Completely disable the skip-ahead-distinct optimization for all but the
[sqlite.git] / src / where.c
blob1a9f74dba03a9833e0a9e6f74d96a170902d0f85
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
20 #include "whereInt.h"
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
32 ** Return the estimated number of output rows from a WHERE clause
34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35 return pWInfo->nRowOut;
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43 return pWInfo->eDistinct;
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51 return pWInfo->nOBSat;
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted. As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
63 return pWInfo->bOrderedInnerLoop;
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
71 assert( pWInfo->iContinue!=0 );
72 return pWInfo->iContinue;
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
80 return pWInfo->iBreak;
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause. Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
104 sqlite3DebugPrintf("%s cursors: %d %d\n",
105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
106 aiCur[0], aiCur[1]);
108 #endif
109 return pWInfo->eOnePass;
113 ** Move the content of pSrc into pDest
115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
116 pDest->n = pSrc->n;
117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded. Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
127 static int whereOrInsert(
128 WhereOrSet *pSet, /* The WhereOrSet to be updated */
129 Bitmask prereq, /* Prerequisites of the new entry */
130 LogEst rRun, /* Run-cost of the new entry */
131 LogEst nOut /* Number of outputs for the new entry */
133 u16 i;
134 WhereOrCost *p;
135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
137 goto whereOrInsert_done;
139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
140 return 0;
143 if( pSet->n<N_OR_COST ){
144 p = &pSet->a[pSet->n++];
145 p->nOut = nOut;
146 }else{
147 p = pSet->a;
148 for(i=1; i<pSet->n; i++){
149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
151 if( p->rRun<=rRun ) return 0;
153 whereOrInsert_done:
154 p->prereq = prereq;
155 p->rRun = rRun;
156 if( p->nOut>nOut ) p->nOut = nOut;
157 return 1;
161 ** Return the bitmask for the given cursor number. Return 0 if
162 ** iCursor is not in the set.
164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
165 int i;
166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
167 for(i=0; i<pMaskSet->n; i++){
168 if( pMaskSet->ix[i]==iCursor ){
169 return MASKBIT(i);
172 return 0;
176 ** Create a new mask for cursor iCursor.
178 ** There is one cursor per table in the FROM clause. The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
181 ** array will never overflow.
183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
185 pMaskSet->ix[pMaskSet->n++] = iCursor;
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
193 static WhereTerm *whereScanNext(WhereScan *pScan){
194 int iCur; /* The cursor on the LHS of the term */
195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
196 Expr *pX; /* An expression being tested */
197 WhereClause *pWC; /* Shorthand for pScan->pWC */
198 WhereTerm *pTerm; /* The term being tested */
199 int k = pScan->k; /* Where to start scanning */
201 assert( pScan->iEquiv<=pScan->nEquiv );
202 pWC = pScan->pWC;
203 while(1){
204 iColumn = pScan->aiColumn[pScan->iEquiv-1];
205 iCur = pScan->aiCur[pScan->iEquiv-1];
206 assert( pWC!=0 );
208 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
209 if( pTerm->leftCursor==iCur
210 && pTerm->u.leftColumn==iColumn
211 && (iColumn!=XN_EXPR
212 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
213 pScan->pIdxExpr,iCur)==0)
214 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
216 if( (pTerm->eOperator & WO_EQUIV)!=0
217 && pScan->nEquiv<ArraySize(pScan->aiCur)
218 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
220 int j;
221 for(j=0; j<pScan->nEquiv; j++){
222 if( pScan->aiCur[j]==pX->iTable
223 && pScan->aiColumn[j]==pX->iColumn ){
224 break;
227 if( j==pScan->nEquiv ){
228 pScan->aiCur[j] = pX->iTable;
229 pScan->aiColumn[j] = pX->iColumn;
230 pScan->nEquiv++;
233 if( (pTerm->eOperator & pScan->opMask)!=0 ){
234 /* Verify the affinity and collating sequence match */
235 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
236 CollSeq *pColl;
237 Parse *pParse = pWC->pWInfo->pParse;
238 pX = pTerm->pExpr;
239 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
240 continue;
242 assert(pX->pLeft);
243 pColl = sqlite3BinaryCompareCollSeq(pParse,
244 pX->pLeft, pX->pRight);
245 if( pColl==0 ) pColl = pParse->db->pDfltColl;
246 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
247 continue;
250 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
251 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
252 && pX->iTable==pScan->aiCur[0]
253 && pX->iColumn==pScan->aiColumn[0]
255 testcase( pTerm->eOperator & WO_IS );
256 continue;
258 pScan->pWC = pWC;
259 pScan->k = k+1;
260 return pTerm;
264 pWC = pWC->pOuter;
265 k = 0;
266 }while( pWC!=0 );
267 if( pScan->iEquiv>=pScan->nEquiv ) break;
268 pWC = pScan->pOrigWC;
269 k = 0;
270 pScan->iEquiv++;
272 return 0;
276 ** Initialize a WHERE clause scanner object. Return a pointer to the
277 ** first match. Return NULL if there are no matches.
279 ** The scanner will be searching the WHERE clause pWC. It will look
280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
281 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
282 ** must be one of the indexes of table iCur.
284 ** The <op> must be one of the operators described by opMask.
286 ** If the search is for X and the WHERE clause contains terms of the
287 ** form X=Y then this routine might also return terms of the form
288 ** "Y <op> <expr>". The number of levels of transitivity is limited,
289 ** but is enough to handle most commonly occurring SQL statements.
291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
292 ** index pIdx.
294 static WhereTerm *whereScanInit(
295 WhereScan *pScan, /* The WhereScan object being initialized */
296 WhereClause *pWC, /* The WHERE clause to be scanned */
297 int iCur, /* Cursor to scan for */
298 int iColumn, /* Column to scan for */
299 u32 opMask, /* Operator(s) to scan for */
300 Index *pIdx /* Must be compatible with this index */
302 pScan->pOrigWC = pWC;
303 pScan->pWC = pWC;
304 pScan->pIdxExpr = 0;
305 pScan->idxaff = 0;
306 pScan->zCollName = 0;
307 if( pIdx ){
308 int j = iColumn;
309 iColumn = pIdx->aiColumn[j];
310 if( iColumn==XN_EXPR ){
311 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
312 pScan->zCollName = pIdx->azColl[j];
313 }else if( iColumn==pIdx->pTable->iPKey ){
314 iColumn = XN_ROWID;
315 }else if( iColumn>=0 ){
316 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
317 pScan->zCollName = pIdx->azColl[j];
319 }else if( iColumn==XN_EXPR ){
320 return 0;
322 pScan->opMask = opMask;
323 pScan->k = 0;
324 pScan->aiCur[0] = iCur;
325 pScan->aiColumn[0] = iColumn;
326 pScan->nEquiv = 1;
327 pScan->iEquiv = 1;
328 return whereScanNext(pScan);
332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
333 ** where X is a reference to the iColumn of table iCur or of index pIdx
334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
335 ** the op parameter. Return a pointer to the term. Return 0 if not found.
337 ** If pIdx!=0 then it must be one of the indexes of table iCur.
338 ** Search for terms matching the iColumn-th column of pIdx
339 ** rather than the iColumn-th column of table iCur.
341 ** The term returned might by Y=<expr> if there is another constraint in
342 ** the WHERE clause that specifies that X=Y. Any such constraints will be
343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
346 ** other equivalent values. Hence a search for X will return <expr> if X=A1
347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
350 ** then try for the one with no dependencies on <expr> - in other words where
351 ** <expr> is a constant expression of some kind. Only return entries of
352 ** the form "X <op> Y" where Y is a column in another table if no terms of
353 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
354 ** exist, try to return a term that does not use WO_EQUIV.
356 WhereTerm *sqlite3WhereFindTerm(
357 WhereClause *pWC, /* The WHERE clause to be searched */
358 int iCur, /* Cursor number of LHS */
359 int iColumn, /* Column number of LHS */
360 Bitmask notReady, /* RHS must not overlap with this mask */
361 u32 op, /* Mask of WO_xx values describing operator */
362 Index *pIdx /* Must be compatible with this index, if not NULL */
364 WhereTerm *pResult = 0;
365 WhereTerm *p;
366 WhereScan scan;
368 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
369 op &= WO_EQ|WO_IS;
370 while( p ){
371 if( (p->prereqRight & notReady)==0 ){
372 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
373 testcase( p->eOperator & WO_IS );
374 return p;
376 if( pResult==0 ) pResult = p;
378 p = whereScanNext(&scan);
380 return pResult;
384 ** This function searches pList for an entry that matches the iCol-th column
385 ** of index pIdx.
387 ** If such an expression is found, its index in pList->a[] is returned. If
388 ** no expression is found, -1 is returned.
390 static int findIndexCol(
391 Parse *pParse, /* Parse context */
392 ExprList *pList, /* Expression list to search */
393 int iBase, /* Cursor for table associated with pIdx */
394 Index *pIdx, /* Index to match column of */
395 int iCol /* Column of index to match */
397 int i;
398 const char *zColl = pIdx->azColl[iCol];
400 for(i=0; i<pList->nExpr; i++){
401 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
402 if( p->op==TK_COLUMN
403 && p->iColumn==pIdx->aiColumn[iCol]
404 && p->iTable==iBase
406 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
407 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
408 return i;
413 return -1;
417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
419 static int indexColumnNotNull(Index *pIdx, int iCol){
420 int j;
421 assert( pIdx!=0 );
422 assert( iCol>=0 && iCol<pIdx->nColumn );
423 j = pIdx->aiColumn[iCol];
424 if( j>=0 ){
425 return pIdx->pTable->aCol[j].notNull;
426 }else if( j==(-1) ){
427 return 1;
428 }else{
429 assert( j==(-2) );
430 return 0; /* Assume an indexed expression can always yield a NULL */
436 ** Return true if the DISTINCT expression-list passed as the third argument
437 ** is redundant.
439 ** A DISTINCT list is redundant if any subset of the columns in the
440 ** DISTINCT list are collectively unique and individually non-null.
442 static int isDistinctRedundant(
443 Parse *pParse, /* Parsing context */
444 SrcList *pTabList, /* The FROM clause */
445 WhereClause *pWC, /* The WHERE clause */
446 ExprList *pDistinct /* The result set that needs to be DISTINCT */
448 Table *pTab;
449 Index *pIdx;
450 int i;
451 int iBase;
453 /* If there is more than one table or sub-select in the FROM clause of
454 ** this query, then it will not be possible to show that the DISTINCT
455 ** clause is redundant. */
456 if( pTabList->nSrc!=1 ) return 0;
457 iBase = pTabList->a[0].iCursor;
458 pTab = pTabList->a[0].pTab;
460 /* If any of the expressions is an IPK column on table iBase, then return
461 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
462 ** current SELECT is a correlated sub-query.
464 for(i=0; i<pDistinct->nExpr; i++){
465 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
466 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
469 /* Loop through all indices on the table, checking each to see if it makes
470 ** the DISTINCT qualifier redundant. It does so if:
472 ** 1. The index is itself UNIQUE, and
474 ** 2. All of the columns in the index are either part of the pDistinct
475 ** list, or else the WHERE clause contains a term of the form "col=X",
476 ** where X is a constant value. The collation sequences of the
477 ** comparison and select-list expressions must match those of the index.
479 ** 3. All of those index columns for which the WHERE clause does not
480 ** contain a "col=X" term are subject to a NOT NULL constraint.
482 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
483 if( !IsUniqueIndex(pIdx) ) continue;
484 for(i=0; i<pIdx->nKeyCol; i++){
485 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
486 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
487 if( indexColumnNotNull(pIdx, i)==0 ) break;
490 if( i==pIdx->nKeyCol ){
491 /* This index implies that the DISTINCT qualifier is redundant. */
492 return 1;
496 return 0;
501 ** Estimate the logarithm of the input value to base 2.
503 static LogEst estLog(LogEst N){
504 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
508 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
510 ** This routine runs over generated VDBE code and translates OP_Column
511 ** opcodes into OP_Copy when the table is being accessed via co-routine
512 ** instead of via table lookup.
514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
516 ** then each OP_Rowid is transformed into an instruction to increment the
517 ** value stored in its output register.
519 static void translateColumnToCopy(
520 Parse *pParse, /* Parsing context */
521 int iStart, /* Translate from this opcode to the end */
522 int iTabCur, /* OP_Column/OP_Rowid references to this table */
523 int iRegister, /* The first column is in this register */
524 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */
526 Vdbe *v = pParse->pVdbe;
527 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
528 int iEnd = sqlite3VdbeCurrentAddr(v);
529 if( pParse->db->mallocFailed ) return;
530 for(; iStart<iEnd; iStart++, pOp++){
531 if( pOp->p1!=iTabCur ) continue;
532 if( pOp->opcode==OP_Column ){
533 pOp->opcode = OP_Copy;
534 pOp->p1 = pOp->p2 + iRegister;
535 pOp->p2 = pOp->p3;
536 pOp->p3 = 0;
537 }else if( pOp->opcode==OP_Rowid ){
538 if( bIncrRowid ){
539 /* Increment the value stored in the P2 operand of the OP_Rowid. */
540 pOp->opcode = OP_AddImm;
541 pOp->p1 = pOp->p2;
542 pOp->p2 = 1;
543 }else{
544 pOp->opcode = OP_Null;
545 pOp->p1 = 0;
546 pOp->p3 = 0;
553 ** Two routines for printing the content of an sqlite3_index_info
554 ** structure. Used for testing and debugging only. If neither
555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
556 ** are no-ops.
558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
559 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
560 int i;
561 if( !sqlite3WhereTrace ) return;
562 for(i=0; i<p->nConstraint; i++){
563 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
565 p->aConstraint[i].iColumn,
566 p->aConstraint[i].iTermOffset,
567 p->aConstraint[i].op,
568 p->aConstraint[i].usable);
570 for(i=0; i<p->nOrderBy; i++){
571 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
573 p->aOrderBy[i].iColumn,
574 p->aOrderBy[i].desc);
577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
578 int i;
579 if( !sqlite3WhereTrace ) return;
580 for(i=0; i<p->nConstraint; i++){
581 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
583 p->aConstraintUsage[i].argvIndex,
584 p->aConstraintUsage[i].omit);
586 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
587 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
588 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
589 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
590 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
592 #else
593 #define TRACE_IDX_INPUTS(A)
594 #define TRACE_IDX_OUTPUTS(A)
595 #endif
597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
599 ** Return TRUE if the WHERE clause term pTerm is of a form where it
600 ** could be used with an index to access pSrc, assuming an appropriate
601 ** index existed.
603 static int termCanDriveIndex(
604 WhereTerm *pTerm, /* WHERE clause term to check */
605 struct SrcList_item *pSrc, /* Table we are trying to access */
606 Bitmask notReady /* Tables in outer loops of the join */
608 char aff;
609 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
610 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
611 if( (pSrc->fg.jointype & JT_LEFT)
612 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
613 && (pTerm->eOperator & WO_IS)
615 /* Cannot use an IS term from the WHERE clause as an index driver for
616 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
617 ** the ON clause. */
618 return 0;
620 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
621 if( pTerm->u.leftColumn<0 ) return 0;
622 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
623 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
624 testcase( pTerm->pExpr->op==TK_IS );
625 return 1;
627 #endif
630 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
632 ** Generate code to construct the Index object for an automatic index
633 ** and to set up the WhereLevel object pLevel so that the code generator
634 ** makes use of the automatic index.
636 static void constructAutomaticIndex(
637 Parse *pParse, /* The parsing context */
638 WhereClause *pWC, /* The WHERE clause */
639 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
640 Bitmask notReady, /* Mask of cursors that are not available */
641 WhereLevel *pLevel /* Write new index here */
643 int nKeyCol; /* Number of columns in the constructed index */
644 WhereTerm *pTerm; /* A single term of the WHERE clause */
645 WhereTerm *pWCEnd; /* End of pWC->a[] */
646 Index *pIdx; /* Object describing the transient index */
647 Vdbe *v; /* Prepared statement under construction */
648 int addrInit; /* Address of the initialization bypass jump */
649 Table *pTable; /* The table being indexed */
650 int addrTop; /* Top of the index fill loop */
651 int regRecord; /* Register holding an index record */
652 int n; /* Column counter */
653 int i; /* Loop counter */
654 int mxBitCol; /* Maximum column in pSrc->colUsed */
655 CollSeq *pColl; /* Collating sequence to on a column */
656 WhereLoop *pLoop; /* The Loop object */
657 char *zNotUsed; /* Extra space on the end of pIdx */
658 Bitmask idxCols; /* Bitmap of columns used for indexing */
659 Bitmask extraCols; /* Bitmap of additional columns */
660 u8 sentWarning = 0; /* True if a warnning has been issued */
661 Expr *pPartial = 0; /* Partial Index Expression */
662 int iContinue = 0; /* Jump here to skip excluded rows */
663 struct SrcList_item *pTabItem; /* FROM clause term being indexed */
664 int addrCounter = 0; /* Address where integer counter is initialized */
665 int regBase; /* Array of registers where record is assembled */
667 /* Generate code to skip over the creation and initialization of the
668 ** transient index on 2nd and subsequent iterations of the loop. */
669 v = pParse->pVdbe;
670 assert( v!=0 );
671 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
673 /* Count the number of columns that will be added to the index
674 ** and used to match WHERE clause constraints */
675 nKeyCol = 0;
676 pTable = pSrc->pTab;
677 pWCEnd = &pWC->a[pWC->nTerm];
678 pLoop = pLevel->pWLoop;
679 idxCols = 0;
680 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
681 Expr *pExpr = pTerm->pExpr;
682 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
683 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
684 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */
685 if( pLoop->prereq==0
686 && (pTerm->wtFlags & TERM_VIRTUAL)==0
687 && !ExprHasProperty(pExpr, EP_FromJoin)
688 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
689 pPartial = sqlite3ExprAnd(pParse->db, pPartial,
690 sqlite3ExprDup(pParse->db, pExpr, 0));
692 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
693 int iCol = pTerm->u.leftColumn;
694 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
695 testcase( iCol==BMS );
696 testcase( iCol==BMS-1 );
697 if( !sentWarning ){
698 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
699 "automatic index on %s(%s)", pTable->zName,
700 pTable->aCol[iCol].zName);
701 sentWarning = 1;
703 if( (idxCols & cMask)==0 ){
704 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
705 goto end_auto_index_create;
707 pLoop->aLTerm[nKeyCol++] = pTerm;
708 idxCols |= cMask;
712 assert( nKeyCol>0 );
713 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
714 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
715 | WHERE_AUTO_INDEX;
717 /* Count the number of additional columns needed to create a
718 ** covering index. A "covering index" is an index that contains all
719 ** columns that are needed by the query. With a covering index, the
720 ** original table never needs to be accessed. Automatic indices must
721 ** be a covering index because the index will not be updated if the
722 ** original table changes and the index and table cannot both be used
723 ** if they go out of sync.
