Update changelog
[sqlcipher.git] / tool / lemon.c
blobfe0fb4c6155a45fa58d848c482d2c6e70dc5411d
1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
24 #ifndef __WIN32__
25 # if defined(_WIN32) || defined(WIN32)
26 # define __WIN32__
27 # endif
28 #endif
30 #ifdef __WIN32__
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 extern int access(const char *path, int mode);
35 #ifdef __cplusplus
37 #endif
38 #else
39 #include <unistd.h>
40 #endif
42 /* #define PRIVATE static */
43 #define PRIVATE
45 #ifdef TEST
46 #define MAXRHS 5 /* Set low to exercise exception code */
47 #else
48 #define MAXRHS 1000
49 #endif
51 static int showPrecedenceConflict = 0;
52 static char *msort(char*,char**,int(*)(const char*,const char*));
55 ** Compilers are getting increasingly pedantic about type conversions
56 ** as C evolves ever closer to Ada.... To work around the latest problems
57 ** we have to define the following variant of strlen().
59 #define lemonStrlen(X) ((int)strlen(X))
62 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
63 ** saying they are unsafe. So we define our own versions of those routines too.
65 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
66 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
67 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
68 ** buffer, making sure the buffer is always zero-terminated.
70 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
71 ** a few simply conversions:
73 ** %d
74 ** %s
75 ** %.*s
78 static void lemon_addtext(
79 char *zBuf, /* The buffer to which text is added */
80 int *pnUsed, /* Slots of the buffer used so far */
81 const char *zIn, /* Text to add */
82 int nIn, /* Bytes of text to add. -1 to use strlen() */
83 int iWidth /* Field width. Negative to left justify */
85 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
86 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
87 if( nIn==0 ) return;
88 memcpy(&zBuf[*pnUsed], zIn, nIn);
89 *pnUsed += nIn;
90 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
91 zBuf[*pnUsed] = 0;
93 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
94 int i, j, k, c;
95 int nUsed = 0;
96 const char *z;
97 char zTemp[50];
98 str[0] = 0;
99 for(i=j=0; (c = zFormat[i])!=0; i++){
100 if( c=='%' ){
101 int iWidth = 0;
102 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
103 c = zFormat[++i];
104 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
105 if( c=='-' ) i++;
106 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
107 if( c=='-' ) iWidth = -iWidth;
108 c = zFormat[i];
110 if( c=='d' ){
111 int v = va_arg(ap, int);
112 if( v<0 ){
113 lemon_addtext(str, &nUsed, "-", 1, iWidth);
114 v = -v;
115 }else if( v==0 ){
116 lemon_addtext(str, &nUsed, "0", 1, iWidth);
118 k = 0;
119 while( v>0 ){
120 k++;
121 zTemp[sizeof(zTemp)-k] = (v%10) + '0';
122 v /= 10;
124 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
125 }else if( c=='s' ){
126 z = va_arg(ap, const char*);
127 lemon_addtext(str, &nUsed, z, -1, iWidth);
128 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
129 i += 2;
130 k = va_arg(ap, int);
131 z = va_arg(ap, const char*);
132 lemon_addtext(str, &nUsed, z, k, iWidth);
133 }else if( c=='%' ){
134 lemon_addtext(str, &nUsed, "%", 1, 0);
135 }else{
136 fprintf(stderr, "illegal format\n");
137 exit(1);
139 j = i+1;
142 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
143 return nUsed;
145 static int lemon_sprintf(char *str, const char *format, ...){
146 va_list ap;
147 int rc;
148 va_start(ap, format);
149 rc = lemon_vsprintf(str, format, ap);
150 va_end(ap);
151 return rc;
153 static void lemon_strcpy(char *dest, const char *src){
154 while( (*(dest++) = *(src++))!=0 ){}
156 static void lemon_strcat(char *dest, const char *src){
157 while( *dest ) dest++;
158 lemon_strcpy(dest, src);
162 /* a few forward declarations... */
163 struct rule;
164 struct lemon;
165 struct action;
167 static struct action *Action_new(void);
168 static struct action *Action_sort(struct action *);
170 /********** From the file "build.h" ************************************/
171 void FindRulePrecedences(struct lemon*);
172 void FindFirstSets(struct lemon*);
173 void FindStates(struct lemon*);
174 void FindLinks(struct lemon*);
175 void FindFollowSets(struct lemon*);
176 void FindActions(struct lemon*);
178 /********* From the file "configlist.h" *********************************/
179 void Configlist_init(void);
180 struct config *Configlist_add(struct rule *, int);
181 struct config *Configlist_addbasis(struct rule *, int);
182 void Configlist_closure(struct lemon *);
183 void Configlist_sort(void);
184 void Configlist_sortbasis(void);
185 struct config *Configlist_return(void);
186 struct config *Configlist_basis(void);
187 void Configlist_eat(struct config *);
188 void Configlist_reset(void);
190 /********* From the file "error.h" ***************************************/
191 void ErrorMsg(const char *, int,const char *, ...);
193 /****** From the file "option.h" ******************************************/
194 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
195 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
196 struct s_options {
197 enum option_type type;
198 const char *label;
199 char *arg;
200 const char *message;
202 int OptInit(char**,struct s_options*,FILE*);
203 int OptNArgs(void);
204 char *OptArg(int);
205 void OptErr(int);
206 void OptPrint(void);
208 /******** From the file "parse.h" *****************************************/
209 void Parse(struct lemon *lemp);
211 /********* From the file "plink.h" ***************************************/
212 struct plink *Plink_new(void);
213 void Plink_add(struct plink **, struct config *);
214 void Plink_copy(struct plink **, struct plink *);
215 void Plink_delete(struct plink *);
217 /********** From the file "report.h" *************************************/
218 void Reprint(struct lemon *);
219 void ReportOutput(struct lemon *);
220 void ReportTable(struct lemon *, int);
221 void ReportHeader(struct lemon *);
222 void CompressTables(struct lemon *);
223 void ResortStates(struct lemon *);
225 /********** From the file "set.h" ****************************************/
226 void SetSize(int); /* All sets will be of size N */
227 char *SetNew(void); /* A new set for element 0..N */
228 void SetFree(char*); /* Deallocate a set */
229 int SetAdd(char*,int); /* Add element to a set */
230 int SetUnion(char *,char *); /* A <- A U B, thru element N */
231 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
233 /********** From the file "struct.h" *************************************/
235 ** Principal data structures for the LEMON parser generator.
238 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
240 /* Symbols (terminals and nonterminals) of the grammar are stored
241 ** in the following: */
242 enum symbol_type {
243 TERMINAL,
244 NONTERMINAL,
245 MULTITERMINAL
247 enum e_assoc {
248 LEFT,
249 RIGHT,
250 NONE,
253 struct symbol {
254 const char *name; /* Name of the symbol */
255 int index; /* Index number for this symbol */
256 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
257 struct rule *rule; /* Linked list of rules of this (if an NT) */
258 struct symbol *fallback; /* fallback token in case this token doesn't parse */
259 int prec; /* Precedence if defined (-1 otherwise) */
260 enum e_assoc assoc; /* Associativity if precedence is defined */
261 char *firstset; /* First-set for all rules of this symbol */
262 Boolean lambda; /* True if NT and can generate an empty string */
263 int useCnt; /* Number of times used */
264 char *destructor; /* Code which executes whenever this symbol is
265 ** popped from the stack during error processing */
266 int destLineno; /* Line number for start of destructor. Set to
267 ** -1 for duplicate destructors. */
268 char *datatype; /* The data type of information held by this
269 ** object. Only used if type==NONTERMINAL */
270 int dtnum; /* The data type number. In the parser, the value
271 ** stack is a union. The .yy%d element of this
272 ** union is the correct data type for this object */
273 /* The following fields are used by MULTITERMINALs only */
274 int nsubsym; /* Number of constituent symbols in the MULTI */
275 struct symbol **subsym; /* Array of constituent symbols */
278 /* Each production rule in the grammar is stored in the following
279 ** structure. */
280 struct rule {
281 struct symbol *lhs; /* Left-hand side of the rule */
282 const char *lhsalias; /* Alias for the LHS (NULL if none) */
283 int lhsStart; /* True if left-hand side is the start symbol */
284 int ruleline; /* Line number for the rule */
285 int nrhs; /* Number of RHS symbols */
286 struct symbol **rhs; /* The RHS symbols */
287 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
288 int line; /* Line number at which code begins */
289 const char *code; /* The code executed when this rule is reduced */
290 const char *codePrefix; /* Setup code before code[] above */
291 const char *codeSuffix; /* Breakdown code after code[] above */
292 int noCode; /* True if this rule has no associated C code */
293 int codeEmitted; /* True if the code has been emitted already */
294 struct symbol *precsym; /* Precedence symbol for this rule */
295 int index; /* An index number for this rule */
296 int iRule; /* Rule number as used in the generated tables */
297 Boolean canReduce; /* True if this rule is ever reduced */
298 Boolean doesReduce; /* Reduce actions occur after optimization */
299 struct rule *nextlhs; /* Next rule with the same LHS */
300 struct rule *next; /* Next rule in the global list */
303 /* A configuration is a production rule of the grammar together with
304 ** a mark (dot) showing how much of that rule has been processed so far.
305 ** Configurations also contain a follow-set which is a list of terminal
306 ** symbols which are allowed to immediately follow the end of the rule.
307 ** Every configuration is recorded as an instance of the following: */
308 enum cfgstatus {
309 COMPLETE,
310 INCOMPLETE
312 struct config {
313 struct rule *rp; /* The rule upon which the configuration is based */
314 int dot; /* The parse point */
315 char *fws; /* Follow-set for this configuration only */
316 struct plink *fplp; /* Follow-set forward propagation links */
317 struct plink *bplp; /* Follow-set backwards propagation links */
318 struct state *stp; /* Pointer to state which contains this */
319 enum cfgstatus status; /* used during followset and shift computations */
320 struct config *next; /* Next configuration in the state */
321 struct config *bp; /* The next basis configuration */
324 enum e_action {
325 SHIFT,
326 ACCEPT,
327 REDUCE,
328 ERROR,
329 SSCONFLICT, /* A shift/shift conflict */
330 SRCONFLICT, /* Was a reduce, but part of a conflict */
331 RRCONFLICT, /* Was a reduce, but part of a conflict */
332 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
333 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
334 NOT_USED, /* Deleted by compression */
335 SHIFTREDUCE /* Shift first, then reduce */
338 /* Every shift or reduce operation is stored as one of the following */
339 struct action {
340 struct symbol *sp; /* The look-ahead symbol */
341 enum e_action type;
342 union {
343 struct state *stp; /* The new state, if a shift */
344 struct rule *rp; /* The rule, if a reduce */
345 } x;
346 struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */
347 struct action *next; /* Next action for this state */
348 struct action *collide; /* Next action with the same hash */
351 /* Each state of the generated parser's finite state machine
352 ** is encoded as an instance of the following structure. */
353 struct state {
354 struct config *bp; /* The basis configurations for this state */
355 struct config *cfp; /* All configurations in this set */
356 int statenum; /* Sequential number for this state */
357 struct action *ap; /* List of actions for this state */
358 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
359 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
360 int iDfltReduce; /* Default action is to REDUCE by this rule */
361 struct rule *pDfltReduce;/* The default REDUCE rule. */
362 int autoReduce; /* True if this is an auto-reduce state */
364 #define NO_OFFSET (-2147483647)
366 /* A followset propagation link indicates that the contents of one
367 ** configuration followset should be propagated to another whenever
368 ** the first changes. */
369 struct plink {
370 struct config *cfp; /* The configuration to which linked */
371 struct plink *next; /* The next propagate link */
374 /* The state vector for the entire parser generator is recorded as
375 ** follows. (LEMON uses no global variables and makes little use of
376 ** static variables. Fields in the following structure can be thought
377 ** of as begin global variables in the program.) */
378 struct lemon {
379 struct state **sorted; /* Table of states sorted by state number */
380 struct rule *rule; /* List of all rules */
381 struct rule *startRule; /* First rule */
382 int nstate; /* Number of states */
383 int nxstate; /* nstate with tail degenerate states removed */
384 int nrule; /* Number of rules */
385 int nsymbol; /* Number of terminal and nonterminal symbols */
386 int nterminal; /* Number of terminal symbols */
387 struct symbol **symbols; /* Sorted array of pointers to symbols */
388 int errorcnt; /* Number of errors */
389 struct symbol *errsym; /* The error symbol */
390 struct symbol *wildcard; /* Token that matches anything */
391 char *name; /* Name of the generated parser */
392 char *arg; /* Declaration of the 3th argument to parser */
393 char *tokentype; /* Type of terminal symbols in the parser stack */
394 char *vartype; /* The default type of non-terminal symbols */
395 char *start; /* Name of the start symbol for the grammar */
396 char *stacksize; /* Size of the parser stack */
397 char *include; /* Code to put at the start of the C file */
398 char *error; /* Code to execute when an error is seen */
399 char *overflow; /* Code to execute on a stack overflow */
400 char *failure; /* Code to execute on parser failure */
401 char *accept; /* Code to execute when the parser excepts */
402 char *extracode; /* Code appended to the generated file */
403 char *tokendest; /* Code to execute to destroy token data */
404 char *vardest; /* Code for the default non-terminal destructor */
405 char *filename; /* Name of the input file */
406 char *outname; /* Name of the current output file */
407 char *tokenprefix; /* A prefix added to token names in the .h file */
408 int nconflict; /* Number of parsing conflicts */
409 int nactiontab; /* Number of entries in the yy_action[] table */
410 int tablesize; /* Total table size of all tables in bytes */
411 int basisflag; /* Print only basis configurations */
412 int has_fallback; /* True if any %fallback is seen in the grammar */
413 int nolinenosflag; /* True if #line statements should not be printed */
414 char *argv0; /* Name of the program */
417 #define MemoryCheck(X) if((X)==0){ \
418 extern void memory_error(); \
419 memory_error(); \
422 /**************** From the file "table.h" *********************************/
424 ** All code in this file has been automatically generated
425 ** from a specification in the file
426 ** "table.q"
427 ** by the associative array code building program "aagen".
428 ** Do not edit this file! Instead, edit the specification
429 ** file, then rerun aagen.
432 ** Code for processing tables in the LEMON parser generator.
434 /* Routines for handling a strings */
436 const char *Strsafe(const char *);
438 void Strsafe_init(void);
439 int Strsafe_insert(const char *);
440 const char *Strsafe_find(const char *);
442 /* Routines for handling symbols of the grammar */
444 struct symbol *Symbol_new(const char *);
445 int Symbolcmpp(const void *, const void *);
446 void Symbol_init(void);
447 int Symbol_insert(struct symbol *, const char *);
448 struct symbol *Symbol_find(const char *);
449 struct symbol *Symbol_Nth(int);
450 int Symbol_count(void);
451 struct symbol **Symbol_arrayof(void);
453 /* Routines to manage the state table */
455 int Configcmp(const char *, const char *);
456 struct state *State_new(void);
457 void State_init(void);
458 int State_insert(struct state *, struct config *);
459 struct state *State_find(struct config *);
460 struct state **State_arrayof(void);
462 /* Routines used for efficiency in Configlist_add */
464 void Configtable_init(void);
465 int Configtable_insert(struct config *);
466 struct config *Configtable_find(struct config *);
467 void Configtable_clear(int(*)(struct config *));
469 /****************** From the file "action.c" *******************************/
471 ** Routines processing parser actions in the LEMON parser generator.
474 /* Allocate a new parser action */
475 static struct action *Action_new(void){
476 static struct action *freelist = 0;
477 struct action *newaction;
479 if( freelist==0 ){
480 int i;
481 int amt = 100;
482 freelist = (struct action *)calloc(amt, sizeof(struct action));
483 if( freelist==0 ){
484 fprintf(stderr,"Unable to allocate memory for a new parser action.");
485 exit(1);
487 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
488 freelist[amt-1].next = 0;
490 newaction = freelist;
491 freelist = freelist->next;
492 return newaction;
495 /* Compare two actions for sorting purposes. Return negative, zero, or
496 ** positive if the first action is less than, equal to, or greater than
497 ** the first
499 static int actioncmp(
500 struct action *ap1,
501 struct action *ap2
503 int rc;
504 rc = ap1->sp->index - ap2->sp->index;
505 if( rc==0 ){
506 rc = (int)ap1->type - (int)ap2->type;
508 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
509 rc = ap1->x.rp->index - ap2->x.rp->index;
511 if( rc==0 ){
512 rc = (int) (ap2 - ap1);
514 return rc;
517 /* Sort parser actions */
518 static struct action *Action_sort(
519 struct action *ap
521 ap = (struct action *)msort((char *)ap,(char **)&ap->next,
522 (int(*)(const char*,const char*))actioncmp);
523 return ap;
526 void Action_add(
527 struct action **app,
528 enum e_action type,
529 struct symbol *sp,
530 char *arg
532 struct action *newaction;
533 newaction = Action_new();
534 newaction->next = *app;
535 *app = newaction;
536 newaction->type = type;
537 newaction->sp = sp;
538 newaction->spOpt = 0;
539 if( type==SHIFT ){
540 newaction->x.stp = (struct state *)arg;
541 }else{
542 newaction->x.rp = (struct rule *)arg;
545 /********************** New code to implement the "acttab" module ***********/
547 ** This module implements routines use to construct the yy_action[] table.
551 ** The state of the yy_action table under construction is an instance of
552 ** the following structure.
554 ** The yy_action table maps the pair (state_number, lookahead) into an
555 ** action_number. The table is an array of integers pairs. The state_number
556 ** determines an initial offset into the yy_action array. The lookahead
557 ** value is then added to this initial offset to get an index X into the
558 ** yy_action array. If the aAction[X].lookahead equals the value of the
559 ** of the lookahead input, then the value of the action_number output is
560 ** aAction[X].action. If the lookaheads do not match then the
561 ** default action for the state_number is returned.
563 ** All actions associated with a single state_number are first entered
564 ** into aLookahead[] using multiple calls to acttab_action(). Then the
565 ** actions for that single state_number are placed into the aAction[]
566 ** array with a single call to acttab_insert(). The acttab_insert() call
567 ** also resets the aLookahead[] array in preparation for the next
568 ** state number.
570 struct lookahead_action {
571 int lookahead; /* Value of the lookahead token */
572 int action; /* Action to take on the given lookahead */
574 typedef struct acttab acttab;
575 struct acttab {
576 int nAction; /* Number of used slots in aAction[] */
577 int nActionAlloc; /* Slots allocated for aAction[] */
578 struct lookahead_action
579 *aAction, /* The yy_action[] table under construction */
580 *aLookahead; /* A single new transaction set */
581 int mnLookahead; /* Minimum aLookahead[].lookahead */
582 int mnAction; /* Action associated with mnLookahead */
583 int mxLookahead; /* Maximum aLookahead[].lookahead */
584 int nLookahead; /* Used slots in aLookahead[] */
585 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
588 /* Return the number of entries in the yy_action table */
589 #define acttab_size(X) ((X)->nAction)
591 /* The value for the N-th entry in yy_action */
592 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
594 /* The value for the N-th entry in yy_lookahead */
595 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
597 /* Free all memory associated with the given acttab */
598 void acttab_free(acttab *p){
599 free( p->aAction );
600 free( p->aLookahead );
601 free( p );
604 /* Allocate a new acttab structure */
605 acttab *acttab_alloc(void){
606 acttab *p = (acttab *) calloc( 1, sizeof(*p) );
607 if( p==0 ){
608 fprintf(stderr,"Unable to allocate memory for a new acttab.");
609 exit(1);
611 memset(p, 0, sizeof(*p));
612 return p;
615 /* Add a new action to the current transaction set.
617 ** This routine is called once for each lookahead for a particular
618 ** state.
620 void acttab_action(acttab *p, int lookahead, int action){
621 if( p->nLookahead>=p->nLookaheadAlloc ){
622 p->nLookaheadAlloc += 25;
623 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
624 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
625 if( p->aLookahead==0 ){
626 fprintf(stderr,"malloc failed\n");
627 exit(1);
630 if( p->nLookahead==0 ){
631 p->mxLookahead = lookahead;
632 p->mnLookahead = lookahead;
633 p->mnAction = action;
634 }else{
635 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
636 if( p->mnLookahead>lookahead ){
637 p->mnLookahead = lookahead;
638 p->mnAction = action;
641 p->aLookahead[p->nLookahead].lookahead = lookahead;
642 p->aLookahead[p->nLookahead].action = action;
643 p->nLookahead++;
647 ** Add the transaction set built up with prior calls to acttab_action()
648 ** into the current action table. Then reset the transaction set back
649 ** to an empty set in preparation for a new round of acttab_action() calls.
651 ** Return the offset into the action table of the new transaction.
