", p
->zName
);
3576 int res
= sqlite3_table_column_metadata(p
->db
, p
->zDb
, zTbl
, 0,0,0,0,0,0);
3578 p
->bHasStat
= (res
==SQLITE_OK
);
3587 ** Implementation of xBegin() method.
3589 static int fts3BeginMethod(sqlite3_vtab
*pVtab
){
3590 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3592 UNUSED_PARAMETER(pVtab
);
3593 assert( p
->pSegments
==0 );
3594 assert( p
->nPendingData
==0 );
3595 assert( p
->inTransaction
!=1 );
3597 rc
= fts3SetHasStat(p
);
3599 if( rc
==SQLITE_OK
){
3600 p
->inTransaction
= 1;
3601 p
->mxSavepoint
= -1;
3608 ** Implementation of xCommit() method. This is a no-op. The contents of
3609 ** the pending-terms hash-table have already been flushed into the database
3610 ** by fts3SyncMethod().
3612 static int fts3CommitMethod(sqlite3_vtab
*pVtab
){
3613 TESTONLY( Fts3Table
*p
= (Fts3Table
*)pVtab
);
3614 UNUSED_PARAMETER(pVtab
);
3615 assert( p
->nPendingData
==0 );
3616 assert( p
->inTransaction
!=0 );
3617 assert( p
->pSegments
==0 );
3618 TESTONLY( p
->inTransaction
= 0 );
3619 TESTONLY( p
->mxSavepoint
= -1; );
3624 ** Implementation of xRollback(). Discard the contents of the pending-terms
3625 ** hash-table. Any changes made to the database are reverted by SQLite.
3627 static int fts3RollbackMethod(sqlite3_vtab
*pVtab
){
3628 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3629 sqlite3Fts3PendingTermsClear(p
);
3630 assert( p
->inTransaction
!=0 );
3631 TESTONLY( p
->inTransaction
= 0 );
3632 TESTONLY( p
->mxSavepoint
= -1; );
3637 ** When called, *ppPoslist must point to the byte immediately following the
3638 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function
3639 ** moves *ppPoslist so that it instead points to the first byte of the
3640 ** same position list.
3642 static void fts3ReversePoslist(char *pStart
, char **ppPoslist
){
3643 char *p
= &(*ppPoslist
)[-2];
3646 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */
3647 while( p
>pStart
&& (c
=*p
--)==0 );
3649 /* Search backwards for a varint with value zero (the end of the previous
3650 ** poslist). This is an 0x00 byte preceded by some byte that does not
3651 ** have the 0x80 bit set. */
3652 while( p
>pStart
&& (*p
& 0x80) | c
){
3655 assert( p
==pStart
|| c
==0 );
3657 /* At this point p points to that preceding byte without the 0x80 bit
3658 ** set. So to find the start of the poslist, skip forward 2 bytes then
3661 ** Normally. The other case is that p==pStart and the poslist to return
3662 ** is the first in the doclist. In this case do not skip forward 2 bytes.
3663 ** The second part of the if condition (c==0 && *ppPoslist>&p[2])
3664 ** is required for cases where the first byte of a doclist and the
3665 ** doclist is empty. For example, if the first docid is 10, a doclist
3666 ** that begins with:
3668 ** 0x0A 0x00 <next docid delta varint>
3670 if( p
>pStart
|| (c
==0 && *ppPoslist
>&p
[2]) ){ p
= &p
[2]; }
3676 ** Helper function used by the implementation of the overloaded snippet(),
3677 ** offsets() and optimize() SQL functions.
3679 ** If the value passed as the third argument is a blob of size
3680 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3681 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3682 ** message is written to context pContext and SQLITE_ERROR returned. The
3683 ** string passed via zFunc is used as part of the error message.
3685 static int fts3FunctionArg(
3686 sqlite3_context
*pContext
, /* SQL function call context */
3687 const char *zFunc
, /* Function name */
3688 sqlite3_value
*pVal
, /* argv[0] passed to function */
3689 Fts3Cursor
**ppCsr
/* OUT: Store cursor handle here */
3692 *ppCsr
= (Fts3Cursor
*)sqlite3_value_pointer(pVal
, "fts3cursor");
3696 char *zErr
= sqlite3_mprintf("illegal first argument to %s", zFunc
);
3697 sqlite3_result_error(pContext
, zErr
, -1);
3705 ** Implementation of the snippet() function for FTS3
3707 static void fts3SnippetFunc(
3708 sqlite3_context
*pContext
, /* SQLite function call context */
3709 int nVal
, /* Size of apVal[] array */
3710 sqlite3_value
**apVal
/* Array of arguments */
3712 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3713 const char *zStart
= "<b>";
3714 const char *zEnd
= "</b>";
3715 const char *zEllipsis
= "<b>...</b>";
3717 int nToken
= 15; /* Default number of tokens in snippet */
3719 /* There must be at least one argument passed to this function (otherwise
3720 ** the non-overloaded version would have been called instead of this one).
3725 sqlite3_result_error(pContext
,
3726 "wrong number of arguments to function snippet()", -1);
3729 if( fts3FunctionArg(pContext
, "snippet", apVal
[0], &pCsr
) ) return;
3732 case 6: nToken
= sqlite3_value_int(apVal
[5]);
3733 /* no break */ deliberate_fall_through
3734 case 5: iCol
= sqlite3_value_int(apVal
[4]);
3735 /* no break */ deliberate_fall_through
3736 case 4: zEllipsis
= (const char*)sqlite3_value_text(apVal
[3]);
3737 /* no break */ deliberate_fall_through
3738 case 3: zEnd
= (const char*)sqlite3_value_text(apVal
[2]);
3739 /* no break */ deliberate_fall_through
3740 case 2: zStart
= (const char*)sqlite3_value_text(apVal
[1]);
3742 if( !zEllipsis
|| !zEnd
|| !zStart
){
3743 sqlite3_result_error_nomem(pContext
);
3744 }else if( nToken
==0 ){
3745 sqlite3_result_text(pContext
, "", -1, SQLITE_STATIC
);
3746 }else if( SQLITE_OK
==fts3CursorSeek(pContext
, pCsr
) ){
3747 sqlite3Fts3Snippet(pContext
, pCsr
, zStart
, zEnd
, zEllipsis
, iCol
, nToken
);
3752 ** Implementation of the offsets() function for FTS3
3754 static void fts3OffsetsFunc(
3755 sqlite3_context
*pContext
, /* SQLite function call context */
3756 int nVal
, /* Size of argument array */
3757 sqlite3_value
**apVal
/* Array of arguments */
3759 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3761 UNUSED_PARAMETER(nVal
);
3764 if( fts3FunctionArg(pContext
, "offsets", apVal
[0], &pCsr
) ) return;
3766 if( SQLITE_OK
==fts3CursorSeek(pContext
, pCsr
) ){
3767 sqlite3Fts3Offsets(pContext
, pCsr
);
3772 ** Implementation of the special optimize() function for FTS3. This
3773 ** function merges all segments in the database to a single segment.
3774 ** Example usage is:
3776 ** SELECT optimize(t) FROM t LIMIT 1;
3778 ** where 't' is the name of an FTS3 table.
3780 static void fts3OptimizeFunc(
3781 sqlite3_context
*pContext
, /* SQLite function call context */
3782 int nVal
, /* Size of argument array */
3783 sqlite3_value
**apVal
/* Array of arguments */
3785 int rc
; /* Return code */
3786 Fts3Table
*p
; /* Virtual table handle */
3787 Fts3Cursor
*pCursor
; /* Cursor handle passed through apVal[0] */
3789 UNUSED_PARAMETER(nVal
);
3792 if( fts3FunctionArg(pContext
, "optimize", apVal
[0], &pCursor
) ) return;
3793 p
= (Fts3Table
*)pCursor
->base
.pVtab
;
3796 rc
= sqlite3Fts3Optimize(p
);
3800 sqlite3_result_text(pContext
, "Index optimized", -1, SQLITE_STATIC
);
3803 sqlite3_result_text(pContext
, "Index already optimal", -1, SQLITE_STATIC
);
3806 sqlite3_result_error_code(pContext
, rc
);
3812 ** Implementation of the matchinfo() function for FTS3
3814 static void fts3MatchinfoFunc(
3815 sqlite3_context
*pContext
, /* SQLite function call context */
3816 int nVal
, /* Size of argument array */
3817 sqlite3_value
**apVal
/* Array of arguments */
3819 Fts3Cursor
*pCsr
; /* Cursor handle passed through apVal[0] */
3820 assert( nVal
==1 || nVal
==2 );
3821 if( SQLITE_OK
==fts3FunctionArg(pContext
, "matchinfo", apVal
[0], &pCsr
) ){
3822 const char *zArg
= 0;
3824 zArg
= (const char *)sqlite3_value_text(apVal
[1]);
3826 sqlite3Fts3Matchinfo(pContext
, pCsr
, zArg
);
3831 ** This routine implements the xFindFunction method for the FTS3
3834 static int fts3FindFunctionMethod(
3835 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3836 int nArg
, /* Number of SQL function arguments */
3837 const char *zName
, /* Name of SQL function */
3838 void (**pxFunc
)(sqlite3_context
*,int,sqlite3_value
**), /* OUT: Result */
3839 void **ppArg
/* Unused */
3843 void (*xFunc
)(sqlite3_context
*,int,sqlite3_value
**);
3845 { "snippet", fts3SnippetFunc
},
3846 { "offsets", fts3OffsetsFunc
},
3847 { "optimize", fts3OptimizeFunc
},
3848 { "matchinfo", fts3MatchinfoFunc
},
3850 int i
; /* Iterator variable */
3852 UNUSED_PARAMETER(pVtab
);
3853 UNUSED_PARAMETER(nArg
);
3854 UNUSED_PARAMETER(ppArg
);
3856 for(i
=0; i
<SizeofArray(aOverload
); i
++){
3857 if( strcmp(zName
, aOverload
[i
].zName
)==0 ){
3858 *pxFunc
= aOverload
[i
].xFunc
;
3863 /* No function of the specified name was found. Return 0. */
3868 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3870 static int fts3RenameMethod(
3871 sqlite3_vtab
*pVtab
, /* Virtual table handle */
3872 const char *zName
/* New name of table */
3874 Fts3Table
*p
= (Fts3Table
*)pVtab
;
3875 sqlite3
*db
= p
->db
; /* Database connection */
3876 int rc
; /* Return Code */
3878 /* At this point it must be known if the %_stat table exists or not.
3879 ** So bHasStat may not be 2. */
3880 rc
= fts3SetHasStat(p
);
3882 /* As it happens, the pending terms table is always empty here. This is
3883 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction
3884 ** always opens a savepoint transaction. And the xSavepoint() method
3885 ** flushes the pending terms table. But leave the (no-op) call to
3886 ** PendingTermsFlush() in in case that changes.
3888 assert( p
->nPendingData
==0 );
3889 if( rc
==SQLITE_OK
){
3890 rc
= sqlite3Fts3PendingTermsFlush(p
);
3893 p
->bIgnoreSavepoint
= 1;
3895 if( p
->zContentTbl
==0 ){
3897 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3898 p
->zDb
, p
->zName
, zName
3902 if( p
->bHasDocsize
){
3904 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3905 p
->zDb
, p
->zName
, zName
3910 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3911 p
->zDb
, p
->zName
, zName
3915 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3916 p
->zDb
, p
->zName
, zName
3919 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3920 p
->zDb
, p
->zName
, zName
3923 p
->bIgnoreSavepoint
= 0;
3928 ** The xSavepoint() method.
3930 ** Flush the contents of the pending-terms table to disk.
