Update README.md
[sqlcipher.git] / src / vdbemem.c
blob570a2eb38c1715e2e2e34930145ea765ad9a7f1a
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
26 #ifdef SQLITE_DEBUG
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
48 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
78 || (p->flags==MEM_Undefined
79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
91 assert(
92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
98 return 1;
100 #endif
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104 ** into a buffer.
106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107 StrAccum acc;
108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
109 assert( sz>22 );
110 if( p->flags & MEM_Int ){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114 i64 x;
115 assert( (p->flags&MEM_Int)*2==sizeof(x) );
116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
117 sqlite3Int64ToText(x, zBuf);
118 #else
119 sqlite3Int64ToText(p->u.i, zBuf);
120 #endif
121 }else{
122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123 sqlite3_str_appendf(&acc, "%!.15g",
124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
130 #ifdef SQLITE_DEBUG
132 ** Validity checks on pMem. pMem holds a string.
134 ** (1) Check that string value of pMem agrees with its integer or real value.
135 ** (2) Check that the string is correctly zero terminated
137 ** A single int or real value always converts to the same strings. But
138 ** many different strings can be converted into the same int or real.
139 ** If a table contains a numeric value and an index is based on the
140 ** corresponding string value, then it is important that the string be
141 ** derived from the numeric value, not the other way around, to ensure
142 ** that the index and table are consistent. See ticket
143 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
144 ** an example.
146 ** This routine looks at pMem to verify that if it has both a numeric
147 ** representation and a string representation then the string rep has
148 ** been derived from the numeric and not the other way around. It returns
149 ** true if everything is ok and false if there is a problem.
151 ** This routine is for use inside of assert() statements only.
153 int sqlite3VdbeMemValidStrRep(Mem *p){
154 char zBuf[100];
155 char *z;
156 int i, j, incr;
157 if( (p->flags & MEM_Str)==0 ) return 1;
158 if( p->flags & MEM_Term ){
159 /* Insure that the string is properly zero-terminated. Pay particular
160 ** attention to the case where p->n is odd */
161 if( p->szMalloc>0 && p->z==p->zMalloc ){
162 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
163 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
165 assert( p->z[p->n]==0 );
166 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
167 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
169 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
170 vdbeMemRenderNum(sizeof(zBuf), zBuf, p);
171 z = p->z;
172 i = j = 0;
173 incr = 1;
174 if( p->enc!=SQLITE_UTF8 ){
175 incr = 2;
176 if( p->enc==SQLITE_UTF16BE ) z++;
178 while( zBuf[j] ){
179 if( zBuf[j++]!=z[i] ) return 0;
180 i += incr;
182 return 1;
184 #endif /* SQLITE_DEBUG */
187 ** If pMem is an object with a valid string representation, this routine
188 ** ensures the internal encoding for the string representation is
189 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
191 ** If pMem is not a string object, or the encoding of the string
192 ** representation is already stored using the requested encoding, then this
193 ** routine is a no-op.
195 ** SQLITE_OK is returned if the conversion is successful (or not required).
196 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
197 ** between formats.
199 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
200 #ifndef SQLITE_OMIT_UTF16
201 int rc;
202 #endif
203 assert( pMem!=0 );
204 assert( !sqlite3VdbeMemIsRowSet(pMem) );
205 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
206 || desiredEnc==SQLITE_UTF16BE );
207 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
208 return SQLITE_OK;
210 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
211 #ifdef SQLITE_OMIT_UTF16
212 return SQLITE_ERROR;
213 #else
215 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
216 ** then the encoding of the value may not have changed.
218 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
219 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
220 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
221 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
222 return rc;
223 #endif
227 ** Make sure pMem->z points to a writable allocation of at least n bytes.
229 ** If the bPreserve argument is true, then copy of the content of
230 ** pMem->z into the new allocation. pMem must be either a string or
231 ** blob if bPreserve is true. If bPreserve is false, any prior content
232 ** in pMem->z is discarded.
234 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
235 assert( sqlite3VdbeCheckMemInvariants(pMem) );
236 assert( !sqlite3VdbeMemIsRowSet(pMem) );
237 testcase( pMem->db==0 );
239 /* If the bPreserve flag is set to true, then the memory cell must already
240 ** contain a valid string or blob value. */
241 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
242 testcase( bPreserve && pMem->z==0 );
244 assert( pMem->szMalloc==0
245 || (pMem->flags==MEM_Undefined
246 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
247 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
248 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
249 if( pMem->db ){
250 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
251 }else{
252 pMem->zMalloc = sqlite3Realloc(pMem->z, n);
253 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
254 pMem->z = pMem->zMalloc;
256 bPreserve = 0;
257 }else{
258 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
259 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
261 if( pMem->zMalloc==0 ){
262 sqlite3VdbeMemSetNull(pMem);
263 pMem->z = 0;
264 pMem->szMalloc = 0;
265 return SQLITE_NOMEM_BKPT;
266 }else{
267 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
270 if( bPreserve && pMem->z ){
271 assert( pMem->z!=pMem->zMalloc );
272 memcpy(pMem->zMalloc, pMem->z, pMem->n);
274 if( (pMem->flags&MEM_Dyn)!=0 ){
275 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
276 pMem->xDel((void *)(pMem->z));
279 pMem->z = pMem->zMalloc;
280 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
281 return SQLITE_OK;
285 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
286 ** If pMem->zMalloc already meets or exceeds the requested size, this
287 ** routine is a no-op.
289 ** Any prior string or blob content in the pMem object may be discarded.
290 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
291 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
292 ** and MEM_Null values are preserved.
294 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
295 ** if unable to complete the resizing.
297 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
298 assert( CORRUPT_DB || szNew>0 );
299 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
300 if( pMem->szMalloc<szNew ){
301 return sqlite3VdbeMemGrow(pMem, szNew, 0);
303 assert( (pMem->flags & MEM_Dyn)==0 );
304 pMem->z = pMem->zMalloc;
305 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
306 return SQLITE_OK;
310 ** It is already known that pMem contains an unterminated string.
311 ** Add the zero terminator.
313 ** Three bytes of zero are added. In this way, there is guaranteed
314 ** to be a double-zero byte at an even byte boundary in order to
315 ** terminate a UTF16 string, even if the initial size of the buffer
316 ** is an odd number of bytes.
318 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
319 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
320 return SQLITE_NOMEM_BKPT;
322 pMem->z[pMem->n] = 0;
323 pMem->z[pMem->n+1] = 0;
324 pMem->z[pMem->n+2] = 0;
325 pMem->flags |= MEM_Term;
326 return SQLITE_OK;
330 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
331 ** MEM.zMalloc, where it can be safely written.