653 int acttab_insert(acttab *p){
654 int i, j, k, n;
655 assert( p->nLookahead>0 );
657 /* Make sure we have enough space to hold the expanded action table
658 ** in the worst case. The worst case occurs if the transaction set
659 ** must be appended to the current action table
661 n = p->mxLookahead + 1;
662 if( p->nAction + n >= p->nActionAlloc ){
663 int oldAlloc = p->nActionAlloc;
664 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
665 p->aAction = (struct lookahead_action *) realloc( p->aAction,
666 sizeof(p->aAction[0])*p->nActionAlloc);
667 if( p->aAction==0 ){
668 fprintf(stderr,"malloc failed\n");
669 exit(1);
671 for(i=oldAlloc; i<p->nActionAlloc; i++){
672 p->aAction[i].lookahead = -1;
673 p->aAction[i].action = -1;
677 /* Scan the existing action table looking for an offset that is a
678 ** duplicate of the current transaction set. Fall out of the loop
679 ** if and when the duplicate is found.
681 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
683 for(i=p->nAction-1; i>=0; i--){
684 if( p->aAction[i].lookahead==p->mnLookahead ){
685 /* All lookaheads and actions in the aLookahead[] transaction
686 ** must match against the candidate aAction[i] entry. */
687 if( p->aAction[i].action!=p->mnAction ) continue;
688 for(j=0; j<p->nLookahead; j++){
689 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
690 if( k<0 || k>=p->nAction ) break;
691 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
692 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
694 if( j<p->nLookahead ) continue;
696 /* No possible lookahead value that is not in the aLookahead[]
697 ** transaction is allowed to match aAction[i] */
698 n = 0;
699 for(j=0; j<p->nAction; j++){
700 if( p->aAction[j].lookahead<0 ) continue;
701 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
703 if( n==p->nLookahead ){
704 break; /* An exact match is found at offset i */
709 /* If no existing offsets exactly match the current transaction, find an
710 ** an empty offset in the aAction[] table in which we can add the
711 ** aLookahead[] transaction.
713 if( i<0 ){
714 /* Look for holes in the aAction[] table that fit the current
715 ** aLookahead[] transaction. Leave i set to the offset of the hole.
716 ** If no holes are found, i is left at p->nAction, which means the
717 ** transaction will be appended. */
718 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
719 if( p->aAction[i].lookahead<0 ){
720 for(j=0; j<p->nLookahead; j++){
721 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
722 if( k<0 ) break;
723 if( p->aAction[k].lookahead>=0 ) break;
725 if( j<p->nLookahead ) continue;
726 for(j=0; j<p->nAction; j++){
727 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
729 if( j==p->nAction ){
730 break; /* Fits in empty slots */
735 /* Insert transaction set at index i. */
736 for(j=0; j<p->nLookahead; j++){
737 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
738 p->aAction[k] = p->aLookahead[j];
739 if( k>=p->nAction ) p->nAction = k+1;
741 p->nLookahead = 0;
743 /* Return the offset that is added to the lookahead in order to get the
744 ** index into yy_action of the action */
745 return i - p->mnLookahead;
748 /********************** From the file "build.c" *****************************/
750 ** Routines to construction the finite state machine for the LEMON
751 ** parser generator.
754 /* Find a precedence symbol of every rule in the grammar.
756 ** Those rules which have a precedence symbol coded in the input
757 ** grammar using the "[symbol]" construct will already have the
758 ** rp->precsym field filled. Other rules take as their precedence
759 ** symbol the first RHS symbol with a defined precedence. If there
760 ** are not RHS symbols with a defined precedence, the precedence
761 ** symbol field is left blank.
763 void FindRulePrecedences(struct lemon *xp)
765 struct rule *rp;
766 for(rp=xp->rule; rp; rp=rp->next){
767 if( rp->precsym==0 ){
768 int i, j;
769 for(i=0; i<rp->nrhs && rp->precsym==0; i++){
770 struct symbol *sp = rp->rhs[i];
771 if( sp->type==MULTITERMINAL ){
772 for(j=0; j<sp->nsubsym; j++){
773 if( sp->subsym[j]->prec>=0 ){
774 rp->precsym = sp->subsym[j];
775 break;
778 }else if( sp->prec>=0 ){
779 rp->precsym = rp->rhs[i];
784 return;
787 /* Find all nonterminals which will generate the empty string.
788 ** Then go back and compute the first sets of every nonterminal.
789 ** The first set is the set of all terminal symbols which can begin
790 ** a string generated by that nonterminal.
792 void FindFirstSets(struct lemon *lemp)
794 int i, j;
795 struct rule *rp;
796 int progress;
798 for(i=0; i<lemp->nsymbol; i++){
799 lemp->symbols[i]->lambda = LEMON_FALSE;
801 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
802 lemp->symbols[i]->firstset = SetNew();
805 /* First compute all lambdas */
807 progress = 0;
808 for(rp=lemp->rule; rp; rp=rp->next){
809 if( rp->lhs->lambda ) continue;
810 for(i=0; i<rp->nrhs; i++){
811 struct symbol *sp = rp->rhs[i];
812 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
813 if( sp->lambda==LEMON_FALSE ) break;
815 if( i==rp->nrhs ){
816 rp->lhs->lambda = LEMON_TRUE;
817 progress = 1;
820 }while( progress );
822 /* Now compute all first sets */
824 struct symbol *s1, *s2;
825 progress = 0;
826 for(rp=lemp->rule; rp; rp=rp->next){
827 s1 = rp->lhs;
828 for(i=0; i<rp->nrhs; i++){
829 s2 = rp->rhs[i];
830 if( s2->type==TERMINAL ){
831 progress += SetAdd(s1->firstset,s2->index);
832 break;
833 }else if( s2->type==MULTITERMINAL ){
834 for(j=0; j<s2->nsubsym; j++){
835 progress += SetAdd(s1->firstset,s2->subsym[j]->index);
837 break;
838 }else if( s1==s2 ){
839 if( s1->lambda==LEMON_FALSE ) break;
840 }else{
841 progress += SetUnion(s1->firstset,s2->firstset);
842 if( s2->lambda==LEMON_FALSE ) break;
846 }while( progress );
847 return;
850 /* Compute all LR(0) states for the grammar. Links
851 ** are added to between some states so that the LR(1) follow sets
852 ** can be computed later.
854 PRIVATE struct state *getstate(struct lemon *); /* forward reference */
855 void FindStates(struct lemon *lemp)
857 struct symbol *sp;
858 struct rule *rp;
860 Configlist_init();
862 /* Find the start symbol */
863 if( lemp->start ){
864 sp = Symbol_find(lemp->start);
865 if( sp==0 ){
866 ErrorMsg(lemp->filename,0,
867 "The specified start symbol \"%s\" is not \
868 in a nonterminal of the grammar. \"%s\" will be used as the start \
869 symbol instead.",lemp->start,lemp->startRule->lhs->name);
870 lemp->errorcnt++;
871 sp = lemp->startRule->lhs;
873 }else{
874 sp = lemp->startRule->lhs;
877 /* Make sure the start symbol doesn't occur on the right-hand side of
878 ** any rule. Report an error if it does. (YACC would generate a new
879 ** start symbol in this case.) */
880 for(rp=lemp->rule; rp; rp=rp->next){
881 int i;
882 for(i=0; i<rp->nrhs; i++){
883 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
884 ErrorMsg(lemp->filename,0,
885 "The start symbol \"%s\" occurs on the \
886 right-hand side of a rule. This will result in a parser which \
887 does not work properly.",sp->name);
888 lemp->errorcnt++;
893 /* The basis configuration set for the first state
894 ** is all rules which have the start symbol as their
895 ** left-hand side */
896 for(rp=sp->rule; rp; rp=rp->nextlhs){
897 struct config *newcfp;
898 rp->lhsStart = 1;
899 newcfp = Configlist_addbasis(rp,0);
900 SetAdd(newcfp->fws,0);
903 /* Compute the first state. All other states will be
904 ** computed automatically during the computation of the first one.
905 ** The returned pointer to the first state is not used. */
906 (void)getstate(lemp);
907 return;
910 /* Return a pointer to a state which is described by the configuration
911 ** list which has been built from calls to Configlist_add.
913 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
914 PRIVATE struct state *getstate(struct lemon *lemp)
916 struct config *cfp, *bp;
917 struct state *stp;
919 /* Extract the sorted basis of the new state. The basis was constructed
920 ** by prior calls to "Configlist_addbasis()". */
921 Configlist_sortbasis();
922 bp = Configlist_basis();
924 /* Get a state with the same basis */
925 stp = State_find(bp);
926 if( stp ){
927 /* A state with the same basis already exists! Copy all the follow-set
928 ** propagation links from the state under construction into the
929 ** preexisting state, then return a pointer to the preexisting state */
930 struct config *x, *y;
931 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
932 Plink_copy(&y->bplp,x->bplp);
933 Plink_delete(x->fplp);
934 x->fplp = x->bplp = 0;
936 cfp = Configlist_return();
937 Configlist_eat(cfp);
938 }else{
939 /* This really is a new state. Construct all the details */
940 Configlist_closure(lemp); /* Compute the configuration closure */
941 Configlist_sort(); /* Sort the configuration closure */
942 cfp = Configlist_return(); /* Get a pointer to the config list */
943 stp = State_new(); /* A new state structure */
944 MemoryCheck(stp);
945 stp->bp = bp; /* Remember the configuration basis */
946 stp->cfp = cfp; /* Remember the configuration closure */
947 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
948 stp->ap = 0; /* No actions, yet. */
949 State_insert(stp,stp->bp); /* Add to the state table */
950 buildshifts(lemp,stp); /* Recursively compute successor states */
952 return stp;
956 ** Return true if two symbols are the same.
958 int same_symbol(struct symbol *a, struct symbol *b)
960 int i;
961 if( a==b ) return 1;
962 if( a->type!=MULTITERMINAL ) return 0;
963 if( b->type!=MULTITERMINAL ) return 0;
964 if( a->nsubsym!=b->nsubsym ) return 0;
965 for(i=0; i<a->nsubsym; i++){
966 if( a->subsym[i]!=b->subsym[i] ) return 0;
968 return 1;
971 /* Construct all successor states to the given state. A "successor"
972 ** state is any state which can be reached by a shift action.
974 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
976 struct config *cfp; /* For looping thru the config closure of "stp" */
977 struct config *bcfp; /* For the inner loop on config closure of "stp" */
978 struct config *newcfg; /* */
979 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
980 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
981 struct state *newstp; /* A pointer to a successor state */
983 /* Each configuration becomes complete after it contibutes to a successor
984 ** state. Initially, all configurations are incomplete */
985 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
987 /* Loop through all configurations of the state "stp" */
988 for(cfp=stp->cfp; cfp; cfp=cfp->next){
989 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
990 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
991 Configlist_reset(); /* Reset the new config set */
992 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
994 /* For every configuration in the state "stp" which has the symbol "sp"
995 ** following its dot, add the same configuration to the basis set under
996 ** construction but with the dot shifted one symbol to the right. */
997 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
998 if( bcfp->status==COMPLETE ) continue; /* Already used */
999 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
1000 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
1001 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
1002 bcfp->status = COMPLETE; /* Mark this config as used */
1003 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
1004 Plink_add(&newcfg->bplp,bcfp);
1007 /* Get a pointer to the state described by the basis configuration set
1008 ** constructed in the preceding loop */
1009 newstp = getstate(lemp);
1011 /* The state "newstp" is reached from the state "stp" by a shift action
1012 ** on the symbol "sp" */
1013 if( sp->type==MULTITERMINAL ){
1014 int i;
1015 for(i=0; i<sp->nsubsym; i++){
1016 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
1018 }else{
1019 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
1025 ** Construct the propagation links
1027 void FindLinks(struct lemon *lemp)
1029 int i;
1030 struct config *cfp, *other;
1031 struct state *stp;
1032 struct plink *plp;
1034 /* Housekeeping detail:
1035 ** Add to every propagate link a pointer back to the state to
1036 ** which the link is attached. */
1037 for(i=0; i<lemp->nstate; i++){
1038 stp = lemp->sorted[i];
1039 for(cfp=stp->cfp; cfp; cfp=cfp->next){
1040 cfp->stp = stp;
1044 /* Convert all backlinks into forward links. Only the forward
1045 ** links are used in the follow-set computation. */
1046 for(i=0; i<lemp->nstate; i++){
1047 stp = lemp->sorted[i];
1048 for(cfp=stp->cfp; cfp; cfp=cfp->next){
1049 for(plp=cfp->bplp; plp; plp=plp->next){
1050 other = plp->cfp;
1051 Plink_add(&other->fplp,cfp);
1057 /* Compute all followsets.
1059 ** A followset is the set of all symbols which can come immediately
1060 ** after a configuration.
1062 void FindFollowSets(struct lemon *lemp)
1064 int i;
1065 struct config *cfp;
1066 struct plink *plp;
1067 int progress;
1068 int change;
1070 for(i=0; i<lemp->nstate; i++){
1071 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1072 cfp->status = INCOMPLETE;
1077 progress = 0;
1078 for(i=0; i<lemp->nstate; i++){
1079 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1080 if( cfp->status==COMPLETE ) continue;
1081 for(plp=cfp->fplp; plp; plp=plp->next){
1082 change = SetUnion(plp->cfp->fws,cfp->fws);
1083 if( change ){
1084 plp->cfp->status = INCOMPLETE;
1085 progress = 1;
1088 cfp->status = COMPLETE;
1091 }while( progress );
1094 static int resolve_conflict(struct action *,struct action *);
1096 /* Compute the reduce actions, and resolve conflicts.
1098 void FindActions(struct lemon *lemp)
1100 int i,j;
1101 struct config *cfp;
1102 struct state *stp;
1103 struct symbol *sp;
1104 struct rule *rp;
1106 /* Add all of the reduce actions
1107 ** A reduce action is added for each element of the followset of
1108 ** a configuration which has its dot at the extreme right.
1110 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
1111 stp = lemp->sorted[i];
1112 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
1113 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
1114 for(j=0; j<lemp->nterminal; j++){
1115 if( SetFind(cfp->fws,j) ){
1116 /* Add a reduce action to the state "stp" which will reduce by the
1117 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1118 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1125 /* Add the accepting token */
1126 if( lemp->start ){
1127 sp = Symbol_find(lemp->start);
1128 if( sp==0 ) sp = lemp->startRule->lhs;
1129 }else{
1130 sp = lemp->startRule->lhs;
1132 /* Add to the first state (which is always the starting state of the
1133 ** finite state machine) an action to ACCEPT if the lookahead is the
1134 ** start nonterminal. */
1135 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1137 /* Resolve conflicts */
1138 for(i=0; i<lemp->nstate; i++){
1139 struct action *ap, *nap;
1140 stp = lemp->sorted[i];
1141 /* assert( stp->ap ); */
1142 stp->ap = Action_sort(stp->ap);
1143 for(ap=stp->ap; ap && ap->next; ap=ap->next){
1144 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1145 /* The two actions "ap" and "nap" have the same lookahead.
1146 ** Figure out which one should be used */
1147 lemp->nconflict += resolve_conflict(ap,nap);
1152 /* Report an error for each rule that can never be reduced. */
1153 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1154 for(i=0; i<lemp->nstate; i++){
1155 struct action *ap;
1156 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1157 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1160 for(rp=lemp->rule; rp; rp=rp->next){
1161 if( rp->canReduce ) continue;
1162 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1163 lemp->errorcnt++;
1167 /* Resolve a conflict between the two given actions. If the
1168 ** conflict can't be resolved, return non-zero.
1170 ** NO LONGER TRUE:
1171 ** To resolve a conflict, first look to see if either action
1172 ** is on an error rule. In that case, take the action which
1173 ** is not associated with the error rule. If neither or both
1174 ** actions are associated with an error rule, then try to
1175 ** use precedence to resolve the conflict.
1177 ** If either action is a SHIFT, then it must be apx. This
1178 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1180 static int resolve_conflict(
1181 struct action *apx,
1182 struct action *apy
1184 struct symbol *spx, *spy;
1185 int errcnt = 0;
1186 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1187 if( apx->type==SHIFT && apy->type==SHIFT ){
1188 apy->type = SSCONFLICT;
1189 errcnt++;
1191 if( apx->type==SHIFT && apy->type==REDUCE ){
1192 spx = apx->sp;
1193 spy = apy->x.rp->precsym;
1194 if( spy==0 || spx->prec<0 || spy->prec<0 ){
1195 /* Not enough precedence information. */
1196 apy->type = SRCONFLICT;
1197 errcnt++;
1198 }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1199 apy->type = RD_RESOLVED;
1200 }else if( spx->prec<spy->prec ){
1201 apx->type = SH_RESOLVED;
1202 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1203 apy->type = RD_RESOLVED; /* associativity */
1204 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1205 apx->type = SH_RESOLVED;
1206 }else{
1207 assert( spx->prec==spy->prec && spx->assoc==NONE );
1208 apx->type = ERROR;
1210 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1211 spx = apx->x.rp->precsym;
1212 spy = apy->x.rp->precsym;
1213 if( spx==0 || spy==0 || spx->prec<0 ||
1214 spy->prec<0 || spx->prec==spy->prec ){
1215 apy->type = RRCONFLICT;
1216 errcnt++;
1217 }else if( spx->prec>spy->prec ){
1218 apy->type = RD_RESOLVED;
1219 }else if( spx->prec<spy->prec ){
1220 apx->type = RD_RESOLVED;
1222 }else{
1223 assert(
1224 apx->type==SH_RESOLVED ||
1225 apx->type==RD_RESOLVED ||
1226 apx->type==SSCONFLICT ||
1227 apx->type==SRCONFLICT ||
1228 apx->type==RRCONFLICT ||
1229 apy->type==SH_RESOLVED ||
1230 apy->type==RD_RESOLVED ||
1231 apy->type==SSCONFLICT ||
1232 apy->type==SRCONFLICT ||
1233 apy->type==RRCONFLICT
1235 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1236 ** REDUCEs on the list. If we reach this point it must be because
1237 ** the parser conflict had already been resolved. */
1239 return errcnt;
1241 /********************* From the file "configlist.c" *************************/
1243 ** Routines to processing a configuration list and building a state
1244 ** in the LEMON parser generator.
1247 static struct config *freelist = 0; /* List of free configurations */
1248 static struct config *current = 0; /* Top of list of configurations */
1249 static struct config **currentend = 0; /* Last on list of configs */
1250 static struct config *basis = 0; /* Top of list of basis configs */
1251 static struct config **basisend = 0; /* End of list of basis configs */
1253 /* Return a pointer to a new configuration */
1254 PRIVATE struct config *newconfig(void){
1255 struct config *newcfg;
1256 if( freelist==0 ){
1257 int i;
1258 int amt = 3;
1259 freelist = (struct config *)calloc( amt, sizeof(struct config) );
1260 if( freelist==0 ){
1261 fprintf(stderr,"Unable to allocate memory for a new configuration.");
1262 exit(1);
1264 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1265 freelist[amt-1].next = 0;
1267 newcfg = freelist;
1268 freelist = freelist->next;
1269 return newcfg;
1272 /* The configuration "old" is no longer used */
1273 PRIVATE void deleteconfig(struct config *old)
1275 old->next = freelist;
1276 freelist = old;
1279 /* Initialized the configuration list builder */
1280 void Configlist_init(void){
1281 current = 0;
1282 currentend = &current;
1283 basis = 0;
1284 basisend = &basis;
1285 Configtable_init();
1286 return;
1289 /* Initialized the configuration list builder */
1290 void Configlist_reset(void){
1291 current = 0;
1292 currentend = &current;
1293 basis = 0;
1294 basisend = &basis;
1295 Configtable_clear(0);
1296 return;
1299 /* Add another configuration to the configuration list */
1300 struct config *Configlist_add(
1301 struct rule *rp, /* The rule */
1302 int dot /* Index into the RHS of the rule where the dot goes */
1304 struct config *cfp, model;
1306 assert( currentend!=0 );
1307 model.rp = rp;
1308 model.dot = dot;
1309 cfp = Configtable_find(&model);
1310 if( cfp==0 ){
1311 cfp = newconfig();
1312 cfp->rp = rp;
1313 cfp->dot = dot;
1314 cfp->fws = SetNew();
1315 cfp->stp = 0;
1316 cfp->fplp = cfp->bplp = 0;
1317 cfp->next = 0;
1318 cfp->bp = 0;
1319 *currentend = cfp;
1320 currentend = &cfp->next;
1321 Configtable_insert(cfp);
1323 return cfp;
1326 /* Add a basis configuration to the configuration list */
1327 struct config *Configlist_addbasis(struct rule *rp, int dot)
1329 struct config *cfp, model;
1331 assert( basisend!=0 );
1332 assert( currentend!=0 );
1333 model.rp = rp;
1334 model.dot = dot;
1335 cfp = Configtable_find(&model);
1336 if( cfp==0 ){
1337 cfp = newconfig();
1338 cfp->rp = rp;
1339 cfp->dot = dot;
1340 cfp->fws = SetNew();
1341 cfp->stp = 0;
1342 cfp->fplp = cfp->bplp = 0;
1343 cfp->next = 0;
1344 cfp->bp = 0;
1345 *currentend = cfp;
1346 currentend = &cfp->next;
1347 *basisend = cfp;
1348 basisend = &cfp->bp;
1349 Configtable_insert(cfp);
1351 return cfp;
1354 /* Compute the closure of the configuration list */
1355 void Configlist_closure(struct lemon *lemp)
1357 struct config *cfp, *newcfp;
1358 struct rule *rp, *newrp;
1359 struct symbol *sp, *xsp;
1360 int i, dot;
1362 assert( currentend!=0 );
1363 for(cfp=current; cfp; cfp=cfp->next){
1364 rp = cfp->rp;
1365 dot = cfp->dot;
1366 if( dot>=rp->nrhs ) continue;
1367 sp = rp->rhs[dot];
1368 if( sp->type==NONTERMINAL ){
1369 if( sp->rule==0 && sp!=lemp->errsym ){
1370 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1371 sp->name);
1372 lemp->errorcnt++;
1374 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1375 newcfp = Configlist_add(newrp,0);
1376 for(i=dot+1; i<rp->nrhs; i++){
1377 xsp = rp->rhs[i];
1378 if( xsp->type==TERMINAL ){
1379 SetAdd(newcfp->fws,xsp->index);
1380 break;
1381 }else if( xsp->type==MULTITERMINAL ){
1382 int k;
1383 for(k=0; k<xsp->nsubsym; k++){
1384 SetAdd(newcfp->fws, xsp->subsym[k]->index);
1386 break;
1387 }else{
1388 SetUnion(newcfp->fws,xsp->firstset);
1389 if( xsp->lambda==LEMON_FALSE ) break;
1392 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1396 return;
1399 /* Sort the configuration list */
1400 void Configlist_sort(void){
1401 current = (struct config*)msort((char*)current,(char**)&(current->next),
1402 Configcmp);
1403 currentend = 0;
1404 return;
1407 /* Sort the basis configuration list */
1408 void Configlist_sortbasis(void){
1409 basis = (struct config*)msort((char*)current,(char**)&(current->bp),
1410 Configcmp);
1411 basisend = 0;
1412 return;
1415 /* Return a pointer to the head of the configuration list and
1416 ** reset the list */
1417 struct config *Configlist_return(void){
1418 struct config *old;
1419 old = current;
1420 current = 0;
1421 currentend = 0;
1422 return old;
1425 /* Return a pointer to the head of the configuration list and
1426 ** reset the list */
1427 struct config *Configlist_basis(void){
1428 struct config *old;
1429 old = basis;
1430 basis = 0;
1431 basisend = 0;
1432 return old;
1435 /* Free all elements of the given configuration list */
1436 void Configlist_eat(struct config *cfp)
1438 struct config *nextcfp;
1439 for(; cfp; cfp=nextcfp){
1440 nextcfp = cfp->next;
1441 assert( cfp->fplp==0 );
1442 assert( cfp->bplp==0 );
1443 if( cfp->fws ) SetFree(cfp->fws);
1444 deleteconfig(cfp);
1446 return;
1448 /***************** From the file "error.c" *********************************/
1450 ** Code for printing error message.
