Completely disable the skip-ahead-distinct optimization for all but the
[sqlite.git] / src / util.c
bloba4dbe8fdaf30ffe4cf595214bfbcf3a272c8cace
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #if HAVE_ISNAN || SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
32 #endif
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
45 #ifndef SQLITE_UNTESTABLE
46 int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
50 #endif
52 #ifndef SQLITE_OMIT_FLOATING_POINT
54 ** Return true if the floating point value is Not a Number (NaN).
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
59 int sqlite3IsNaN(double x){
60 int rc; /* The value return */
61 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
91 #else /* if HAVE_ISNAN */
92 rc = isnan(x);
93 #endif /* HAVE_ISNAN */
94 testcase( rc );
95 return rc;
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
103 ** The value returned will never be negative. Nor will it ever be greater
104 ** than the actual length of the string. For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
107 int sqlite3Strlen30(const char *z){
108 if( z==0 ) return 0;
109 return 0x3fffffff & (int)strlen(z);
113 ** Return the declared type of a column. Or return zDflt if the column
114 ** has no declared type.
116 ** The column type is an extra string stored after the zero-terminator on
117 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
119 char *sqlite3ColumnType(Column *pCol, char *zDflt){
120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121 return pCol->zName + strlen(pCol->zName) + 1;
125 ** Helper function for sqlite3Error() - called rarely. Broken out into
126 ** a separate routine to avoid unnecessary register saves on entry to
127 ** sqlite3Error().
129 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
130 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131 sqlite3SystemError(db, err_code);
135 ** Set the current error code to err_code and clear any prior error message.
136 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137 ** that would be appropriate.
139 void sqlite3Error(sqlite3 *db, int err_code){
140 assert( db!=0 );
141 db->errCode = err_code;
142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
146 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
147 ** to do based on the SQLite error code in rc.
149 void sqlite3SystemError(sqlite3 *db, int rc){
150 if( rc==SQLITE_IOERR_NOMEM ) return;
151 rc &= 0xff;
152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
158 ** Set the most recent error code and error string for the sqlite
159 ** handle "db". The error code is set to "err_code".
161 ** If it is not NULL, string zFormat specifies the format of the
162 ** error string in the style of the printf functions: The following
163 ** format characters are allowed:
165 ** %s Insert a string
166 ** %z A string that should be freed after use
167 ** %d Insert an integer
168 ** %T Insert a token
169 ** %S Insert the first element of a SrcList
171 ** zFormat and any string tokens that follow it are assumed to be
172 ** encoded in UTF-8.
174 ** To clear the most recent error for sqlite handle "db", sqlite3Error
175 ** should be called with err_code set to SQLITE_OK and zFormat set
176 ** to NULL.
178 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
179 assert( db!=0 );
180 db->errCode = err_code;
181 sqlite3SystemError(db, err_code);
182 if( zFormat==0 ){
183 sqlite3Error(db, err_code);
184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
185 char *z;
186 va_list ap;
187 va_start(ap, zFormat);
188 z = sqlite3VMPrintf(db, zFormat, ap);
189 va_end(ap);
190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
195 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196 ** The following formatting characters are allowed:
198 ** %s Insert a string
199 ** %z A string that should be freed after use
200 ** %d Insert an integer
201 ** %T Insert a token
202 ** %S Insert the first element of a SrcList
204 ** This function should be used to report any error that occurs while
205 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206 ** last thing the sqlite3_prepare() function does is copy the error
207 ** stored by this function into the database handle using sqlite3Error().
208 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209 ** during statement execution (sqlite3_step() etc.).
211 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
212 char *zMsg;
213 va_list ap;
214 sqlite3 *db = pParse->db;
215 va_start(ap, zFormat);
216 zMsg = sqlite3VMPrintf(db, zFormat, ap);
217 va_end(ap);
218 if( db->suppressErr ){
219 sqlite3DbFree(db, zMsg);
220 }else{
221 pParse->nErr++;
222 sqlite3DbFree(db, pParse->zErrMsg);
223 pParse->zErrMsg = zMsg;
224 pParse->rc = SQLITE_ERROR;
229 ** Convert an SQL-style quoted string into a normal string by removing
230 ** the quote characters. The conversion is done in-place. If the
231 ** input does not begin with a quote character, then this routine
232 ** is a no-op.
234 ** The input string must be zero-terminated. A new zero-terminator
235 ** is added to the dequoted string.
237 ** The return value is -1 if no dequoting occurs or the length of the
238 ** dequoted string, exclusive of the zero terminator, if dequoting does
239 ** occur.
241 ** 2002-Feb-14: This routine is extended to remove MS-Access style
242 ** brackets from around identifiers. For example: "[a-b-c]" becomes
243 ** "a-b-c".
245 void sqlite3Dequote(char *z){
246 char quote;
247 int i, j;
248 if( z==0 ) return;
249 quote = z[0];
250 if( !sqlite3Isquote(quote) ) return;
251 if( quote=='[' ) quote = ']';
252 for(i=1, j=0;; i++){
253 assert( z[i] );
254 if( z[i]==quote ){
255 if( z[i+1]==quote ){
256 z[j++] = quote;
257 i++;
258 }else{
259 break;
261 }else{
262 z[j++] = z[i];
265 z[j] = 0;
269 ** Generate a Token object from a string
271 void sqlite3TokenInit(Token *p, char *z){
272 p->z = z;
273 p->n = sqlite3Strlen30(z);
276 /* Convenient short-hand */
277 #define UpperToLower sqlite3UpperToLower
280 ** Some systems have stricmp(). Others have strcasecmp(). Because
281 ** there is no consistency, we will define our own.
