Snapshot of upstream SQLite 3.32.2
[sqlcipher.git] / src / vdbeaux.c
blob38dc7cd86950725983be1ab7934f22c3b521d81e
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->pPrev = p;
35 p->pNext = db->pVdbe;
36 p->pPrev = 0;
37 db->pVdbe = p;
38 p->magic = VDBE_MAGIC_INIT;
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121 Vdbe tmp, *pTmp;
122 char *zTmp;
123 assert( pA->db==pB->db );
124 tmp = *pA;
125 *pA = *pB;
126 *pB = tmp;
127 pTmp = pA->pNext;
128 pA->pNext = pB->pNext;
129 pB->pNext = pTmp;
130 pTmp = pA->pPrev;
131 pA->pPrev = pB->pPrev;
132 pB->pPrev = pTmp;
133 zTmp = pA->zSql;
134 pA->zSql = pB->zSql;
135 pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137 zTmp = pA->zNormSql;
138 pA->zNormSql = pB->zNormSql;
139 pB->zNormSql = zTmp;
140 #endif
141 pB->expmask = pA->expmask;
142 pB->prepFlags = pA->prepFlags;
143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe *v, int nOp){
158 VdbeOp *pNew;
159 Parse *p = v->pParse;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170 : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173 : (sqlite3_int64)(1024/sizeof(Op)));
174 UNUSED_PARAMETER(nOp);
175 #endif
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179 sqlite3OomFault(p->db);
180 return SQLITE_NOMEM;
183 assert( nOp<=(1024/sizeof(Op)) );
184 assert( nNew>=(v->nOpAlloc+nOp) );
185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186 if( pNew ){
187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189 v->aOp = pNew;
191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc, Op *pOp){
207 static int n = 0;
208 n++;
210 #endif
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
216 ** Parameters:
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229 assert( p->nOpAlloc<=p->nOp );
230 if( growOpArray(p, 1) ) return 1;
231 assert( p->nOpAlloc>p->nOp );
232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235 int i;
236 VdbeOp *pOp;
238 i = p->nOp;
239 assert( p->magic==VDBE_MAGIC_INIT );
240 assert( op>=0 && op<0xff );
241 if( p->nOpAlloc<=i ){
242 return growOp3(p, op, p1, p2, p3);
244 p->nOp++;
245 pOp = &p->aOp[i];
246 pOp->opcode = (u8)op;
247 pOp->p5 = 0;
248 pOp->p1 = p1;
249 pOp->p2 = p2;
250 pOp->p3 = p3;
251 pOp->p4.p = 0;
252 pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254 pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257 if( p->db->flags & SQLITE_VdbeAddopTrace ){
258 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259 test_addop_breakpoint(i, &p->aOp[i]);
261 #endif
262 #ifdef VDBE_PROFILE
263 pOp->cycles = 0;
264 pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267 pOp->iSrcLine = 0;
268 #endif
269 return i;
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
281 /* Generate code for an unconditional jump to instruction iDest
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants. The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[]. For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306 va_list ap;
307 int i;
308 char c;
309 va_start(ap, zTypes);
310 for(i=0; (c = zTypes[i])!=0; i++){
311 if( c=='s' ){
312 const char *z = va_arg(ap, const char*);
313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314 }else if( c=='i' ){
315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316 }else{
317 goto skip_op_resultrow;
320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322 va_end(ap);
326 ** Add an opcode that includes the p4 value as a pointer.
328 int sqlite3VdbeAddOp4(
329 Vdbe *p, /* Add the opcode to this VM */
330 int op, /* The new opcode */
331 int p1, /* The P1 operand */
332 int p2, /* The P2 operand */
333 int p3, /* The P3 operand */
334 const char *zP4, /* The P4 operand */
335 int p4type /* P4 operand type */
337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339 return addr;
343 ** Add an OP_Function or OP_PureFunc opcode.