725 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
726 mxBitCol = MIN(BMS-1,pTable->nCol);
727 testcase( pTable->nCol==BMS-1 );
728 testcase( pTable->nCol==BMS-2 );
729 for(i=0; i<mxBitCol; i++){
730 if( extraCols & MASKBIT(i) ) nKeyCol++;
732 if( pSrc->colUsed & MASKBIT(BMS-1) ){
733 nKeyCol += pTable->nCol - BMS + 1;
736 /* Construct the Index object to describe this index */
737 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
738 if( pIdx==0 ) goto end_auto_index_create;
739 pLoop->u.btree.pIndex = pIdx;
740 pIdx->zName = "auto-index";
741 pIdx->pTable = pTable;
742 n = 0;
743 idxCols = 0;
744 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
745 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
746 int iCol = pTerm->u.leftColumn;
747 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
748 testcase( iCol==BMS-1 );
749 testcase( iCol==BMS );
750 if( (idxCols & cMask)==0 ){
751 Expr *pX = pTerm->pExpr;
752 idxCols |= cMask;
753 pIdx->aiColumn[n] = pTerm->u.leftColumn;
754 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
755 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
756 n++;
760 assert( (u32)n==pLoop->u.btree.nEq );
762 /* Add additional columns needed to make the automatic index into
763 ** a covering index */
764 for(i=0; i<mxBitCol; i++){
765 if( extraCols & MASKBIT(i) ){
766 pIdx->aiColumn[n] = i;
767 pIdx->azColl[n] = sqlite3StrBINARY;
768 n++;
771 if( pSrc->colUsed & MASKBIT(BMS-1) ){
772 for(i=BMS-1; i<pTable->nCol; i++){
773 pIdx->aiColumn[n] = i;
774 pIdx->azColl[n] = sqlite3StrBINARY;
775 n++;
778 assert( n==nKeyCol );
779 pIdx->aiColumn[n] = XN_ROWID;
780 pIdx->azColl[n] = sqlite3StrBINARY;
782 /* Create the automatic index */
783 assert( pLevel->iIdxCur>=0 );
784 pLevel->iIdxCur = pParse->nTab++;
785 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
786 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
787 VdbeComment((v, "for %s", pTable->zName));
789 /* Fill the automatic index with content */
790 sqlite3ExprCachePush(pParse);
791 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
792 if( pTabItem->fg.viaCoroutine ){
793 int regYield = pTabItem->regReturn;
794 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
795 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
796 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
797 VdbeCoverage(v);
798 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
799 }else{
800 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
802 if( pPartial ){
803 iContinue = sqlite3VdbeMakeLabel(v);
804 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
805 pLoop->wsFlags |= WHERE_PARTIALIDX;
807 regRecord = sqlite3GetTempReg(pParse);
808 regBase = sqlite3GenerateIndexKey(
809 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
811 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
812 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
813 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
814 if( pTabItem->fg.viaCoroutine ){
815 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
816 testcase( pParse->db->mallocFailed );
817 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
818 pTabItem->regResult, 1);
819 sqlite3VdbeGoto(v, addrTop);
820 pTabItem->fg.viaCoroutine = 0;
821 }else{
822 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
824 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
825 sqlite3VdbeJumpHere(v, addrTop);
826 sqlite3ReleaseTempReg(pParse, regRecord);
827 sqlite3ExprCachePop(pParse);
829 /* Jump here when skipping the initialization */
830 sqlite3VdbeJumpHere(v, addrInit);
832 end_auto_index_create:
833 sqlite3ExprDelete(pParse->db, pPartial);
835 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
837 #ifndef SQLITE_OMIT_VIRTUALTABLE
839 ** Allocate and populate an sqlite3_index_info structure. It is the
840 ** responsibility of the caller to eventually release the structure
841 ** by passing the pointer returned by this function to sqlite3_free().
843 static sqlite3_index_info *allocateIndexInfo(
844 Parse *pParse,
845 WhereClause *pWC,
846 Bitmask mUnusable, /* Ignore terms with these prereqs */
847 struct SrcList_item *pSrc,
848 ExprList *pOrderBy,
849 u16 *pmNoOmit /* Mask of terms not to omit */
851 int i, j;
852 int nTerm;
853 struct sqlite3_index_constraint *pIdxCons;
854 struct sqlite3_index_orderby *pIdxOrderBy;
855 struct sqlite3_index_constraint_usage *pUsage;
856 WhereTerm *pTerm;
857 int nOrderBy;
858 sqlite3_index_info *pIdxInfo;
859 u16 mNoOmit = 0;
861 /* Count the number of possible WHERE clause constraints referring
862 ** to this virtual table */
863 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
864 if( pTerm->leftCursor != pSrc->iCursor ) continue;
865 if( pTerm->prereqRight & mUnusable ) continue;
866 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
867 testcase( pTerm->eOperator & WO_IN );
868 testcase( pTerm->eOperator & WO_ISNULL );
869 testcase( pTerm->eOperator & WO_IS );
870 testcase( pTerm->eOperator & WO_ALL );
871 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
872 if( pTerm->wtFlags & TERM_VNULL ) continue;
873 assert( pTerm->u.leftColumn>=(-1) );
874 nTerm++;
877 /* If the ORDER BY clause contains only columns in the current
878 ** virtual table then allocate space for the aOrderBy part of
879 ** the sqlite3_index_info structure.
881 nOrderBy = 0;
882 if( pOrderBy ){
883 int n = pOrderBy->nExpr;
884 for(i=0; i<n; i++){
885 Expr *pExpr = pOrderBy->a[i].pExpr;
886 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
888 if( i==n){
889 nOrderBy = n;
893 /* Allocate the sqlite3_index_info structure
895 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
896 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
897 + sizeof(*pIdxOrderBy)*nOrderBy );
898 if( pIdxInfo==0 ){
899 sqlite3ErrorMsg(pParse, "out of memory");
900 return 0;
903 /* Initialize the structure. The sqlite3_index_info structure contains
904 ** many fields that are declared "const" to prevent xBestIndex from
905 ** changing them. We have to do some funky casting in order to
906 ** initialize those fields.
908 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
909 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
910 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
911 *(int*)&pIdxInfo->nConstraint = nTerm;
912 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
913 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
914 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
915 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
916 pUsage;
918 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
919 u16 op;
920 if( pTerm->leftCursor != pSrc->iCursor ) continue;
921 if( pTerm->prereqRight & mUnusable ) continue;
922 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
923 testcase( pTerm->eOperator & WO_IN );
924 testcase( pTerm->eOperator & WO_IS );
925 testcase( pTerm->eOperator & WO_ISNULL );
926 testcase( pTerm->eOperator & WO_ALL );
927 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
928 if( pTerm->wtFlags & TERM_VNULL ) continue;
929 assert( pTerm->u.leftColumn>=(-1) );
930 pIdxCons[j].iColumn = pTerm->u.leftColumn;
931 pIdxCons[j].iTermOffset = i;
932 op = pTerm->eOperator & WO_ALL;
933 if( op==WO_IN ) op = WO_EQ;
934 if( op==WO_AUX ){
935 pIdxCons[j].op = pTerm->eMatchOp;
936 }else if( op & (WO_ISNULL|WO_IS) ){
937 if( op==WO_ISNULL ){
938 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
939 }else{
940 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
942 }else{
943 pIdxCons[j].op = (u8)op;
944 /* The direct assignment in the previous line is possible only because
945 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
946 ** following asserts verify this fact. */
947 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
948 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
949 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
950 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
951 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
952 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
954 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
955 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
957 if( i<16 ) mNoOmit |= (1 << i);
958 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
959 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
963 j++;
965 for(i=0; i<nOrderBy; i++){
966 Expr *pExpr = pOrderBy->a[i].pExpr;
967 pIdxOrderBy[i].iColumn = pExpr->iColumn;
968 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
971 *pmNoOmit = mNoOmit;
972 return pIdxInfo;
976 ** The table object reference passed as the second argument to this function
977 ** must represent a virtual table. This function invokes the xBestIndex()
978 ** method of the virtual table with the sqlite3_index_info object that
979 ** comes in as the 3rd argument to this function.
981 ** If an error occurs, pParse is populated with an error message and a
982 ** non-zero value is returned. Otherwise, 0 is returned and the output
983 ** part of the sqlite3_index_info structure is left populated.
985 ** Whether or not an error is returned, it is the responsibility of the
986 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
987 ** that this is required.
989 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
990 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
991 int rc;
993 TRACE_IDX_INPUTS(p);
994 rc = pVtab->pModule->xBestIndex(pVtab, p);
995 TRACE_IDX_OUTPUTS(p);
997 if( rc!=SQLITE_OK ){
998 if( rc==SQLITE_NOMEM ){
999 sqlite3OomFault(pParse->db);
1000 }else if( !pVtab->zErrMsg ){
1001 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1002 }else{
1003 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1006 sqlite3_free(pVtab->zErrMsg);
1007 pVtab->zErrMsg = 0;
1009 #if 0
1010 /* This error is now caught by the caller.
1011 ** Search for "xBestIndex malfunction" below */
1012 for(i=0; i<p->nConstraint; i++){
1013 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1014 sqlite3ErrorMsg(pParse,
1015 "table %s: xBestIndex returned an invalid plan", pTab->zName);
1018 #endif
1020 return pParse->nErr;
1022 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1024 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1026 ** Estimate the location of a particular key among all keys in an
1027 ** index. Store the results in aStat as follows:
1029 ** aStat[0] Est. number of rows less than pRec
1030 ** aStat[1] Est. number of rows equal to pRec
1032 ** Return the index of the sample that is the smallest sample that
1033 ** is greater than or equal to pRec. Note that this index is not an index
1034 ** into the aSample[] array - it is an index into a virtual set of samples
1035 ** based on the contents of aSample[] and the number of fields in record
1036 ** pRec.
1038 static int whereKeyStats(
1039 Parse *pParse, /* Database connection */
1040 Index *pIdx, /* Index to consider domain of */
1041 UnpackedRecord *pRec, /* Vector of values to consider */
1042 int roundUp, /* Round up if true. Round down if false */
1043 tRowcnt *aStat /* OUT: stats written here */
1045 IndexSample *aSample = pIdx->aSample;
1046 int iCol; /* Index of required stats in anEq[] etc. */
1047 int i; /* Index of first sample >= pRec */
1048 int iSample; /* Smallest sample larger than or equal to pRec */
1049 int iMin = 0; /* Smallest sample not yet tested */
1050 int iTest; /* Next sample to test */
1051 int res; /* Result of comparison operation */
1052 int nField; /* Number of fields in pRec */
1053 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1055 #ifndef SQLITE_DEBUG
1056 UNUSED_PARAMETER( pParse );
1057 #endif
1058 assert( pRec!=0 );
1059 assert( pIdx->nSample>0 );
1060 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1062 /* Do a binary search to find the first sample greater than or equal
1063 ** to pRec. If pRec contains a single field, the set of samples to search
1064 ** is simply the aSample[] array. If the samples in aSample[] contain more
1065 ** than one fields, all fields following the first are ignored.
1067 ** If pRec contains N fields, where N is more than one, then as well as the
1068 ** samples in aSample[] (truncated to N fields), the search also has to
1069 ** consider prefixes of those samples. For example, if the set of samples
1070 ** in aSample is:
1072 ** aSample[0] = (a, 5)
1073 ** aSample[1] = (a, 10)
1074 ** aSample[2] = (b, 5)
1075 ** aSample[3] = (c, 100)
1076 ** aSample[4] = (c, 105)
1078 ** Then the search space should ideally be the samples above and the
1079 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1080 ** the code actually searches this set:
1082 ** 0: (a)
1083 ** 1: (a, 5)
1084 ** 2: (a, 10)
1085 ** 3: (a, 10)
1086 ** 4: (b)
1087 ** 5: (b, 5)
1088 ** 6: (c)
1089 ** 7: (c, 100)
1090 ** 8: (c, 105)
1091 ** 9: (c, 105)
1093 ** For each sample in the aSample[] array, N samples are present in the
1094 ** effective sample array. In the above, samples 0 and 1 are based on
1095 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1097 ** Often, sample i of each block of N effective samples has (i+1) fields.
1098 ** Except, each sample may be extended to ensure that it is greater than or
1099 ** equal to the previous sample in the array. For example, in the above,
1100 ** sample 2 is the first sample of a block of N samples, so at first it
1101 ** appears that it should be 1 field in size. However, that would make it
1102 ** smaller than sample 1, so the binary search would not work. As a result,
1103 ** it is extended to two fields. The duplicates that this creates do not
1104 ** cause any problems.
1106 nField = pRec->nField;
1107 iCol = 0;
1108 iSample = pIdx->nSample * nField;
1110 int iSamp; /* Index in aSample[] of test sample */
1111 int n; /* Number of fields in test sample */
1113 iTest = (iMin+iSample)/2;
1114 iSamp = iTest / nField;
1115 if( iSamp>0 ){
1116 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1117 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1118 ** fields that is greater than the previous effective sample. */
1119 for(n=(iTest % nField) + 1; n<nField; n++){
1120 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1122 }else{
1123 n = iTest + 1;
1126 pRec->nField = n;
1127 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1128 if( res<0 ){
1129 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1130 iMin = iTest+1;
1131 }else if( res==0 && n<nField ){
1132 iLower = aSample[iSamp].anLt[n-1];
1133 iMin = iTest+1;
1134 res = -1;
1135 }else{
1136 iSample = iTest;
1137 iCol = n-1;
1139 }while( res && iMin<iSample );
1140 i = iSample / nField;
1142 #ifdef SQLITE_DEBUG
1143 /* The following assert statements check that the binary search code
1144 ** above found the right answer. This block serves no purpose other
1145 ** than to invoke the asserts. */
1146 if( pParse->db->mallocFailed==0 ){
1147 if( res==0 ){
1148 /* If (res==0) is true, then pRec must be equal to sample i. */
1149 assert( i<pIdx->nSample );
1150 assert( iCol==nField-1 );
1151 pRec->nField = nField;
1152 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1153 || pParse->db->mallocFailed
1155 }else{
1156 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1157 ** all samples in the aSample[] array, pRec must be smaller than the
1158 ** (iCol+1) field prefix of sample i. */
1159 assert( i<=pIdx->nSample && i>=0 );
1160 pRec->nField = iCol+1;
1161 assert( i==pIdx->nSample
1162 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1163 || pParse->db->mallocFailed );
1165 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1166 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1167 ** be greater than or equal to the (iCol) field prefix of sample i.
1168 ** If (i>0), then pRec must also be greater than sample (i-1). */
1169 if( iCol>0 ){
1170 pRec->nField = iCol;
1171 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1172 || pParse->db->mallocFailed );
1174 if( i>0 ){
1175 pRec->nField = nField;
1176 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1177 || pParse->db->mallocFailed );
1181 #endif /* ifdef SQLITE_DEBUG */
1183 if( res==0 ){
1184 /* Record pRec is equal to sample i */
1185 assert( iCol==nField-1 );
1186 aStat[0] = aSample[i].anLt[iCol];
1187 aStat[1] = aSample[i].anEq[iCol];
1188 }else{
1189 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1190 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1191 ** is larger than all samples in the array. */
1192 tRowcnt iUpper, iGap;
1193 if( i>=pIdx->nSample ){
1194 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1195 }else{
1196 iUpper = aSample[i].anLt[iCol];
1199 if( iLower>=iUpper ){
1200 iGap = 0;
1201 }else{
1202 iGap = iUpper - iLower;
1204 if( roundUp ){
1205 iGap = (iGap*2)/3;
1206 }else{
1207 iGap = iGap/3;
1209 aStat[0] = iLower + iGap;
1210 aStat[1] = pIdx->aAvgEq[nField-1];
1213 /* Restore the pRec->nField value before returning. */
1214 pRec->nField = nField;
1215 return i;
1217 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1220 ** If it is not NULL, pTerm is a term that provides an upper or lower
1221 ** bound on a range scan. Without considering pTerm, it is estimated
1222 ** that the scan will visit nNew rows. This function returns the number
1223 ** estimated to be visited after taking pTerm into account.
1225 ** If the user explicitly specified a likelihood() value for this term,
1226 ** then the return value is the likelihood multiplied by the number of
1227 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1228 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1230 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1231 LogEst nRet = nNew;
1232 if( pTerm ){
1233 if( pTerm->truthProb<=0 ){
1234 nRet += pTerm->truthProb;
1235 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1236 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1239 return nRet;
1243 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1245 ** Return the affinity for a single column of an index.
1247 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1248 assert( iCol>=0 && iCol<pIdx->nColumn );
1249 if( !pIdx->zColAff ){
1250 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1252 return pIdx->zColAff[iCol];
1254 #endif
1257 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1259 ** This function is called to estimate the number of rows visited by a
1260 ** range-scan on a skip-scan index. For example:
1262 ** CREATE INDEX i1 ON t1(a, b, c);
1263 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1265 ** Value pLoop->nOut is currently set to the estimated number of rows
1266 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1267 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1268 ** on the stat4 data for the index. this scan will be peformed multiple
1269 ** times (once for each (a,b) combination that matches a=?) is dealt with
1270 ** by the caller.
1272 ** It does this by scanning through all stat4 samples, comparing values
1273 ** extracted from pLower and pUpper with the corresponding column in each
1274 ** sample. If L and U are the number of samples found to be less than or
1275 ** equal to the values extracted from pLower and pUpper respectively, and
1276 ** N is the total number of samples, the pLoop->nOut value is adjusted
1277 ** as follows:
1279 ** nOut = nOut * ( min(U - L, 1) / N )
1281 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1282 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1283 ** U is set to N.
1285 ** Normally, this function sets *pbDone to 1 before returning. However,
1286 ** if no value can be extracted from either pLower or pUpper (and so the
1287 ** estimate of the number of rows delivered remains unchanged), *pbDone
1288 ** is left as is.
1290 ** If an error occurs, an SQLite error code is returned. Otherwise,
1291 ** SQLITE_OK.
1293 static int whereRangeSkipScanEst(
1294 Parse *pParse, /* Parsing & code generating context */
1295 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1296 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1297 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1298 int *pbDone /* Set to true if at least one expr. value extracted */
1300 Index *p = pLoop->u.btree.pIndex;
1301 int nEq = pLoop->u.btree.nEq;
1302 sqlite3 *db = pParse->db;
1303 int nLower = -1;
1304 int nUpper = p->nSample+1;
1305 int rc = SQLITE_OK;
1306 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1307 CollSeq *pColl;
1309 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1310 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1311 sqlite3_value *pVal = 0; /* Value extracted from record */
1313 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1314 if( pLower ){
1315 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1316 nLower = 0;
1318 if( pUpper && rc==SQLITE_OK ){
1319 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1320 nUpper = p2 ? 0 : p->nSample;
1323 if( p1 || p2 ){
1324 int i;
1325 int nDiff;
1326 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1327 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1328 if( rc==SQLITE_OK && p1 ){
1329 int res = sqlite3MemCompare(p1, pVal, pColl);
1330 if( res>=0 ) nLower++;
1332 if( rc==SQLITE_OK && p2 ){
1333 int res = sqlite3MemCompare(p2, pVal, pColl);
1334 if( res>=0 ) nUpper++;
1337 nDiff = (nUpper - nLower);
1338 if( nDiff<=0 ) nDiff = 1;
1340 /* If there is both an upper and lower bound specified, and the
1341 ** comparisons indicate that they are close together, use the fallback
1342 ** method (assume that the scan visits 1/64 of the rows) for estimating
1343 ** the number of rows visited. Otherwise, estimate the number of rows
1344 ** using the method described in the header comment for this function. */
1345 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1346 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1347 pLoop->nOut -= nAdjust;
1348 *pbDone = 1;
1349 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1350 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1353 }else{
1354 assert( *pbDone==0 );
1357 sqlite3ValueFree(p1);
1358 sqlite3ValueFree(p2);
1359 sqlite3ValueFree(pVal);
1361 return rc;
1363 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1366 ** This function is used to estimate the number of rows that will be visited
1367 ** by scanning an index for a range of values. The range may have an upper
1368 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1369 ** and lower bounds are represented by pLower and pUpper respectively. For
1370 ** example, assuming that index p is on t1(a):
1372 ** ... FROM t1 WHERE a > ? AND a < ? ...