333 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
335 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
336 assert( pMem!=0 );
337 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
338 assert( !sqlite3VdbeMemIsRowSet(pMem) );
339 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
340 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
341 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
342 int rc = vdbeMemAddTerminator(pMem);
343 if( rc ) return rc;
346 pMem->flags &= ~MEM_Ephem;
347 #ifdef SQLITE_DEBUG
348 pMem->pScopyFrom = 0;
349 #endif
351 return SQLITE_OK;
355 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
356 ** blob stored in dynamically allocated space.
358 #ifndef SQLITE_OMIT_INCRBLOB
359 int sqlite3VdbeMemExpandBlob(Mem *pMem){
360 int nByte;
361 assert( pMem!=0 );
362 assert( pMem->flags & MEM_Zero );
363 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
364 testcase( sqlite3_value_nochange(pMem) );
365 assert( !sqlite3VdbeMemIsRowSet(pMem) );
366 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
368 /* Set nByte to the number of bytes required to store the expanded blob. */
369 nByte = pMem->n + pMem->u.nZero;
370 if( nByte<=0 ){
371 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
372 nByte = 1;
374 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
375 return SQLITE_NOMEM_BKPT;
377 assert( pMem->z!=0 );
378 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
380 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
381 pMem->n += pMem->u.nZero;
382 pMem->flags &= ~(MEM_Zero|MEM_Term);
383 return SQLITE_OK;
385 #endif
388 ** Make sure the given Mem is \u0000 terminated.
390 int sqlite3VdbeMemNulTerminate(Mem *pMem){
391 assert( pMem!=0 );
392 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
393 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
394 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
395 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
396 return SQLITE_OK; /* Nothing to do */
397 }else{
398 return vdbeMemAddTerminator(pMem);
403 ** Add MEM_Str to the set of representations for the given Mem. This
404 ** routine is only called if pMem is a number of some kind, not a NULL
405 ** or a BLOB.
407 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
408 ** if bForce is true but are retained if bForce is false.
410 ** A MEM_Null value will never be passed to this function. This function is
411 ** used for converting values to text for returning to the user (i.e. via
412 ** sqlite3_value_text()), or for ensuring that values to be used as btree
413 ** keys are strings. In the former case a NULL pointer is returned the
414 ** user and the latter is an internal programming error.
416 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
417 const int nByte = 32;
419 assert( pMem!=0 );
420 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
421 assert( !(pMem->flags&MEM_Zero) );
422 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
423 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
424 assert( !sqlite3VdbeMemIsRowSet(pMem) );
425 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
428 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
429 pMem->enc = 0;
430 return SQLITE_NOMEM_BKPT;
433 vdbeMemRenderNum(nByte, pMem->z, pMem);
434 assert( pMem->z!=0 );
435 pMem->n = sqlite3Strlen30NN(pMem->z);
436 pMem->enc = SQLITE_UTF8;
437 pMem->flags |= MEM_Str|MEM_Term;
438 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
439 sqlite3VdbeChangeEncoding(pMem, enc);
440 return SQLITE_OK;
444 ** Memory cell pMem contains the context of an aggregate function.
445 ** This routine calls the finalize method for that function. The
446 ** result of the aggregate is stored back into pMem.
448 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
449 ** otherwise.
451 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
452 sqlite3_context ctx;
453 Mem t;
454 assert( pFunc!=0 );
455 assert( pMem!=0 );
456 assert( pFunc->xFinalize!=0 );
457 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
458 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
459 memset(&ctx, 0, sizeof(ctx));
460 memset(&t, 0, sizeof(t));
461 t.flags = MEM_Null;
462 t.db = pMem->db;
463 ctx.pOut = &t;
464 ctx.pMem = pMem;
465 ctx.pFunc = pFunc;
466 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
467 assert( (pMem->flags & MEM_Dyn)==0 );
468 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
469 memcpy(pMem, &t, sizeof(t));
470 return ctx.isError;
474 ** Memory cell pAccum contains the context of an aggregate function.
475 ** This routine calls the xValue method for that function and stores
476 ** the results in memory cell pMem.
478 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
479 ** otherwise.
481 #ifndef SQLITE_OMIT_WINDOWFUNC
482 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
483 sqlite3_context ctx;
484 assert( pFunc!=0 );
485 assert( pFunc->xValue!=0 );
486 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
487 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
488 memset(&ctx, 0, sizeof(ctx));
489 sqlite3VdbeMemSetNull(pOut);
490 ctx.pOut = pOut;
491 ctx.pMem = pAccum;
492 ctx.pFunc = pFunc;
493 pFunc->xValue(&ctx);
494 return ctx.isError;
496 #endif /* SQLITE_OMIT_WINDOWFUNC */
499 ** If the memory cell contains a value that must be freed by
500 ** invoking the external callback in Mem.xDel, then this routine
501 ** will free that value. It also sets Mem.flags to MEM_Null.
503 ** This is a helper routine for sqlite3VdbeMemSetNull() and
504 ** for sqlite3VdbeMemRelease(). Use those other routines as the
505 ** entry point for releasing Mem resources.
507 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
508 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
509 assert( VdbeMemDynamic(p) );
510 if( p->flags&MEM_Agg ){
511 sqlite3VdbeMemFinalize(p, p->u.pDef);
512 assert( (p->flags & MEM_Agg)==0 );
513 testcase( p->flags & MEM_Dyn );
515 if( p->flags&MEM_Dyn ){
516 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
517 p->xDel((void *)p->z);
519 p->flags = MEM_Null;
523 ** Release memory held by the Mem p, both external memory cleared
524 ** by p->xDel and memory in p->zMalloc.
526 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
527 ** the unusual case where there really is memory in p that needs
528 ** to be freed.
530 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
531 if( VdbeMemDynamic(p) ){
532 vdbeMemClearExternAndSetNull(p);
534 if( p->szMalloc ){
535 sqlite3DbFreeNN(p->db, p->zMalloc);
536 p->szMalloc = 0;
538 p->z = 0;
542 ** Release any memory resources held by the Mem. Both the memory that is
543 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
545 ** Use this routine prior to clean up prior to abandoning a Mem, or to
546 ** reset a Mem back to its minimum memory utilization.
548 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
549 ** prior to inserting new content into the Mem.
551 void sqlite3VdbeMemRelease(Mem *p){
552 assert( sqlite3VdbeCheckMemInvariants(p) );
553 if( VdbeMemDynamic(p) || p->szMalloc ){
554 vdbeMemClear(p);
559 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
560 ** If the double is out of range of a 64-bit signed integer then
561 ** return the closest available 64-bit signed integer.