283 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
284 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
285 ** the contents of two buffers containing UTF-8 strings in a
286 ** case-independent fashion, using the same definition of "case
287 ** independence" that SQLite uses internally when comparing identifiers.
289 int sqlite3_stricmp(const char *zLeft, const char *zRight){
290 if( zLeft==0 ){
291 return zRight ? -1 : 0;
292 }else if( zRight==0 ){
293 return 1;
295 return sqlite3StrICmp(zLeft, zRight);
297 int sqlite3StrICmp(const char *zLeft, const char *zRight){
298 unsigned char *a, *b;
299 int c;
300 a = (unsigned char *)zLeft;
301 b = (unsigned char *)zRight;
302 for(;;){
303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
304 if( c || *a==0 ) break;
305 a++;
306 b++;
308 return c;
310 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
311 register unsigned char *a, *b;
312 if( zLeft==0 ){
313 return zRight ? -1 : 0;
314 }else if( zRight==0 ){
315 return 1;
317 a = (unsigned char *)zLeft;
318 b = (unsigned char *)zRight;
319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
324 ** The string z[] is an text representation of a real number.
325 ** Convert this string to a double and write it into *pResult.
327 ** The string z[] is length bytes in length (bytes, not characters) and
328 ** uses the encoding enc. The string is not necessarily zero-terminated.
330 ** Return TRUE if the result is a valid real number (or integer) and FALSE
331 ** if the string is empty or contains extraneous text. Valid numbers
332 ** are in one of these formats:
334 ** [+-]digits[E[+-]digits]
335 ** [+-]digits.[digits][E[+-]digits]
336 ** [+-].digits[E[+-]digits]
338 ** Leading and trailing whitespace is ignored for the purpose of determining
339 ** validity.
341 ** If some prefix of the input string is a valid number, this routine
342 ** returns FALSE but it still converts the prefix and writes the result
343 ** into *pResult.
345 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
346 #ifndef SQLITE_OMIT_FLOATING_POINT
347 int incr;
348 const char *zEnd = z + length;
349 /* sign * significand * (10 ^ (esign * exponent)) */
350 int sign = 1; /* sign of significand */
351 i64 s = 0; /* significand */
352 int d = 0; /* adjust exponent for shifting decimal point */
353 int esign = 1; /* sign of exponent */
354 int e = 0; /* exponent */
355 int eValid = 1; /* True exponent is either not used or is well-formed */
356 double result;
357 int nDigits = 0;
358 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
360 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
361 *pResult = 0.0; /* Default return value, in case of an error */
363 if( enc==SQLITE_UTF8 ){
364 incr = 1;
365 }else{
366 int i;
367 incr = 2;
368 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
369 for(i=3-enc; i<length && z[i]==0; i+=2){}
370 nonNum = i<length;
371 zEnd = &z[i^1];
372 z += (enc&1);
375 /* skip leading spaces */
376 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
377 if( z>=zEnd ) return 0;
379 /* get sign of significand */
380 if( *z=='-' ){
381 sign = -1;
382 z+=incr;
383 }else if( *z=='+' ){
384 z+=incr;
387 /* copy max significant digits to significand */
388 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
389 s = s*10 + (*z - '0');
390 z+=incr; nDigits++;
393 /* skip non-significant significand digits
394 ** (increase exponent by d to shift decimal left) */
395 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; nDigits++; d++; }
396 if( z>=zEnd ) goto do_atof_calc;
398 /* if decimal point is present */
399 if( *z=='.' ){
400 z+=incr;
401 /* copy digits from after decimal to significand
402 ** (decrease exponent by d to shift decimal right) */
403 while( z<zEnd && sqlite3Isdigit(*z) ){
404 if( s<((LARGEST_INT64-9)/10) ){
405 s = s*10 + (*z - '0');
406 d--;
408 z+=incr; nDigits++;
411 if( z>=zEnd ) goto do_atof_calc;
413 /* if exponent is present */
414 if( *z=='e' || *z=='E' ){
415 z+=incr;
416 eValid = 0;
418 /* This branch is needed to avoid a (harmless) buffer overread. The
419 ** special comment alerts the mutation tester that the correct answer
420 ** is obtained even if the branch is omitted */
421 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
423 /* get sign of exponent */
424 if( *z=='-' ){
425 esign = -1;
426 z+=incr;
427 }else if( *z=='+' ){
428 z+=incr;
430 /* copy digits to exponent */
431 while( z<zEnd && sqlite3Isdigit(*z) ){
432 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
433 z+=incr;
434 eValid = 1;
438 /* skip trailing spaces */
439 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
441 do_atof_calc:
442 /* adjust exponent by d, and update sign */
443 e = (e*esign) + d;
444 if( e<0 ) {
445 esign = -1;
446 e *= -1;
447 } else {
448 esign = 1;
451 if( s==0 ) {
452 /* In the IEEE 754 standard, zero is signed. */
453 result = sign<0 ? -(double)0 : (double)0;
454 } else {
455 /* Attempt to reduce exponent.