1373 ** |_____| |_____|
1374 ** | |
1375 ** pLower pUpper
1377 ** If either of the upper or lower bound is not present, then NULL is passed in
1378 ** place of the corresponding WhereTerm.
1380 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1381 ** column subject to the range constraint. Or, equivalently, the number of
1382 ** equality constraints optimized by the proposed index scan. For example,
1383 ** assuming index p is on t1(a, b), and the SQL query is:
1385 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1387 ** then nEq is set to 1 (as the range restricted column, b, is the second
1388 ** left-most column of the index). Or, if the query is:
1390 ** ... FROM t1 WHERE a > ? AND a < ? ...
1392 ** then nEq is set to 0.
1394 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1395 ** number of rows that the index scan is expected to visit without
1396 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1397 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1398 ** to account for the range constraints pLower and pUpper.
1400 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1401 ** used, a single range inequality reduces the search space by a factor of 4.
1402 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1403 ** rows visited by a factor of 64.
1405 static int whereRangeScanEst(
1406 Parse *pParse, /* Parsing & code generating context */
1407 WhereLoopBuilder *pBuilder,
1408 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1409 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1410 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1412 int rc = SQLITE_OK;
1413 int nOut = pLoop->nOut;
1414 LogEst nNew;
1416 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1417 Index *p = pLoop->u.btree.pIndex;
1418 int nEq = pLoop->u.btree.nEq;
1420 if( p->nSample>0 && nEq<p->nSampleCol ){
1421 if( nEq==pBuilder->nRecValid ){
1422 UnpackedRecord *pRec = pBuilder->pRec;
1423 tRowcnt a[2];
1424 int nBtm = pLoop->u.btree.nBtm;
1425 int nTop = pLoop->u.btree.nTop;
1427 /* Variable iLower will be set to the estimate of the number of rows in
1428 ** the index that are less than the lower bound of the range query. The
1429 ** lower bound being the concatenation of $P and $L, where $P is the
1430 ** key-prefix formed by the nEq values matched against the nEq left-most
1431 ** columns of the index, and $L is the value in pLower.
1433 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1434 ** is not a simple variable or literal value), the lower bound of the
1435 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1436 ** if $L is available, whereKeyStats() is called for both ($P) and
1437 ** ($P:$L) and the larger of the two returned values is used.
1439 ** Similarly, iUpper is to be set to the estimate of the number of rows
1440 ** less than the upper bound of the range query. Where the upper bound
1441 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1442 ** of iUpper are requested of whereKeyStats() and the smaller used.
1444 ** The number of rows between the two bounds is then just iUpper-iLower.
1446 tRowcnt iLower; /* Rows less than the lower bound */
1447 tRowcnt iUpper; /* Rows less than the upper bound */
1448 int iLwrIdx = -2; /* aSample[] for the lower bound */
1449 int iUprIdx = -1; /* aSample[] for the upper bound */
1451 if( pRec ){
1452 testcase( pRec->nField!=pBuilder->nRecValid );
1453 pRec->nField = pBuilder->nRecValid;
1455 /* Determine iLower and iUpper using ($P) only. */
1456 if( nEq==0 ){
1457 iLower = 0;
1458 iUpper = p->nRowEst0;
1459 }else{
1460 /* Note: this call could be optimized away - since the same values must
1461 ** have been requested when testing key $P in whereEqualScanEst(). */
1462 whereKeyStats(pParse, p, pRec, 0, a);
1463 iLower = a[0];
1464 iUpper = a[0] + a[1];
1467 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1468 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1469 assert( p->aSortOrder!=0 );
1470 if( p->aSortOrder[nEq] ){
1471 /* The roles of pLower and pUpper are swapped for a DESC index */
1472 SWAP(WhereTerm*, pLower, pUpper);
1473 SWAP(int, nBtm, nTop);
1476 /* If possible, improve on the iLower estimate using ($P:$L). */
1477 if( pLower ){
1478 int n; /* Values extracted from pExpr */
1479 Expr *pExpr = pLower->pExpr->pRight;
1480 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1481 if( rc==SQLITE_OK && n ){
1482 tRowcnt iNew;
1483 u16 mask = WO_GT|WO_LE;
1484 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1485 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1486 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1487 if( iNew>iLower ) iLower = iNew;
1488 nOut--;
1489 pLower = 0;
1493 /* If possible, improve on the iUpper estimate using ($P:$U). */
1494 if( pUpper ){
1495 int n; /* Values extracted from pExpr */
1496 Expr *pExpr = pUpper->pExpr->pRight;
1497 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1498 if( rc==SQLITE_OK && n ){
1499 tRowcnt iNew;
1500 u16 mask = WO_GT|WO_LE;
1501 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1502 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1503 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1504 if( iNew<iUpper ) iUpper = iNew;
1505 nOut--;
1506 pUpper = 0;
1510 pBuilder->pRec = pRec;
1511 if( rc==SQLITE_OK ){
1512 if( iUpper>iLower ){
1513 nNew = sqlite3LogEst(iUpper - iLower);
1514 /* TUNING: If both iUpper and iLower are derived from the same
1515 ** sample, then assume they are 4x more selective. This brings
1516 ** the estimated selectivity more in line with what it would be
1517 ** if estimated without the use of STAT3/4 tables. */
1518 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1519 }else{
1520 nNew = 10; assert( 10==sqlite3LogEst(2) );
1522 if( nNew<nOut ){
1523 nOut = nNew;
1525 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1526 (u32)iLower, (u32)iUpper, nOut));
1528 }else{
1529 int bDone = 0;
1530 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1531 if( bDone ) return rc;
1534 #else
1535 UNUSED_PARAMETER(pParse);
1536 UNUSED_PARAMETER(pBuilder);
1537 assert( pLower || pUpper );
1538 #endif
1539 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1540 nNew = whereRangeAdjust(pLower, nOut);
1541 nNew = whereRangeAdjust(pUpper, nNew);
1543 /* TUNING: If there is both an upper and lower limit and neither limit
1544 ** has an application-defined likelihood(), assume the range is
1545 ** reduced by an additional 75%. This means that, by default, an open-ended
1546 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1547 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1548 ** match 1/64 of the index. */
1549 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1550 nNew -= 20;
1553 nOut -= (pLower!=0) + (pUpper!=0);
1554 if( nNew<10 ) nNew = 10;
1555 if( nNew<nOut ) nOut = nNew;
1556 #if defined(WHERETRACE_ENABLED)
1557 if( pLoop->nOut>nOut ){
1558 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1559 pLoop->nOut, nOut));
1561 #endif
1562 pLoop->nOut = (LogEst)nOut;
1563 return rc;
1566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1568 ** Estimate the number of rows that will be returned based on
1569 ** an equality constraint x=VALUE and where that VALUE occurs in
1570 ** the histogram data. This only works when x is the left-most
1571 ** column of an index and sqlite_stat3 histogram data is available
1572 ** for that index. When pExpr==NULL that means the constraint is
1573 ** "x IS NULL" instead of "x=VALUE".
1575 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1576 ** If unable to make an estimate, leave *pnRow unchanged and return
1577 ** non-zero.
1579 ** This routine can fail if it is unable to load a collating sequence
1580 ** required for string comparison, or if unable to allocate memory
1581 ** for a UTF conversion required for comparison. The error is stored
1582 ** in the pParse structure.
1584 static int whereEqualScanEst(
1585 Parse *pParse, /* Parsing & code generating context */
1586 WhereLoopBuilder *pBuilder,
1587 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1588 tRowcnt *pnRow /* Write the revised row estimate here */
1590 Index *p = pBuilder->pNew->u.btree.pIndex;
1591 int nEq = pBuilder->pNew->u.btree.nEq;
1592 UnpackedRecord *pRec = pBuilder->pRec;
1593 int rc; /* Subfunction return code */
1594 tRowcnt a[2]; /* Statistics */
1595 int bOk;
1597 assert( nEq>=1 );
1598 assert( nEq<=p->nColumn );
1599 assert( p->aSample!=0 );
1600 assert( p->nSample>0 );
1601 assert( pBuilder->nRecValid<nEq );
1603 /* If values are not available for all fields of the index to the left
1604 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1605 if( pBuilder->nRecValid<(nEq-1) ){
1606 return SQLITE_NOTFOUND;
1609 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1610 ** below would return the same value. */
1611 if( nEq>=p->nColumn ){
1612 *pnRow = 1;
1613 return SQLITE_OK;
1616 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1617 pBuilder->pRec = pRec;
1618 if( rc!=SQLITE_OK ) return rc;
1619 if( bOk==0 ) return SQLITE_NOTFOUND;
1620 pBuilder->nRecValid = nEq;
1622 whereKeyStats(pParse, p, pRec, 0, a);
1623 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1624 p->zName, nEq-1, (int)a[1]));
1625 *pnRow = a[1];
1627 return rc;
1629 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1631 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1633 ** Estimate the number of rows that will be returned based on
1634 ** an IN constraint where the right-hand side of the IN operator
1635 ** is a list of values. Example:
1637 ** WHERE x IN (1,2,3,4)
1639 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1640 ** If unable to make an estimate, leave *pnRow unchanged and return
1641 ** non-zero.
1643 ** This routine can fail if it is unable to load a collating sequence
1644 ** required for string comparison, or if unable to allocate memory
1645 ** for a UTF conversion required for comparison. The error is stored
1646 ** in the pParse structure.
1648 static int whereInScanEst(
1649 Parse *pParse, /* Parsing & code generating context */
1650 WhereLoopBuilder *pBuilder,
1651 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1652 tRowcnt *pnRow /* Write the revised row estimate here */
1654 Index *p = pBuilder->pNew->u.btree.pIndex;
1655 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1656 int nRecValid = pBuilder->nRecValid;
1657 int rc = SQLITE_OK; /* Subfunction return code */
1658 tRowcnt nEst; /* Number of rows for a single term */
1659 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
1660 int i; /* Loop counter */
1662 assert( p->aSample!=0 );
1663 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1664 nEst = nRow0;
1665 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1666 nRowEst += nEst;
1667 pBuilder->nRecValid = nRecValid;
1670 if( rc==SQLITE_OK ){
1671 if( nRowEst > nRow0 ) nRowEst = nRow0;
1672 *pnRow = nRowEst;
1673 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1675 assert( pBuilder->nRecValid==nRecValid );
1676 return rc;
1678 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1681 #ifdef WHERETRACE_ENABLED
1683 ** Print the content of a WhereTerm object
1685 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1686 if( pTerm==0 ){
1687 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1688 }else{
1689 char zType[4];
1690 char zLeft[50];
1691 memcpy(zType, "...", 4);
1692 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1693 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
1694 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1695 if( pTerm->eOperator & WO_SINGLE ){
1696 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1697 pTerm->leftCursor, pTerm->u.leftColumn);
1698 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1699 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1700 pTerm->u.pOrInfo->indexable);
1701 }else{
1702 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1704 sqlite3DebugPrintf(
1705 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1706 iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1707 pTerm->eOperator, pTerm->wtFlags);
1708 if( pTerm->iField ){
1709 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1710 }else{
1711 sqlite3DebugPrintf("\n");
1713 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1716 #endif
1718 #ifdef WHERETRACE_ENABLED
1720 ** Show the complete content of a WhereClause
1722 void sqlite3WhereClausePrint(WhereClause *pWC){
1723 int i;
1724 for(i=0; i<pWC->nTerm; i++){
1725 whereTermPrint(&pWC->a[i], i);
1728 #endif
1730 #ifdef WHERETRACE_ENABLED
1732 ** Print a WhereLoop object for debugging purposes
1734 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1735 WhereInfo *pWInfo = pWC->pWInfo;
1736 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1737 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1738 Table *pTab = pItem->pTab;
1739 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1740 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1741 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1742 sqlite3DebugPrintf(" %12s",
1743 pItem->zAlias ? pItem->zAlias : pTab->zName);
1744 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1745 const char *zName;
1746 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1747 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1748 int i = sqlite3Strlen30(zName) - 1;
1749 while( zName[i]!='_' ) i--;
1750 zName += i;
1752 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1753 }else{
1754 sqlite3DebugPrintf("%20s","");
1756 }else{
1757 char *z;
1758 if( p->u.vtab.idxStr ){
1759 z = sqlite3_mprintf("(%d,\"%s\",%x)",
1760 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1761 }else{
1762 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1764 sqlite3DebugPrintf(" %-19s", z);
1765 sqlite3_free(z);
1767 if( p->wsFlags & WHERE_SKIPSCAN ){
1768 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1769 }else{
1770 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1772 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1773 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1774 int i;
1775 for(i=0; i<p->nLTerm; i++){
1776 whereTermPrint(p->aLTerm[i], i);
1780 #endif
1783 ** Convert bulk memory into a valid WhereLoop that can be passed
1784 ** to whereLoopClear harmlessly.
1786 static void whereLoopInit(WhereLoop *p){
1787 p->aLTerm = p->aLTermSpace;
1788 p->nLTerm = 0;
1789 p->nLSlot = ArraySize(p->aLTermSpace);
1790 p->wsFlags = 0;
1794 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1796 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1797 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1798 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1799 sqlite3_free(p->u.vtab.idxStr);
1800 p->u.vtab.needFree = 0;
1801 p->u.vtab.idxStr = 0;
1802 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1803 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1804 sqlite3DbFreeNN(db, p->u.btree.pIndex);
1805 p->u.btree.pIndex = 0;
1811 ** Deallocate internal memory used by a WhereLoop object
1813 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1814 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1815 whereLoopClearUnion(db, p);
1816 whereLoopInit(p);
1820 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1822 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1823 WhereTerm **paNew;
1824 if( p->nLSlot>=n ) return SQLITE_OK;
1825 n = (n+7)&~7;
1826 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1827 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1828 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1829 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1830 p->aLTerm = paNew;
1831 p->nLSlot = n;
1832 return SQLITE_OK;
1836 ** Transfer content from the second pLoop into the first.
1838 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1839 whereLoopClearUnion(db, pTo);
1840 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1841 memset(&pTo->u, 0, sizeof(pTo->u));
1842 return SQLITE_NOMEM_BKPT;
1844 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1845 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1846 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1847 pFrom->u.vtab.needFree = 0;
1848 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1849 pFrom->u.btree.pIndex = 0;
1851 return SQLITE_OK;
1855 ** Delete a WhereLoop object
1857 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1858 whereLoopClear(db, p);
1859 sqlite3DbFreeNN(db, p);
1863 ** Free a WhereInfo structure
1865 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1866 int i;
1867 assert( pWInfo!=0 );
1868 for(i=0; i<pWInfo->nLevel; i++){
1869 WhereLevel *pLevel = &pWInfo->a[i];
1870 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1871 sqlite3DbFree(db, pLevel->u.in.aInLoop);
1874 sqlite3WhereClauseClear(&pWInfo->sWC);
1875 while( pWInfo->pLoops ){
1876 WhereLoop *p = pWInfo->pLoops;
1877 pWInfo->pLoops = p->pNextLoop;
1878 whereLoopDelete(db, p);
1880 sqlite3DbFreeNN(db, pWInfo);
1884 ** Return TRUE if all of the following are true:
1886 ** (1) X has the same or lower cost that Y
1887 ** (2) X uses fewer WHERE clause terms than Y
1888 ** (3) Every WHERE clause term used by X is also used by Y
1889 ** (4) X skips at least as many columns as Y
1890 ** (5) If X is a covering index, than Y is too
1892 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1893 ** If X is a proper subset of Y then Y is a better choice and ought
1894 ** to have a lower cost. This routine returns TRUE when that cost
1895 ** relationship is inverted and needs to be adjusted. Constraint (4)
1896 ** was added because if X uses skip-scan less than Y it still might
1897 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
1898 ** was added because a covering index probably deserves to have a lower cost
1899 ** than a non-covering index even if it is a proper subset.
1901 static int whereLoopCheaperProperSubset(
1902 const WhereLoop *pX, /* First WhereLoop to compare */
1903 const WhereLoop *pY /* Compare against this WhereLoop */
1905 int i, j;
1906 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1907 return 0; /* X is not a subset of Y */
1909 if( pY->nSkip > pX->nSkip ) return 0;
1910 if( pX->rRun >= pY->rRun ){
1911 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
1912 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
1914 for(i=pX->nLTerm-1; i>=0; i--){
1915 if( pX->aLTerm[i]==0 ) continue;
1916 for(j=pY->nLTerm-1; j>=0; j--){
1917 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1919 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
1921 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1922 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1923 return 0; /* Constraint (5) */
1925 return 1; /* All conditions meet */
1929 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1930 ** that:
1932 ** (1) pTemplate costs less than any other WhereLoops that are a proper
1933 ** subset of pTemplate
1935 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
1936 ** is a proper subset.
1938 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1939 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1940 ** also used by Y.
1942 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1943 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1944 for(; p; p=p->pNextLoop){
1945 if( p->iTab!=pTemplate->iTab ) continue;
1946 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1947 if( whereLoopCheaperProperSubset(p, pTemplate) ){
1948 /* Adjust pTemplate cost downward so that it is cheaper than its
1949 ** subset p. */
1950 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1951 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1952 pTemplate->rRun = p->rRun;
1953 pTemplate->nOut = p->nOut - 1;
1954 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1955 /* Adjust pTemplate cost upward so that it is costlier than p since
1956 ** pTemplate is a proper subset of p */
1957 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1958 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1959 pTemplate->rRun = p->rRun;
1960 pTemplate->nOut = p->nOut + 1;
1966 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1967 ** replaced by pTemplate.
1969 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1970 ** In other words if pTemplate ought to be dropped from further consideration.
1972 ** If pX is a WhereLoop that pTemplate can replace, then return the
1973 ** link that points to pX.
1975 ** If pTemplate cannot replace any existing element of the list but needs
1976 ** to be added to the list as a new entry, then return a pointer to the
1977 ** tail of the list.
1979 static WhereLoop **whereLoopFindLesser(
1980 WhereLoop **ppPrev,
1981 const WhereLoop *pTemplate
1983 WhereLoop *p;
1984 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1985 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1986 /* If either the iTab or iSortIdx values for two WhereLoop are different
1987 ** then those WhereLoops need to be considered separately. Neither is
1988 ** a candidate to replace the other. */
1989 continue;
1991 /* In the current implementation, the rSetup value is either zero
1992 ** or the cost of building an automatic index (NlogN) and the NlogN
1993 ** is the same for compatible WhereLoops. */
1994 assert( p->rSetup==0 || pTemplate->rSetup==0
1995 || p->rSetup==pTemplate->rSetup );
1997 /* whereLoopAddBtree() always generates and inserts the automatic index
1998 ** case first. Hence compatible candidate WhereLoops never have a larger
1999 ** rSetup. Call this SETUP-INVARIANT */
2000 assert( p->rSetup>=pTemplate->rSetup );
2002 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2003 ** UNIQUE constraint) with one or more == constraints is better
2004 ** than an automatic index. Unless it is a skip-scan. */
2005 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2006 && (pTemplate->nSkip)==0
2007 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2008 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2009 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2011 break;
2014 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2015 ** discarded. WhereLoop p is better if:
2016 ** (1) p has no more dependencies than pTemplate, and
2017 ** (2) p has an equal or lower cost than pTemplate
2019 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
2020 && p->rSetup<=pTemplate->rSetup /* (2a) */
2021 && p->rRun<=pTemplate->rRun /* (2b) */
2022 && p->nOut<=pTemplate->nOut /* (2c) */
2024 return 0; /* Discard pTemplate */
2027 /* If pTemplate is always better than p, then cause p to be overwritten
2028 ** with pTemplate. pTemplate is better than p if:
2029 ** (1) pTemplate has no more dependences than p, and
2030 ** (2) pTemplate has an equal or lower cost than p.