3932 static int fts3SavepointMethod(sqlite3_vtab
*pVtab
, int iSavepoint
){
3934 Fts3Table
*pTab
= (Fts3Table
*)pVtab
;
3935 assert( pTab
->inTransaction
);
3936 assert( pTab
->mxSavepoint
<=iSavepoint
);
3937 TESTONLY( pTab
->mxSavepoint
= iSavepoint
);
3939 if( pTab
->bIgnoreSavepoint
==0 ){
3940 if( fts3HashCount(&pTab
->aIndex
[0].hPending
)>0 ){
3941 char *zSql
= sqlite3_mprintf("INSERT INTO %Q.%Q(%Q) VALUES('flush')",
3942 pTab
->zDb
, pTab
->zName
, pTab
->zName
3945 pTab
->bIgnoreSavepoint
= 1;
3946 rc
= sqlite3_exec(pTab
->db
, zSql
, 0, 0, 0);
3947 pTab
->bIgnoreSavepoint
= 0;
3953 if( rc
==SQLITE_OK
){
3954 pTab
->iSavepoint
= iSavepoint
+1;
3961 ** The xRelease() method.
3965 static int fts3ReleaseMethod(sqlite3_vtab
*pVtab
, int iSavepoint
){
3966 Fts3Table
*pTab
= (Fts3Table
*)pVtab
;
3967 assert( pTab
->inTransaction
);
3968 assert( pTab
->mxSavepoint
>= iSavepoint
);
3969 TESTONLY( pTab
->mxSavepoint
= iSavepoint
-1 );
3970 pTab
->iSavepoint
= iSavepoint
;
3975 ** The xRollbackTo() method.
3977 ** Discard the contents of the pending terms table.
3979 static int fts3RollbackToMethod(sqlite3_vtab
*pVtab
, int iSavepoint
){
3980 Fts3Table
*pTab
= (Fts3Table
*)pVtab
;
3981 UNUSED_PARAMETER(iSavepoint
);
3982 assert( pTab
->inTransaction
);
3983 TESTONLY( pTab
->mxSavepoint
= iSavepoint
);
3984 if( (iSavepoint
+1)<=pTab
->iSavepoint
){
3985 sqlite3Fts3PendingTermsClear(pTab
);
3991 ** Return true if zName is the extension on one of the shadow tables used
3994 static int fts3ShadowName(const char *zName
){
3995 static const char *azName
[] = {
3996 "content", "docsize", "segdir", "segments", "stat",
3999 for(i
=0; i
<sizeof(azName
)/sizeof(azName
[0]); i
++){
4000 if( sqlite3_stricmp(zName
, azName
[i
])==0 ) return 1;
4006 ** Implementation of the xIntegrity() method on the FTS3/FTS4 virtual
4009 static int fts3IntegrityMethod(
4010 sqlite3_vtab
*pVtab
, /* The virtual table to be checked */
4011 const char *zSchema
, /* Name of schema in which pVtab lives */
4012 const char *zTabname
, /* Name of the pVTab table */
4013 int isQuick
, /* True if this is a quick_check */
4014 char **pzErr
/* Write error message here */
4016 Fts3Table
*p
= (Fts3Table
*)pVtab
;
4020 UNUSED_PARAMETER(isQuick
);
4021 rc
= sqlite3Fts3IntegrityCheck(p
, &bOk
);
4022 assert( rc
!=SQLITE_CORRUPT_VTAB
);
4023 if( rc
==SQLITE_ERROR
|| (rc
&0xFF)==SQLITE_CORRUPT
){
4024 *pzErr
= sqlite3_mprintf("unable to validate the inverted index for"
4025 " FTS%d table %s.%s: %s",
4026 p
->bFts4
? 4 : 3, zSchema
, zTabname
, sqlite3_errstr(rc
));
4027 if( *pzErr
) rc
= SQLITE_OK
;
4028 }else if( rc
==SQLITE_OK
&& bOk
==0 ){
4029 *pzErr
= sqlite3_mprintf("malformed inverted index for FTS%d table %s.%s",
4030 p
->bFts4
? 4 : 3, zSchema
, zTabname
);
4031 if( *pzErr
==0 ) rc
= SQLITE_NOMEM
;
4033 sqlite3Fts3SegmentsClose(p
);
4039 static const sqlite3_module fts3Module
= {
4041 /* xCreate */ fts3CreateMethod
,
4042 /* xConnect */ fts3ConnectMethod
,
4043 /* xBestIndex */ fts3BestIndexMethod
,
4044 /* xDisconnect */ fts3DisconnectMethod
,
4045 /* xDestroy */ fts3DestroyMethod
,
4046 /* xOpen */ fts3OpenMethod
,
4047 /* xClose */ fts3CloseMethod
,
4048 /* xFilter */ fts3FilterMethod
,
4049 /* xNext */ fts3NextMethod
,
4050 /* xEof */ fts3EofMethod
,
4051 /* xColumn */ fts3ColumnMethod
,
4052 /* xRowid */ fts3RowidMethod
,
4053 /* xUpdate */ fts3UpdateMethod
,
4054 /* xBegin */ fts3BeginMethod
,
4055 /* xSync */ fts3SyncMethod
,
4056 /* xCommit */ fts3CommitMethod
,
4057 /* xRollback */ fts3RollbackMethod
,
4058 /* xFindFunction */ fts3FindFunctionMethod
,
4059 /* xRename */ fts3RenameMethod
,
4060 /* xSavepoint */ fts3SavepointMethod
,
4061 /* xRelease */ fts3ReleaseMethod
,
4062 /* xRollbackTo */ fts3RollbackToMethod
,
4063 /* xShadowName */ fts3ShadowName
,
4064 /* xIntegrity */ fts3IntegrityMethod
,
4068 ** This function is registered as the module destructor (called when an
4069 ** FTS3 enabled database connection is closed). It frees the memory
4070 ** allocated for the tokenizer hash table.
4072 static void hashDestroy(void *p
){
4073 Fts3HashWrapper
*pHash
= (Fts3HashWrapper
*)p
;
4075 if( pHash
->nRef
<=0 ){
4076 sqlite3Fts3HashClear(&pHash
->hash
);
4077 sqlite3_free(pHash
);
4082 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
4083 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
4084 ** respectively. The following three forward declarations are for functions
4085 ** declared in these files used to retrieve the respective implementations.
4087 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
4088 ** to by the argument to point to the "simple" tokenizer implementation.
4091 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
4092 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
4093 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4094 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module
const**ppModule
);
4096 #ifdef SQLITE_ENABLE_ICU
4097 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module
const**ppModule
);
4101 ** Initialize the fts3 extension. If this extension is built as part
4102 ** of the sqlite library, then this function is called directly by
4103 ** SQLite. If fts3 is built as a dynamically loadable extension, this
4104 ** function is called by the sqlite3_extension_init() entry point.
4106 int sqlite3Fts3Init(sqlite3
*db
){
4108 Fts3HashWrapper
*pHash
= 0;
4109 const sqlite3_tokenizer_module
*pSimple
= 0;
4110 const sqlite3_tokenizer_module
*pPorter
= 0;
4111 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4112 const sqlite3_tokenizer_module
*pUnicode
= 0;
4115 #ifdef SQLITE_ENABLE_ICU
4116 const sqlite3_tokenizer_module
*pIcu
= 0;
4117 sqlite3Fts3IcuTokenizerModule(&pIcu
);
4120 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4121 sqlite3Fts3UnicodeTokenizer(&pUnicode
);
4125 rc
= sqlite3Fts3InitTerm(db
);
4126 if( rc
!=SQLITE_OK
) return rc
;
4129 rc
= sqlite3Fts3InitAux(db
);
4130 if( rc
!=SQLITE_OK
) return rc
;
4132 sqlite3Fts3SimpleTokenizerModule(&pSimple
);
4133 sqlite3Fts3PorterTokenizerModule(&pPorter
);
4135 /* Allocate and initialize the hash-table used to store tokenizers. */
4136 pHash
= sqlite3_malloc(sizeof(Fts3HashWrapper
));
4140 sqlite3Fts3HashInit(&pHash
->hash
, FTS3_HASH_STRING
, 1);
4144 /* Load the built-in tokenizers into the hash table */
4145 if( rc
==SQLITE_OK
){
4146 if( sqlite3Fts3HashInsert(&pHash
->hash
, "simple", 7, (void *)pSimple
)
4147 || sqlite3Fts3HashInsert(&pHash
->hash
, "porter", 7, (void *)pPorter
)
4149 #ifndef SQLITE_DISABLE_FTS3_UNICODE
4150 || sqlite3Fts3HashInsert(&pHash
->hash
, "unicode61", 10, (void *)pUnicode
)
4152 #ifdef SQLITE_ENABLE_ICU
4153 || (pIcu
&& sqlite3Fts3HashInsert(&pHash
->hash
, "icu", 4, (void *)pIcu
))
4161 if( rc
==SQLITE_OK
){
4162 rc
= sqlite3Fts3ExprInitTestInterface(db
, &pHash
->hash
);
4166 /* Create the virtual table wrapper around the hash-table and overload
4167 ** the four scalar functions. If this is successful, register the
4168 ** module with sqlite.
4171 && SQLITE_OK
==(rc
=sqlite3Fts3InitHashTable(db
,&pHash
->hash
,"fts3_tokenizer"))
4172 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "snippet", -1))
4173 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "offsets", 1))
4174 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "matchinfo", 1))
4175 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "matchinfo", 2))
4176 && SQLITE_OK
==(rc
= sqlite3_overload_function(db
, "optimize", 1))
4179 rc
= sqlite3_create_module_v2(
4180 db
, "fts3", &fts3Module
, (void *)pHash
, hashDestroy
4182 if( rc
==SQLITE_OK
){
4184 rc
= sqlite3_create_module_v2(
4185 db
, "fts4", &fts3Module
, (void *)pHash
, hashDestroy
4188 if( rc
==SQLITE_OK
){
4190 rc
= sqlite3Fts3InitTok(db
, (void *)pHash
, hashDestroy
);
4196 /* An error has occurred. Delete the hash table and return the error code. */
4197 assert( rc
!=SQLITE_OK
);
4199 sqlite3Fts3HashClear(&pHash
->hash
);
4200 sqlite3_free(pHash
);
4206 ** Allocate an Fts3MultiSegReader for each token in the expression headed
4209 ** An Fts3SegReader object is a cursor that can seek or scan a range of
4210 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
4211 ** Fts3SegReader objects internally to provide an interface to seek or scan
4212 ** within the union of all segments of a b-tree. Hence the name.
4214 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a
4215 ** segment b-tree (if the term is not a prefix or it is a prefix for which
4216 ** there exists prefix b-tree of the right length) then it may be traversed
4217 ** and merged incrementally. Otherwise, it has to be merged into an in-memory
4218 ** doclist and then traversed.
4220 static void fts3EvalAllocateReaders(
4221 Fts3Cursor
*pCsr
, /* FTS cursor handle */
4222 Fts3Expr
*pExpr
, /* Allocate readers for this expression */
4223 int *pnToken
, /* OUT: Total number of tokens in phrase. */
4224 int *pnOr
, /* OUT: Total number of OR nodes in expr. */
4225 int *pRc
/* IN/OUT: Error code */
4227 if( pExpr
&& SQLITE_OK
==*pRc
){
4228 if( pExpr
->eType
==FTSQUERY_PHRASE
){
4230 int nToken
= pExpr
->pPhrase
->nToken
;
4232 for(i
=0; i
<nToken
; i
++){
4233 Fts3PhraseToken
*pToken
= &pExpr
->pPhrase
->aToken
[i
];
4234 int rc
= fts3TermSegReaderCursor(pCsr
,
4235 pToken
->z
, pToken
->n
, pToken
->isPrefix
, &pToken
->pSegcsr
4237 if( rc
!=SQLITE_OK
){
4242 assert( pExpr
->pPhrase
->iDoclistToken
==0 );
4243 pExpr
->pPhrase
->iDoclistToken
= -1;
4245 *pnOr
+= (pExpr
->eType
==FTSQUERY_OR
);
4246 fts3EvalAllocateReaders(pCsr
, pExpr
->pLeft
, pnToken
, pnOr
, pRc
);
4247 fts3EvalAllocateReaders(pCsr
, pExpr
->pRight
, pnToken
, pnOr
, pRc
);
4253 ** Arguments pList/nList contain the doclist for token iToken of phrase p.
4254 ** It is merged into the main doclist stored in p->doclist.aAll/nAll.