457 ** Branches that are not required for the correct answer but which only
458 ** help to obtain the correct answer faster are marked with special
459 ** comments, as a hint to the mutation tester.
461 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
462 if( esign>0 ){
463 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
464 s *= 10;
465 }else{
466 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
467 s /= 10;
469 e--;
472 /* adjust the sign of significand */
473 s = sign<0 ? -s : s;
475 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
476 result = (double)s;
477 }else{
478 LONGDOUBLE_TYPE scale = 1.0;
479 /* attempt to handle extremely small/large numbers better */
480 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
481 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
482 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
483 if( esign<0 ){
484 result = s / scale;
485 result /= 1.0e+308;
486 }else{
487 result = s * scale;
488 result *= 1.0e+308;
490 }else{ assert( e>=342 );
491 if( esign<0 ){
492 result = 0.0*s;
493 }else{
494 #ifdef INFINITY
495 result = INFINITY*s;
496 #else
497 result = 1e308*1e308*s; /* Infinity */
498 #endif
501 }else{
502 /* 1.0e+22 is the largest power of 10 than can be
503 ** represented exactly. */
504 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
505 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
506 if( esign<0 ){
507 result = s / scale;
508 }else{
509 result = s * scale;
515 /* store the result */
516 *pResult = result;
518 /* return true if number and no extra non-whitespace chracters after */
519 return z==zEnd && nDigits>0 && eValid && nonNum==0;
520 #else
521 return !sqlite3Atoi64(z, pResult, length, enc);
522 #endif /* SQLITE_OMIT_FLOATING_POINT */
526 ** Compare the 19-character string zNum against the text representation
527 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
528 ** if zNum is less than, equal to, or greater than the string.
529 ** Note that zNum must contain exactly 19 characters.
531 ** Unlike memcmp() this routine is guaranteed to return the difference
532 ** in the values of the last digit if the only difference is in the
533 ** last digit. So, for example,
535 ** compare2pow63("9223372036854775800", 1)
537 ** will return -8.
539 static int compare2pow63(const char *zNum, int incr){
540 int c = 0;
541 int i;
542 /* 012345678901234567 */
543 const char *pow63 = "922337203685477580";
544 for(i=0; c==0 && i<18; i++){
545 c = (zNum[i*incr]-pow63[i])*10;
547 if( c==0 ){
548 c = zNum[18*incr] - '8';
549 testcase( c==(-1) );
550 testcase( c==0 );
551 testcase( c==(+1) );
553 return c;
557 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
558 ** routine does *not* accept hexadecimal notation.
560 ** Returns:
562 ** 0 Successful transformation. Fits in a 64-bit signed integer.
563 ** 1 Excess text after the integer value
564 ** 2 Integer too large for a 64-bit signed integer or is malformed
565 ** 3 Special case of 9223372036854775808
567 ** length is the number of bytes in the string (bytes, not characters).
568 ** The string is not necessarily zero-terminated. The encoding is
569 ** given by enc.
571 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
572 int incr;
573 u64 u = 0;
574 int neg = 0; /* assume positive */
575 int i;
576 int c = 0;
577 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
578 int rc; /* Baseline return code */
579 const char *zStart;
580 const char *zEnd = zNum + length;
581 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
582 if( enc==SQLITE_UTF8 ){
583 incr = 1;
584 }else{
585 incr = 2;
586 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
587 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
588 nonNum = i<length;
589 zEnd = &zNum[i^1];
590 zNum += (enc&1);
592 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
593 if( zNum<zEnd ){
594 if( *zNum=='-' ){
595 neg = 1;
596 zNum+=incr;
597 }else if( *zNum=='+' ){
598 zNum+=incr;
601 zStart = zNum;
602 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
603 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
604 u = u*10 + c - '0';
606 if( u>LARGEST_INT64 ){
607 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
608 }else if( neg ){
609 *pNum = -(i64)u;
610 }else{
611 *pNum = (i64)u;
613 testcase( i==18 );
614 testcase( i==19 );
615 testcase( i==20 );
616 if( &zNum[i]<zEnd /* Extra bytes at the end */
617 || (i==0 && zStart==zNum) /* No digits */
618 || nonNum /* UTF16 with high-order bytes non-zero */
620 rc = 1;
621 }else{
622 rc = 0;
624 if( i>19*incr ){ /* Too many digits */
625 /* zNum is empty or contains non-numeric text or is longer
626 ** than 19 digits (thus guaranteeing that it is too large) */
627 return 2;
628 }else if( i<19*incr ){
629 /* Less than 19 digits, so we know that it fits in 64 bits */
630 assert( u<=LARGEST_INT64 );
631 return rc;
632 }else{
633 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
634 c = compare2pow63(zNum, incr);
635 if( c<0 ){
636 /* zNum is less than 9223372036854775808 so it fits */
637 assert( u<=LARGEST_INT64 );
638 return rc;
639 }else if( c>0 ){
640 /* zNum is greater than 9223372036854775808 so it overflows */
641 return 2;
642 }else{
643 /* zNum is exactly 9223372036854775808. Fits if negative. The
644 ** special case 2 overflow if positive */
645 assert( u-1==LARGEST_INT64 );
646 return neg ? rc : 3;
652 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
653 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
654 ** whereas sqlite3Atoi64() does not.
