Snapshot of upstream SQLite 3.32.2
[sqlcipher.git] / src / where.c
blobad309006d106cea34fc855a8ade89369f17c40d2
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
20 #include "whereInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33 WhereClause *pWC; /* The Where clause being analyzed */
34 Parse *pParse; /* The parsing context */
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50 return pWInfo->nRowOut;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58 return pWInfo->eDistinct;
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66 return pWInfo->nOBSat;
70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
71 ** to emit rows in increasing order, and if the last row emitted by the
72 ** inner-most loop did not fit within the sorter, then we can skip all
73 ** subsequent rows for the current iteration of the inner loop (because they
74 ** will not fit in the sorter either) and continue with the second inner
75 ** loop - the loop immediately outside the inner-most.
77 ** When a row does not fit in the sorter (because the sorter already
78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
79 ** label returned by this function.
81 ** If the ORDER BY LIMIT optimization applies, the jump destination should
82 ** be the continuation for the second-inner-most loop. If the ORDER BY
83 ** LIMIT optimization does not apply, then the jump destination should
84 ** be the continuation for the inner-most loop.
86 ** It is always safe for this routine to return the continuation of the
87 ** inner-most loop, in the sense that a correct answer will result.
88 ** Returning the continuation the second inner loop is an optimization
89 ** that might make the code run a little faster, but should not change
90 ** the final answer.
92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
93 WhereLevel *pInner;
94 if( !pWInfo->bOrderedInnerLoop ){
95 /* The ORDER BY LIMIT optimization does not apply. Jump to the
96 ** continuation of the inner-most loop. */
97 return pWInfo->iContinue;
99 pInner = &pWInfo->a[pWInfo->nLevel-1];
100 assert( pInner->addrNxt!=0 );
101 return pInner->addrNxt;
105 ** Return the VDBE address or label to jump to in order to continue
106 ** immediately with the next row of a WHERE clause.
108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
109 assert( pWInfo->iContinue!=0 );
110 return pWInfo->iContinue;
114 ** Return the VDBE address or label to jump to in order to break
115 ** out of a WHERE loop.
117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
118 return pWInfo->iBreak;
122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
123 ** operate directly on the rowids returned by a WHERE clause. Return
124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
125 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
126 ** optimization can be used on multiple
128 ** If the ONEPASS optimization is used (if this routine returns true)
129 ** then also write the indices of open cursors used by ONEPASS
130 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
131 ** table and iaCur[1] gets the cursor used by an auxiliary index.
132 ** Either value may be -1, indicating that cursor is not used.
133 ** Any cursors returned will have been opened for writing.
135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
136 ** unable to use the ONEPASS optimization.
138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
139 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
140 #ifdef WHERETRACE_ENABLED
141 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
142 sqlite3DebugPrintf("%s cursors: %d %d\n",
143 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
144 aiCur[0], aiCur[1]);
146 #endif
147 return pWInfo->eOnePass;
151 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
152 ** the data cursor to the row selected by the index cursor.
154 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
155 return pWInfo->bDeferredSeek;
159 ** Move the content of pSrc into pDest
161 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
162 pDest->n = pSrc->n;
163 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
167 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
169 ** The new entry might overwrite an existing entry, or it might be
170 ** appended, or it might be discarded. Do whatever is the right thing
171 ** so that pSet keeps the N_OR_COST best entries seen so far.
173 static int whereOrInsert(
174 WhereOrSet *pSet, /* The WhereOrSet to be updated */
175 Bitmask prereq, /* Prerequisites of the new entry */
176 LogEst rRun, /* Run-cost of the new entry */
177 LogEst nOut /* Number of outputs for the new entry */
179 u16 i;
180 WhereOrCost *p;
181 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
182 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
183 goto whereOrInsert_done;
185 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
186 return 0;
189 if( pSet->n<N_OR_COST ){
190 p = &pSet->a[pSet->n++];
191 p->nOut = nOut;
192 }else{
193 p = pSet->a;
194 for(i=1; i<pSet->n; i++){
195 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
197 if( p->rRun<=rRun ) return 0;
199 whereOrInsert_done:
200 p->prereq = prereq;
201 p->rRun = rRun;
202 if( p->nOut>nOut ) p->nOut = nOut;
203 return 1;
207 ** Return the bitmask for the given cursor number. Return 0 if
208 ** iCursor is not in the set.
210 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
211 int i;
212 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
213 for(i=0; i<pMaskSet->n; i++){
214 if( pMaskSet->ix[i]==iCursor ){
215 return MASKBIT(i);
218 return 0;
222 ** Create a new mask for cursor iCursor.
224 ** There is one cursor per table in the FROM clause. The number of
225 ** tables in the FROM clause is limited by a test early in the
226 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
227 ** array will never overflow.
229 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
230 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
231 pMaskSet->ix[pMaskSet->n++] = iCursor;
235 ** Advance to the next WhereTerm that matches according to the criteria
236 ** established when the pScan object was initialized by whereScanInit().
237 ** Return NULL if there are no more matching WhereTerms.
239 static WhereTerm *whereScanNext(WhereScan *pScan){
240 int iCur; /* The cursor on the LHS of the term */
241 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
242 Expr *pX; /* An expression being tested */
243 WhereClause *pWC; /* Shorthand for pScan->pWC */
244 WhereTerm *pTerm; /* The term being tested */
245 int k = pScan->k; /* Where to start scanning */
247 assert( pScan->iEquiv<=pScan->nEquiv );
248 pWC = pScan->pWC;
249 while(1){
250 iColumn = pScan->aiColumn[pScan->iEquiv-1];
251 iCur = pScan->aiCur[pScan->iEquiv-1];
252 assert( pWC!=0 );
254 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
255 if( pTerm->leftCursor==iCur
256 && pTerm->u.leftColumn==iColumn
257 && (iColumn!=XN_EXPR
258 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
259 pScan->pIdxExpr,iCur)==0)
260 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
262 if( (pTerm->eOperator & WO_EQUIV)!=0
263 && pScan->nEquiv<ArraySize(pScan->aiCur)
264 && (pX = sqlite3ExprSkipCollateAndLikely(pTerm->pExpr->pRight))->op
265 ==TK_COLUMN
267 int j;
268 for(j=0; j<pScan->nEquiv; j++){
269 if( pScan->aiCur[j]==pX->iTable
270 && pScan->aiColumn[j]==pX->iColumn ){
271 break;
274 if( j==pScan->nEquiv ){
275 pScan->aiCur[j] = pX->iTable;
276 pScan->aiColumn[j] = pX->iColumn;
277 pScan->nEquiv++;
280 if( (pTerm->eOperator & pScan->opMask)!=0 ){
281 /* Verify the affinity and collating sequence match */
282 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
283 CollSeq *pColl;
284 Parse *pParse = pWC->pWInfo->pParse;
285 pX = pTerm->pExpr;
286 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
287 continue;
289 assert(pX->pLeft);
290 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
291 if( pColl==0 ) pColl = pParse->db->pDfltColl;
292 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
293 continue;
296 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
297 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
298 && pX->iTable==pScan->aiCur[0]
299 && pX->iColumn==pScan->aiColumn[0]
301 testcase( pTerm->eOperator & WO_IS );
302 continue;
304 pScan->pWC = pWC;
305 pScan->k = k+1;
306 return pTerm;
310 pWC = pWC->pOuter;
311 k = 0;
312 }while( pWC!=0 );
313 if( pScan->iEquiv>=pScan->nEquiv ) break;
314 pWC = pScan->pOrigWC;
315 k = 0;
316 pScan->iEquiv++;
318 return 0;
322 ** This is whereScanInit() for the case of an index on an expression.
323 ** It is factored out into a separate tail-recursion subroutine so that
324 ** the normal whereScanInit() routine, which is a high-runner, does not
325 ** need to push registers onto the stack as part of its prologue.
327 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
328 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
329 return whereScanNext(pScan);
333 ** Initialize a WHERE clause scanner object. Return a pointer to the
334 ** first match. Return NULL if there are no matches.
336 ** The scanner will be searching the WHERE clause pWC. It will look
337 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
338 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
339 ** must be one of the indexes of table iCur.
341 ** The <op> must be one of the operators described by opMask.
343 ** If the search is for X and the WHERE clause contains terms of the
344 ** form X=Y then this routine might also return terms of the form
345 ** "Y <op> <expr>". The number of levels of transitivity is limited,
346 ** but is enough to handle most commonly occurring SQL statements.
348 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
349 ** index pIdx.
351 static WhereTerm *whereScanInit(
352 WhereScan *pScan, /* The WhereScan object being initialized */
353 WhereClause *pWC, /* The WHERE clause to be scanned */
354 int iCur, /* Cursor to scan for */
355 int iColumn, /* Column to scan for */
356 u32 opMask, /* Operator(s) to scan for */
357 Index *pIdx /* Must be compatible with this index */
359 pScan->pOrigWC = pWC;
360 pScan->pWC = pWC;
361 pScan->pIdxExpr = 0;
362 pScan->idxaff = 0;
363 pScan->zCollName = 0;
364 pScan->opMask = opMask;
365 pScan->k = 0;
366 pScan->aiCur[0] = iCur;
367 pScan->nEquiv = 1;
368 pScan->iEquiv = 1;
369 if( pIdx ){
370 int j = iColumn;
371 iColumn = pIdx->aiColumn[j];
372 if( iColumn==XN_EXPR ){
373 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
374 pScan->zCollName = pIdx->azColl[j];
375 pScan->aiColumn[0] = XN_EXPR;
376 return whereScanInitIndexExpr(pScan);
377 }else if( iColumn==pIdx->pTable->iPKey ){
378 iColumn = XN_ROWID;
379 }else if( iColumn>=0 ){
380 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
381 pScan->zCollName = pIdx->azColl[j];
383 }else if( iColumn==XN_EXPR ){
384 return 0;
386 pScan->aiColumn[0] = iColumn;
387 return whereScanNext(pScan);
391 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
392 ** where X is a reference to the iColumn of table iCur or of index pIdx
393 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
394 ** the op parameter. Return a pointer to the term. Return 0 if not found.
396 ** If pIdx!=0 then it must be one of the indexes of table iCur.
397 ** Search for terms matching the iColumn-th column of pIdx
398 ** rather than the iColumn-th column of table iCur.
400 ** The term returned might by Y=<expr> if there is another constraint in
401 ** the WHERE clause that specifies that X=Y. Any such constraints will be
402 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
403 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
404 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
405 ** other equivalent values. Hence a search for X will return <expr> if X=A1
406 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
408 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
409 ** then try for the one with no dependencies on <expr> - in other words where
410 ** <expr> is a constant expression of some kind. Only return entries of
411 ** the form "X <op> Y" where Y is a column in another table if no terms of
412 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
413 ** exist, try to return a term that does not use WO_EQUIV.
415 WhereTerm *sqlite3WhereFindTerm(
416 WhereClause *pWC, /* The WHERE clause to be searched */
417 int iCur, /* Cursor number of LHS */
418 int iColumn, /* Column number of LHS */
419 Bitmask notReady, /* RHS must not overlap with this mask */
420 u32 op, /* Mask of WO_xx values describing operator */
421 Index *pIdx /* Must be compatible with this index, if not NULL */
423 WhereTerm *pResult = 0;
424 WhereTerm *p;
425 WhereScan scan;
427 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
428 op &= WO_EQ|WO_IS;
429 while( p ){
430 if( (p->prereqRight & notReady)==0 ){
431 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
432 testcase( p->eOperator & WO_IS );
433 return p;
435 if( pResult==0 ) pResult = p;
437 p = whereScanNext(&scan);
439 return pResult;
443 ** This function searches pList for an entry that matches the iCol-th column
444 ** of index pIdx.
446 ** If such an expression is found, its index in pList->a[] is returned. If
447 ** no expression is found, -1 is returned.
449 static int findIndexCol(
450 Parse *pParse, /* Parse context */
451 ExprList *pList, /* Expression list to search */
452 int iBase, /* Cursor for table associated with pIdx */
453 Index *pIdx, /* Index to match column of */
454 int iCol /* Column of index to match */
456 int i;
457 const char *zColl = pIdx->azColl[iCol];
459 for(i=0; i<pList->nExpr; i++){
460 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
461 if( p->op==TK_COLUMN
462 && p->iColumn==pIdx->aiColumn[iCol]
463 && p->iTable==iBase
465 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
466 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
467 return i;
472 return -1;
476 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
478 static int indexColumnNotNull(Index *pIdx, int iCol){
479 int j;
480 assert( pIdx!=0 );
481 assert( iCol>=0 && iCol<pIdx->nColumn );
482 j = pIdx->aiColumn[iCol];
483 if( j>=0 ){
484 return pIdx->pTable->aCol[j].notNull;
485 }else if( j==(-1) ){
486 return 1;
487 }else{
488 assert( j==(-2) );
489 return 0; /* Assume an indexed expression can always yield a NULL */
495 ** Return true if the DISTINCT expression-list passed as the third argument
496 ** is redundant.
498 ** A DISTINCT list is redundant if any subset of the columns in the
499 ** DISTINCT list are collectively unique and individually non-null.
501 static int isDistinctRedundant(
502 Parse *pParse, /* Parsing context */
503 SrcList *pTabList, /* The FROM clause */
504 WhereClause *pWC, /* The WHERE clause */
505 ExprList *pDistinct /* The result set that needs to be DISTINCT */
507 Table *pTab;
508 Index *pIdx;
509 int i;
510 int iBase;
512 /* If there is more than one table or sub-select in the FROM clause of
513 ** this query, then it will not be possible to show that the DISTINCT
514 ** clause is redundant. */
515 if( pTabList->nSrc!=1 ) return 0;
516 iBase = pTabList->a[0].iCursor;
517 pTab = pTabList->a[0].pTab;
519 /* If any of the expressions is an IPK column on table iBase, then return
520 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
521 ** current SELECT is a correlated sub-query.
523 for(i=0; i<pDistinct->nExpr; i++){
524 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
525 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
528 /* Loop through all indices on the table, checking each to see if it makes
529 ** the DISTINCT qualifier redundant. It does so if:
531 ** 1. The index is itself UNIQUE, and
533 ** 2. All of the columns in the index are either part of the pDistinct
534 ** list, or else the WHERE clause contains a term of the form "col=X",
535 ** where X is a constant value. The collation sequences of the
536 ** comparison and select-list expressions must match those of the index.
538 ** 3. All of those index columns for which the WHERE clause does not
539 ** contain a "col=X" term are subject to a NOT NULL constraint.
541 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
542 if( !IsUniqueIndex(pIdx) ) continue;
543 for(i=0; i<pIdx->nKeyCol; i++){
544 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
545 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
546 if( indexColumnNotNull(pIdx, i)==0 ) break;
549 if( i==pIdx->nKeyCol ){
550 /* This index implies that the DISTINCT qualifier is redundant. */
551 return 1;
555 return 0;
560 ** Estimate the logarithm of the input value to base 2.
562 static LogEst estLog(LogEst N){
563 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
567 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
569 ** This routine runs over generated VDBE code and translates OP_Column
570 ** opcodes into OP_Copy when the table is being accessed via co-routine
571 ** instead of via table lookup.
573 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
574 ** cursor iTabCur are transformed into OP_Sequence opcode for the
575 ** iAutoidxCur cursor, in order to generate unique rowids for the
576 ** automatic index being generated.
578 static void translateColumnToCopy(
579 Parse *pParse, /* Parsing context */
580 int iStart, /* Translate from this opcode to the end */
581 int iTabCur, /* OP_Column/OP_Rowid references to this table */
582 int iRegister, /* The first column is in this register */
583 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
585 Vdbe *v = pParse->pVdbe;
586 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
587 int iEnd = sqlite3VdbeCurrentAddr(v);
588 if( pParse->db->mallocFailed ) return;
589 for(; iStart<iEnd; iStart++, pOp++){
590 if( pOp->p1!=iTabCur ) continue;
591 if( pOp->opcode==OP_Column ){
592 pOp->opcode = OP_Copy;
593 pOp->p1 = pOp->p2 + iRegister;
594 pOp->p2 = pOp->p3;
595 pOp->p3 = 0;
596 }else if( pOp->opcode==OP_Rowid ){
597 if( iAutoidxCur ){
598 pOp->opcode = OP_Sequence;
599 pOp->p1 = iAutoidxCur;
600 }else{
601 pOp->opcode = OP_Null;
602 pOp->p1 = 0;
603 pOp->p3 = 0;
610 ** Two routines for printing the content of an sqlite3_index_info
611 ** structure. Used for testing and debugging only. If neither
612 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
613 ** are no-ops.
615 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
616 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
617 int i;
618 if( !sqlite3WhereTrace ) return;
619 for(i=0; i<p->nConstraint; i++){
620 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
622 p->aConstraint[i].iColumn,
623 p->aConstraint[i].iTermOffset,
624 p->aConstraint[i].op,
625 p->aConstraint[i].usable);
627 for(i=0; i<p->nOrderBy; i++){
628 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
630 p->aOrderBy[i].iColumn,
631 p->aOrderBy[i].desc);
634 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
635 int i;
636 if( !sqlite3WhereTrace ) return;
637 for(i=0; i<p->nConstraint; i++){
638 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
640 p->aConstraintUsage[i].argvIndex,
641 p->aConstraintUsage[i].omit);
643 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
644 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
645 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
646 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
647 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
649 #else
650 #define whereTraceIndexInfoInputs(A)
651 #define whereTraceIndexInfoOutputs(A)
652 #endif
654 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
656 ** Return TRUE if the WHERE clause term pTerm is of a form where it
657 ** could be used with an index to access pSrc, assuming an appropriate
658 ** index existed.
660 static int termCanDriveIndex(
661 WhereTerm *pTerm, /* WHERE clause term to check */
662 struct SrcList_item *pSrc, /* Table we are trying to access */
663 Bitmask notReady /* Tables in outer loops of the join */
665 char aff;
666 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
667 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
668 if( (pSrc->fg.jointype & JT_LEFT)
669 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
670 && (pTerm->eOperator & WO_IS)
672 /* Cannot use an IS term from the WHERE clause as an index driver for
673 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
674 ** the ON clause. */
675 return 0;
677 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
678 if( pTerm->u.leftColumn<0 ) return 0;
679 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
680 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
681 testcase( pTerm->pExpr->op==TK_IS );
682 return 1;
684 #endif
687 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
689 ** Generate code to construct the Index object for an automatic index
690 ** and to set up the WhereLevel object pLevel so that the code generator
691 ** makes use of the automatic index.
693 static void constructAutomaticIndex(
694 Parse *pParse, /* The parsing context */
695 WhereClause *pWC, /* The WHERE clause */
696 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
697 Bitmask notReady, /* Mask of cursors that are not available */
698 WhereLevel *pLevel /* Write new index here */
700 int nKeyCol; /* Number of columns in the constructed index */
701 WhereTerm *pTerm; /* A single term of the WHERE clause */
702 WhereTerm *pWCEnd; /* End of pWC->a[] */
703 Index *pIdx; /* Object describing the transient index */
704 Vdbe *v; /* Prepared statement under construction */
705 int addrInit; /* Address of the initialization bypass jump */
706 Table *pTable; /* The table being indexed */
707 int addrTop; /* Top of the index fill loop */
708 int regRecord; /* Register holding an index record */
709 int n; /* Column counter */
710 int i; /* Loop counter */
711 int mxBitCol; /* Maximum column in pSrc->colUsed */
712 CollSeq *pColl; /* Collating sequence to on a column */
713 WhereLoop *pLoop; /* The Loop object */
714 char *zNotUsed; /* Extra space on the end of pIdx */
715 Bitmask idxCols; /* Bitmap of columns used for indexing */
716 Bitmask extraCols; /* Bitmap of additional columns */
717 u8 sentWarning = 0; /* True if a warnning has been issued */
718 Expr *pPartial = 0; /* Partial Index Expression */
719 int iContinue = 0; /* Jump here to skip excluded rows */
720 struct SrcList_item *pTabItem; /* FROM clause term being indexed */
721 int addrCounter = 0; /* Address where integer counter is initialized */
722 int regBase; /* Array of registers where record is assembled */
724 /* Generate code to skip over the creation and initialization of the
725 ** transient index on 2nd and subsequent iterations of the loop. */
726 v = pParse->pVdbe;
727 assert( v!=0 );
728 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
730 /* Count the number of columns that will be added to the index
731 ** and used to match WHERE clause constraints */
732 nKeyCol = 0;
733 pTable = pSrc->pTab;
734 pWCEnd = &pWC->a[pWC->nTerm];
735 pLoop = pLevel->pWLoop;
736 idxCols = 0;
737 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
738 Expr *pExpr = pTerm->pExpr;
739 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */
740 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */
741 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */
742 if( pLoop->prereq==0
743 && (pTerm->wtFlags & TERM_VIRTUAL)==0
744 && !ExprHasProperty(pExpr, EP_FromJoin)
745 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
746 pPartial = sqlite3ExprAnd(pParse, pPartial,
747 sqlite3ExprDup(pParse->db, pExpr, 0));
749 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
750 int iCol = pTerm->u.leftColumn;
751 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
752 testcase( iCol==BMS );
753 testcase( iCol==BMS-1 );
754 if( !sentWarning ){
755 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
756 "automatic index on %s(%s)", pTable->zName,
757 pTable->aCol[iCol].zName);
758 sentWarning = 1;
760 if( (idxCols & cMask)==0 ){
761 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
762 goto end_auto_index_create;
764 pLoop->aLTerm[nKeyCol++] = pTerm;
765 idxCols |= cMask;
769 assert( nKeyCol>0 );
770 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
771 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
772 | WHERE_AUTO_INDEX;
774 /* Count the number of additional columns needed to create a
775 ** covering index. A "covering index" is an index that contains all
776 ** columns that are needed by the query. With a covering index, the
777 ** original table never needs to be accessed. Automatic indices must
778 ** be a covering index because the index will not be updated if the
779 ** original table changes and the index and table cannot both be used
780 ** if they go out of sync.