1453 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1454 va_list ap;
1455 fprintf(stderr, "%s:%d: ", filename, lineno);
1456 va_start(ap, format);
1457 vfprintf(stderr,format,ap);
1458 va_end(ap);
1459 fprintf(stderr, "\n");
1461 /**************** From the file "main.c" ************************************/
1463 ** Main program file for the LEMON parser generator.
1466 /* Report an out-of-memory condition and abort. This function
1467 ** is used mostly by the "MemoryCheck" macro in struct.h
1469 void memory_error(void){
1470 fprintf(stderr,"Out of memory. Aborting...\n");
1471 exit(1);
1474 static int nDefine = 0; /* Number of -D options on the command line */
1475 static char **azDefine = 0; /* Name of the -D macros */
1477 /* This routine is called with the argument to each -D command-line option.
1478 ** Add the macro defined to the azDefine array.
1480 static void handle_D_option(char *z){
1481 char **paz;
1482 nDefine++;
1483 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1484 if( azDefine==0 ){
1485 fprintf(stderr,"out of memory\n");
1486 exit(1);
1488 paz = &azDefine[nDefine-1];
1489 *paz = (char *) malloc( lemonStrlen(z)+1 );
1490 if( *paz==0 ){
1491 fprintf(stderr,"out of memory\n");
1492 exit(1);
1494 lemon_strcpy(*paz, z);
1495 for(z=*paz; *z && *z!='='; z++){}
1496 *z = 0;
1499 static char *user_templatename = NULL;
1500 static void handle_T_option(char *z){
1501 user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1502 if( user_templatename==0 ){
1503 memory_error();
1505 lemon_strcpy(user_templatename, z);
1508 /* Merge together to lists of rules ordered by rule.iRule */
1509 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
1510 struct rule *pFirst = 0;
1511 struct rule **ppPrev = &pFirst;
1512 while( pA && pB ){
1513 if( pA->iRule<pB->iRule ){
1514 *ppPrev = pA;
1515 ppPrev = &pA->next;
1516 pA = pA->next;
1517 }else{
1518 *ppPrev = pB;
1519 ppPrev = &pB->next;
1520 pB = pB->next;
1523 if( pA ){
1524 *ppPrev = pA;
1525 }else{
1526 *ppPrev = pB;
1528 return pFirst;
1532 ** Sort a list of rules in order of increasing iRule value
1534 static struct rule *Rule_sort(struct rule *rp){
1535 int i;
1536 struct rule *pNext;
1537 struct rule *x[32];
1538 memset(x, 0, sizeof(x));
1539 while( rp ){
1540 pNext = rp->next;
1541 rp->next = 0;
1542 for(i=0; i<sizeof(x)/sizeof(x[0]) && x[i]; i++){
1543 rp = Rule_merge(x[i], rp);
1544 x[i] = 0;
1546 x[i] = rp;
1547 rp = pNext;
1549 rp = 0;
1550 for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
1551 rp = Rule_merge(x[i], rp);
1553 return rp;
1556 /* forward reference */
1557 static const char *minimum_size_type(int lwr, int upr, int *pnByte);
1559 /* Print a single line of the "Parser Stats" output
1561 static void stats_line(const char *zLabel, int iValue){
1562 int nLabel = lemonStrlen(zLabel);
1563 printf(" %s%.*s %5d\n", zLabel,
1564 35-nLabel, "................................",
1565 iValue);
1568 /* The main program. Parse the command line and do it... */
1569 int main(int argc, char **argv)
1571 static int version = 0;
1572 static int rpflag = 0;
1573 static int basisflag = 0;
1574 static int compress = 0;
1575 static int quiet = 0;
1576 static int statistics = 0;
1577 static int mhflag = 0;
1578 static int nolinenosflag = 0;
1579 static int noResort = 0;
1580 static struct s_options options[] = {
1581 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1582 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1583 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1584 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
1585 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1586 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
1587 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1588 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1589 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
1590 {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1591 "Show conflicts resolved by precedence rules"},
1592 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1593 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1594 {OPT_FLAG, "s", (char*)&statistics,
1595 "Print parser stats to standard output."},
1596 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1597 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1598 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
1599 {OPT_FLAG,0,0,0}
1601 int i;
1602 int exitcode;
1603 struct lemon lem;
1604 struct rule *rp;
1606 OptInit(argv,options,stderr);
1607 if( version ){
1608 printf("Lemon version 1.0\n");
1609 exit(0);
1611 if( OptNArgs()!=1 ){
1612 fprintf(stderr,"Exactly one filename argument is required.\n");
1613 exit(1);
1615 memset(&lem, 0, sizeof(lem));
1616 lem.errorcnt = 0;
1618 /* Initialize the machine */
1619 Strsafe_init();
1620 Symbol_init();
1621 State_init();
1622 lem.argv0 = argv[0];
1623 lem.filename = OptArg(0);
1624 lem.basisflag = basisflag;
1625 lem.nolinenosflag = nolinenosflag;
1626 Symbol_new("$");
1627 lem.errsym = Symbol_new("error");
1628 lem.errsym->useCnt = 0;
1630 /* Parse the input file */
1631 Parse(&lem);
1632 if( lem.errorcnt ) exit(lem.errorcnt);
1633 if( lem.nrule==0 ){
1634 fprintf(stderr,"Empty grammar.\n");
1635 exit(1);
1638 /* Count and index the symbols of the grammar */
1639 Symbol_new("{default}");
1640 lem.nsymbol = Symbol_count();
1641 lem.symbols = Symbol_arrayof();
1642 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1643 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1644 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1645 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1646 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1647 lem.nsymbol = i - 1;
1648 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
1649 lem.nterminal = i;
1651 /* Assign sequential rule numbers. Start with 0. Put rules that have no
1652 ** reduce action C-code associated with them last, so that the switch()
1653 ** statement that selects reduction actions will have a smaller jump table.
1655 for(i=0, rp=lem.rule; rp; rp=rp->next){
1656 rp->iRule = rp->code ? i++ : -1;
1658 for(rp=lem.rule; rp; rp=rp->next){
1659 if( rp->iRule<0 ) rp->iRule = i++;
1661 lem.startRule = lem.rule;
1662 lem.rule = Rule_sort(lem.rule);
1664 /* Generate a reprint of the grammar, if requested on the command line */
1665 if( rpflag ){
1666 Reprint(&lem);
1667 }else{
1668 /* Initialize the size for all follow and first sets */
1669 SetSize(lem.nterminal+1);
1671 /* Find the precedence for every production rule (that has one) */
1672 FindRulePrecedences(&lem);
1674 /* Compute the lambda-nonterminals and the first-sets for every
1675 ** nonterminal */
1676 FindFirstSets(&lem);
1678 /* Compute all LR(0) states. Also record follow-set propagation
1679 ** links so that the follow-set can be computed later */
1680 lem.nstate = 0;
1681 FindStates(&lem);
1682 lem.sorted = State_arrayof();
1684 /* Tie up loose ends on the propagation links */
1685 FindLinks(&lem);
1687 /* Compute the follow set of every reducible configuration */
1688 FindFollowSets(&lem);
1690 /* Compute the action tables */
1691 FindActions(&lem);
1693 /* Compress the action tables */
1694 if( compress==0 ) CompressTables(&lem);
1696 /* Reorder and renumber the states so that states with fewer choices
1697 ** occur at the end. This is an optimization that helps make the
1698 ** generated parser tables smaller. */
1699 if( noResort==0 ) ResortStates(&lem);
1701 /* Generate a report of the parser generated. (the "y.output" file) */
1702 if( !quiet ) ReportOutput(&lem);
1704 /* Generate the source code for the parser */
1705 ReportTable(&lem, mhflag);
1707 /* Produce a header file for use by the scanner. (This step is
1708 ** omitted if the "-m" option is used because makeheaders will
1709 ** generate the file for us.) */
1710 if( !mhflag ) ReportHeader(&lem);
1712 if( statistics ){
1713 printf("Parser statistics:\n");
1714 stats_line("terminal symbols", lem.nterminal);
1715 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
1716 stats_line("total symbols", lem.nsymbol);
1717 stats_line("rules", lem.nrule);
1718 stats_line("states", lem.nxstate);
1719 stats_line("conflicts", lem.nconflict);
1720 stats_line("action table entries", lem.nactiontab);
1721 stats_line("total table size (bytes)", lem.tablesize);
1723 if( lem.nconflict > 0 ){
1724 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1727 /* return 0 on success, 1 on failure. */
1728 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1729 exit(exitcode);
1730 return (exitcode);
1732 /******************** From the file "msort.c" *******************************/
1734 ** A generic merge-sort program.
1736 ** USAGE:
1737 ** Let "ptr" be a pointer to some structure which is at the head of
1738 ** a null-terminated list. Then to sort the list call:
1740 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1742 ** In the above, "cmpfnc" is a pointer to a function which compares
1743 ** two instances of the structure and returns an integer, as in
1744 ** strcmp. The second argument is a pointer to the pointer to the
1745 ** second element of the linked list. This address is used to compute
1746 ** the offset to the "next" field within the structure. The offset to
1747 ** the "next" field must be constant for all structures in the list.
1749 ** The function returns a new pointer which is the head of the list
1750 ** after sorting.
1752 ** ALGORITHM:
1753 ** Merge-sort.
1757 ** Return a pointer to the next structure in the linked list.
1759 #define NEXT(A) (*(char**)(((char*)A)+offset))
1762 ** Inputs:
1763 ** a: A sorted, null-terminated linked list. (May be null).
1764 ** b: A sorted, null-terminated linked list. (May be null).
1765 ** cmp: A pointer to the comparison function.
1766 ** offset: Offset in the structure to the "next" field.
1768 ** Return Value:
1769 ** A pointer to the head of a sorted list containing the elements
1770 ** of both a and b.
1772 ** Side effects:
1773 ** The "next" pointers for elements in the lists a and b are
1774 ** changed.
1776 static char *merge(
1777 char *a,
1778 char *b,
1779 int (*cmp)(const char*,const char*),
1780 int offset
1782 char *ptr, *head;
1784 if( a==0 ){
1785 head = b;
1786 }else if( b==0 ){
1787 head = a;
1788 }else{
1789 if( (*cmp)(a,b)<=0 ){
1790 ptr = a;
1791 a = NEXT(a);
1792 }else{
1793 ptr = b;
1794 b = NEXT(b);
1796 head = ptr;
1797 while( a && b ){
1798 if( (*cmp)(a,b)<=0 ){
1799 NEXT(ptr) = a;
1800 ptr = a;
1801 a = NEXT(a);
1802 }else{
1803 NEXT(ptr) = b;
1804 ptr = b;
1805 b = NEXT(b);
1808 if( a ) NEXT(ptr) = a;
1809 else NEXT(ptr) = b;
1811 return head;
1815 ** Inputs:
1816 ** list: Pointer to a singly-linked list of structures.
1817 ** next: Pointer to pointer to the second element of the list.
1818 ** cmp: A comparison function.
1820 ** Return Value:
1821 ** A pointer to the head of a sorted list containing the elements
1822 ** orginally in list.
1824 ** Side effects:
1825 ** The "next" pointers for elements in list are changed.
1827 #define LISTSIZE 30
1828 static char *msort(
1829 char *list,
1830 char **next,
1831 int (*cmp)(const char*,const char*)
1833 unsigned long offset;
1834 char *ep;
1835 char *set[LISTSIZE];
1836 int i;
1837 offset = (unsigned long)((char*)next - (char*)list);
1838 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1839 while( list ){
1840 ep = list;
1841 list = NEXT(list);
1842 NEXT(ep) = 0;
1843 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1844 ep = merge(ep,set[i],cmp,offset);
1845 set[i] = 0;
1847 set[i] = ep;
1849 ep = 0;
1850 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1851 return ep;
1853 /************************ From the file "option.c" **************************/
1854 static char **argv;
1855 static struct s_options *op;
1856 static FILE *errstream;
1858 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1861 ** Print the command line with a carrot pointing to the k-th character
1862 ** of the n-th field.
1864 static void errline(int n, int k, FILE *err)
1866 int spcnt, i;
1867 if( argv[0] ) fprintf(err,"%s",argv[0]);
1868 spcnt = lemonStrlen(argv[0]) + 1;
1869 for(i=1; i<n && argv[i]; i++){
1870 fprintf(err," %s",argv[i]);
1871 spcnt += lemonStrlen(argv[i])+1;
1873 spcnt += k;
1874 for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1875 if( spcnt<20 ){
1876 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1877 }else{
1878 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1883 ** Return the index of the N-th non-switch argument. Return -1
1884 ** if N is out of range.
1886 static int argindex(int n)
1888 int i;
1889 int dashdash = 0;
1890 if( argv!=0 && *argv!=0 ){
1891 for(i=1; argv[i]; i++){
1892 if( dashdash || !ISOPT(argv[i]) ){
1893 if( n==0 ) return i;
1894 n--;
1896 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1899 return -1;
1902 static char emsg[] = "Command line syntax error: ";
1905 ** Process a flag command line argument.
1907 static int handleflags(int i, FILE *err)
1909 int v;
1910 int errcnt = 0;
1911 int j;
1912 for(j=0; op[j].label; j++){
1913 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1915 v = argv[i][0]=='-' ? 1 : 0;
1916 if( op[j].label==0 ){
1917 if( err ){
1918 fprintf(err,"%sundefined option.\n",emsg);
1919 errline(i,1,err);
1921 errcnt++;
1922 }else if( op[j].arg==0 ){
1923 /* Ignore this option */
1924 }else if( op[j].type==OPT_FLAG ){
1925 *((int*)op[j].arg) = v;
1926 }else if( op[j].type==OPT_FFLAG ){
1927 (*(void(*)(int))(op[j].arg))(v);
1928 }else if( op[j].type==OPT_FSTR ){
1929 (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
1930 }else{
1931 if( err ){
1932 fprintf(err,"%smissing argument on switch.\n",emsg);
1933 errline(i,1,err);
1935 errcnt++;
1937 return errcnt;
1941 ** Process a command line switch which has an argument.
1943 static int handleswitch(int i, FILE *err)
1945 int lv = 0;
1946 double dv = 0.0;
1947 char *sv = 0, *end;
1948 char *cp;
1949 int j;
1950 int errcnt = 0;
1951 cp = strchr(argv[i],'=');
1952 assert( cp!=0 );
1953 *cp = 0;
1954 for(j=0; op[j].label; j++){
1955 if( strcmp(argv[i],op[j].label)==0 ) break;
1957 *cp = '=';
1958 if( op[j].label==0 ){
1959 if( err ){
1960 fprintf(err,"%sundefined option.\n",emsg);
1961 errline(i,0,err);
1963 errcnt++;
1964 }else{
1965 cp++;
1966 switch( op[j].type ){
1967 case OPT_FLAG:
1968 case OPT_FFLAG:
1969 if( err ){
1970 fprintf(err,"%soption requires an argument.\n",emsg);
1971 errline(i,0,err);
1973 errcnt++;
1974 break;
1975 case OPT_DBL:
1976 case OPT_FDBL:
1977 dv = strtod(cp,&end);
1978 if( *end ){
1979 if( err ){
1980 fprintf(err,
1981 "%sillegal character in floating-point argument.\n",emsg);
1982 errline(i,(int)((char*)end-(char*)argv[i]),err);
1984 errcnt++;
1986 break;
1987 case OPT_INT:
1988 case OPT_FINT:
1989 lv = strtol(cp,&end,0);
1990 if( *end ){
1991 if( err ){
1992 fprintf(err,"%sillegal character in integer argument.\n",emsg);
1993 errline(i,(int)((char*)end-(char*)argv[i]),err);
1995 errcnt++;
1997 break;
1998 case OPT_STR:
1999 case OPT_FSTR:
2000 sv = cp;
2001 break;
2003 switch( op[j].type ){
2004 case OPT_FLAG:
2005 case OPT_FFLAG:
2006 break;
2007 case OPT_DBL:
2008 *(double*)(op[j].arg) = dv;
2009 break;
2010 case OPT_FDBL:
2011 (*(void(*)(double))(op[j].arg))(dv);
2012 break;
2013 case OPT_INT:
2014 *(int*)(op[j].arg) = lv;
2015 break;
2016 case OPT_FINT:
2017 (*(void(*)(int))(op[j].arg))((int)lv);
2018 break;
2019 case OPT_STR:
2020 *(char**)(op[j].arg) = sv;
2021 break;
2022 case OPT_FSTR:
2023 (*(void(*)(char *))(op[j].arg))(sv);
2024 break;
2027 return errcnt;
2030 int OptInit(char **a, struct s_options *o, FILE *err)
2032 int errcnt = 0;
2033 argv = a;
2034 op = o;
2035 errstream = err;
2036 if( argv && *argv && op ){
2037 int i;
2038 for(i=1; argv[i]; i++){
2039 if( argv[i][0]=='+' || argv[i][0]=='-' ){
2040 errcnt += handleflags(i,err);
2041 }else if( strchr(argv[i],'=') ){
2042 errcnt += handleswitch(i,err);
2046 if( errcnt>0 ){
2047 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
2048 OptPrint();
2049 exit(1);
2051 return 0;
2054 int OptNArgs(void){
2055 int cnt = 0;
2056 int dashdash = 0;
2057 int i;
2058 if( argv!=0 && argv[0]!=0 ){
2059 for(i=1; argv[i]; i++){
2060 if( dashdash || !ISOPT(argv[i]) ) cnt++;
2061 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
2064 return cnt;
2067 char *OptArg(int n)
2069 int i;
2070 i = argindex(n);
2071 return i>=0 ? argv[i] : 0;
2074 void OptErr(int n)
2076 int i;
2077 i = argindex(n);
2078 if( i>=0 ) errline(i,0,errstream);
2081 void OptPrint(void){
2082 int i;
2083 int max, len;
2084 max = 0;
2085 for(i=0; op[i].label; i++){
2086 len = lemonStrlen(op[i].label) + 1;
2087 switch( op[i].type ){
2088 case OPT_FLAG:
2089 case OPT_FFLAG:
2090 break;
2091 case OPT_INT:
2092 case OPT_FINT:
2093 len += 9; /* length of "<integer>" */
2094 break;
2095 case OPT_DBL:
2096 case OPT_FDBL:
2097 len += 6; /* length of "<real>" */
2098 break;
2099 case OPT_STR:
2100 case OPT_FSTR:
2101 len += 8; /* length of "<string>" */
2102 break;
2104 if( len>max ) max = len;
2106 for(i=0; op[i].label; i++){
2107 switch( op[i].type ){
2108 case OPT_FLAG:
2109 case OPT_FFLAG:
2110 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
2111 break;
2112 case OPT_INT:
2113 case OPT_FINT:
2114 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label,
2115 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2116 break;
2117 case OPT_DBL:
2118 case OPT_FDBL:
2119 fprintf(errstream," -%s<real>%*s %s\n",op[i].label,
2120 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2121 break;
2122 case OPT_STR:
2123 case OPT_FSTR:
2124 fprintf(errstream," -%s<string>%*s %s\n",op[i].label,
2125 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2126 break;
2130 /*********************** From the file "parse.c" ****************************/
2132 ** Input file parser for the LEMON parser generator.