2032 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2033 && p->rRun>=pTemplate->rRun /* (2a) */
2034 && p->nOut>=pTemplate->nOut /* (2b) */
2036 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2037 break; /* Cause p to be overwritten by pTemplate */
2040 return ppPrev;
2044 ** Insert or replace a WhereLoop entry using the template supplied.
2046 ** An existing WhereLoop entry might be overwritten if the new template
2047 ** is better and has fewer dependencies. Or the template will be ignored
2048 ** and no insert will occur if an existing WhereLoop is faster and has
2049 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2050 ** added based on the template.
2052 ** If pBuilder->pOrSet is not NULL then we care about only the
2053 ** prerequisites and rRun and nOut costs of the N best loops. That
2054 ** information is gathered in the pBuilder->pOrSet object. This special
2055 ** processing mode is used only for OR clause processing.
2057 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2058 ** still might overwrite similar loops with the new template if the
2059 ** new template is better. Loops may be overwritten if the following
2060 ** conditions are met:
2062 ** (1) They have the same iTab.
2063 ** (2) They have the same iSortIdx.
2064 ** (3) The template has same or fewer dependencies than the current loop
2065 ** (4) The template has the same or lower cost than the current loop
2067 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2068 WhereLoop **ppPrev, *p;
2069 WhereInfo *pWInfo = pBuilder->pWInfo;
2070 sqlite3 *db = pWInfo->pParse->db;
2071 int rc;
2073 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2074 ** and prereqs.
2076 if( pBuilder->pOrSet!=0 ){
2077 if( pTemplate->nLTerm ){
2078 #if WHERETRACE_ENABLED
2079 u16 n = pBuilder->pOrSet->n;
2080 int x =
2081 #endif
2082 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2083 pTemplate->nOut);
2084 #if WHERETRACE_ENABLED /* 0x8 */
2085 if( sqlite3WhereTrace & 0x8 ){
2086 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2087 whereLoopPrint(pTemplate, pBuilder->pWC);
2089 #endif
2091 return SQLITE_OK;
2094 /* Look for an existing WhereLoop to replace with pTemplate
2096 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2097 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2099 if( ppPrev==0 ){
2100 /* There already exists a WhereLoop on the list that is better
2101 ** than pTemplate, so just ignore pTemplate */
2102 #if WHERETRACE_ENABLED /* 0x8 */
2103 if( sqlite3WhereTrace & 0x8 ){
2104 sqlite3DebugPrintf(" skip: ");
2105 whereLoopPrint(pTemplate, pBuilder->pWC);
2107 #endif
2108 return SQLITE_OK;
2109 }else{
2110 p = *ppPrev;
2113 /* If we reach this point it means that either p[] should be overwritten
2114 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2115 ** WhereLoop and insert it.
2117 #if WHERETRACE_ENABLED /* 0x8 */
2118 if( sqlite3WhereTrace & 0x8 ){
2119 if( p!=0 ){
2120 sqlite3DebugPrintf("replace: ");
2121 whereLoopPrint(p, pBuilder->pWC);
2122 sqlite3DebugPrintf(" with: ");
2123 }else{
2124 sqlite3DebugPrintf(" add: ");
2126 whereLoopPrint(pTemplate, pBuilder->pWC);
2128 #endif
2129 if( p==0 ){
2130 /* Allocate a new WhereLoop to add to the end of the list */
2131 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2132 if( p==0 ) return SQLITE_NOMEM_BKPT;
2133 whereLoopInit(p);
2134 p->pNextLoop = 0;
2135 }else{
2136 /* We will be overwriting WhereLoop p[]. But before we do, first
2137 ** go through the rest of the list and delete any other entries besides
2138 ** p[] that are also supplated by pTemplate */
2139 WhereLoop **ppTail = &p->pNextLoop;
2140 WhereLoop *pToDel;
2141 while( *ppTail ){
2142 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2143 if( ppTail==0 ) break;
2144 pToDel = *ppTail;
2145 if( pToDel==0 ) break;
2146 *ppTail = pToDel->pNextLoop;
2147 #if WHERETRACE_ENABLED /* 0x8 */
2148 if( sqlite3WhereTrace & 0x8 ){
2149 sqlite3DebugPrintf(" delete: ");
2150 whereLoopPrint(pToDel, pBuilder->pWC);
2152 #endif
2153 whereLoopDelete(db, pToDel);
2156 rc = whereLoopXfer(db, p, pTemplate);
2157 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2158 Index *pIndex = p->u.btree.pIndex;
2159 if( pIndex && pIndex->tnum==0 ){
2160 p->u.btree.pIndex = 0;
2163 return rc;
2167 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2168 ** WHERE clause that reference the loop but which are not used by an
2169 ** index.
2171 ** For every WHERE clause term that is not used by the index
2172 ** and which has a truth probability assigned by one of the likelihood(),
2173 ** likely(), or unlikely() SQL functions, reduce the estimated number
2174 ** of output rows by the probability specified.
2176 ** TUNING: For every WHERE clause term that is not used by the index
2177 ** and which does not have an assigned truth probability, heuristics
2178 ** described below are used to try to estimate the truth probability.
2179 ** TODO --> Perhaps this is something that could be improved by better
2180 ** table statistics.
2182 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2183 ** value corresponds to -1 in LogEst notation, so this means decrement
2184 ** the WhereLoop.nOut field for every such WHERE clause term.
2186 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2187 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2188 ** final output row estimate is no greater than 1/4 of the total number
2189 ** of rows in the table. In other words, assume that x==EXPR will filter
2190 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2191 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2192 ** on the "x" column and so in that case only cap the output row estimate
2193 ** at 1/2 instead of 1/4.
2195 static void whereLoopOutputAdjust(
2196 WhereClause *pWC, /* The WHERE clause */
2197 WhereLoop *pLoop, /* The loop to adjust downward */
2198 LogEst nRow /* Number of rows in the entire table */
2200 WhereTerm *pTerm, *pX;
2201 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2202 int i, j, k;
2203 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2205 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2206 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2207 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2208 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2209 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2210 for(j=pLoop->nLTerm-1; j>=0; j--){
2211 pX = pLoop->aLTerm[j];
2212 if( pX==0 ) continue;
2213 if( pX==pTerm ) break;
2214 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2216 if( j<0 ){
2217 if( pTerm->truthProb<=0 ){
2218 /* If a truth probability is specified using the likelihood() hints,
2219 ** then use the probability provided by the application. */
2220 pLoop->nOut += pTerm->truthProb;
2221 }else{
2222 /* In the absence of explicit truth probabilities, use heuristics to
2223 ** guess a reasonable truth probability. */
2224 pLoop->nOut--;
2225 if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2226 Expr *pRight = pTerm->pExpr->pRight;
2227 testcase( pTerm->pExpr->op==TK_IS );
2228 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2229 k = 10;
2230 }else{
2231 k = 20;
2233 if( iReduce<k ) iReduce = k;
2238 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
2242 ** Term pTerm is a vector range comparison operation. The first comparison
2243 ** in the vector can be optimized using column nEq of the index. This
2244 ** function returns the total number of vector elements that can be used
2245 ** as part of the range comparison.
2247 ** For example, if the query is:
2249 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2251 ** and the index:
2253 ** CREATE INDEX ... ON (a, b, c, d, e)
2255 ** then this function would be invoked with nEq=1. The value returned in
2256 ** this case is 3.
2258 static int whereRangeVectorLen(
2259 Parse *pParse, /* Parsing context */
2260 int iCur, /* Cursor open on pIdx */
2261 Index *pIdx, /* The index to be used for a inequality constraint */
2262 int nEq, /* Number of prior equality constraints on same index */
2263 WhereTerm *pTerm /* The vector inequality constraint */
2265 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2266 int i;
2268 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2269 for(i=1; i<nCmp; i++){
2270 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2271 ** of the index. If not, exit the loop. */
2272 char aff; /* Comparison affinity */
2273 char idxaff = 0; /* Indexed columns affinity */
2274 CollSeq *pColl; /* Comparison collation sequence */
2275 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2276 Expr *pRhs = pTerm->pExpr->pRight;
2277 if( pRhs->flags & EP_xIsSelect ){
2278 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2279 }else{
2280 pRhs = pRhs->x.pList->a[i].pExpr;
2283 /* Check that the LHS of the comparison is a column reference to
2284 ** the right column of the right source table. And that the sort
2285 ** order of the index column is the same as the sort order of the
2286 ** leftmost index column. */
2287 if( pLhs->op!=TK_COLUMN
2288 || pLhs->iTable!=iCur
2289 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2290 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2292 break;
2295 testcase( pLhs->iColumn==XN_ROWID );
2296 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2297 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2298 if( aff!=idxaff ) break;
2300 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2301 if( pColl==0 ) break;
2302 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2304 return i;
2308 ** Adjust the cost C by the costMult facter T. This only occurs if
2309 ** compiled with -DSQLITE_ENABLE_COSTMULT
2311 #ifdef SQLITE_ENABLE_COSTMULT
2312 # define ApplyCostMultiplier(C,T) C += T
2313 #else
2314 # define ApplyCostMultiplier(C,T)
2315 #endif
2318 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2319 ** index pIndex. Try to match one more.
2321 ** When this function is called, pBuilder->pNew->nOut contains the
2322 ** number of rows expected to be visited by filtering using the nEq
2323 ** terms only. If it is modified, this value is restored before this
2324 ** function returns.
2326 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2327 ** INTEGER PRIMARY KEY.
2329 static int whereLoopAddBtreeIndex(
2330 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2331 struct SrcList_item *pSrc, /* FROM clause term being analyzed */
2332 Index *pProbe, /* An index on pSrc */
2333 LogEst nInMul /* log(Number of iterations due to IN) */
2335 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2336 Parse *pParse = pWInfo->pParse; /* Parsing context */
2337 sqlite3 *db = pParse->db; /* Database connection malloc context */
2338 WhereLoop *pNew; /* Template WhereLoop under construction */
2339 WhereTerm *pTerm; /* A WhereTerm under consideration */
2340 int opMask; /* Valid operators for constraints */
2341 WhereScan scan; /* Iterator for WHERE terms */
2342 Bitmask saved_prereq; /* Original value of pNew->prereq */
2343 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2344 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2345 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2346 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2347 u16 saved_nSkip; /* Original value of pNew->nSkip */
2348 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2349 LogEst saved_nOut; /* Original value of pNew->nOut */
2350 int rc = SQLITE_OK; /* Return code */
2351 LogEst rSize; /* Number of rows in the table */
2352 LogEst rLogSize; /* Logarithm of table size */
2353 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2355 pNew = pBuilder->pNew;
2356 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2357 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2358 pProbe->zName, pNew->u.btree.nEq));
2360 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2361 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2362 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2363 opMask = WO_LT|WO_LE;
2364 }else{
2365 assert( pNew->u.btree.nBtm==0 );
2366 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2368 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2370 assert( pNew->u.btree.nEq<pProbe->nColumn );
2372 saved_nEq = pNew->u.btree.nEq;
2373 saved_nBtm = pNew->u.btree.nBtm;
2374 saved_nTop = pNew->u.btree.nTop;
2375 saved_nSkip = pNew->nSkip;
2376 saved_nLTerm = pNew->nLTerm;
2377 saved_wsFlags = pNew->wsFlags;
2378 saved_prereq = pNew->prereq;
2379 saved_nOut = pNew->nOut;
2380 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2381 opMask, pProbe);
2382 pNew->rSetup = 0;
2383 rSize = pProbe->aiRowLogEst[0];
2384 rLogSize = estLog(rSize);
2385 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2386 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2387 LogEst rCostIdx;
2388 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2389 int nIn = 0;
2390 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2391 int nRecValid = pBuilder->nRecValid;
2392 #endif
2393 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2394 && indexColumnNotNull(pProbe, saved_nEq)
2396 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2398 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2400 /* Do not allow the upper bound of a LIKE optimization range constraint
2401 ** to mix with a lower range bound from some other source */
2402 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2404 /* Do not allow IS constraints from the WHERE clause to be used by the
2405 ** right table of a LEFT JOIN. Only constraints in the ON clause are
2406 ** allowed */
2407 if( (pSrc->fg.jointype & JT_LEFT)!=0
2408 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2409 && (eOp & (WO_IS|WO_ISNULL))!=0
2411 testcase( eOp & WO_IS );
2412 testcase( eOp & WO_ISNULL );
2413 continue;
2416 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2417 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2418 }else{
2419 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2421 pNew->wsFlags = saved_wsFlags;
2422 pNew->u.btree.nEq = saved_nEq;
2423 pNew->u.btree.nBtm = saved_nBtm;
2424 pNew->u.btree.nTop = saved_nTop;
2425 pNew->nLTerm = saved_nLTerm;
2426 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2427 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2428 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2430 assert( nInMul==0
2431 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2432 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2433 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2436 if( eOp & WO_IN ){
2437 Expr *pExpr = pTerm->pExpr;
2438 pNew->wsFlags |= WHERE_COLUMN_IN;
2439 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2440 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2441 int i;
2442 nIn = 46; assert( 46==sqlite3LogEst(25) );
2444 /* The expression may actually be of the form (x, y) IN (SELECT...).
2445 ** In this case there is a separate term for each of (x) and (y).
2446 ** However, the nIn multiplier should only be applied once, not once
2447 ** for each such term. The following loop checks that pTerm is the
2448 ** first such term in use, and sets nIn back to 0 if it is not. */
2449 for(i=0; i<pNew->nLTerm-1; i++){
2450 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2452 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2453 /* "x IN (value, value, ...)" */
2454 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2455 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser
2456 ** changes "x IN (?)" into "x=?". */
2458 }else if( eOp & (WO_EQ|WO_IS) ){
2459 int iCol = pProbe->aiColumn[saved_nEq];
2460 pNew->wsFlags |= WHERE_COLUMN_EQ;
2461 assert( saved_nEq==pNew->u.btree.nEq );
2462 if( iCol==XN_ROWID
2463 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2465 if( iCol>=0 && pProbe->uniqNotNull==0 ){
2466 pNew->wsFlags |= WHERE_UNQ_WANTED;
2467 }else{
2468 pNew->wsFlags |= WHERE_ONEROW;
2471 }else if( eOp & WO_ISNULL ){
2472 pNew->wsFlags |= WHERE_COLUMN_NULL;
2473 }else if( eOp & (WO_GT|WO_GE) ){
2474 testcase( eOp & WO_GT );
2475 testcase( eOp & WO_GE );
2476 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2477 pNew->u.btree.nBtm = whereRangeVectorLen(
2478 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2480 pBtm = pTerm;
2481 pTop = 0;
2482 if( pTerm->wtFlags & TERM_LIKEOPT ){
2483 /* Range contraints that come from the LIKE optimization are
2484 ** always used in pairs. */
2485 pTop = &pTerm[1];
2486 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2487 assert( pTop->wtFlags & TERM_LIKEOPT );
2488 assert( pTop->eOperator==WO_LT );
2489 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2490 pNew->aLTerm[pNew->nLTerm++] = pTop;
2491 pNew->wsFlags |= WHERE_TOP_LIMIT;
2492 pNew->u.btree.nTop = 1;
2494 }else{
2495 assert( eOp & (WO_LT|WO_LE) );
2496 testcase( eOp & WO_LT );
2497 testcase( eOp & WO_LE );
2498 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2499 pNew->u.btree.nTop = whereRangeVectorLen(
2500 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2502 pTop = pTerm;
2503 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2504 pNew->aLTerm[pNew->nLTerm-2] : 0;
2507 /* At this point pNew->nOut is set to the number of rows expected to
2508 ** be visited by the index scan before considering term pTerm, or the
2509 ** values of nIn and nInMul. In other words, assuming that all
2510 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2511 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2512 assert( pNew->nOut==saved_nOut );
2513 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2514 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2515 ** data, using some other estimate. */
2516 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2517 }else{
2518 int nEq = ++pNew->u.btree.nEq;
2519 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2521 assert( pNew->nOut==saved_nOut );
2522 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2523 assert( (eOp & WO_IN) || nIn==0 );
2524 testcase( eOp & WO_IN );
2525 pNew->nOut += pTerm->truthProb;
2526 pNew->nOut -= nIn;
2527 }else{
2528 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2529 tRowcnt nOut = 0;
2530 if( nInMul==0
2531 && pProbe->nSample
2532 && pNew->u.btree.nEq<=pProbe->nSampleCol
2533 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2535 Expr *pExpr = pTerm->pExpr;
2536 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2537 testcase( eOp & WO_EQ );
2538 testcase( eOp & WO_IS );
2539 testcase( eOp & WO_ISNULL );
2540 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2541 }else{
2542 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2544 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2545 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
2546 if( nOut ){
2547 pNew->nOut = sqlite3LogEst(nOut);
2548 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2549 pNew->nOut -= nIn;
2552 if( nOut==0 )
2553 #endif
2555 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2556 if( eOp & WO_ISNULL ){
2557 /* TUNING: If there is no likelihood() value, assume that a
2558 ** "col IS NULL" expression matches twice as many rows
2559 ** as (col=?). */
2560 pNew->nOut += 10;
2566 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2567 ** it to pNew->rRun, which is currently set to the cost of the index
2568 ** seek only. Then, if this is a non-covering index, add the cost of
2569 ** visiting the rows in the main table. */
2570 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2571 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2572 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2573 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2575 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2577 nOutUnadjusted = pNew->nOut;
2578 pNew->rRun += nInMul + nIn;
2579 pNew->nOut += nInMul + nIn;
2580 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2581 rc = whereLoopInsert(pBuilder, pNew);
2583 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2584 pNew->nOut = saved_nOut;
2585 }else{
2586 pNew->nOut = nOutUnadjusted;
2589 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2590 && pNew->u.btree.nEq<pProbe->nColumn
2592 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2594 pNew->nOut = saved_nOut;
2595 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2596 pBuilder->nRecValid = nRecValid;
2597 #endif
2599 pNew->prereq = saved_prereq;
2600 pNew->u.btree.nEq = saved_nEq;
2601 pNew->u.btree.nBtm = saved_nBtm;
2602 pNew->u.btree.nTop = saved_nTop;
2603 pNew->nSkip = saved_nSkip;
2604 pNew->wsFlags = saved_wsFlags;
2605 pNew->nOut = saved_nOut;
2606 pNew->nLTerm = saved_nLTerm;
2608 /* Consider using a skip-scan if there are no WHERE clause constraints
2609 ** available for the left-most terms of the index, and if the average
2610 ** number of repeats in the left-most terms is at least 18.
2612 ** The magic number 18 is selected on the basis that scanning 17 rows
2613 ** is almost always quicker than an index seek (even though if the index
2614 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2615 ** the code). And, even if it is not, it should not be too much slower.