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function. 0 means a general
347 ** function call. NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
349 ** means in the WHERE clause of a partial index. NC_GenCol means called
350 ** while computing a generated column value. 0 is the usual case.
352 int sqlite3VdbeAddFunctionCall(
353 Parse *pParse, /* Parsing context */
354 int p1, /* Constant argument mask */
355 int p2, /* First argument register */
356 int p3, /* Register into which results are written */
357 int nArg, /* Number of argument */
358 const FuncDef *pFunc, /* The function to be invoked */
359 int eCallCtx /* Calling context */
361 Vdbe *v = pParse->pVdbe;
362 int nByte;
363 int addr;
364 sqlite3_context *pCtx;
365 assert( v );
366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368 if( pCtx==0 ){
369 assert( pParse->db->mallocFailed );
370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371 return 0;
373 pCtx->pOut = 0;
374 pCtx->pFunc = (FuncDef*)pFunc;
375 pCtx->pVdbe = 0;
376 pCtx->isError = 0;
377 pCtx->argc = nArg;
378 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382 return addr;
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
389 int sqlite3VdbeAddOp4Dup8(
390 Vdbe *p, /* Add the opcode to this VM */
391 int op, /* The new opcode */
392 int p1, /* The P1 operand */
393 int p2, /* The P2 operand */
394 int p3, /* The P3 operand */
395 const u8 *zP4, /* The P4 operand */
396 int p4type /* P4 operand type */
398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399 if( p4copy ) memcpy(p4copy, zP4, 8);
400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
403 #ifndef SQLITE_OMIT_EXPLAIN
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
408 int sqlite3VdbeExplainParent(Parse *pParse){
409 VdbeOp *pOp;
410 if( pParse->addrExplain==0 ) return 0;
411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412 return pOp->p2;
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421 (void)z1;
422 (void)z2;
424 #endif
427 ** Add a new OP_Explain opcode.
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435 ** But omit them (for performance) during production builds */
436 if( pParse->explain==2 )
437 #endif
439 char *zMsg;
440 Vdbe *v;
441 va_list ap;
442 int iThis;
443 va_start(ap, zFmt);
444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445 va_end(ap);
446 v = pParse->pVdbe;
447 iThis = v->nOp;
448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449 zMsg, P4_DYNAMIC);
450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451 if( bPush){
452 pParse->addrExplain = iThis;
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
460 void sqlite3VdbeExplainPop(Parse *pParse){
461 sqlite3ExplainBreakpoint("POP", 0);
462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
464 #endif /* SQLITE_OMIT_EXPLAIN */
467 ** Add an OP_ParseSchema opcode. This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
475 int j;
476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
481 ** Add an opcode that includes the p4 value as an integer.
483 int sqlite3VdbeAddOp4Int(
484 Vdbe *p, /* Add the opcode to this VM */
485 int op, /* The new opcode */
486 int p1, /* The P1 operand */
487 int p2, /* The P2 operand */
488 int p3, /* The P3 operand */
489 int p4 /* The P4 operand as an integer */
491 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
492 if( p->db->mallocFailed==0 ){
493 VdbeOp *pOp = &p->aOp[addr];
494 pOp->p4type = P4_INT32;
495 pOp->p4.i = p4;
497 return addr;
500 /* Insert the end of a co-routine
502 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
503 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
505 /* Clear the temporary register cache, thereby ensuring that each
506 ** co-routine has its own independent set of registers, because co-routines
507 ** might expect their registers to be preserved across an OP_Yield, and
508 ** that could cause problems if two or more co-routines are using the same
509 ** temporary register.
511 v->pParse->nTempReg = 0;
512 v->pParse->nRangeReg = 0;
516 ** Create a new symbolic label for an instruction that has yet to be
517 ** coded. The symbolic label is really just a negative number. The
518 ** label can be used as the P2 value of an operation. Later, when
519 ** the label is resolved to a specific address, the VDBE will scan
520 ** through its operation list and change all values of P2 which match
521 ** the label into the resolved address.