782 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
783 mxBitCol = MIN(BMS-1,pTable->nCol);
784 testcase( pTable->nCol==BMS-1 );
785 testcase( pTable->nCol==BMS-2 );
786 for(i=0; i<mxBitCol; i++){
787 if( extraCols & MASKBIT(i) ) nKeyCol++;
789 if( pSrc->colUsed & MASKBIT(BMS-1) ){
790 nKeyCol += pTable->nCol - BMS + 1;
793 /* Construct the Index object to describe this index */
794 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
795 if( pIdx==0 ) goto end_auto_index_create;
796 pLoop->u.btree.pIndex = pIdx;
797 pIdx->zName = "auto-index";
798 pIdx->pTable = pTable;
799 n = 0;
800 idxCols = 0;
801 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
802 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
803 int iCol = pTerm->u.leftColumn;
804 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
805 testcase( iCol==BMS-1 );
806 testcase( iCol==BMS );
807 if( (idxCols & cMask)==0 ){
808 Expr *pX = pTerm->pExpr;
809 idxCols |= cMask;
810 pIdx->aiColumn[n] = pTerm->u.leftColumn;
811 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
812 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
813 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
814 n++;
818 assert( (u32)n==pLoop->u.btree.nEq );
820 /* Add additional columns needed to make the automatic index into
821 ** a covering index */
822 for(i=0; i<mxBitCol; i++){
823 if( extraCols & MASKBIT(i) ){
824 pIdx->aiColumn[n] = i;
825 pIdx->azColl[n] = sqlite3StrBINARY;
826 n++;
829 if( pSrc->colUsed & MASKBIT(BMS-1) ){
830 for(i=BMS-1; i<pTable->nCol; i++){
831 pIdx->aiColumn[n] = i;
832 pIdx->azColl[n] = sqlite3StrBINARY;
833 n++;
836 assert( n==nKeyCol );
837 pIdx->aiColumn[n] = XN_ROWID;
838 pIdx->azColl[n] = sqlite3StrBINARY;
840 /* Create the automatic index */
841 assert( pLevel->iIdxCur>=0 );
842 pLevel->iIdxCur = pParse->nTab++;
843 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
844 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
845 VdbeComment((v, "for %s", pTable->zName));
847 /* Fill the automatic index with content */
848 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
849 if( pTabItem->fg.viaCoroutine ){
850 int regYield = pTabItem->regReturn;
851 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
852 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
853 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
854 VdbeCoverage(v);
855 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
856 }else{
857 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
859 if( pPartial ){
860 iContinue = sqlite3VdbeMakeLabel(pParse);
861 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
862 pLoop->wsFlags |= WHERE_PARTIALIDX;
864 regRecord = sqlite3GetTempReg(pParse);
865 regBase = sqlite3GenerateIndexKey(
866 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
868 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
869 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
870 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
871 if( pTabItem->fg.viaCoroutine ){
872 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
873 testcase( pParse->db->mallocFailed );
874 assert( pLevel->iIdxCur>0 );
875 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
876 pTabItem->regResult, pLevel->iIdxCur);
877 sqlite3VdbeGoto(v, addrTop);
878 pTabItem->fg.viaCoroutine = 0;
879 }else{
880 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
881 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
883 sqlite3VdbeJumpHere(v, addrTop);
884 sqlite3ReleaseTempReg(pParse, regRecord);
886 /* Jump here when skipping the initialization */
887 sqlite3VdbeJumpHere(v, addrInit);
889 end_auto_index_create:
890 sqlite3ExprDelete(pParse->db, pPartial);
892 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
894 #ifndef SQLITE_OMIT_VIRTUALTABLE
896 ** Allocate and populate an sqlite3_index_info structure. It is the
897 ** responsibility of the caller to eventually release the structure
898 ** by passing the pointer returned by this function to sqlite3_free().
900 static sqlite3_index_info *allocateIndexInfo(
901 Parse *pParse, /* The parsing context */
902 WhereClause *pWC, /* The WHERE clause being analyzed */
903 Bitmask mUnusable, /* Ignore terms with these prereqs */
904 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */
905 ExprList *pOrderBy, /* The ORDER BY clause */
906 u16 *pmNoOmit /* Mask of terms not to omit */
908 int i, j;
909 int nTerm;
910 struct sqlite3_index_constraint *pIdxCons;
911 struct sqlite3_index_orderby *pIdxOrderBy;
912 struct sqlite3_index_constraint_usage *pUsage;
913 struct HiddenIndexInfo *pHidden;
914 WhereTerm *pTerm;
915 int nOrderBy;
916 sqlite3_index_info *pIdxInfo;
917 u16 mNoOmit = 0;
919 /* Count the number of possible WHERE clause constraints referring
920 ** to this virtual table */
921 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
922 if( pTerm->leftCursor != pSrc->iCursor ) continue;
923 if( pTerm->prereqRight & mUnusable ) continue;
924 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
925 testcase( pTerm->eOperator & WO_IN );
926 testcase( pTerm->eOperator & WO_ISNULL );
927 testcase( pTerm->eOperator & WO_IS );
928 testcase( pTerm->eOperator & WO_ALL );
929 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
930 if( pTerm->wtFlags & TERM_VNULL ) continue;
931 assert( pTerm->u.leftColumn>=(-1) );
932 nTerm++;
935 /* If the ORDER BY clause contains only columns in the current
936 ** virtual table then allocate space for the aOrderBy part of
937 ** the sqlite3_index_info structure.
939 nOrderBy = 0;
940 if( pOrderBy ){
941 int n = pOrderBy->nExpr;
942 for(i=0; i<n; i++){
943 Expr *pExpr = pOrderBy->a[i].pExpr;
944 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
945 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
947 if( i==n){
948 nOrderBy = n;
952 /* Allocate the sqlite3_index_info structure
954 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
955 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
956 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
957 if( pIdxInfo==0 ){
958 sqlite3ErrorMsg(pParse, "out of memory");
959 return 0;
961 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
962 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
963 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
964 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
965 pIdxInfo->nOrderBy = nOrderBy;
966 pIdxInfo->aConstraint = pIdxCons;
967 pIdxInfo->aOrderBy = pIdxOrderBy;
968 pIdxInfo->aConstraintUsage = pUsage;
969 pHidden->pWC = pWC;
970 pHidden->pParse = pParse;
971 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
972 u16 op;
973 if( pTerm->leftCursor != pSrc->iCursor ) continue;
974 if( pTerm->prereqRight & mUnusable ) continue;
975 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
976 testcase( pTerm->eOperator & WO_IN );
977 testcase( pTerm->eOperator & WO_IS );
978 testcase( pTerm->eOperator & WO_ISNULL );
979 testcase( pTerm->eOperator & WO_ALL );
980 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
981 if( pTerm->wtFlags & TERM_VNULL ) continue;
983 /* tag-20191211-002: WHERE-clause constraints are not useful to the
984 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the
985 ** equivalent restriction for ordinary tables. */
986 if( (pSrc->fg.jointype & JT_LEFT)!=0
987 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
989 continue;
991 assert( pTerm->u.leftColumn>=(-1) );
992 pIdxCons[j].iColumn = pTerm->u.leftColumn;
993 pIdxCons[j].iTermOffset = i;
994 op = pTerm->eOperator & WO_ALL;
995 if( op==WO_IN ) op = WO_EQ;
996 if( op==WO_AUX ){
997 pIdxCons[j].op = pTerm->eMatchOp;
998 }else if( op & (WO_ISNULL|WO_IS) ){
999 if( op==WO_ISNULL ){
1000 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1001 }else{
1002 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1004 }else{
1005 pIdxCons[j].op = (u8)op;
1006 /* The direct assignment in the previous line is possible only because
1007 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1008 ** following asserts verify this fact. */
1009 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1010 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1011 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1012 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1013 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1014 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1016 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1017 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1019 testcase( j!=i );
1020 if( j<16 ) mNoOmit |= (1 << j);
1021 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1022 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1026 j++;
1028 pIdxInfo->nConstraint = j;
1029 for(i=0; i<nOrderBy; i++){
1030 Expr *pExpr = pOrderBy->a[i].pExpr;
1031 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1032 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1035 *pmNoOmit = mNoOmit;
1036 return pIdxInfo;
1040 ** The table object reference passed as the second argument to this function
1041 ** must represent a virtual table. This function invokes the xBestIndex()
1042 ** method of the virtual table with the sqlite3_index_info object that
1043 ** comes in as the 3rd argument to this function.
1045 ** If an error occurs, pParse is populated with an error message and an
1046 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1047 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1048 ** the current configuration of "unusable" flags in sqlite3_index_info can
1049 ** not result in a valid plan.
1051 ** Whether or not an error is returned, it is the responsibility of the
1052 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1053 ** that this is required.
1055 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1056 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1057 int rc;
1059 whereTraceIndexInfoInputs(p);
1060 rc = pVtab->pModule->xBestIndex(pVtab, p);
1061 whereTraceIndexInfoOutputs(p);
1063 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1064 if( rc==SQLITE_NOMEM ){
1065 sqlite3OomFault(pParse->db);
1066 }else if( !pVtab->zErrMsg ){
1067 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1068 }else{
1069 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1072 sqlite3_free(pVtab->zErrMsg);
1073 pVtab->zErrMsg = 0;
1074 return rc;
1076 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1078 #ifdef SQLITE_ENABLE_STAT4
1080 ** Estimate the location of a particular key among all keys in an
1081 ** index. Store the results in aStat as follows:
1083 ** aStat[0] Est. number of rows less than pRec
1084 ** aStat[1] Est. number of rows equal to pRec
1086 ** Return the index of the sample that is the smallest sample that
1087 ** is greater than or equal to pRec. Note that this index is not an index
1088 ** into the aSample[] array - it is an index into a virtual set of samples
1089 ** based on the contents of aSample[] and the number of fields in record
1090 ** pRec.
1092 static int whereKeyStats(
1093 Parse *pParse, /* Database connection */
1094 Index *pIdx, /* Index to consider domain of */
1095 UnpackedRecord *pRec, /* Vector of values to consider */
1096 int roundUp, /* Round up if true. Round down if false */
1097 tRowcnt *aStat /* OUT: stats written here */
1099 IndexSample *aSample = pIdx->aSample;
1100 int iCol; /* Index of required stats in anEq[] etc. */
1101 int i; /* Index of first sample >= pRec */
1102 int iSample; /* Smallest sample larger than or equal to pRec */
1103 int iMin = 0; /* Smallest sample not yet tested */
1104 int iTest; /* Next sample to test */
1105 int res; /* Result of comparison operation */
1106 int nField; /* Number of fields in pRec */
1107 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1109 #ifndef SQLITE_DEBUG
1110 UNUSED_PARAMETER( pParse );
1111 #endif
1112 assert( pRec!=0 );
1113 assert( pIdx->nSample>0 );
1114 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1116 /* Do a binary search to find the first sample greater than or equal
1117 ** to pRec. If pRec contains a single field, the set of samples to search
1118 ** is simply the aSample[] array. If the samples in aSample[] contain more
1119 ** than one fields, all fields following the first are ignored.
1121 ** If pRec contains N fields, where N is more than one, then as well as the
1122 ** samples in aSample[] (truncated to N fields), the search also has to
1123 ** consider prefixes of those samples. For example, if the set of samples
1124 ** in aSample is:
1126 ** aSample[0] = (a, 5)
1127 ** aSample[1] = (a, 10)
1128 ** aSample[2] = (b, 5)
1129 ** aSample[3] = (c, 100)
1130 ** aSample[4] = (c, 105)
1132 ** Then the search space should ideally be the samples above and the
1133 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1134 ** the code actually searches this set:
1136 ** 0: (a)
1137 ** 1: (a, 5)
1138 ** 2: (a, 10)
1139 ** 3: (a, 10)
1140 ** 4: (b)
1141 ** 5: (b, 5)
1142 ** 6: (c)
1143 ** 7: (c, 100)
1144 ** 8: (c, 105)
1145 ** 9: (c, 105)
1147 ** For each sample in the aSample[] array, N samples are present in the
1148 ** effective sample array. In the above, samples 0 and 1 are based on
1149 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1151 ** Often, sample i of each block of N effective samples has (i+1) fields.
1152 ** Except, each sample may be extended to ensure that it is greater than or
1153 ** equal to the previous sample in the array. For example, in the above,
1154 ** sample 2 is the first sample of a block of N samples, so at first it
1155 ** appears that it should be 1 field in size. However, that would make it
1156 ** smaller than sample 1, so the binary search would not work. As a result,
1157 ** it is extended to two fields. The duplicates that this creates do not
1158 ** cause any problems.
1160 nField = pRec->nField;
1161 iCol = 0;
1162 iSample = pIdx->nSample * nField;
1164 int iSamp; /* Index in aSample[] of test sample */
1165 int n; /* Number of fields in test sample */
1167 iTest = (iMin+iSample)/2;
1168 iSamp = iTest / nField;
1169 if( iSamp>0 ){
1170 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1171 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1172 ** fields that is greater than the previous effective sample. */
1173 for(n=(iTest % nField) + 1; n<nField; n++){
1174 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1176 }else{
1177 n = iTest + 1;
1180 pRec->nField = n;
1181 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1182 if( res<0 ){
1183 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1184 iMin = iTest+1;
1185 }else if( res==0 && n<nField ){
1186 iLower = aSample[iSamp].anLt[n-1];
1187 iMin = iTest+1;
1188 res = -1;
1189 }else{
1190 iSample = iTest;
1191 iCol = n-1;
1193 }while( res && iMin<iSample );
1194 i = iSample / nField;
1196 #ifdef SQLITE_DEBUG
1197 /* The following assert statements check that the binary search code
1198 ** above found the right answer. This block serves no purpose other
1199 ** than to invoke the asserts. */
1200 if( pParse->db->mallocFailed==0 ){
1201 if( res==0 ){
1202 /* If (res==0) is true, then pRec must be equal to sample i. */
1203 assert( i<pIdx->nSample );
1204 assert( iCol==nField-1 );
1205 pRec->nField = nField;
1206 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1207 || pParse->db->mallocFailed
1209 }else{
1210 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1211 ** all samples in the aSample[] array, pRec must be smaller than the
1212 ** (iCol+1) field prefix of sample i. */
1213 assert( i<=pIdx->nSample && i>=0 );
1214 pRec->nField = iCol+1;
1215 assert( i==pIdx->nSample
1216 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1217 || pParse->db->mallocFailed );
1219 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1220 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1221 ** be greater than or equal to the (iCol) field prefix of sample i.
1222 ** If (i>0), then pRec must also be greater than sample (i-1). */
1223 if( iCol>0 ){
1224 pRec->nField = iCol;
1225 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1226 || pParse->db->mallocFailed );
1228 if( i>0 ){
1229 pRec->nField = nField;
1230 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1231 || pParse->db->mallocFailed );
1235 #endif /* ifdef SQLITE_DEBUG */
1237 if( res==0 ){
1238 /* Record pRec is equal to sample i */
1239 assert( iCol==nField-1 );
1240 aStat[0] = aSample[i].anLt[iCol];
1241 aStat[1] = aSample[i].anEq[iCol];
1242 }else{
1243 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1244 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1245 ** is larger than all samples in the array. */
1246 tRowcnt iUpper, iGap;
1247 if( i>=pIdx->nSample ){
1248 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1249 }else{
1250 iUpper = aSample[i].anLt[iCol];
1253 if( iLower>=iUpper ){
1254 iGap = 0;
1255 }else{
1256 iGap = iUpper - iLower;
1258 if( roundUp ){
1259 iGap = (iGap*2)/3;
1260 }else{
1261 iGap = iGap/3;
1263 aStat[0] = iLower + iGap;
1264 aStat[1] = pIdx->aAvgEq[nField-1];
1267 /* Restore the pRec->nField value before returning. */
1268 pRec->nField = nField;
1269 return i;
1271 #endif /* SQLITE_ENABLE_STAT4 */
1274 ** If it is not NULL, pTerm is a term that provides an upper or lower
1275 ** bound on a range scan. Without considering pTerm, it is estimated
1276 ** that the scan will visit nNew rows. This function returns the number
1277 ** estimated to be visited after taking pTerm into account.
1279 ** If the user explicitly specified a likelihood() value for this term,
1280 ** then the return value is the likelihood multiplied by the number of
1281 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1282 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1284 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1285 LogEst nRet = nNew;
1286 if( pTerm ){
1287 if( pTerm->truthProb<=0 ){
1288 nRet += pTerm->truthProb;
1289 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1290 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1293 return nRet;
1297 #ifdef SQLITE_ENABLE_STAT4
1299 ** Return the affinity for a single column of an index.
1301 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1302 assert( iCol>=0 && iCol<pIdx->nColumn );
1303 if( !pIdx->zColAff ){
1304 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1306 assert( pIdx->zColAff[iCol]!=0 );
1307 return pIdx->zColAff[iCol];
1309 #endif
1312 #ifdef SQLITE_ENABLE_STAT4
1314 ** This function is called to estimate the number of rows visited by a
1315 ** range-scan on a skip-scan index. For example:
1317 ** CREATE INDEX i1 ON t1(a, b, c);
1318 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1320 ** Value pLoop->nOut is currently set to the estimated number of rows
1321 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1322 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1323 ** on the stat4 data for the index. this scan will be peformed multiple
1324 ** times (once for each (a,b) combination that matches a=?) is dealt with
1325 ** by the caller.
1327 ** It does this by scanning through all stat4 samples, comparing values
1328 ** extracted from pLower and pUpper with the corresponding column in each
1329 ** sample. If L and U are the number of samples found to be less than or
1330 ** equal to the values extracted from pLower and pUpper respectively, and
1331 ** N is the total number of samples, the pLoop->nOut value is adjusted
1332 ** as follows:
1334 ** nOut = nOut * ( min(U - L, 1) / N )
1336 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1337 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1338 ** U is set to N.
1340 ** Normally, this function sets *pbDone to 1 before returning. However,
1341 ** if no value can be extracted from either pLower or pUpper (and so the
1342 ** estimate of the number of rows delivered remains unchanged), *pbDone
1343 ** is left as is.
1345 ** If an error occurs, an SQLite error code is returned. Otherwise,
1346 ** SQLITE_OK.
1348 static int whereRangeSkipScanEst(
1349 Parse *pParse, /* Parsing & code generating context */
1350 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1351 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1352 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1353 int *pbDone /* Set to true if at least one expr. value extracted */
1355 Index *p = pLoop->u.btree.pIndex;
1356 int nEq = pLoop->u.btree.nEq;
1357 sqlite3 *db = pParse->db;
1358 int nLower = -1;
1359 int nUpper = p->nSample+1;
1360 int rc = SQLITE_OK;
1361 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1362 CollSeq *pColl;
1364 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1365 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1366 sqlite3_value *pVal = 0; /* Value extracted from record */
1368 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1369 if( pLower ){
1370 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1371 nLower = 0;
1373 if( pUpper && rc==SQLITE_OK ){
1374 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1375 nUpper = p2 ? 0 : p->nSample;
1378 if( p1 || p2 ){
1379 int i;
1380 int nDiff;
1381 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1382 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1383 if( rc==SQLITE_OK && p1 ){
1384 int res = sqlite3MemCompare(p1, pVal, pColl);
1385 if( res>=0 ) nLower++;
1387 if( rc==SQLITE_OK && p2 ){
1388 int res = sqlite3MemCompare(p2, pVal, pColl);
1389 if( res>=0 ) nUpper++;
1392 nDiff = (nUpper - nLower);
1393 if( nDiff<=0 ) nDiff = 1;
1395 /* If there is both an upper and lower bound specified, and the
1396 ** comparisons indicate that they are close together, use the fallback
1397 ** method (assume that the scan visits 1/64 of the rows) for estimating
1398 ** the number of rows visited. Otherwise, estimate the number of rows
1399 ** using the method described in the header comment for this function. */
1400 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1401 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1402 pLoop->nOut -= nAdjust;
1403 *pbDone = 1;
1404 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1405 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1408 }else{
1409 assert( *pbDone==0 );
1412 sqlite3ValueFree(p1);
1413 sqlite3ValueFree(p2);
1414 sqlite3ValueFree(pVal);
1416 return rc;
1418 #endif /* SQLITE_ENABLE_STAT4 */
1421 ** This function is used to estimate the number of rows that will be visited
1422 ** by scanning an index for a range of values. The range may have an upper
1423 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1424 ** and lower bounds are represented by pLower and pUpper respectively. For
1425 ** example, assuming that index p is on t1(a):
1427 ** ... FROM t1 WHERE a > ? AND a < ? ...