2616 ** On the other hand, the extra seeks could end up being significantly
2617 ** more expensive. */
2618 assert( 42==sqlite3LogEst(18) );
2619 if( saved_nEq==saved_nSkip
2620 && saved_nEq+1<pProbe->nKeyCol
2621 && pProbe->noSkipScan==0
2622 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
2623 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2625 LogEst nIter;
2626 pNew->u.btree.nEq++;
2627 pNew->nSkip++;
2628 pNew->aLTerm[pNew->nLTerm++] = 0;
2629 pNew->wsFlags |= WHERE_SKIPSCAN;
2630 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2631 pNew->nOut -= nIter;
2632 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2633 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2634 nIter += 5;
2635 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2636 pNew->nOut = saved_nOut;
2637 pNew->u.btree.nEq = saved_nEq;
2638 pNew->nSkip = saved_nSkip;
2639 pNew->wsFlags = saved_wsFlags;
2642 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2643 pProbe->zName, saved_nEq, rc));
2644 return rc;
2648 ** Return True if it is possible that pIndex might be useful in
2649 ** implementing the ORDER BY clause in pBuilder.
2651 ** Return False if pBuilder does not contain an ORDER BY clause or
2652 ** if there is no way for pIndex to be useful in implementing that
2653 ** ORDER BY clause.
2655 static int indexMightHelpWithOrderBy(
2656 WhereLoopBuilder *pBuilder,
2657 Index *pIndex,
2658 int iCursor
2660 ExprList *pOB;
2661 ExprList *aColExpr;
2662 int ii, jj;
2664 if( pIndex->bUnordered ) return 0;
2665 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2666 for(ii=0; ii<pOB->nExpr; ii++){
2667 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2668 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2669 if( pExpr->iColumn<0 ) return 1;
2670 for(jj=0; jj<pIndex->nKeyCol; jj++){
2671 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2673 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2674 for(jj=0; jj<pIndex->nKeyCol; jj++){
2675 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2676 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2677 return 1;
2682 return 0;
2686 ** Return a bitmask where 1s indicate that the corresponding column of
2687 ** the table is used by an index. Only the first 63 columns are considered.
2689 static Bitmask columnsInIndex(Index *pIdx){
2690 Bitmask m = 0;
2691 int j;
2692 for(j=pIdx->nColumn-1; j>=0; j--){
2693 int x = pIdx->aiColumn[j];
2694 if( x>=0 ){
2695 testcase( x==BMS-1 );
2696 testcase( x==BMS-2 );
2697 if( x<BMS-1 ) m |= MASKBIT(x);
2700 return m;
2703 /* Check to see if a partial index with pPartIndexWhere can be used
2704 ** in the current query. Return true if it can be and false if not.
2706 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2707 int i;
2708 WhereTerm *pTerm;
2709 Parse *pParse = pWC->pWInfo->pParse;
2710 while( pWhere->op==TK_AND ){
2711 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2712 pWhere = pWhere->pRight;
2714 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2715 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2716 Expr *pExpr = pTerm->pExpr;
2717 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2718 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2720 return 1;
2723 return 0;
2727 ** Add all WhereLoop objects for a single table of the join where the table
2728 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2729 ** a b-tree table, not a virtual table.
2731 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2732 ** are calculated as follows:
2734 ** For a full scan, assuming the table (or index) contains nRow rows:
2736 ** cost = nRow * 3.0 // full-table scan
2737 ** cost = nRow * K // scan of covering index
2738 ** cost = nRow * (K+3.0) // scan of non-covering index
2740 ** where K is a value between 1.1 and 3.0 set based on the relative
2741 ** estimated average size of the index and table records.
2743 ** For an index scan, where nVisit is the number of index rows visited
2744 ** by the scan, and nSeek is the number of seek operations required on
2745 ** the index b-tree:
2747 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2748 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2750 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2751 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2752 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2754 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2755 ** of uncertainty. For this reason, scoring is designed to pick plans that
2756 ** "do the least harm" if the estimates are inaccurate. For example, a
2757 ** log(nRow) factor is omitted from a non-covering index scan in order to
2758 ** bias the scoring in favor of using an index, since the worst-case
2759 ** performance of using an index is far better than the worst-case performance
2760 ** of a full table scan.
2762 static int whereLoopAddBtree(
2763 WhereLoopBuilder *pBuilder, /* WHERE clause information */
2764 Bitmask mPrereq /* Extra prerequesites for using this table */
2766 WhereInfo *pWInfo; /* WHERE analysis context */
2767 Index *pProbe; /* An index we are evaluating */
2768 Index sPk; /* A fake index object for the primary key */
2769 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
2770 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2771 SrcList *pTabList; /* The FROM clause */
2772 struct SrcList_item *pSrc; /* The FROM clause btree term to add */
2773 WhereLoop *pNew; /* Template WhereLoop object */
2774 int rc = SQLITE_OK; /* Return code */
2775 int iSortIdx = 1; /* Index number */
2776 int b; /* A boolean value */
2777 LogEst rSize; /* number of rows in the table */
2778 LogEst rLogSize; /* Logarithm of the number of rows in the table */
2779 WhereClause *pWC; /* The parsed WHERE clause */
2780 Table *pTab; /* Table being queried */
2782 pNew = pBuilder->pNew;
2783 pWInfo = pBuilder->pWInfo;
2784 pTabList = pWInfo->pTabList;
2785 pSrc = pTabList->a + pNew->iTab;
2786 pTab = pSrc->pTab;
2787 pWC = pBuilder->pWC;
2788 assert( !IsVirtual(pSrc->pTab) );
2790 if( pSrc->pIBIndex ){
2791 /* An INDEXED BY clause specifies a particular index to use */
2792 pProbe = pSrc->pIBIndex;
2793 }else if( !HasRowid(pTab) ){
2794 pProbe = pTab->pIndex;
2795 }else{
2796 /* There is no INDEXED BY clause. Create a fake Index object in local
2797 ** variable sPk to represent the rowid primary key index. Make this
2798 ** fake index the first in a chain of Index objects with all of the real
2799 ** indices to follow */
2800 Index *pFirst; /* First of real indices on the table */
2801 memset(&sPk, 0, sizeof(Index));
2802 sPk.nKeyCol = 1;
2803 sPk.nColumn = 1;
2804 sPk.aiColumn = &aiColumnPk;
2805 sPk.aiRowLogEst = aiRowEstPk;
2806 sPk.onError = OE_Replace;
2807 sPk.pTable = pTab;
2808 sPk.szIdxRow = pTab->szTabRow;
2809 aiRowEstPk[0] = pTab->nRowLogEst;
2810 aiRowEstPk[1] = 0;
2811 pFirst = pSrc->pTab->pIndex;
2812 if( pSrc->fg.notIndexed==0 ){
2813 /* The real indices of the table are only considered if the
2814 ** NOT INDEXED qualifier is omitted from the FROM clause */
2815 sPk.pNext = pFirst;
2817 pProbe = &sPk;
2819 rSize = pTab->nRowLogEst;
2820 rLogSize = estLog(rSize);
2822 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2823 /* Automatic indexes */
2824 if( !pBuilder->pOrSet /* Not part of an OR optimization */
2825 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2826 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2827 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */
2828 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
2829 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2830 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2831 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
2833 /* Generate auto-index WhereLoops */
2834 WhereTerm *pTerm;
2835 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2836 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2837 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2838 if( termCanDriveIndex(pTerm, pSrc, 0) ){
2839 pNew->u.btree.nEq = 1;
2840 pNew->nSkip = 0;
2841 pNew->u.btree.pIndex = 0;
2842 pNew->nLTerm = 1;
2843 pNew->aLTerm[0] = pTerm;
2844 /* TUNING: One-time cost for computing the automatic index is
2845 ** estimated to be X*N*log2(N) where N is the number of rows in
2846 ** the table being indexed and where X is 7 (LogEst=28) for normal
2847 ** tables or 1.375 (LogEst=4) for views and subqueries. The value
2848 ** of X is smaller for views and subqueries so that the query planner
2849 ** will be more aggressive about generating automatic indexes for
2850 ** those objects, since there is no opportunity to add schema
2851 ** indexes on subqueries and views. */
2852 pNew->rSetup = rLogSize + rSize + 4;
2853 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2854 pNew->rSetup += 24;
2856 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2857 if( pNew->rSetup<0 ) pNew->rSetup = 0;
2858 /* TUNING: Each index lookup yields 20 rows in the table. This
2859 ** is more than the usual guess of 10 rows, since we have no way
2860 ** of knowing how selective the index will ultimately be. It would
2861 ** not be unreasonable to make this value much larger. */
2862 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
2863 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2864 pNew->wsFlags = WHERE_AUTO_INDEX;
2865 pNew->prereq = mPrereq | pTerm->prereqRight;
2866 rc = whereLoopInsert(pBuilder, pNew);
2870 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2872 /* Loop over all indices. If there was an INDEXED BY clause, then only
2873 ** consider index pProbe. */
2874 for(; rc==SQLITE_OK && pProbe;
2875 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2877 if( pProbe->pPartIdxWhere!=0
2878 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2879 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
2880 continue; /* Partial index inappropriate for this query */
2882 rSize = pProbe->aiRowLogEst[0];
2883 pNew->u.btree.nEq = 0;
2884 pNew->u.btree.nBtm = 0;
2885 pNew->u.btree.nTop = 0;
2886 pNew->nSkip = 0;
2887 pNew->nLTerm = 0;
2888 pNew->iSortIdx = 0;
2889 pNew->rSetup = 0;
2890 pNew->prereq = mPrereq;
2891 pNew->nOut = rSize;
2892 pNew->u.btree.pIndex = pProbe;
2893 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2894 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2895 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2896 if( pProbe->tnum<=0 ){
2897 /* Integer primary key index */
2898 pNew->wsFlags = WHERE_IPK;
2900 /* Full table scan */
2901 pNew->iSortIdx = b ? iSortIdx : 0;
2902 /* TUNING: Cost of full table scan is (N*3.0). */
2903 pNew->rRun = rSize + 16;
2904 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2905 whereLoopOutputAdjust(pWC, pNew, rSize);
2906 rc = whereLoopInsert(pBuilder, pNew);
2907 pNew->nOut = rSize;
2908 if( rc ) break;
2909 }else{
2910 Bitmask m;
2911 if( pProbe->isCovering ){
2912 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2913 m = 0;
2914 }else{
2915 m = pSrc->colUsed & ~columnsInIndex(pProbe);
2916 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2919 /* Full scan via index */
2920 if( b
2921 || !HasRowid(pTab)
2922 || pProbe->pPartIdxWhere!=0
2923 || ( m==0
2924 && pProbe->bUnordered==0
2925 && (pProbe->szIdxRow<pTab->szTabRow)
2926 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2927 && sqlite3GlobalConfig.bUseCis
2928 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2931 pNew->iSortIdx = b ? iSortIdx : 0;
2933 /* The cost of visiting the index rows is N*K, where K is
2934 ** between 1.1 and 3.0, depending on the relative sizes of the
2935 ** index and table rows. */
2936 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2937 if( m!=0 ){
2938 /* If this is a non-covering index scan, add in the cost of
2939 ** doing table lookups. The cost will be 3x the number of
2940 ** lookups. Take into account WHERE clause terms that can be
2941 ** satisfied using just the index, and that do not require a
2942 ** table lookup. */
2943 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
2944 int ii;
2945 int iCur = pSrc->iCursor;
2946 WhereClause *pWC2 = &pWInfo->sWC;
2947 for(ii=0; ii<pWC2->nTerm; ii++){
2948 WhereTerm *pTerm = &pWC2->a[ii];
2949 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2950 break;
2952 /* pTerm can be evaluated using just the index. So reduce
2953 ** the expected number of table lookups accordingly */
2954 if( pTerm->truthProb<=0 ){
2955 nLookup += pTerm->truthProb;
2956 }else{
2957 nLookup--;
2958 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2962 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2964 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2965 whereLoopOutputAdjust(pWC, pNew, rSize);
2966 rc = whereLoopInsert(pBuilder, pNew);
2967 pNew->nOut = rSize;
2968 if( rc ) break;
2972 pBuilder->bldFlags = 0;
2973 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2974 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
2975 /* If a non-unique index is used, or if a prefix of the key for
2976 ** unique index is used (making the index functionally non-unique)
2977 ** then the sqlite_stat1 data becomes important for scoring the
2978 ** plan */
2979 pTab->tabFlags |= TF_StatsUsed;
2981 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2982 sqlite3Stat4ProbeFree(pBuilder->pRec);
2983 pBuilder->nRecValid = 0;
2984 pBuilder->pRec = 0;
2985 #endif
2987 return rc;
2990 #ifndef SQLITE_OMIT_VIRTUALTABLE
2993 ** Argument pIdxInfo is already populated with all constraints that may
2994 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2995 ** function marks a subset of those constraints usable, invokes the
2996 ** xBestIndex method and adds the returned plan to pBuilder.
2998 ** A constraint is marked usable if:
3000 ** * Argument mUsable indicates that its prerequisites are available, and
3002 ** * It is not one of the operators specified in the mExclude mask passed
3003 ** as the fourth argument (which in practice is either WO_IN or 0).
3005 ** Argument mPrereq is a mask of tables that must be scanned before the
3006 ** virtual table in question. These are added to the plans prerequisites
3007 ** before it is added to pBuilder.
3009 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3010 ** uses one or more WO_IN terms, or false otherwise.
3012 static int whereLoopAddVirtualOne(
3013 WhereLoopBuilder *pBuilder,
3014 Bitmask mPrereq, /* Mask of tables that must be used. */
3015 Bitmask mUsable, /* Mask of usable tables */
3016 u16 mExclude, /* Exclude terms using these operators */
3017 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
3018 u16 mNoOmit, /* Do not omit these constraints */
3019 int *pbIn /* OUT: True if plan uses an IN(...) op */
3021 WhereClause *pWC = pBuilder->pWC;
3022 struct sqlite3_index_constraint *pIdxCons;
3023 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3024 int i;
3025 int mxTerm;
3026 int rc = SQLITE_OK;
3027 WhereLoop *pNew = pBuilder->pNew;
3028 Parse *pParse = pBuilder->pWInfo->pParse;
3029 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3030 int nConstraint = pIdxInfo->nConstraint;
3032 assert( (mUsable & mPrereq)==mPrereq );
3033 *pbIn = 0;
3034 pNew->prereq = mPrereq;
3036 /* Set the usable flag on the subset of constraints identified by
3037 ** arguments mUsable and mExclude. */
3038 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3039 for(i=0; i<nConstraint; i++, pIdxCons++){
3040 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3041 pIdxCons->usable = 0;
3042 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3043 && (pTerm->eOperator & mExclude)==0
3045 pIdxCons->usable = 1;
3049 /* Initialize the output fields of the sqlite3_index_info structure */
3050 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3051 assert( pIdxInfo->needToFreeIdxStr==0 );
3052 pIdxInfo->idxStr = 0;
3053 pIdxInfo->idxNum = 0;
3054 pIdxInfo->orderByConsumed = 0;
3055 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3056 pIdxInfo->estimatedRows = 25;
3057 pIdxInfo->idxFlags = 0;
3058 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3060 /* Invoke the virtual table xBestIndex() method */
3061 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3062 if( rc ) return rc;
3064 mxTerm = -1;
3065 assert( pNew->nLSlot>=nConstraint );
3066 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3067 pNew->u.vtab.omitMask = 0;
3068 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3069 for(i=0; i<nConstraint; i++, pIdxCons++){
3070 int iTerm;
3071 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3072 WhereTerm *pTerm;
3073 int j = pIdxCons->iTermOffset;
3074 if( iTerm>=nConstraint
3075 || j<0
3076 || j>=pWC->nTerm
3077 || pNew->aLTerm[iTerm]!=0
3078 || pIdxCons->usable==0
3080 rc = SQLITE_ERROR;
3081 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3082 return rc;
3084 testcase( iTerm==nConstraint-1 );
3085 testcase( j==0 );
3086 testcase( j==pWC->nTerm-1 );
3087 pTerm = &pWC->a[j];
3088 pNew->prereq |= pTerm->prereqRight;
3089 assert( iTerm<pNew->nLSlot );
3090 pNew->aLTerm[iTerm] = pTerm;
3091 if( iTerm>mxTerm ) mxTerm = iTerm;
3092 testcase( iTerm==15 );
3093 testcase( iTerm==16 );
3094 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3095 if( (pTerm->eOperator & WO_IN)!=0 ){
3096 /* A virtual table that is constrained by an IN clause may not
3097 ** consume the ORDER BY clause because (1) the order of IN terms
3098 ** is not necessarily related to the order of output terms and
3099 ** (2) Multiple outputs from a single IN value will not merge
3100 ** together. */
3101 pIdxInfo->orderByConsumed = 0;
3102 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3103 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3107 pNew->u.vtab.omitMask &= ~mNoOmit;
3109 pNew->nLTerm = mxTerm+1;
3110 assert( pNew->nLTerm<=pNew->nLSlot );
3111 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3112 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3113 pIdxInfo->needToFreeIdxStr = 0;
3114 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3115 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3116 pIdxInfo->nOrderBy : 0);
3117 pNew->rSetup = 0;
3118 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3119 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3121 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3122 ** that the scan will visit at most one row. Clear it otherwise. */
3123 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3124 pNew->wsFlags |= WHERE_ONEROW;
3125 }else{
3126 pNew->wsFlags &= ~WHERE_ONEROW;
3128 rc = whereLoopInsert(pBuilder, pNew);
3129 if( pNew->u.vtab.needFree ){
3130 sqlite3_free(pNew->u.vtab.idxStr);
3131 pNew->u.vtab.needFree = 0;
3133 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3134 *pbIn, (sqlite3_uint64)mPrereq,
3135 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3137 return rc;
3142 ** Add all WhereLoop objects for a table of the join identified by
3143 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3145 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3146 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3147 ** entries that occur before the virtual table in the FROM clause and are
3148 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3149 ** mUnusable mask contains all FROM clause entries that occur after the
3150 ** virtual table and are separated from it by at least one LEFT or
3151 ** CROSS JOIN.