4256 ** This function assumes that pList points to a buffer allocated using
4257 ** sqlite3_malloc(). This function takes responsibility for eventually
4258 ** freeing the buffer.
4260 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
4262 static int fts3EvalPhraseMergeToken(
4263 Fts3Table
*pTab
, /* FTS Table pointer */
4264 Fts3Phrase
*p
, /* Phrase to merge pList/nList into */
4265 int iToken
, /* Token pList/nList corresponds to */
4266 char *pList
, /* Pointer to doclist */
4267 int nList
/* Number of bytes in pList */
4270 assert( iToken
!=p
->iDoclistToken
);
4273 sqlite3_free(p
->doclist
.aAll
);
4274 p
->doclist
.aAll
= 0;
4275 p
->doclist
.nAll
= 0;
4278 else if( p
->iDoclistToken
<0 ){
4279 p
->doclist
.aAll
= pList
;
4280 p
->doclist
.nAll
= nList
;
4283 else if( p
->doclist
.aAll
==0 ){
4284 sqlite3_free(pList
);
4294 if( p
->iDoclistToken
<iToken
){
4295 pLeft
= p
->doclist
.aAll
;
4296 nLeft
= p
->doclist
.nAll
;
4299 nDiff
= iToken
- p
->iDoclistToken
;
4301 pRight
= p
->doclist
.aAll
;
4302 nRight
= p
->doclist
.nAll
;
4305 nDiff
= p
->iDoclistToken
- iToken
;
4308 rc
= fts3DoclistPhraseMerge(
4309 pTab
->bDescIdx
, nDiff
, pLeft
, nLeft
, &pRight
, &nRight
4311 sqlite3_free(pLeft
);
4312 p
->doclist
.aAll
= pRight
;
4313 p
->doclist
.nAll
= nRight
;
4316 if( iToken
>p
->iDoclistToken
) p
->iDoclistToken
= iToken
;
4321 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
4322 ** does not take deferred tokens into account.
4324 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4326 static int fts3EvalPhraseLoad(
4327 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4328 Fts3Phrase
*p
/* Phrase object */
4330 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4334 for(iToken
=0; rc
==SQLITE_OK
&& iToken
<p
->nToken
; iToken
++){
4335 Fts3PhraseToken
*pToken
= &p
->aToken
[iToken
];
4336 assert( pToken
->pDeferred
==0 || pToken
->pSegcsr
==0 );
4338 if( pToken
->pSegcsr
){
4341 rc
= fts3TermSelect(pTab
, pToken
, p
->iColumn
, &nThis
, &pThis
);
4342 if( rc
==SQLITE_OK
){
4343 rc
= fts3EvalPhraseMergeToken(pTab
, p
, iToken
, pThis
, nThis
);
4346 assert( pToken
->pSegcsr
==0 );
4352 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
4354 ** This function is called on each phrase after the position lists for
4355 ** any deferred tokens have been loaded into memory. It updates the phrases
4356 ** current position list to include only those positions that are really
4357 ** instances of the phrase (after considering deferred tokens). If this
4358 ** means that the phrase does not appear in the current row, doclist.pList
4359 ** and doclist.nList are both zeroed.
4361 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4363 static int fts3EvalDeferredPhrase(Fts3Cursor
*pCsr
, Fts3Phrase
*pPhrase
){
4364 int iToken
; /* Used to iterate through phrase tokens */
4365 char *aPoslist
= 0; /* Position list for deferred tokens */
4366 int nPoslist
= 0; /* Number of bytes in aPoslist */
4367 int iPrev
= -1; /* Token number of previous deferred token */
4368 char *aFree
= (pPhrase
->doclist
.bFreeList
? pPhrase
->doclist
.pList
: 0);
4370 for(iToken
=0; iToken
<pPhrase
->nToken
; iToken
++){
4371 Fts3PhraseToken
*pToken
= &pPhrase
->aToken
[iToken
];
4372 Fts3DeferredToken
*pDeferred
= pToken
->pDeferred
;
4377 int rc
= sqlite3Fts3DeferredTokenList(pDeferred
, &pList
, &nList
);
4378 if( rc
!=SQLITE_OK
) return rc
;
4381 sqlite3_free(aPoslist
);
4382 sqlite3_free(aFree
);
4383 pPhrase
->doclist
.pList
= 0;
4384 pPhrase
->doclist
.nList
= 0;
4387 }else if( aPoslist
==0 ){
4393 char *p1
= aPoslist
;
4397 fts3PoslistPhraseMerge(&aOut
, iToken
-iPrev
, 0, 1, &p1
, &p2
);
4398 sqlite3_free(aPoslist
);
4400 nPoslist
= (int)(aOut
- aPoslist
);
4402 sqlite3_free(aPoslist
);
4403 sqlite3_free(aFree
);
4404 pPhrase
->doclist
.pList
= 0;
4405 pPhrase
->doclist
.nList
= 0;
4414 int nMaxUndeferred
= pPhrase
->iDoclistToken
;
4415 if( nMaxUndeferred
<0 ){
4416 pPhrase
->doclist
.pList
= aPoslist
;
4417 pPhrase
->doclist
.nList
= nPoslist
;
4418 pPhrase
->doclist
.iDocid
= pCsr
->iPrevId
;
4419 pPhrase
->doclist
.bFreeList
= 1;
4426 if( nMaxUndeferred
>iPrev
){
4428 p2
= pPhrase
->doclist
.pList
;
4429 nDistance
= nMaxUndeferred
- iPrev
;
4431 p1
= pPhrase
->doclist
.pList
;
4433 nDistance
= iPrev
- nMaxUndeferred
;
4436 aOut
= (char *)sqlite3Fts3MallocZero(nPoslist
+FTS3_BUFFER_PADDING
);
4438 sqlite3_free(aPoslist
);
4439 return SQLITE_NOMEM
;
4442 pPhrase
->doclist
.pList
= aOut
;
4444 if( fts3PoslistPhraseMerge(&aOut
, nDistance
, 0, 1, &p1
, &p2
) ){
4445 pPhrase
->doclist
.bFreeList
= 1;
4446 pPhrase
->doclist
.nList
= (int)(aOut
- pPhrase
->doclist
.pList
);
4449 pPhrase
->doclist
.pList
= 0;
4450 pPhrase
->doclist
.nList
= 0;
4452 sqlite3_free(aPoslist
);
4456 if( pPhrase
->doclist
.pList
!=aFree
) sqlite3_free(aFree
);
4459 #endif /* SQLITE_DISABLE_FTS4_DEFERRED */
4462 ** Maximum number of tokens a phrase may have to be considered for the
4463 ** incremental doclists strategy.
4465 #define MAX_INCR_PHRASE_TOKENS 4
4468 ** This function is called for each Fts3Phrase in a full-text query
4469 ** expression to initialize the mechanism for returning rows. Once this
4470 ** function has been called successfully on an Fts3Phrase, it may be
4471 ** used with fts3EvalPhraseNext() to iterate through the matching docids.
4473 ** If parameter bOptOk is true, then the phrase may (or may not) use the
4474 ** incremental loading strategy. Otherwise, the entire doclist is loaded into
4475 ** memory within this call.
4477 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
4479 static int fts3EvalPhraseStart(Fts3Cursor
*pCsr
, int bOptOk
, Fts3Phrase
*p
){
4480 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4481 int rc
= SQLITE_OK
; /* Error code */
4484 /* Determine if doclists may be loaded from disk incrementally. This is
4485 ** possible if the bOptOk argument is true, the FTS doclists will be
4486 ** scanned in forward order, and the phrase consists of
4487 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first"
4488 ** tokens or prefix tokens that cannot use a prefix-index. */
4490 int bIncrOk
= (bOptOk
4491 && pCsr
->bDesc
==pTab
->bDescIdx
4492 && p
->nToken
<=MAX_INCR_PHRASE_TOKENS
&& p
->nToken
>0
4493 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
4494 && pTab
->bNoIncrDoclist
==0
4497 for(i
=0; bIncrOk
==1 && i
<p
->nToken
; i
++){
4498 Fts3PhraseToken
*pToken
= &p
->aToken
[i
];
4499 if( pToken
->bFirst
|| (pToken
->pSegcsr
!=0 && !pToken
->pSegcsr
->bLookup
) ){
4502 if( pToken
->pSegcsr
) bHaveIncr
= 1;
4505 if( bIncrOk
&& bHaveIncr
){
4506 /* Use the incremental approach. */
4507 int iCol
= (p
->iColumn
>= pTab
->nColumn
? -1 : p
->iColumn
);
4508 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nToken
; i
++){
4509 Fts3PhraseToken
*pToken
= &p
->aToken
[i
];
4510 Fts3MultiSegReader
*pSegcsr
= pToken
->pSegcsr
;
4512 rc
= sqlite3Fts3MsrIncrStart(pTab
, pSegcsr
, iCol
, pToken
->z
, pToken
->n
);
4517 /* Load the full doclist for the phrase into memory. */
4518 rc
= fts3EvalPhraseLoad(pCsr
, p
);
4522 assert( rc
!=SQLITE_OK
|| p
->nToken
<1 || p
->aToken
[0].pSegcsr
==0 || p
->bIncr
);
4527 ** This function is used to iterate backwards (from the end to start)
4528 ** through doclists. It is used by this module to iterate through phrase
4529 ** doclists in reverse and by the fts3_write.c module to iterate through
4530 ** pending-terms lists when writing to databases with "order=desc".
4532 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or
4533 ** descending (parameter bDescIdx==1) order of docid. Regardless, this
4534 ** function iterates from the end of the doclist to the beginning.
4536 void sqlite3Fts3DoclistPrev(
4537 int bDescIdx
, /* True if the doclist is desc */
4538 char *aDoclist
, /* Pointer to entire doclist */
4539 int nDoclist
, /* Length of aDoclist in bytes */
4540 char **ppIter
, /* IN/OUT: Iterator pointer */
4541 sqlite3_int64
*piDocid
, /* IN/OUT: Docid pointer */
4542 int *pnList
, /* OUT: List length pointer */
4543 u8
*pbEof
/* OUT: End-of-file flag */
4547 assert( nDoclist
>0 );
4548 assert( *pbEof
==0 );
4549 assert_fts3_nc( p
|| *piDocid
==0 );
4550 assert( !p
|| (p
>aDoclist
&& p
<&aDoclist
[nDoclist
]) );
4553 sqlite3_int64 iDocid
= 0;
4555 char *pDocid
= aDoclist
;
4556 char *pEnd
= &aDoclist
[nDoclist
];
4559 while( pDocid
<pEnd
){
4560 sqlite3_int64 iDelta
;
4561 pDocid
+= sqlite3Fts3GetVarint(pDocid
, &iDelta
);
4562 iDocid
+= (iMul
* iDelta
);
4564 fts3PoslistCopy(0, &pDocid
);
4565 while( pDocid
<pEnd
&& *pDocid
==0 ) pDocid
++;
4566 iMul
= (bDescIdx
? -1 : 1);
4569 *pnList
= (int)(pEnd
- pNext
);
4573 int iMul
= (bDescIdx
? -1 : 1);
4574 sqlite3_int64 iDelta
;
4575 fts3GetReverseVarint(&p
, aDoclist
, &iDelta
);
4576 *piDocid
-= (iMul
* iDelta
);
4582 fts3ReversePoslist(aDoclist
, &p
);
4583 *pnList
= (int)(pSave
- p
);
4590 ** Iterate forwards through a doclist.
4592 void sqlite3Fts3DoclistNext(
4593 int bDescIdx
, /* True if the doclist is desc */
4594 char *aDoclist
, /* Pointer to entire doclist */
4595 int nDoclist
, /* Length of aDoclist in bytes */
4596 char **ppIter
, /* IN/OUT: Iterator pointer */
4597 sqlite3_int64
*piDocid
, /* IN/OUT: Docid pointer */
4598 u8
*pbEof
/* OUT: End-of-file flag */
4602 assert( nDoclist
>0 );
4603 assert( *pbEof
==0 );
4604 assert_fts3_nc( p
|| *piDocid
==0 );
4605 assert( !p
|| (p
>=aDoclist
&& p
<=&aDoclist
[nDoclist
]) );
4609 p
+= sqlite3Fts3GetVarint(p
, piDocid
);
4611 fts3PoslistCopy(0, &p
);
4612 while( p
<&aDoclist
[nDoclist
] && *p
==0 ) p
++;
4613 if( p
>=&aDoclist
[nDoclist
] ){
4617 p
+= sqlite3Fts3GetVarint(p
, &iVar
);
4618 *piDocid
+= ((bDescIdx
? -1 : 1) * iVar
);
4626 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof
4627 ** to true if EOF is reached.