2135 /* The state of the parser */
2136 enum e_state {
2137 INITIALIZE,
2138 WAITING_FOR_DECL_OR_RULE,
2139 WAITING_FOR_DECL_KEYWORD,
2140 WAITING_FOR_DECL_ARG,
2141 WAITING_FOR_PRECEDENCE_SYMBOL,
2142 WAITING_FOR_ARROW,
2143 IN_RHS,
2144 LHS_ALIAS_1,
2145 LHS_ALIAS_2,
2146 LHS_ALIAS_3,
2147 RHS_ALIAS_1,
2148 RHS_ALIAS_2,
2149 PRECEDENCE_MARK_1,
2150 PRECEDENCE_MARK_2,
2151 RESYNC_AFTER_RULE_ERROR,
2152 RESYNC_AFTER_DECL_ERROR,
2153 WAITING_FOR_DESTRUCTOR_SYMBOL,
2154 WAITING_FOR_DATATYPE_SYMBOL,
2155 WAITING_FOR_FALLBACK_ID,
2156 WAITING_FOR_WILDCARD_ID,
2157 WAITING_FOR_CLASS_ID,
2158 WAITING_FOR_CLASS_TOKEN
2160 struct pstate {
2161 char *filename; /* Name of the input file */
2162 int tokenlineno; /* Linenumber at which current token starts */
2163 int errorcnt; /* Number of errors so far */
2164 char *tokenstart; /* Text of current token */
2165 struct lemon *gp; /* Global state vector */
2166 enum e_state state; /* The state of the parser */
2167 struct symbol *fallback; /* The fallback token */
2168 struct symbol *tkclass; /* Token class symbol */
2169 struct symbol *lhs; /* Left-hand side of current rule */
2170 const char *lhsalias; /* Alias for the LHS */
2171 int nrhs; /* Number of right-hand side symbols seen */
2172 struct symbol *rhs[MAXRHS]; /* RHS symbols */
2173 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2174 struct rule *prevrule; /* Previous rule parsed */
2175 const char *declkeyword; /* Keyword of a declaration */
2176 char **declargslot; /* Where the declaration argument should be put */
2177 int insertLineMacro; /* Add #line before declaration insert */
2178 int *decllinenoslot; /* Where to write declaration line number */
2179 enum e_assoc declassoc; /* Assign this association to decl arguments */
2180 int preccounter; /* Assign this precedence to decl arguments */
2181 struct rule *firstrule; /* Pointer to first rule in the grammar */
2182 struct rule *lastrule; /* Pointer to the most recently parsed rule */
2185 /* Parse a single token */
2186 static void parseonetoken(struct pstate *psp)
2188 const char *x;
2189 x = Strsafe(psp->tokenstart); /* Save the token permanently */
2190 #if 0
2191 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2192 x,psp->state);
2193 #endif
2194 switch( psp->state ){
2195 case INITIALIZE:
2196 psp->prevrule = 0;
2197 psp->preccounter = 0;
2198 psp->firstrule = psp->lastrule = 0;
2199 psp->gp->nrule = 0;
2200 /* Fall thru to next case */
2201 case WAITING_FOR_DECL_OR_RULE:
2202 if( x[0]=='%' ){
2203 psp->state = WAITING_FOR_DECL_KEYWORD;
2204 }else if( ISLOWER(x[0]) ){
2205 psp->lhs = Symbol_new(x);
2206 psp->nrhs = 0;
2207 psp->lhsalias = 0;
2208 psp->state = WAITING_FOR_ARROW;
2209 }else if( x[0]=='{' ){
2210 if( psp->prevrule==0 ){
2211 ErrorMsg(psp->filename,psp->tokenlineno,
2212 "There is no prior rule upon which to attach the code \
2213 fragment which begins on this line.");
2214 psp->errorcnt++;
2215 }else if( psp->prevrule->code!=0 ){
2216 ErrorMsg(psp->filename,psp->tokenlineno,
2217 "Code fragment beginning on this line is not the first \
2218 to follow the previous rule.");
2219 psp->errorcnt++;
2220 }else{
2221 psp->prevrule->line = psp->tokenlineno;
2222 psp->prevrule->code = &x[1];
2223 psp->prevrule->noCode = 0;
2225 }else if( x[0]=='[' ){
2226 psp->state = PRECEDENCE_MARK_1;
2227 }else{
2228 ErrorMsg(psp->filename,psp->tokenlineno,
2229 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2231 psp->errorcnt++;
2233 break;
2234 case PRECEDENCE_MARK_1:
2235 if( !ISUPPER(x[0]) ){
2236 ErrorMsg(psp->filename,psp->tokenlineno,
2237 "The precedence symbol must be a terminal.");
2238 psp->errorcnt++;
2239 }else if( psp->prevrule==0 ){
2240 ErrorMsg(psp->filename,psp->tokenlineno,
2241 "There is no prior rule to assign precedence \"[%s]\".",x);
2242 psp->errorcnt++;
2243 }else if( psp->prevrule->precsym!=0 ){
2244 ErrorMsg(psp->filename,psp->tokenlineno,
2245 "Precedence mark on this line is not the first \
2246 to follow the previous rule.");
2247 psp->errorcnt++;
2248 }else{
2249 psp->prevrule->precsym = Symbol_new(x);
2251 psp->state = PRECEDENCE_MARK_2;
2252 break;
2253 case PRECEDENCE_MARK_2:
2254 if( x[0]!=']' ){
2255 ErrorMsg(psp->filename,psp->tokenlineno,
2256 "Missing \"]\" on precedence mark.");
2257 psp->errorcnt++;
2259 psp->state = WAITING_FOR_DECL_OR_RULE;
2260 break;
2261 case WAITING_FOR_ARROW:
2262 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2263 psp->state = IN_RHS;
2264 }else if( x[0]=='(' ){
2265 psp->state = LHS_ALIAS_1;
2266 }else{
2267 ErrorMsg(psp->filename,psp->tokenlineno,
2268 "Expected to see a \":\" following the LHS symbol \"%s\".",
2269 psp->lhs->name);
2270 psp->errorcnt++;
2271 psp->state = RESYNC_AFTER_RULE_ERROR;
2273 break;
2274 case LHS_ALIAS_1:
2275 if( ISALPHA(x[0]) ){
2276 psp->lhsalias = x;
2277 psp->state = LHS_ALIAS_2;
2278 }else{
2279 ErrorMsg(psp->filename,psp->tokenlineno,
2280 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2281 x,psp->lhs->name);
2282 psp->errorcnt++;
2283 psp->state = RESYNC_AFTER_RULE_ERROR;
2285 break;
2286 case LHS_ALIAS_2:
2287 if( x[0]==')' ){
2288 psp->state = LHS_ALIAS_3;
2289 }else{
2290 ErrorMsg(psp->filename,psp->tokenlineno,
2291 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2292 psp->errorcnt++;
2293 psp->state = RESYNC_AFTER_RULE_ERROR;
2295 break;
2296 case LHS_ALIAS_3:
2297 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2298 psp->state = IN_RHS;
2299 }else{
2300 ErrorMsg(psp->filename,psp->tokenlineno,
2301 "Missing \"->\" following: \"%s(%s)\".",
2302 psp->lhs->name,psp->lhsalias);
2303 psp->errorcnt++;
2304 psp->state = RESYNC_AFTER_RULE_ERROR;
2306 break;
2307 case IN_RHS:
2308 if( x[0]=='.' ){
2309 struct rule *rp;
2310 rp = (struct rule *)calloc( sizeof(struct rule) +
2311 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2312 if( rp==0 ){
2313 ErrorMsg(psp->filename,psp->tokenlineno,
2314 "Can't allocate enough memory for this rule.");
2315 psp->errorcnt++;
2316 psp->prevrule = 0;
2317 }else{
2318 int i;
2319 rp->ruleline = psp->tokenlineno;
2320 rp->rhs = (struct symbol**)&rp[1];
2321 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2322 for(i=0; i<psp->nrhs; i++){
2323 rp->rhs[i] = psp->rhs[i];
2324 rp->rhsalias[i] = psp->alias[i];
2326 rp->lhs = psp->lhs;
2327 rp->lhsalias = psp->lhsalias;
2328 rp->nrhs = psp->nrhs;
2329 rp->code = 0;
2330 rp->noCode = 1;
2331 rp->precsym = 0;
2332 rp->index = psp->gp->nrule++;
2333 rp->nextlhs = rp->lhs->rule;
2334 rp->lhs->rule = rp;
2335 rp->next = 0;
2336 if( psp->firstrule==0 ){
2337 psp->firstrule = psp->lastrule = rp;
2338 }else{
2339 psp->lastrule->next = rp;
2340 psp->lastrule = rp;
2342 psp->prevrule = rp;
2344 psp->state = WAITING_FOR_DECL_OR_RULE;
2345 }else if( ISALPHA(x[0]) ){
2346 if( psp->nrhs>=MAXRHS ){
2347 ErrorMsg(psp->filename,psp->tokenlineno,
2348 "Too many symbols on RHS of rule beginning at \"%s\".",
2350 psp->errorcnt++;
2351 psp->state = RESYNC_AFTER_RULE_ERROR;
2352 }else{
2353 psp->rhs[psp->nrhs] = Symbol_new(x);
2354 psp->alias[psp->nrhs] = 0;
2355 psp->nrhs++;
2357 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
2358 struct symbol *msp = psp->rhs[psp->nrhs-1];
2359 if( msp->type!=MULTITERMINAL ){
2360 struct symbol *origsp = msp;
2361 msp = (struct symbol *) calloc(1,sizeof(*msp));
2362 memset(msp, 0, sizeof(*msp));
2363 msp->type = MULTITERMINAL;
2364 msp->nsubsym = 1;
2365 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2366 msp->subsym[0] = origsp;
2367 msp->name = origsp->name;
2368 psp->rhs[psp->nrhs-1] = msp;
2370 msp->nsubsym++;
2371 msp->subsym = (struct symbol **) realloc(msp->subsym,
2372 sizeof(struct symbol*)*msp->nsubsym);
2373 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2374 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
2375 ErrorMsg(psp->filename,psp->tokenlineno,
2376 "Cannot form a compound containing a non-terminal");
2377 psp->errorcnt++;
2379 }else if( x[0]=='(' && psp->nrhs>0 ){
2380 psp->state = RHS_ALIAS_1;
2381 }else{
2382 ErrorMsg(psp->filename,psp->tokenlineno,
2383 "Illegal character on RHS of rule: \"%s\".",x);
2384 psp->errorcnt++;
2385 psp->state = RESYNC_AFTER_RULE_ERROR;
2387 break;
2388 case RHS_ALIAS_1:
2389 if( ISALPHA(x[0]) ){
2390 psp->alias[psp->nrhs-1] = x;
2391 psp->state = RHS_ALIAS_2;
2392 }else{
2393 ErrorMsg(psp->filename,psp->tokenlineno,
2394 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2395 x,psp->rhs[psp->nrhs-1]->name);
2396 psp->errorcnt++;
2397 psp->state = RESYNC_AFTER_RULE_ERROR;
2399 break;
2400 case RHS_ALIAS_2:
2401 if( x[0]==')' ){
2402 psp->state = IN_RHS;
2403 }else{
2404 ErrorMsg(psp->filename,psp->tokenlineno,
2405 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2406 psp->errorcnt++;
2407 psp->state = RESYNC_AFTER_RULE_ERROR;
2409 break;
2410 case WAITING_FOR_DECL_KEYWORD:
2411 if( ISALPHA(x[0]) ){
2412 psp->declkeyword = x;
2413 psp->declargslot = 0;
2414 psp->decllinenoslot = 0;
2415 psp->insertLineMacro = 1;
2416 psp->state = WAITING_FOR_DECL_ARG;
2417 if( strcmp(x,"name")==0 ){
2418 psp->declargslot = &(psp->gp->name);
2419 psp->insertLineMacro = 0;
2420 }else if( strcmp(x,"include")==0 ){
2421 psp->declargslot = &(psp->gp->include);
2422 }else if( strcmp(x,"code")==0 ){
2423 psp->declargslot = &(psp->gp->extracode);
2424 }else if( strcmp(x,"token_destructor")==0 ){
2425 psp->declargslot = &psp->gp->tokendest;
2426 }else if( strcmp(x,"default_destructor")==0 ){
2427 psp->declargslot = &psp->gp->vardest;
2428 }else if( strcmp(x,"token_prefix")==0 ){
2429 psp->declargslot = &psp->gp->tokenprefix;
2430 psp->insertLineMacro = 0;
2431 }else if( strcmp(x,"syntax_error")==0 ){
2432 psp->declargslot = &(psp->gp->error);
2433 }else if( strcmp(x,"parse_accept")==0 ){
2434 psp->declargslot = &(psp->gp->accept);
2435 }else if( strcmp(x,"parse_failure")==0 ){
2436 psp->declargslot = &(psp->gp->failure);
2437 }else if( strcmp(x,"stack_overflow")==0 ){
2438 psp->declargslot = &(psp->gp->overflow);
2439 }else if( strcmp(x,"extra_argument")==0 ){
2440 psp->declargslot = &(psp->gp->arg);
2441 psp->insertLineMacro = 0;
2442 }else if( strcmp(x,"token_type")==0 ){
2443 psp->declargslot = &(psp->gp->tokentype);
2444 psp->insertLineMacro = 0;
2445 }else if( strcmp(x,"default_type")==0 ){
2446 psp->declargslot = &(psp->gp->vartype);
2447 psp->insertLineMacro = 0;
2448 }else if( strcmp(x,"stack_size")==0 ){
2449 psp->declargslot = &(psp->gp->stacksize);
2450 psp->insertLineMacro = 0;
2451 }else if( strcmp(x,"start_symbol")==0 ){
2452 psp->declargslot = &(psp->gp->start);
2453 psp->insertLineMacro = 0;
2454 }else if( strcmp(x,"left")==0 ){
2455 psp->preccounter++;
2456 psp->declassoc = LEFT;
2457 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2458 }else if( strcmp(x,"right")==0 ){
2459 psp->preccounter++;
2460 psp->declassoc = RIGHT;
2461 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2462 }else if( strcmp(x,"nonassoc")==0 ){
2463 psp->preccounter++;
2464 psp->declassoc = NONE;
2465 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2466 }else if( strcmp(x,"destructor")==0 ){
2467 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2468 }else if( strcmp(x,"type")==0 ){
2469 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2470 }else if( strcmp(x,"fallback")==0 ){
2471 psp->fallback = 0;
2472 psp->state = WAITING_FOR_FALLBACK_ID;
2473 }else if( strcmp(x,"wildcard")==0 ){
2474 psp->state = WAITING_FOR_WILDCARD_ID;
2475 }else if( strcmp(x,"token_class")==0 ){
2476 psp->state = WAITING_FOR_CLASS_ID;
2477 }else{
2478 ErrorMsg(psp->filename,psp->tokenlineno,
2479 "Unknown declaration keyword: \"%%%s\".",x);
2480 psp->errorcnt++;
2481 psp->state = RESYNC_AFTER_DECL_ERROR;
2483 }else{
2484 ErrorMsg(psp->filename,psp->tokenlineno,
2485 "Illegal declaration keyword: \"%s\".",x);
2486 psp->errorcnt++;
2487 psp->state = RESYNC_AFTER_DECL_ERROR;
2489 break;
2490 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2491 if( !ISALPHA(x[0]) ){
2492 ErrorMsg(psp->filename,psp->tokenlineno,
2493 "Symbol name missing after %%destructor keyword");
2494 psp->errorcnt++;
2495 psp->state = RESYNC_AFTER_DECL_ERROR;
2496 }else{
2497 struct symbol *sp = Symbol_new(x);
2498 psp->declargslot = &sp->destructor;
2499 psp->decllinenoslot = &sp->destLineno;
2500 psp->insertLineMacro = 1;
2501 psp->state = WAITING_FOR_DECL_ARG;
2503 break;
2504 case WAITING_FOR_DATATYPE_SYMBOL:
2505 if( !ISALPHA(x[0]) ){
2506 ErrorMsg(psp->filename,psp->tokenlineno,
2507 "Symbol name missing after %%type keyword");
2508 psp->errorcnt++;
2509 psp->state = RESYNC_AFTER_DECL_ERROR;
2510 }else{
2511 struct symbol *sp = Symbol_find(x);
2512 if((sp) && (sp->datatype)){
2513 ErrorMsg(psp->filename,psp->tokenlineno,
2514 "Symbol %%type \"%s\" already defined", x);
2515 psp->errorcnt++;
2516 psp->state = RESYNC_AFTER_DECL_ERROR;
2517 }else{
2518 if (!sp){
2519 sp = Symbol_new(x);
2521 psp->declargslot = &sp->datatype;
2522 psp->insertLineMacro = 0;
2523 psp->state = WAITING_FOR_DECL_ARG;
2526 break;
2527 case WAITING_FOR_PRECEDENCE_SYMBOL:
2528 if( x[0]=='.' ){
2529 psp->state = WAITING_FOR_DECL_OR_RULE;
2530 }else if( ISUPPER(x[0]) ){
2531 struct symbol *sp;
2532 sp = Symbol_new(x);
2533 if( sp->prec>=0 ){
2534 ErrorMsg(psp->filename,psp->tokenlineno,
2535 "Symbol \"%s\" has already be given a precedence.",x);
2536 psp->errorcnt++;
2537 }else{
2538 sp->prec = psp->preccounter;
2539 sp->assoc = psp->declassoc;
2541 }else{
2542 ErrorMsg(psp->filename,psp->tokenlineno,
2543 "Can't assign a precedence to \"%s\".",x);
2544 psp->errorcnt++;
2546 break;
2547 case WAITING_FOR_DECL_ARG:
2548 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
2549 const char *zOld, *zNew;
2550 char *zBuf, *z;
2551 int nOld, n, nLine = 0, nNew, nBack;
2552 int addLineMacro;
2553 char zLine[50];
2554 zNew = x;
2555 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2556 nNew = lemonStrlen(zNew);
2557 if( *psp->declargslot ){
2558 zOld = *psp->declargslot;
2559 }else{
2560 zOld = "";
2562 nOld = lemonStrlen(zOld);
2563 n = nOld + nNew + 20;
2564 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
2565 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2566 if( addLineMacro ){
2567 for(z=psp->filename, nBack=0; *z; z++){
2568 if( *z=='\\' ) nBack++;
2570 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2571 nLine = lemonStrlen(zLine);
2572 n += nLine + lemonStrlen(psp->filename) + nBack;
2574 *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2575 zBuf = *psp->declargslot + nOld;
2576 if( addLineMacro ){
2577 if( nOld && zBuf[-1]!='\n' ){
2578 *(zBuf++) = '\n';
2580 memcpy(zBuf, zLine, nLine);
2581 zBuf += nLine;
2582 *(zBuf++) = '"';
2583 for(z=psp->filename; *z; z++){
2584 if( *z=='\\' ){
2585 *(zBuf++) = '\\';
2587 *(zBuf++) = *z;
2589 *(zBuf++) = '"';
2590 *(zBuf++) = '\n';
2592 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2593 psp->decllinenoslot[0] = psp->tokenlineno;
2595 memcpy(zBuf, zNew, nNew);
2596 zBuf += nNew;
2597 *zBuf = 0;
2598 psp->state = WAITING_FOR_DECL_OR_RULE;
2599 }else{
2600 ErrorMsg(psp->filename,psp->tokenlineno,
2601 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2602 psp->errorcnt++;
2603 psp->state = RESYNC_AFTER_DECL_ERROR;
2605 break;
2606 case WAITING_FOR_FALLBACK_ID:
2607 if( x[0]=='.' ){
2608 psp->state = WAITING_FOR_DECL_OR_RULE;
2609 }else if( !ISUPPER(x[0]) ){
2610 ErrorMsg(psp->filename, psp->tokenlineno,
2611 "%%fallback argument \"%s\" should be a token", x);
2612 psp->errorcnt++;
2613 }else{
2614 struct symbol *sp = Symbol_new(x);
2615 if( psp->fallback==0 ){
2616 psp->fallback = sp;
2617 }else if( sp->fallback ){
2618 ErrorMsg(psp->filename, psp->tokenlineno,
2619 "More than one fallback assigned to token %s", x);
2620 psp->errorcnt++;
2621 }else{
2622 sp->fallback = psp->fallback;
2623 psp->gp->has_fallback = 1;
2626 break;
2627 case WAITING_FOR_WILDCARD_ID:
2628 if( x[0]=='.' ){
2629 psp->state = WAITING_FOR_DECL_OR_RULE;
2630 }else if( !ISUPPER(x[0]) ){
2631 ErrorMsg(psp->filename, psp->tokenlineno,
2632 "%%wildcard argument \"%s\" should be a token", x);
2633 psp->errorcnt++;
2634 }else{
2635 struct symbol *sp = Symbol_new(x);
2636 if( psp->gp->wildcard==0 ){
2637 psp->gp->wildcard = sp;
2638 }else{
2639 ErrorMsg(psp->filename, psp->tokenlineno,
2640 "Extra wildcard to token: %s", x);
2641 psp->errorcnt++;
2644 break;
2645 case WAITING_FOR_CLASS_ID:
2646 if( !ISLOWER(x[0]) ){
2647 ErrorMsg(psp->filename, psp->tokenlineno,
2648 "%%token_class must be followed by an identifier: ", x);
2649 psp->errorcnt++;
2650 psp->state = RESYNC_AFTER_DECL_ERROR;
2651 }else if( Symbol_find(x) ){
2652 ErrorMsg(psp->filename, psp->tokenlineno,
2653 "Symbol \"%s\" already used", x);
2654 psp->errorcnt++;
2655 psp->state = RESYNC_AFTER_DECL_ERROR;
2656 }else{
2657 psp->tkclass = Symbol_new(x);
2658 psp->tkclass->type = MULTITERMINAL;
2659 psp->state = WAITING_FOR_CLASS_TOKEN;
2661 break;
2662 case WAITING_FOR_CLASS_TOKEN:
2663 if( x[0]=='.' ){
2664 psp->state = WAITING_FOR_DECL_OR_RULE;
2665 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
2666 struct symbol *msp = psp->tkclass;
2667 msp->nsubsym++;
2668 msp->subsym = (struct symbol **) realloc(msp->subsym,
2669 sizeof(struct symbol*)*msp->nsubsym);
2670 if( !ISUPPER(x[0]) ) x++;
2671 msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2672 }else{
2673 ErrorMsg(psp->filename, psp->tokenlineno,
2674 "%%token_class argument \"%s\" should be a token", x);
2675 psp->errorcnt++;
2676 psp->state = RESYNC_AFTER_DECL_ERROR;
2678 break;
2679 case RESYNC_AFTER_RULE_ERROR:
2680 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2681 ** break; */
2682 case RESYNC_AFTER_DECL_ERROR:
2683 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2684 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2685 break;
2689 /* Run the preprocessor over the input file text. The global variables
2690 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2691 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2692 ** comments them out. Text in between is also commented out as appropriate.