563 static SQLITE_NOINLINE i64 doubleToInt64(double r){
564 #ifdef SQLITE_OMIT_FLOATING_POINT
565 /* When floating-point is omitted, double and int64 are the same thing */
566 return r;
567 #else
569 ** Many compilers we encounter do not define constants for the
570 ** minimum and maximum 64-bit integers, or they define them
571 ** inconsistently. And many do not understand the "LL" notation.
572 ** So we define our own static constants here using nothing
573 ** larger than a 32-bit integer constant.
575 static const i64 maxInt = LARGEST_INT64;
576 static const i64 minInt = SMALLEST_INT64;
578 if( r<=(double)minInt ){
579 return minInt;
580 }else if( r>=(double)maxInt ){
581 return maxInt;
582 }else{
583 return (i64)r;
585 #endif
589 ** Return some kind of integer value which is the best we can do
590 ** at representing the value that *pMem describes as an integer.
591 ** If pMem is an integer, then the value is exact. If pMem is
592 ** a floating-point then the value returned is the integer part.
593 ** If pMem is a string or blob, then we make an attempt to convert
594 ** it into an integer and return that. If pMem represents an
595 ** an SQL-NULL value, return 0.
597 ** If pMem represents a string value, its encoding might be changed.
599 static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
600 i64 value = 0;
601 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
602 return value;
604 i64 sqlite3VdbeIntValue(Mem *pMem){
605 int flags;
606 assert( pMem!=0 );
607 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
608 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
609 flags = pMem->flags;
610 if( flags & (MEM_Int|MEM_IntReal) ){
611 testcase( flags & MEM_IntReal );
612 return pMem->u.i;
613 }else if( flags & MEM_Real ){
614 return doubleToInt64(pMem->u.r);
615 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
616 return memIntValue(pMem);
617 }else{
618 return 0;
623 ** Return the best representation of pMem that we can get into a
624 ** double. If pMem is already a double or an integer, return its
625 ** value. If it is a string or blob, try to convert it to a double.
626 ** If it is a NULL, return 0.0.
628 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
629 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
630 double val = (double)0;
631 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
632 return val;
634 double sqlite3VdbeRealValue(Mem *pMem){
635 assert( pMem!=0 );
636 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
637 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
638 if( pMem->flags & MEM_Real ){
639 return pMem->u.r;
640 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
641 testcase( pMem->flags & MEM_IntReal );
642 return (double)pMem->u.i;
643 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
644 return memRealValue(pMem);
645 }else{
646 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
647 return (double)0;
652 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
653 ** Return the value ifNull if pMem is NULL.
655 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
656 testcase( pMem->flags & MEM_IntReal );
657 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
658 if( pMem->flags & MEM_Null ) return ifNull;
659 return sqlite3VdbeRealValue(pMem)!=0.0;
663 ** The MEM structure is already a MEM_Real. Try to also make it a
664 ** MEM_Int if we can.
666 void sqlite3VdbeIntegerAffinity(Mem *pMem){
667 i64 ix;
668 assert( pMem!=0 );
669 assert( pMem->flags & MEM_Real );
670 assert( !sqlite3VdbeMemIsRowSet(pMem) );
671 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
672 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
674 ix = doubleToInt64(pMem->u.r);
676 /* Only mark the value as an integer if
678 ** (1) the round-trip conversion real->int->real is a no-op, and
679 ** (2) The integer is neither the largest nor the smallest
680 ** possible integer (ticket #3922)
682 ** The second and third terms in the following conditional enforces
683 ** the second condition under the assumption that addition overflow causes
684 ** values to wrap around.
686 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
687 pMem->u.i = ix;
688 MemSetTypeFlag(pMem, MEM_Int);
693 ** Convert pMem to type integer. Invalidate any prior representations.
695 int sqlite3VdbeMemIntegerify(Mem *pMem){
696 assert( pMem!=0 );
697 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
698 assert( !sqlite3VdbeMemIsRowSet(pMem) );
699 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
701 pMem->u.i = sqlite3VdbeIntValue(pMem);
702 MemSetTypeFlag(pMem, MEM_Int);
703 return SQLITE_OK;
707 ** Convert pMem so that it is of type MEM_Real.
708 ** Invalidate any prior representations.
710 int sqlite3VdbeMemRealify(Mem *pMem){
711 assert( pMem!=0 );
712 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
713 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
715 pMem->u.r = sqlite3VdbeRealValue(pMem);
716 MemSetTypeFlag(pMem, MEM_Real);
717 return SQLITE_OK;
720 /* Compare a floating point value to an integer. Return true if the two
721 ** values are the same within the precision of the floating point value.
723 ** This function assumes that i was obtained by assignment from r1.
725 ** For some versions of GCC on 32-bit machines, if you do the more obvious
726 ** comparison of "r1==(double)i" you sometimes get an answer of false even
727 ** though the r1 and (double)i values are bit-for-bit the same.
729 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
730 double r2 = (double)i;
731 return r1==0.0
732 || (memcmp(&r1, &r2, sizeof(r1))==0
733 && i >= -2251799813685248LL && i < 2251799813685248LL);
737 ** Convert pMem so that it has type MEM_Real or MEM_Int.
738 ** Invalidate any prior representations.
740 ** Every effort is made to force the conversion, even if the input
741 ** is a string that does not look completely like a number. Convert
742 ** as much of the string as we can and ignore the rest.
744 int sqlite3VdbeMemNumerify(Mem *pMem){
745 assert( pMem!=0 );
746 testcase( pMem->flags & MEM_Int );
747 testcase( pMem->flags & MEM_Real );
748 testcase( pMem->flags & MEM_IntReal );
749 testcase( pMem->flags & MEM_Null );
750 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
751 int rc;
752 sqlite3_int64 ix;
753 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
754 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
755 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
756 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
757 || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r))
759 pMem->u.i = ix;
760 MemSetTypeFlag(pMem, MEM_Int);
761 }else{
762 MemSetTypeFlag(pMem, MEM_Real);
765 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
766 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
767 return SQLITE_OK;
771 ** Cast the datatype of the value in pMem according to the affinity
772 ** "aff". Casting is different from applying affinity in that a cast
773 ** is forced. In other words, the value is converted into the desired
774 ** affinity even if that results in loss of data. This routine is
775 ** used (for example) to implement the SQL "cast()" operator.
777 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
778 if( pMem->flags & MEM_Null ) return SQLITE_OK;
779 switch( aff ){
780 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
781 if( (pMem->flags & MEM_Blob)==0 ){
782 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
783 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
784 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
785 }else{
786 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
788 break;
790 case SQLITE_AFF_NUMERIC: {
791 sqlite3VdbeMemNumerify(pMem);
792 break;
794 case SQLITE_AFF_INTEGER: {
795 sqlite3VdbeMemIntegerify(pMem);
796 break;
798 case SQLITE_AFF_REAL: {
799 sqlite3VdbeMemRealify(pMem);
800 break;
802 default: {
803 assert( aff==SQLITE_AFF_TEXT );
804 assert( MEM_Str==(MEM_Blob>>3) );
805 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
806 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
807 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
808 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
809 return sqlite3VdbeChangeEncoding(pMem, encoding);
812 return SQLITE_OK;
816 ** Initialize bulk memory to be a consistent Mem object.