4629 static void fts3EvalDlPhraseNext(
4634 char *pIter
; /* Used to iterate through aAll */
4635 char *pEnd
; /* 1 byte past end of aAll */
4637 if( pDL
->pNextDocid
){
4638 pIter
= pDL
->pNextDocid
;
4639 assert( pDL
->aAll
!=0 || pIter
==0 );
4644 if( pIter
==0 || pIter
>=(pEnd
= pDL
->aAll
+ pDL
->nAll
) ){
4645 /* We have already reached the end of this doclist. EOF. */
4648 sqlite3_int64 iDelta
;
4649 pIter
+= sqlite3Fts3GetVarint(pIter
, &iDelta
);
4650 if( pTab
->bDescIdx
==0 || pDL
->pNextDocid
==0 ){
4651 pDL
->iDocid
+= iDelta
;
4653 pDL
->iDocid
-= iDelta
;
4656 fts3PoslistCopy(0, &pIter
);
4657 pDL
->nList
= (int)(pIter
- pDL
->pList
);
4659 /* pIter now points just past the 0x00 that terminates the position-
4660 ** list for document pDL->iDocid. However, if this position-list was
4661 ** edited in place by fts3EvalNearTrim(), then pIter may not actually
4662 ** point to the start of the next docid value. The following line deals
4663 ** with this case by advancing pIter past the zero-padding added by
4664 ** fts3EvalNearTrim(). */
4665 while( pIter
<pEnd
&& *pIter
==0 ) pIter
++;
4667 pDL
->pNextDocid
= pIter
;
4668 assert( pIter
>=&pDL
->aAll
[pDL
->nAll
] || *pIter
);
4674 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext().
4676 typedef struct TokenDoclist TokenDoclist
;
4677 struct TokenDoclist
{
4679 sqlite3_int64 iDocid
;
4685 ** Token pToken is an incrementally loaded token that is part of a
4686 ** multi-token phrase. Advance it to the next matching document in the
4687 ** database and populate output variable *p with the details of the new
4688 ** entry. Or, if the iterator has reached EOF, set *pbEof to true.
4690 ** If an error occurs, return an SQLite error code. Otherwise, return
4693 static int incrPhraseTokenNext(
4694 Fts3Table
*pTab
, /* Virtual table handle */
4695 Fts3Phrase
*pPhrase
, /* Phrase to advance token of */
4696 int iToken
, /* Specific token to advance */
4697 TokenDoclist
*p
, /* OUT: Docid and doclist for new entry */
4698 u8
*pbEof
/* OUT: True if iterator is at EOF */
4702 if( pPhrase
->iDoclistToken
==iToken
){
4703 assert( p
->bIgnore
==0 );
4704 assert( pPhrase
->aToken
[iToken
].pSegcsr
==0 );
4705 fts3EvalDlPhraseNext(pTab
, &pPhrase
->doclist
, pbEof
);
4706 p
->pList
= pPhrase
->doclist
.pList
;
4707 p
->nList
= pPhrase
->doclist
.nList
;
4708 p
->iDocid
= pPhrase
->doclist
.iDocid
;
4710 Fts3PhraseToken
*pToken
= &pPhrase
->aToken
[iToken
];
4711 assert( pToken
->pDeferred
==0 );
4712 assert( pToken
->pSegcsr
|| pPhrase
->iDoclistToken
>=0 );
4713 if( pToken
->pSegcsr
){
4714 assert( p
->bIgnore
==0 );
4715 rc
= sqlite3Fts3MsrIncrNext(
4716 pTab
, pToken
->pSegcsr
, &p
->iDocid
, &p
->pList
, &p
->nList
4718 if( p
->pList
==0 ) *pbEof
= 1;
4729 ** The phrase iterator passed as the second argument:
4731 ** * features at least one token that uses an incremental doclist, and
4733 ** * does not contain any deferred tokens.
4735 ** Advance it to the next matching documnent in the database and populate
4736 ** the Fts3Doclist.pList and nList fields.
4738 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4739 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4740 ** successfully advanced, *pbEof is set to 0.
4742 ** If an error occurs, return an SQLite error code. Otherwise, return
4745 static int fts3EvalIncrPhraseNext(
4746 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4747 Fts3Phrase
*p
, /* Phrase object to advance to next docid */
4748 u8
*pbEof
/* OUT: Set to 1 if EOF */
4751 Fts3Doclist
*pDL
= &p
->doclist
;
4752 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4755 /* This is only called if it is guaranteed that the phrase has at least
4756 ** one incremental token. In which case the bIncr flag is set. */
4757 assert( p
->bIncr
==1 );
4760 rc
= sqlite3Fts3MsrIncrNext(pTab
, p
->aToken
[0].pSegcsr
,
4761 &pDL
->iDocid
, &pDL
->pList
, &pDL
->nList
4763 if( pDL
->pList
==0 ) bEof
= 1;
4765 int bDescDoclist
= pCsr
->bDesc
;
4766 struct TokenDoclist a
[MAX_INCR_PHRASE_TOKENS
];
4768 memset(a
, 0, sizeof(a
));
4769 assert( p
->nToken
<=MAX_INCR_PHRASE_TOKENS
);
4770 assert( p
->iDoclistToken
<MAX_INCR_PHRASE_TOKENS
);
4774 sqlite3_int64 iMax
= 0; /* Largest docid for all iterators */
4775 int i
; /* Used to iterate through tokens */
4777 /* Advance the iterator for each token in the phrase once. */
4778 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nToken
&& bEof
==0; i
++){
4779 rc
= incrPhraseTokenNext(pTab
, p
, i
, &a
[i
], &bEof
);
4780 if( a
[i
].bIgnore
==0 && (bMaxSet
==0 || DOCID_CMP(iMax
, a
[i
].iDocid
)<0) ){
4785 assert( rc
!=SQLITE_OK
|| (p
->nToken
>=1 && a
[p
->nToken
-1].bIgnore
==0) );
4786 assert( rc
!=SQLITE_OK
|| bMaxSet
);
4788 /* Keep advancing iterators until they all point to the same document */
4789 for(i
=0; i
<p
->nToken
; i
++){
4790 while( rc
==SQLITE_OK
&& bEof
==0
4791 && a
[i
].bIgnore
==0 && DOCID_CMP(a
[i
].iDocid
, iMax
)<0
4793 rc
= incrPhraseTokenNext(pTab
, p
, i
, &a
[i
], &bEof
);
4794 if( DOCID_CMP(a
[i
].iDocid
, iMax
)>0 ){
4801 /* Check if the current entries really are a phrase match */
4804 int nByte
= a
[p
->nToken
-1].nList
;
4805 char *aDoclist
= sqlite3_malloc64((i64
)nByte
+FTS3_BUFFER_PADDING
);
4806 if( !aDoclist
) return SQLITE_NOMEM
;
4807 memcpy(aDoclist
, a
[p
->nToken
-1].pList
, nByte
+1);
4808 memset(&aDoclist
[nByte
], 0, FTS3_BUFFER_PADDING
);
4810 for(i
=0; i
<(p
->nToken
-1); i
++){
4811 if( a
[i
].bIgnore
==0 ){
4812 char *pL
= a
[i
].pList
;
4813 char *pR
= aDoclist
;
4814 char *pOut
= aDoclist
;
4815 int nDist
= p
->nToken
-1-i
;
4816 int res
= fts3PoslistPhraseMerge(&pOut
, nDist
, 0, 1, &pL
, &pR
);
4818 nList
= (int)(pOut
- aDoclist
);
4821 if( i
==(p
->nToken
-1) ){
4823 pDL
->pList
= aDoclist
;
4828 sqlite3_free(aDoclist
);
4838 ** Attempt to move the phrase iterator to point to the next matching docid.
4839 ** If an error occurs, return an SQLite error code. Otherwise, return
4842 ** If there is no "next" entry and no error occurs, then *pbEof is set to
4843 ** 1 before returning. Otherwise, if no error occurs and the iterator is
4844 ** successfully advanced, *pbEof is set to 0.
4846 static int fts3EvalPhraseNext(
4847 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4848 Fts3Phrase
*p
, /* Phrase object to advance to next docid */
4849 u8
*pbEof
/* OUT: Set to 1 if EOF */
4852 Fts3Doclist
*pDL
= &p
->doclist
;
4853 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
4856 rc
= fts3EvalIncrPhraseNext(pCsr
, p
, pbEof
);
4857 }else if( pCsr
->bDesc
!=pTab
->bDescIdx
&& pDL
->nAll
){
4858 sqlite3Fts3DoclistPrev(pTab
->bDescIdx
, pDL
->aAll
, pDL
->nAll
,
4859 &pDL
->pNextDocid
, &pDL
->iDocid
, &pDL
->nList
, pbEof
4861 pDL
->pList
= pDL
->pNextDocid
;
4863 fts3EvalDlPhraseNext(pTab
, pDL
, pbEof
);
4871 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4872 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
4873 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any
4874 ** expressions for which all descendent tokens are deferred.
4876 ** If parameter bOptOk is zero, then it is guaranteed that the
4877 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
4878 ** each phrase in the expression (subject to deferred token processing).
4879 ** Or, if bOptOk is non-zero, then one or more tokens within the expression
4880 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
4882 ** If an error occurs within this function, *pRc is set to an SQLite error
4883 ** code before returning.
4885 static void fts3EvalStartReaders(
4886 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4887 Fts3Expr
*pExpr
, /* Expression to initialize phrases in */
4888 int *pRc
/* IN/OUT: Error code */
4890 if( pExpr
&& SQLITE_OK
==*pRc
){
4891 if( pExpr
->eType
==FTSQUERY_PHRASE
){
4892 int nToken
= pExpr
->pPhrase
->nToken
;
4895 for(i
=0; i
<nToken
; i
++){
4896 if( pExpr
->pPhrase
->aToken
[i
].pDeferred
==0 ) break;
4898 pExpr
->bDeferred
= (i
==nToken
);
4900 *pRc
= fts3EvalPhraseStart(pCsr
, 1, pExpr
->pPhrase
);
4902 fts3EvalStartReaders(pCsr
, pExpr
->pLeft
, pRc
);
4903 fts3EvalStartReaders(pCsr
, pExpr
->pRight
, pRc
);
4904 pExpr
->bDeferred
= (pExpr
->pLeft
->bDeferred
&& pExpr
->pRight
->bDeferred
);
4910 ** An array of the following structures is assembled as part of the process
4911 ** of selecting tokens to defer before the query starts executing (as part
4912 ** of the xFilter() method). There is one element in the array for each
4913 ** token in the FTS expression.
4915 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
4916 ** to phrases that are connected only by AND and NEAR operators (not OR or
4917 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
4918 ** separately. The root of a tokens AND/NEAR cluster is stored in
4919 ** Fts3TokenAndCost.pRoot.
4921 typedef struct Fts3TokenAndCost Fts3TokenAndCost
;
4922 struct Fts3TokenAndCost
{
4923 Fts3Phrase
*pPhrase
; /* The phrase the token belongs to */
4924 int iToken
; /* Position of token in phrase */
4925 Fts3PhraseToken
*pToken
; /* The token itself */
4926 Fts3Expr
*pRoot
; /* Root of NEAR/AND cluster */
4927 int nOvfl
; /* Number of overflow pages to load doclist */
4928 int iCol
; /* The column the token must match */
4932 ** This function is used to populate an allocated Fts3TokenAndCost array.
4934 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4935 ** Otherwise, if an error occurs during execution, *pRc is set to an
4936 ** SQLite error code.