2694 static void preprocess_input(char *z){
2695 int i, j, k, n;
2696 int exclude = 0;
2697 int start = 0;
2698 int lineno = 1;
2699 int start_lineno = 1;
2700 for(i=0; z[i]; i++){
2701 if( z[i]=='\n' ) lineno++;
2702 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2703 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
2704 if( exclude ){
2705 exclude--;
2706 if( exclude==0 ){
2707 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2710 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2711 }else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6]))
2712 || (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){
2713 if( exclude ){
2714 exclude++;
2715 }else{
2716 for(j=i+7; ISSPACE(z[j]); j++){}
2717 for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){}
2718 exclude = 1;
2719 for(k=0; k<nDefine; k++){
2720 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
2721 exclude = 0;
2722 break;
2725 if( z[i+3]=='n' ) exclude = !exclude;
2726 if( exclude ){
2727 start = i;
2728 start_lineno = lineno;
2731 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2734 if( exclude ){
2735 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2736 exit(1);
2740 /* In spite of its name, this function is really a scanner. It read
2741 ** in the entire input file (all at once) then tokenizes it. Each
2742 ** token is passed to the function "parseonetoken" which builds all
2743 ** the appropriate data structures in the global state vector "gp".
2745 void Parse(struct lemon *gp)
2747 struct pstate ps;
2748 FILE *fp;
2749 char *filebuf;
2750 unsigned int filesize;
2751 int lineno;
2752 int c;
2753 char *cp, *nextcp;
2754 int startline = 0;
2756 memset(&ps, '\0', sizeof(ps));
2757 ps.gp = gp;
2758 ps.filename = gp->filename;
2759 ps.errorcnt = 0;
2760 ps.state = INITIALIZE;
2762 /* Begin by reading the input file */
2763 fp = fopen(ps.filename,"rb");
2764 if( fp==0 ){
2765 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2766 gp->errorcnt++;
2767 return;
2769 fseek(fp,0,2);
2770 filesize = ftell(fp);
2771 rewind(fp);
2772 filebuf = (char *)malloc( filesize+1 );
2773 if( filesize>100000000 || filebuf==0 ){
2774 ErrorMsg(ps.filename,0,"Input file too large.");
2775 gp->errorcnt++;
2776 fclose(fp);
2777 return;
2779 if( fread(filebuf,1,filesize,fp)!=filesize ){
2780 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2781 filesize);
2782 free(filebuf);
2783 gp->errorcnt++;
2784 fclose(fp);
2785 return;
2787 fclose(fp);
2788 filebuf[filesize] = 0;
2790 /* Make an initial pass through the file to handle %ifdef and %ifndef */
2791 preprocess_input(filebuf);
2793 /* Now scan the text of the input file */
2794 lineno = 1;
2795 for(cp=filebuf; (c= *cp)!=0; ){
2796 if( c=='\n' ) lineno++; /* Keep track of the line number */
2797 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */
2798 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2799 cp+=2;
2800 while( (c= *cp)!=0 && c!='\n' ) cp++;
2801 continue;
2803 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2804 cp+=2;
2805 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2806 if( c=='\n' ) lineno++;
2807 cp++;
2809 if( c ) cp++;
2810 continue;
2812 ps.tokenstart = cp; /* Mark the beginning of the token */
2813 ps.tokenlineno = lineno; /* Linenumber on which token begins */
2814 if( c=='\"' ){ /* String literals */
2815 cp++;
2816 while( (c= *cp)!=0 && c!='\"' ){
2817 if( c=='\n' ) lineno++;
2818 cp++;
2820 if( c==0 ){
2821 ErrorMsg(ps.filename,startline,
2822 "String starting on this line is not terminated before the end of the file.");
2823 ps.errorcnt++;
2824 nextcp = cp;
2825 }else{
2826 nextcp = cp+1;
2828 }else if( c=='{' ){ /* A block of C code */
2829 int level;
2830 cp++;
2831 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2832 if( c=='\n' ) lineno++;
2833 else if( c=='{' ) level++;
2834 else if( c=='}' ) level--;
2835 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2836 int prevc;
2837 cp = &cp[2];
2838 prevc = 0;
2839 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2840 if( c=='\n' ) lineno++;
2841 prevc = c;
2842 cp++;
2844 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2845 cp = &cp[2];
2846 while( (c= *cp)!=0 && c!='\n' ) cp++;
2847 if( c ) lineno++;
2848 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2849 int startchar, prevc;
2850 startchar = c;
2851 prevc = 0;
2852 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2853 if( c=='\n' ) lineno++;
2854 if( prevc=='\\' ) prevc = 0;
2855 else prevc = c;
2859 if( c==0 ){
2860 ErrorMsg(ps.filename,ps.tokenlineno,
2861 "C code starting on this line is not terminated before the end of the file.");
2862 ps.errorcnt++;
2863 nextcp = cp;
2864 }else{
2865 nextcp = cp+1;
2867 }else if( ISALNUM(c) ){ /* Identifiers */
2868 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
2869 nextcp = cp;
2870 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2871 cp += 3;
2872 nextcp = cp;
2873 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
2874 cp += 2;
2875 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
2876 nextcp = cp;
2877 }else{ /* All other (one character) operators */
2878 cp++;
2879 nextcp = cp;
2881 c = *cp;
2882 *cp = 0; /* Null terminate the token */
2883 parseonetoken(&ps); /* Parse the token */
2884 *cp = (char)c; /* Restore the buffer */
2885 cp = nextcp;
2887 free(filebuf); /* Release the buffer after parsing */
2888 gp->rule = ps.firstrule;
2889 gp->errorcnt = ps.errorcnt;
2891 /*************************** From the file "plink.c" *********************/
2893 ** Routines processing configuration follow-set propagation links
2894 ** in the LEMON parser generator.
2896 static struct plink *plink_freelist = 0;
2898 /* Allocate a new plink */
2899 struct plink *Plink_new(void){
2900 struct plink *newlink;
2902 if( plink_freelist==0 ){
2903 int i;
2904 int amt = 100;
2905 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
2906 if( plink_freelist==0 ){
2907 fprintf(stderr,
2908 "Unable to allocate memory for a new follow-set propagation link.\n");
2909 exit(1);
2911 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2912 plink_freelist[amt-1].next = 0;
2914 newlink = plink_freelist;
2915 plink_freelist = plink_freelist->next;
2916 return newlink;
2919 /* Add a plink to a plink list */
2920 void Plink_add(struct plink **plpp, struct config *cfp)
2922 struct plink *newlink;
2923 newlink = Plink_new();
2924 newlink->next = *plpp;
2925 *plpp = newlink;
2926 newlink->cfp = cfp;
2929 /* Transfer every plink on the list "from" to the list "to" */
2930 void Plink_copy(struct plink **to, struct plink *from)
2932 struct plink *nextpl;
2933 while( from ){
2934 nextpl = from->next;
2935 from->next = *to;
2936 *to = from;
2937 from = nextpl;
2941 /* Delete every plink on the list */
2942 void Plink_delete(struct plink *plp)
2944 struct plink *nextpl;
2946 while( plp ){
2947 nextpl = plp->next;
2948 plp->next = plink_freelist;
2949 plink_freelist = plp;
2950 plp = nextpl;
2953 /*********************** From the file "report.c" **************************/
2955 ** Procedures for generating reports and tables in the LEMON parser generator.
2958 /* Generate a filename with the given suffix. Space to hold the
2959 ** name comes from malloc() and must be freed by the calling
2960 ** function.
2962 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
2964 char *name;
2965 char *cp;
2967 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
2968 if( name==0 ){
2969 fprintf(stderr,"Can't allocate space for a filename.\n");
2970 exit(1);
2972 lemon_strcpy(name,lemp->filename);
2973 cp = strrchr(name,'.');
2974 if( cp ) *cp = 0;
2975 lemon_strcat(name,suffix);
2976 return name;
2979 /* Open a file with a name based on the name of the input file,
2980 ** but with a different (specified) suffix, and return a pointer
2981 ** to the stream */
2982 PRIVATE FILE *file_open(
2983 struct lemon *lemp,
2984 const char *suffix,
2985 const char *mode
2987 FILE *fp;
2989 if( lemp->outname ) free(lemp->outname);
2990 lemp->outname = file_makename(lemp, suffix);
2991 fp = fopen(lemp->outname,mode);
2992 if( fp==0 && *mode=='w' ){
2993 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2994 lemp->errorcnt++;
2995 return 0;
2997 return fp;
3000 /* Duplicate the input file without comments and without actions
3001 ** on rules */
3002 void Reprint(struct lemon *lemp)
3004 struct rule *rp;
3005 struct symbol *sp;
3006 int i, j, maxlen, len, ncolumns, skip;
3007 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3008 maxlen = 10;
3009 for(i=0; i<lemp->nsymbol; i++){
3010 sp = lemp->symbols[i];
3011 len = lemonStrlen(sp->name);
3012 if( len>maxlen ) maxlen = len;
3014 ncolumns = 76/(maxlen+5);
3015 if( ncolumns<1 ) ncolumns = 1;
3016 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
3017 for(i=0; i<skip; i++){
3018 printf("//");
3019 for(j=i; j<lemp->nsymbol; j+=skip){
3020 sp = lemp->symbols[j];
3021 assert( sp->index==j );
3022 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
3024 printf("\n");
3026 for(rp=lemp->rule; rp; rp=rp->next){
3027 printf("%s",rp->lhs->name);
3028 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
3029 printf(" ::=");
3030 for(i=0; i<rp->nrhs; i++){
3031 sp = rp->rhs[i];
3032 if( sp->type==MULTITERMINAL ){
3033 printf(" %s", sp->subsym[0]->name);
3034 for(j=1; j<sp->nsubsym; j++){
3035 printf("|%s", sp->subsym[j]->name);
3037 }else{
3038 printf(" %s", sp->name);
3040 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
3042 printf(".");
3043 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
3044 /* if( rp->code ) printf("\n %s",rp->code); */
3045 printf("\n");
3049 /* Print a single rule.
3051 void RulePrint(FILE *fp, struct rule *rp, int iCursor){
3052 struct symbol *sp;
3053 int i, j;
3054 fprintf(fp,"%s ::=",rp->lhs->name);
3055 for(i=0; i<=rp->nrhs; i++){
3056 if( i==iCursor ) fprintf(fp," *");
3057 if( i==rp->nrhs ) break;
3058 sp = rp->rhs[i];
3059 if( sp->type==MULTITERMINAL ){
3060 fprintf(fp," %s", sp->subsym[0]->name);
3061 for(j=1; j<sp->nsubsym; j++){
3062 fprintf(fp,"|%s",sp->subsym[j]->name);
3064 }else{
3065 fprintf(fp," %s", sp->name);
3070 /* Print the rule for a configuration.
3072 void ConfigPrint(FILE *fp, struct config *cfp){
3073 RulePrint(fp, cfp->rp, cfp->dot);
3076 /* #define TEST */
3077 #if 0
3078 /* Print a set */
3079 PRIVATE void SetPrint(out,set,lemp)
3080 FILE *out;
3081 char *set;
3082 struct lemon *lemp;
3084 int i;
3085 char *spacer;
3086 spacer = "";
3087 fprintf(out,"%12s[","");
3088 for(i=0; i<lemp->nterminal; i++){
3089 if( SetFind(set,i) ){
3090 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
3091 spacer = " ";
3094 fprintf(out,"]\n");
3097 /* Print a plink chain */
3098 PRIVATE void PlinkPrint(out,plp,tag)
3099 FILE *out;
3100 struct plink *plp;
3101 char *tag;
3103 while( plp ){
3104 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
3105 ConfigPrint(out,plp->cfp);
3106 fprintf(out,"\n");
3107 plp = plp->next;
3110 #endif
3112 /* Print an action to the given file descriptor. Return FALSE if
3113 ** nothing was actually printed.
3115 int PrintAction(
3116 struct action *ap, /* The action to print */
3117 FILE *fp, /* Print the action here */
3118 int indent /* Indent by this amount */
3120 int result = 1;
3121 switch( ap->type ){
3122 case SHIFT: {
3123 struct state *stp = ap->x.stp;
3124 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum);
3125 break;
3127 case REDUCE: {
3128 struct rule *rp = ap->x.rp;
3129 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule);
3130 RulePrint(fp, rp, -1);
3131 break;
3133 case SHIFTREDUCE: {
3134 struct rule *rp = ap->x.rp;
3135 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
3136 RulePrint(fp, rp, -1);
3137 break;
3139 case ACCEPT:
3140 fprintf(fp,"%*s accept",indent,ap->sp->name);
3141 break;
3142 case ERROR:
3143 fprintf(fp,"%*s error",indent,ap->sp->name);
3144 break;
3145 case SRCONFLICT:
3146 case RRCONFLICT:
3147 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **",
3148 indent,ap->sp->name,ap->x.rp->iRule);
3149 break;
3150 case SSCONFLICT:
3151 fprintf(fp,"%*s shift %-7d ** Parsing conflict **",
3152 indent,ap->sp->name,ap->x.stp->statenum);
3153 break;
3154 case SH_RESOLVED:
3155 if( showPrecedenceConflict ){
3156 fprintf(fp,"%*s shift %-7d -- dropped by precedence",
3157 indent,ap->sp->name,ap->x.stp->statenum);
3158 }else{
3159 result = 0;
3161 break;
3162 case RD_RESOLVED:
3163 if( showPrecedenceConflict ){
3164 fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
3165 indent,ap->sp->name,ap->x.rp->iRule);
3166 }else{
3167 result = 0;
3169 break;
3170 case NOT_USED:
3171 result = 0;
3172 break;
3174 if( result && ap->spOpt ){
3175 fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name);
3177 return result;
3180 /* Generate the "*.out" log file */
3181 void ReportOutput(struct lemon *lemp)
3183 int i;
3184 struct state *stp;
3185 struct config *cfp;
3186 struct action *ap;
3187 FILE *fp;
3189 fp = file_open(lemp,".out","wb");
3190 if( fp==0 ) return;
3191 for(i=0; i<lemp->nxstate; i++){
3192 stp = lemp->sorted[i];
3193 fprintf(fp,"State %d:\n",stp->statenum);
3194 if( lemp->basisflag ) cfp=stp->bp;
3195 else cfp=stp->cfp;
3196 while( cfp ){
3197 char buf[20];
3198 if( cfp->dot==cfp->rp->nrhs ){
3199 lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
3200 fprintf(fp," %5s ",buf);
3201 }else{
3202 fprintf(fp," ");
3204 ConfigPrint(fp,cfp);
3205 fprintf(fp,"\n");
3206 #if 0
3207 SetPrint(fp,cfp->fws,lemp);
3208 PlinkPrint(fp,cfp->fplp,"To ");
3209 PlinkPrint(fp,cfp->bplp,"From");
3210 #endif
3211 if( lemp->basisflag ) cfp=cfp->bp;
3212 else cfp=cfp->next;
3214 fprintf(fp,"\n");
3215 for(ap=stp->ap; ap; ap=ap->next){
3216 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3218 fprintf(fp,"\n");
3220 fprintf(fp, "----------------------------------------------------\n");
3221 fprintf(fp, "Symbols:\n");
3222 for(i=0; i<lemp->nsymbol; i++){
3223 int j;
3224 struct symbol *sp;
3226 sp = lemp->symbols[i];
3227 fprintf(fp, " %3d: %s", i, sp->name);
3228 if( sp->type==NONTERMINAL ){
3229 fprintf(fp, ":");
3230 if( sp->lambda ){
3231 fprintf(fp, " <lambda>");
3233 for(j=0; j<lemp->nterminal; j++){
3234 if( sp->firstset && SetFind(sp->firstset, j) ){
3235 fprintf(fp, " %s", lemp->symbols[j]->name);
3239 fprintf(fp, "\n");
3241 fclose(fp);
3242 return;
3245 /* Search for the file "name" which is in the same directory as
3246 ** the exacutable */
3247 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3249 const char *pathlist;
3250 char *pathbufptr;
3251 char *pathbuf;
3252 char *path,*cp;
3253 char c;
3255 #ifdef __WIN32__
3256 cp = strrchr(argv0,'\\');
3257 #else
3258 cp = strrchr(argv0,'/');
3259 #endif
3260 if( cp ){
3261 c = *cp;
3262 *cp = 0;
3263 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3264 if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3265 *cp = c;
3266 }else{
3267 pathlist = getenv("PATH");
3268 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3269 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3270 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3271 if( (pathbuf != 0) && (path!=0) ){
3272 pathbufptr = pathbuf;
3273 lemon_strcpy(pathbuf, pathlist);
3274 while( *pathbuf ){
3275 cp = strchr(pathbuf,':');
3276 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3277 c = *cp;
3278 *cp = 0;
3279 lemon_sprintf(path,"%s/%s",pathbuf,name);
3280 *cp = c;
3281 if( c==0 ) pathbuf[0] = 0;
3282 else pathbuf = &cp[1];
3283 if( access(path,modemask)==0 ) break;
3285 free(pathbufptr);
3288 return path;
3291 /* Given an action, compute the integer value for that action
3292 ** which is to be put in the action table of the generated machine.
3293 ** Return negative if no action should be generated.
3295 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3297 int act;
3298 switch( ap->type ){
3299 case SHIFT: act = ap->x.stp->statenum; break;
3300 case SHIFTREDUCE: {
3301 act = ap->x.rp->iRule + lemp->nstate;
3302 /* Since a SHIFT is inherient after a prior REDUCE, convert any
3303 ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3304 ** REDUCE action: */
3305 if( ap->sp->index>=lemp->nterminal ) act += lemp->nrule;
3306 break;
3308 case REDUCE: act = ap->x.rp->iRule + lemp->nstate+lemp->nrule; break;
3309 case ERROR: act = lemp->nstate + lemp->nrule*2; break;
3310 case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1; break;
3311 default: act = -1; break;
3313 return act;
3316 #define LINESIZE 1000
3317 /* The next cluster of routines are for reading the template file
3318 ** and writing the results to the generated parser */
3319 /* The first function transfers data from "in" to "out" until
3320 ** a line is seen which begins with "%%". The line number is
3321 ** tracked.
3323 ** if name!=0, then any word that begin with "Parse" is changed to
3324 ** begin with *name instead.