818 ** The minimum amount of initialization feasible is performed.
820 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
821 assert( (flags & ~MEM_TypeMask)==0 );
822 pMem->flags = flags;
823 pMem->db = db;
824 pMem->szMalloc = 0;
829 ** Delete any previous value and set the value stored in *pMem to NULL.
831 ** This routine calls the Mem.xDel destructor to dispose of values that
832 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
833 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
834 ** routine to invoke the destructor and deallocates Mem.zMalloc.
836 ** Use this routine to reset the Mem prior to insert a new value.
838 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
840 void sqlite3VdbeMemSetNull(Mem *pMem){
841 if( VdbeMemDynamic(pMem) ){
842 vdbeMemClearExternAndSetNull(pMem);
843 }else{
844 pMem->flags = MEM_Null;
847 void sqlite3ValueSetNull(sqlite3_value *p){
848 sqlite3VdbeMemSetNull((Mem*)p);
852 ** Delete any previous value and set the value to be a BLOB of length
853 ** n containing all zeros.
855 #ifndef SQLITE_OMIT_INCRBLOB
856 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
857 sqlite3VdbeMemRelease(pMem);
858 pMem->flags = MEM_Blob|MEM_Zero;
859 pMem->n = 0;
860 if( n<0 ) n = 0;
861 pMem->u.nZero = n;
862 pMem->enc = SQLITE_UTF8;
863 pMem->z = 0;
865 #else
866 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
867 int nByte = n>0?n:1;
868 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
869 return SQLITE_NOMEM_BKPT;
871 assert( pMem->z!=0 );
872 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
873 memset(pMem->z, 0, nByte);
874 pMem->n = n>0?n:0;
875 pMem->flags = MEM_Blob;
876 pMem->enc = SQLITE_UTF8;
877 return SQLITE_OK;
879 #endif
882 ** The pMem is known to contain content that needs to be destroyed prior
883 ** to a value change. So invoke the destructor, then set the value to
884 ** a 64-bit integer.
886 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
887 sqlite3VdbeMemSetNull(pMem);
888 pMem->u.i = val;
889 pMem->flags = MEM_Int;
893 ** Delete any previous value and set the value stored in *pMem to val,
894 ** manifest type INTEGER.
896 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
897 if( VdbeMemDynamic(pMem) ){
898 vdbeReleaseAndSetInt64(pMem, val);
899 }else{
900 pMem->u.i = val;
901 pMem->flags = MEM_Int;
905 /* A no-op destructor */
906 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
909 ** Set the value stored in *pMem should already be a NULL.
910 ** Also store a pointer to go with it.
912 void sqlite3VdbeMemSetPointer(
913 Mem *pMem,
914 void *pPtr,
915 const char *zPType,
916 void (*xDestructor)(void*)
918 assert( pMem->flags==MEM_Null );
919 pMem->u.zPType = zPType ? zPType : "";
920 pMem->z = pPtr;
921 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
922 pMem->eSubtype = 'p';
923 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
926 #ifndef SQLITE_OMIT_FLOATING_POINT
928 ** Delete any previous value and set the value stored in *pMem to val,
929 ** manifest type REAL.
931 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
932 sqlite3VdbeMemSetNull(pMem);
933 if( !sqlite3IsNaN(val) ){
934 pMem->u.r = val;
935 pMem->flags = MEM_Real;
938 #endif
940 #ifdef SQLITE_DEBUG
942 ** Return true if the Mem holds a RowSet object. This routine is intended
943 ** for use inside of assert() statements.
945 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
946 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
947 && pMem->xDel==sqlite3RowSetDelete;
949 #endif
952 ** Delete any previous value and set the value of pMem to be an
953 ** empty boolean index.
955 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
956 ** error occurs.
958 int sqlite3VdbeMemSetRowSet(Mem *pMem){
959 sqlite3 *db = pMem->db;
960 RowSet *p;
961 assert( db!=0 );
962 assert( !sqlite3VdbeMemIsRowSet(pMem) );
963 sqlite3VdbeMemRelease(pMem);
964 p = sqlite3RowSetInit(db);
965 if( p==0 ) return SQLITE_NOMEM;
966 pMem->z = (char*)p;
967 pMem->flags = MEM_Blob|MEM_Dyn;
968 pMem->xDel = sqlite3RowSetDelete;
969 return SQLITE_OK;
973 ** Return true if the Mem object contains a TEXT or BLOB that is
974 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
976 int sqlite3VdbeMemTooBig(Mem *p){
977 assert( p->db!=0 );
978 if( p->flags & (MEM_Str|MEM_Blob) ){
979 int n = p->n;
980 if( p->flags & MEM_Zero ){
981 n += p->u.nZero;
983 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
985 return 0;
988 #ifdef SQLITE_DEBUG
990 ** This routine prepares a memory cell for modification by breaking
991 ** its link to a shallow copy and by marking any current shallow
992 ** copies of this cell as invalid.
994 ** This is used for testing and debugging only - to help ensure that shallow
995 ** copies (created by OP_SCopy) are not misused.
997 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
998 int i;
999 Mem *pX;
1000 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
1001 if( pX->pScopyFrom==pMem ){
1002 u16 mFlags;
1003 if( pVdbe->db->flags & SQLITE_VdbeTrace ){
1004 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1005 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
1007 /* If pX is marked as a shallow copy of pMem, then try to verify that
1008 ** no significant changes have been made to pX since the OP_SCopy.
1009 ** A significant change would indicated a missed call to this
1010 ** function for pX. Minor changes, such as adding or removing a
1011 ** dual type, are allowed, as long as the underlying value is the
1012 ** same. */
1013 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
1014 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
1016 /* pMem is the register that is changing. But also mark pX as
1017 ** undefined so that we can quickly detect the shallow-copy error */
1018 pX->flags = MEM_Undefined;
1019 pX->pScopyFrom = 0;
1022 pMem->pScopyFrom = 0;
1024 #endif /* SQLITE_DEBUG */
1027 ** Make an shallow copy of pFrom into pTo. Prior contents of
1028 ** pTo are freed. The pFrom->z field is not duplicated. If
1029 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1030 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1032 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1033 vdbeMemClearExternAndSetNull(pTo);
1034 assert( !VdbeMemDynamic(pTo) );
1035 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1037 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1038 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1039 assert( pTo->db==pFrom->db );
1040 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1041 memcpy(pTo, pFrom, MEMCELLSIZE);
1042 if( (pFrom->flags&MEM_Static)==0 ){
1043 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1044 assert( srcType==MEM_Ephem || srcType==MEM_Static );
1045 pTo->flags |= srcType;
1050 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1051 ** freed before the copy is made.