4938 static void fts3EvalTokenCosts(
4939 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
4940 Fts3Expr
*pRoot
, /* Root of current AND/NEAR cluster */
4941 Fts3Expr
*pExpr
, /* Expression to consider */
4942 Fts3TokenAndCost
**ppTC
, /* Write new entries to *(*ppTC)++ */
4943 Fts3Expr
***ppOr
, /* Write new OR root to *(*ppOr)++ */
4944 int *pRc
/* IN/OUT: Error code */
4946 if( *pRc
==SQLITE_OK
){
4947 if( pExpr
->eType
==FTSQUERY_PHRASE
){
4948 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
4950 for(i
=0; *pRc
==SQLITE_OK
&& i
<pPhrase
->nToken
; i
++){
4951 Fts3TokenAndCost
*pTC
= (*ppTC
)++;
4952 pTC
->pPhrase
= pPhrase
;
4955 pTC
->pToken
= &pPhrase
->aToken
[i
];
4956 pTC
->iCol
= pPhrase
->iColumn
;
4957 *pRc
= sqlite3Fts3MsrOvfl(pCsr
, pTC
->pToken
->pSegcsr
, &pTC
->nOvfl
);
4959 }else if( pExpr
->eType
!=FTSQUERY_NOT
){
4960 assert( pExpr
->eType
==FTSQUERY_OR
4961 || pExpr
->eType
==FTSQUERY_AND
4962 || pExpr
->eType
==FTSQUERY_NEAR
4964 assert( pExpr
->pLeft
&& pExpr
->pRight
);
4965 if( pExpr
->eType
==FTSQUERY_OR
){
4966 pRoot
= pExpr
->pLeft
;
4970 fts3EvalTokenCosts(pCsr
, pRoot
, pExpr
->pLeft
, ppTC
, ppOr
, pRc
);
4971 if( pExpr
->eType
==FTSQUERY_OR
){
4972 pRoot
= pExpr
->pRight
;
4976 fts3EvalTokenCosts(pCsr
, pRoot
, pExpr
->pRight
, ppTC
, ppOr
, pRc
);
4982 ** Determine the average document (row) size in pages. If successful,
4983 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return
4984 ** an SQLite error code.
4986 ** The average document size in pages is calculated by first calculating
4987 ** determining the average size in bytes, B. If B is less than the amount
4988 ** of data that will fit on a single leaf page of an intkey table in
4989 ** this database, then the average docsize is 1. Otherwise, it is 1 plus
4990 ** the number of overflow pages consumed by a record B bytes in size.
4992 static int fts3EvalAverageDocsize(Fts3Cursor
*pCsr
, int *pnPage
){
4994 if( pCsr
->nRowAvg
==0 ){
4995 /* The average document size, which is required to calculate the cost
4996 ** of each doclist, has not yet been determined. Read the required
4997 ** data from the %_stat table to calculate it.
4999 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3
5000 ** varints, where nCol is the number of columns in the FTS3 table.
5001 ** The first varint is the number of documents currently stored in
5002 ** the table. The following nCol varints contain the total amount of
5003 ** data stored in all rows of each column of the table, from left
5006 Fts3Table
*p
= (Fts3Table
*)pCsr
->base
.pVtab
;
5007 sqlite3_stmt
*pStmt
;
5008 sqlite3_int64 nDoc
= 0;
5009 sqlite3_int64 nByte
= 0;
5013 rc
= sqlite3Fts3SelectDoctotal(p
, &pStmt
);
5014 if( rc
!=SQLITE_OK
) return rc
;
5015 a
= sqlite3_column_blob(pStmt
, 0);
5016 testcase( a
==0 ); /* If %_stat.value set to X'' */
5018 pEnd
= &a
[sqlite3_column_bytes(pStmt
, 0)];
5019 a
+= sqlite3Fts3GetVarintBounded(a
, pEnd
, &nDoc
);
5021 a
+= sqlite3Fts3GetVarintBounded(a
, pEnd
, &nByte
);
5024 if( nDoc
==0 || nByte
==0 ){
5025 sqlite3_reset(pStmt
);
5026 return FTS_CORRUPT_VTAB
;
5030 pCsr
->nRowAvg
= (int)(((nByte
/ nDoc
) + p
->nPgsz
) / p
->nPgsz
);
5031 assert( pCsr
->nRowAvg
>0 );
5032 rc
= sqlite3_reset(pStmt
);
5035 *pnPage
= pCsr
->nRowAvg
;
5040 ** This function is called to select the tokens (if any) that will be
5041 ** deferred. The array aTC[] has already been populated when this is
5044 ** This function is called once for each AND/NEAR cluster in the
5045 ** expression. Each invocation determines which tokens to defer within
5046 ** the cluster with root node pRoot. See comments above the definition
5047 ** of struct Fts3TokenAndCost for more details.
5049 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
5050 ** called on each token to defer. Otherwise, an SQLite error code is
5053 static int fts3EvalSelectDeferred(
5054 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
5055 Fts3Expr
*pRoot
, /* Consider tokens with this root node */
5056 Fts3TokenAndCost
*aTC
, /* Array of expression tokens and costs */
5057 int nTC
/* Number of entries in aTC[] */
5059 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5060 int nDocSize
= 0; /* Number of pages per doc loaded */
5061 int rc
= SQLITE_OK
; /* Return code */
5062 int ii
; /* Iterator variable for various purposes */
5063 int nOvfl
= 0; /* Total overflow pages used by doclists */
5064 int nToken
= 0; /* Total number of tokens in cluster */
5066 int nMinEst
= 0; /* The minimum count for any phrase so far. */
5067 int nLoad4
= 1; /* (Phrases that will be loaded)^4. */
5069 /* Tokens are never deferred for FTS tables created using the content=xxx
5070 ** option. The reason being that it is not guaranteed that the content
5071 ** table actually contains the same data as the index. To prevent this from
5072 ** causing any problems, the deferred token optimization is completely
5073 ** disabled for content=xxx tables. */
5074 if( pTab
->zContentTbl
){
5078 /* Count the tokens in this AND/NEAR cluster. If none of the doclists
5079 ** associated with the tokens spill onto overflow pages, or if there is
5080 ** only 1 token, exit early. No tokens to defer in this case. */
5081 for(ii
=0; ii
<nTC
; ii
++){
5082 if( aTC
[ii
].pRoot
==pRoot
){
5083 nOvfl
+= aTC
[ii
].nOvfl
;
5087 if( nOvfl
==0 || nToken
<2 ) return SQLITE_OK
;
5089 /* Obtain the average docsize (in pages). */
5090 rc
= fts3EvalAverageDocsize(pCsr
, &nDocSize
);
5091 assert( rc
!=SQLITE_OK
|| nDocSize
>0 );
5094 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order
5095 ** of the number of overflow pages that will be loaded by the pager layer
5096 ** to retrieve the entire doclist for the token from the full-text index.
5097 ** Load the doclists for tokens that are either:
5099 ** a. The cheapest token in the entire query (i.e. the one visited by the
5100 ** first iteration of this loop), or
5102 ** b. Part of a multi-token phrase.
5104 ** After each token doclist is loaded, merge it with the others from the
5105 ** same phrase and count the number of documents that the merged doclist
5106 ** contains. Set variable "nMinEst" to the smallest number of documents in
5107 ** any phrase doclist for which 1 or more token doclists have been loaded.
5108 ** Let nOther be the number of other phrases for which it is certain that
5109 ** one or more tokens will not be deferred.
5111 ** Then, for each token, defer it if loading the doclist would result in
5112 ** loading N or more overflow pages into memory, where N is computed as:
5114 ** (nMinEst + 4^nOther - 1) / (4^nOther)
5116 for(ii
=0; ii
<nToken
&& rc
==SQLITE_OK
; ii
++){
5117 int iTC
; /* Used to iterate through aTC[] array. */
5118 Fts3TokenAndCost
*pTC
= 0; /* Set to cheapest remaining token. */
5120 /* Set pTC to point to the cheapest remaining token. */
5121 for(iTC
=0; iTC
<nTC
; iTC
++){
5122 if( aTC
[iTC
].pToken
&& aTC
[iTC
].pRoot
==pRoot
5123 && (!pTC
|| aTC
[iTC
].nOvfl
<pTC
->nOvfl
)
5130 if( ii
&& pTC
->nOvfl
>=((nMinEst
+(nLoad4
/4)-1)/(nLoad4
/4))*nDocSize
){
5131 /* The number of overflow pages to load for this (and therefore all
5132 ** subsequent) tokens is greater than the estimated number of pages
5133 ** that will be loaded if all subsequent tokens are deferred.
5135 Fts3PhraseToken
*pToken
= pTC
->pToken
;
5136 rc
= sqlite3Fts3DeferToken(pCsr
, pToken
, pTC
->iCol
);
5137 fts3SegReaderCursorFree(pToken
->pSegcsr
);
5138 pToken
->pSegcsr
= 0;
5140 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the
5141 ** for-loop. Except, limit the value to 2^24 to prevent it from
5142 ** overflowing the 32-bit integer it is stored in. */
5143 if( ii
<12 ) nLoad4
= nLoad4
*4;
5145 if( ii
==0 || (pTC
->pPhrase
->nToken
>1 && ii
!=nToken
-1) ){
5146 /* Either this is the cheapest token in the entire query, or it is
5147 ** part of a multi-token phrase. Either way, the entire doclist will
5148 ** (eventually) be loaded into memory. It may as well be now. */
5149 Fts3PhraseToken
*pToken
= pTC
->pToken
;
5152 rc
= fts3TermSelect(pTab
, pToken
, pTC
->iCol
, &nList
, &pList
);
5153 assert( rc
==SQLITE_OK
|| pList
==0 );
5154 if( rc
==SQLITE_OK
){
5155 rc
= fts3EvalPhraseMergeToken(
5156 pTab
, pTC
->pPhrase
, pTC
->iToken
,pList
,nList
5159 if( rc
==SQLITE_OK
){
5161 nCount
= fts3DoclistCountDocids(
5162 pTC
->pPhrase
->doclist
.aAll
, pTC
->pPhrase
->doclist
.nAll
5164 if( ii
==0 || nCount
<nMinEst
) nMinEst
= nCount
;
5175 ** This function is called from within the xFilter method. It initializes
5176 ** the full-text query currently stored in pCsr->pExpr. To iterate through
5177 ** the results of a query, the caller does:
5179 ** fts3EvalStart(pCsr);
5181 ** fts3EvalNext(pCsr);
5182 ** if( pCsr->bEof ) break;
5183 ** ... return row pCsr->iPrevId to the caller ...
5186 static int fts3EvalStart(Fts3Cursor
*pCsr
){
5187 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5192 /* Allocate a MultiSegReader for each token in the expression. */
5193 fts3EvalAllocateReaders(pCsr
, pCsr
->pExpr
, &nToken
, &nOr
, &rc
);
5195 /* Determine which, if any, tokens in the expression should be deferred. */
5196 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5197 if( rc
==SQLITE_OK
&& nToken
>1 && pTab
->bFts4
){
5198 Fts3TokenAndCost
*aTC
;
5199 aTC
= (Fts3TokenAndCost
*)sqlite3_malloc64(
5200 sizeof(Fts3TokenAndCost
) * nToken
5201 + sizeof(Fts3Expr
*) * nOr
* 2
5207 Fts3Expr
**apOr
= (Fts3Expr
**)&aTC
[nToken
];
5209 Fts3TokenAndCost
*pTC
= aTC
;
5210 Fts3Expr
**ppOr
= apOr
;
5212 fts3EvalTokenCosts(pCsr
, 0, pCsr
->pExpr
, &pTC
, &ppOr
, &rc
);
5213 nToken
= (int)(pTC
-aTC
);
5214 nOr
= (int)(ppOr
-apOr
);
5216 if( rc
==SQLITE_OK
){
5217 rc
= fts3EvalSelectDeferred(pCsr
, 0, aTC
, nToken
);
5218 for(ii
=0; rc
==SQLITE_OK
&& ii
<nOr
; ii
++){
5219 rc
= fts3EvalSelectDeferred(pCsr
, apOr
[ii
], aTC
, nToken
);
5228 fts3EvalStartReaders(pCsr
, pCsr
->pExpr
, &rc
);
5233 ** Invalidate the current position list for phrase pPhrase.