3153 ** For example, if the query were:
3155 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3157 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3159 ** All the tables in mPrereq must be scanned before the current virtual
3160 ** table. So any terms for which all prerequisites are satisfied by
3161 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3162 ** Conversely, all tables in mUnusable must be scanned after the current
3163 ** virtual table, so any terms for which the prerequisites overlap with
3164 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3166 static int whereLoopAddVirtual(
3167 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3168 Bitmask mPrereq, /* Tables that must be scanned before this one */
3169 Bitmask mUnusable /* Tables that must be scanned after this one */
3171 int rc = SQLITE_OK; /* Return code */
3172 WhereInfo *pWInfo; /* WHERE analysis context */
3173 Parse *pParse; /* The parsing context */
3174 WhereClause *pWC; /* The WHERE clause */
3175 struct SrcList_item *pSrc; /* The FROM clause term to search */
3176 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3177 int nConstraint; /* Number of constraints in p */
3178 int bIn; /* True if plan uses IN(...) operator */
3179 WhereLoop *pNew;
3180 Bitmask mBest; /* Tables used by best possible plan */
3181 u16 mNoOmit;
3183 assert( (mPrereq & mUnusable)==0 );
3184 pWInfo = pBuilder->pWInfo;
3185 pParse = pWInfo->pParse;
3186 pWC = pBuilder->pWC;
3187 pNew = pBuilder->pNew;
3188 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3189 assert( IsVirtual(pSrc->pTab) );
3190 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3191 &mNoOmit);
3192 if( p==0 ) return SQLITE_NOMEM_BKPT;
3193 pNew->rSetup = 0;
3194 pNew->wsFlags = WHERE_VIRTUALTABLE;
3195 pNew->nLTerm = 0;
3196 pNew->u.vtab.needFree = 0;
3197 nConstraint = p->nConstraint;
3198 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3199 sqlite3DbFree(pParse->db, p);
3200 return SQLITE_NOMEM_BKPT;
3203 /* First call xBestIndex() with all constraints usable. */
3204 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3205 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3207 /* If the call to xBestIndex() with all terms enabled produced a plan
3208 ** that does not require any source tables (IOW: a plan with mBest==0),
3209 ** then there is no point in making any further calls to xBestIndex()
3210 ** since they will all return the same result (if the xBestIndex()
3211 ** implementation is sane). */
3212 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3213 int seenZero = 0; /* True if a plan with no prereqs seen */
3214 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3215 Bitmask mPrev = 0;
3216 Bitmask mBestNoIn = 0;
3218 /* If the plan produced by the earlier call uses an IN(...) term, call
3219 ** xBestIndex again, this time with IN(...) terms disabled. */
3220 if( bIn ){
3221 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3222 rc = whereLoopAddVirtualOne(
3223 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3224 assert( bIn==0 );
3225 mBestNoIn = pNew->prereq & ~mPrereq;
3226 if( mBestNoIn==0 ){
3227 seenZero = 1;
3228 seenZeroNoIN = 1;
3232 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3233 ** in the set of terms that apply to the current virtual table. */
3234 while( rc==SQLITE_OK ){
3235 int i;
3236 Bitmask mNext = ALLBITS;
3237 assert( mNext>0 );
3238 for(i=0; i<nConstraint; i++){
3239 Bitmask mThis = (
3240 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3242 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3244 mPrev = mNext;
3245 if( mNext==ALLBITS ) break;
3246 if( mNext==mBest || mNext==mBestNoIn ) continue;
3247 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3248 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3249 rc = whereLoopAddVirtualOne(
3250 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3251 if( pNew->prereq==mPrereq ){
3252 seenZero = 1;
3253 if( bIn==0 ) seenZeroNoIN = 1;
3257 /* If the calls to xBestIndex() in the above loop did not find a plan
3258 ** that requires no source tables at all (i.e. one guaranteed to be
3259 ** usable), make a call here with all source tables disabled */
3260 if( rc==SQLITE_OK && seenZero==0 ){
3261 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3262 rc = whereLoopAddVirtualOne(
3263 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3264 if( bIn==0 ) seenZeroNoIN = 1;
3267 /* If the calls to xBestIndex() have so far failed to find a plan
3268 ** that requires no source tables at all and does not use an IN(...)
3269 ** operator, make a final call to obtain one here. */
3270 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3271 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3272 rc = whereLoopAddVirtualOne(
3273 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3277 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3278 sqlite3DbFreeNN(pParse->db, p);
3279 return rc;
3281 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3284 ** Add WhereLoop entries to handle OR terms. This works for either
3285 ** btrees or virtual tables.
3287 static int whereLoopAddOr(
3288 WhereLoopBuilder *pBuilder,
3289 Bitmask mPrereq,
3290 Bitmask mUnusable
3292 WhereInfo *pWInfo = pBuilder->pWInfo;
3293 WhereClause *pWC;
3294 WhereLoop *pNew;
3295 WhereTerm *pTerm, *pWCEnd;
3296 int rc = SQLITE_OK;
3297 int iCur;
3298 WhereClause tempWC;
3299 WhereLoopBuilder sSubBuild;
3300 WhereOrSet sSum, sCur;
3301 struct SrcList_item *pItem;
3303 pWC = pBuilder->pWC;
3304 pWCEnd = pWC->a + pWC->nTerm;
3305 pNew = pBuilder->pNew;
3306 memset(&sSum, 0, sizeof(sSum));
3307 pItem = pWInfo->pTabList->a + pNew->iTab;
3308 iCur = pItem->iCursor;
3310 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3311 if( (pTerm->eOperator & WO_OR)!=0
3312 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3314 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3315 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3316 WhereTerm *pOrTerm;
3317 int once = 1;
3318 int i, j;
3320 sSubBuild = *pBuilder;
3321 sSubBuild.pOrderBy = 0;
3322 sSubBuild.pOrSet = &sCur;
3324 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3325 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3326 if( (pOrTerm->eOperator & WO_AND)!=0 ){
3327 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3328 }else if( pOrTerm->leftCursor==iCur ){
3329 tempWC.pWInfo = pWC->pWInfo;
3330 tempWC.pOuter = pWC;
3331 tempWC.op = TK_AND;
3332 tempWC.nTerm = 1;
3333 tempWC.a = pOrTerm;
3334 sSubBuild.pWC = &tempWC;
3335 }else{
3336 continue;
3338 sCur.n = 0;
3339 #ifdef WHERETRACE_ENABLED
3340 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3341 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3342 if( sqlite3WhereTrace & 0x400 ){
3343 sqlite3WhereClausePrint(sSubBuild.pWC);
3345 #endif
3346 #ifndef SQLITE_OMIT_VIRTUALTABLE
3347 if( IsVirtual(pItem->pTab) ){
3348 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3349 }else
3350 #endif
3352 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3354 if( rc==SQLITE_OK ){
3355 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3357 assert( rc==SQLITE_OK || sCur.n==0 );
3358 if( sCur.n==0 ){
3359 sSum.n = 0;
3360 break;
3361 }else if( once ){
3362 whereOrMove(&sSum, &sCur);
3363 once = 0;
3364 }else{
3365 WhereOrSet sPrev;
3366 whereOrMove(&sPrev, &sSum);
3367 sSum.n = 0;
3368 for(i=0; i<sPrev.n; i++){
3369 for(j=0; j<sCur.n; j++){
3370 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3371 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3372 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3377 pNew->nLTerm = 1;
3378 pNew->aLTerm[0] = pTerm;
3379 pNew->wsFlags = WHERE_MULTI_OR;
3380 pNew->rSetup = 0;
3381 pNew->iSortIdx = 0;
3382 memset(&pNew->u, 0, sizeof(pNew->u));
3383 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3384 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3385 ** of all sub-scans required by the OR-scan. However, due to rounding
3386 ** errors, it may be that the cost of the OR-scan is equal to its
3387 ** most expensive sub-scan. Add the smallest possible penalty
3388 ** (equivalent to multiplying the cost by 1.07) to ensure that
3389 ** this does not happen. Otherwise, for WHERE clauses such as the
3390 ** following where there is an index on "y":
3392 ** WHERE likelihood(x=?, 0.99) OR y=?
3394 ** the planner may elect to "OR" together a full-table scan and an
3395 ** index lookup. And other similarly odd results. */
3396 pNew->rRun = sSum.a[i].rRun + 1;
3397 pNew->nOut = sSum.a[i].nOut;
3398 pNew->prereq = sSum.a[i].prereq;
3399 rc = whereLoopInsert(pBuilder, pNew);
3401 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3404 return rc;
3408 ** Add all WhereLoop objects for all tables
3410 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3411 WhereInfo *pWInfo = pBuilder->pWInfo;
3412 Bitmask mPrereq = 0;
3413 Bitmask mPrior = 0;
3414 int iTab;
3415 SrcList *pTabList = pWInfo->pTabList;
3416 struct SrcList_item *pItem;
3417 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3418 sqlite3 *db = pWInfo->pParse->db;
3419 int rc = SQLITE_OK;
3420 WhereLoop *pNew;
3421 u8 priorJointype = 0;
3423 /* Loop over the tables in the join, from left to right */
3424 pNew = pBuilder->pNew;
3425 whereLoopInit(pNew);
3426 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3427 Bitmask mUnusable = 0;
3428 pNew->iTab = iTab;
3429 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3430 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3431 /* This condition is true when pItem is the FROM clause term on the
3432 ** right-hand-side of a LEFT or CROSS JOIN. */
3433 mPrereq = mPrior;
3435 priorJointype = pItem->fg.jointype;
3436 #ifndef SQLITE_OMIT_VIRTUALTABLE
3437 if( IsVirtual(pItem->pTab) ){
3438 struct SrcList_item *p;
3439 for(p=&pItem[1]; p<pEnd; p++){
3440 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3441 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3444 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3445 }else
3446 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3448 rc = whereLoopAddBtree(pBuilder, mPrereq);
3450 if( rc==SQLITE_OK ){
3451 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3453 mPrior |= pNew->maskSelf;
3454 if( rc || db->mallocFailed ) break;
3457 whereLoopClear(db, pNew);
3458 return rc;
3462 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3463 ** parameters) to see if it outputs rows in the requested ORDER BY
3464 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3466 ** N>0: N terms of the ORDER BY clause are satisfied
3467 ** N==0: No terms of the ORDER BY clause are satisfied
3468 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3470 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3471 ** strict. With GROUP BY and DISTINCT the only requirement is that
3472 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3473 ** and DISTINCT do not require rows to appear in any particular order as long
3474 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3475 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3476 ** pOrderBy terms must be matched in strict left-to-right order.
3478 static i8 wherePathSatisfiesOrderBy(
3479 WhereInfo *pWInfo, /* The WHERE clause */
3480 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3481 WherePath *pPath, /* The WherePath to check */
3482 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3483 u16 nLoop, /* Number of entries in pPath->aLoop[] */
3484 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
3485 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
3487 u8 revSet; /* True if rev is known */
3488 u8 rev; /* Composite sort order */
3489 u8 revIdx; /* Index sort order */
3490 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
3491 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
3492 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
3493 u16 eqOpMask; /* Allowed equality operators */
3494 u16 nKeyCol; /* Number of key columns in pIndex */
3495 u16 nColumn; /* Total number of ordered columns in the index */
3496 u16 nOrderBy; /* Number terms in the ORDER BY clause */
3497 int iLoop; /* Index of WhereLoop in pPath being processed */
3498 int i, j; /* Loop counters */
3499 int iCur; /* Cursor number for current WhereLoop */
3500 int iColumn; /* A column number within table iCur */
3501 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3502 WhereTerm *pTerm; /* A single term of the WHERE clause */
3503 Expr *pOBExpr; /* An expression from the ORDER BY clause */
3504 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
3505 Index *pIndex; /* The index associated with pLoop */
3506 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
3507 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
3508 Bitmask obDone; /* Mask of all ORDER BY terms */
3509 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
3510 Bitmask ready; /* Mask of inner loops */
3513 ** We say the WhereLoop is "one-row" if it generates no more than one
3514 ** row of output. A WhereLoop is one-row if all of the following are true:
3515 ** (a) All index columns match with WHERE_COLUMN_EQ.
3516 ** (b) The index is unique
3517 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3518 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3520 ** We say the WhereLoop is "order-distinct" if the set of columns from
3521 ** that WhereLoop that are in the ORDER BY clause are different for every
3522 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3523 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3524 ** is not order-distinct. To be order-distinct is not quite the same as being
3525 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3526 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3527 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3529 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3530 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3531 ** automatically order-distinct.
3534 assert( pOrderBy!=0 );
3535 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3537 nOrderBy = pOrderBy->nExpr;
3538 testcase( nOrderBy==BMS-1 );
3539 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3540 isOrderDistinct = 1;
3541 obDone = MASKBIT(nOrderBy)-1;
3542 orderDistinctMask = 0;
3543 ready = 0;
3544 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3545 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3546 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3547 if( iLoop>0 ) ready |= pLoop->maskSelf;
3548 if( iLoop<nLoop ){
3549 pLoop = pPath->aLoop[iLoop];
3550 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3551 }else{
3552 pLoop = pLast;
3554 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3555 if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3556 break;
3557 }else{
3558 pLoop->u.btree.nIdxCol = 0;
3560 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3562 /* Mark off any ORDER BY term X that is a column in the table of
3563 ** the current loop for which there is term in the WHERE
3564 ** clause of the form X IS NULL or X=? that reference only outer
3565 ** loops.
3567 for(i=0; i<nOrderBy; i++){
3568 if( MASKBIT(i) & obSat ) continue;
3569 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3570 if( pOBExpr->op!=TK_COLUMN ) continue;
3571 if( pOBExpr->iTable!=iCur ) continue;
3572 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3573 ~ready, eqOpMask, 0);
3574 if( pTerm==0 ) continue;
3575 if( pTerm->eOperator==WO_IN ){
3576 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3577 ** optimization, and then only if they are actually used
3578 ** by the query plan */
3579 assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3580 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3581 if( j>=pLoop->nLTerm ) continue;
3583 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3584 if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3585 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3586 continue;
3588 testcase( pTerm->pExpr->op==TK_IS );
3590 obSat |= MASKBIT(i);
3593 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3594 if( pLoop->wsFlags & WHERE_IPK ){
3595 pIndex = 0;
3596 nKeyCol = 0;
3597 nColumn = 1;
3598 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3599 return 0;
3600 }else{
3601 nKeyCol = pIndex->nKeyCol;
3602 nColumn = pIndex->nColumn;
3603 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3604 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3605 || !HasRowid(pIndex->pTable));
3606 isOrderDistinct = IsUniqueIndex(pIndex);
3609 /* Loop through all columns of the index and deal with the ones
3610 ** that are not constrained by == or IN.
3612 rev = revSet = 0;
3613 distinctColumns = 0;
3614 for(j=0; j<nColumn; j++){
3615 u8 bOnce = 1; /* True to run the ORDER BY search loop */
3617 assert( j>=pLoop->u.btree.nEq
3618 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3620 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3621 u16 eOp = pLoop->aLTerm[j]->eOperator;
3623 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3624 ** doing WHERE_ORDERBY_LIMIT processing).
3626 ** If the current term is a column of an ((?,?) IN (SELECT...))
3627 ** expression for which the SELECT returns more than one column,
3628 ** check that it is the only column used by this loop. Otherwise,
3629 ** if it is one of two or more, none of the columns can be
3630 ** considered to match an ORDER BY term. */
3631 if( (eOp & eqOpMask)!=0 ){
3632 if( eOp & WO_ISNULL ){
3633 testcase( isOrderDistinct );
3634 isOrderDistinct = 0;
3636 continue;
3637 }else if( ALWAYS(eOp & WO_IN) ){
3638 /* ALWAYS() justification: eOp is an equality operator due to the
3639 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3640 ** than WO_IN is captured by the previous "if". So this one
3641 ** always has to be WO_IN. */
3642 Expr *pX = pLoop->aLTerm[j]->pExpr;
3643 for(i=j+1; i<pLoop->u.btree.nEq; i++){
3644 if( pLoop->aLTerm[i]->pExpr==pX ){
3645 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3646 bOnce = 0;
3647 break;
3653 /* Get the column number in the table (iColumn) and sort order
3654 ** (revIdx) for the j-th column of the index.
3656 if( pIndex ){
3657 iColumn = pIndex->aiColumn[j];
3658 revIdx = pIndex->aSortOrder[j];
3659 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3660 }else{
3661 iColumn = XN_ROWID;
3662 revIdx = 0;
3665 /* An unconstrained column that might be NULL means that this
3666 ** WhereLoop is not well-ordered
3668 if( isOrderDistinct
3669 && iColumn>=0
3670 && j>=pLoop->u.btree.nEq
3671 && pIndex->pTable->aCol[iColumn].notNull==0
3673 isOrderDistinct = 0;
3676 /* Find the ORDER BY term that corresponds to the j-th column
3677 ** of the index and mark that ORDER BY term off
3679 isMatch = 0;
3680 for(i=0; bOnce && i<nOrderBy; i++){
3681 if( MASKBIT(i) & obSat ) continue;
3682 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3683 testcase( wctrlFlags & WHERE_GROUPBY );
3684 testcase( wctrlFlags & WHERE_DISTINCTBY );
3685 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3686 if( iColumn>=XN_ROWID ){
3687 if( pOBExpr->op!=TK_COLUMN ) continue;
3688 if( pOBExpr->iTable!=iCur ) continue;
3689 if( pOBExpr->iColumn!=iColumn ) continue;
3690 }else{
3691 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3692 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3693 continue;
3696 if( iColumn!=XN_ROWID ){
3697 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3698 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3700 pLoop->u.btree.nIdxCol = j+1;
3701 isMatch = 1;
3702 break;
3704 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3705 /* Make sure the sort order is compatible in an ORDER BY clause.
3706 ** Sort order is irrelevant for a GROUP BY clause. */
3707 if( revSet ){
3708 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3709 }else{
3710 rev = revIdx ^ pOrderBy->a[i].sortOrder;
3711 if( rev ) *pRevMask |= MASKBIT(iLoop);
3712 revSet = 1;
3715 if( isMatch ){
3716 if( iColumn==XN_ROWID ){
3717 testcase( distinctColumns==0 );
3718 distinctColumns = 1;
3720 obSat |= MASKBIT(i);
3721 }else{
3722 /* No match found */
3723 if( j==0 || j<nKeyCol ){
3724 testcase( isOrderDistinct!=0 );
3725 isOrderDistinct = 0;
3727 break;
3729 } /* end Loop over all index columns */
3730 if( distinctColumns ){
3731 testcase( isOrderDistinct==0 );
3732 isOrderDistinct = 1;
3734 } /* end-if not one-row */
3736 /* Mark off any other ORDER BY terms that reference pLoop */
3737 if( isOrderDistinct ){
3738 orderDistinctMask |= pLoop->maskSelf;
3739 for(i=0; i<nOrderBy; i++){
3740 Expr *p;
3741 Bitmask mTerm;
3742 if( MASKBIT(i) & obSat ) continue;
3743 p = pOrderBy->a[i].pExpr;
3744 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3745 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3746 if( (mTerm&~orderDistinctMask)==0 ){
3747 obSat |= MASKBIT(i);
3751 } /* End the loop over all WhereLoops from outer-most down to inner-most */
3752 if( obSat==obDone ) return (i8)nOrderBy;
3753 if( !isOrderDistinct ){
3754 for(i=nOrderBy-1; i>0; i--){
3755 Bitmask m = MASKBIT(i) - 1;
3756 if( (obSat&m)==m ) return i;
3758 return 0;
3760 return -1;
3765 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3766 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3767 ** BY clause - and so any order that groups rows as required satisfies the
3768 ** request.
3770 ** Normally, in this case it is not possible for the caller to determine
3771 ** whether or not the rows are really being delivered in sorted order, or
3772 ** just in some other order that provides the required grouping. However,
3773 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3774 ** this function may be called on the returned WhereInfo object. It returns
3775 ** true if the rows really will be sorted in the specified order, or false
3776 ** otherwise.
3778 ** For example, assuming:
3780 ** CREATE INDEX i1 ON t1(x, Y);
3782 ** then
3784 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
3785 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
3787 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3788 assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3789 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3790 return pWInfo->sorted;
3793 #ifdef WHERETRACE_ENABLED
3794 /* For debugging use only: */
3795 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3796 static char zName[65];
3797 int i;
3798 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3799 if( pLast ) zName[i++] = pLast->cId;
3800 zName[i] = 0;
3801 return zName;
3803 #endif
3806 ** Return the cost of sorting nRow rows, assuming that the keys have
3807 ** nOrderby columns and that the first nSorted columns are already in
3808 ** order.