3326 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3328 int i, iStart;
3329 char line[LINESIZE];
3330 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3331 (*lineno)++;
3332 iStart = 0;
3333 if( name ){
3334 for(i=0; line[i]; i++){
3335 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3336 && (i==0 || !ISALPHA(line[i-1]))
3338 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3339 fprintf(out,"%s",name);
3340 i += 4;
3341 iStart = i+1;
3345 fprintf(out,"%s",&line[iStart]);
3349 /* The next function finds the template file and opens it, returning
3350 ** a pointer to the opened file. */
3351 PRIVATE FILE *tplt_open(struct lemon *lemp)
3353 static char templatename[] = "lempar.c";
3354 char buf[1000];
3355 FILE *in;
3356 char *tpltname;
3357 char *cp;
3359 /* first, see if user specified a template filename on the command line. */
3360 if (user_templatename != 0) {
3361 if( access(user_templatename,004)==-1 ){
3362 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3363 user_templatename);
3364 lemp->errorcnt++;
3365 return 0;
3367 in = fopen(user_templatename,"rb");
3368 if( in==0 ){
3369 fprintf(stderr,"Can't open the template file \"%s\".\n",
3370 user_templatename);
3371 lemp->errorcnt++;
3372 return 0;
3374 return in;
3377 cp = strrchr(lemp->filename,'.');
3378 if( cp ){
3379 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3380 }else{
3381 lemon_sprintf(buf,"%s.lt",lemp->filename);
3383 if( access(buf,004)==0 ){
3384 tpltname = buf;
3385 }else if( access(templatename,004)==0 ){
3386 tpltname = templatename;
3387 }else{
3388 tpltname = pathsearch(lemp->argv0,templatename,0);
3390 if( tpltname==0 ){
3391 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3392 templatename);
3393 lemp->errorcnt++;
3394 return 0;
3396 in = fopen(tpltname,"rb");
3397 if( in==0 ){
3398 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
3399 lemp->errorcnt++;
3400 return 0;
3402 return in;
3405 /* Print a #line directive line to the output file. */
3406 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3408 fprintf(out,"#line %d \"",lineno);
3409 while( *filename ){
3410 if( *filename == '\\' ) putc('\\',out);
3411 putc(*filename,out);
3412 filename++;
3414 fprintf(out,"\"\n");
3417 /* Print a string to the file and keep the linenumber up to date */
3418 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3420 if( str==0 ) return;
3421 while( *str ){
3422 putc(*str,out);
3423 if( *str=='\n' ) (*lineno)++;
3424 str++;
3426 if( str[-1]!='\n' ){
3427 putc('\n',out);
3428 (*lineno)++;
3430 if (!lemp->nolinenosflag) {
3431 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3433 return;
3437 ** The following routine emits code for the destructor for the
3438 ** symbol sp
3440 void emit_destructor_code(
3441 FILE *out,
3442 struct symbol *sp,
3443 struct lemon *lemp,
3444 int *lineno
3446 char *cp = 0;
3448 if( sp->type==TERMINAL ){
3449 cp = lemp->tokendest;
3450 if( cp==0 ) return;
3451 fprintf(out,"{\n"); (*lineno)++;
3452 }else if( sp->destructor ){
3453 cp = sp->destructor;
3454 fprintf(out,"{\n"); (*lineno)++;
3455 if( !lemp->nolinenosflag ){
3456 (*lineno)++;
3457 tplt_linedir(out,sp->destLineno,lemp->filename);
3459 }else if( lemp->vardest ){
3460 cp = lemp->vardest;
3461 if( cp==0 ) return;
3462 fprintf(out,"{\n"); (*lineno)++;
3463 }else{
3464 assert( 0 ); /* Cannot happen */
3466 for(; *cp; cp++){
3467 if( *cp=='$' && cp[1]=='$' ){
3468 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3469 cp++;
3470 continue;
3472 if( *cp=='\n' ) (*lineno)++;
3473 fputc(*cp,out);
3475 fprintf(out,"\n"); (*lineno)++;
3476 if (!lemp->nolinenosflag) {
3477 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3479 fprintf(out,"}\n"); (*lineno)++;
3480 return;
3484 ** Return TRUE (non-zero) if the given symbol has a destructor.
3486 int has_destructor(struct symbol *sp, struct lemon *lemp)
3488 int ret;
3489 if( sp->type==TERMINAL ){
3490 ret = lemp->tokendest!=0;
3491 }else{
3492 ret = lemp->vardest!=0 || sp->destructor!=0;
3494 return ret;
3498 ** Append text to a dynamically allocated string. If zText is 0 then
3499 ** reset the string to be empty again. Always return the complete text
3500 ** of the string (which is overwritten with each call).
3502 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3503 ** \000 terminator is stored. zText can contain up to two instances of
3504 ** %d. The values of p1 and p2 are written into the first and second
3505 ** %d.
3507 ** If n==-1, then the previous character is overwritten.
3509 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3510 static char empty[1] = { 0 };
3511 static char *z = 0;
3512 static int alloced = 0;
3513 static int used = 0;
3514 int c;
3515 char zInt[40];
3516 if( zText==0 ){
3517 if( used==0 && z!=0 ) z[0] = 0;
3518 used = 0;
3519 return z;
3521 if( n<=0 ){
3522 if( n<0 ){
3523 used += n;
3524 assert( used>=0 );
3526 n = lemonStrlen(zText);
3528 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3529 alloced = n + sizeof(zInt)*2 + used + 200;
3530 z = (char *) realloc(z, alloced);
3532 if( z==0 ) return empty;
3533 while( n-- > 0 ){
3534 c = *(zText++);
3535 if( c=='%' && n>0 && zText[0]=='d' ){
3536 lemon_sprintf(zInt, "%d", p1);
3537 p1 = p2;
3538 lemon_strcpy(&z[used], zInt);
3539 used += lemonStrlen(&z[used]);
3540 zText++;
3541 n--;
3542 }else{
3543 z[used++] = (char)c;
3546 z[used] = 0;
3547 return z;
3551 ** Write and transform the rp->code string so that symbols are expanded.
3552 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3554 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3555 ** to be defined.
3557 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
3558 char *cp, *xp;
3559 int i;
3560 int rc = 0; /* True if yylhsminor is used */
3561 int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */
3562 const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
3563 char lhsused = 0; /* True if the LHS element has been used */
3564 char lhsdirect; /* True if LHS writes directly into stack */
3565 char used[MAXRHS]; /* True for each RHS element which is used */
3566 char zLhs[50]; /* Convert the LHS symbol into this string */
3567 char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */
3569 for(i=0; i<rp->nrhs; i++) used[i] = 0;
3570 lhsused = 0;
3572 if( rp->code==0 ){
3573 static char newlinestr[2] = { '\n', '\0' };
3574 rp->code = newlinestr;
3575 rp->line = rp->ruleline;
3576 rp->noCode = 1;
3577 }else{
3578 rp->noCode = 0;
3582 if( rp->nrhs==0 ){
3583 /* If there are no RHS symbols, then writing directly to the LHS is ok */
3584 lhsdirect = 1;
3585 }else if( rp->rhsalias[0]==0 ){
3586 /* The left-most RHS symbol has no value. LHS direct is ok. But
3587 ** we have to call the distructor on the RHS symbol first. */
3588 lhsdirect = 1;
3589 if( has_destructor(rp->rhs[0],lemp) ){
3590 append_str(0,0,0,0);
3591 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3592 rp->rhs[0]->index,1-rp->nrhs);
3593 rp->codePrefix = Strsafe(append_str(0,0,0,0));
3594 rp->noCode = 0;
3596 }else if( rp->lhsalias==0 ){
3597 /* There is no LHS value symbol. */
3598 lhsdirect = 1;
3599 }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
3600 /* The LHS symbol and the left-most RHS symbol are the same, so
3601 ** direct writing is allowed */
3602 lhsdirect = 1;
3603 lhsused = 1;
3604 used[0] = 1;
3605 if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3606 ErrorMsg(lemp->filename,rp->ruleline,
3607 "%s(%s) and %s(%s) share the same label but have "
3608 "different datatypes.",
3609 rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
3610 lemp->errorcnt++;
3612 }else{
3613 lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
3614 rp->lhsalias, rp->rhsalias[0]);
3615 zSkip = strstr(rp->code, zOvwrt);
3616 if( zSkip!=0 ){
3617 /* The code contains a special comment that indicates that it is safe
3618 ** for the LHS label to overwrite left-most RHS label. */
3619 lhsdirect = 1;
3620 }else{
3621 lhsdirect = 0;
3624 if( lhsdirect ){
3625 sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
3626 }else{
3627 rc = 1;
3628 sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
3631 append_str(0,0,0,0);
3633 /* This const cast is wrong but harmless, if we're careful. */
3634 for(cp=(char *)rp->code; *cp; cp++){
3635 if( cp==zSkip ){
3636 append_str(zOvwrt,0,0,0);
3637 cp += lemonStrlen(zOvwrt)-1;
3638 dontUseRhs0 = 1;
3639 continue;
3641 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
3642 char saved;
3643 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
3644 saved = *xp;
3645 *xp = 0;
3646 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3647 append_str(zLhs,0,0,0);
3648 cp = xp;
3649 lhsused = 1;
3650 }else{
3651 for(i=0; i<rp->nrhs; i++){
3652 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3653 if( i==0 && dontUseRhs0 ){
3654 ErrorMsg(lemp->filename,rp->ruleline,
3655 "Label %s used after '%s'.",
3656 rp->rhsalias[0], zOvwrt);
3657 lemp->errorcnt++;
3658 }else if( cp!=rp->code && cp[-1]=='@' ){
3659 /* If the argument is of the form @X then substituted
3660 ** the token number of X, not the value of X */
3661 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3662 }else{
3663 struct symbol *sp = rp->rhs[i];
3664 int dtnum;
3665 if( sp->type==MULTITERMINAL ){
3666 dtnum = sp->subsym[0]->dtnum;
3667 }else{
3668 dtnum = sp->dtnum;
3670 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3672 cp = xp;
3673 used[i] = 1;
3674 break;
3678 *xp = saved;
3680 append_str(cp, 1, 0, 0);
3681 } /* End loop */
3683 /* Main code generation completed */
3684 cp = append_str(0,0,0,0);
3685 if( cp && cp[0] ) rp->code = Strsafe(cp);
3686 append_str(0,0,0,0);
3688 /* Check to make sure the LHS has been used */
3689 if( rp->lhsalias && !lhsused ){
3690 ErrorMsg(lemp->filename,rp->ruleline,
3691 "Label \"%s\" for \"%s(%s)\" is never used.",
3692 rp->lhsalias,rp->lhs->name,rp->lhsalias);
3693 lemp->errorcnt++;
3696 /* Generate destructor code for RHS minor values which are not referenced.
3697 ** Generate error messages for unused labels and duplicate labels.
3699 for(i=0; i<rp->nrhs; i++){
3700 if( rp->rhsalias[i] ){
3701 if( i>0 ){
3702 int j;
3703 if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
3704 ErrorMsg(lemp->filename,rp->ruleline,
3705 "%s(%s) has the same label as the LHS but is not the left-most "
3706 "symbol on the RHS.",
3707 rp->rhs[i]->name, rp->rhsalias);
3708 lemp->errorcnt++;
3710 for(j=0; j<i; j++){
3711 if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
3712 ErrorMsg(lemp->filename,rp->ruleline,
3713 "Label %s used for multiple symbols on the RHS of a rule.",
3714 rp->rhsalias[i]);
3715 lemp->errorcnt++;
3716 break;
3720 if( !used[i] ){
3721 ErrorMsg(lemp->filename,rp->ruleline,
3722 "Label %s for \"%s(%s)\" is never used.",
3723 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
3724 lemp->errorcnt++;
3726 }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
3727 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3728 rp->rhs[i]->index,i-rp->nrhs+1);
3732 /* If unable to write LHS values directly into the stack, write the
3733 ** saved LHS value now. */
3734 if( lhsdirect==0 ){
3735 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
3736 append_str(zLhs, 0, 0, 0);
3737 append_str(";\n", 0, 0, 0);
3740 /* Suffix code generation complete */
3741 cp = append_str(0,0,0,0);
3742 if( cp && cp[0] ){
3743 rp->codeSuffix = Strsafe(cp);
3744 rp->noCode = 0;
3747 return rc;
3751 ** Generate code which executes when the rule "rp" is reduced. Write
3752 ** the code to "out". Make sure lineno stays up-to-date.
3754 PRIVATE void emit_code(
3755 FILE *out,
3756 struct rule *rp,
3757 struct lemon *lemp,
3758 int *lineno
3760 const char *cp;
3762 /* Setup code prior to the #line directive */
3763 if( rp->codePrefix && rp->codePrefix[0] ){
3764 fprintf(out, "{%s", rp->codePrefix);
3765 for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
3768 /* Generate code to do the reduce action */
3769 if( rp->code ){
3770 if( !lemp->nolinenosflag ){
3771 (*lineno)++;
3772 tplt_linedir(out,rp->line,lemp->filename);
3774 fprintf(out,"{%s",rp->code);
3775 for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
3776 fprintf(out,"}\n"); (*lineno)++;
3777 if( !lemp->nolinenosflag ){
3778 (*lineno)++;
3779 tplt_linedir(out,*lineno,lemp->outname);
3783 /* Generate breakdown code that occurs after the #line directive */
3784 if( rp->codeSuffix && rp->codeSuffix[0] ){
3785 fprintf(out, "%s", rp->codeSuffix);
3786 for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
3789 if( rp->codePrefix ){
3790 fprintf(out, "}\n"); (*lineno)++;
3793 return;
3797 ** Print the definition of the union used for the parser's data stack.
3798 ** This union contains fields for every possible data type for tokens
3799 ** and nonterminals. In the process of computing and printing this
3800 ** union, also set the ".dtnum" field of every terminal and nonterminal
3801 ** symbol.
3803 void print_stack_union(
3804 FILE *out, /* The output stream */
3805 struct lemon *lemp, /* The main info structure for this parser */
3806 int *plineno, /* Pointer to the line number */
3807 int mhflag /* True if generating makeheaders output */
3809 int lineno = *plineno; /* The line number of the output */
3810 char **types; /* A hash table of datatypes */
3811 int arraysize; /* Size of the "types" array */
3812 int maxdtlength; /* Maximum length of any ".datatype" field. */
3813 char *stddt; /* Standardized name for a datatype */
3814 int i,j; /* Loop counters */
3815 unsigned hash; /* For hashing the name of a type */
3816 const char *name; /* Name of the parser */
3818 /* Allocate and initialize types[] and allocate stddt[] */
3819 arraysize = lemp->nsymbol * 2;
3820 types = (char**)calloc( arraysize, sizeof(char*) );
3821 if( types==0 ){
3822 fprintf(stderr,"Out of memory.\n");
3823 exit(1);
3825 for(i=0; i<arraysize; i++) types[i] = 0;
3826 maxdtlength = 0;
3827 if( lemp->vartype ){
3828 maxdtlength = lemonStrlen(lemp->vartype);
3830 for(i=0; i<lemp->nsymbol; i++){
3831 int len;
3832 struct symbol *sp = lemp->symbols[i];
3833 if( sp->datatype==0 ) continue;
3834 len = lemonStrlen(sp->datatype);
3835 if( len>maxdtlength ) maxdtlength = len;
3837 stddt = (char*)malloc( maxdtlength*2 + 1 );
3838 if( stddt==0 ){
3839 fprintf(stderr,"Out of memory.\n");
3840 exit(1);
3843 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3844 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3845 ** used for terminal symbols. If there is no %default_type defined then
3846 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3847 ** a datatype using the %type directive.
3849 for(i=0; i<lemp->nsymbol; i++){
3850 struct symbol *sp = lemp->symbols[i];
3851 char *cp;
3852 if( sp==lemp->errsym ){
3853 sp->dtnum = arraysize+1;
3854 continue;
3856 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3857 sp->dtnum = 0;
3858 continue;
3860 cp = sp->datatype;
3861 if( cp==0 ) cp = lemp->vartype;
3862 j = 0;
3863 while( ISSPACE(*cp) ) cp++;
3864 while( *cp ) stddt[j++] = *cp++;
3865 while( j>0 && ISSPACE(stddt[j-1]) ) j--;
3866 stddt[j] = 0;
3867 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
3868 sp->dtnum = 0;
3869 continue;
3871 hash = 0;
3872 for(j=0; stddt[j]; j++){
3873 hash = hash*53 + stddt[j];
3875 hash = (hash & 0x7fffffff)%arraysize;
3876 while( types[hash] ){
3877 if( strcmp(types[hash],stddt)==0 ){
3878 sp->dtnum = hash + 1;
3879 break;
3881 hash++;
3882 if( hash>=(unsigned)arraysize ) hash = 0;
3884 if( types[hash]==0 ){
3885 sp->dtnum = hash + 1;
3886 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
3887 if( types[hash]==0 ){
3888 fprintf(stderr,"Out of memory.\n");
3889 exit(1);
3891 lemon_strcpy(types[hash],stddt);
3895 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3896 name = lemp->name ? lemp->name : "Parse";
3897 lineno = *plineno;
3898 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3899 fprintf(out,"#define %sTOKENTYPE %s\n",name,
3900 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3901 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3902 fprintf(out,"typedef union {\n"); lineno++;
3903 fprintf(out," int yyinit;\n"); lineno++;
3904 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3905 for(i=0; i<arraysize; i++){
3906 if( types[i]==0 ) continue;
3907 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3908 free(types[i]);
3910 if( lemp->errsym->useCnt ){
3911 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3913 free(stddt);
3914 free(types);
3915 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3916 *plineno = lineno;
3920 ** Return the name of a C datatype able to represent values between
3921 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
3922 ** for that type (1, 2, or 4) into *pnByte.
3924 static const char *minimum_size_type(int lwr, int upr, int *pnByte){
3925 const char *zType = "int";
3926 int nByte = 4;
3927 if( lwr>=0 ){
3928 if( upr<=255 ){
3929 zType = "unsigned char";
3930 nByte = 1;
3931 }else if( upr<65535 ){
3932 zType = "unsigned short int";
3933 nByte = 2;
3934 }else{
3935 zType = "unsigned int";
3936 nByte = 4;
3938 }else if( lwr>=-127 && upr<=127 ){
3939 zType = "signed char";
3940 nByte = 1;
3941 }else if( lwr>=-32767 && upr<32767 ){
3942 zType = "short";
3943 nByte = 2;
3945 if( pnByte ) *pnByte = nByte;
3946 return zType;
3950 ** Each state contains a set of token transaction and a set of
3951 ** nonterminal transactions. Each of these sets makes an instance
3952 ** of the following structure. An array of these structures is used
3953 ** to order the creation of entries in the yy_action[] table.
3955 struct axset {
3956 struct state *stp; /* A pointer to a state */
3957 int isTkn; /* True to use tokens. False for non-terminals */
3958 int nAction; /* Number of actions */
3959 int iOrder; /* Original order of action sets */
3963 ** Compare to axset structures for sorting purposes
3965 static int axset_compare(const void *a, const void *b){
3966 struct axset *p1 = (struct axset*)a;
3967 struct axset *p2 = (struct axset*)b;
3968 int c;
3969 c = p2->nAction - p1->nAction;
3970 if( c==0 ){
3971 c = p1->iOrder - p2->iOrder;
3973 assert( c!=0 || p1==p2 );
3974 return c;
3978 ** Write text on "out" that describes the rule "rp".
3980 static void writeRuleText(FILE *out, struct rule *rp){
3981 int j;
3982 fprintf(out,"%s ::=", rp->lhs->name);
3983 for(j=0; j<rp->nrhs; j++){
3984 struct symbol *sp = rp->rhs[j];
3985 if( sp->type!=MULTITERMINAL ){
3986 fprintf(out," %s", sp->name);
3987 }else{
3988 int k;
3989 fprintf(out," %s", sp->subsym[0]->name);
3990 for(k=1; k<sp->nsubsym; k++){
3991 fprintf(out,"|%s",sp->subsym[k]->name);
3998 /* Generate C source code for the parser */
3999 void ReportTable(
4000 struct lemon *lemp,
4001 int mhflag /* Output in makeheaders format if true */
4003 FILE *out, *in;
4004 char line[LINESIZE];
4005 int lineno;
4006 struct state *stp;
4007 struct action *ap;
4008 struct rule *rp;
4009 struct acttab *pActtab;
4010 int i, j, n, sz;
4011 int szActionType; /* sizeof(YYACTIONTYPE) */
4012 int szCodeType; /* sizeof(YYCODETYPE) */
4013 const char *name;
4014 int mnTknOfst, mxTknOfst;
4015 int mnNtOfst, mxNtOfst;
4016 struct axset *ax;
4018 in = tplt_open(lemp);
4019 if( in==0 ) return;
4020 out = file_open(lemp,".c","wb");
4021 if( out==0 ){
4022 fclose(in);
4023 return;
4025 lineno = 1;
4026 tplt_xfer(lemp->name,in,out,&lineno);
4028 /* Generate the include code, if any */
4029 tplt_print(out,lemp,lemp->include,&lineno);
4030 if( mhflag ){
4031 char *incName = file_makename(lemp, ".h");
4032 fprintf(out,"#include \"%s\"\n", incName); lineno++;
4033 free(incName);
4035 tplt_xfer(lemp->name,in,out,&lineno);
4037 /* Generate #defines for all tokens */
4038 if( mhflag ){
4039 const char *prefix;
4040 fprintf(out,"#if INTERFACE\n"); lineno++;
4041 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4042 else prefix = "";
4043 for(i=1; i<lemp->nterminal; i++){
4044 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4045 lineno++;
4047 fprintf(out,"#endif\n"); lineno++;
4049 tplt_xfer(lemp->name,in,out,&lineno);
4051 /* Generate the defines */
4052 fprintf(out,"#define YYCODETYPE %s\n",
4053 minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++;
4054 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
4055 fprintf(out,"#define YYACTIONTYPE %s\n",
4056 minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++;
4057 if( lemp->wildcard ){
4058 fprintf(out,"#define YYWILDCARD %d\n",
4059 lemp->wildcard->index); lineno++;
4061 print_stack_union(out,lemp,&lineno,mhflag);
4062 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
4063 if( lemp->stacksize ){
4064 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
4065 }else{
4066 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
4068 fprintf(out, "#endif\n"); lineno++;
4069 if( mhflag ){
4070 fprintf(out,"#if INTERFACE\n"); lineno++;
4072 name = lemp->name ? lemp->name : "Parse";
4073 if( lemp->arg && lemp->arg[0] ){
4074 i = lemonStrlen(lemp->arg);
4075 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
4076 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
4077 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
4078 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
4079 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
4080 name,lemp->arg,&lemp->arg[i]); lineno++;
4081 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
4082 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
4083 }else{
4084 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
4085 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
4086 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
4087 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
4089 if( mhflag ){
4090 fprintf(out,"#endif\n"); lineno++;
4092 if( lemp->errsym->useCnt ){
4093 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
4094 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
4096 if( lemp->has_fallback ){
4097 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
4100 /* Compute the action table, but do not output it yet. The action
4101 ** table must be computed before generating the YYNSTATE macro because
4102 ** we need to know how many states can be eliminated.