5235 static void fts3EvalInvalidatePoslist(Fts3Phrase
*pPhrase
){
5236 if( pPhrase
->doclist
.bFreeList
){
5237 sqlite3_free(pPhrase
->doclist
.pList
);
5239 pPhrase
->doclist
.pList
= 0;
5240 pPhrase
->doclist
.nList
= 0;
5241 pPhrase
->doclist
.bFreeList
= 0;
5245 ** This function is called to edit the position list associated with
5246 ** the phrase object passed as the fifth argument according to a NEAR
5247 ** condition. For example:
5249 ** abc NEAR/5 "def ghi"
5251 ** Parameter nNear is passed the NEAR distance of the expression (5 in
5252 ** the example above). When this function is called, *paPoslist points to
5253 ** the position list, and *pnToken is the number of phrase tokens in the
5254 ** phrase on the other side of the NEAR operator to pPhrase. For example,
5255 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
5256 ** the position list associated with phrase "abc".
5258 ** All positions in the pPhrase position list that are not sufficiently
5259 ** close to a position in the *paPoslist position list are removed. If this
5260 ** leaves 0 positions, zero is returned. Otherwise, non-zero.
5262 ** Before returning, *paPoslist is set to point to the position lsit
5263 ** associated with pPhrase. And *pnToken is set to the number of tokens in
5266 static int fts3EvalNearTrim(
5267 int nNear
, /* NEAR distance. As in "NEAR/nNear". */
5268 char *aTmp
, /* Temporary space to use */
5269 char **paPoslist
, /* IN/OUT: Position list */
5270 int *pnToken
, /* IN/OUT: Tokens in phrase of *paPoslist */
5271 Fts3Phrase
*pPhrase
/* The phrase object to trim the doclist of */
5273 int nParam1
= nNear
+ pPhrase
->nToken
;
5274 int nParam2
= nNear
+ *pnToken
;
5280 assert( pPhrase
->doclist
.pList
);
5282 p2
= pOut
= pPhrase
->doclist
.pList
;
5283 res
= fts3PoslistNearMerge(
5284 &pOut
, aTmp
, nParam1
, nParam2
, paPoslist
, &p2
5287 nNew
= (int)(pOut
- pPhrase
->doclist
.pList
) - 1;
5288 assert_fts3_nc( nNew
<=pPhrase
->doclist
.nList
&& nNew
>0 );
5289 if( nNew
>=0 && nNew
<=pPhrase
->doclist
.nList
){
5290 assert( pPhrase
->doclist
.pList
[nNew
]=='\0' );
5291 memset(&pPhrase
->doclist
.pList
[nNew
], 0, pPhrase
->doclist
.nList
- nNew
);
5292 pPhrase
->doclist
.nList
= nNew
;
5294 *paPoslist
= pPhrase
->doclist
.pList
;
5295 *pnToken
= pPhrase
->nToken
;
5302 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
5303 ** Otherwise, it advances the expression passed as the second argument to
5304 ** point to the next matching row in the database. Expressions iterate through
5305 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
5306 ** or descending if it is non-zero.
5308 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
5309 ** successful, the following variables in pExpr are set:
5311 ** Fts3Expr.bEof (non-zero if EOF - there is no next row)
5312 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row)
5314 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not
5315 ** at EOF, then the following variables are populated with the position list
5316 ** for the phrase for the visited row:
5318 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes)
5319 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list)
5321 ** It says above that this function advances the expression to the next
5322 ** matching row. This is usually true, but there are the following exceptions:
5324 ** 1. Deferred tokens are not taken into account. If a phrase consists
5325 ** entirely of deferred tokens, it is assumed to match every row in
5326 ** the db. In this case the position-list is not populated at all.
5328 ** Or, if a phrase contains one or more deferred tokens and one or
5329 ** more non-deferred tokens, then the expression is advanced to the
5330 ** next possible match, considering only non-deferred tokens. In other
5331 ** words, if the phrase is "A B C", and "B" is deferred, the expression
5332 ** is advanced to the next row that contains an instance of "A * C",
5333 ** where "*" may match any single token. The position list in this case
5334 ** is populated as for "A * C" before returning.
5336 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is
5337 ** advanced to point to the next row that matches "x AND y".
5339 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is
5340 ** really a match, taking into account deferred tokens and NEAR operators.
5342 static void fts3EvalNextRow(
5343 Fts3Cursor
*pCsr
, /* FTS Cursor handle */
5344 Fts3Expr
*pExpr
, /* Expr. to advance to next matching row */
5345 int *pRc
/* IN/OUT: Error code */
5347 if( *pRc
==SQLITE_OK
&& pExpr
->bEof
==0 ){
5348 int bDescDoclist
= pCsr
->bDesc
; /* Used by DOCID_CMP() macro */
5351 switch( pExpr
->eType
){
5353 case FTSQUERY_AND
: {
5354 Fts3Expr
*pLeft
= pExpr
->pLeft
;
5355 Fts3Expr
*pRight
= pExpr
->pRight
;
5356 assert( !pLeft
->bDeferred
|| !pRight
->bDeferred
);
5358 if( pLeft
->bDeferred
){
5359 /* LHS is entirely deferred. So we assume it matches every row.
5360 ** Advance the RHS iterator to find the next row visited. */
5361 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5362 pExpr
->iDocid
= pRight
->iDocid
;
5363 pExpr
->bEof
= pRight
->bEof
;
5364 }else if( pRight
->bDeferred
){
5365 /* RHS is entirely deferred. So we assume it matches every row.
5366 ** Advance the LHS iterator to find the next row visited. */
5367 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5368 pExpr
->iDocid
= pLeft
->iDocid
;
5369 pExpr
->bEof
= pLeft
->bEof
;
5371 /* Neither the RHS or LHS are deferred. */
5372 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5373 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5374 while( !pLeft
->bEof
&& !pRight
->bEof
&& *pRc
==SQLITE_OK
){
5375 sqlite3_int64 iDiff
= DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
);
5376 if( iDiff
==0 ) break;
5378 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5380 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5383 pExpr
->iDocid
= pLeft
->iDocid
;
5384 pExpr
->bEof
= (pLeft
->bEof
|| pRight
->bEof
);
5385 if( pExpr
->eType
==FTSQUERY_NEAR
&& pExpr
->bEof
){
5386 assert( pRight
->eType
==FTSQUERY_PHRASE
);
5387 if( pRight
->pPhrase
->doclist
.aAll
){
5388 Fts3Doclist
*pDl
= &pRight
->pPhrase
->doclist
;
5389 while( *pRc
==SQLITE_OK
&& pRight
->bEof
==0 ){
5390 memset(pDl
->pList
, 0, pDl
->nList
);
5391 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5394 if( pLeft
->pPhrase
&& pLeft
->pPhrase
->doclist
.aAll
){
5395 Fts3Doclist
*pDl
= &pLeft
->pPhrase
->doclist
;
5396 while( *pRc
==SQLITE_OK
&& pLeft
->bEof
==0 ){
5397 memset(pDl
->pList
, 0, pDl
->nList
);
5398 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5401 pRight
->bEof
= pLeft
->bEof
= 1;
5408 Fts3Expr
*pLeft
= pExpr
->pLeft
;
5409 Fts3Expr
*pRight
= pExpr
->pRight
;
5410 sqlite3_int64 iCmp
= DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
);
5412 assert_fts3_nc( pLeft
->bStart
|| pLeft
->iDocid
==pRight
->iDocid
);
5413 assert_fts3_nc( pRight
->bStart
|| pLeft
->iDocid
==pRight
->iDocid
);
5415 if( pRight
->bEof
|| (pLeft
->bEof
==0 && iCmp
<0) ){
5416 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5417 }else if( pLeft
->bEof
|| iCmp
>0 ){
5418 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5420 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5421 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5424 pExpr
->bEof
= (pLeft
->bEof
&& pRight
->bEof
);
5425 iCmp
= DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
);
5426 if( pRight
->bEof
|| (pLeft
->bEof
==0 && iCmp
<0) ){
5427 pExpr
->iDocid
= pLeft
->iDocid
;
5429 pExpr
->iDocid
= pRight
->iDocid
;
5435 case FTSQUERY_NOT
: {
5436 Fts3Expr
*pLeft
= pExpr
->pLeft
;
5437 Fts3Expr
*pRight
= pExpr
->pRight
;
5439 if( pRight
->bStart
==0 ){
5440 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5441 assert( *pRc
!=SQLITE_OK
|| pRight
->bStart
);
5444 fts3EvalNextRow(pCsr
, pLeft
, pRc
);
5445 if( pLeft
->bEof
==0 ){
5448 && DOCID_CMP(pLeft
->iDocid
, pRight
->iDocid
)>0
5450 fts3EvalNextRow(pCsr
, pRight
, pRc
);
5453 pExpr
->iDocid
= pLeft
->iDocid
;
5454 pExpr
->bEof
= pLeft
->bEof
;
5459 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5460 fts3EvalInvalidatePoslist(pPhrase
);
5461 *pRc
= fts3EvalPhraseNext(pCsr
, pPhrase
, &pExpr
->bEof
);
5462 pExpr
->iDocid
= pPhrase
->doclist
.iDocid
;
5470 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
5471 ** cluster, then this function returns 1 immediately.
5473 ** Otherwise, it checks if the current row really does match the NEAR
5474 ** expression, using the data currently stored in the position lists
5475 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression.
5477 ** If the current row is a match, the position list associated with each
5478 ** phrase in the NEAR expression is edited in place to contain only those
5479 ** phrase instances sufficiently close to their peers to satisfy all NEAR
5480 ** constraints. In this case it returns 1. If the NEAR expression does not
5481 ** match the current row, 0 is returned. The position lists may or may not
5482 ** be edited if 0 is returned.
5484 static int fts3EvalNearTest(Fts3Expr
*pExpr
, int *pRc
){
5487 /* The following block runs if pExpr is the root of a NEAR query.
5488 ** For example, the query:
5490 ** "w" NEAR "x" NEAR "y" NEAR "z"
5492 ** which is represented in tree form as:
5495 ** +--NEAR--+ <-- root of NEAR query
5503 ** The right-hand child of a NEAR node is always a phrase. The
5504 ** left-hand child may be either a phrase or a NEAR node. There are
5505 ** no exceptions to this - it's the way the parser in fts3_expr.c works.
5508 && pExpr
->eType
==FTSQUERY_NEAR
5509 && (pExpr
->pParent
==0 || pExpr
->pParent
->eType
!=FTSQUERY_NEAR
)
5512 sqlite3_int64 nTmp
= 0; /* Bytes of temp space */
5513 char *aTmp
; /* Temp space for PoslistNearMerge() */
5515 /* Allocate temporary working space. */
5516 for(p
=pExpr
; p
->pLeft
; p
=p
->pLeft
){
5517 assert( p
->pRight
->pPhrase
->doclist
.nList
>0 );
5518 nTmp
+= p
->pRight
->pPhrase
->doclist
.nList
;
5520 nTmp
+= p
->pPhrase
->doclist
.nList
;
5521 aTmp
= sqlite3_malloc64(nTmp
*2);
5523 *pRc
= SQLITE_NOMEM
;
5526 char *aPoslist
= p
->pPhrase
->doclist
.pList
;
5527 int nToken
= p
->pPhrase
->nToken
;
5529 for(p
=p
->pParent
;res
&& p
&& p
->eType
==FTSQUERY_NEAR
; p
=p
->pParent
){
5530 Fts3Phrase
*pPhrase
= p
->pRight
->pPhrase
;
5531 int nNear
= p
->nNear
;
5532 res
= fts3EvalNearTrim(nNear
, aTmp
, &aPoslist
, &nToken
, pPhrase
);
5535 aPoslist
= pExpr
->pRight
->pPhrase
->doclist
.pList
;
5536 nToken
= pExpr
->pRight
->pPhrase
->nToken
;
5537 for(p
=pExpr
->pLeft
; p
&& res
; p
=p
->pLeft
){
5539 Fts3Phrase
*pPhrase
;
5540 assert( p
->pParent
&& p
->pParent
->pLeft
==p
);
5541 nNear
= p
->pParent
->nNear
;
5543 p
->eType
==FTSQUERY_NEAR
? p
->pRight
->pPhrase
: p
->pPhrase
5545 res
= fts3EvalNearTrim(nNear
, aTmp
, &aPoslist
, &nToken
, pPhrase
);
5556 ** This function is a helper function for sqlite3Fts3EvalTestDeferred().