1053 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1054 int rc = SQLITE_OK;
1056 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1057 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1058 memcpy(pTo, pFrom, MEMCELLSIZE);
1059 pTo->flags &= ~MEM_Dyn;
1060 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1061 if( 0==(pFrom->flags&MEM_Static) ){
1062 pTo->flags |= MEM_Ephem;
1063 rc = sqlite3VdbeMemMakeWriteable(pTo);
1067 return rc;
1071 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1072 ** freed. If pFrom contains ephemeral data, a copy is made.
1074 ** pFrom contains an SQL NULL when this routine returns.
1076 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1077 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1078 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1079 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1081 sqlite3VdbeMemRelease(pTo);
1082 memcpy(pTo, pFrom, sizeof(Mem));
1083 pFrom->flags = MEM_Null;
1084 pFrom->szMalloc = 0;
1088 ** Change the value of a Mem to be a string or a BLOB.
1090 ** The memory management strategy depends on the value of the xDel
1091 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1092 ** string is copied into a (possibly existing) buffer managed by the
1093 ** Mem structure. Otherwise, any existing buffer is freed and the
1094 ** pointer copied.
1096 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1097 ** size limit) then no memory allocation occurs. If the string can be
1098 ** stored without allocating memory, then it is. If a memory allocation
1099 ** is required to store the string, then value of pMem is unchanged. In
1100 ** either case, SQLITE_TOOBIG is returned.
1102 int sqlite3VdbeMemSetStr(
1103 Mem *pMem, /* Memory cell to set to string value */
1104 const char *z, /* String pointer */
1105 i64 n, /* Bytes in string, or negative */
1106 u8 enc, /* Encoding of z. 0 for BLOBs */
1107 void (*xDel)(void*) /* Destructor function */
1109 i64 nByte = n; /* New value for pMem->n */
1110 int iLimit; /* Maximum allowed string or blob size */
1111 u16 flags = 0; /* New value for pMem->flags */
1113 assert( pMem!=0 );
1114 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1115 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1117 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1118 if( !z ){
1119 sqlite3VdbeMemSetNull(pMem);
1120 return SQLITE_OK;
1123 if( pMem->db ){
1124 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1125 }else{
1126 iLimit = SQLITE_MAX_LENGTH;
1128 flags = (enc==0?MEM_Blob:MEM_Str);
1129 if( nByte<0 ){
1130 assert( enc!=0 );
1131 if( enc==SQLITE_UTF8 ){
1132 nByte = strlen(z);
1133 }else{
1134 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1136 flags |= MEM_Term;
1139 /* The following block sets the new values of Mem.z and Mem.xDel. It
1140 ** also sets a flag in local variable "flags" to indicate the memory
1141 ** management (one of MEM_Dyn or MEM_Static).
1143 if( xDel==SQLITE_TRANSIENT ){
1144 i64 nAlloc = nByte;
1145 if( flags&MEM_Term ){
1146 nAlloc += (enc==SQLITE_UTF8?1:2);
1148 if( nByte>iLimit ){
1149 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1151 testcase( nAlloc==0 );
1152 testcase( nAlloc==31 );
1153 testcase( nAlloc==32 );
1154 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1155 return SQLITE_NOMEM_BKPT;
1157 memcpy(pMem->z, z, nAlloc);
1158 }else{
1159 sqlite3VdbeMemRelease(pMem);
1160 pMem->z = (char *)z;
1161 if( xDel==SQLITE_DYNAMIC ){
1162 pMem->zMalloc = pMem->z;
1163 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1164 }else{
1165 pMem->xDel = xDel;
1166 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1170 pMem->n = (int)(nByte & 0x7fffffff);
1171 pMem->flags = flags;
1172 if( enc ){
1173 pMem->enc = enc;
1174 #ifdef SQLITE_ENABLE_SESSION
1175 }else if( pMem->db==0 ){
1176 pMem->enc = SQLITE_UTF8;
1177 #endif
1178 }else{
1179 assert( pMem->db!=0 );
1180 pMem->enc = ENC(pMem->db);
1183 #ifndef SQLITE_OMIT_UTF16
1184 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1185 return SQLITE_NOMEM_BKPT;
1187 #endif
1189 if( nByte>iLimit ){
1190 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1193 return SQLITE_OK;
1197 ** Move data out of a btree key or data field and into a Mem structure.
1198 ** The data is payload from the entry that pCur is currently pointing
1199 ** to. offset and amt determine what portion of the data or key to retrieve.
1200 ** The result is written into the pMem element.
1202 ** The pMem object must have been initialized. This routine will use
1203 ** pMem->zMalloc to hold the content from the btree, if possible. New
1204 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1205 ** is responsible for making sure that the pMem object is eventually
1206 ** destroyed.
1208 ** If this routine fails for any reason (malloc returns NULL or unable
1209 ** to read from the disk) then the pMem is left in an inconsistent state.
1211 int sqlite3VdbeMemFromBtree(
1212 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1213 u32 offset, /* Offset from the start of data to return bytes from. */
1214 u32 amt, /* Number of bytes to return. */
1215 Mem *pMem /* OUT: Return data in this Mem structure. */
1217 int rc;
1218 pMem->flags = MEM_Null;
1219 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1220 return SQLITE_CORRUPT_BKPT;
1222 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1223 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1224 if( rc==SQLITE_OK ){
1225 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1226 pMem->flags = MEM_Blob;
1227 pMem->n = (int)amt;
1228 }else{
1229 sqlite3VdbeMemRelease(pMem);
1232 return rc;
1234 int sqlite3VdbeMemFromBtreeZeroOffset(
1235 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1236 u32 amt, /* Number of bytes to return. */
1237 Mem *pMem /* OUT: Return data in this Mem structure. */
1239 u32 available = 0; /* Number of bytes available on the local btree page */
1240 int rc = SQLITE_OK; /* Return code */
1242 assert( sqlite3BtreeCursorIsValid(pCur) );
1243 assert( !VdbeMemDynamic(pMem) );
1245 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1246 ** that both the BtShared and database handle mutexes are held. */
1247 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1248 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1249 assert( pMem->z!=0 );
1251 if( amt<=available ){
1252 pMem->flags = MEM_Blob|MEM_Ephem;
1253 pMem->n = (int)amt;
1254 }else{
1255 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1258 return rc;
1262 ** The pVal argument is known to be a value other than NULL.