656 ** Returns:
658 ** 0 Successful transformation. Fits in a 64-bit signed integer.
659 ** 1 Excess text after the integer value
660 ** 2 Integer too large for a 64-bit signed integer or is malformed
661 ** 3 Special case of 9223372036854775808
663 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
664 #ifndef SQLITE_OMIT_HEX_INTEGER
665 if( z[0]=='0'
666 && (z[1]=='x' || z[1]=='X')
668 u64 u = 0;
669 int i, k;
670 for(i=2; z[i]=='0'; i++){}
671 for(k=i; sqlite3Isxdigit(z[k]); k++){
672 u = u*16 + sqlite3HexToInt(z[k]);
674 memcpy(pOut, &u, 8);
675 return (z[k]==0 && k-i<=16) ? 0 : 2;
676 }else
677 #endif /* SQLITE_OMIT_HEX_INTEGER */
679 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
684 ** If zNum represents an integer that will fit in 32-bits, then set
685 ** *pValue to that integer and return true. Otherwise return false.
687 ** This routine accepts both decimal and hexadecimal notation for integers.
689 ** Any non-numeric characters that following zNum are ignored.
690 ** This is different from sqlite3Atoi64() which requires the
691 ** input number to be zero-terminated.
693 int sqlite3GetInt32(const char *zNum, int *pValue){
694 sqlite_int64 v = 0;
695 int i, c;
696 int neg = 0;
697 if( zNum[0]=='-' ){
698 neg = 1;
699 zNum++;
700 }else if( zNum[0]=='+' ){
701 zNum++;
703 #ifndef SQLITE_OMIT_HEX_INTEGER
704 else if( zNum[0]=='0'
705 && (zNum[1]=='x' || zNum[1]=='X')
706 && sqlite3Isxdigit(zNum[2])
708 u32 u = 0;
709 zNum += 2;
710 while( zNum[0]=='0' ) zNum++;
711 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
712 u = u*16 + sqlite3HexToInt(zNum[i]);
714 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
715 memcpy(pValue, &u, 4);
716 return 1;
717 }else{
718 return 0;
721 #endif
722 if( !sqlite3Isdigit(zNum[0]) ) return 0;
723 while( zNum[0]=='0' ) zNum++;
724 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
725 v = v*10 + c;
728 /* The longest decimal representation of a 32 bit integer is 10 digits:
730 ** 1234567890
731 ** 2^31 -> 2147483648
733 testcase( i==10 );
734 if( i>10 ){
735 return 0;
737 testcase( v-neg==2147483647 );
738 if( v-neg>2147483647 ){
739 return 0;
741 if( neg ){
742 v = -v;
744 *pValue = (int)v;
745 return 1;
749 ** Return a 32-bit integer value extracted from a string. If the
750 ** string is not an integer, just return 0.
752 int sqlite3Atoi(const char *z){
753 int x = 0;
754 if( z ) sqlite3GetInt32(z, &x);
755 return x;
759 ** The variable-length integer encoding is as follows:
761 ** KEY:
762 ** A = 0xxxxxxx 7 bits of data and one flag bit
763 ** B = 1xxxxxxx 7 bits of data and one flag bit
764 ** C = xxxxxxxx 8 bits of data
766 ** 7 bits - A
767 ** 14 bits - BA
768 ** 21 bits - BBA
769 ** 28 bits - BBBA
770 ** 35 bits - BBBBA
771 ** 42 bits - BBBBBA
772 ** 49 bits - BBBBBBA
773 ** 56 bits - BBBBBBBA
774 ** 64 bits - BBBBBBBBC
778 ** Write a 64-bit variable-length integer to memory starting at p[0].
779 ** The length of data write will be between 1 and 9 bytes. The number
780 ** of bytes written is returned.
782 ** A variable-length integer consists of the lower 7 bits of each byte
783 ** for all bytes that have the 8th bit set and one byte with the 8th
784 ** bit clear. Except, if we get to the 9th byte, it stores the full
785 ** 8 bits and is the last byte.
787 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
788 int i, j, n;
789 u8 buf[10];
790 if( v & (((u64)0xff000000)<<32) ){
791 p[8] = (u8)v;
792 v >>= 8;
793 for(i=7; i>=0; i--){
794 p[i] = (u8)((v & 0x7f) | 0x80);
795 v >>= 7;
797 return 9;
799 n = 0;
801 buf[n++] = (u8)((v & 0x7f) | 0x80);
802 v >>= 7;
803 }while( v!=0 );
804 buf[0] &= 0x7f;
805 assert( n<=9 );
806 for(i=0, j=n-1; j>=0; j--, i++){
807 p[i] = buf[j];
809 return n;
811 int sqlite3PutVarint(unsigned char *p, u64 v){
812 if( v<=0x7f ){
813 p[0] = v&0x7f;
814 return 1;
816 if( v<=0x3fff ){
817 p[0] = ((v>>7)&0x7f)|0x80;
818 p[1] = v&0x7f;
819 return 2;
821 return putVarint64(p,v);
825 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
826 ** are defined here rather than simply putting the constant expressions
827 ** inline in order to work around bugs in the RVT compiler.