4104 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
4105 if( ax==0 ){
4106 fprintf(stderr,"malloc failed\n");
4107 exit(1);
4109 for(i=0; i<lemp->nxstate; i++){
4110 stp = lemp->sorted[i];
4111 ax[i*2].stp = stp;
4112 ax[i*2].isTkn = 1;
4113 ax[i*2].nAction = stp->nTknAct;
4114 ax[i*2+1].stp = stp;
4115 ax[i*2+1].isTkn = 0;
4116 ax[i*2+1].nAction = stp->nNtAct;
4118 mxTknOfst = mnTknOfst = 0;
4119 mxNtOfst = mnNtOfst = 0;
4120 /* In an effort to minimize the action table size, use the heuristic
4121 ** of placing the largest action sets first */
4122 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
4123 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
4124 pActtab = acttab_alloc();
4125 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
4126 stp = ax[i].stp;
4127 if( ax[i].isTkn ){
4128 for(ap=stp->ap; ap; ap=ap->next){
4129 int action;
4130 if( ap->sp->index>=lemp->nterminal ) continue;
4131 action = compute_action(lemp, ap);
4132 if( action<0 ) continue;
4133 acttab_action(pActtab, ap->sp->index, action);
4135 stp->iTknOfst = acttab_insert(pActtab);
4136 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
4137 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
4138 }else{
4139 for(ap=stp->ap; ap; ap=ap->next){
4140 int action;
4141 if( ap->sp->index<lemp->nterminal ) continue;
4142 if( ap->sp->index==lemp->nsymbol ) continue;
4143 action = compute_action(lemp, ap);
4144 if( action<0 ) continue;
4145 acttab_action(pActtab, ap->sp->index, action);
4147 stp->iNtOfst = acttab_insert(pActtab);
4148 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
4149 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
4151 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
4152 { int jj, nn;
4153 for(jj=nn=0; jj<pActtab->nAction; jj++){
4154 if( pActtab->aAction[jj].action<0 ) nn++;
4156 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4157 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ",
4158 ax[i].nAction, pActtab->nAction, nn);
4160 #endif
4162 free(ax);
4164 /* Mark rules that are actually used for reduce actions after all
4165 ** optimizations have been applied
4167 for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
4168 for(i=0; i<lemp->nxstate; i++){
4169 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
4170 if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
4171 ap->x.rp->doesReduce = 1;
4176 /* Finish rendering the constants now that the action table has
4177 ** been computed */
4178 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++;
4179 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
4180 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++;
4181 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",lemp->nstate); lineno++;
4182 i = lemp->nstate + lemp->nrule;
4183 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++;
4184 fprintf(out,"#define YY_MIN_REDUCE %d\n", i); lineno++;
4185 i = lemp->nstate + lemp->nrule*2;
4186 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++;
4187 fprintf(out,"#define YY_ERROR_ACTION %d\n", i); lineno++;
4188 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", i+1); lineno++;
4189 fprintf(out,"#define YY_NO_ACTION %d\n", i+2); lineno++;
4190 tplt_xfer(lemp->name,in,out,&lineno);
4192 /* Now output the action table and its associates:
4194 ** yy_action[] A single table containing all actions.
4195 ** yy_lookahead[] A table containing the lookahead for each entry in
4196 ** yy_action. Used to detect hash collisions.
4197 ** yy_shift_ofst[] For each state, the offset into yy_action for
4198 ** shifting terminals.
4199 ** yy_reduce_ofst[] For each state, the offset into yy_action for
4200 ** shifting non-terminals after a reduce.
4201 ** yy_default[] Default action for each state.
4204 /* Output the yy_action table */
4205 lemp->nactiontab = n = acttab_size(pActtab);
4206 lemp->tablesize += n*szActionType;
4207 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
4208 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
4209 for(i=j=0; i<n; i++){
4210 int action = acttab_yyaction(pActtab, i);
4211 if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
4212 if( j==0 ) fprintf(out," /* %5d */ ", i);
4213 fprintf(out, " %4d,", action);
4214 if( j==9 || i==n-1 ){
4215 fprintf(out, "\n"); lineno++;
4216 j = 0;
4217 }else{
4218 j++;
4221 fprintf(out, "};\n"); lineno++;
4223 /* Output the yy_lookahead table */
4224 lemp->tablesize += n*szCodeType;
4225 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
4226 for(i=j=0; i<n; i++){
4227 int la = acttab_yylookahead(pActtab, i);
4228 if( la<0 ) la = lemp->nsymbol;
4229 if( j==0 ) fprintf(out," /* %5d */ ", i);
4230 fprintf(out, " %4d,", la);
4231 if( j==9 || i==n-1 ){
4232 fprintf(out, "\n"); lineno++;
4233 j = 0;
4234 }else{
4235 j++;
4238 fprintf(out, "};\n"); lineno++;
4240 /* Output the yy_shift_ofst[] table */
4241 n = lemp->nxstate;
4242 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
4243 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++;
4244 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
4245 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
4246 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
4247 fprintf(out, "static const %s yy_shift_ofst[] = {\n",
4248 minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
4249 lineno++;
4250 lemp->tablesize += n*sz;
4251 for(i=j=0; i<n; i++){
4252 int ofst;
4253 stp = lemp->sorted[i];
4254 ofst = stp->iTknOfst;
4255 if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
4256 if( j==0 ) fprintf(out," /* %5d */ ", i);
4257 fprintf(out, " %4d,", ofst);
4258 if( j==9 || i==n-1 ){
4259 fprintf(out, "\n"); lineno++;
4260 j = 0;
4261 }else{
4262 j++;
4265 fprintf(out, "};\n"); lineno++;
4267 /* Output the yy_reduce_ofst[] table */
4268 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
4269 n = lemp->nxstate;
4270 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
4271 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
4272 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
4273 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
4274 fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
4275 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4276 lemp->tablesize += n*sz;
4277 for(i=j=0; i<n; i++){
4278 int ofst;
4279 stp = lemp->sorted[i];
4280 ofst = stp->iNtOfst;
4281 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4282 if( j==0 ) fprintf(out," /* %5d */ ", i);
4283 fprintf(out, " %4d,", ofst);
4284 if( j==9 || i==n-1 ){
4285 fprintf(out, "\n"); lineno++;
4286 j = 0;
4287 }else{
4288 j++;
4291 fprintf(out, "};\n"); lineno++;
4293 /* Output the default action table */
4294 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
4295 n = lemp->nxstate;
4296 lemp->tablesize += n*szActionType;
4297 for(i=j=0; i<n; i++){
4298 stp = lemp->sorted[i];
4299 if( j==0 ) fprintf(out," /* %5d */ ", i);
4300 fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule);
4301 if( j==9 || i==n-1 ){
4302 fprintf(out, "\n"); lineno++;
4303 j = 0;
4304 }else{
4305 j++;
4308 fprintf(out, "};\n"); lineno++;
4309 tplt_xfer(lemp->name,in,out,&lineno);
4311 /* Generate the table of fallback tokens.
4313 if( lemp->has_fallback ){
4314 int mx = lemp->nterminal - 1;
4315 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
4316 lemp->tablesize += (mx+1)*szCodeType;
4317 for(i=0; i<=mx; i++){
4318 struct symbol *p = lemp->symbols[i];
4319 if( p->fallback==0 ){
4320 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
4321 }else{
4322 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
4323 p->name, p->fallback->name);
4325 lineno++;
4328 tplt_xfer(lemp->name, in, out, &lineno);
4330 /* Generate a table containing the symbolic name of every symbol
4332 for(i=0; i<lemp->nsymbol; i++){
4333 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name);
4334 fprintf(out," %-15s",line);
4335 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
4337 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
4338 tplt_xfer(lemp->name,in,out,&lineno);
4340 /* Generate a table containing a text string that describes every
4341 ** rule in the rule set of the grammar. This information is used
4342 ** when tracing REDUCE actions.
4344 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4345 assert( rp->iRule==i );
4346 fprintf(out," /* %3d */ \"", i);
4347 writeRuleText(out, rp);
4348 fprintf(out,"\",\n"); lineno++;
4350 tplt_xfer(lemp->name,in,out,&lineno);
4352 /* Generate code which executes every time a symbol is popped from
4353 ** the stack while processing errors or while destroying the parser.
4354 ** (In other words, generate the %destructor actions)
4356 if( lemp->tokendest ){
4357 int once = 1;
4358 for(i=0; i<lemp->nsymbol; i++){
4359 struct symbol *sp = lemp->symbols[i];
4360 if( sp==0 || sp->type!=TERMINAL ) continue;
4361 if( once ){
4362 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
4363 once = 0;
4365 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4367 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4368 if( i<lemp->nsymbol ){
4369 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4370 fprintf(out," break;\n"); lineno++;
4373 if( lemp->vardest ){
4374 struct symbol *dflt_sp = 0;
4375 int once = 1;
4376 for(i=0; i<lemp->nsymbol; i++){
4377 struct symbol *sp = lemp->symbols[i];
4378 if( sp==0 || sp->type==TERMINAL ||
4379 sp->index<=0 || sp->destructor!=0 ) continue;
4380 if( once ){
4381 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
4382 once = 0;
4384 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4385 dflt_sp = sp;
4387 if( dflt_sp!=0 ){
4388 emit_destructor_code(out,dflt_sp,lemp,&lineno);
4390 fprintf(out," break;\n"); lineno++;
4392 for(i=0; i<lemp->nsymbol; i++){
4393 struct symbol *sp = lemp->symbols[i];
4394 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4395 if( sp->destLineno<0 ) continue; /* Already emitted */
4396 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4398 /* Combine duplicate destructors into a single case */
4399 for(j=i+1; j<lemp->nsymbol; j++){
4400 struct symbol *sp2 = lemp->symbols[j];
4401 if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4402 && sp2->dtnum==sp->dtnum
4403 && strcmp(sp->destructor,sp2->destructor)==0 ){
4404 fprintf(out," case %d: /* %s */\n",
4405 sp2->index, sp2->name); lineno++;
4406 sp2->destLineno = -1; /* Avoid emitting this destructor again */
4410 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4411 fprintf(out," break;\n"); lineno++;
4413 tplt_xfer(lemp->name,in,out,&lineno);
4415 /* Generate code which executes whenever the parser stack overflows */
4416 tplt_print(out,lemp,lemp->overflow,&lineno);
4417 tplt_xfer(lemp->name,in,out,&lineno);
4419 /* Generate the table of rule information
4421 ** Note: This code depends on the fact that rules are number
4422 ** sequentually beginning with 0.
4424 for(rp=lemp->rule; rp; rp=rp->next){
4425 fprintf(out," { %d, %d },\n",rp->lhs->index,-rp->nrhs); lineno++;
4427 tplt_xfer(lemp->name,in,out,&lineno);
4429 /* Generate code which execution during each REDUCE action */
4430 i = 0;
4431 for(rp=lemp->rule; rp; rp=rp->next){
4432 i += translate_code(lemp, rp);
4434 if( i ){
4435 fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++;
4437 /* First output rules other than the default: rule */
4438 for(rp=lemp->rule; rp; rp=rp->next){
4439 struct rule *rp2; /* Other rules with the same action */
4440 if( rp->codeEmitted ) continue;
4441 if( rp->noCode ){
4442 /* No C code actions, so this will be part of the "default:" rule */
4443 continue;
4445 fprintf(out," case %d: /* ", rp->iRule);
4446 writeRuleText(out, rp);
4447 fprintf(out, " */\n"); lineno++;
4448 for(rp2=rp->next; rp2; rp2=rp2->next){
4449 if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
4450 && rp2->codeSuffix==rp->codeSuffix ){
4451 fprintf(out," case %d: /* ", rp2->iRule);
4452 writeRuleText(out, rp2);
4453 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
4454 rp2->codeEmitted = 1;
4457 emit_code(out,rp,lemp,&lineno);
4458 fprintf(out," break;\n"); lineno++;
4459 rp->codeEmitted = 1;
4461 /* Finally, output the default: rule. We choose as the default: all
4462 ** empty actions. */
4463 fprintf(out," default:\n"); lineno++;
4464 for(rp=lemp->rule; rp; rp=rp->next){
4465 if( rp->codeEmitted ) continue;
4466 assert( rp->noCode );
4467 fprintf(out," /* (%d) ", rp->iRule);
4468 writeRuleText(out, rp);
4469 if( rp->doesReduce ){
4470 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
4471 }else{
4472 fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4473 rp->iRule); lineno++;
4476 fprintf(out," break;\n"); lineno++;
4477 tplt_xfer(lemp->name,in,out,&lineno);
4479 /* Generate code which executes if a parse fails */
4480 tplt_print(out,lemp,lemp->failure,&lineno);
4481 tplt_xfer(lemp->name,in,out,&lineno);
4483 /* Generate code which executes when a syntax error occurs */
4484 tplt_print(out,lemp,lemp->error,&lineno);
4485 tplt_xfer(lemp->name,in,out,&lineno);
4487 /* Generate code which executes when the parser accepts its input */
4488 tplt_print(out,lemp,lemp->accept,&lineno);
4489 tplt_xfer(lemp->name,in,out,&lineno);
4491 /* Append any addition code the user desires */
4492 tplt_print(out,lemp,lemp->extracode,&lineno);
4494 fclose(in);
4495 fclose(out);
4496 return;
4499 /* Generate a header file for the parser */
4500 void ReportHeader(struct lemon *lemp)
4502 FILE *out, *in;
4503 const char *prefix;
4504 char line[LINESIZE];
4505 char pattern[LINESIZE];
4506 int i;
4508 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4509 else prefix = "";
4510 in = file_open(lemp,".h","rb");
4511 if( in ){
4512 int nextChar;
4513 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4514 lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4515 prefix,lemp->symbols[i]->name,i);
4516 if( strcmp(line,pattern) ) break;
4518 nextChar = fgetc(in);
4519 fclose(in);
4520 if( i==lemp->nterminal && nextChar==EOF ){
4521 /* No change in the file. Don't rewrite it. */
4522 return;
4525 out = file_open(lemp,".h","wb");
4526 if( out ){
4527 for(i=1; i<lemp->nterminal; i++){
4528 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4530 fclose(out);
4532 return;
4535 /* Reduce the size of the action tables, if possible, by making use
4536 ** of defaults.
4538 ** In this version, we take the most frequent REDUCE action and make
4539 ** it the default. Except, there is no default if the wildcard token
4540 ** is a possible look-ahead.
4542 void CompressTables(struct lemon *lemp)
4544 struct state *stp;
4545 struct action *ap, *ap2, *nextap;
4546 struct rule *rp, *rp2, *rbest;
4547 int nbest, n;
4548 int i;
4549 int usesWildcard;
4551 for(i=0; i<lemp->nstate; i++){
4552 stp = lemp->sorted[i];
4553 nbest = 0;
4554 rbest = 0;
4555 usesWildcard = 0;
4557 for(ap=stp->ap; ap; ap=ap->next){
4558 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
4559 usesWildcard = 1;
4561 if( ap->type!=REDUCE ) continue;
4562 rp = ap->x.rp;
4563 if( rp->lhsStart ) continue;
4564 if( rp==rbest ) continue;
4565 n = 1;
4566 for(ap2=ap->next; ap2; ap2=ap2->next){
4567 if( ap2->type!=REDUCE ) continue;
4568 rp2 = ap2->x.rp;
4569 if( rp2==rbest ) continue;
4570 if( rp2==rp ) n++;
4572 if( n>nbest ){
4573 nbest = n;
4574 rbest = rp;
4578 /* Do not make a default if the number of rules to default
4579 ** is not at least 1 or if the wildcard token is a possible
4580 ** lookahead.
4582 if( nbest<1 || usesWildcard ) continue;
4585 /* Combine matching REDUCE actions into a single default */
4586 for(ap=stp->ap; ap; ap=ap->next){
4587 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
4589 assert( ap );
4590 ap->sp = Symbol_new("{default}");
4591 for(ap=ap->next; ap; ap=ap->next){
4592 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
4594 stp->ap = Action_sort(stp->ap);
4596 for(ap=stp->ap; ap; ap=ap->next){
4597 if( ap->type==SHIFT ) break;
4598 if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
4600 if( ap==0 ){
4601 stp->autoReduce = 1;
4602 stp->pDfltReduce = rbest;
4606 /* Make a second pass over all states and actions. Convert
4607 ** every action that is a SHIFT to an autoReduce state into
4608 ** a SHIFTREDUCE action.
4610 for(i=0; i<lemp->nstate; i++){
4611 stp = lemp->sorted[i];
4612 for(ap=stp->ap; ap; ap=ap->next){
4613 struct state *pNextState;
4614 if( ap->type!=SHIFT ) continue;
4615 pNextState = ap->x.stp;
4616 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
4617 ap->type = SHIFTREDUCE;
4618 ap->x.rp = pNextState->pDfltReduce;
4623 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
4624 ** (meaning that the SHIFTREDUCE will land back in the state where it
4625 ** started) and if there is no C-code associated with the reduce action,
4626 ** then we can go ahead and convert the action to be the same as the
4627 ** action for the RHS of the rule.
4629 for(i=0; i<lemp->nstate; i++){
4630 stp = lemp->sorted[i];
4631 for(ap=stp->ap; ap; ap=nextap){
4632 nextap = ap->next;
4633 if( ap->type!=SHIFTREDUCE ) continue;
4634 rp = ap->x.rp;
4635 if( rp->noCode==0 ) continue;
4636 if( rp->nrhs!=1 ) continue;
4637 #if 1
4638 /* Only apply this optimization to non-terminals. It would be OK to
4639 ** apply it to terminal symbols too, but that makes the parser tables
4640 ** larger. */
4641 if( ap->sp->index<lemp->nterminal ) continue;
4642 #endif
4643 /* If we reach this point, it means the optimization can be applied */
4644 nextap = ap;
4645 for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
4646 assert( ap2!=0 );
4647 ap->spOpt = ap2->sp;
4648 ap->type = ap2->type;
4649 ap->x = ap2->x;
4656 ** Compare two states for sorting purposes. The smaller state is the
4657 ** one with the most non-terminal actions. If they have the same number
4658 ** of non-terminal actions, then the smaller is the one with the most
4659 ** token actions.
4661 static int stateResortCompare(const void *a, const void *b){
4662 const struct state *pA = *(const struct state**)a;
4663 const struct state *pB = *(const struct state**)b;
4664 int n;
4666 n = pB->nNtAct - pA->nNtAct;
4667 if( n==0 ){
4668 n = pB->nTknAct - pA->nTknAct;
4669 if( n==0 ){
4670 n = pB->statenum - pA->statenum;
4673 assert( n!=0 );
4674 return n;
4679 ** Renumber and resort states so that states with fewer choices
4680 ** occur at the end. Except, keep state 0 as the first state.
4682 void ResortStates(struct lemon *lemp)
4684 int i;
4685 struct state *stp;
4686 struct action *ap;
4688 for(i=0; i<lemp->nstate; i++){
4689 stp = lemp->sorted[i];
4690 stp->nTknAct = stp->nNtAct = 0;
4691 stp->iDfltReduce = lemp->nrule; /* Init dflt action to "syntax error" */
4692 stp->iTknOfst = NO_OFFSET;
4693 stp->iNtOfst = NO_OFFSET;
4694 for(ap=stp->ap; ap; ap=ap->next){
4695 int iAction = compute_action(lemp,ap);
4696 if( iAction>=0 ){
4697 if( ap->sp->index<lemp->nterminal ){
4698 stp->nTknAct++;
4699 }else if( ap->sp->index<lemp->nsymbol ){
4700 stp->nNtAct++;
4701 }else{
4702 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
4703 stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule;
4708 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
4709 stateResortCompare);
4710 for(i=0; i<lemp->nstate; i++){
4711 lemp->sorted[i]->statenum = i;
4713 lemp->nxstate = lemp->nstate;
4714 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
4715 lemp->nxstate--;
4720 /***************** From the file "set.c" ************************************/
4722 ** Set manipulation routines for the LEMON parser generator.