3810 static LogEst whereSortingCost(
3811 WhereInfo *pWInfo,
3812 LogEst nRow,
3813 int nOrderBy,
3814 int nSorted
3816 /* TUNING: Estimated cost of a full external sort, where N is
3817 ** the number of rows to sort is:
3819 ** cost = (3.0 * N * log(N)).
3821 ** Or, if the order-by clause has X terms but only the last Y
3822 ** terms are out of order, then block-sorting will reduce the
3823 ** sorting cost to:
3825 ** cost = (3.0 * N * log(N)) * (Y/X)
3827 ** The (Y/X) term is implemented using stack variable rScale
3828 ** below. */
3829 LogEst rScale, rSortCost;
3830 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3831 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3832 rSortCost = nRow + rScale + 16;
3834 /* Multiple by log(M) where M is the number of output rows.
3835 ** Use the LIMIT for M if it is smaller */
3836 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3837 nRow = pWInfo->iLimit;
3839 rSortCost += estLog(nRow);
3840 return rSortCost;
3844 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3845 ** attempts to find the lowest cost path that visits each WhereLoop
3846 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
3848 ** Assume that the total number of output rows that will need to be sorted
3849 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
3850 ** costs if nRowEst==0.
3852 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3853 ** error occurs.
3855 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3856 int mxChoice; /* Maximum number of simultaneous paths tracked */
3857 int nLoop; /* Number of terms in the join */
3858 Parse *pParse; /* Parsing context */
3859 sqlite3 *db; /* The database connection */
3860 int iLoop; /* Loop counter over the terms of the join */
3861 int ii, jj; /* Loop counters */
3862 int mxI = 0; /* Index of next entry to replace */
3863 int nOrderBy; /* Number of ORDER BY clause terms */
3864 LogEst mxCost = 0; /* Maximum cost of a set of paths */
3865 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
3866 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
3867 WherePath *aFrom; /* All nFrom paths at the previous level */
3868 WherePath *aTo; /* The nTo best paths at the current level */
3869 WherePath *pFrom; /* An element of aFrom[] that we are working on */
3870 WherePath *pTo; /* An element of aTo[] that we are working on */
3871 WhereLoop *pWLoop; /* One of the WhereLoop objects */
3872 WhereLoop **pX; /* Used to divy up the pSpace memory */
3873 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
3874 char *pSpace; /* Temporary memory used by this routine */
3875 int nSpace; /* Bytes of space allocated at pSpace */
3877 pParse = pWInfo->pParse;
3878 db = pParse->db;
3879 nLoop = pWInfo->nLevel;
3880 /* TUNING: For simple queries, only the best path is tracked.
3881 ** For 2-way joins, the 5 best paths are followed.
3882 ** For joins of 3 or more tables, track the 10 best paths */
3883 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3884 assert( nLoop<=pWInfo->pTabList->nSrc );
3885 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
3887 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3888 ** case the purpose of this call is to estimate the number of rows returned
3889 ** by the overall query. Once this estimate has been obtained, the caller
3890 ** will invoke this function a second time, passing the estimate as the
3891 ** nRowEst parameter. */
3892 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3893 nOrderBy = 0;
3894 }else{
3895 nOrderBy = pWInfo->pOrderBy->nExpr;
3898 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3899 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3900 nSpace += sizeof(LogEst) * nOrderBy;
3901 pSpace = sqlite3DbMallocRawNN(db, nSpace);
3902 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3903 aTo = (WherePath*)pSpace;
3904 aFrom = aTo+mxChoice;
3905 memset(aFrom, 0, sizeof(aFrom[0]));
3906 pX = (WhereLoop**)(aFrom+mxChoice);
3907 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3908 pFrom->aLoop = pX;
3910 if( nOrderBy ){
3911 /* If there is an ORDER BY clause and it is not being ignored, set up
3912 ** space for the aSortCost[] array. Each element of the aSortCost array
3913 ** is either zero - meaning it has not yet been initialized - or the
3914 ** cost of sorting nRowEst rows of data where the first X terms of
3915 ** the ORDER BY clause are already in order, where X is the array
3916 ** index. */
3917 aSortCost = (LogEst*)pX;
3918 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3920 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3921 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3923 /* Seed the search with a single WherePath containing zero WhereLoops.
3925 ** TUNING: Do not let the number of iterations go above 28. If the cost
3926 ** of computing an automatic index is not paid back within the first 28
3927 ** rows, then do not use the automatic index. */
3928 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
3929 nFrom = 1;
3930 assert( aFrom[0].isOrdered==0 );
3931 if( nOrderBy ){
3932 /* If nLoop is zero, then there are no FROM terms in the query. Since
3933 ** in this case the query may return a maximum of one row, the results
3934 ** are already in the requested order. Set isOrdered to nOrderBy to
3935 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3936 ** -1, indicating that the result set may or may not be ordered,
3937 ** depending on the loops added to the current plan. */
3938 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3941 /* Compute successively longer WherePaths using the previous generation
3942 ** of WherePaths as the basis for the next. Keep track of the mxChoice
3943 ** best paths at each generation */
3944 for(iLoop=0; iLoop<nLoop; iLoop++){
3945 nTo = 0;
3946 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3947 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3948 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
3949 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
3950 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
3951 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
3952 Bitmask maskNew; /* Mask of src visited by (..) */
3953 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
3955 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3956 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3957 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
3958 /* Do not use an automatic index if the this loop is expected
3959 ** to run less than 2 times. */
3960 assert( 10==sqlite3LogEst(2) );
3961 continue;
3963 /* At this point, pWLoop is a candidate to be the next loop.
3964 ** Compute its cost */
3965 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3966 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3967 nOut = pFrom->nRow + pWLoop->nOut;
3968 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3969 if( isOrdered<0 ){
3970 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3971 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3972 iLoop, pWLoop, &revMask);
3973 }else{
3974 revMask = pFrom->revLoop;
3976 if( isOrdered>=0 && isOrdered<nOrderBy ){
3977 if( aSortCost[isOrdered]==0 ){
3978 aSortCost[isOrdered] = whereSortingCost(
3979 pWInfo, nRowEst, nOrderBy, isOrdered
3982 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3984 WHERETRACE(0x002,
3985 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3986 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3987 rUnsorted, rCost));
3988 }else{
3989 rCost = rUnsorted;
3990 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
3993 /* Check to see if pWLoop should be added to the set of
3994 ** mxChoice best-so-far paths.
3996 ** First look for an existing path among best-so-far paths
3997 ** that covers the same set of loops and has the same isOrdered
3998 ** setting as the current path candidate.
4000 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4001 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4002 ** of legal values for isOrdered, -1..64.
4004 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4005 if( pTo->maskLoop==maskNew
4006 && ((pTo->isOrdered^isOrdered)&0x80)==0
4008 testcase( jj==nTo-1 );
4009 break;
4012 if( jj>=nTo ){
4013 /* None of the existing best-so-far paths match the candidate. */
4014 if( nTo>=mxChoice
4015 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4017 /* The current candidate is no better than any of the mxChoice
4018 ** paths currently in the best-so-far buffer. So discard
4019 ** this candidate as not viable. */
4020 #ifdef WHERETRACE_ENABLED /* 0x4 */
4021 if( sqlite3WhereTrace&0x4 ){
4022 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4023 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4024 isOrdered>=0 ? isOrdered+'0' : '?');
4026 #endif
4027 continue;
4029 /* If we reach this points it means that the new candidate path
4030 ** needs to be added to the set of best-so-far paths. */
4031 if( nTo<mxChoice ){
4032 /* Increase the size of the aTo set by one */
4033 jj = nTo++;
4034 }else{
4035 /* New path replaces the prior worst to keep count below mxChoice */
4036 jj = mxI;
4038 pTo = &aTo[jj];
4039 #ifdef WHERETRACE_ENABLED /* 0x4 */
4040 if( sqlite3WhereTrace&0x4 ){
4041 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4042 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4043 isOrdered>=0 ? isOrdered+'0' : '?');
4045 #endif
4046 }else{
4047 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4048 ** same set of loops and has the same isOrdered setting as the
4049 ** candidate path. Check to see if the candidate should replace
4050 ** pTo or if the candidate should be skipped.
4052 ** The conditional is an expanded vector comparison equivalent to:
4053 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4055 if( pTo->rCost<rCost
4056 || (pTo->rCost==rCost
4057 && (pTo->nRow<nOut
4058 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4062 #ifdef WHERETRACE_ENABLED /* 0x4 */
4063 if( sqlite3WhereTrace&0x4 ){
4064 sqlite3DebugPrintf(
4065 "Skip %s cost=%-3d,%3d,%3d order=%c",
4066 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4067 isOrdered>=0 ? isOrdered+'0' : '?');
4068 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4069 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4070 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4072 #endif
4073 /* Discard the candidate path from further consideration */
4074 testcase( pTo->rCost==rCost );
4075 continue;
4077 testcase( pTo->rCost==rCost+1 );
4078 /* Control reaches here if the candidate path is better than the
4079 ** pTo path. Replace pTo with the candidate. */
4080 #ifdef WHERETRACE_ENABLED /* 0x4 */
4081 if( sqlite3WhereTrace&0x4 ){
4082 sqlite3DebugPrintf(
4083 "Update %s cost=%-3d,%3d,%3d order=%c",
4084 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4085 isOrdered>=0 ? isOrdered+'0' : '?');
4086 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4087 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4088 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4090 #endif
4092 /* pWLoop is a winner. Add it to the set of best so far */
4093 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4094 pTo->revLoop = revMask;
4095 pTo->nRow = nOut;
4096 pTo->rCost = rCost;
4097 pTo->rUnsorted = rUnsorted;
4098 pTo->isOrdered = isOrdered;
4099 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4100 pTo->aLoop[iLoop] = pWLoop;
4101 if( nTo>=mxChoice ){
4102 mxI = 0;
4103 mxCost = aTo[0].rCost;
4104 mxUnsorted = aTo[0].nRow;
4105 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4106 if( pTo->rCost>mxCost
4107 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4109 mxCost = pTo->rCost;
4110 mxUnsorted = pTo->rUnsorted;
4111 mxI = jj;
4118 #ifdef WHERETRACE_ENABLED /* >=2 */
4119 if( sqlite3WhereTrace & 0x02 ){
4120 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4121 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4122 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4123 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4124 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4125 if( pTo->isOrdered>0 ){
4126 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4127 }else{
4128 sqlite3DebugPrintf("\n");
4132 #endif
4134 /* Swap the roles of aFrom and aTo for the next generation */
4135 pFrom = aTo;
4136 aTo = aFrom;
4137 aFrom = pFrom;
4138 nFrom = nTo;
4141 if( nFrom==0 ){
4142 sqlite3ErrorMsg(pParse, "no query solution");
4143 sqlite3DbFreeNN(db, pSpace);
4144 return SQLITE_ERROR;
4147 /* Find the lowest cost path. pFrom will be left pointing to that path */
4148 pFrom = aFrom;
4149 for(ii=1; ii<nFrom; ii++){
4150 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4152 assert( pWInfo->nLevel==nLoop );
4153 /* Load the lowest cost path into pWInfo */
4154 for(iLoop=0; iLoop<nLoop; iLoop++){
4155 WhereLevel *pLevel = pWInfo->a + iLoop;
4156 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4157 pLevel->iFrom = pWLoop->iTab;
4158 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4160 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4161 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4162 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4163 && nRowEst
4165 Bitmask notUsed;
4166 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4167 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4168 if( rc==pWInfo->pResultSet->nExpr ){
4169 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4172 if( pWInfo->pOrderBy ){
4173 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4174 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4175 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4177 }else{
4178 pWInfo->nOBSat = pFrom->isOrdered;
4179 pWInfo->revMask = pFrom->revLoop;
4180 if( pWInfo->nOBSat<=0 ){
4181 pWInfo->nOBSat = 0;
4182 if( nLoop>0 ){
4183 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4184 if( (wsFlags & WHERE_ONEROW)==0
4185 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4187 Bitmask m = 0;
4188 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4189 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4190 testcase( wsFlags & WHERE_IPK );
4191 testcase( wsFlags & WHERE_COLUMN_IN );
4192 if( rc==pWInfo->pOrderBy->nExpr ){
4193 pWInfo->bOrderedInnerLoop = 1;
4194 pWInfo->revMask = m;
4200 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4201 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4203 Bitmask revMask = 0;
4204 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4205 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4207 assert( pWInfo->sorted==0 );
4208 if( nOrder==pWInfo->pOrderBy->nExpr ){
4209 pWInfo->sorted = 1;
4210 pWInfo->revMask = revMask;
4216 pWInfo->nRowOut = pFrom->nRow;
4218 /* Free temporary memory and return success */
4219 sqlite3DbFreeNN(db, pSpace);
4220 return SQLITE_OK;
4224 ** Most queries use only a single table (they are not joins) and have
4225 ** simple == constraints against indexed fields. This routine attempts
4226 ** to plan those simple cases using much less ceremony than the
4227 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4228 ** times for the common case.
4230 ** Return non-zero on success, if this query can be handled by this
4231 ** no-frills query planner. Return zero if this query needs the
4232 ** general-purpose query planner.
4234 static int whereShortCut(WhereLoopBuilder *pBuilder){
4235 WhereInfo *pWInfo;
4236 struct SrcList_item *pItem;
4237 WhereClause *pWC;
4238 WhereTerm *pTerm;
4239 WhereLoop *pLoop;
4240 int iCur;
4241 int j;
4242 Table *pTab;
4243 Index *pIdx;
4245 pWInfo = pBuilder->pWInfo;
4246 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4247 assert( pWInfo->pTabList->nSrc>=1 );
4248 pItem = pWInfo->pTabList->a;
4249 pTab = pItem->pTab;
4250 if( IsVirtual(pTab) ) return 0;
4251 if( pItem->fg.isIndexedBy ) return 0;
4252 iCur = pItem->iCursor;
4253 pWC = &pWInfo->sWC;
4254 pLoop = pBuilder->pNew;
4255 pLoop->wsFlags = 0;
4256 pLoop->nSkip = 0;
4257 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4258 if( pTerm ){
4259 testcase( pTerm->eOperator & WO_IS );
4260 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4261 pLoop->aLTerm[0] = pTerm;
4262 pLoop->nLTerm = 1;
4263 pLoop->u.btree.nEq = 1;
4264 /* TUNING: Cost of a rowid lookup is 10 */
4265 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
4266 }else{
4267 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4268 int opMask;
4269 assert( pLoop->aLTermSpace==pLoop->aLTerm );
4270 if( !IsUniqueIndex(pIdx)
4271 || pIdx->pPartIdxWhere!=0
4272 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4273 ) continue;
4274 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4275 for(j=0; j<pIdx->nKeyCol; j++){
4276 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4277 if( pTerm==0 ) break;
4278 testcase( pTerm->eOperator & WO_IS );
4279 pLoop->aLTerm[j] = pTerm;
4281 if( j!=pIdx->nKeyCol ) continue;
4282 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4283 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4284 pLoop->wsFlags |= WHERE_IDX_ONLY;
4286 pLoop->nLTerm = j;
4287 pLoop->u.btree.nEq = j;
4288 pLoop->u.btree.pIndex = pIdx;
4289 /* TUNING: Cost of a unique index lookup is 15 */
4290 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
4291 break;
4294 if( pLoop->wsFlags ){
4295 pLoop->nOut = (LogEst)1;
4296 pWInfo->a[0].pWLoop = pLoop;
4297 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4298 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4299 pWInfo->a[0].iTabCur = iCur;
4300 pWInfo->nRowOut = 1;
4301 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
4302 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4303 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4305 #ifdef SQLITE_DEBUG
4306 pLoop->cId = '0';
4307 #endif
4308 return 1;
4310 return 0;
4314 ** Helper function for exprIsDeterministic().
4316 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4317 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4318 pWalker->eCode = 0;
4319 return WRC_Abort;
4321 return WRC_Continue;
4325 ** Return true if the expression contains no non-deterministic SQL
4326 ** functions. Do not consider non-deterministic SQL functions that are
4327 ** part of sub-select statements.
4329 static int exprIsDeterministic(Expr *p){
4330 Walker w;
4331 memset(&w, 0, sizeof(w));
4332 w.eCode = 1;
4333 w.xExprCallback = exprNodeIsDeterministic;
4334 w.xSelectCallback = sqlite3SelectWalkFail;
4335 sqlite3WalkExpr(&w, p);
4336 return w.eCode;
4340 ** Generate the beginning of the loop used for WHERE clause processing.
4341 ** The return value is a pointer to an opaque structure that contains
4342 ** information needed to terminate the loop. Later, the calling routine
4343 ** should invoke sqlite3WhereEnd() with the return value of this function
4344 ** in order to complete the WHERE clause processing.
4346 ** If an error occurs, this routine returns NULL.
4348 ** The basic idea is to do a nested loop, one loop for each table in
4349 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4350 ** same as a SELECT with only a single table in the FROM clause.) For
4351 ** example, if the SQL is this:
4353 ** SELECT * FROM t1, t2, t3 WHERE ...;
4355 ** Then the code generated is conceptually like the following:
4357 ** foreach row1 in t1 do \ Code generated
4358 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4359 ** foreach row3 in t3 do /
4360 ** ...
4361 ** end \ Code generated
4362 ** end |-- by sqlite3WhereEnd()
4363 ** end /
4365 ** Note that the loops might not be nested in the order in which they
4366 ** appear in the FROM clause if a different order is better able to make
4367 ** use of indices. Note also that when the IN operator appears in
4368 ** the WHERE clause, it might result in additional nested loops for
4369 ** scanning through all values on the right-hand side of the IN.
4371 ** There are Btree cursors associated with each table. t1 uses cursor
4372 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4373 ** And so forth. This routine generates code to open those VDBE cursors
4374 ** and sqlite3WhereEnd() generates the code to close them.
4376 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4377 ** in pTabList pointing at their appropriate entries. The [...] code
4378 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4379 ** data from the various tables of the loop.
4381 ** If the WHERE clause is empty, the foreach loops must each scan their
4382 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4383 ** the tables have indices and there are terms in the WHERE clause that
4384 ** refer to those indices, a complete table scan can be avoided and the
4385 ** code will run much faster. Most of the work of this routine is checking
4386 ** to see if there are indices that can be used to speed up the loop.
4388 ** Terms of the WHERE clause are also used to limit which rows actually
4389 ** make it to the "..." in the middle of the loop. After each "foreach",
4390 ** terms of the WHERE clause that use only terms in that loop and outer
4391 ** loops are evaluated and if false a jump is made around all subsequent
4392 ** inner loops (or around the "..." if the test occurs within the inner-
4393 ** most loop)
4395 ** OUTER JOINS
4397 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4399 ** foreach row1 in t1 do
4400 ** flag = 0
4401 ** foreach row2 in t2 do
4402 ** start:
4403 ** ...
4404 ** flag = 1
4405 ** end
4406 ** if flag==0 then
4407 ** move the row2 cursor to a null row
4408 ** goto start
4409 ** fi
4410 ** end
4412 ** ORDER BY CLAUSE PROCESSING
4414 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4415 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4416 ** if there is one. If there is no ORDER BY clause or if this routine
4417 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4419 ** The iIdxCur parameter is the cursor number of an index. If
4420 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4421 ** to use for OR clause processing. The WHERE clause should use this
4422 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4423 ** the first cursor in an array of cursors for all indices. iIdxCur should
4424 ** be used to compute the appropriate cursor depending on which index is
4425 ** used.