1428 ** |_____| |_____|
1429 ** | |
1430 ** pLower pUpper
1432 ** If either of the upper or lower bound is not present, then NULL is passed in
1433 ** place of the corresponding WhereTerm.
1435 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1436 ** column subject to the range constraint. Or, equivalently, the number of
1437 ** equality constraints optimized by the proposed index scan. For example,
1438 ** assuming index p is on t1(a, b), and the SQL query is:
1440 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1442 ** then nEq is set to 1 (as the range restricted column, b, is the second
1443 ** left-most column of the index). Or, if the query is:
1445 ** ... FROM t1 WHERE a > ? AND a < ? ...
1447 ** then nEq is set to 0.
1449 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1450 ** number of rows that the index scan is expected to visit without
1451 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1452 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1453 ** to account for the range constraints pLower and pUpper.
1455 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1456 ** used, a single range inequality reduces the search space by a factor of 4.
1457 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1458 ** rows visited by a factor of 64.
1460 static int whereRangeScanEst(
1461 Parse *pParse, /* Parsing & code generating context */
1462 WhereLoopBuilder *pBuilder,
1463 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1464 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1465 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1467 int rc = SQLITE_OK;
1468 int nOut = pLoop->nOut;
1469 LogEst nNew;
1471 #ifdef SQLITE_ENABLE_STAT4
1472 Index *p = pLoop->u.btree.pIndex;
1473 int nEq = pLoop->u.btree.nEq;
1475 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1476 && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1478 if( nEq==pBuilder->nRecValid ){
1479 UnpackedRecord *pRec = pBuilder->pRec;
1480 tRowcnt a[2];
1481 int nBtm = pLoop->u.btree.nBtm;
1482 int nTop = pLoop->u.btree.nTop;
1484 /* Variable iLower will be set to the estimate of the number of rows in
1485 ** the index that are less than the lower bound of the range query. The
1486 ** lower bound being the concatenation of $P and $L, where $P is the
1487 ** key-prefix formed by the nEq values matched against the nEq left-most
1488 ** columns of the index, and $L is the value in pLower.
1490 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1491 ** is not a simple variable or literal value), the lower bound of the
1492 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1493 ** if $L is available, whereKeyStats() is called for both ($P) and
1494 ** ($P:$L) and the larger of the two returned values is used.
1496 ** Similarly, iUpper is to be set to the estimate of the number of rows
1497 ** less than the upper bound of the range query. Where the upper bound
1498 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1499 ** of iUpper are requested of whereKeyStats() and the smaller used.
1501 ** The number of rows between the two bounds is then just iUpper-iLower.
1503 tRowcnt iLower; /* Rows less than the lower bound */
1504 tRowcnt iUpper; /* Rows less than the upper bound */
1505 int iLwrIdx = -2; /* aSample[] for the lower bound */
1506 int iUprIdx = -1; /* aSample[] for the upper bound */
1508 if( pRec ){
1509 testcase( pRec->nField!=pBuilder->nRecValid );
1510 pRec->nField = pBuilder->nRecValid;
1512 /* Determine iLower and iUpper using ($P) only. */
1513 if( nEq==0 ){
1514 iLower = 0;
1515 iUpper = p->nRowEst0;
1516 }else{
1517 /* Note: this call could be optimized away - since the same values must
1518 ** have been requested when testing key $P in whereEqualScanEst(). */
1519 whereKeyStats(pParse, p, pRec, 0, a);
1520 iLower = a[0];
1521 iUpper = a[0] + a[1];
1524 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1525 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1526 assert( p->aSortOrder!=0 );
1527 if( p->aSortOrder[nEq] ){
1528 /* The roles of pLower and pUpper are swapped for a DESC index */
1529 SWAP(WhereTerm*, pLower, pUpper);
1530 SWAP(int, nBtm, nTop);
1533 /* If possible, improve on the iLower estimate using ($P:$L). */
1534 if( pLower ){
1535 int n; /* Values extracted from pExpr */
1536 Expr *pExpr = pLower->pExpr->pRight;
1537 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1538 if( rc==SQLITE_OK && n ){
1539 tRowcnt iNew;
1540 u16 mask = WO_GT|WO_LE;
1541 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1542 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1543 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1544 if( iNew>iLower ) iLower = iNew;
1545 nOut--;
1546 pLower = 0;
1550 /* If possible, improve on the iUpper estimate using ($P:$U). */
1551 if( pUpper ){
1552 int n; /* Values extracted from pExpr */
1553 Expr *pExpr = pUpper->pExpr->pRight;
1554 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1555 if( rc==SQLITE_OK && n ){
1556 tRowcnt iNew;
1557 u16 mask = WO_GT|WO_LE;
1558 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1559 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1560 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1561 if( iNew<iUpper ) iUpper = iNew;
1562 nOut--;
1563 pUpper = 0;
1567 pBuilder->pRec = pRec;
1568 if( rc==SQLITE_OK ){
1569 if( iUpper>iLower ){
1570 nNew = sqlite3LogEst(iUpper - iLower);
1571 /* TUNING: If both iUpper and iLower are derived from the same
1572 ** sample, then assume they are 4x more selective. This brings
1573 ** the estimated selectivity more in line with what it would be
1574 ** if estimated without the use of STAT4 tables. */
1575 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1576 }else{
1577 nNew = 10; assert( 10==sqlite3LogEst(2) );
1579 if( nNew<nOut ){
1580 nOut = nNew;
1582 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1583 (u32)iLower, (u32)iUpper, nOut));
1585 }else{
1586 int bDone = 0;
1587 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1588 if( bDone ) return rc;
1591 #else
1592 UNUSED_PARAMETER(pParse);
1593 UNUSED_PARAMETER(pBuilder);
1594 assert( pLower || pUpper );
1595 #endif
1596 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1597 nNew = whereRangeAdjust(pLower, nOut);
1598 nNew = whereRangeAdjust(pUpper, nNew);
1600 /* TUNING: If there is both an upper and lower limit and neither limit
1601 ** has an application-defined likelihood(), assume the range is
1602 ** reduced by an additional 75%. This means that, by default, an open-ended
1603 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1604 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1605 ** match 1/64 of the index. */
1606 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1607 nNew -= 20;
1610 nOut -= (pLower!=0) + (pUpper!=0);
1611 if( nNew<10 ) nNew = 10;
1612 if( nNew<nOut ) nOut = nNew;
1613 #if defined(WHERETRACE_ENABLED)
1614 if( pLoop->nOut>nOut ){
1615 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1616 pLoop->nOut, nOut));
1618 #endif
1619 pLoop->nOut = (LogEst)nOut;
1620 return rc;
1623 #ifdef SQLITE_ENABLE_STAT4
1625 ** Estimate the number of rows that will be returned based on
1626 ** an equality constraint x=VALUE and where that VALUE occurs in
1627 ** the histogram data. This only works when x is the left-most
1628 ** column of an index and sqlite_stat4 histogram data is available
1629 ** for that index. When pExpr==NULL that means the constraint is
1630 ** "x IS NULL" instead of "x=VALUE".
1632 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1633 ** If unable to make an estimate, leave *pnRow unchanged and return
1634 ** non-zero.
1636 ** This routine can fail if it is unable to load a collating sequence
1637 ** required for string comparison, or if unable to allocate memory
1638 ** for a UTF conversion required for comparison. The error is stored
1639 ** in the pParse structure.
1641 static int whereEqualScanEst(
1642 Parse *pParse, /* Parsing & code generating context */
1643 WhereLoopBuilder *pBuilder,
1644 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1645 tRowcnt *pnRow /* Write the revised row estimate here */
1647 Index *p = pBuilder->pNew->u.btree.pIndex;
1648 int nEq = pBuilder->pNew->u.btree.nEq;
1649 UnpackedRecord *pRec = pBuilder->pRec;
1650 int rc; /* Subfunction return code */
1651 tRowcnt a[2]; /* Statistics */
1652 int bOk;
1654 assert( nEq>=1 );
1655 assert( nEq<=p->nColumn );
1656 assert( p->aSample!=0 );
1657 assert( p->nSample>0 );
1658 assert( pBuilder->nRecValid<nEq );
1660 /* If values are not available for all fields of the index to the left
1661 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1662 if( pBuilder->nRecValid<(nEq-1) ){
1663 return SQLITE_NOTFOUND;
1666 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1667 ** below would return the same value. */
1668 if( nEq>=p->nColumn ){
1669 *pnRow = 1;
1670 return SQLITE_OK;
1673 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1674 pBuilder->pRec = pRec;
1675 if( rc!=SQLITE_OK ) return rc;
1676 if( bOk==0 ) return SQLITE_NOTFOUND;
1677 pBuilder->nRecValid = nEq;
1679 whereKeyStats(pParse, p, pRec, 0, a);
1680 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1681 p->zName, nEq-1, (int)a[1]));
1682 *pnRow = a[1];
1684 return rc;
1686 #endif /* SQLITE_ENABLE_STAT4 */
1688 #ifdef SQLITE_ENABLE_STAT4
1690 ** Estimate the number of rows that will be returned based on
1691 ** an IN constraint where the right-hand side of the IN operator
1692 ** is a list of values. Example:
1694 ** WHERE x IN (1,2,3,4)
1696 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1697 ** If unable to make an estimate, leave *pnRow unchanged and return
1698 ** non-zero.
1700 ** This routine can fail if it is unable to load a collating sequence
1701 ** required for string comparison, or if unable to allocate memory
1702 ** for a UTF conversion required for comparison. The error is stored
1703 ** in the pParse structure.
1705 static int whereInScanEst(
1706 Parse *pParse, /* Parsing & code generating context */
1707 WhereLoopBuilder *pBuilder,
1708 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1709 tRowcnt *pnRow /* Write the revised row estimate here */
1711 Index *p = pBuilder->pNew->u.btree.pIndex;
1712 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1713 int nRecValid = pBuilder->nRecValid;
1714 int rc = SQLITE_OK; /* Subfunction return code */
1715 tRowcnt nEst; /* Number of rows for a single term */
1716 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
1717 int i; /* Loop counter */
1719 assert( p->aSample!=0 );
1720 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1721 nEst = nRow0;
1722 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1723 nRowEst += nEst;
1724 pBuilder->nRecValid = nRecValid;
1727 if( rc==SQLITE_OK ){
1728 if( nRowEst > nRow0 ) nRowEst = nRow0;
1729 *pnRow = nRowEst;
1730 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1732 assert( pBuilder->nRecValid==nRecValid );
1733 return rc;
1735 #endif /* SQLITE_ENABLE_STAT4 */
1738 #ifdef WHERETRACE_ENABLED
1740 ** Print the content of a WhereTerm object
1742 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1743 if( pTerm==0 ){
1744 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1745 }else{
1746 char zType[8];
1747 char zLeft[50];
1748 memcpy(zType, "....", 5);
1749 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1750 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
1751 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1752 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
1753 if( pTerm->eOperator & WO_SINGLE ){
1754 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1755 pTerm->leftCursor, pTerm->u.leftColumn);
1756 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1757 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1758 pTerm->u.pOrInfo->indexable);
1759 }else{
1760 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1762 sqlite3DebugPrintf(
1763 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1764 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1765 /* The 0x10000 .wheretrace flag causes extra information to be
1766 ** shown about each Term */
1767 if( sqlite3WhereTrace & 0x10000 ){
1768 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1769 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1771 if( pTerm->iField ){
1772 sqlite3DebugPrintf(" iField=%d", pTerm->iField);
1774 if( pTerm->iParent>=0 ){
1775 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1777 sqlite3DebugPrintf("\n");
1778 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1781 #endif
1783 #ifdef WHERETRACE_ENABLED
1785 ** Show the complete content of a WhereClause
1787 void sqlite3WhereClausePrint(WhereClause *pWC){
1788 int i;
1789 for(i=0; i<pWC->nTerm; i++){
1790 sqlite3WhereTermPrint(&pWC->a[i], i);
1793 #endif
1795 #ifdef WHERETRACE_ENABLED
1797 ** Print a WhereLoop object for debugging purposes
1799 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1800 WhereInfo *pWInfo = pWC->pWInfo;
1801 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1802 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1803 Table *pTab = pItem->pTab;
1804 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1805 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1806 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1807 sqlite3DebugPrintf(" %12s",
1808 pItem->zAlias ? pItem->zAlias : pTab->zName);
1809 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1810 const char *zName;
1811 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1812 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1813 int i = sqlite3Strlen30(zName) - 1;
1814 while( zName[i]!='_' ) i--;
1815 zName += i;
1817 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1818 }else{
1819 sqlite3DebugPrintf("%20s","");
1821 }else{
1822 char *z;
1823 if( p->u.vtab.idxStr ){
1824 z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1825 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1826 }else{
1827 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1829 sqlite3DebugPrintf(" %-19s", z);
1830 sqlite3_free(z);
1832 if( p->wsFlags & WHERE_SKIPSCAN ){
1833 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1834 }else{
1835 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1837 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1838 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1839 int i;
1840 for(i=0; i<p->nLTerm; i++){
1841 sqlite3WhereTermPrint(p->aLTerm[i], i);
1845 #endif
1848 ** Convert bulk memory into a valid WhereLoop that can be passed
1849 ** to whereLoopClear harmlessly.
1851 static void whereLoopInit(WhereLoop *p){
1852 p->aLTerm = p->aLTermSpace;
1853 p->nLTerm = 0;
1854 p->nLSlot = ArraySize(p->aLTermSpace);
1855 p->wsFlags = 0;
1859 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
1861 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1862 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1863 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1864 sqlite3_free(p->u.vtab.idxStr);
1865 p->u.vtab.needFree = 0;
1866 p->u.vtab.idxStr = 0;
1867 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1868 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1869 sqlite3DbFreeNN(db, p->u.btree.pIndex);
1870 p->u.btree.pIndex = 0;
1876 ** Deallocate internal memory used by a WhereLoop object
1878 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1879 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1880 whereLoopClearUnion(db, p);
1881 whereLoopInit(p);
1885 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1887 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1888 WhereTerm **paNew;
1889 if( p->nLSlot>=n ) return SQLITE_OK;
1890 n = (n+7)&~7;
1891 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1892 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1893 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1894 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1895 p->aLTerm = paNew;
1896 p->nLSlot = n;
1897 return SQLITE_OK;
1901 ** Transfer content from the second pLoop into the first.
1903 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1904 whereLoopClearUnion(db, pTo);
1905 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1906 memset(&pTo->u, 0, sizeof(pTo->u));
1907 return SQLITE_NOMEM_BKPT;
1909 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1910 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1911 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1912 pFrom->u.vtab.needFree = 0;
1913 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1914 pFrom->u.btree.pIndex = 0;
1916 return SQLITE_OK;
1920 ** Delete a WhereLoop object
1922 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1923 whereLoopClear(db, p);
1924 sqlite3DbFreeNN(db, p);
1928 ** Free a WhereInfo structure
1930 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1931 int i;
1932 assert( pWInfo!=0 );
1933 for(i=0; i<pWInfo->nLevel; i++){
1934 WhereLevel *pLevel = &pWInfo->a[i];
1935 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1936 sqlite3DbFree(db, pLevel->u.in.aInLoop);
1939 sqlite3WhereClauseClear(&pWInfo->sWC);
1940 while( pWInfo->pLoops ){
1941 WhereLoop *p = pWInfo->pLoops;
1942 pWInfo->pLoops = p->pNextLoop;
1943 whereLoopDelete(db, p);
1945 assert( pWInfo->pExprMods==0 );
1946 sqlite3DbFreeNN(db, pWInfo);
1950 ** Return TRUE if all of the following are true:
1952 ** (1) X has the same or lower cost that Y
1953 ** (2) X uses fewer WHERE clause terms than Y
1954 ** (3) Every WHERE clause term used by X is also used by Y
1955 ** (4) X skips at least as many columns as Y
1956 ** (5) If X is a covering index, than Y is too
1958 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1959 ** If X is a proper subset of Y then Y is a better choice and ought
1960 ** to have a lower cost. This routine returns TRUE when that cost
1961 ** relationship is inverted and needs to be adjusted. Constraint (4)
1962 ** was added because if X uses skip-scan less than Y it still might
1963 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
1964 ** was added because a covering index probably deserves to have a lower cost
1965 ** than a non-covering index even if it is a proper subset.
1967 static int whereLoopCheaperProperSubset(
1968 const WhereLoop *pX, /* First WhereLoop to compare */
1969 const WhereLoop *pY /* Compare against this WhereLoop */
1971 int i, j;
1972 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1973 return 0; /* X is not a subset of Y */
1975 if( pY->nSkip > pX->nSkip ) return 0;
1976 if( pX->rRun >= pY->rRun ){
1977 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */
1978 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */
1980 for(i=pX->nLTerm-1; i>=0; i--){
1981 if( pX->aLTerm[i]==0 ) continue;
1982 for(j=pY->nLTerm-1; j>=0; j--){
1983 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1985 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
1987 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1988 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1989 return 0; /* Constraint (5) */
1991 return 1; /* All conditions meet */
1995 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1996 ** that:
1998 ** (1) pTemplate costs less than any other WhereLoops that are a proper
1999 ** subset of pTemplate
2001 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2002 ** is a proper subset.
2004 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2005 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2006 ** also used by Y.
2008 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2009 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2010 for(; p; p=p->pNextLoop){
2011 if( p->iTab!=pTemplate->iTab ) continue;
2012 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2013 if( whereLoopCheaperProperSubset(p, pTemplate) ){
2014 /* Adjust pTemplate cost downward so that it is cheaper than its
2015 ** subset p. */
2016 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2017 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2018 pTemplate->rRun = p->rRun;
2019 pTemplate->nOut = p->nOut - 1;
2020 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2021 /* Adjust pTemplate cost upward so that it is costlier than p since
2022 ** pTemplate is a proper subset of p */
2023 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2024 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2025 pTemplate->rRun = p->rRun;
2026 pTemplate->nOut = p->nOut + 1;
2032 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2033 ** replaced by pTemplate.
2035 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2036 ** In other words if pTemplate ought to be dropped from further consideration.
2038 ** If pX is a WhereLoop that pTemplate can replace, then return the
2039 ** link that points to pX.
2041 ** If pTemplate cannot replace any existing element of the list but needs
2042 ** to be added to the list as a new entry, then return a pointer to the
2043 ** tail of the list.
2045 static WhereLoop **whereLoopFindLesser(
2046 WhereLoop **ppPrev,
2047 const WhereLoop *pTemplate
2049 WhereLoop *p;
2050 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2051 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2052 /* If either the iTab or iSortIdx values for two WhereLoop are different
2053 ** then those WhereLoops need to be considered separately. Neither is
2054 ** a candidate to replace the other. */
2055 continue;
2057 /* In the current implementation, the rSetup value is either zero
2058 ** or the cost of building an automatic index (NlogN) and the NlogN
2059 ** is the same for compatible WhereLoops. */
2060 assert( p->rSetup==0 || pTemplate->rSetup==0
2061 || p->rSetup==pTemplate->rSetup );
2063 /* whereLoopAddBtree() always generates and inserts the automatic index
2064 ** case first. Hence compatible candidate WhereLoops never have a larger
2065 ** rSetup. Call this SETUP-INVARIANT */
2066 assert( p->rSetup>=pTemplate->rSetup );
2068 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2069 ** UNIQUE constraint) with one or more == constraints is better
2070 ** than an automatic index. Unless it is a skip-scan. */
2071 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2072 && (pTemplate->nSkip)==0
2073 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2074 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2075 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2077 break;
2080 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2081 ** discarded. WhereLoop p is better if:
2082 ** (1) p has no more dependencies than pTemplate, and
2083 ** (2) p has an equal or lower cost than pTemplate
2085 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
2086 && p->rSetup<=pTemplate->rSetup /* (2a) */
2087 && p->rRun<=pTemplate->rRun /* (2b) */
2088 && p->nOut<=pTemplate->nOut /* (2c) */
2090 return 0; /* Discard pTemplate */
2093 /* If pTemplate is always better than p, then cause p to be overwritten
2094 ** with pTemplate. pTemplate is better than p if:
2095 ** (1) pTemplate has no more dependences than p, and
2096 ** (2) pTemplate has an equal or lower cost than p.
2098 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2099 && p->rRun>=pTemplate->rRun /* (2a) */
2100 && p->nOut>=pTemplate->nOut /* (2b) */
2102 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2103 break; /* Cause p to be overwritten by pTemplate */
2106 return ppPrev;
2110 ** Insert or replace a WhereLoop entry using the template supplied.
2112 ** An existing WhereLoop entry might be overwritten if the new template
2113 ** is better and has fewer dependencies. Or the template will be ignored
2114 ** and no insert will occur if an existing WhereLoop is faster and has
2115 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2116 ** added based on the template.
2118 ** If pBuilder->pOrSet is not NULL then we care about only the
2119 ** prerequisites and rRun and nOut costs of the N best loops. That
2120 ** information is gathered in the pBuilder->pOrSet object. This special
2121 ** processing mode is used only for OR clause processing.
2123 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2124 ** still might overwrite similar loops with the new template if the
2125 ** new template is better. Loops may be overwritten if the following
2126 ** conditions are met:
2128 ** (1) They have the same iTab.