829 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
831 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
833 #define SLOT_2_0 0x001fc07f
834 #define SLOT_4_2_0 0xf01fc07f
838 ** Read a 64-bit variable-length integer from memory starting at p[0].
839 ** Return the number of bytes read. The value is stored in *v.
841 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
842 u32 a,b,s;
844 a = *p;
845 /* a: p0 (unmasked) */
846 if (!(a&0x80))
848 *v = a;
849 return 1;
852 p++;
853 b = *p;
854 /* b: p1 (unmasked) */
855 if (!(b&0x80))
857 a &= 0x7f;
858 a = a<<7;
859 a |= b;
860 *v = a;
861 return 2;
864 /* Verify that constants are precomputed correctly */
865 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
866 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
868 p++;
869 a = a<<14;
870 a |= *p;
871 /* a: p0<<14 | p2 (unmasked) */
872 if (!(a&0x80))
874 a &= SLOT_2_0;
875 b &= 0x7f;
876 b = b<<7;
877 a |= b;
878 *v = a;
879 return 3;
882 /* CSE1 from below */
883 a &= SLOT_2_0;
884 p++;
885 b = b<<14;
886 b |= *p;
887 /* b: p1<<14 | p3 (unmasked) */
888 if (!(b&0x80))
890 b &= SLOT_2_0;
891 /* moved CSE1 up */
892 /* a &= (0x7f<<14)|(0x7f); */
893 a = a<<7;
894 a |= b;
895 *v = a;
896 return 4;
899 /* a: p0<<14 | p2 (masked) */
900 /* b: p1<<14 | p3 (unmasked) */
901 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
902 /* moved CSE1 up */
903 /* a &= (0x7f<<14)|(0x7f); */
904 b &= SLOT_2_0;
905 s = a;
906 /* s: p0<<14 | p2 (masked) */
908 p++;
909 a = a<<14;
910 a |= *p;
911 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
912 if (!(a&0x80))
914 /* we can skip these cause they were (effectively) done above
915 ** while calculating s */
916 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
917 /* b &= (0x7f<<14)|(0x7f); */
918 b = b<<7;
919 a |= b;
920 s = s>>18;
921 *v = ((u64)s)<<32 | a;
922 return 5;
925 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
926 s = s<<7;
927 s |= b;
928 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
930 p++;
931 b = b<<14;
932 b |= *p;
933 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
934 if (!(b&0x80))
936 /* we can skip this cause it was (effectively) done above in calc'ing s */
937 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
938 a &= SLOT_2_0;
939 a = a<<7;
940 a |= b;
941 s = s>>18;
942 *v = ((u64)s)<<32 | a;
943 return 6;
946 p++;
947 a = a<<14;
948 a |= *p;
949 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
950 if (!(a&0x80))
952 a &= SLOT_4_2_0;
953 b &= SLOT_2_0;
954 b = b<<7;
955 a |= b;
956 s = s>>11;
957 *v = ((u64)s)<<32 | a;
958 return 7;
961 /* CSE2 from below */
962 a &= SLOT_2_0;
963 p++;
964 b = b<<14;
965 b |= *p;
966 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
967 if (!(b&0x80))
969 b &= SLOT_4_2_0;
970 /* moved CSE2 up */
971 /* a &= (0x7f<<14)|(0x7f); */
972 a = a<<7;
973 a |= b;
974 s = s>>4;
975 *v = ((u64)s)<<32 | a;
976 return 8;
979 p++;
980 a = a<<15;
981 a |= *p;
982 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
984 /* moved CSE2 up */
985 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
986 b &= SLOT_2_0;
987 b = b<<8;
988 a |= b;
990 s = s<<4;
991 b = p[-4];
992 b &= 0x7f;
993 b = b>>3;
994 s |= b;
996 *v = ((u64)s)<<32 | a;
998 return 9;
1002 ** Read a 32-bit variable-length integer from memory starting at p[0].
1003 ** Return the number of bytes read. The value is stored in *v.
1005 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1006 ** integer, then set *v to 0xffffffff.
1008 ** A MACRO version, getVarint32, is provided which inlines the
1009 ** single-byte case. All code should use the MACRO version as
1010 ** this function assumes the single-byte case has already been handled.
1012 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1013 u32 a,b;
1015 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1016 ** by the getVarin32() macro */
1017 a = *p;
1018 /* a: p0 (unmasked) */
1019 #ifndef getVarint32
1020 if (!(a&0x80))
1022 /* Values between 0 and 127 */
1023 *v = a;
1024 return 1;
1026 #endif
1028 /* The 2-byte case */
1029 p++;
1030 b = *p;
1031 /* b: p1 (unmasked) */
1032 if (!(b&0x80))
1034 /* Values between 128 and 16383 */
1035 a &= 0x7f;
1036 a = a<<7;
1037 *v = a | b;
1038 return 2;
1041 /* The 3-byte case */
1042 p++;
1043 a = a<<14;
1044 a |= *p;
1045 /* a: p0<<14 | p2 (unmasked) */
1046 if (!(a&0x80))
1048 /* Values between 16384 and 2097151 */
1049 a &= (0x7f<<14)|(0x7f);
1050 b &= 0x7f;
1051 b = b<<7;
1052 *v = a | b;
1053 return 3;
1056 /* A 32-bit varint is used to store size information in btrees.