1263 ** Convert it into a string with encoding enc and return a pointer
1264 ** to a zero-terminated version of that string.
1266 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1267 assert( pVal!=0 );
1268 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1269 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1270 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1271 assert( (pVal->flags & (MEM_Null))==0 );
1272 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1273 if( ExpandBlob(pVal) ) return 0;
1274 pVal->flags |= MEM_Str;
1275 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1276 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1278 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1279 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1280 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1281 return 0;
1284 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1285 }else{
1286 sqlite3VdbeMemStringify(pVal, enc, 0);
1287 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1289 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1290 || pVal->db->mallocFailed );
1291 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1292 assert( sqlite3VdbeMemValidStrRep(pVal) );
1293 return pVal->z;
1294 }else{
1295 return 0;
1299 /* This function is only available internally, it is not part of the
1300 ** external API. It works in a similar way to sqlite3_value_text(),
1301 ** except the data returned is in the encoding specified by the second
1302 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1303 ** SQLITE_UTF8.
1305 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1306 ** If that is the case, then the result must be aligned on an even byte
1307 ** boundary.
1309 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1310 if( !pVal ) return 0;
1311 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1312 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1313 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1314 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1315 assert( sqlite3VdbeMemValidStrRep(pVal) );
1316 return pVal->z;
1318 if( pVal->flags&MEM_Null ){
1319 return 0;
1321 return valueToText(pVal, enc);
1325 ** Create a new sqlite3_value object.
1327 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1328 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1329 if( p ){
1330 p->flags = MEM_Null;
1331 p->db = db;
1333 return p;
1337 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1338 ** valueNew(). See comments above valueNew() for details.
1340 struct ValueNewStat4Ctx {
1341 Parse *pParse;
1342 Index *pIdx;
1343 UnpackedRecord **ppRec;
1344 int iVal;
1348 ** Allocate and return a pointer to a new sqlite3_value object. If
1349 ** the second argument to this function is NULL, the object is allocated
1350 ** by calling sqlite3ValueNew().
1352 ** Otherwise, if the second argument is non-zero, then this function is
1353 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1354 ** already been allocated, allocate the UnpackedRecord structure that
1355 ** that function will return to its caller here. Then return a pointer to
1356 ** an sqlite3_value within the UnpackedRecord.a[] array.
1358 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1359 #ifdef SQLITE_ENABLE_STAT4
1360 if( p ){
1361 UnpackedRecord *pRec = p->ppRec[0];
1363 if( pRec==0 ){
1364 Index *pIdx = p->pIdx; /* Index being probed */
1365 int nByte; /* Bytes of space to allocate */
1366 int i; /* Counter variable */
1367 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1369 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1370 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1371 if( pRec ){
1372 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1373 if( pRec->pKeyInfo ){
1374 assert( pRec->pKeyInfo->nAllField==nCol );
1375 assert( pRec->pKeyInfo->enc==ENC(db) );
1376 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1377 for(i=0; i<nCol; i++){
1378 pRec->aMem[i].flags = MEM_Null;
1379 pRec->aMem[i].db = db;
1381 }else{
1382 sqlite3DbFreeNN(db, pRec);
1383 pRec = 0;
1386 if( pRec==0 ) return 0;
1387 p->ppRec[0] = pRec;
1390 pRec->nField = p->iVal+1;
1391 return &pRec->aMem[p->iVal];
1393 #else
1394 UNUSED_PARAMETER(p);
1395 #endif /* defined(SQLITE_ENABLE_STAT4) */
1396 return sqlite3ValueNew(db);
1400 ** The expression object indicated by the second argument is guaranteed
1401 ** to be a scalar SQL function. If
1403 ** * all function arguments are SQL literals,
1404 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1405 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1407 ** then this routine attempts to invoke the SQL function. Assuming no
1408 ** error occurs, output parameter (*ppVal) is set to point to a value
1409 ** object containing the result before returning SQLITE_OK.
1411 ** Affinity aff is applied to the result of the function before returning.
1412 ** If the result is a text value, the sqlite3_value object uses encoding
1413 ** enc.
1415 ** If the conditions above are not met, this function returns SQLITE_OK
1416 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1417 ** NULL and an SQLite error code returned.
1419 #ifdef SQLITE_ENABLE_STAT4
1420 static int valueFromFunction(
1421 sqlite3 *db, /* The database connection */
1422 const Expr *p, /* The expression to evaluate */
1423 u8 enc, /* Encoding to use */
1424 u8 aff, /* Affinity to use */
1425 sqlite3_value **ppVal, /* Write the new value here */
1426 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1428 sqlite3_context ctx; /* Context object for function invocation */
1429 sqlite3_value **apVal = 0; /* Function arguments */
1430 int nVal = 0; /* Size of apVal[] array */
1431 FuncDef *pFunc = 0; /* Function definition */
1432 sqlite3_value *pVal = 0; /* New value */
1433 int rc = SQLITE_OK; /* Return code */
1434 ExprList *pList = 0; /* Function arguments */
1435 int i; /* Iterator variable */
1437 assert( pCtx!=0 );
1438 assert( (p->flags & EP_TokenOnly)==0 );
1439 assert( ExprUseXList(p) );
1440 pList = p->x.pList;
1441 if( pList ) nVal = pList->nExpr;
1442 assert( !ExprHasProperty(p, EP_IntValue) );
1443 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1444 assert( pFunc );
1445 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1446 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1448 return SQLITE_OK;
1451 if( pList ){
1452 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1453 if( apVal==0 ){
1454 rc = SQLITE_NOMEM_BKPT;
1455 goto value_from_function_out;
1457 for(i=0; i<nVal; i++){
1458 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1459 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1463 pVal = valueNew(db, pCtx);
1464 if( pVal==0 ){
1465 rc = SQLITE_NOMEM_BKPT;
1466 goto value_from_function_out;
1469 assert( pCtx->pParse->rc==SQLITE_OK );
1470 memset(&ctx, 0, sizeof(ctx));
1471 ctx.pOut = pVal;
1472 ctx.pFunc = pFunc;
1473 pFunc->xSFunc(&ctx, nVal, apVal);
1474 if( ctx.isError ){
1475 rc = ctx.isError;
1476 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1477 }else{
1478 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1479 assert( rc==SQLITE_OK );
1480 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1481 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1482 rc = SQLITE_TOOBIG;
1483 pCtx->pParse->nErr++;
1486 pCtx->pParse->rc = rc;
1488 value_from_function_out:
1489 if( rc!=SQLITE_OK ){
1490 pVal = 0;
1492 if( apVal ){
1493 for(i=0; i<nVal; i++){
1494 sqlite3ValueFree(apVal[i]);
1496 sqlite3DbFreeNN(db, apVal);
1499 *ppVal = pVal;
1500 return rc;
1502 #else
1503 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1504 #endif /* defined(SQLITE_ENABLE_STAT4) */
1507 ** Extract a value from the supplied expression in the manner described
1508 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1509 ** using valueNew().