2129 ** (2) They have the same iSortIdx.
2130 ** (3) The template has same or fewer dependencies than the current loop
2131 ** (4) The template has the same or lower cost than the current loop
2133 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2134 WhereLoop **ppPrev, *p;
2135 WhereInfo *pWInfo = pBuilder->pWInfo;
2136 sqlite3 *db = pWInfo->pParse->db;
2137 int rc;
2139 /* Stop the search once we hit the query planner search limit */
2140 if( pBuilder->iPlanLimit==0 ){
2141 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2142 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2143 return SQLITE_DONE;
2145 pBuilder->iPlanLimit--;
2147 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2149 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2150 ** and prereqs.
2152 if( pBuilder->pOrSet!=0 ){
2153 if( pTemplate->nLTerm ){
2154 #if WHERETRACE_ENABLED
2155 u16 n = pBuilder->pOrSet->n;
2156 int x =
2157 #endif
2158 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2159 pTemplate->nOut);
2160 #if WHERETRACE_ENABLED /* 0x8 */
2161 if( sqlite3WhereTrace & 0x8 ){
2162 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2163 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2165 #endif
2167 return SQLITE_OK;
2170 /* Look for an existing WhereLoop to replace with pTemplate
2172 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2174 if( ppPrev==0 ){
2175 /* There already exists a WhereLoop on the list that is better
2176 ** than pTemplate, so just ignore pTemplate */
2177 #if WHERETRACE_ENABLED /* 0x8 */
2178 if( sqlite3WhereTrace & 0x8 ){
2179 sqlite3DebugPrintf(" skip: ");
2180 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2182 #endif
2183 return SQLITE_OK;
2184 }else{
2185 p = *ppPrev;
2188 /* If we reach this point it means that either p[] should be overwritten
2189 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2190 ** WhereLoop and insert it.
2192 #if WHERETRACE_ENABLED /* 0x8 */
2193 if( sqlite3WhereTrace & 0x8 ){
2194 if( p!=0 ){
2195 sqlite3DebugPrintf("replace: ");
2196 sqlite3WhereLoopPrint(p, pBuilder->pWC);
2197 sqlite3DebugPrintf(" with: ");
2198 }else{
2199 sqlite3DebugPrintf(" add: ");
2201 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2203 #endif
2204 if( p==0 ){
2205 /* Allocate a new WhereLoop to add to the end of the list */
2206 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2207 if( p==0 ) return SQLITE_NOMEM_BKPT;
2208 whereLoopInit(p);
2209 p->pNextLoop = 0;
2210 }else{
2211 /* We will be overwriting WhereLoop p[]. But before we do, first
2212 ** go through the rest of the list and delete any other entries besides
2213 ** p[] that are also supplated by pTemplate */
2214 WhereLoop **ppTail = &p->pNextLoop;
2215 WhereLoop *pToDel;
2216 while( *ppTail ){
2217 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2218 if( ppTail==0 ) break;
2219 pToDel = *ppTail;
2220 if( pToDel==0 ) break;
2221 *ppTail = pToDel->pNextLoop;
2222 #if WHERETRACE_ENABLED /* 0x8 */
2223 if( sqlite3WhereTrace & 0x8 ){
2224 sqlite3DebugPrintf(" delete: ");
2225 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2227 #endif
2228 whereLoopDelete(db, pToDel);
2231 rc = whereLoopXfer(db, p, pTemplate);
2232 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2233 Index *pIndex = p->u.btree.pIndex;
2234 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2235 p->u.btree.pIndex = 0;
2238 return rc;
2242 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2243 ** WHERE clause that reference the loop but which are not used by an
2244 ** index.
2246 ** For every WHERE clause term that is not used by the index
2247 ** and which has a truth probability assigned by one of the likelihood(),
2248 ** likely(), or unlikely() SQL functions, reduce the estimated number
2249 ** of output rows by the probability specified.
2251 ** TUNING: For every WHERE clause term that is not used by the index
2252 ** and which does not have an assigned truth probability, heuristics
2253 ** described below are used to try to estimate the truth probability.
2254 ** TODO --> Perhaps this is something that could be improved by better
2255 ** table statistics.
2257 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2258 ** value corresponds to -1 in LogEst notation, so this means decrement
2259 ** the WhereLoop.nOut field for every such WHERE clause term.
2261 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2262 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2263 ** final output row estimate is no greater than 1/4 of the total number
2264 ** of rows in the table. In other words, assume that x==EXPR will filter
2265 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2266 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2267 ** on the "x" column and so in that case only cap the output row estimate
2268 ** at 1/2 instead of 1/4.
2270 static void whereLoopOutputAdjust(
2271 WhereClause *pWC, /* The WHERE clause */
2272 WhereLoop *pLoop, /* The loop to adjust downward */
2273 LogEst nRow /* Number of rows in the entire table */
2275 WhereTerm *pTerm, *pX;
2276 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2277 int i, j;
2278 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2280 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2281 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2282 assert( pTerm!=0 );
2283 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2284 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2285 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2286 for(j=pLoop->nLTerm-1; j>=0; j--){
2287 pX = pLoop->aLTerm[j];
2288 if( pX==0 ) continue;
2289 if( pX==pTerm ) break;
2290 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2292 if( j<0 ){
2293 if( pTerm->truthProb<=0 ){
2294 /* If a truth probability is specified using the likelihood() hints,
2295 ** then use the probability provided by the application. */
2296 pLoop->nOut += pTerm->truthProb;
2297 }else{
2298 /* In the absence of explicit truth probabilities, use heuristics to
2299 ** guess a reasonable truth probability. */
2300 pLoop->nOut--;
2301 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2302 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
2304 Expr *pRight = pTerm->pExpr->pRight;
2305 int k = 0;
2306 testcase( pTerm->pExpr->op==TK_IS );
2307 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2308 k = 10;
2309 }else{
2310 k = 20;
2312 if( iReduce<k ){
2313 pTerm->wtFlags |= TERM_HEURTRUTH;
2314 iReduce = k;
2320 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce;
2324 ** Term pTerm is a vector range comparison operation. The first comparison
2325 ** in the vector can be optimized using column nEq of the index. This
2326 ** function returns the total number of vector elements that can be used
2327 ** as part of the range comparison.
2329 ** For example, if the query is:
2331 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2333 ** and the index:
2335 ** CREATE INDEX ... ON (a, b, c, d, e)
2337 ** then this function would be invoked with nEq=1. The value returned in
2338 ** this case is 3.
2340 static int whereRangeVectorLen(
2341 Parse *pParse, /* Parsing context */
2342 int iCur, /* Cursor open on pIdx */
2343 Index *pIdx, /* The index to be used for a inequality constraint */
2344 int nEq, /* Number of prior equality constraints on same index */
2345 WhereTerm *pTerm /* The vector inequality constraint */
2347 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2348 int i;
2350 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2351 for(i=1; i<nCmp; i++){
2352 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2353 ** of the index. If not, exit the loop. */
2354 char aff; /* Comparison affinity */
2355 char idxaff = 0; /* Indexed columns affinity */
2356 CollSeq *pColl; /* Comparison collation sequence */
2357 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2358 Expr *pRhs = pTerm->pExpr->pRight;
2359 if( pRhs->flags & EP_xIsSelect ){
2360 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2361 }else{
2362 pRhs = pRhs->x.pList->a[i].pExpr;
2365 /* Check that the LHS of the comparison is a column reference to
2366 ** the right column of the right source table. And that the sort
2367 ** order of the index column is the same as the sort order of the
2368 ** leftmost index column. */
2369 if( pLhs->op!=TK_COLUMN
2370 || pLhs->iTable!=iCur
2371 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2372 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2374 break;
2377 testcase( pLhs->iColumn==XN_ROWID );
2378 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2379 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2380 if( aff!=idxaff ) break;
2382 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2383 if( pColl==0 ) break;
2384 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2386 return i;
2390 ** Adjust the cost C by the costMult facter T. This only occurs if
2391 ** compiled with -DSQLITE_ENABLE_COSTMULT
2393 #ifdef SQLITE_ENABLE_COSTMULT
2394 # define ApplyCostMultiplier(C,T) C += T
2395 #else
2396 # define ApplyCostMultiplier(C,T)
2397 #endif
2400 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2401 ** index pIndex. Try to match one more.
2403 ** When this function is called, pBuilder->pNew->nOut contains the
2404 ** number of rows expected to be visited by filtering using the nEq
2405 ** terms only. If it is modified, this value is restored before this
2406 ** function returns.
2408 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2409 ** a fake index used for the INTEGER PRIMARY KEY.
2411 static int whereLoopAddBtreeIndex(
2412 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2413 struct SrcList_item *pSrc, /* FROM clause term being analyzed */
2414 Index *pProbe, /* An index on pSrc */
2415 LogEst nInMul /* log(Number of iterations due to IN) */
2417 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2418 Parse *pParse = pWInfo->pParse; /* Parsing context */
2419 sqlite3 *db = pParse->db; /* Database connection malloc context */
2420 WhereLoop *pNew; /* Template WhereLoop under construction */
2421 WhereTerm *pTerm; /* A WhereTerm under consideration */
2422 int opMask; /* Valid operators for constraints */
2423 WhereScan scan; /* Iterator for WHERE terms */
2424 Bitmask saved_prereq; /* Original value of pNew->prereq */
2425 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2426 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2427 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2428 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2429 u16 saved_nSkip; /* Original value of pNew->nSkip */
2430 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2431 LogEst saved_nOut; /* Original value of pNew->nOut */
2432 int rc = SQLITE_OK; /* Return code */
2433 LogEst rSize; /* Number of rows in the table */
2434 LogEst rLogSize; /* Logarithm of table size */
2435 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2437 pNew = pBuilder->pNew;
2438 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2439 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d\n",
2440 pProbe->pTable->zName,pProbe->zName,
2441 pNew->u.btree.nEq, pNew->nSkip));
2443 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2444 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2445 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2446 opMask = WO_LT|WO_LE;
2447 }else{
2448 assert( pNew->u.btree.nBtm==0 );
2449 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2451 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2453 assert( pNew->u.btree.nEq<pProbe->nColumn );
2455 saved_nEq = pNew->u.btree.nEq;
2456 saved_nBtm = pNew->u.btree.nBtm;
2457 saved_nTop = pNew->u.btree.nTop;
2458 saved_nSkip = pNew->nSkip;
2459 saved_nLTerm = pNew->nLTerm;
2460 saved_wsFlags = pNew->wsFlags;
2461 saved_prereq = pNew->prereq;
2462 saved_nOut = pNew->nOut;
2463 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2464 opMask, pProbe);
2465 pNew->rSetup = 0;
2466 rSize = pProbe->aiRowLogEst[0];
2467 rLogSize = estLog(rSize);
2468 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2469 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2470 LogEst rCostIdx;
2471 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2472 int nIn = 0;
2473 #ifdef SQLITE_ENABLE_STAT4
2474 int nRecValid = pBuilder->nRecValid;
2475 #endif
2476 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2477 && indexColumnNotNull(pProbe, saved_nEq)
2479 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2481 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2483 /* Do not allow the upper bound of a LIKE optimization range constraint
2484 ** to mix with a lower range bound from some other source */
2485 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2487 /* tag-20191211-001: Do not allow constraints from the WHERE clause to
2488 ** be used by the right table of a LEFT JOIN. Only constraints in the
2489 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */
2490 if( (pSrc->fg.jointype & JT_LEFT)!=0
2491 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2493 continue;
2496 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2497 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2498 }else{
2499 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2501 pNew->wsFlags = saved_wsFlags;
2502 pNew->u.btree.nEq = saved_nEq;
2503 pNew->u.btree.nBtm = saved_nBtm;
2504 pNew->u.btree.nTop = saved_nTop;
2505 pNew->nLTerm = saved_nLTerm;
2506 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2507 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2508 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2510 assert( nInMul==0
2511 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2512 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2513 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2516 if( eOp & WO_IN ){
2517 Expr *pExpr = pTerm->pExpr;
2518 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2519 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2520 int i;
2521 nIn = 46; assert( 46==sqlite3LogEst(25) );
2523 /* The expression may actually be of the form (x, y) IN (SELECT...).
2524 ** In this case there is a separate term for each of (x) and (y).
2525 ** However, the nIn multiplier should only be applied once, not once
2526 ** for each such term. The following loop checks that pTerm is the
2527 ** first such term in use, and sets nIn back to 0 if it is not. */
2528 for(i=0; i<pNew->nLTerm-1; i++){
2529 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2531 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2532 /* "x IN (value, value, ...)" */
2533 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2535 if( pProbe->hasStat1 ){
2536 LogEst M, logK, safetyMargin;
2537 /* Let:
2538 ** N = the total number of rows in the table
2539 ** K = the number of entries on the RHS of the IN operator
2540 ** M = the number of rows in the table that match terms to the
2541 ** to the left in the same index. If the IN operator is on
2542 ** the left-most index column, M==N.
2544 ** Given the definitions above, it is better to omit the IN operator
2545 ** from the index lookup and instead do a scan of the M elements,
2546 ** testing each scanned row against the IN operator separately, if:
2548 ** M*log(K) < K*log(N)
2550 ** Our estimates for M, K, and N might be inaccurate, so we build in
2551 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2552 ** with the index, as using an index has better worst-case behavior.
2553 ** If we do not have real sqlite_stat1 data, always prefer to use
2554 ** the index.
2556 M = pProbe->aiRowLogEst[saved_nEq];
2557 logK = estLog(nIn);
2558 safetyMargin = 10; /* TUNING: extra weight for indexed IN */
2559 if( M + logK + safetyMargin < nIn + rLogSize ){
2560 WHERETRACE(0x40,
2561 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2562 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2563 continue;
2564 }else{
2565 WHERETRACE(0x40,
2566 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2567 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2570 pNew->wsFlags |= WHERE_COLUMN_IN;
2571 }else if( eOp & (WO_EQ|WO_IS) ){
2572 int iCol = pProbe->aiColumn[saved_nEq];
2573 pNew->wsFlags |= WHERE_COLUMN_EQ;
2574 assert( saved_nEq==pNew->u.btree.nEq );
2575 if( iCol==XN_ROWID
2576 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2578 if( iCol==XN_ROWID || pProbe->uniqNotNull
2579 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2581 pNew->wsFlags |= WHERE_ONEROW;
2582 }else{
2583 pNew->wsFlags |= WHERE_UNQ_WANTED;
2586 }else if( eOp & WO_ISNULL ){
2587 pNew->wsFlags |= WHERE_COLUMN_NULL;
2588 }else if( eOp & (WO_GT|WO_GE) ){
2589 testcase( eOp & WO_GT );
2590 testcase( eOp & WO_GE );
2591 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2592 pNew->u.btree.nBtm = whereRangeVectorLen(
2593 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2595 pBtm = pTerm;
2596 pTop = 0;
2597 if( pTerm->wtFlags & TERM_LIKEOPT ){
2598 /* Range contraints that come from the LIKE optimization are
2599 ** always used in pairs. */
2600 pTop = &pTerm[1];
2601 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2602 assert( pTop->wtFlags & TERM_LIKEOPT );
2603 assert( pTop->eOperator==WO_LT );
2604 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2605 pNew->aLTerm[pNew->nLTerm++] = pTop;
2606 pNew->wsFlags |= WHERE_TOP_LIMIT;
2607 pNew->u.btree.nTop = 1;
2609 }else{
2610 assert( eOp & (WO_LT|WO_LE) );
2611 testcase( eOp & WO_LT );
2612 testcase( eOp & WO_LE );
2613 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2614 pNew->u.btree.nTop = whereRangeVectorLen(
2615 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2617 pTop = pTerm;
2618 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2619 pNew->aLTerm[pNew->nLTerm-2] : 0;
2622 /* At this point pNew->nOut is set to the number of rows expected to
2623 ** be visited by the index scan before considering term pTerm, or the
2624 ** values of nIn and nInMul. In other words, assuming that all
2625 ** "x IN(...)" terms are replaced with "x = ?". This block updates
2626 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
2627 assert( pNew->nOut==saved_nOut );
2628 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2629 /* Adjust nOut using stat4 data. Or, if there is no stat4
2630 ** data, using some other estimate. */
2631 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2632 }else{
2633 int nEq = ++pNew->u.btree.nEq;
2634 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2636 assert( pNew->nOut==saved_nOut );
2637 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2638 assert( (eOp & WO_IN) || nIn==0 );
2639 testcase( eOp & WO_IN );
2640 pNew->nOut += pTerm->truthProb;
2641 pNew->nOut -= nIn;
2642 }else{
2643 #ifdef SQLITE_ENABLE_STAT4
2644 tRowcnt nOut = 0;
2645 if( nInMul==0
2646 && pProbe->nSample
2647 && pNew->u.btree.nEq<=pProbe->nSampleCol
2648 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2649 && OptimizationEnabled(db, SQLITE_Stat4)
2651 Expr *pExpr = pTerm->pExpr;
2652 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2653 testcase( eOp & WO_EQ );
2654 testcase( eOp & WO_IS );
2655 testcase( eOp & WO_ISNULL );
2656 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2657 }else{
2658 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2660 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2661 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
2662 if( nOut ){
2663 pNew->nOut = sqlite3LogEst(nOut);
2664 if( nEq==1
2665 /* TUNING: Mark terms as "low selectivity" if they seem likely
2666 ** to be true for half or more of the rows in the table.
2667 ** See tag-202002240-1 */
2668 && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2670 #if WHERETRACE_ENABLED /* 0x01 */
2671 if( sqlite3WhereTrace & 0x01 ){
2672 sqlite3DebugPrintf(
2673 "STAT4 determines term has low selectivity:\n");
2674 sqlite3WhereTermPrint(pTerm, 999);
2676 #endif
2677 pTerm->wtFlags |= TERM_HIGHTRUTH;
2678 if( pTerm->wtFlags & TERM_HEURTRUTH ){
2679 /* If the term has previously been used with an assumption of
2680 ** higher selectivity, then set the flag to rerun the
2681 ** loop computations. */
2682 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2685 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2686 pNew->nOut -= nIn;
2689 if( nOut==0 )
2690 #endif
2692 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2693 if( eOp & WO_ISNULL ){
2694 /* TUNING: If there is no likelihood() value, assume that a
2695 ** "col IS NULL" expression matches twice as many rows
2696 ** as (col=?). */
2697 pNew->nOut += 10;
2703 /* Set rCostIdx to the cost of visiting selected rows in index. Add
2704 ** it to pNew->rRun, which is currently set to the cost of the index
2705 ** seek only. Then, if this is a non-covering index, add the cost of
2706 ** visiting the rows in the main table. */
2707 assert( pSrc->pTab->szTabRow>0 );
2708 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2709 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2710 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2711 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2713 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2715 nOutUnadjusted = pNew->nOut;
2716 pNew->rRun += nInMul + nIn;
2717 pNew->nOut += nInMul + nIn;
2718 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2719 rc = whereLoopInsert(pBuilder, pNew);
2721 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2722 pNew->nOut = saved_nOut;
2723 }else{
2724 pNew->nOut = nOutUnadjusted;
2727 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2728 && pNew->u.btree.nEq<pProbe->nColumn
2730 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2732 pNew->nOut = saved_nOut;
2733 #ifdef SQLITE_ENABLE_STAT4
2734 pBuilder->nRecValid = nRecValid;
2735 #endif
2737 pNew->prereq = saved_prereq;
2738 pNew->u.btree.nEq = saved_nEq;
2739 pNew->u.btree.nBtm = saved_nBtm;
2740 pNew->u.btree.nTop = saved_nTop;
2741 pNew->nSkip = saved_nSkip;
2742 pNew->wsFlags = saved_wsFlags;
2743 pNew->nOut = saved_nOut;
2744 pNew->nLTerm = saved_nLTerm;
2746 /* Consider using a skip-scan if there are no WHERE clause constraints
2747 ** available for the left-most terms of the index, and if the average
2748 ** number of repeats in the left-most terms is at least 18.
2750 ** The magic number 18 is selected on the basis that scanning 17 rows
2751 ** is almost always quicker than an index seek (even though if the index
2752 ** contains fewer than 2^17 rows we assume otherwise in other parts of
2753 ** the code). And, even if it is not, it should not be too much slower.
2754 ** On the other hand, the extra seeks could end up being significantly
2755 ** more expensive. */
2756 assert( 42==sqlite3LogEst(18) );
2757 if( saved_nEq==saved_nSkip
2758 && saved_nEq+1<pProbe->nKeyCol
2759 && saved_nEq==pNew->nLTerm
2760 && pProbe->noSkipScan==0
2761 && pProbe->hasStat1!=0
2762 && OptimizationEnabled(db, SQLITE_SkipScan)
2763 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
2764 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2766 LogEst nIter;
2767 pNew->u.btree.nEq++;
2768 pNew->nSkip++;
2769 pNew->aLTerm[pNew->nLTerm++] = 0;
2770 pNew->wsFlags |= WHERE_SKIPSCAN;
2771 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2772 pNew->nOut -= nIter;
2773 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
2774 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2775 nIter += 5;
2776 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2777 pNew->nOut = saved_nOut;
2778 pNew->u.btree.nEq = saved_nEq;
2779 pNew->nSkip = saved_nSkip;
2780 pNew->wsFlags = saved_wsFlags;
2783 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2784 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2785 return rc;
2789 ** Return True if it is possible that pIndex might be useful in
2790 ** implementing the ORDER BY clause in pBuilder.