1057 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1058 ** A 3-byte varint is sufficient, for example, to record the size
1059 ** of a 1048569-byte BLOB or string.
1061 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1062 ** rare larger cases can be handled by the slower 64-bit varint
1063 ** routine.
1065 #if 1
1067 u64 v64;
1068 u8 n;
1070 p -= 2;
1071 n = sqlite3GetVarint(p, &v64);
1072 assert( n>3 && n<=9 );
1073 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1074 *v = 0xffffffff;
1075 }else{
1076 *v = (u32)v64;
1078 return n;
1081 #else
1082 /* For following code (kept for historical record only) shows an
1083 ** unrolling for the 3- and 4-byte varint cases. This code is
1084 ** slightly faster, but it is also larger and much harder to test.
1086 p++;
1087 b = b<<14;
1088 b |= *p;
1089 /* b: p1<<14 | p3 (unmasked) */
1090 if (!(b&0x80))
1092 /* Values between 2097152 and 268435455 */
1093 b &= (0x7f<<14)|(0x7f);
1094 a &= (0x7f<<14)|(0x7f);
1095 a = a<<7;
1096 *v = a | b;
1097 return 4;
1100 p++;
1101 a = a<<14;
1102 a |= *p;
1103 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1104 if (!(a&0x80))
1106 /* Values between 268435456 and 34359738367 */
1107 a &= SLOT_4_2_0;
1108 b &= SLOT_4_2_0;
1109 b = b<<7;
1110 *v = a | b;
1111 return 5;
1114 /* We can only reach this point when reading a corrupt database
1115 ** file. In that case we are not in any hurry. Use the (relatively
1116 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1117 ** value. */
1119 u64 v64;
1120 u8 n;
1122 p -= 4;
1123 n = sqlite3GetVarint(p, &v64);
1124 assert( n>5 && n<=9 );
1125 *v = (u32)v64;
1126 return n;
1128 #endif
1132 ** Return the number of bytes that will be needed to store the given
1133 ** 64-bit integer.
1135 int sqlite3VarintLen(u64 v){
1136 int i;
1137 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1138 return i;
1143 ** Read or write a four-byte big-endian integer value.
1145 u32 sqlite3Get4byte(const u8 *p){
1146 #if SQLITE_BYTEORDER==4321
1147 u32 x;
1148 memcpy(&x,p,4);
1149 return x;
1150 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1151 u32 x;
1152 memcpy(&x,p,4);
1153 return __builtin_bswap32(x);
1154 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1155 u32 x;
1156 memcpy(&x,p,4);
1157 return _byteswap_ulong(x);
1158 #else
1159 testcase( p[0]&0x80 );
1160 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1161 #endif
1163 void sqlite3Put4byte(unsigned char *p, u32 v){
1164 #if SQLITE_BYTEORDER==4321
1165 memcpy(p,&v,4);
1166 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1167 u32 x = __builtin_bswap32(v);
1168 memcpy(p,&x,4);
1169 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1170 u32 x = _byteswap_ulong(v);
1171 memcpy(p,&x,4);
1172 #else
1173 p[0] = (u8)(v>>24);
1174 p[1] = (u8)(v>>16);
1175 p[2] = (u8)(v>>8);
1176 p[3] = (u8)v;
1177 #endif
1183 ** Translate a single byte of Hex into an integer.
1184 ** This routine only works if h really is a valid hexadecimal
1185 ** character: 0..9a..fA..F
1187 u8 sqlite3HexToInt(int h){
1188 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1189 #ifdef SQLITE_ASCII
1190 h += 9*(1&(h>>6));
1191 #endif
1192 #ifdef SQLITE_EBCDIC
1193 h += 9*(1&~(h>>4));
1194 #endif
1195 return (u8)(h & 0xf);
1198 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1200 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1201 ** value. Return a pointer to its binary value. Space to hold the
1202 ** binary value has been obtained from malloc and must be freed by
1203 ** the calling routine.
1205 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1206 char *zBlob;
1207 int i;
1209 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1210 n--;
1211 if( zBlob ){
1212 for(i=0; i<n; i+=2){
1213 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1215 zBlob[i/2] = 0;
1217 return zBlob;
1219 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1222 ** Log an error that is an API call on a connection pointer that should
1223 ** not have been used. The "type" of connection pointer is given as the
1224 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1226 static void logBadConnection(const char *zType){
1227 sqlite3_log(SQLITE_MISUSE,
1228 "API call with %s database connection pointer",
1229 zType
1234 ** Check to make sure we have a valid db pointer. This test is not
1235 ** foolproof but it does provide some measure of protection against
1236 ** misuse of the interface such as passing in db pointers that are
1237 ** NULL or which have been previously closed. If this routine returns
1238 ** 1 it means that the db pointer is valid and 0 if it should not be
1239 ** dereferenced for any reason. The calling function should invoke
1240 ** SQLITE_MISUSE immediately.