1511 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1512 ** has been allocated, it is freed before returning. Or, if pCtx is not
1513 ** NULL, it is assumed that the caller will free any allocated object
1514 ** in all cases.
1516 static int valueFromExpr(
1517 sqlite3 *db, /* The database connection */
1518 const Expr *pExpr, /* The expression to evaluate */
1519 u8 enc, /* Encoding to use */
1520 u8 affinity, /* Affinity to use */
1521 sqlite3_value **ppVal, /* Write the new value here */
1522 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1524 int op;
1525 char *zVal = 0;
1526 sqlite3_value *pVal = 0;
1527 int negInt = 1;
1528 const char *zNeg = "";
1529 int rc = SQLITE_OK;
1531 assert( pExpr!=0 );
1532 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1533 #if defined(SQLITE_ENABLE_STAT4)
1534 if( op==TK_REGISTER ) op = pExpr->op2;
1535 #else
1536 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1537 #endif
1539 /* Compressed expressions only appear when parsing the DEFAULT clause
1540 ** on a table column definition, and hence only when pCtx==0. This
1541 ** check ensures that an EP_TokenOnly expression is never passed down
1542 ** into valueFromFunction(). */
1543 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1545 if( op==TK_CAST ){
1546 u8 aff;
1547 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1548 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1549 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1550 testcase( rc!=SQLITE_OK );
1551 if( *ppVal ){
1552 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1553 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1555 return rc;
1558 /* Handle negative integers in a single step. This is needed in the
1559 ** case when the value is -9223372036854775808.
1561 if( op==TK_UMINUS
1562 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1563 pExpr = pExpr->pLeft;
1564 op = pExpr->op;
1565 negInt = -1;
1566 zNeg = "-";
1569 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1570 pVal = valueNew(db, pCtx);
1571 if( pVal==0 ) goto no_mem;
1572 if( ExprHasProperty(pExpr, EP_IntValue) ){
1573 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1574 }else{
1575 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1576 if( zVal==0 ) goto no_mem;
1577 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1579 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1580 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1581 }else{
1582 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1584 assert( (pVal->flags & MEM_IntReal)==0 );
1585 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1586 testcase( pVal->flags & MEM_Int );
1587 testcase( pVal->flags & MEM_Real );
1588 pVal->flags &= ~MEM_Str;
1590 if( enc!=SQLITE_UTF8 ){
1591 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1593 }else if( op==TK_UMINUS ) {
1594 /* This branch happens for multiple negative signs. Ex: -(-5) */
1595 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1596 && pVal!=0
1598 sqlite3VdbeMemNumerify(pVal);
1599 if( pVal->flags & MEM_Real ){
1600 pVal->u.r = -pVal->u.r;
1601 }else if( pVal->u.i==SMALLEST_INT64 ){
1602 #ifndef SQLITE_OMIT_FLOATING_POINT
1603 pVal->u.r = -(double)SMALLEST_INT64;
1604 #else
1605 pVal->u.r = LARGEST_INT64;
1606 #endif
1607 MemSetTypeFlag(pVal, MEM_Real);
1608 }else{
1609 pVal->u.i = -pVal->u.i;
1611 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1613 }else if( op==TK_NULL ){
1614 pVal = valueNew(db, pCtx);
1615 if( pVal==0 ) goto no_mem;
1616 sqlite3VdbeMemSetNull(pVal);
1618 #ifndef SQLITE_OMIT_BLOB_LITERAL
1619 else if( op==TK_BLOB ){
1620 int nVal;
1621 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1622 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1623 assert( pExpr->u.zToken[1]=='\'' );
1624 pVal = valueNew(db, pCtx);
1625 if( !pVal ) goto no_mem;
1626 zVal = &pExpr->u.zToken[2];
1627 nVal = sqlite3Strlen30(zVal)-1;
1628 assert( zVal[nVal]=='\'' );
1629 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1630 0, SQLITE_DYNAMIC);
1632 #endif
1633 #ifdef SQLITE_ENABLE_STAT4
1634 else if( op==TK_FUNCTION && pCtx!=0 ){
1635 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1637 #endif
1638 else if( op==TK_TRUEFALSE ){
1639 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1640 pVal = valueNew(db, pCtx);
1641 if( pVal ){
1642 pVal->flags = MEM_Int;
1643 pVal->u.i = pExpr->u.zToken[4]==0;
1647 *ppVal = pVal;
1648 return rc;
1650 no_mem:
1651 #ifdef SQLITE_ENABLE_STAT4
1652 if( pCtx==0 || pCtx->pParse->nErr==0 )
1653 #endif
1654 sqlite3OomFault(db);
1655 sqlite3DbFree(db, zVal);
1656 assert( *ppVal==0 );
1657 #ifdef SQLITE_ENABLE_STAT4
1658 if( pCtx==0 ) sqlite3ValueFree(pVal);
1659 #else
1660 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1661 #endif
1662 return SQLITE_NOMEM_BKPT;
1666 ** Create a new sqlite3_value object, containing the value of pExpr.
1668 ** This only works for very simple expressions that consist of one constant
1669 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1670 ** be converted directly into a value, then the value is allocated and
1671 ** a pointer written to *ppVal. The caller is responsible for deallocating
1672 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1673 ** cannot be converted to a value, then *ppVal is set to NULL.
1675 int sqlite3ValueFromExpr(
1676 sqlite3 *db, /* The database connection */
1677 const Expr *pExpr, /* The expression to evaluate */
1678 u8 enc, /* Encoding to use */
1679 u8 affinity, /* Affinity to use */
1680 sqlite3_value **ppVal /* Write the new value here */
1682 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1685 #ifdef SQLITE_ENABLE_STAT4
1687 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1689 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1690 ** pAlloc if one does not exist and the new value is added to the
1691 ** UnpackedRecord object.
1693 ** A value is extracted in the following cases:
1695 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1697 ** * The expression is a bound variable, and this is a reprepare, or
1699 ** * The expression is a literal value.
1701 ** On success, *ppVal is made to point to the extracted value. The caller
1702 ** is responsible for ensuring that the value is eventually freed.