2792 ** Return False if pBuilder does not contain an ORDER BY clause or
2793 ** if there is no way for pIndex to be useful in implementing that
2794 ** ORDER BY clause.
2796 static int indexMightHelpWithOrderBy(
2797 WhereLoopBuilder *pBuilder,
2798 Index *pIndex,
2799 int iCursor
2801 ExprList *pOB;
2802 ExprList *aColExpr;
2803 int ii, jj;
2805 if( pIndex->bUnordered ) return 0;
2806 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2807 for(ii=0; ii<pOB->nExpr; ii++){
2808 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2809 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2810 if( pExpr->iColumn<0 ) return 1;
2811 for(jj=0; jj<pIndex->nKeyCol; jj++){
2812 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2814 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2815 for(jj=0; jj<pIndex->nKeyCol; jj++){
2816 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2817 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2818 return 1;
2823 return 0;
2826 /* Check to see if a partial index with pPartIndexWhere can be used
2827 ** in the current query. Return true if it can be and false if not.
2829 static int whereUsablePartialIndex(
2830 int iTab, /* The table for which we want an index */
2831 int isLeft, /* True if iTab is the right table of a LEFT JOIN */
2832 WhereClause *pWC, /* The WHERE clause of the query */
2833 Expr *pWhere /* The WHERE clause from the partial index */
2835 int i;
2836 WhereTerm *pTerm;
2837 Parse *pParse = pWC->pWInfo->pParse;
2838 while( pWhere->op==TK_AND ){
2839 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2840 pWhere = pWhere->pRight;
2842 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2843 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2844 Expr *pExpr;
2845 pExpr = pTerm->pExpr;
2846 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2847 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2848 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2850 return 1;
2853 return 0;
2857 ** Add all WhereLoop objects for a single table of the join where the table
2858 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
2859 ** a b-tree table, not a virtual table.
2861 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2862 ** are calculated as follows:
2864 ** For a full scan, assuming the table (or index) contains nRow rows:
2866 ** cost = nRow * 3.0 // full-table scan
2867 ** cost = nRow * K // scan of covering index
2868 ** cost = nRow * (K+3.0) // scan of non-covering index
2870 ** where K is a value between 1.1 and 3.0 set based on the relative
2871 ** estimated average size of the index and table records.
2873 ** For an index scan, where nVisit is the number of index rows visited
2874 ** by the scan, and nSeek is the number of seek operations required on
2875 ** the index b-tree:
2877 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
2878 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
2880 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2881 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2882 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2884 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2885 ** of uncertainty. For this reason, scoring is designed to pick plans that
2886 ** "do the least harm" if the estimates are inaccurate. For example, a
2887 ** log(nRow) factor is omitted from a non-covering index scan in order to
2888 ** bias the scoring in favor of using an index, since the worst-case
2889 ** performance of using an index is far better than the worst-case performance
2890 ** of a full table scan.
2892 static int whereLoopAddBtree(
2893 WhereLoopBuilder *pBuilder, /* WHERE clause information */
2894 Bitmask mPrereq /* Extra prerequesites for using this table */
2896 WhereInfo *pWInfo; /* WHERE analysis context */
2897 Index *pProbe; /* An index we are evaluating */
2898 Index sPk; /* A fake index object for the primary key */
2899 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
2900 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2901 SrcList *pTabList; /* The FROM clause */
2902 struct SrcList_item *pSrc; /* The FROM clause btree term to add */
2903 WhereLoop *pNew; /* Template WhereLoop object */
2904 int rc = SQLITE_OK; /* Return code */
2905 int iSortIdx = 1; /* Index number */
2906 int b; /* A boolean value */
2907 LogEst rSize; /* number of rows in the table */
2908 LogEst rLogSize; /* Logarithm of the number of rows in the table */
2909 WhereClause *pWC; /* The parsed WHERE clause */
2910 Table *pTab; /* Table being queried */
2912 pNew = pBuilder->pNew;
2913 pWInfo = pBuilder->pWInfo;
2914 pTabList = pWInfo->pTabList;
2915 pSrc = pTabList->a + pNew->iTab;
2916 pTab = pSrc->pTab;
2917 pWC = pBuilder->pWC;
2918 assert( !IsVirtual(pSrc->pTab) );
2920 if( pSrc->pIBIndex ){
2921 /* An INDEXED BY clause specifies a particular index to use */
2922 pProbe = pSrc->pIBIndex;
2923 }else if( !HasRowid(pTab) ){
2924 pProbe = pTab->pIndex;
2925 }else{
2926 /* There is no INDEXED BY clause. Create a fake Index object in local
2927 ** variable sPk to represent the rowid primary key index. Make this
2928 ** fake index the first in a chain of Index objects with all of the real
2929 ** indices to follow */
2930 Index *pFirst; /* First of real indices on the table */
2931 memset(&sPk, 0, sizeof(Index));
2932 sPk.nKeyCol = 1;
2933 sPk.nColumn = 1;
2934 sPk.aiColumn = &aiColumnPk;
2935 sPk.aiRowLogEst = aiRowEstPk;
2936 sPk.onError = OE_Replace;
2937 sPk.pTable = pTab;
2938 sPk.szIdxRow = pTab->szTabRow;
2939 sPk.idxType = SQLITE_IDXTYPE_IPK;
2940 aiRowEstPk[0] = pTab->nRowLogEst;
2941 aiRowEstPk[1] = 0;
2942 pFirst = pSrc->pTab->pIndex;
2943 if( pSrc->fg.notIndexed==0 ){
2944 /* The real indices of the table are only considered if the
2945 ** NOT INDEXED qualifier is omitted from the FROM clause */
2946 sPk.pNext = pFirst;
2948 pProbe = &sPk;
2950 rSize = pTab->nRowLogEst;
2951 rLogSize = estLog(rSize);
2953 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2954 /* Automatic indexes */
2955 if( !pBuilder->pOrSet /* Not part of an OR optimization */
2956 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2957 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2958 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */
2959 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
2960 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2961 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2962 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
2964 /* Generate auto-index WhereLoops */
2965 WhereTerm *pTerm;
2966 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2967 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2968 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2969 if( termCanDriveIndex(pTerm, pSrc, 0) ){
2970 pNew->u.btree.nEq = 1;
2971 pNew->nSkip = 0;
2972 pNew->u.btree.pIndex = 0;
2973 pNew->nLTerm = 1;
2974 pNew->aLTerm[0] = pTerm;
2975 /* TUNING: One-time cost for computing the automatic index is
2976 ** estimated to be X*N*log2(N) where N is the number of rows in
2977 ** the table being indexed and where X is 7 (LogEst=28) for normal
2978 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
2979 ** of X is smaller for views and subqueries so that the query planner
2980 ** will be more aggressive about generating automatic indexes for
2981 ** those objects, since there is no opportunity to add schema
2982 ** indexes on subqueries and views. */
2983 pNew->rSetup = rLogSize + rSize;
2984 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2985 pNew->rSetup += 28;
2986 }else{
2987 pNew->rSetup -= 10;
2989 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2990 if( pNew->rSetup<0 ) pNew->rSetup = 0;
2991 /* TUNING: Each index lookup yields 20 rows in the table. This
2992 ** is more than the usual guess of 10 rows, since we have no way
2993 ** of knowing how selective the index will ultimately be. It would
2994 ** not be unreasonable to make this value much larger. */
2995 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
2996 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2997 pNew->wsFlags = WHERE_AUTO_INDEX;
2998 pNew->prereq = mPrereq | pTerm->prereqRight;
2999 rc = whereLoopInsert(pBuilder, pNew);
3003 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3005 /* Loop over all indices. If there was an INDEXED BY clause, then only
3006 ** consider index pProbe. */
3007 for(; rc==SQLITE_OK && pProbe;
3008 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
3010 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3011 if( pProbe->pPartIdxWhere!=0
3012 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3013 pProbe->pPartIdxWhere)
3015 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
3016 continue; /* Partial index inappropriate for this query */
3018 if( pProbe->bNoQuery ) continue;
3019 rSize = pProbe->aiRowLogEst[0];
3020 pNew->u.btree.nEq = 0;
3021 pNew->u.btree.nBtm = 0;
3022 pNew->u.btree.nTop = 0;
3023 pNew->nSkip = 0;
3024 pNew->nLTerm = 0;
3025 pNew->iSortIdx = 0;
3026 pNew->rSetup = 0;
3027 pNew->prereq = mPrereq;
3028 pNew->nOut = rSize;
3029 pNew->u.btree.pIndex = pProbe;
3030 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3031 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3032 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3033 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3034 /* Integer primary key index */
3035 pNew->wsFlags = WHERE_IPK;
3037 /* Full table scan */
3038 pNew->iSortIdx = b ? iSortIdx : 0;
3039 /* TUNING: Cost of full table scan is (N*3.0). */
3040 pNew->rRun = rSize + 16;
3041 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3042 whereLoopOutputAdjust(pWC, pNew, rSize);
3043 rc = whereLoopInsert(pBuilder, pNew);
3044 pNew->nOut = rSize;
3045 if( rc ) break;
3046 }else{
3047 Bitmask m;
3048 if( pProbe->isCovering ){
3049 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3050 m = 0;
3051 }else{
3052 m = pSrc->colUsed & pProbe->colNotIdxed;
3053 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3056 /* Full scan via index */
3057 if( b
3058 || !HasRowid(pTab)
3059 || pProbe->pPartIdxWhere!=0
3060 || ( m==0
3061 && pProbe->bUnordered==0
3062 && (pProbe->szIdxRow<pTab->szTabRow)
3063 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3064 && sqlite3GlobalConfig.bUseCis
3065 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3068 pNew->iSortIdx = b ? iSortIdx : 0;
3070 /* The cost of visiting the index rows is N*K, where K is
3071 ** between 1.1 and 3.0, depending on the relative sizes of the
3072 ** index and table rows. */
3073 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3074 if( m!=0 ){
3075 /* If this is a non-covering index scan, add in the cost of
3076 ** doing table lookups. The cost will be 3x the number of
3077 ** lookups. Take into account WHERE clause terms that can be
3078 ** satisfied using just the index, and that do not require a
3079 ** table lookup. */
3080 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
3081 int ii;
3082 int iCur = pSrc->iCursor;
3083 WhereClause *pWC2 = &pWInfo->sWC;
3084 for(ii=0; ii<pWC2->nTerm; ii++){
3085 WhereTerm *pTerm = &pWC2->a[ii];
3086 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3087 break;
3089 /* pTerm can be evaluated using just the index. So reduce
3090 ** the expected number of table lookups accordingly */
3091 if( pTerm->truthProb<=0 ){
3092 nLookup += pTerm->truthProb;
3093 }else{
3094 nLookup--;
3095 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3099 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3101 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3102 whereLoopOutputAdjust(pWC, pNew, rSize);
3103 rc = whereLoopInsert(pBuilder, pNew);
3104 pNew->nOut = rSize;
3105 if( rc ) break;
3109 pBuilder->bldFlags1 = 0;
3110 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3111 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3112 /* If a non-unique index is used, or if a prefix of the key for
3113 ** unique index is used (making the index functionally non-unique)
3114 ** then the sqlite_stat1 data becomes important for scoring the
3115 ** plan */
3116 pTab->tabFlags |= TF_StatsUsed;
3118 #ifdef SQLITE_ENABLE_STAT4
3119 sqlite3Stat4ProbeFree(pBuilder->pRec);
3120 pBuilder->nRecValid = 0;
3121 pBuilder->pRec = 0;
3122 #endif
3124 return rc;
3127 #ifndef SQLITE_OMIT_VIRTUALTABLE
3130 ** Argument pIdxInfo is already populated with all constraints that may
3131 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3132 ** function marks a subset of those constraints usable, invokes the
3133 ** xBestIndex method and adds the returned plan to pBuilder.
3135 ** A constraint is marked usable if:
3137 ** * Argument mUsable indicates that its prerequisites are available, and
3139 ** * It is not one of the operators specified in the mExclude mask passed
3140 ** as the fourth argument (which in practice is either WO_IN or 0).
3142 ** Argument mPrereq is a mask of tables that must be scanned before the
3143 ** virtual table in question. These are added to the plans prerequisites
3144 ** before it is added to pBuilder.
3146 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3147 ** uses one or more WO_IN terms, or false otherwise.
3149 static int whereLoopAddVirtualOne(
3150 WhereLoopBuilder *pBuilder,
3151 Bitmask mPrereq, /* Mask of tables that must be used. */
3152 Bitmask mUsable, /* Mask of usable tables */
3153 u16 mExclude, /* Exclude terms using these operators */
3154 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
3155 u16 mNoOmit, /* Do not omit these constraints */
3156 int *pbIn /* OUT: True if plan uses an IN(...) op */
3158 WhereClause *pWC = pBuilder->pWC;
3159 struct sqlite3_index_constraint *pIdxCons;
3160 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3161 int i;
3162 int mxTerm;
3163 int rc = SQLITE_OK;
3164 WhereLoop *pNew = pBuilder->pNew;
3165 Parse *pParse = pBuilder->pWInfo->pParse;
3166 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3167 int nConstraint = pIdxInfo->nConstraint;
3169 assert( (mUsable & mPrereq)==mPrereq );
3170 *pbIn = 0;
3171 pNew->prereq = mPrereq;
3173 /* Set the usable flag on the subset of constraints identified by
3174 ** arguments mUsable and mExclude. */
3175 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3176 for(i=0; i<nConstraint; i++, pIdxCons++){
3177 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3178 pIdxCons->usable = 0;
3179 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3180 && (pTerm->eOperator & mExclude)==0
3182 pIdxCons->usable = 1;
3186 /* Initialize the output fields of the sqlite3_index_info structure */
3187 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3188 assert( pIdxInfo->needToFreeIdxStr==0 );
3189 pIdxInfo->idxStr = 0;
3190 pIdxInfo->idxNum = 0;
3191 pIdxInfo->orderByConsumed = 0;
3192 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3193 pIdxInfo->estimatedRows = 25;
3194 pIdxInfo->idxFlags = 0;
3195 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3197 /* Invoke the virtual table xBestIndex() method */
3198 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3199 if( rc ){
3200 if( rc==SQLITE_CONSTRAINT ){
3201 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3202 ** that the particular combination of parameters provided is unusable.
3203 ** Make no entries in the loop table.
3205 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
3206 return SQLITE_OK;
3208 return rc;
3211 mxTerm = -1;
3212 assert( pNew->nLSlot>=nConstraint );
3213 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3214 pNew->u.vtab.omitMask = 0;
3215 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3216 for(i=0; i<nConstraint; i++, pIdxCons++){
3217 int iTerm;
3218 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3219 WhereTerm *pTerm;
3220 int j = pIdxCons->iTermOffset;
3221 if( iTerm>=nConstraint
3222 || j<0
3223 || j>=pWC->nTerm
3224 || pNew->aLTerm[iTerm]!=0
3225 || pIdxCons->usable==0
3227 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3228 testcase( pIdxInfo->needToFreeIdxStr );
3229 return SQLITE_ERROR;
3231 testcase( iTerm==nConstraint-1 );
3232 testcase( j==0 );
3233 testcase( j==pWC->nTerm-1 );
3234 pTerm = &pWC->a[j];
3235 pNew->prereq |= pTerm->prereqRight;
3236 assert( iTerm<pNew->nLSlot );
3237 pNew->aLTerm[iTerm] = pTerm;
3238 if( iTerm>mxTerm ) mxTerm = iTerm;
3239 testcase( iTerm==15 );
3240 testcase( iTerm==16 );
3241 if( pUsage[i].omit ){
3242 if( i<16 && ((1<<i)&mNoOmit)==0 ){
3243 testcase( i!=iTerm );
3244 pNew->u.vtab.omitMask |= 1<<iTerm;
3245 }else{
3246 testcase( i!=iTerm );
3249 if( (pTerm->eOperator & WO_IN)!=0 ){
3250 /* A virtual table that is constrained by an IN clause may not
3251 ** consume the ORDER BY clause because (1) the order of IN terms
3252 ** is not necessarily related to the order of output terms and
3253 ** (2) Multiple outputs from a single IN value will not merge
3254 ** together. */
3255 pIdxInfo->orderByConsumed = 0;
3256 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3257 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3262 pNew->nLTerm = mxTerm+1;
3263 for(i=0; i<=mxTerm; i++){
3264 if( pNew->aLTerm[i]==0 ){
3265 /* The non-zero argvIdx values must be contiguous. Raise an
3266 ** error if they are not */
3267 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3268 testcase( pIdxInfo->needToFreeIdxStr );
3269 return SQLITE_ERROR;
3272 assert( pNew->nLTerm<=pNew->nLSlot );
3273 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3274 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3275 pIdxInfo->needToFreeIdxStr = 0;
3276 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3277 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3278 pIdxInfo->nOrderBy : 0);
3279 pNew->rSetup = 0;
3280 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3281 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3283 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3284 ** that the scan will visit at most one row. Clear it otherwise. */
3285 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3286 pNew->wsFlags |= WHERE_ONEROW;
3287 }else{
3288 pNew->wsFlags &= ~WHERE_ONEROW;
3290 rc = whereLoopInsert(pBuilder, pNew);
3291 if( pNew->u.vtab.needFree ){
3292 sqlite3_free(pNew->u.vtab.idxStr);
3293 pNew->u.vtab.needFree = 0;
3295 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3296 *pbIn, (sqlite3_uint64)mPrereq,
3297 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3299 return rc;
3303 ** If this function is invoked from within an xBestIndex() callback, it
3304 ** returns a pointer to a buffer containing the name of the collation
3305 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3306 ** array. Or, if iCons is out of range or there is no active xBestIndex
3307 ** call, return NULL.
3309 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3310 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3311 const char *zRet = 0;
3312 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3313 CollSeq *pC = 0;
3314 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3315 Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3316 if( pX->pLeft ){
3317 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3319 zRet = (pC ? pC->zName : sqlite3StrBINARY);
3321 return zRet;
3325 ** Add all WhereLoop objects for a table of the join identified by
3326 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3328 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3329 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3330 ** entries that occur before the virtual table in the FROM clause and are
3331 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3332 ** mUnusable mask contains all FROM clause entries that occur after the
3333 ** virtual table and are separated from it by at least one LEFT or
3334 ** CROSS JOIN.
3336 ** For example, if the query were:
3338 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3340 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3342 ** All the tables in mPrereq must be scanned before the current virtual
3343 ** table. So any terms for which all prerequisites are satisfied by
3344 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3345 ** Conversely, all tables in mUnusable must be scanned after the current
3346 ** virtual table, so any terms for which the prerequisites overlap with
3347 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3349 static int whereLoopAddVirtual(
3350 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3351 Bitmask mPrereq, /* Tables that must be scanned before this one */
3352 Bitmask mUnusable /* Tables that must be scanned after this one */
3354 int rc = SQLITE_OK; /* Return code */
3355 WhereInfo *pWInfo; /* WHERE analysis context */
3356 Parse *pParse; /* The parsing context */
3357 WhereClause *pWC; /* The WHERE clause */
3358 struct SrcList_item *pSrc; /* The FROM clause term to search */
3359 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3360 int nConstraint; /* Number of constraints in p */
3361 int bIn; /* True if plan uses IN(...) operator */
3362 WhereLoop *pNew;
3363 Bitmask mBest; /* Tables used by best possible plan */
3364 u16 mNoOmit;
3366 assert( (mPrereq & mUnusable)==0 );
3367 pWInfo = pBuilder->pWInfo;
3368 pParse = pWInfo->pParse;
3369 pWC = pBuilder->pWC;
3370 pNew = pBuilder->pNew;
3371 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3372 assert( IsVirtual(pSrc->pTab) );
3373 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3374 &mNoOmit);
3375 if( p==0 ) return SQLITE_NOMEM_BKPT;
3376 pNew->rSetup = 0;
3377 pNew->wsFlags = WHERE_VIRTUALTABLE;
3378 pNew->nLTerm = 0;
3379 pNew->u.vtab.needFree = 0;
3380 nConstraint = p->nConstraint;
3381 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3382 sqlite3DbFree(pParse->db, p);
3383 return SQLITE_NOMEM_BKPT;
3386 /* First call xBestIndex() with all constraints usable. */
3387 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3388 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3389 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3391 /* If the call to xBestIndex() with all terms enabled produced a plan
3392 ** that does not require any source tables (IOW: a plan with mBest==0)
3393 ** and does not use an IN(...) operator, then there is no point in making
3394 ** any further calls to xBestIndex() since they will all return the same
3395 ** result (if the xBestIndex() implementation is sane). */
3396 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3397 int seenZero = 0; /* True if a plan with no prereqs seen */
3398 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3399 Bitmask mPrev = 0;
3400 Bitmask mBestNoIn = 0;
3402 /* If the plan produced by the earlier call uses an IN(...) term, call
3403 ** xBestIndex again, this time with IN(...) terms disabled. */
3404 if( bIn ){
3405 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3406 rc = whereLoopAddVirtualOne(
3407 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3408 assert( bIn==0 );
3409 mBestNoIn = pNew->prereq & ~mPrereq;
3410 if( mBestNoIn==0 ){
3411 seenZero = 1;
3412 seenZeroNoIN = 1;
3416 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3417 ** in the set of terms that apply to the current virtual table. */
3418 while( rc==SQLITE_OK ){
3419 int i;
3420 Bitmask mNext = ALLBITS;
3421 assert( mNext>0 );
3422 for(i=0; i<nConstraint; i++){
3423 Bitmask mThis = (
3424 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3426 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3428 mPrev = mNext;
3429 if( mNext==ALLBITS ) break;
3430 if( mNext==mBest || mNext==mBestNoIn ) continue;
3431 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3432 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3433 rc = whereLoopAddVirtualOne(
3434 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3435 if( pNew->prereq==mPrereq ){
3436 seenZero = 1;
3437 if( bIn==0 ) seenZeroNoIN = 1;
3441 /* If the calls to xBestIndex() in the above loop did not find a plan
3442 ** that requires no source tables at all (i.e. one guaranteed to be
3443 ** usable), make a call here with all source tables disabled */
3444 if( rc==SQLITE_OK && seenZero==0 ){
3445 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
3446 rc = whereLoopAddVirtualOne(
3447 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3448 if( bIn==0 ) seenZeroNoIN = 1;
3451 /* If the calls to xBestIndex() have so far failed to find a plan
3452 ** that requires no source tables at all and does not use an IN(...)