1242 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1243 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1244 ** open properly and is not fit for general use but which can be
1245 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1247 int sqlite3SafetyCheckOk(sqlite3 *db){
1248 u32 magic;
1249 if( db==0 ){
1250 logBadConnection("NULL");
1251 return 0;
1253 magic = db->magic;
1254 if( magic!=SQLITE_MAGIC_OPEN ){
1255 if( sqlite3SafetyCheckSickOrOk(db) ){
1256 testcase( sqlite3GlobalConfig.xLog!=0 );
1257 logBadConnection("unopened");
1259 return 0;
1260 }else{
1261 return 1;
1264 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1265 u32 magic;
1266 magic = db->magic;
1267 if( magic!=SQLITE_MAGIC_SICK &&
1268 magic!=SQLITE_MAGIC_OPEN &&
1269 magic!=SQLITE_MAGIC_BUSY ){
1270 testcase( sqlite3GlobalConfig.xLog!=0 );
1271 logBadConnection("invalid");
1272 return 0;
1273 }else{
1274 return 1;
1279 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1280 ** the other 64-bit signed integer at *pA and store the result in *pA.
1281 ** Return 0 on success. Or if the operation would have resulted in an
1282 ** overflow, leave *pA unchanged and return 1.
1284 int sqlite3AddInt64(i64 *pA, i64 iB){
1285 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1286 return __builtin_add_overflow(*pA, iB, pA);
1287 #else
1288 i64 iA = *pA;
1289 testcase( iA==0 ); testcase( iA==1 );
1290 testcase( iB==-1 ); testcase( iB==0 );
1291 if( iB>=0 ){
1292 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1293 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1294 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1295 }else{
1296 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1297 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1298 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1300 *pA += iB;
1301 return 0;
1302 #endif
1304 int sqlite3SubInt64(i64 *pA, i64 iB){
1305 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1306 return __builtin_sub_overflow(*pA, iB, pA);
1307 #else
1308 testcase( iB==SMALLEST_INT64+1 );
1309 if( iB==SMALLEST_INT64 ){
1310 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1311 if( (*pA)>=0 ) return 1;
1312 *pA -= iB;
1313 return 0;
1314 }else{
1315 return sqlite3AddInt64(pA, -iB);
1317 #endif
1319 int sqlite3MulInt64(i64 *pA, i64 iB){
1320 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1321 return __builtin_mul_overflow(*pA, iB, pA);
1322 #else
1323 i64 iA = *pA;
1324 if( iB>0 ){
1325 if( iA>LARGEST_INT64/iB ) return 1;
1326 if( iA<SMALLEST_INT64/iB ) return 1;
1327 }else if( iB<0 ){
1328 if( iA>0 ){
1329 if( iB<SMALLEST_INT64/iA ) return 1;
1330 }else if( iA<0 ){
1331 if( iB==SMALLEST_INT64 ) return 1;
1332 if( iA==SMALLEST_INT64 ) return 1;
1333 if( -iA>LARGEST_INT64/-iB ) return 1;
1336 *pA = iA*iB;
1337 return 0;
1338 #endif
1342 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1343 ** if the integer has a value of -2147483648, return +2147483647
1345 int sqlite3AbsInt32(int x){
1346 if( x>=0 ) return x;
1347 if( x==(int)0x80000000 ) return 0x7fffffff;
1348 return -x;
1351 #ifdef SQLITE_ENABLE_8_3_NAMES
1353 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1354 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1355 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1356 ** three characters, then shorten the suffix on z[] to be the last three
1357 ** characters of the original suffix.
1359 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1360 ** do the suffix shortening regardless of URI parameter.
1362 ** Examples:
1364 ** test.db-journal => test.nal
1365 ** test.db-wal => test.wal
1366 ** test.db-shm => test.shm
1367 ** test.db-mj7f3319fa => test.9fa
1369 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1370 #if SQLITE_ENABLE_8_3_NAMES<2
1371 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1372 #endif
1374 int i, sz;
1375 sz = sqlite3Strlen30(z);
1376 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1377 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1380 #endif
1383 ** Find (an approximate) sum of two LogEst values. This computation is
1384 ** not a simple "+" operator because LogEst is stored as a logarithmic
1385 ** value.
1388 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1389 static const unsigned char x[] = {
1390 10, 10, /* 0,1 */
1391 9, 9, /* 2,3 */
1392 8, 8, /* 4,5 */
1393 7, 7, 7, /* 6,7,8 */
1394 6, 6, 6, /* 9,10,11 */
1395 5, 5, 5, /* 12-14 */
1396 4, 4, 4, 4, /* 15-18 */
1397 3, 3, 3, 3, 3, 3, /* 19-24 */
1398 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1400 if( a>=b ){
1401 if( a>b+49 ) return a;
1402 if( a>b+31 ) return a+1;
1403 return a+x[a-b];
1404 }else{
1405 if( b>a+49 ) return b;
1406 if( b>a+31 ) return b+1;
1407 return b+x[b-a];
1412 ** Convert an integer into a LogEst. In other words, compute an
1413 ** approximation for 10*log2(x).