4725 static int size = 0;
4727 /* Set the set size */
4728 void SetSize(int n)
4730 size = n+1;
4733 /* Allocate a new set */
4734 char *SetNew(void){
4735 char *s;
4736 s = (char*)calloc( size, 1);
4737 if( s==0 ){
4738 extern void memory_error();
4739 memory_error();
4741 return s;
4744 /* Deallocate a set */
4745 void SetFree(char *s)
4747 free(s);
4750 /* Add a new element to the set. Return TRUE if the element was added
4751 ** and FALSE if it was already there. */
4752 int SetAdd(char *s, int e)
4754 int rv;
4755 assert( e>=0 && e<size );
4756 rv = s[e];
4757 s[e] = 1;
4758 return !rv;
4761 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
4762 int SetUnion(char *s1, char *s2)
4764 int i, progress;
4765 progress = 0;
4766 for(i=0; i<size; i++){
4767 if( s2[i]==0 ) continue;
4768 if( s1[i]==0 ){
4769 progress = 1;
4770 s1[i] = 1;
4773 return progress;
4775 /********************** From the file "table.c" ****************************/
4777 ** All code in this file has been automatically generated
4778 ** from a specification in the file
4779 ** "table.q"
4780 ** by the associative array code building program "aagen".
4781 ** Do not edit this file! Instead, edit the specification
4782 ** file, then rerun aagen.
4785 ** Code for processing tables in the LEMON parser generator.
4788 PRIVATE unsigned strhash(const char *x)
4790 unsigned h = 0;
4791 while( *x ) h = h*13 + *(x++);
4792 return h;
4795 /* Works like strdup, sort of. Save a string in malloced memory, but
4796 ** keep strings in a table so that the same string is not in more
4797 ** than one place.
4799 const char *Strsafe(const char *y)
4801 const char *z;
4802 char *cpy;
4804 if( y==0 ) return 0;
4805 z = Strsafe_find(y);
4806 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
4807 lemon_strcpy(cpy,y);
4808 z = cpy;
4809 Strsafe_insert(z);
4811 MemoryCheck(z);
4812 return z;
4815 /* There is one instance of the following structure for each
4816 ** associative array of type "x1".
4818 struct s_x1 {
4819 int size; /* The number of available slots. */
4820 /* Must be a power of 2 greater than or */
4821 /* equal to 1 */
4822 int count; /* Number of currently slots filled */
4823 struct s_x1node *tbl; /* The data stored here */
4824 struct s_x1node **ht; /* Hash table for lookups */
4827 /* There is one instance of this structure for every data element
4828 ** in an associative array of type "x1".
4830 typedef struct s_x1node {
4831 const char *data; /* The data */
4832 struct s_x1node *next; /* Next entry with the same hash */
4833 struct s_x1node **from; /* Previous link */
4834 } x1node;
4836 /* There is only one instance of the array, which is the following */
4837 static struct s_x1 *x1a;
4839 /* Allocate a new associative array */
4840 void Strsafe_init(void){
4841 if( x1a ) return;
4842 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
4843 if( x1a ){
4844 x1a->size = 1024;
4845 x1a->count = 0;
4846 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
4847 if( x1a->tbl==0 ){
4848 free(x1a);
4849 x1a = 0;
4850 }else{
4851 int i;
4852 x1a->ht = (x1node**)&(x1a->tbl[1024]);
4853 for(i=0; i<1024; i++) x1a->ht[i] = 0;
4857 /* Insert a new record into the array. Return TRUE if successful.
4858 ** Prior data with the same key is NOT overwritten */
4859 int Strsafe_insert(const char *data)
4861 x1node *np;
4862 unsigned h;
4863 unsigned ph;
4865 if( x1a==0 ) return 0;
4866 ph = strhash(data);
4867 h = ph & (x1a->size-1);
4868 np = x1a->ht[h];
4869 while( np ){
4870 if( strcmp(np->data,data)==0 ){
4871 /* An existing entry with the same key is found. */
4872 /* Fail because overwrite is not allows. */
4873 return 0;
4875 np = np->next;
4877 if( x1a->count>=x1a->size ){
4878 /* Need to make the hash table bigger */
4879 int i,arrSize;
4880 struct s_x1 array;
4881 array.size = arrSize = x1a->size*2;
4882 array.count = x1a->count;
4883 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
4884 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4885 array.ht = (x1node**)&(array.tbl[arrSize]);
4886 for(i=0; i<arrSize; i++) array.ht[i] = 0;
4887 for(i=0; i<x1a->count; i++){
4888 x1node *oldnp, *newnp;
4889 oldnp = &(x1a->tbl[i]);
4890 h = strhash(oldnp->data) & (arrSize-1);
4891 newnp = &(array.tbl[i]);
4892 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4893 newnp->next = array.ht[h];
4894 newnp->data = oldnp->data;
4895 newnp->from = &(array.ht[h]);
4896 array.ht[h] = newnp;
4898 free(x1a->tbl);
4899 *x1a = array;
4901 /* Insert the new data */
4902 h = ph & (x1a->size-1);
4903 np = &(x1a->tbl[x1a->count++]);
4904 np->data = data;
4905 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
4906 np->next = x1a->ht[h];
4907 x1a->ht[h] = np;
4908 np->from = &(x1a->ht[h]);
4909 return 1;
4912 /* Return a pointer to data assigned to the given key. Return NULL
4913 ** if no such key. */
4914 const char *Strsafe_find(const char *key)
4916 unsigned h;
4917 x1node *np;
4919 if( x1a==0 ) return 0;
4920 h = strhash(key) & (x1a->size-1);
4921 np = x1a->ht[h];
4922 while( np ){
4923 if( strcmp(np->data,key)==0 ) break;
4924 np = np->next;
4926 return np ? np->data : 0;
4929 /* Return a pointer to the (terminal or nonterminal) symbol "x".
4930 ** Create a new symbol if this is the first time "x" has been seen.
4932 struct symbol *Symbol_new(const char *x)
4934 struct symbol *sp;
4936 sp = Symbol_find(x);
4937 if( sp==0 ){
4938 sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
4939 MemoryCheck(sp);
4940 sp->name = Strsafe(x);
4941 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
4942 sp->rule = 0;
4943 sp->fallback = 0;
4944 sp->prec = -1;
4945 sp->assoc = UNK;
4946 sp->firstset = 0;
4947 sp->lambda = LEMON_FALSE;
4948 sp->destructor = 0;
4949 sp->destLineno = 0;
4950 sp->datatype = 0;
4951 sp->useCnt = 0;
4952 Symbol_insert(sp,sp->name);
4954 sp->useCnt++;
4955 return sp;
4958 /* Compare two symbols for sorting purposes. Return negative,
4959 ** zero, or positive if a is less then, equal to, or greater
4960 ** than b.
4962 ** Symbols that begin with upper case letters (terminals or tokens)
4963 ** must sort before symbols that begin with lower case letters
4964 ** (non-terminals). And MULTITERMINAL symbols (created using the
4965 ** %token_class directive) must sort at the very end. Other than
4966 ** that, the order does not matter.
4968 ** We find experimentally that leaving the symbols in their original
4969 ** order (the order they appeared in the grammar file) gives the
4970 ** smallest parser tables in SQLite.
4972 int Symbolcmpp(const void *_a, const void *_b)
4974 const struct symbol *a = *(const struct symbol **) _a;
4975 const struct symbol *b = *(const struct symbol **) _b;
4976 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
4977 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
4978 return i1==i2 ? a->index - b->index : i1 - i2;
4981 /* There is one instance of the following structure for each
4982 ** associative array of type "x2".
4984 struct s_x2 {
4985 int size; /* The number of available slots. */
4986 /* Must be a power of 2 greater than or */
4987 /* equal to 1 */
4988 int count; /* Number of currently slots filled */
4989 struct s_x2node *tbl; /* The data stored here */
4990 struct s_x2node **ht; /* Hash table for lookups */
4993 /* There is one instance of this structure for every data element
4994 ** in an associative array of type "x2".
4996 typedef struct s_x2node {
4997 struct symbol *data; /* The data */
4998 const char *key; /* The key */
4999 struct s_x2node *next; /* Next entry with the same hash */
5000 struct s_x2node **from; /* Previous link */
5001 } x2node;
5003 /* There is only one instance of the array, which is the following */
5004 static struct s_x2 *x2a;
5006 /* Allocate a new associative array */
5007 void Symbol_init(void){
5008 if( x2a ) return;
5009 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
5010 if( x2a ){
5011 x2a->size = 128;
5012 x2a->count = 0;
5013 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
5014 if( x2a->tbl==0 ){
5015 free(x2a);
5016 x2a = 0;
5017 }else{
5018 int i;
5019 x2a->ht = (x2node**)&(x2a->tbl[128]);
5020 for(i=0; i<128; i++) x2a->ht[i] = 0;
5024 /* Insert a new record into the array. Return TRUE if successful.
5025 ** Prior data with the same key is NOT overwritten */
5026 int Symbol_insert(struct symbol *data, const char *key)
5028 x2node *np;
5029 unsigned h;
5030 unsigned ph;
5032 if( x2a==0 ) return 0;
5033 ph = strhash(key);
5034 h = ph & (x2a->size-1);
5035 np = x2a->ht[h];
5036 while( np ){
5037 if( strcmp(np->key,key)==0 ){
5038 /* An existing entry with the same key is found. */
5039 /* Fail because overwrite is not allows. */
5040 return 0;
5042 np = np->next;
5044 if( x2a->count>=x2a->size ){
5045 /* Need to make the hash table bigger */
5046 int i,arrSize;
5047 struct s_x2 array;
5048 array.size = arrSize = x2a->size*2;
5049 array.count = x2a->count;
5050 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
5051 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5052 array.ht = (x2node**)&(array.tbl[arrSize]);
5053 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5054 for(i=0; i<x2a->count; i++){
5055 x2node *oldnp, *newnp;
5056 oldnp = &(x2a->tbl[i]);
5057 h = strhash(oldnp->key) & (arrSize-1);
5058 newnp = &(array.tbl[i]);
5059 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5060 newnp->next = array.ht[h];
5061 newnp->key = oldnp->key;
5062 newnp->data = oldnp->data;
5063 newnp->from = &(array.ht[h]);
5064 array.ht[h] = newnp;
5066 free(x2a->tbl);
5067 *x2a = array;
5069 /* Insert the new data */
5070 h = ph & (x2a->size-1);
5071 np = &(x2a->tbl[x2a->count++]);
5072 np->key = key;
5073 np->data = data;
5074 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
5075 np->next = x2a->ht[h];
5076 x2a->ht[h] = np;
5077 np->from = &(x2a->ht[h]);
5078 return 1;
5081 /* Return a pointer to data assigned to the given key. Return NULL
5082 ** if no such key. */
5083 struct symbol *Symbol_find(const char *key)
5085 unsigned h;
5086 x2node *np;
5088 if( x2a==0 ) return 0;
5089 h = strhash(key) & (x2a->size-1);
5090 np = x2a->ht[h];
5091 while( np ){
5092 if( strcmp(np->key,key)==0 ) break;
5093 np = np->next;
5095 return np ? np->data : 0;
5098 /* Return the n-th data. Return NULL if n is out of range. */
5099 struct symbol *Symbol_Nth(int n)
5101 struct symbol *data;
5102 if( x2a && n>0 && n<=x2a->count ){
5103 data = x2a->tbl[n-1].data;
5104 }else{
5105 data = 0;
5107 return data;
5110 /* Return the size of the array */
5111 int Symbol_count()
5113 return x2a ? x2a->count : 0;
5116 /* Return an array of pointers to all data in the table.
5117 ** The array is obtained from malloc. Return NULL if memory allocation
5118 ** problems, or if the array is empty. */
5119 struct symbol **Symbol_arrayof()
5121 struct symbol **array;
5122 int i,arrSize;
5123 if( x2a==0 ) return 0;
5124 arrSize = x2a->count;
5125 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
5126 if( array ){
5127 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
5129 return array;
5132 /* Compare two configurations */
5133 int Configcmp(const char *_a,const char *_b)
5135 const struct config *a = (struct config *) _a;
5136 const struct config *b = (struct config *) _b;
5137 int x;
5138 x = a->rp->index - b->rp->index;
5139 if( x==0 ) x = a->dot - b->dot;
5140 return x;
5143 /* Compare two states */
5144 PRIVATE int statecmp(struct config *a, struct config *b)
5146 int rc;
5147 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
5148 rc = a->rp->index - b->rp->index;
5149 if( rc==0 ) rc = a->dot - b->dot;
5151 if( rc==0 ){
5152 if( a ) rc = 1;
5153 if( b ) rc = -1;
5155 return rc;
5158 /* Hash a state */
5159 PRIVATE unsigned statehash(struct config *a)
5161 unsigned h=0;
5162 while( a ){
5163 h = h*571 + a->rp->index*37 + a->dot;
5164 a = a->bp;
5166 return h;
5169 /* Allocate a new state structure */
5170 struct state *State_new()
5172 struct state *newstate;
5173 newstate = (struct state *)calloc(1, sizeof(struct state) );
5174 MemoryCheck(newstate);
5175 return newstate;
5178 /* There is one instance of the following structure for each
5179 ** associative array of type "x3".
5181 struct s_x3 {
5182 int size; /* The number of available slots. */
5183 /* Must be a power of 2 greater than or */
5184 /* equal to 1 */
5185 int count; /* Number of currently slots filled */
5186 struct s_x3node *tbl; /* The data stored here */
5187 struct s_x3node **ht; /* Hash table for lookups */
5190 /* There is one instance of this structure for every data element
5191 ** in an associative array of type "x3".
5193 typedef struct s_x3node {
5194 struct state *data; /* The data */
5195 struct config *key; /* The key */
5196 struct s_x3node *next; /* Next entry with the same hash */
5197 struct s_x3node **from; /* Previous link */
5198 } x3node;
5200 /* There is only one instance of the array, which is the following */
5201 static struct s_x3 *x3a;
5203 /* Allocate a new associative array */
5204 void State_init(void){
5205 if( x3a ) return;
5206 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
5207 if( x3a ){
5208 x3a->size = 128;
5209 x3a->count = 0;
5210 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
5211 if( x3a->tbl==0 ){
5212 free(x3a);
5213 x3a = 0;
5214 }else{
5215 int i;
5216 x3a->ht = (x3node**)&(x3a->tbl[128]);
5217 for(i=0; i<128; i++) x3a->ht[i] = 0;
5221 /* Insert a new record into the array. Return TRUE if successful.
5222 ** Prior data with the same key is NOT overwritten */
5223 int State_insert(struct state *data, struct config *key)
5225 x3node *np;
5226 unsigned h;
5227 unsigned ph;
5229 if( x3a==0 ) return 0;
5230 ph = statehash(key);
5231 h = ph & (x3a->size-1);
5232 np = x3a->ht[h];
5233 while( np ){
5234 if( statecmp(np->key,key)==0 ){
5235 /* An existing entry with the same key is found. */
5236 /* Fail because overwrite is not allows. */
5237 return 0;
5239 np = np->next;
5241 if( x3a->count>=x3a->size ){
5242 /* Need to make the hash table bigger */
5243 int i,arrSize;
5244 struct s_x3 array;
5245 array.size = arrSize = x3a->size*2;
5246 array.count = x3a->count;
5247 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
5248 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5249 array.ht = (x3node**)&(array.tbl[arrSize]);
5250 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5251 for(i=0; i<x3a->count; i++){
5252 x3node *oldnp, *newnp;
5253 oldnp = &(x3a->tbl[i]);
5254 h = statehash(oldnp->key) & (arrSize-1);
5255 newnp = &(array.tbl[i]);
5256 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5257 newnp->next = array.ht[h];
5258 newnp->key = oldnp->key;
5259 newnp->data = oldnp->data;
5260 newnp->from = &(array.ht[h]);
5261 array.ht[h] = newnp;
5263 free(x3a->tbl);
5264 *x3a = array;
5266 /* Insert the new data */
5267 h = ph & (x3a->size-1);
5268 np = &(x3a->tbl[x3a->count++]);
5269 np->key = key;
5270 np->data = data;
5271 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
5272 np->next = x3a->ht[h];
5273 x3a->ht[h] = np;
5274 np->from = &(x3a->ht[h]);
5275 return 1;
5278 /* Return a pointer to data assigned to the given key. Return NULL
5279 ** if no such key. */
5280 struct state *State_find(struct config *key)
5282 unsigned h;
5283 x3node *np;
5285 if( x3a==0 ) return 0;
5286 h = statehash(key) & (x3a->size-1);
5287 np = x3a->ht[h];
5288 while( np ){
5289 if( statecmp(np->key,key)==0 ) break;
5290 np = np->next;
5292 return np ? np->data : 0;
5295 /* Return an array of pointers to all data in the table.
5296 ** The array is obtained from malloc. Return NULL if memory allocation
5297 ** problems, or if the array is empty. */
5298 struct state **State_arrayof(void)
5300 struct state **array;
5301 int i,arrSize;
5302 if( x3a==0 ) return 0;
5303 arrSize = x3a->count;
5304 array = (struct state **)calloc(arrSize, sizeof(struct state *));
5305 if( array ){
5306 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
5308 return array;
5311 /* Hash a configuration */
5312 PRIVATE unsigned confighash(struct config *a)
5314 unsigned h=0;
5315 h = h*571 + a->rp->index*37 + a->dot;
5316 return h;
5319 /* There is one instance of the following structure for each
5320 ** associative array of type "x4".
5322 struct s_x4 {
5323 int size; /* The number of available slots. */
5324 /* Must be a power of 2 greater than or */
5325 /* equal to 1 */
5326 int count; /* Number of currently slots filled */
5327 struct s_x4node *tbl; /* The data stored here */
5328 struct s_x4node **ht; /* Hash table for lookups */
5331 /* There is one instance of this structure for every data element
5332 ** in an associative array of type "x4".
5334 typedef struct s_x4node {
5335 struct config *data; /* The data */
5336 struct s_x4node *next; /* Next entry with the same hash */
5337 struct s_x4node **from; /* Previous link */
5338 } x4node;
5340 /* There is only one instance of the array, which is the following */
5341 static struct s_x4 *x4a;
5343 /* Allocate a new associative array */
5344 void Configtable_init(void){
5345 if( x4a ) return;
5346 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
5347 if( x4a ){
5348 x4a->size = 64;
5349 x4a->count = 0;
5350 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
5351 if( x4a->tbl==0 ){
5352 free(x4a);
5353 x4a = 0;
5354 }else{
5355 int i;
5356 x4a->ht = (x4node**)&(x4a->tbl[64]);
5357 for(i=0; i<64; i++) x4a->ht[i] = 0;
5361 /* Insert a new record into the array. Return TRUE if successful.
5362 ** Prior data with the same key is NOT overwritten */
5363 int Configtable_insert(struct config *data)
5365 x4node *np;
5366 unsigned h;
5367 unsigned ph;
5369 if( x4a==0 ) return 0;
5370 ph = confighash(data);
5371 h = ph & (x4a->size-1);
5372 np = x4a->ht[h];
5373 while( np ){
5374 if( Configcmp((const char *) np->data,(const char *) data)==0 ){
5375 /* An existing entry with the same key is found. */
5376 /* Fail because overwrite is not allows. */
5377 return 0;
5379 np = np->next;
5381 if( x4a->count>=x4a->size ){
5382 /* Need to make the hash table bigger */
5383 int i,arrSize;
5384 struct s_x4 array;
5385 array.size = arrSize = x4a->size*2;
5386 array.count = x4a->count;
5387 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
5388 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5389 array.ht = (x4node**)&(array.tbl[arrSize]);
5390 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5391 for(i=0; i<x4a->count; i++){
5392 x4node *oldnp, *newnp;
5393 oldnp = &(x4a->tbl[i]);
5394 h = confighash(oldnp->data) & (arrSize-1);
5395 newnp = &(array.tbl[i]);
5396 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5397 newnp->next = array.ht[h];
5398 newnp->data = oldnp->data;
5399 newnp->from = &(array.ht[h]);
5400 array.ht[h] = newnp;
5402 free(x4a->tbl);
5403 *x4a = array;
5405 /* Insert the new data */
5406 h = ph & (x4a->size-1);
5407 np = &(x4a->tbl[x4a->count++]);
5408 np->data = data;
5409 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5410 np->next = x4a->ht[h];
5411 x4a->ht[h] = np;
5412 np->from = &(x4a->ht[h]);
5413 return 1;
5416 /* Return a pointer to data assigned to the given key. Return NULL
5417 ** if no such key. */
5418 struct config *Configtable_find(struct config *key)
5420 int h;
5421 x4node *np;
5423 if( x4a==0 ) return 0;
5424 h = confighash(key) & (x4a->size-1);
5425 np = x4a->ht[h];
5426 while( np ){
5427 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5428 np = np->next;
5430 return np ? np->data : 0;
5433 /* Remove all data from the table. Pass each data to the function "f"
5434 ** as it is removed. ("f" may be null to avoid this step.) */
5435 void Configtable_clear(int(*f)(struct config *))
5437 int i;
5438 if( x4a==0 || x4a->count==0 ) return;
5439 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5440 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5441 x4a->count = 0;
5442 return;