3453 ** operator, make a final call to obtain one here. */
3454 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3455 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
3456 rc = whereLoopAddVirtualOne(
3457 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3461 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3462 sqlite3DbFreeNN(pParse->db, p);
3463 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3464 return rc;
3466 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3469 ** Add WhereLoop entries to handle OR terms. This works for either
3470 ** btrees or virtual tables.
3472 static int whereLoopAddOr(
3473 WhereLoopBuilder *pBuilder,
3474 Bitmask mPrereq,
3475 Bitmask mUnusable
3477 WhereInfo *pWInfo = pBuilder->pWInfo;
3478 WhereClause *pWC;
3479 WhereLoop *pNew;
3480 WhereTerm *pTerm, *pWCEnd;
3481 int rc = SQLITE_OK;
3482 int iCur;
3483 WhereClause tempWC;
3484 WhereLoopBuilder sSubBuild;
3485 WhereOrSet sSum, sCur;
3486 struct SrcList_item *pItem;
3488 pWC = pBuilder->pWC;
3489 pWCEnd = pWC->a + pWC->nTerm;
3490 pNew = pBuilder->pNew;
3491 memset(&sSum, 0, sizeof(sSum));
3492 pItem = pWInfo->pTabList->a + pNew->iTab;
3493 iCur = pItem->iCursor;
3495 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3496 if( (pTerm->eOperator & WO_OR)!=0
3497 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3499 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3500 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3501 WhereTerm *pOrTerm;
3502 int once = 1;
3503 int i, j;
3505 sSubBuild = *pBuilder;
3506 sSubBuild.pOrderBy = 0;
3507 sSubBuild.pOrSet = &sCur;
3509 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3510 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3511 if( (pOrTerm->eOperator & WO_AND)!=0 ){
3512 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3513 }else if( pOrTerm->leftCursor==iCur ){
3514 tempWC.pWInfo = pWC->pWInfo;
3515 tempWC.pOuter = pWC;
3516 tempWC.op = TK_AND;
3517 tempWC.nTerm = 1;
3518 tempWC.a = pOrTerm;
3519 sSubBuild.pWC = &tempWC;
3520 }else{
3521 continue;
3523 sCur.n = 0;
3524 #ifdef WHERETRACE_ENABLED
3525 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3526 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3527 if( sqlite3WhereTrace & 0x400 ){
3528 sqlite3WhereClausePrint(sSubBuild.pWC);
3530 #endif
3531 #ifndef SQLITE_OMIT_VIRTUALTABLE
3532 if( IsVirtual(pItem->pTab) ){
3533 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3534 }else
3535 #endif
3537 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3539 if( rc==SQLITE_OK ){
3540 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3542 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 );
3543 testcase( rc==SQLITE_DONE );
3544 if( sCur.n==0 ){
3545 sSum.n = 0;
3546 break;
3547 }else if( once ){
3548 whereOrMove(&sSum, &sCur);
3549 once = 0;
3550 }else{
3551 WhereOrSet sPrev;
3552 whereOrMove(&sPrev, &sSum);
3553 sSum.n = 0;
3554 for(i=0; i<sPrev.n; i++){
3555 for(j=0; j<sCur.n; j++){
3556 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3557 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3558 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3563 pNew->nLTerm = 1;
3564 pNew->aLTerm[0] = pTerm;
3565 pNew->wsFlags = WHERE_MULTI_OR;
3566 pNew->rSetup = 0;
3567 pNew->iSortIdx = 0;
3568 memset(&pNew->u, 0, sizeof(pNew->u));
3569 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3570 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3571 ** of all sub-scans required by the OR-scan. However, due to rounding
3572 ** errors, it may be that the cost of the OR-scan is equal to its
3573 ** most expensive sub-scan. Add the smallest possible penalty
3574 ** (equivalent to multiplying the cost by 1.07) to ensure that
3575 ** this does not happen. Otherwise, for WHERE clauses such as the
3576 ** following where there is an index on "y":
3578 ** WHERE likelihood(x=?, 0.99) OR y=?
3580 ** the planner may elect to "OR" together a full-table scan and an
3581 ** index lookup. And other similarly odd results. */
3582 pNew->rRun = sSum.a[i].rRun + 1;
3583 pNew->nOut = sSum.a[i].nOut;
3584 pNew->prereq = sSum.a[i].prereq;
3585 rc = whereLoopInsert(pBuilder, pNew);
3587 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3590 return rc;
3594 ** Add all WhereLoop objects for all tables
3596 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3597 WhereInfo *pWInfo = pBuilder->pWInfo;
3598 Bitmask mPrereq = 0;
3599 Bitmask mPrior = 0;
3600 int iTab;
3601 SrcList *pTabList = pWInfo->pTabList;
3602 struct SrcList_item *pItem;
3603 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3604 sqlite3 *db = pWInfo->pParse->db;
3605 int rc = SQLITE_OK;
3606 WhereLoop *pNew;
3607 u8 priorJointype = 0;
3609 /* Loop over the tables in the join, from left to right */
3610 pNew = pBuilder->pNew;
3611 whereLoopInit(pNew);
3612 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3613 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3614 Bitmask mUnusable = 0;
3615 pNew->iTab = iTab;
3616 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3617 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3618 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3619 /* This condition is true when pItem is the FROM clause term on the
3620 ** right-hand-side of a LEFT or CROSS JOIN. */
3621 mPrereq = mPrior;
3623 priorJointype = pItem->fg.jointype;
3624 #ifndef SQLITE_OMIT_VIRTUALTABLE
3625 if( IsVirtual(pItem->pTab) ){
3626 struct SrcList_item *p;
3627 for(p=&pItem[1]; p<pEnd; p++){
3628 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3629 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3632 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3633 }else
3634 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3636 rc = whereLoopAddBtree(pBuilder, mPrereq);
3638 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3639 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3641 mPrior |= pNew->maskSelf;
3642 if( rc || db->mallocFailed ){
3643 if( rc==SQLITE_DONE ){
3644 /* We hit the query planner search limit set by iPlanLimit */
3645 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3646 rc = SQLITE_OK;
3647 }else{
3648 break;
3653 whereLoopClear(db, pNew);
3654 return rc;
3658 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3659 ** parameters) to see if it outputs rows in the requested ORDER BY
3660 ** (or GROUP BY) without requiring a separate sort operation. Return N:
3662 ** N>0: N terms of the ORDER BY clause are satisfied
3663 ** N==0: No terms of the ORDER BY clause are satisfied
3664 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
3666 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3667 ** strict. With GROUP BY and DISTINCT the only requirement is that
3668 ** equivalent rows appear immediately adjacent to one another. GROUP BY
3669 ** and DISTINCT do not require rows to appear in any particular order as long
3670 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
3671 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
3672 ** pOrderBy terms must be matched in strict left-to-right order.
3674 static i8 wherePathSatisfiesOrderBy(
3675 WhereInfo *pWInfo, /* The WHERE clause */
3676 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
3677 WherePath *pPath, /* The WherePath to check */
3678 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3679 u16 nLoop, /* Number of entries in pPath->aLoop[] */
3680 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
3681 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
3683 u8 revSet; /* True if rev is known */
3684 u8 rev; /* Composite sort order */
3685 u8 revIdx; /* Index sort order */
3686 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
3687 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
3688 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
3689 u16 eqOpMask; /* Allowed equality operators */
3690 u16 nKeyCol; /* Number of key columns in pIndex */
3691 u16 nColumn; /* Total number of ordered columns in the index */
3692 u16 nOrderBy; /* Number terms in the ORDER BY clause */
3693 int iLoop; /* Index of WhereLoop in pPath being processed */
3694 int i, j; /* Loop counters */
3695 int iCur; /* Cursor number for current WhereLoop */
3696 int iColumn; /* A column number within table iCur */
3697 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3698 WhereTerm *pTerm; /* A single term of the WHERE clause */
3699 Expr *pOBExpr; /* An expression from the ORDER BY clause */
3700 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
3701 Index *pIndex; /* The index associated with pLoop */
3702 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
3703 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
3704 Bitmask obDone; /* Mask of all ORDER BY terms */
3705 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
3706 Bitmask ready; /* Mask of inner loops */
3709 ** We say the WhereLoop is "one-row" if it generates no more than one
3710 ** row of output. A WhereLoop is one-row if all of the following are true:
3711 ** (a) All index columns match with WHERE_COLUMN_EQ.
3712 ** (b) The index is unique
3713 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3714 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3716 ** We say the WhereLoop is "order-distinct" if the set of columns from
3717 ** that WhereLoop that are in the ORDER BY clause are different for every
3718 ** row of the WhereLoop. Every one-row WhereLoop is automatically
3719 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
3720 ** is not order-distinct. To be order-distinct is not quite the same as being
3721 ** UNIQUE since a UNIQUE column or index can have multiple rows that
3722 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3723 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3725 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3726 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3727 ** automatically order-distinct.
3730 assert( pOrderBy!=0 );
3731 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3733 nOrderBy = pOrderBy->nExpr;
3734 testcase( nOrderBy==BMS-1 );
3735 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
3736 isOrderDistinct = 1;
3737 obDone = MASKBIT(nOrderBy)-1;
3738 orderDistinctMask = 0;
3739 ready = 0;
3740 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3741 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3742 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3743 if( iLoop>0 ) ready |= pLoop->maskSelf;
3744 if( iLoop<nLoop ){
3745 pLoop = pPath->aLoop[iLoop];
3746 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3747 }else{
3748 pLoop = pLast;
3750 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3751 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3752 obSat = obDone;
3754 break;
3755 }else if( wctrlFlags & WHERE_DISTINCTBY ){
3756 pLoop->u.btree.nDistinctCol = 0;
3758 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3760 /* Mark off any ORDER BY term X that is a column in the table of
3761 ** the current loop for which there is term in the WHERE
3762 ** clause of the form X IS NULL or X=? that reference only outer
3763 ** loops.
3765 for(i=0; i<nOrderBy; i++){
3766 if( MASKBIT(i) & obSat ) continue;
3767 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3768 if( pOBExpr->op!=TK_COLUMN ) continue;
3769 if( pOBExpr->iTable!=iCur ) continue;
3770 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3771 ~ready, eqOpMask, 0);
3772 if( pTerm==0 ) continue;
3773 if( pTerm->eOperator==WO_IN ){
3774 /* IN terms are only valid for sorting in the ORDER BY LIMIT
3775 ** optimization, and then only if they are actually used
3776 ** by the query plan */
3777 assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3778 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3779 if( j>=pLoop->nLTerm ) continue;
3781 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3782 Parse *pParse = pWInfo->pParse;
3783 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3784 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3785 assert( pColl1 );
3786 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3787 continue;
3789 testcase( pTerm->pExpr->op==TK_IS );
3791 obSat |= MASKBIT(i);
3794 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3795 if( pLoop->wsFlags & WHERE_IPK ){
3796 pIndex = 0;
3797 nKeyCol = 0;
3798 nColumn = 1;
3799 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3800 return 0;
3801 }else{
3802 nKeyCol = pIndex->nKeyCol;
3803 nColumn = pIndex->nColumn;
3804 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3805 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3806 || !HasRowid(pIndex->pTable));
3807 isOrderDistinct = IsUniqueIndex(pIndex)
3808 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3811 /* Loop through all columns of the index and deal with the ones
3812 ** that are not constrained by == or IN.
3814 rev = revSet = 0;
3815 distinctColumns = 0;
3816 for(j=0; j<nColumn; j++){
3817 u8 bOnce = 1; /* True to run the ORDER BY search loop */
3819 assert( j>=pLoop->u.btree.nEq
3820 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3822 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3823 u16 eOp = pLoop->aLTerm[j]->eOperator;
3825 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
3826 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
3827 ** terms imply that the index is not UNIQUE NOT NULL in which case
3828 ** the loop need to be marked as not order-distinct because it can
3829 ** have repeated NULL rows.
3831 ** If the current term is a column of an ((?,?) IN (SELECT...))
3832 ** expression for which the SELECT returns more than one column,
3833 ** check that it is the only column used by this loop. Otherwise,
3834 ** if it is one of two or more, none of the columns can be
3835 ** considered to match an ORDER BY term.
3837 if( (eOp & eqOpMask)!=0 ){
3838 if( eOp & (WO_ISNULL|WO_IS) ){
3839 testcase( eOp & WO_ISNULL );
3840 testcase( eOp & WO_IS );
3841 testcase( isOrderDistinct );
3842 isOrderDistinct = 0;
3844 continue;
3845 }else if( ALWAYS(eOp & WO_IN) ){
3846 /* ALWAYS() justification: eOp is an equality operator due to the
3847 ** j<pLoop->u.btree.nEq constraint above. Any equality other
3848 ** than WO_IN is captured by the previous "if". So this one
3849 ** always has to be WO_IN. */
3850 Expr *pX = pLoop->aLTerm[j]->pExpr;
3851 for(i=j+1; i<pLoop->u.btree.nEq; i++){
3852 if( pLoop->aLTerm[i]->pExpr==pX ){
3853 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3854 bOnce = 0;
3855 break;
3861 /* Get the column number in the table (iColumn) and sort order
3862 ** (revIdx) for the j-th column of the index.
3864 if( pIndex ){
3865 iColumn = pIndex->aiColumn[j];
3866 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3867 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3868 }else{
3869 iColumn = XN_ROWID;
3870 revIdx = 0;
3873 /* An unconstrained column that might be NULL means that this
3874 ** WhereLoop is not well-ordered
3876 if( isOrderDistinct
3877 && iColumn>=0
3878 && j>=pLoop->u.btree.nEq
3879 && pIndex->pTable->aCol[iColumn].notNull==0
3881 isOrderDistinct = 0;
3884 /* Find the ORDER BY term that corresponds to the j-th column
3885 ** of the index and mark that ORDER BY term off
3887 isMatch = 0;
3888 for(i=0; bOnce && i<nOrderBy; i++){
3889 if( MASKBIT(i) & obSat ) continue;
3890 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3891 testcase( wctrlFlags & WHERE_GROUPBY );
3892 testcase( wctrlFlags & WHERE_DISTINCTBY );
3893 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3894 if( iColumn>=XN_ROWID ){
3895 if( pOBExpr->op!=TK_COLUMN ) continue;
3896 if( pOBExpr->iTable!=iCur ) continue;
3897 if( pOBExpr->iColumn!=iColumn ) continue;
3898 }else{
3899 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3900 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3901 continue;
3904 if( iColumn!=XN_ROWID ){
3905 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3906 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3908 if( wctrlFlags & WHERE_DISTINCTBY ){
3909 pLoop->u.btree.nDistinctCol = j+1;
3911 isMatch = 1;
3912 break;
3914 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3915 /* Make sure the sort order is compatible in an ORDER BY clause.
3916 ** Sort order is irrelevant for a GROUP BY clause. */
3917 if( revSet ){
3918 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3919 isMatch = 0;
3921 }else{
3922 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3923 if( rev ) *pRevMask |= MASKBIT(iLoop);
3924 revSet = 1;
3927 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3928 if( j==pLoop->u.btree.nEq ){
3929 pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3930 }else{
3931 isMatch = 0;
3934 if( isMatch ){
3935 if( iColumn==XN_ROWID ){
3936 testcase( distinctColumns==0 );
3937 distinctColumns = 1;
3939 obSat |= MASKBIT(i);
3940 }else{
3941 /* No match found */
3942 if( j==0 || j<nKeyCol ){
3943 testcase( isOrderDistinct!=0 );
3944 isOrderDistinct = 0;
3946 break;
3948 } /* end Loop over all index columns */
3949 if( distinctColumns ){
3950 testcase( isOrderDistinct==0 );
3951 isOrderDistinct = 1;
3953 } /* end-if not one-row */
3955 /* Mark off any other ORDER BY terms that reference pLoop */
3956 if( isOrderDistinct ){
3957 orderDistinctMask |= pLoop->maskSelf;
3958 for(i=0; i<nOrderBy; i++){
3959 Expr *p;
3960 Bitmask mTerm;
3961 if( MASKBIT(i) & obSat ) continue;
3962 p = pOrderBy->a[i].pExpr;
3963 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3964 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3965 if( (mTerm&~orderDistinctMask)==0 ){
3966 obSat |= MASKBIT(i);
3970 } /* End the loop over all WhereLoops from outer-most down to inner-most */
3971 if( obSat==obDone ) return (i8)nOrderBy;
3972 if( !isOrderDistinct ){
3973 for(i=nOrderBy-1; i>0; i--){
3974 Bitmask m = MASKBIT(i) - 1;
3975 if( (obSat&m)==m ) return i;
3977 return 0;
3979 return -1;
3984 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3985 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3986 ** BY clause - and so any order that groups rows as required satisfies the
3987 ** request.
3989 ** Normally, in this case it is not possible for the caller to determine
3990 ** whether or not the rows are really being delivered in sorted order, or
3991 ** just in some other order that provides the required grouping. However,
3992 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3993 ** this function may be called on the returned WhereInfo object. It returns
3994 ** true if the rows really will be sorted in the specified order, or false
3995 ** otherwise.
3997 ** For example, assuming:
3999 ** CREATE INDEX i1 ON t1(x, Y);
4001 ** then
4003 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4004 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4006 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4007 assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4008 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4009 return pWInfo->sorted;
4012 #ifdef WHERETRACE_ENABLED
4013 /* For debugging use only: */
4014 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4015 static char zName[65];
4016 int i;
4017 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4018 if( pLast ) zName[i++] = pLast->cId;
4019 zName[i] = 0;
4020 return zName;
4022 #endif
4025 ** Return the cost of sorting nRow rows, assuming that the keys have
4026 ** nOrderby columns and that the first nSorted columns are already in
4027 ** order.
4029 static LogEst whereSortingCost(
4030 WhereInfo *pWInfo,
4031 LogEst nRow,
4032 int nOrderBy,
4033 int nSorted
4035 /* TUNING: Estimated cost of a full external sort, where N is
4036 ** the number of rows to sort is:
4038 ** cost = (3.0 * N * log(N)).
4040 ** Or, if the order-by clause has X terms but only the last Y
4041 ** terms are out of order, then block-sorting will reduce the
4042 ** sorting cost to:
4044 ** cost = (3.0 * N * log(N)) * (Y/X)
4046 ** The (Y/X) term is implemented using stack variable rScale
4047 ** below. */
4048 LogEst rScale, rSortCost;
4049 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4050 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4051 rSortCost = nRow + rScale + 16;
4053 /* Multiple by log(M) where M is the number of output rows.
4054 ** Use the LIMIT for M if it is smaller */
4055 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4056 nRow = pWInfo->iLimit;
4058 rSortCost += estLog(nRow);
4059 return rSortCost;
4063 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4064 ** attempts to find the lowest cost path that visits each WhereLoop
4065 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4067 ** Assume that the total number of output rows that will need to be sorted
4068 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4069 ** costs if nRowEst==0.
4071 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4072 ** error occurs.
4074 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4075 int mxChoice; /* Maximum number of simultaneous paths tracked */
4076 int nLoop; /* Number of terms in the join */
4077 Parse *pParse; /* Parsing context */
4078 sqlite3 *db; /* The database connection */
4079 int iLoop; /* Loop counter over the terms of the join */
4080 int ii, jj; /* Loop counters */
4081 int mxI = 0; /* Index of next entry to replace */
4082 int nOrderBy; /* Number of ORDER BY clause terms */
4083 LogEst mxCost = 0; /* Maximum cost of a set of paths */
4084 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
4085 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
4086 WherePath *aFrom; /* All nFrom paths at the previous level */
4087 WherePath *aTo; /* The nTo best paths at the current level */
4088 WherePath *pFrom; /* An element of aFrom[] that we are working on */
4089 WherePath *pTo; /* An element of aTo[] that we are working on */
4090 WhereLoop *pWLoop; /* One of the WhereLoop objects */
4091 WhereLoop **pX; /* Used to divy up the pSpace memory */
4092 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
4093 char *pSpace; /* Temporary memory used by this routine */
4094 int nSpace; /* Bytes of space allocated at pSpace */
4096 pParse = pWInfo->pParse;
4097 db = pParse->db;
4098 nLoop = pWInfo->nLevel;
4099 /* TUNING: For simple queries, only the best path is tracked.