5557 ** Assuming no error occurs or has occurred, It returns non-zero if the
5558 ** expression passed as the second argument matches the row that pCsr
5559 ** currently points to, or zero if it does not.
5561 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
5562 ** If an error occurs during execution of this function, *pRc is set to
5563 ** the appropriate SQLite error code. In this case the returned value is
5566 static int fts3EvalTestExpr(
5567 Fts3Cursor
*pCsr
, /* FTS cursor handle */
5568 Fts3Expr
*pExpr
, /* Expr to test. May or may not be root. */
5569 int *pRc
/* IN/OUT: Error code */
5571 int bHit
= 1; /* Return value */
5572 if( *pRc
==SQLITE_OK
){
5573 switch( pExpr
->eType
){
5577 fts3EvalTestExpr(pCsr
, pExpr
->pLeft
, pRc
)
5578 && fts3EvalTestExpr(pCsr
, pExpr
->pRight
, pRc
)
5579 && fts3EvalNearTest(pExpr
, pRc
)
5582 /* If the NEAR expression does not match any rows, zero the doclist for
5583 ** all phrases involved in the NEAR. This is because the snippet(),
5584 ** offsets() and matchinfo() functions are not supposed to recognize
5585 ** any instances of phrases that are part of unmatched NEAR queries.
5586 ** For example if this expression:
5588 ** ... MATCH 'a OR (b NEAR c)'
5590 ** is matched against a row containing:
5594 ** then any snippet() should ony highlight the "a" term, not the "b"
5595 ** (as "b" is part of a non-matching NEAR clause).
5598 && pExpr
->eType
==FTSQUERY_NEAR
5599 && (pExpr
->pParent
==0 || pExpr
->pParent
->eType
!=FTSQUERY_NEAR
)
5602 for(p
=pExpr
; p
->pPhrase
==0; p
=p
->pLeft
){
5603 if( p
->pRight
->iDocid
==pCsr
->iPrevId
){
5604 fts3EvalInvalidatePoslist(p
->pRight
->pPhrase
);
5607 if( p
->iDocid
==pCsr
->iPrevId
){
5608 fts3EvalInvalidatePoslist(p
->pPhrase
);
5615 int bHit1
= fts3EvalTestExpr(pCsr
, pExpr
->pLeft
, pRc
);
5616 int bHit2
= fts3EvalTestExpr(pCsr
, pExpr
->pRight
, pRc
);
5617 bHit
= bHit1
|| bHit2
;
5623 fts3EvalTestExpr(pCsr
, pExpr
->pLeft
, pRc
)
5624 && !fts3EvalTestExpr(pCsr
, pExpr
->pRight
, pRc
)
5629 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5630 if( pCsr
->pDeferred
&& (pExpr
->bDeferred
|| (
5631 pExpr
->iDocid
==pCsr
->iPrevId
&& pExpr
->pPhrase
->doclist
.pList
5633 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5634 if( pExpr
->bDeferred
){
5635 fts3EvalInvalidatePoslist(pPhrase
);
5637 *pRc
= fts3EvalDeferredPhrase(pCsr
, pPhrase
);
5638 bHit
= (pPhrase
->doclist
.pList
!=0);
5639 pExpr
->iDocid
= pCsr
->iPrevId
;
5644 pExpr
->bEof
==0 && pExpr
->iDocid
==pCsr
->iPrevId
5645 && pExpr
->pPhrase
->doclist
.nList
>0
5656 ** This function is called as the second part of each xNext operation when
5657 ** iterating through the results of a full-text query. At this point the
5658 ** cursor points to a row that matches the query expression, with the
5659 ** following caveats:
5661 ** * Up until this point, "NEAR" operators in the expression have been
5662 ** treated as "AND".
5664 ** * Deferred tokens have not yet been considered.
5666 ** If *pRc is not SQLITE_OK when this function is called, it immediately
5667 ** returns 0. Otherwise, it tests whether or not after considering NEAR
5668 ** operators and deferred tokens the current row is still a match for the
5669 ** expression. It returns 1 if both of the following are true:
5671 ** 1. *pRc is SQLITE_OK when this function returns, and
5673 ** 2. After scanning the current FTS table row for the deferred tokens,
5674 ** it is determined that the row does *not* match the query.
5676 ** Or, if no error occurs and it seems the current row does match the FTS
5679 int sqlite3Fts3EvalTestDeferred(Fts3Cursor
*pCsr
, int *pRc
){
5682 if( rc
==SQLITE_OK
){
5684 /* If there are one or more deferred tokens, load the current row into
5685 ** memory and scan it to determine the position list for each deferred
5686 ** token. Then, see if this row is really a match, considering deferred
5687 ** tokens and NEAR operators (neither of which were taken into account
5688 ** earlier, by fts3EvalNextRow()).
5690 if( pCsr
->pDeferred
){
5691 rc
= fts3CursorSeek(0, pCsr
);
5692 if( rc
==SQLITE_OK
){
5693 rc
= sqlite3Fts3CacheDeferredDoclists(pCsr
);
5696 bMiss
= (0==fts3EvalTestExpr(pCsr
, pCsr
->pExpr
, &rc
));
5698 /* Free the position-lists accumulated for each deferred token above. */
5699 sqlite3Fts3FreeDeferredDoclists(pCsr
);
5702 return (rc
==SQLITE_OK
&& bMiss
);
5706 ** Advance to the next document that matches the FTS expression in
5707 ** Fts3Cursor.pExpr.
5709 static int fts3EvalNext(Fts3Cursor
*pCsr
){
5710 int rc
= SQLITE_OK
; /* Return Code */
5711 Fts3Expr
*pExpr
= pCsr
->pExpr
;
5712 assert( pCsr
->isEof
==0 );
5717 if( pCsr
->isRequireSeek
==0 ){
5718 sqlite3_reset(pCsr
->pStmt
);
5720 assert( sqlite3_data_count(pCsr
->pStmt
)==0 );
5721 fts3EvalNextRow(pCsr
, pExpr
, &rc
);
5722 pCsr
->isEof
= pExpr
->bEof
;
5723 pCsr
->isRequireSeek
= 1;
5724 pCsr
->isMatchinfoNeeded
= 1;
5725 pCsr
->iPrevId
= pExpr
->iDocid
;
5726 }while( pCsr
->isEof
==0 && sqlite3Fts3EvalTestDeferred(pCsr
, &rc
) );
5729 /* Check if the cursor is past the end of the docid range specified
5730 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */
5731 if( rc
==SQLITE_OK
&& (
5732 (pCsr
->bDesc
==0 && pCsr
->iPrevId
>pCsr
->iMaxDocid
)
5733 || (pCsr
->bDesc
!=0 && pCsr
->iPrevId
<pCsr
->iMinDocid
)
5742 ** Restart interation for expression pExpr so that the next call to
5743 ** fts3EvalNext() visits the first row. Do not allow incremental
5744 ** loading or merging of phrase doclists for this iteration.
5746 ** If *pRc is other than SQLITE_OK when this function is called, it is
5747 ** a no-op. If an error occurs within this function, *pRc is set to an
5748 ** SQLite error code before returning.
5750 static void fts3EvalRestart(
5755 if( pExpr
&& *pRc
==SQLITE_OK
){
5756 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5759 fts3EvalInvalidatePoslist(pPhrase
);
5760 if( pPhrase
->bIncr
){
5762 for(i
=0; i
<pPhrase
->nToken
; i
++){
5763 Fts3PhraseToken
*pToken
= &pPhrase
->aToken
[i
];
5764 assert( pToken
->pDeferred
==0 );
5765 if( pToken
->pSegcsr
){
5766 sqlite3Fts3MsrIncrRestart(pToken
->pSegcsr
);
5769 *pRc
= fts3EvalPhraseStart(pCsr
, 0, pPhrase
);
5771 pPhrase
->doclist
.pNextDocid
= 0;
5772 pPhrase
->doclist
.iDocid
= 0;
5773 pPhrase
->pOrPoslist
= 0;
5780 fts3EvalRestart(pCsr
, pExpr
->pLeft
, pRc
);
5781 fts3EvalRestart(pCsr
, pExpr
->pRight
, pRc
);
5786 ** After allocating the Fts3Expr.aMI[] array for each phrase in the
5787 ** expression rooted at pExpr, the cursor iterates through all rows matched
5788 ** by pExpr, calling this function for each row. This function increments
5789 ** the values in Fts3Expr.aMI[] according to the position-list currently
5790 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase
5791 ** expression nodes.
5793 static void fts3EvalUpdateCounts(Fts3Expr
*pExpr
, int nCol
){
5795 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
5796 if( pPhrase
&& pPhrase
->doclist
.pList
){
5798 char *p
= pPhrase
->doclist
.pList
;
5803 while( 0xFE & (*p
| c
) ){
5804 if( (c
&0x80)==0 ) iCnt
++;
5808 /* aMI[iCol*3 + 1] = Number of occurrences
5809 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance
5811 pExpr
->aMI
[iCol
*3 + 1] += iCnt
;
5812 pExpr
->aMI
[iCol
*3 + 2] += (iCnt
>0);
5813 if( *p
==0x00 ) break;
5815 p
+= fts3GetVarint32(p
, &iCol
);
5816 }while( iCol
<nCol
);
5819 fts3EvalUpdateCounts(pExpr
->pLeft
, nCol
);
5820 fts3EvalUpdateCounts(pExpr
->pRight
, nCol
);
5825 ** This is an sqlite3Fts3ExprIterate() callback. If the Fts3Expr.aMI[] array
5826 ** has not yet been allocated, allocate and zero it. Otherwise, just zero
5829 static int fts3AllocateMSI(Fts3Expr
*pExpr
, int iPhrase
, void *pCtx
){
5830 Fts3Table
*pTab
= (Fts3Table
*)pCtx
;
5831 UNUSED_PARAMETER(iPhrase
);
5832 if( pExpr
->aMI
==0 ){
5833 pExpr
->aMI
= (u32
*)sqlite3_malloc64(pTab
->nColumn
* 3 * sizeof(u32
));
5834 if( pExpr
->aMI
==0 ) return SQLITE_NOMEM
;
5836 memset(pExpr
->aMI
, 0, pTab
->nColumn
* 3 * sizeof(u32
));
5841 ** Expression pExpr must be of type FTSQUERY_PHRASE.
5843 ** If it is not already allocated and populated, this function allocates and
5844 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part
5845 ** of a NEAR expression, then it also allocates and populates the same array
5846 ** for all other phrases that are part of the NEAR expression.
5848 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and
5849 ** populated. Otherwise, if an error occurs, an SQLite error code is returned.