4427 WhereInfo *sqlite3WhereBegin(
4428 Parse *pParse, /* The parser context */
4429 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
4430 Expr *pWhere, /* The WHERE clause */
4431 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
4432 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
4433 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
4434 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4435 ** If WHERE_USE_LIMIT, then the limit amount */
4437 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4438 int nTabList; /* Number of elements in pTabList */
4439 WhereInfo *pWInfo; /* Will become the return value of this function */
4440 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4441 Bitmask notReady; /* Cursors that are not yet positioned */
4442 WhereLoopBuilder sWLB; /* The WhereLoop builder */
4443 WhereMaskSet *pMaskSet; /* The expression mask set */
4444 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
4445 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
4446 int ii; /* Loop counter */
4447 sqlite3 *db; /* Database connection */
4448 int rc; /* Return code */
4449 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4451 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4452 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4453 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4456 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4457 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4458 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4460 /* Variable initialization */
4461 db = pParse->db;
4462 memset(&sWLB, 0, sizeof(sWLB));
4464 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4465 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4466 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4467 sWLB.pOrderBy = pOrderBy;
4469 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4470 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4471 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4472 wctrlFlags &= ~WHERE_WANT_DISTINCT;
4475 /* The number of tables in the FROM clause is limited by the number of
4476 ** bits in a Bitmask
4478 testcase( pTabList->nSrc==BMS );
4479 if( pTabList->nSrc>BMS ){
4480 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4481 return 0;
4484 /* This function normally generates a nested loop for all tables in
4485 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4486 ** only generate code for the first table in pTabList and assume that
4487 ** any cursors associated with subsequent tables are uninitialized.
4489 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4491 /* Allocate and initialize the WhereInfo structure that will become the
4492 ** return value. A single allocation is used to store the WhereInfo
4493 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4494 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4495 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4496 ** some architectures. Hence the ROUND8() below.
4498 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4499 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4500 if( db->mallocFailed ){
4501 sqlite3DbFree(db, pWInfo);
4502 pWInfo = 0;
4503 goto whereBeginError;
4505 pWInfo->pParse = pParse;
4506 pWInfo->pTabList = pTabList;
4507 pWInfo->pOrderBy = pOrderBy;
4508 pWInfo->pWhere = pWhere;
4509 pWInfo->pResultSet = pResultSet;
4510 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4511 pWInfo->nLevel = nTabList;
4512 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4513 pWInfo->wctrlFlags = wctrlFlags;
4514 pWInfo->iLimit = iAuxArg;
4515 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4516 memset(&pWInfo->nOBSat, 0,
4517 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4518 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4519 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
4520 pMaskSet = &pWInfo->sMaskSet;
4521 sWLB.pWInfo = pWInfo;
4522 sWLB.pWC = &pWInfo->sWC;
4523 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4524 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4525 whereLoopInit(sWLB.pNew);
4526 #ifdef SQLITE_DEBUG
4527 sWLB.pNew->cId = '*';
4528 #endif
4530 /* Split the WHERE clause into separate subexpressions where each
4531 ** subexpression is separated by an AND operator.
4533 initMaskSet(pMaskSet);
4534 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4535 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4537 /* Special case: No FROM clause
4539 if( nTabList==0 ){
4540 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4541 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4542 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4544 }else{
4545 /* Assign a bit from the bitmask to every term in the FROM clause.
4547 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4549 ** The rule of the previous sentence ensures thta if X is the bitmask for
4550 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4551 ** Knowing the bitmask for all tables to the left of a left join is
4552 ** important. Ticket #3015.
4554 ** Note that bitmasks are created for all pTabList->nSrc tables in
4555 ** pTabList, not just the first nTabList tables. nTabList is normally
4556 ** equal to pTabList->nSrc but might be shortened to 1 if the
4557 ** WHERE_OR_SUBCLAUSE flag is set.
4559 ii = 0;
4561 createMask(pMaskSet, pTabList->a[ii].iCursor);
4562 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4563 }while( (++ii)<pTabList->nSrc );
4564 #ifdef SQLITE_DEBUG
4566 Bitmask mx = 0;
4567 for(ii=0; ii<pTabList->nSrc; ii++){
4568 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4569 assert( m>=mx );
4570 mx = m;
4573 #endif
4576 /* Analyze all of the subexpressions. */
4577 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4578 if( db->mallocFailed ) goto whereBeginError;
4580 /* Special case: WHERE terms that do not refer to any tables in the join
4581 ** (constant expressions). Evaluate each such term, and jump over all the
4582 ** generated code if the result is not true.
4584 ** Do not do this if the expression contains non-deterministic functions
4585 ** that are not within a sub-select. This is not strictly required, but
4586 ** preserves SQLite's legacy behaviour in the following two cases:
4588 ** FROM ... WHERE random()>0; -- eval random() once per row
4589 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4591 for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4592 WhereTerm *pT = &sWLB.pWC->a[ii];
4593 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4594 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4595 pT->wtFlags |= TERM_CODED;
4599 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4600 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4601 /* The DISTINCT marking is pointless. Ignore it. */
4602 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4603 }else if( pOrderBy==0 ){
4604 /* Try to ORDER BY the result set to make distinct processing easier */
4605 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4606 pWInfo->pOrderBy = pResultSet;
4610 /* Construct the WhereLoop objects */
4611 #if defined(WHERETRACE_ENABLED)
4612 if( sqlite3WhereTrace & 0xffff ){
4613 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4614 if( wctrlFlags & WHERE_USE_LIMIT ){
4615 sqlite3DebugPrintf(", limit: %d", iAuxArg);
4617 sqlite3DebugPrintf(")\n");
4619 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4620 sqlite3WhereClausePrint(sWLB.pWC);
4622 #endif
4624 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4625 rc = whereLoopAddAll(&sWLB);
4626 if( rc ) goto whereBeginError;
4628 #ifdef WHERETRACE_ENABLED
4629 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
4630 WhereLoop *p;
4631 int i;
4632 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4633 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4634 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4635 p->cId = zLabel[i%(sizeof(zLabel)-1)];
4636 whereLoopPrint(p, sWLB.pWC);
4639 #endif
4641 wherePathSolver(pWInfo, 0);
4642 if( db->mallocFailed ) goto whereBeginError;
4643 if( pWInfo->pOrderBy ){
4644 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4645 if( db->mallocFailed ) goto whereBeginError;
4648 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4649 pWInfo->revMask = ALLBITS;
4651 if( pParse->nErr || NEVER(db->mallocFailed) ){
4652 goto whereBeginError;
4654 #ifdef WHERETRACE_ENABLED
4655 if( sqlite3WhereTrace ){
4656 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4657 if( pWInfo->nOBSat>0 ){
4658 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4660 switch( pWInfo->eDistinct ){
4661 case WHERE_DISTINCT_UNIQUE: {
4662 sqlite3DebugPrintf(" DISTINCT=unique");
4663 break;
4665 case WHERE_DISTINCT_ORDERED: {
4666 sqlite3DebugPrintf(" DISTINCT=ordered");
4667 break;
4669 case WHERE_DISTINCT_UNORDERED: {
4670 sqlite3DebugPrintf(" DISTINCT=unordered");
4671 break;
4674 sqlite3DebugPrintf("\n");
4675 for(ii=0; ii<pWInfo->nLevel; ii++){
4676 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4679 #endif
4681 /* Attempt to omit tables from the join that do not affect the result.
4682 ** For a table to not affect the result, the following must be true:
4684 ** 1) The query must not be an aggregate.
4685 ** 2) The table must be the RHS of a LEFT JOIN.
4686 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
4687 ** must contain a constraint that limits the scan of the table to
4688 ** at most a single row.
4689 ** 4) The table must not be referenced by any part of the query apart
4690 ** from its own USING or ON clause.
4692 ** For example, given:
4694 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4695 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4696 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4698 ** then table t2 can be omitted from the following:
4700 ** SELECT v1, v3 FROM t1
4701 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4702 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4704 ** or from:
4706 ** SELECT DISTINCT v1, v3 FROM t1
4707 ** LEFT JOIN t2
4708 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4710 if( pWInfo->nLevel>=2
4711 && pResultSet!=0 /* guarantees condition (1) above */
4712 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4714 int i;
4715 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4716 if( sWLB.pOrderBy ){
4717 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4719 for(i=pWInfo->nLevel-1; i>=1; i--){
4720 WhereTerm *pTerm, *pEnd;
4721 struct SrcList_item *pItem;
4722 pLoop = pWInfo->a[i].pWLoop;
4723 pItem = &pWInfo->pTabList->a[pLoop->iTab];
4724 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4725 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4726 && (pLoop->wsFlags & WHERE_ONEROW)==0
4728 continue;
4730 if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4731 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4732 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4733 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4734 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4735 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4737 break;
4741 if( pTerm<pEnd ) continue;
4742 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4743 if( i!=pWInfo->nLevel-1 ){
4744 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4745 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4747 pWInfo->nLevel--;
4748 nTabList--;
4751 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4752 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4754 /* If the caller is an UPDATE or DELETE statement that is requesting
4755 ** to use a one-pass algorithm, determine if this is appropriate.
4757 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4758 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4759 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4760 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4761 if( bOnerow
4762 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
4763 && 0==(wsFlags & WHERE_VIRTUALTABLE))
4765 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4766 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4767 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4768 bFordelete = OPFLAG_FORDELETE;
4770 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4775 /* Open all tables in the pTabList and any indices selected for
4776 ** searching those tables.
4778 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4779 Table *pTab; /* Table to open */
4780 int iDb; /* Index of database containing table/index */
4781 struct SrcList_item *pTabItem;
4783 pTabItem = &pTabList->a[pLevel->iFrom];
4784 pTab = pTabItem->pTab;
4785 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4786 pLoop = pLevel->pWLoop;
4787 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4788 /* Do nothing */
4789 }else
4790 #ifndef SQLITE_OMIT_VIRTUALTABLE
4791 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4792 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4793 int iCur = pTabItem->iCursor;
4794 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4795 }else if( IsVirtual(pTab) ){
4796 /* noop */
4797 }else
4798 #endif
4799 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4800 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4801 int op = OP_OpenRead;
4802 if( pWInfo->eOnePass!=ONEPASS_OFF ){
4803 op = OP_OpenWrite;
4804 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4806 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4807 assert( pTabItem->iCursor==pLevel->iTabCur );
4808 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4809 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4810 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4811 Bitmask b = pTabItem->colUsed;
4812 int n = 0;
4813 for(; b; b=b>>1, n++){}
4814 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4815 assert( n<=pTab->nCol );
4817 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4818 if( pLoop->u.btree.pIndex!=0 ){
4819 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4820 }else
4821 #endif
4823 sqlite3VdbeChangeP5(v, bFordelete);
4825 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4826 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4827 (const u8*)&pTabItem->colUsed, P4_INT64);
4828 #endif
4829 }else{
4830 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4832 if( pLoop->wsFlags & WHERE_INDEXED ){
4833 Index *pIx = pLoop->u.btree.pIndex;
4834 int iIndexCur;
4835 int op = OP_OpenRead;
4836 /* iAuxArg is always set to a positive value if ONEPASS is possible */
4837 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4838 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4839 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4841 /* This is one term of an OR-optimization using the PRIMARY KEY of a
4842 ** WITHOUT ROWID table. No need for a separate index */
4843 iIndexCur = pLevel->iTabCur;
4844 op = 0;
4845 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4846 Index *pJ = pTabItem->pTab->pIndex;
4847 iIndexCur = iAuxArg;
4848 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4849 while( ALWAYS(pJ) && pJ!=pIx ){
4850 iIndexCur++;
4851 pJ = pJ->pNext;
4853 op = OP_OpenWrite;
4854 pWInfo->aiCurOnePass[1] = iIndexCur;
4855 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4856 iIndexCur = iAuxArg;
4857 op = OP_ReopenIdx;
4858 }else{
4859 iIndexCur = pParse->nTab++;
4861 pLevel->iIdxCur = iIndexCur;
4862 assert( pIx->pSchema==pTab->pSchema );
4863 assert( iIndexCur>=0 );
4864 if( op ){
4865 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4866 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4867 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4868 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4869 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4870 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
4872 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4874 VdbeComment((v, "%s", pIx->zName));
4875 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4877 u64 colUsed = 0;
4878 int ii, jj;
4879 for(ii=0; ii<pIx->nColumn; ii++){
4880 jj = pIx->aiColumn[ii];
4881 if( jj<0 ) continue;
4882 if( jj>63 ) jj = 63;
4883 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4884 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4886 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4887 (u8*)&colUsed, P4_INT64);
4889 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4892 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4894 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4895 if( db->mallocFailed ) goto whereBeginError;
4897 /* Generate the code to do the search. Each iteration of the for
4898 ** loop below generates code for a single nested loop of the VM
4899 ** program.
4901 notReady = ~(Bitmask)0;
4902 for(ii=0; ii<nTabList; ii++){
4903 int addrExplain;
4904 int wsFlags;
4905 pLevel = &pWInfo->a[ii];
4906 wsFlags = pLevel->pWLoop->wsFlags;
4907 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4908 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4909 constructAutomaticIndex(pParse, &pWInfo->sWC,
4910 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4911 if( db->mallocFailed ) goto whereBeginError;
4913 #endif
4914 addrExplain = sqlite3WhereExplainOneScan(
4915 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4917 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4918 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4919 pWInfo->iContinue = pLevel->addrCont;
4920 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4921 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4925 /* Done. */
4926 VdbeModuleComment((v, "Begin WHERE-core"));
4927 return pWInfo;
4929 /* Jump here if malloc fails */
4930 whereBeginError:
4931 if( pWInfo ){
4932 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4933 whereInfoFree(db, pWInfo);
4935 return 0;
4939 ** Generate the end of the WHERE loop. See comments on
4940 ** sqlite3WhereBegin() for additional information.
4942 void sqlite3WhereEnd(WhereInfo *pWInfo){
4943 Parse *pParse = pWInfo->pParse;
4944 Vdbe *v = pParse->pVdbe;
4945 int i;
4946 WhereLevel *pLevel;
4947 WhereLoop *pLoop;
4948 SrcList *pTabList = pWInfo->pTabList;
4949 sqlite3 *db = pParse->db;
4951 /* Generate loop termination code.
4953 VdbeModuleComment((v, "End WHERE-core"));
4954 sqlite3ExprCacheClear(pParse);
4955 for(i=pWInfo->nLevel-1; i>=0; i--){
4956 int addr;
4957 pLevel = &pWInfo->a[i];
4958 pLoop = pLevel->pWLoop;
4959 if( pLevel->op!=OP_Noop ){
4960 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4961 int addrSeek = 0;
4962 Index *pIdx;
4963 int n;
4964 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
4965 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
4966 && (pLoop->wsFlags & WHERE_INDEXED)!=0
4967 && (pIdx = pLoop->u.btree.pIndex)->hasStat1
4968 && (n = pLoop->u.btree.nIdxCol)>0
4969 && pIdx->aiRowLogEst[n]>=36
4971 int r1 = pParse->nMem+1;
4972 int j, op;
4973 for(j=0; j<n; j++){
4974 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
4976 pParse->nMem += n+1;
4977 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
4978 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
4979 VdbeCoverageIf(v, op==OP_SeekLT);
4980 VdbeCoverageIf(v, op==OP_SeekGT);
4981 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
4983 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
4984 /* The common case: Advance to the next row */
4985 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4986 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4987 sqlite3VdbeChangeP5(v, pLevel->p5);
4988 VdbeCoverage(v);
4989 VdbeCoverageIf(v, pLevel->op==OP_Next);
4990 VdbeCoverageIf(v, pLevel->op==OP_Prev);
4991 VdbeCoverageIf(v, pLevel->op==OP_VNext);
4992 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4993 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
4994 #endif
4995 }else{
4996 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4998 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4999 struct InLoop *pIn;
5000 int j;
5001 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5002 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5003 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5004 if( pIn->eEndLoopOp!=OP_Noop ){
5005 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5006 VdbeCoverage(v);
5007 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
5008 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
5010 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5013 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5014 if( pLevel->addrSkip ){
5015 sqlite3VdbeGoto(v, pLevel->addrSkip);
5016 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5017 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5018 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5020 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5021 if( pLevel->addrLikeRep ){
5022 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5023 pLevel->addrLikeRep);
5024 VdbeCoverage(v);
5026 #endif
5027 if( pLevel->iLeftJoin ){
5028 int ws = pLoop->wsFlags;
5029 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5030 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5031 if( (ws & WHERE_IDX_ONLY)==0 ){
5032 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5033 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5035 if( (ws & WHERE_INDEXED)
5036 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5038 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5040 if( pLevel->op==OP_Return ){
5041 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5042 }else{
5043 sqlite3VdbeGoto(v, pLevel->addrFirst);
5045 sqlite3VdbeJumpHere(v, addr);
5047 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5048 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5051 /* The "break" point is here, just past the end of the outer loop.
5052 ** Set it.
5054 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5056 assert( pWInfo->nLevel<=pTabList->nSrc );
5057 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5058 int k, last;
5059 VdbeOp *pOp;
5060 Index *pIdx = 0;
5061 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5062 Table *pTab = pTabItem->pTab;
5063 assert( pTab!=0 );
5064 pLoop = pLevel->pWLoop;
5066 /* For a co-routine, change all OP_Column references to the table of
5067 ** the co-routine into OP_Copy of result contained in a register.
5068 ** OP_Rowid becomes OP_Null.
5070 if( pTabItem->fg.viaCoroutine ){
5071 testcase( pParse->db->mallocFailed );
5072 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5073 pTabItem->regResult, 0);
5074 continue;
5077 /* If this scan uses an index, make VDBE code substitutions to read data
5078 ** from the index instead of from the table where possible. In some cases
5079 ** this optimization prevents the table from ever being read, which can
5080 ** yield a significant performance boost.
5082 ** Calls to the code generator in between sqlite3WhereBegin and
5083 ** sqlite3WhereEnd will have created code that references the table
5084 ** directly. This loop scans all that code looking for opcodes
5085 ** that reference the table and converts them into opcodes that
5086 ** reference the index.
5088 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5089 pIdx = pLoop->u.btree.pIndex;
5090 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5091 pIdx = pLevel->u.pCovidx;
5093 if( pIdx
5094 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5095 && !db->mallocFailed
5097 last = sqlite3VdbeCurrentAddr(v);
5098 k = pLevel->addrBody;
5099 pOp = sqlite3VdbeGetOp(v, k);
5100 for(; k<last; k++, pOp++){
5101 if( pOp->p1!=pLevel->iTabCur ) continue;
5102 if( pOp->opcode==OP_Column ){
5103 int x = pOp->p2;
5104 assert( pIdx->pTable==pTab );
5105 if( !HasRowid(pTab) ){
5106 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5107 x = pPk->aiColumn[x];
5108 assert( x>=0 );
5110 x = sqlite3ColumnOfIndex(pIdx, x);
5111 if( x>=0 ){
5112 pOp->p2 = x;
5113 pOp->p1 = pLevel->iIdxCur;
5115 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5116 || pWInfo->eOnePass );
5117 }else if( pOp->opcode==OP_Rowid ){
5118 pOp->p1 = pLevel->iIdxCur;
5119 pOp->opcode = OP_IdxRowid;
5120 }else if( pOp->opcode==OP_IfNullRow ){
5121 pOp->p1 = pLevel->iIdxCur;
5127 /* Final cleanup
5129 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5130 whereInfoFree(db, pWInfo);
5131 return;