4100 ** For 2-way joins, the 5 best paths are followed.
4101 ** For joins of 3 or more tables, track the 10 best paths */
4102 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4103 assert( nLoop<=pWInfo->pTabList->nSrc );
4104 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
4106 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4107 ** case the purpose of this call is to estimate the number of rows returned
4108 ** by the overall query. Once this estimate has been obtained, the caller
4109 ** will invoke this function a second time, passing the estimate as the
4110 ** nRowEst parameter. */
4111 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4112 nOrderBy = 0;
4113 }else{
4114 nOrderBy = pWInfo->pOrderBy->nExpr;
4117 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4118 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4119 nSpace += sizeof(LogEst) * nOrderBy;
4120 pSpace = sqlite3DbMallocRawNN(db, nSpace);
4121 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4122 aTo = (WherePath*)pSpace;
4123 aFrom = aTo+mxChoice;
4124 memset(aFrom, 0, sizeof(aFrom[0]));
4125 pX = (WhereLoop**)(aFrom+mxChoice);
4126 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4127 pFrom->aLoop = pX;
4129 if( nOrderBy ){
4130 /* If there is an ORDER BY clause and it is not being ignored, set up
4131 ** space for the aSortCost[] array. Each element of the aSortCost array
4132 ** is either zero - meaning it has not yet been initialized - or the
4133 ** cost of sorting nRowEst rows of data where the first X terms of
4134 ** the ORDER BY clause are already in order, where X is the array
4135 ** index. */
4136 aSortCost = (LogEst*)pX;
4137 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4139 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4140 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4142 /* Seed the search with a single WherePath containing zero WhereLoops.
4144 ** TUNING: Do not let the number of iterations go above 28. If the cost
4145 ** of computing an automatic index is not paid back within the first 28
4146 ** rows, then do not use the automatic index. */
4147 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
4148 nFrom = 1;
4149 assert( aFrom[0].isOrdered==0 );
4150 if( nOrderBy ){
4151 /* If nLoop is zero, then there are no FROM terms in the query. Since
4152 ** in this case the query may return a maximum of one row, the results
4153 ** are already in the requested order. Set isOrdered to nOrderBy to
4154 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4155 ** -1, indicating that the result set may or may not be ordered,
4156 ** depending on the loops added to the current plan. */
4157 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4160 /* Compute successively longer WherePaths using the previous generation
4161 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4162 ** best paths at each generation */
4163 for(iLoop=0; iLoop<nLoop; iLoop++){
4164 nTo = 0;
4165 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4166 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4167 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
4168 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
4169 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
4170 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
4171 Bitmask maskNew; /* Mask of src visited by (..) */
4172 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
4174 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4175 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4176 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4177 /* Do not use an automatic index if the this loop is expected
4178 ** to run less than 1.25 times. It is tempting to also exclude
4179 ** automatic index usage on an outer loop, but sometimes an automatic
4180 ** index is useful in the outer loop of a correlated subquery. */
4181 assert( 10==sqlite3LogEst(2) );
4182 continue;
4185 /* At this point, pWLoop is a candidate to be the next loop.
4186 ** Compute its cost */
4187 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4188 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4189 nOut = pFrom->nRow + pWLoop->nOut;
4190 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4191 if( isOrdered<0 ){
4192 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4193 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4194 iLoop, pWLoop, &revMask);
4195 }else{
4196 revMask = pFrom->revLoop;
4198 if( isOrdered>=0 && isOrdered<nOrderBy ){
4199 if( aSortCost[isOrdered]==0 ){
4200 aSortCost[isOrdered] = whereSortingCost(
4201 pWInfo, nRowEst, nOrderBy, isOrdered
4204 /* TUNING: Add a small extra penalty (5) to sorting as an
4205 ** extra encouragment to the query planner to select a plan
4206 ** where the rows emerge in the correct order without any sorting
4207 ** required. */
4208 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4210 WHERETRACE(0x002,
4211 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4212 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4213 rUnsorted, rCost));
4214 }else{
4215 rCost = rUnsorted;
4216 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
4219 /* Check to see if pWLoop should be added to the set of
4220 ** mxChoice best-so-far paths.
4222 ** First look for an existing path among best-so-far paths
4223 ** that covers the same set of loops and has the same isOrdered
4224 ** setting as the current path candidate.
4226 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4227 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4228 ** of legal values for isOrdered, -1..64.
4230 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4231 if( pTo->maskLoop==maskNew
4232 && ((pTo->isOrdered^isOrdered)&0x80)==0
4234 testcase( jj==nTo-1 );
4235 break;
4238 if( jj>=nTo ){
4239 /* None of the existing best-so-far paths match the candidate. */
4240 if( nTo>=mxChoice
4241 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4243 /* The current candidate is no better than any of the mxChoice
4244 ** paths currently in the best-so-far buffer. So discard
4245 ** this candidate as not viable. */
4246 #ifdef WHERETRACE_ENABLED /* 0x4 */
4247 if( sqlite3WhereTrace&0x4 ){
4248 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4249 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4250 isOrdered>=0 ? isOrdered+'0' : '?');
4252 #endif
4253 continue;
4255 /* If we reach this points it means that the new candidate path
4256 ** needs to be added to the set of best-so-far paths. */
4257 if( nTo<mxChoice ){
4258 /* Increase the size of the aTo set by one */
4259 jj = nTo++;
4260 }else{
4261 /* New path replaces the prior worst to keep count below mxChoice */
4262 jj = mxI;
4264 pTo = &aTo[jj];
4265 #ifdef WHERETRACE_ENABLED /* 0x4 */
4266 if( sqlite3WhereTrace&0x4 ){
4267 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4268 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4269 isOrdered>=0 ? isOrdered+'0' : '?');
4271 #endif
4272 }else{
4273 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4274 ** same set of loops and has the same isOrdered setting as the
4275 ** candidate path. Check to see if the candidate should replace
4276 ** pTo or if the candidate should be skipped.
4278 ** The conditional is an expanded vector comparison equivalent to:
4279 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4281 if( pTo->rCost<rCost
4282 || (pTo->rCost==rCost
4283 && (pTo->nRow<nOut
4284 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4288 #ifdef WHERETRACE_ENABLED /* 0x4 */
4289 if( sqlite3WhereTrace&0x4 ){
4290 sqlite3DebugPrintf(
4291 "Skip %s cost=%-3d,%3d,%3d order=%c",
4292 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4293 isOrdered>=0 ? isOrdered+'0' : '?');
4294 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4295 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4296 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4298 #endif
4299 /* Discard the candidate path from further consideration */
4300 testcase( pTo->rCost==rCost );
4301 continue;
4303 testcase( pTo->rCost==rCost+1 );
4304 /* Control reaches here if the candidate path is better than the
4305 ** pTo path. Replace pTo with the candidate. */
4306 #ifdef WHERETRACE_ENABLED /* 0x4 */
4307 if( sqlite3WhereTrace&0x4 ){
4308 sqlite3DebugPrintf(
4309 "Update %s cost=%-3d,%3d,%3d order=%c",
4310 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4311 isOrdered>=0 ? isOrdered+'0' : '?');
4312 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4313 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4314 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4316 #endif
4318 /* pWLoop is a winner. Add it to the set of best so far */
4319 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4320 pTo->revLoop = revMask;
4321 pTo->nRow = nOut;
4322 pTo->rCost = rCost;
4323 pTo->rUnsorted = rUnsorted;
4324 pTo->isOrdered = isOrdered;
4325 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4326 pTo->aLoop[iLoop] = pWLoop;
4327 if( nTo>=mxChoice ){
4328 mxI = 0;
4329 mxCost = aTo[0].rCost;
4330 mxUnsorted = aTo[0].nRow;
4331 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4332 if( pTo->rCost>mxCost
4333 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4335 mxCost = pTo->rCost;
4336 mxUnsorted = pTo->rUnsorted;
4337 mxI = jj;
4344 #ifdef WHERETRACE_ENABLED /* >=2 */
4345 if( sqlite3WhereTrace & 0x02 ){
4346 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4347 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4348 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4349 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4350 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4351 if( pTo->isOrdered>0 ){
4352 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4353 }else{
4354 sqlite3DebugPrintf("\n");
4358 #endif
4360 /* Swap the roles of aFrom and aTo for the next generation */
4361 pFrom = aTo;
4362 aTo = aFrom;
4363 aFrom = pFrom;
4364 nFrom = nTo;
4367 if( nFrom==0 ){
4368 sqlite3ErrorMsg(pParse, "no query solution");
4369 sqlite3DbFreeNN(db, pSpace);
4370 return SQLITE_ERROR;
4373 /* Find the lowest cost path. pFrom will be left pointing to that path */
4374 pFrom = aFrom;
4375 for(ii=1; ii<nFrom; ii++){
4376 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4378 assert( pWInfo->nLevel==nLoop );
4379 /* Load the lowest cost path into pWInfo */
4380 for(iLoop=0; iLoop<nLoop; iLoop++){
4381 WhereLevel *pLevel = pWInfo->a + iLoop;
4382 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4383 pLevel->iFrom = pWLoop->iTab;
4384 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4386 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4387 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4388 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4389 && nRowEst
4391 Bitmask notUsed;
4392 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4393 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4394 if( rc==pWInfo->pResultSet->nExpr ){
4395 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4398 pWInfo->bOrderedInnerLoop = 0;
4399 if( pWInfo->pOrderBy ){
4400 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4401 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4402 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4404 }else{
4405 pWInfo->nOBSat = pFrom->isOrdered;
4406 pWInfo->revMask = pFrom->revLoop;
4407 if( pWInfo->nOBSat<=0 ){
4408 pWInfo->nOBSat = 0;
4409 if( nLoop>0 ){
4410 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4411 if( (wsFlags & WHERE_ONEROW)==0
4412 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4414 Bitmask m = 0;
4415 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4416 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4417 testcase( wsFlags & WHERE_IPK );
4418 testcase( wsFlags & WHERE_COLUMN_IN );
4419 if( rc==pWInfo->pOrderBy->nExpr ){
4420 pWInfo->bOrderedInnerLoop = 1;
4421 pWInfo->revMask = m;
4427 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4428 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4430 Bitmask revMask = 0;
4431 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4432 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4434 assert( pWInfo->sorted==0 );
4435 if( nOrder==pWInfo->pOrderBy->nExpr ){
4436 pWInfo->sorted = 1;
4437 pWInfo->revMask = revMask;
4443 pWInfo->nRowOut = pFrom->nRow;
4445 /* Free temporary memory and return success */
4446 sqlite3DbFreeNN(db, pSpace);
4447 return SQLITE_OK;
4451 ** Most queries use only a single table (they are not joins) and have
4452 ** simple == constraints against indexed fields. This routine attempts
4453 ** to plan those simple cases using much less ceremony than the
4454 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4455 ** times for the common case.
4457 ** Return non-zero on success, if this query can be handled by this
4458 ** no-frills query planner. Return zero if this query needs the
4459 ** general-purpose query planner.
4461 static int whereShortCut(WhereLoopBuilder *pBuilder){
4462 WhereInfo *pWInfo;
4463 struct SrcList_item *pItem;
4464 WhereClause *pWC;
4465 WhereTerm *pTerm;
4466 WhereLoop *pLoop;
4467 int iCur;
4468 int j;
4469 Table *pTab;
4470 Index *pIdx;
4472 pWInfo = pBuilder->pWInfo;
4473 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4474 assert( pWInfo->pTabList->nSrc>=1 );
4475 pItem = pWInfo->pTabList->a;
4476 pTab = pItem->pTab;
4477 if( IsVirtual(pTab) ) return 0;
4478 if( pItem->fg.isIndexedBy ) return 0;
4479 iCur = pItem->iCursor;
4480 pWC = &pWInfo->sWC;
4481 pLoop = pBuilder->pNew;
4482 pLoop->wsFlags = 0;
4483 pLoop->nSkip = 0;
4484 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4485 if( pTerm ){
4486 testcase( pTerm->eOperator & WO_IS );
4487 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4488 pLoop->aLTerm[0] = pTerm;
4489 pLoop->nLTerm = 1;
4490 pLoop->u.btree.nEq = 1;
4491 /* TUNING: Cost of a rowid lookup is 10 */
4492 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
4493 }else{
4494 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4495 int opMask;
4496 assert( pLoop->aLTermSpace==pLoop->aLTerm );
4497 if( !IsUniqueIndex(pIdx)
4498 || pIdx->pPartIdxWhere!=0
4499 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4500 ) continue;
4501 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4502 for(j=0; j<pIdx->nKeyCol; j++){
4503 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4504 if( pTerm==0 ) break;
4505 testcase( pTerm->eOperator & WO_IS );
4506 pLoop->aLTerm[j] = pTerm;
4508 if( j!=pIdx->nKeyCol ) continue;
4509 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4510 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4511 pLoop->wsFlags |= WHERE_IDX_ONLY;
4513 pLoop->nLTerm = j;
4514 pLoop->u.btree.nEq = j;
4515 pLoop->u.btree.pIndex = pIdx;
4516 /* TUNING: Cost of a unique index lookup is 15 */
4517 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
4518 break;
4521 if( pLoop->wsFlags ){
4522 pLoop->nOut = (LogEst)1;
4523 pWInfo->a[0].pWLoop = pLoop;
4524 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4525 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4526 pWInfo->a[0].iTabCur = iCur;
4527 pWInfo->nRowOut = 1;
4528 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
4529 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4530 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4532 #ifdef SQLITE_DEBUG
4533 pLoop->cId = '0';
4534 #endif
4535 return 1;
4537 return 0;
4541 ** Helper function for exprIsDeterministic().
4543 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4544 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4545 pWalker->eCode = 0;
4546 return WRC_Abort;
4548 return WRC_Continue;
4552 ** Return true if the expression contains no non-deterministic SQL
4553 ** functions. Do not consider non-deterministic SQL functions that are
4554 ** part of sub-select statements.
4556 static int exprIsDeterministic(Expr *p){
4557 Walker w;
4558 memset(&w, 0, sizeof(w));
4559 w.eCode = 1;
4560 w.xExprCallback = exprNodeIsDeterministic;
4561 w.xSelectCallback = sqlite3SelectWalkFail;
4562 sqlite3WalkExpr(&w, p);
4563 return w.eCode;
4567 #ifdef WHERETRACE_ENABLED
4569 ** Display all WhereLoops in pWInfo
4571 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4572 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
4573 WhereLoop *p;
4574 int i;
4575 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4576 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4577 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4578 p->cId = zLabel[i%(sizeof(zLabel)-1)];
4579 sqlite3WhereLoopPrint(p, pWC);
4583 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4584 #else
4585 # define WHERETRACE_ALL_LOOPS(W,C)
4586 #endif
4589 ** Generate the beginning of the loop used for WHERE clause processing.
4590 ** The return value is a pointer to an opaque structure that contains
4591 ** information needed to terminate the loop. Later, the calling routine
4592 ** should invoke sqlite3WhereEnd() with the return value of this function
4593 ** in order to complete the WHERE clause processing.
4595 ** If an error occurs, this routine returns NULL.
4597 ** The basic idea is to do a nested loop, one loop for each table in
4598 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4599 ** same as a SELECT with only a single table in the FROM clause.) For
4600 ** example, if the SQL is this:
4602 ** SELECT * FROM t1, t2, t3 WHERE ...;
4604 ** Then the code generated is conceptually like the following:
4606 ** foreach row1 in t1 do \ Code generated
4607 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4608 ** foreach row3 in t3 do /
4609 ** ...
4610 ** end \ Code generated
4611 ** end |-- by sqlite3WhereEnd()
4612 ** end /
4614 ** Note that the loops might not be nested in the order in which they
4615 ** appear in the FROM clause if a different order is better able to make
4616 ** use of indices. Note also that when the IN operator appears in
4617 ** the WHERE clause, it might result in additional nested loops for
4618 ** scanning through all values on the right-hand side of the IN.
4620 ** There are Btree cursors associated with each table. t1 uses cursor
4621 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4622 ** And so forth. This routine generates code to open those VDBE cursors
4623 ** and sqlite3WhereEnd() generates the code to close them.
4625 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4626 ** in pTabList pointing at their appropriate entries. The [...] code
4627 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4628 ** data from the various tables of the loop.
4630 ** If the WHERE clause is empty, the foreach loops must each scan their
4631 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4632 ** the tables have indices and there are terms in the WHERE clause that
4633 ** refer to those indices, a complete table scan can be avoided and the
4634 ** code will run much faster. Most of the work of this routine is checking
4635 ** to see if there are indices that can be used to speed up the loop.
4637 ** Terms of the WHERE clause are also used to limit which rows actually
4638 ** make it to the "..." in the middle of the loop. After each "foreach",
4639 ** terms of the WHERE clause that use only terms in that loop and outer
4640 ** loops are evaluated and if false a jump is made around all subsequent
4641 ** inner loops (or around the "..." if the test occurs within the inner-
4642 ** most loop)
4644 ** OUTER JOINS
4646 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4648 ** foreach row1 in t1 do
4649 ** flag = 0
4650 ** foreach row2 in t2 do
4651 ** start:
4652 ** ...
4653 ** flag = 1
4654 ** end
4655 ** if flag==0 then
4656 ** move the row2 cursor to a null row
4657 ** goto start
4658 ** fi
4659 ** end
4661 ** ORDER BY CLAUSE PROCESSING
4663 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4664 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4665 ** if there is one. If there is no ORDER BY clause or if this routine
4666 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4668 ** The iIdxCur parameter is the cursor number of an index. If
4669 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4670 ** to use for OR clause processing. The WHERE clause should use this
4671 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4672 ** the first cursor in an array of cursors for all indices. iIdxCur should
4673 ** be used to compute the appropriate cursor depending on which index is
4674 ** used.
4676 WhereInfo *sqlite3WhereBegin(
4677 Parse *pParse, /* The parser context */
4678 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
4679 Expr *pWhere, /* The WHERE clause */
4680 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
4681 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
4682 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
4683 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4684 ** If WHERE_USE_LIMIT, then the limit amount */
4686 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4687 int nTabList; /* Number of elements in pTabList */
4688 WhereInfo *pWInfo; /* Will become the return value of this function */
4689 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4690 Bitmask notReady; /* Cursors that are not yet positioned */
4691 WhereLoopBuilder sWLB; /* The WhereLoop builder */
4692 WhereMaskSet *pMaskSet; /* The expression mask set */
4693 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
4694 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
4695 int ii; /* Loop counter */
4696 sqlite3 *db; /* Database connection */
4697 int rc; /* Return code */
4698 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
4700 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4701 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4702 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4705 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4706 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4707 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4709 /* Variable initialization */
4710 db = pParse->db;
4711 memset(&sWLB, 0, sizeof(sWLB));
4713 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4714 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4715 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4716 sWLB.pOrderBy = pOrderBy;
4718 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4719 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4720 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4721 wctrlFlags &= ~WHERE_WANT_DISTINCT;
4724 /* The number of tables in the FROM clause is limited by the number of
4725 ** bits in a Bitmask
4727 testcase( pTabList->nSrc==BMS );
4728 if( pTabList->nSrc>BMS ){
4729 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4730 return 0;
4733 /* This function normally generates a nested loop for all tables in
4734 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4735 ** only generate code for the first table in pTabList and assume that
4736 ** any cursors associated with subsequent tables are uninitialized.
4738 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4740 /* Allocate and initialize the WhereInfo structure that will become the
4741 ** return value. A single allocation is used to store the WhereInfo
4742 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4743 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4744 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4745 ** some architectures. Hence the ROUND8() below.
4747 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4748 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4749 if( db->mallocFailed ){
4750 sqlite3DbFree(db, pWInfo);
4751 pWInfo = 0;
4752 goto whereBeginError;
4754 pWInfo->pParse = pParse;
4755 pWInfo->pTabList = pTabList;
4756 pWInfo->pOrderBy = pOrderBy;
4757 pWInfo->pWhere = pWhere;
4758 pWInfo->pResultSet = pResultSet;
4759 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4760 pWInfo->nLevel = nTabList;
4761 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4762 pWInfo->wctrlFlags = wctrlFlags;
4763 pWInfo->iLimit = iAuxArg;
4764 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4765 memset(&pWInfo->nOBSat, 0,
4766 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4767 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4768 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
4769 pMaskSet = &pWInfo->sMaskSet;
4770 sWLB.pWInfo = pWInfo;
4771 sWLB.pWC = &pWInfo->sWC;
4772 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4773 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4774 whereLoopInit(sWLB.pNew);
4775 #ifdef SQLITE_DEBUG
4776 sWLB.pNew->cId = '*';
4777 #endif
4779 /* Split the WHERE clause into separate subexpressions where each
4780 ** subexpression is separated by an AND operator.
4782 initMaskSet(pMaskSet);
4783 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4784 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4786 /* Special case: No FROM clause
4788 if( nTabList==0 ){
4789 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4790 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4791 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4793 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4794 }else{
4795 /* Assign a bit from the bitmask to every term in the FROM clause.