1415 LogEst sqlite3LogEst(u64 x){
1416 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1417 LogEst y = 40;
1418 if( x<8 ){
1419 if( x<2 ) return 0;
1420 while( x<8 ){ y -= 10; x <<= 1; }
1421 }else{
1422 #if GCC_VERSION>=5004000
1423 int i = 60 - __builtin_clzll(x);
1424 y += i*10;
1425 x >>= i;
1426 #else
1427 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1428 while( x>15 ){ y += 10; x >>= 1; }
1429 #endif
1431 return a[x&7] + y - 10;
1434 #ifndef SQLITE_OMIT_VIRTUALTABLE
1436 ** Convert a double into a LogEst
1437 ** In other words, compute an approximation for 10*log2(x).
1439 LogEst sqlite3LogEstFromDouble(double x){
1440 u64 a;
1441 LogEst e;
1442 assert( sizeof(x)==8 && sizeof(a)==8 );
1443 if( x<=1 ) return 0;
1444 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1445 memcpy(&a, &x, 8);
1446 e = (a>>52) - 1022;
1447 return e*10;
1449 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1451 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1452 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1453 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1455 ** Convert a LogEst into an integer.
1457 ** Note that this routine is only used when one or more of various
1458 ** non-standard compile-time options is enabled.
1460 u64 sqlite3LogEstToInt(LogEst x){
1461 u64 n;
1462 n = x%10;
1463 x /= 10;
1464 if( n>=5 ) n -= 2;
1465 else if( n>=1 ) n -= 1;
1466 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1467 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1468 if( x>60 ) return (u64)LARGEST_INT64;
1469 #else
1470 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1471 ** possible to this routine is 310, resulting in a maximum x of 31 */
1472 assert( x<=60 );
1473 #endif
1474 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1476 #endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
1479 ** Add a new name/number pair to a VList. This might require that the
1480 ** VList object be reallocated, so return the new VList. If an OOM
1481 ** error occurs, the original VList returned and the
1482 ** db->mallocFailed flag is set.
1484 ** A VList is really just an array of integers. To destroy a VList,
1485 ** simply pass it to sqlite3DbFree().
1487 ** The first integer is the number of integers allocated for the whole
1488 ** VList. The second integer is the number of integers actually used.
1489 ** Each name/number pair is encoded by subsequent groups of 3 or more
1490 ** integers.
1492 ** Each name/number pair starts with two integers which are the numeric
1493 ** value for the pair and the size of the name/number pair, respectively.
1494 ** The text name overlays one or more following integers. The text name
1495 ** is always zero-terminated.
1497 ** Conceptually:
1499 ** struct VList {
1500 ** int nAlloc; // Number of allocated slots
1501 ** int nUsed; // Number of used slots
1502 ** struct VListEntry {
1503 ** int iValue; // Value for this entry
1504 ** int nSlot; // Slots used by this entry
1505 ** // ... variable name goes here
1506 ** } a[0];
1507 ** }
1509 ** During code generation, pointers to the variable names within the
1510 ** VList are taken. When that happens, nAlloc is set to zero as an
1511 ** indication that the VList may never again be enlarged, since the
1512 ** accompanying realloc() would invalidate the pointers.
1514 VList *sqlite3VListAdd(
1515 sqlite3 *db, /* The database connection used for malloc() */
1516 VList *pIn, /* The input VList. Might be NULL */
1517 const char *zName, /* Name of symbol to add */
1518 int nName, /* Bytes of text in zName */
1519 int iVal /* Value to associate with zName */
1521 int nInt; /* number of sizeof(int) objects needed for zName */
1522 char *z; /* Pointer to where zName will be stored */
1523 int i; /* Index in pIn[] where zName is stored */
1525 nInt = nName/4 + 3;
1526 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1527 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1528 /* Enlarge the allocation */
1529 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1530 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1531 if( pOut==0 ) return pIn;
1532 if( pIn==0 ) pOut[1] = 2;
1533 pIn = pOut;
1534 pIn[0] = nAlloc;
1536 i = pIn[1];
1537 pIn[i] = iVal;
1538 pIn[i+1] = nInt;
1539 z = (char*)&pIn[i+2];
1540 pIn[1] = i+nInt;
1541 assert( pIn[1]<=pIn[0] );
1542 memcpy(z, zName, nName);
1543 z[nName] = 0;
1544 return pIn;
1548 ** Return a pointer to the name of a variable in the given VList that
1549 ** has the value iVal. Or return a NULL if there is no such variable in
1550 ** the list
1552 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1553 int i, mx;
1554 if( pIn==0 ) return 0;
1555 mx = pIn[1];
1556 i = 2;
1558 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1559 i += pIn[i+1];
1560 }while( i<mx );
1561 return 0;
1565 ** Return the number of the variable named zName, if it is in VList.
1566 ** or return 0 if there is no such variable.
1568 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1569 int i, mx;
1570 if( pIn==0 ) return 0;
1571 mx = pIn[1];
1572 i = 2;
1574 const char *z = (const char*)&pIn[i+2];
1575 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1576 i += pIn[i+1];
1577 }while( i<mx );
1578 return 0;