5851 static int fts3EvalGatherStats(
5852 Fts3Cursor
*pCsr
, /* Cursor object */
5853 Fts3Expr
*pExpr
/* FTSQUERY_PHRASE expression */
5855 int rc
= SQLITE_OK
; /* Return code */
5857 assert( pExpr
->eType
==FTSQUERY_PHRASE
);
5858 if( pExpr
->aMI
==0 ){
5859 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5860 Fts3Expr
*pRoot
; /* Root of NEAR expression */
5862 sqlite3_int64 iPrevId
= pCsr
->iPrevId
;
5863 sqlite3_int64 iDocid
;
5866 /* Find the root of the NEAR expression */
5868 while( pRoot
->pParent
5869 && (pRoot
->pParent
->eType
==FTSQUERY_NEAR
|| pRoot
->bDeferred
)
5871 pRoot
= pRoot
->pParent
;
5873 iDocid
= pRoot
->iDocid
;
5875 assert( pRoot
->bStart
);
5877 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */
5878 rc
= sqlite3Fts3ExprIterate(pRoot
, fts3AllocateMSI
, (void*)pTab
);
5879 if( rc
!=SQLITE_OK
) return rc
;
5880 fts3EvalRestart(pCsr
, pRoot
, &rc
);
5882 while( pCsr
->isEof
==0 && rc
==SQLITE_OK
){
5885 /* Ensure the %_content statement is reset. */
5886 if( pCsr
->isRequireSeek
==0 ) sqlite3_reset(pCsr
->pStmt
);
5887 assert( sqlite3_data_count(pCsr
->pStmt
)==0 );
5889 /* Advance to the next document */
5890 fts3EvalNextRow(pCsr
, pRoot
, &rc
);
5891 pCsr
->isEof
= pRoot
->bEof
;
5892 pCsr
->isRequireSeek
= 1;
5893 pCsr
->isMatchinfoNeeded
= 1;
5894 pCsr
->iPrevId
= pRoot
->iDocid
;
5895 }while( pCsr
->isEof
==0
5896 && pRoot
->eType
==FTSQUERY_NEAR
5897 && sqlite3Fts3EvalTestDeferred(pCsr
, &rc
)
5900 if( rc
==SQLITE_OK
&& pCsr
->isEof
==0 ){
5901 fts3EvalUpdateCounts(pRoot
, pTab
->nColumn
);
5906 pCsr
->iPrevId
= iPrevId
;
5911 /* Caution: pRoot may iterate through docids in ascending or descending
5912 ** order. For this reason, even though it seems more defensive, the
5913 ** do loop can not be written:
5915 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
5917 fts3EvalRestart(pCsr
, pRoot
, &rc
);
5919 fts3EvalNextRow(pCsr
, pRoot
, &rc
);
5920 assert_fts3_nc( pRoot
->bEof
==0 );
5921 if( pRoot
->bEof
) rc
= FTS_CORRUPT_VTAB
;
5922 }while( pRoot
->iDocid
!=iDocid
&& rc
==SQLITE_OK
);
5929 ** This function is used by the matchinfo() module to query a phrase
5930 ** expression node for the following information:
5932 ** 1. The total number of occurrences of the phrase in each column of
5933 ** the FTS table (considering all rows), and
5935 ** 2. For each column, the number of rows in the table for which the
5936 ** column contains at least one instance of the phrase.
5938 ** If no error occurs, SQLITE_OK is returned and the values for each column
5939 ** written into the array aiOut as follows:
5941 ** aiOut[iCol*3 + 1] = Number of occurrences
5942 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance
5946 ** * If a phrase consists entirely of deferred tokens, then all output
5947 ** values are set to the number of documents in the table. In other
5948 ** words we assume that very common tokens occur exactly once in each
5949 ** column of each row of the table.
5951 ** * If a phrase contains some deferred tokens (and some non-deferred
5952 ** tokens), count the potential occurrence identified by considering
5953 ** the non-deferred tokens instead of actual phrase occurrences.
5955 ** * If the phrase is part of a NEAR expression, then only phrase instances
5956 ** that meet the NEAR constraint are included in the counts.
5958 int sqlite3Fts3EvalPhraseStats(
5959 Fts3Cursor
*pCsr
, /* FTS cursor handle */
5960 Fts3Expr
*pExpr
, /* Phrase expression */
5961 u32
*aiOut
/* Array to write results into (see above) */
5963 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
5967 if( pExpr
->bDeferred
&& pExpr
->pParent
->eType
!=FTSQUERY_NEAR
){
5968 assert( pCsr
->nDoc
>0 );
5969 for(iCol
=0; iCol
<pTab
->nColumn
; iCol
++){
5970 aiOut
[iCol
*3 + 1] = (u32
)pCsr
->nDoc
;
5971 aiOut
[iCol
*3 + 2] = (u32
)pCsr
->nDoc
;
5974 rc
= fts3EvalGatherStats(pCsr
, pExpr
);
5975 if( rc
==SQLITE_OK
){
5976 assert( pExpr
->aMI
);
5977 for(iCol
=0; iCol
<pTab
->nColumn
; iCol
++){
5978 aiOut
[iCol
*3 + 1] = pExpr
->aMI
[iCol
*3 + 1];
5979 aiOut
[iCol
*3 + 2] = pExpr
->aMI
[iCol
*3 + 2];
5988 ** The expression pExpr passed as the second argument to this function
5989 ** must be of type FTSQUERY_PHRASE.
5991 ** The returned value is either NULL or a pointer to a buffer containing
5992 ** a position-list indicating the occurrences of the phrase in column iCol
5993 ** of the current row.
5995 ** More specifically, the returned buffer contains 1 varint for each
5996 ** occurrence of the phrase in the column, stored using the normal (delta+2)
5997 ** compression and is terminated by either an 0x01 or 0x00 byte. For example,
5998 ** if the requested column contains "a b X c d X X" and the position-list
5999 ** for 'X' is requested, the buffer returned may contain:
6001 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00
6003 ** This function works regardless of whether or not the phrase is deferred,
6004 ** incremental, or neither.
6006 int sqlite3Fts3EvalPhrasePoslist(
6007 Fts3Cursor
*pCsr
, /* FTS3 cursor object */
6008 Fts3Expr
*pExpr
, /* Phrase to return doclist for */
6009 int iCol
, /* Column to return position list for */
6010 char **ppOut
/* OUT: Pointer to position list */
6012 Fts3Phrase
*pPhrase
= pExpr
->pPhrase
;
6013 Fts3Table
*pTab
= (Fts3Table
*)pCsr
->base
.pVtab
;
6016 sqlite3_int64 iDocid
;
6018 /* If this phrase is applies specifically to some column other than
6019 ** column iCol, return a NULL pointer. */
6021 assert( iCol
>=0 && iCol
<pTab
->nColumn
);
6022 if( (pPhrase
->iColumn
<pTab
->nColumn
&& pPhrase
->iColumn
!=iCol
) ){
6026 iDocid
= pExpr
->iDocid
;
6027 pIter
= pPhrase
->doclist
.pList
;
6028 if( iDocid
!=pCsr
->iPrevId
|| pExpr
->bEof
){
6030 int bDescDoclist
= pTab
->bDescIdx
; /* For DOCID_CMP macro */
6033 Fts3Expr
*p
; /* Used to iterate from pExpr to root */
6034 Fts3Expr
*pNear
; /* Most senior NEAR ancestor (or pExpr) */
6035 Fts3Expr
*pRun
; /* Closest non-deferred ancestor of pNear */
6038 /* Check if this phrase descends from an OR expression node. If not,
6039 ** return NULL. Otherwise, the entry that corresponds to docid
6040 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the
6041 ** tree that the node is part of has been marked as EOF, but the node
6042 ** itself is not EOF, then it may point to an earlier entry. */
6044 for(p
=pExpr
->pParent
; p
; p
=p
->pParent
){
6045 if( p
->eType
==FTSQUERY_OR
) bOr
= 1;
6046 if( p
->eType
==FTSQUERY_NEAR
) pNear
= p
;
6047 if( p
->bEof
) bTreeEof
= 1;
6049 if( bOr
==0 ) return SQLITE_OK
;
6051 while( pRun
->bDeferred
){
6052 assert( pRun
->pParent
);
6053 pRun
= pRun
->pParent
;
6056 /* This is the descendent of an OR node. In this case we cannot use
6057 ** an incremental phrase. Load the entire doclist for the phrase
6058 ** into memory in this case. */
6059 if( pPhrase
->bIncr
){
6060 int bEofSave
= pRun
->bEof
;
6061 fts3EvalRestart(pCsr
, pRun
, &rc
);
6062 while( rc
==SQLITE_OK
&& !pRun
->bEof
){
6063 fts3EvalNextRow(pCsr
, pRun
, &rc
);
6064 if( bEofSave
==0 && pRun
->iDocid
==iDocid
) break;
6066 assert( rc
!=SQLITE_OK
|| pPhrase
->bIncr
==0 );
6067 if( rc
==SQLITE_OK
&& pRun
->bEof
!=bEofSave
){
6068 rc
= FTS_CORRUPT_VTAB
;
6072 while( rc
==SQLITE_OK
&& !pRun
->bEof
){
6073 fts3EvalNextRow(pCsr
, pRun
, &rc
);
6076 if( rc
!=SQLITE_OK
) return rc
;
6079 for(p
=pNear
; p
; p
=p
->pLeft
){
6081 Fts3Expr
*pTest
= p
;
6083 assert( pTest
->eType
==FTSQUERY_NEAR
|| pTest
->eType
==FTSQUERY_PHRASE
);
6084 if( pTest
->eType
==FTSQUERY_NEAR
) pTest
= pTest
->pRight
;
6085 assert( pTest
->eType
==FTSQUERY_PHRASE
);
6086 pPh
= pTest
->pPhrase
;
6088 pIter
= pPh
->pOrPoslist
;
6089 iDocid
= pPh
->iOrDocid
;
6090 if( pCsr
->bDesc
==bDescDoclist
){
6091 bEof
= !pPh
->doclist
.nAll
||
6092 (pIter
>= (pPh
->doclist
.aAll
+ pPh
->doclist
.nAll
));
6093 while( (pIter
==0 || DOCID_CMP(iDocid
, pCsr
->iPrevId
)<0 ) && bEof
==0 ){
6094 sqlite3Fts3DoclistNext(
6095 bDescDoclist
, pPh
->doclist
.aAll
, pPh
->doclist
.nAll
,
6096 &pIter
, &iDocid
, &bEof
6100 bEof
= !pPh
->doclist
.nAll
|| (pIter
&& pIter
<=pPh
->doclist
.aAll
);
6101 while( (pIter
==0 || DOCID_CMP(iDocid
, pCsr
->iPrevId
)>0 ) && bEof
==0 ){
6103 sqlite3Fts3DoclistPrev(
6104 bDescDoclist
, pPh
->doclist
.aAll
, pPh
->doclist
.nAll
,
6105 &pIter
, &iDocid
, &dummy
, &bEof
6109 pPh
->pOrPoslist
= pIter
;
6110 pPh
->iOrDocid
= iDocid
;
6111 if( bEof
|| iDocid
!=pCsr
->iPrevId
) bMatch
= 0;
6115 pIter
= pPhrase
->pOrPoslist
;
6120 if( pIter
==0 ) return SQLITE_OK
;
6124 pIter
+= fts3GetVarint32(pIter
, &iThis
);
6128 while( iThis
<iCol
){
6129 fts3ColumnlistCopy(0, &pIter
);
6130 if( *pIter
==0x00 ) return SQLITE_OK
;
6132 pIter
+= fts3GetVarint32(pIter
, &iThis
);
6138 *ppOut
= ((iCol
==iThis
)?pIter
:0);
6143 ** Free all components of the Fts3Phrase structure that were allocated by
6144 ** the eval module. Specifically, this means to free:
6146 ** * the contents of pPhrase->doclist, and
6147 ** * any Fts3MultiSegReader objects held by phrase tokens.
6149 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase
*pPhrase
){
6152 sqlite3_free(pPhrase
->doclist
.aAll
);
6153 fts3EvalInvalidatePoslist(pPhrase
);
6154 memset(&pPhrase
->doclist
, 0, sizeof(Fts3Doclist
));
6155 for(i
=0; i
<pPhrase
->nToken
; i
++){
6156 fts3SegReaderCursorFree(pPhrase
->aToken
[i
].pSegcsr
);
6157 pPhrase
->aToken
[i
].pSegcsr
= 0;
6164 ** Return SQLITE_CORRUPT_VTAB.
6167 int sqlite3Fts3Corrupt(){
6168 return SQLITE_CORRUPT_VTAB
;
6174 ** Initialize API pointer table, if required.
6177 __declspec(dllexport
)
6179 int sqlite3_fts3_init(
6182 const sqlite3_api_routines
*pApi
6184 SQLITE_EXTENSION_INIT2(pApi
)
6185 return sqlite3Fts3Init(db
);