4797 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4799 ** The rule of the previous sentence ensures thta if X is the bitmask for
4800 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4801 ** Knowing the bitmask for all tables to the left of a left join is
4802 ** important. Ticket #3015.
4804 ** Note that bitmasks are created for all pTabList->nSrc tables in
4805 ** pTabList, not just the first nTabList tables. nTabList is normally
4806 ** equal to pTabList->nSrc but might be shortened to 1 if the
4807 ** WHERE_OR_SUBCLAUSE flag is set.
4809 ii = 0;
4811 createMask(pMaskSet, pTabList->a[ii].iCursor);
4812 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4813 }while( (++ii)<pTabList->nSrc );
4814 #ifdef SQLITE_DEBUG
4816 Bitmask mx = 0;
4817 for(ii=0; ii<pTabList->nSrc; ii++){
4818 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4819 assert( m>=mx );
4820 mx = m;
4823 #endif
4826 /* Analyze all of the subexpressions. */
4827 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4828 if( db->mallocFailed ) goto whereBeginError;
4830 /* Special case: WHERE terms that do not refer to any tables in the join
4831 ** (constant expressions). Evaluate each such term, and jump over all the
4832 ** generated code if the result is not true.
4834 ** Do not do this if the expression contains non-deterministic functions
4835 ** that are not within a sub-select. This is not strictly required, but
4836 ** preserves SQLite's legacy behaviour in the following two cases:
4838 ** FROM ... WHERE random()>0; -- eval random() once per row
4839 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
4841 for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4842 WhereTerm *pT = &sWLB.pWC->a[ii];
4843 if( pT->wtFlags & TERM_VIRTUAL ) continue;
4844 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4845 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4846 pT->wtFlags |= TERM_CODED;
4850 if( wctrlFlags & WHERE_WANT_DISTINCT ){
4851 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4852 /* The DISTINCT marking is pointless. Ignore it. */
4853 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4854 }else if( pOrderBy==0 ){
4855 /* Try to ORDER BY the result set to make distinct processing easier */
4856 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4857 pWInfo->pOrderBy = pResultSet;
4861 /* Construct the WhereLoop objects */
4862 #if defined(WHERETRACE_ENABLED)
4863 if( sqlite3WhereTrace & 0xffff ){
4864 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4865 if( wctrlFlags & WHERE_USE_LIMIT ){
4866 sqlite3DebugPrintf(", limit: %d", iAuxArg);
4868 sqlite3DebugPrintf(")\n");
4869 if( sqlite3WhereTrace & 0x100 ){
4870 Select sSelect;
4871 memset(&sSelect, 0, sizeof(sSelect));
4872 sSelect.selFlags = SF_WhereBegin;
4873 sSelect.pSrc = pTabList;
4874 sSelect.pWhere = pWhere;
4875 sSelect.pOrderBy = pOrderBy;
4876 sSelect.pEList = pResultSet;
4877 sqlite3TreeViewSelect(0, &sSelect, 0);
4880 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4881 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4882 sqlite3WhereClausePrint(sWLB.pWC);
4884 #endif
4886 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4887 rc = whereLoopAddAll(&sWLB);
4888 if( rc ) goto whereBeginError;
4890 #ifdef SQLITE_ENABLE_STAT4
4891 /* If one or more WhereTerm.truthProb values were used in estimating
4892 ** loop parameters, but then those truthProb values were subsequently
4893 ** changed based on STAT4 information while computing subsequent loops,
4894 ** then we need to rerun the whole loop building process so that all
4895 ** loops will be built using the revised truthProb values. */
4896 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4897 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4898 WHERETRACE(0xffff,
4899 ("**** Redo all loop computations due to"
4900 " TERM_HIGHTRUTH changes ****\n"));
4901 while( pWInfo->pLoops ){
4902 WhereLoop *p = pWInfo->pLoops;
4903 pWInfo->pLoops = p->pNextLoop;
4904 whereLoopDelete(db, p);
4906 rc = whereLoopAddAll(&sWLB);
4907 if( rc ) goto whereBeginError;
4909 #endif
4910 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4912 wherePathSolver(pWInfo, 0);
4913 if( db->mallocFailed ) goto whereBeginError;
4914 if( pWInfo->pOrderBy ){
4915 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4916 if( db->mallocFailed ) goto whereBeginError;
4919 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4920 pWInfo->revMask = ALLBITS;
4922 if( pParse->nErr || NEVER(db->mallocFailed) ){
4923 goto whereBeginError;
4925 #ifdef WHERETRACE_ENABLED
4926 if( sqlite3WhereTrace ){
4927 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4928 if( pWInfo->nOBSat>0 ){
4929 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4931 switch( pWInfo->eDistinct ){
4932 case WHERE_DISTINCT_UNIQUE: {
4933 sqlite3DebugPrintf(" DISTINCT=unique");
4934 break;
4936 case WHERE_DISTINCT_ORDERED: {
4937 sqlite3DebugPrintf(" DISTINCT=ordered");
4938 break;
4940 case WHERE_DISTINCT_UNORDERED: {
4941 sqlite3DebugPrintf(" DISTINCT=unordered");
4942 break;
4945 sqlite3DebugPrintf("\n");
4946 for(ii=0; ii<pWInfo->nLevel; ii++){
4947 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4950 #endif
4952 /* Attempt to omit tables from the join that do not affect the result.
4953 ** For a table to not affect the result, the following must be true:
4955 ** 1) The query must not be an aggregate.
4956 ** 2) The table must be the RHS of a LEFT JOIN.
4957 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
4958 ** must contain a constraint that limits the scan of the table to
4959 ** at most a single row.
4960 ** 4) The table must not be referenced by any part of the query apart
4961 ** from its own USING or ON clause.
4963 ** For example, given:
4965 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4966 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4967 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4969 ** then table t2 can be omitted from the following:
4971 ** SELECT v1, v3 FROM t1
4972 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
4973 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
4975 ** or from:
4977 ** SELECT DISTINCT v1, v3 FROM t1
4978 ** LEFT JOIN t2
4979 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
4981 notReady = ~(Bitmask)0;
4982 if( pWInfo->nLevel>=2
4983 && pResultSet!=0 /* guarantees condition (1) above */
4984 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4986 int i;
4987 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4988 if( sWLB.pOrderBy ){
4989 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4991 for(i=pWInfo->nLevel-1; i>=1; i--){
4992 WhereTerm *pTerm, *pEnd;
4993 struct SrcList_item *pItem;
4994 pLoop = pWInfo->a[i].pWLoop;
4995 pItem = &pWInfo->pTabList->a[pLoop->iTab];
4996 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4997 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4998 && (pLoop->wsFlags & WHERE_ONEROW)==0
5000 continue;
5002 if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5003 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5004 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5005 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5006 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5007 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5009 break;
5013 if( pTerm<pEnd ) continue;
5014 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5015 notReady &= ~pLoop->maskSelf;
5016 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5017 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5018 pTerm->wtFlags |= TERM_CODED;
5021 if( i!=pWInfo->nLevel-1 ){
5022 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5023 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5025 pWInfo->nLevel--;
5026 nTabList--;
5029 #if defined(WHERETRACE_ENABLED)
5030 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5031 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5032 sqlite3WhereClausePrint(sWLB.pWC);
5034 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5035 #endif
5036 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5038 /* If the caller is an UPDATE or DELETE statement that is requesting
5039 ** to use a one-pass algorithm, determine if this is appropriate.
5041 ** A one-pass approach can be used if the caller has requested one
5042 ** and either (a) the scan visits at most one row or (b) each
5043 ** of the following are true:
5045 ** * the caller has indicated that a one-pass approach can be used
5046 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5047 ** * the table is not a virtual table, and
5048 ** * either the scan does not use the OR optimization or the caller
5049 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5050 ** for DELETE).
5052 ** The last qualification is because an UPDATE statement uses
5053 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5054 ** use a one-pass approach, and this is not set accurately for scans
5055 ** that use the OR optimization.
5057 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5058 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5059 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5060 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5061 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5062 if( bOnerow || (
5063 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5064 && !IsVirtual(pTabList->a[0].pTab)
5065 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5067 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5068 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5069 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5070 bFordelete = OPFLAG_FORDELETE;
5072 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5077 /* Open all tables in the pTabList and any indices selected for
5078 ** searching those tables.
5080 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5081 Table *pTab; /* Table to open */
5082 int iDb; /* Index of database containing table/index */
5083 struct SrcList_item *pTabItem;
5085 pTabItem = &pTabList->a[pLevel->iFrom];
5086 pTab = pTabItem->pTab;
5087 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5088 pLoop = pLevel->pWLoop;
5089 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5090 /* Do nothing */
5091 }else
5092 #ifndef SQLITE_OMIT_VIRTUALTABLE
5093 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5094 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5095 int iCur = pTabItem->iCursor;
5096 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5097 }else if( IsVirtual(pTab) ){
5098 /* noop */
5099 }else
5100 #endif
5101 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5102 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5103 int op = OP_OpenRead;
5104 if( pWInfo->eOnePass!=ONEPASS_OFF ){
5105 op = OP_OpenWrite;
5106 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5108 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5109 assert( pTabItem->iCursor==pLevel->iTabCur );
5110 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5111 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5112 if( pWInfo->eOnePass==ONEPASS_OFF
5113 && pTab->nCol<BMS
5114 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5116 /* If we know that only a prefix of the record will be used,
5117 ** it is advantageous to reduce the "column count" field in
5118 ** the P4 operand of the OP_OpenRead/Write opcode. */
5119 Bitmask b = pTabItem->colUsed;
5120 int n = 0;
5121 for(; b; b=b>>1, n++){}
5122 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5123 assert( n<=pTab->nCol );
5125 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5126 if( pLoop->u.btree.pIndex!=0 ){
5127 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5128 }else
5129 #endif
5131 sqlite3VdbeChangeP5(v, bFordelete);
5133 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5134 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5135 (const u8*)&pTabItem->colUsed, P4_INT64);
5136 #endif
5137 }else{
5138 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5140 if( pLoop->wsFlags & WHERE_INDEXED ){
5141 Index *pIx = pLoop->u.btree.pIndex;
5142 int iIndexCur;
5143 int op = OP_OpenRead;
5144 /* iAuxArg is always set to a positive value if ONEPASS is possible */
5145 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5146 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5147 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5149 /* This is one term of an OR-optimization using the PRIMARY KEY of a
5150 ** WITHOUT ROWID table. No need for a separate index */
5151 iIndexCur = pLevel->iTabCur;
5152 op = 0;
5153 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5154 Index *pJ = pTabItem->pTab->pIndex;
5155 iIndexCur = iAuxArg;
5156 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5157 while( ALWAYS(pJ) && pJ!=pIx ){
5158 iIndexCur++;
5159 pJ = pJ->pNext;
5161 op = OP_OpenWrite;
5162 pWInfo->aiCurOnePass[1] = iIndexCur;
5163 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5164 iIndexCur = iAuxArg;
5165 op = OP_ReopenIdx;
5166 }else{
5167 iIndexCur = pParse->nTab++;
5169 pLevel->iIdxCur = iIndexCur;
5170 assert( pIx->pSchema==pTab->pSchema );
5171 assert( iIndexCur>=0 );
5172 if( op ){
5173 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5174 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5175 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5176 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5177 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5178 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5179 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5181 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5183 VdbeComment((v, "%s", pIx->zName));
5184 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5186 u64 colUsed = 0;
5187 int ii, jj;
5188 for(ii=0; ii<pIx->nColumn; ii++){
5189 jj = pIx->aiColumn[ii];
5190 if( jj<0 ) continue;
5191 if( jj>63 ) jj = 63;
5192 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5193 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5195 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5196 (u8*)&colUsed, P4_INT64);
5198 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5201 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5203 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5204 if( db->mallocFailed ) goto whereBeginError;
5206 /* Generate the code to do the search. Each iteration of the for
5207 ** loop below generates code for a single nested loop of the VM
5208 ** program.
5210 for(ii=0; ii<nTabList; ii++){
5211 int addrExplain;
5212 int wsFlags;
5213 pLevel = &pWInfo->a[ii];
5214 wsFlags = pLevel->pWLoop->wsFlags;
5215 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5216 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5217 constructAutomaticIndex(pParse, &pWInfo->sWC,
5218 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5219 if( db->mallocFailed ) goto whereBeginError;
5221 #endif
5222 addrExplain = sqlite3WhereExplainOneScan(
5223 pParse, pTabList, pLevel, wctrlFlags
5225 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5226 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5227 pWInfo->iContinue = pLevel->addrCont;
5228 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5229 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5233 /* Done. */
5234 VdbeModuleComment((v, "Begin WHERE-core"));
5235 return pWInfo;
5237 /* Jump here if malloc fails */
5238 whereBeginError:
5239 if( pWInfo ){
5240 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5241 whereInfoFree(db, pWInfo);
5243 return 0;
5247 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5248 ** index rather than the main table. In SQLITE_DEBUG mode, we want
5249 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
5250 ** does that.
5252 #ifndef SQLITE_DEBUG
5253 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5254 #else
5255 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5256 static void sqlite3WhereOpcodeRewriteTrace(
5257 sqlite3 *db,
5258 int pc,
5259 VdbeOp *pOp
5261 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5262 sqlite3VdbePrintOp(0, pc, pOp);
5264 #endif
5267 ** Generate the end of the WHERE loop. See comments on
5268 ** sqlite3WhereBegin() for additional information.
5270 void sqlite3WhereEnd(WhereInfo *pWInfo){
5271 Parse *pParse = pWInfo->pParse;
5272 Vdbe *v = pParse->pVdbe;
5273 int i;
5274 WhereLevel *pLevel;
5275 WhereLoop *pLoop;
5276 SrcList *pTabList = pWInfo->pTabList;
5277 sqlite3 *db = pParse->db;
5279 /* Generate loop termination code.
5281 VdbeModuleComment((v, "End WHERE-core"));
5282 for(i=pWInfo->nLevel-1; i>=0; i--){
5283 int addr;
5284 pLevel = &pWInfo->a[i];
5285 pLoop = pLevel->pWLoop;
5286 if( pLevel->op!=OP_Noop ){
5287 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5288 int addrSeek = 0;
5289 Index *pIdx;
5290 int n;
5291 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5292 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
5293 && (pLoop->wsFlags & WHERE_INDEXED)!=0
5294 && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5295 && (n = pLoop->u.btree.nDistinctCol)>0
5296 && pIdx->aiRowLogEst[n]>=36
5298 int r1 = pParse->nMem+1;
5299 int j, op;
5300 for(j=0; j<n; j++){
5301 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5303 pParse->nMem += n+1;
5304 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5305 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5306 VdbeCoverageIf(v, op==OP_SeekLT);
5307 VdbeCoverageIf(v, op==OP_SeekGT);
5308 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5310 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5311 /* The common case: Advance to the next row */
5312 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5313 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5314 sqlite3VdbeChangeP5(v, pLevel->p5);
5315 VdbeCoverage(v);
5316 VdbeCoverageIf(v, pLevel->op==OP_Next);
5317 VdbeCoverageIf(v, pLevel->op==OP_Prev);
5318 VdbeCoverageIf(v, pLevel->op==OP_VNext);
5319 if( pLevel->regBignull ){
5320 sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5321 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5322 VdbeCoverage(v);
5324 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5325 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5326 #endif
5327 }else{
5328 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5330 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5331 struct InLoop *pIn;
5332 int j;
5333 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5334 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5335 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5336 if( pIn->eEndLoopOp!=OP_Noop ){
5337 if( pIn->nPrefix ){
5338 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5339 if( pLevel->iLeftJoin ){
5340 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5341 ** opened yet. This occurs for WHERE clauses such as
5342 ** "a = ? AND b IN (...)", where the index is on (a, b). If
5343 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5344 ** never have been coded, but the body of the loop run to
5345 ** return the null-row. So, if the cursor is not open yet,
5346 ** jump over the OP_Next or OP_Prev instruction about to
5347 ** be coded. */
5348 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5349 sqlite3VdbeCurrentAddr(v) + 2 +
5350 ((pLoop->wsFlags & WHERE_VIRTUALTABLE)==0)
5352 VdbeCoverage(v);
5354 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){
5355 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5356 sqlite3VdbeCurrentAddr(v)+2,
5357 pIn->iBase, pIn->nPrefix);
5358 VdbeCoverage(v);
5361 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5362 VdbeCoverage(v);
5363 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5364 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5366 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5369 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5370 if( pLevel->addrSkip ){
5371 sqlite3VdbeGoto(v, pLevel->addrSkip);
5372 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5373 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5374 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5376 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5377 if( pLevel->addrLikeRep ){
5378 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5379 pLevel->addrLikeRep);
5380 VdbeCoverage(v);
5382 #endif
5383 if( pLevel->iLeftJoin ){
5384 int ws = pLoop->wsFlags;
5385 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5386 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5387 if( (ws & WHERE_IDX_ONLY)==0 ){
5388 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5389 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5391 if( (ws & WHERE_INDEXED)
5392 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5394 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5396 if( pLevel->op==OP_Return ){
5397 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5398 }else{
5399 sqlite3VdbeGoto(v, pLevel->addrFirst);
5401 sqlite3VdbeJumpHere(v, addr);
5403 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5404 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5407 /* The "break" point is here, just past the end of the outer loop.
5408 ** Set it.
5410 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5412 assert( pWInfo->nLevel<=pTabList->nSrc );
5413 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5414 int k, last;
5415 VdbeOp *pOp;
5416 Index *pIdx = 0;
5417 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5418 Table *pTab = pTabItem->pTab;
5419 assert( pTab!=0 );
5420 pLoop = pLevel->pWLoop;
5422 /* For a co-routine, change all OP_Column references to the table of
5423 ** the co-routine into OP_Copy of result contained in a register.
5424 ** OP_Rowid becomes OP_Null.
5426 if( pTabItem->fg.viaCoroutine ){
5427 testcase( pParse->db->mallocFailed );
5428 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5429 pTabItem->regResult, 0);
5430 continue;
5433 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5434 /* Close all of the cursors that were opened by sqlite3WhereBegin.
5435 ** Except, do not close cursors that will be reused by the OR optimization
5436 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors
5437 ** created for the ONEPASS optimization.
5439 if( (pTab->tabFlags & TF_Ephemeral)==0
5440 && pTab->pSelect==0
5441 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5443 int ws = pLoop->wsFlags;
5444 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5445 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5447 if( (ws & WHERE_INDEXED)!=0
5448 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5449 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5451 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5454 #endif
5456 /* If this scan uses an index, make VDBE code substitutions to read data
5457 ** from the index instead of from the table where possible. In some cases
5458 ** this optimization prevents the table from ever being read, which can
5459 ** yield a significant performance boost.
5461 ** Calls to the code generator in between sqlite3WhereBegin and
5462 ** sqlite3WhereEnd will have created code that references the table
5463 ** directly. This loop scans all that code looking for opcodes
5464 ** that reference the table and converts them into opcodes that
5465 ** reference the index.
5467 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5468 pIdx = pLoop->u.btree.pIndex;
5469 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5470 pIdx = pLevel->u.pCovidx;
5472 if( pIdx
5473 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5474 && !db->mallocFailed
5476 last = sqlite3VdbeCurrentAddr(v);
5477 k = pLevel->addrBody;
5478 #ifdef SQLITE_DEBUG
5479 if( db->flags & SQLITE_VdbeAddopTrace ){
5480 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5482 #endif
5483 pOp = sqlite3VdbeGetOp(v, k);
5484 for(; k<last; k++, pOp++){
5485 if( pOp->p1!=pLevel->iTabCur ) continue;
5486 if( pOp->opcode==OP_Column
5487 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5488 || pOp->opcode==OP_Offset
5489 #endif
5491 int x = pOp->p2;
5492 assert( pIdx->pTable==pTab );
5493 if( !HasRowid(pTab) ){
5494 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5495 x = pPk->aiColumn[x];
5496 assert( x>=0 );
5497 }else{
5498 testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5499 x = sqlite3StorageColumnToTable(pTab,x);
5501 x = sqlite3TableColumnToIndex(pIdx, x);
5502 if( x>=0 ){
5503 pOp->p2 = x;
5504 pOp->p1 = pLevel->iIdxCur;
5505 OpcodeRewriteTrace(db, k, pOp);
5507 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5508 || pWInfo->eOnePass );
5509 }else if( pOp->opcode==OP_Rowid ){
5510 pOp->p1 = pLevel->iIdxCur;
5511 pOp->opcode = OP_IdxRowid;
5512 OpcodeRewriteTrace(db, k, pOp);
5513 }else if( pOp->opcode==OP_IfNullRow ){
5514 pOp->p1 = pLevel->iIdxCur;
5515 OpcodeRewriteTrace(db, k, pOp);
5518 #ifdef SQLITE_DEBUG
5519 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5520 #endif
5524 /* Undo all Expr node modifications */
5525 while( pWInfo->pExprMods ){
5526 WhereExprMod *p = pWInfo->pExprMods;
5527 pWInfo->pExprMods = p->pNext;
5528 memcpy(p->pExpr, &p->orig, sizeof(p->orig));
5529 sqlite3DbFree(db, p);
5532 /* Final cleanup
5534 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5535 whereInfoFree(db, pWInfo);
5536 return;