1704 static int stat4ValueFromExpr(
1705 Parse *pParse, /* Parse context */
1706 Expr *pExpr, /* The expression to extract a value from */
1707 u8 affinity, /* Affinity to use */
1708 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1709 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1711 int rc = SQLITE_OK;
1712 sqlite3_value *pVal = 0;
1713 sqlite3 *db = pParse->db;
1715 /* Skip over any TK_COLLATE nodes */
1716 pExpr = sqlite3ExprSkipCollate(pExpr);
1718 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1719 if( !pExpr ){
1720 pVal = valueNew(db, pAlloc);
1721 if( pVal ){
1722 sqlite3VdbeMemSetNull((Mem*)pVal);
1724 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1725 Vdbe *v;
1726 int iBindVar = pExpr->iColumn;
1727 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1728 if( (v = pParse->pReprepare)!=0 ){
1729 pVal = valueNew(db, pAlloc);
1730 if( pVal ){
1731 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1732 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1733 pVal->db = pParse->db;
1736 }else{
1737 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1740 assert( pVal==0 || pVal->db==db );
1741 *ppVal = pVal;
1742 return rc;
1746 ** This function is used to allocate and populate UnpackedRecord
1747 ** structures intended to be compared against sample index keys stored
1748 ** in the sqlite_stat4 table.
1750 ** A single call to this function populates zero or more fields of the
1751 ** record starting with field iVal (fields are numbered from left to
1752 ** right starting with 0). A single field is populated if:
1754 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1756 ** * The expression is a bound variable, and this is a reprepare, or
1758 ** * The sqlite3ValueFromExpr() function is able to extract a value
1759 ** from the expression (i.e. the expression is a literal value).
1761 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1762 ** vector components that match either of the two latter criteria listed
1763 ** above.
1765 ** Before any value is appended to the record, the affinity of the
1766 ** corresponding column within index pIdx is applied to it. Before
1767 ** this function returns, output parameter *pnExtract is set to the
1768 ** number of values appended to the record.
1770 ** When this function is called, *ppRec must either point to an object
1771 ** allocated by an earlier call to this function, or must be NULL. If it
1772 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1773 ** is allocated (and *ppRec set to point to it) before returning.
1775 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1776 ** error if a value cannot be extracted from pExpr. If an error does
1777 ** occur, an SQLite error code is returned.
1779 int sqlite3Stat4ProbeSetValue(
1780 Parse *pParse, /* Parse context */
1781 Index *pIdx, /* Index being probed */
1782 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1783 Expr *pExpr, /* The expression to extract a value from */
1784 int nElem, /* Maximum number of values to append */
1785 int iVal, /* Array element to populate */
1786 int *pnExtract /* OUT: Values appended to the record */
1788 int rc = SQLITE_OK;
1789 int nExtract = 0;
1791 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1792 int i;
1793 struct ValueNewStat4Ctx alloc;
1795 alloc.pParse = pParse;
1796 alloc.pIdx = pIdx;
1797 alloc.ppRec = ppRec;
1799 for(i=0; i<nElem; i++){
1800 sqlite3_value *pVal = 0;
1801 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1802 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1803 alloc.iVal = iVal+i;
1804 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1805 if( !pVal ) break;
1806 nExtract++;
1810 *pnExtract = nExtract;
1811 return rc;
1815 ** Attempt to extract a value from expression pExpr using the methods
1816 ** as described for sqlite3Stat4ProbeSetValue() above.
1818 ** If successful, set *ppVal to point to a new value object and return
1819 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1820 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1821 ** does occur, return an SQLite error code. The final value of *ppVal
1822 ** is undefined in this case.
1824 int sqlite3Stat4ValueFromExpr(
1825 Parse *pParse, /* Parse context */
1826 Expr *pExpr, /* The expression to extract a value from */
1827 u8 affinity, /* Affinity to use */
1828 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1830 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1834 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1835 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1836 ** sqlite3_value object is allocated.
1838 ** If *ppVal is initially NULL then the caller is responsible for
1839 ** ensuring that the value written into *ppVal is eventually freed.
1841 int sqlite3Stat4Column(
1842 sqlite3 *db, /* Database handle */
1843 const void *pRec, /* Pointer to buffer containing record */
1844 int nRec, /* Size of buffer pRec in bytes */
1845 int iCol, /* Column to extract */
1846 sqlite3_value **ppVal /* OUT: Extracted value */
1848 u32 t = 0; /* a column type code */
1849 int nHdr; /* Size of the header in the record */
1850 int iHdr; /* Next unread header byte */
1851 int iField; /* Next unread data byte */
1852 int szField = 0; /* Size of the current data field */
1853 int i; /* Column index */
1854 u8 *a = (u8*)pRec; /* Typecast byte array */
1855 Mem *pMem = *ppVal; /* Write result into this Mem object */
1857 assert( iCol>0 );
1858 iHdr = getVarint32(a, nHdr);
1859 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1860 iField = nHdr;
1861 for(i=0; i<=iCol; i++){
1862 iHdr += getVarint32(&a[iHdr], t);
1863 testcase( iHdr==nHdr );
1864 testcase( iHdr==nHdr+1 );
1865 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1866 szField = sqlite3VdbeSerialTypeLen(t);
1867 iField += szField;
1869 testcase( iField==nRec );
1870 testcase( iField==nRec+1 );
1871 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1872 if( pMem==0 ){
1873 pMem = *ppVal = sqlite3ValueNew(db);
1874 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1876 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1877 pMem->enc = ENC(db);
1878 return SQLITE_OK;
1882 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1883 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1884 ** the object.
1886 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1887 if( pRec ){
1888 int i;
1889 int nCol = pRec->pKeyInfo->nAllField;
1890 Mem *aMem = pRec->aMem;
1891 sqlite3 *db = aMem[0].db;
1892 for(i=0; i<nCol; i++){
1893 sqlite3VdbeMemRelease(&aMem[i]);
1895 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1896 sqlite3DbFreeNN(db, pRec);
1899 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1902 ** Change the string value of an sqlite3_value object
1904 void sqlite3ValueSetStr(
1905 sqlite3_value *v, /* Value to be set */
1906 int n, /* Length of string z */
1907 const void *z, /* Text of the new string */
1908 u8 enc, /* Encoding to use */
1909 void (*xDel)(void*) /* Destructor for the string */
1911 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1915 ** Free an sqlite3_value object
1917 void sqlite3ValueFree(sqlite3_value *v){
1918 if( !v ) return;
1919 sqlite3VdbeMemRelease((Mem *)v);
1920 sqlite3DbFreeNN(((Mem*)v)->db, v);
1924 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1925 ** sqlite3_value object assuming that it uses the encoding "enc".
1926 ** The valueBytes() routine is a helper function.
1928 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1929 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1931 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1932 Mem *p = (Mem*)pVal;
1933 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1934 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1935 return p->n;
1937 if( (p->flags & MEM_Blob)!=0 ){
1938 if( p->flags & MEM_Zero ){
1939 return p->n + p->u.nZero;
1940 }else{
1941 return p->n;
1944 if( p->flags & MEM_Null ) return 0;
1945 return valueBytes(pVal, enc);