523 ** The VDBE knows that a P2 value is a label because labels are
524 ** always negative and P2 values are suppose to be non-negative.
525 ** Hence, a negative P2 value is a label that has yet to be resolved.
526 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
527 ** property.
529 ** Variable usage notes:
531 ** Parse.aLabel[x] Stores the address that the x-th label resolves
532 ** into. For testing (SQLITE_DEBUG), unresolved
533 ** labels stores -1, but that is not required.
534 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
535 ** Parse.nLabel The *negative* of the number of labels that have
536 ** been issued. The negative is stored because
537 ** that gives a performance improvement over storing
538 ** the equivalent positive value.
540 int sqlite3VdbeMakeLabel(Parse *pParse){
541 return --pParse->nLabel;
545 ** Resolve label "x" to be the address of the next instruction to
546 ** be inserted. The parameter "x" must have been obtained from
547 ** a prior call to sqlite3VdbeMakeLabel().
549 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
550 int nNewSize = 10 - p->nLabel;
551 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
552 nNewSize*sizeof(p->aLabel[0]));
553 if( p->aLabel==0 ){
554 p->nLabelAlloc = 0;
555 }else{
556 #ifdef SQLITE_DEBUG
557 int i;
558 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
559 #endif
560 p->nLabelAlloc = nNewSize;
561 p->aLabel[j] = v->nOp;
564 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
565 Parse *p = v->pParse;
566 int j = ADDR(x);
567 assert( v->magic==VDBE_MAGIC_INIT );
568 assert( j<-p->nLabel );
569 assert( j>=0 );
570 #ifdef SQLITE_DEBUG
571 if( p->db->flags & SQLITE_VdbeAddopTrace ){
572 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
574 #endif
575 if( p->nLabelAlloc + p->nLabel < 0 ){
576 resizeResolveLabel(p,v,j);
577 }else{
578 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
579 p->aLabel[j] = v->nOp;
584 ** Mark the VDBE as one that can only be run one time.
586 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
587 p->runOnlyOnce = 1;
591 ** Mark the VDBE as one that can only be run multiple times.
593 void sqlite3VdbeReusable(Vdbe *p){
594 p->runOnlyOnce = 0;
597 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
600 ** The following type and function are used to iterate through all opcodes
601 ** in a Vdbe main program and each of the sub-programs (triggers) it may
602 ** invoke directly or indirectly. It should be used as follows:
604 ** Op *pOp;
605 ** VdbeOpIter sIter;
607 ** memset(&sIter, 0, sizeof(sIter));
608 ** sIter.v = v; // v is of type Vdbe*
609 ** while( (pOp = opIterNext(&sIter)) ){
610 ** // Do something with pOp
611 ** }
612 ** sqlite3DbFree(v->db, sIter.apSub);
615 typedef struct VdbeOpIter VdbeOpIter;
616 struct VdbeOpIter {
617 Vdbe *v; /* Vdbe to iterate through the opcodes of */
618 SubProgram **apSub; /* Array of subprograms */
619 int nSub; /* Number of entries in apSub */
620 int iAddr; /* Address of next instruction to return */
621 int iSub; /* 0 = main program, 1 = first sub-program etc. */
623 static Op *opIterNext(VdbeOpIter *p){
624 Vdbe *v = p->v;
625 Op *pRet = 0;
626 Op *aOp;
627 int nOp;
629 if( p->iSub<=p->nSub ){
631 if( p->iSub==0 ){
632 aOp = v->aOp;
633 nOp = v->nOp;
634 }else{
635 aOp = p->apSub[p->iSub-1]->aOp;
636 nOp = p->apSub[p->iSub-1]->nOp;
638 assert( p->iAddr<nOp );
640 pRet = &aOp[p->iAddr];
641 p->iAddr++;
642 if( p->iAddr==nOp ){
643 p->iSub++;
644 p->iAddr = 0;
647 if( pRet->p4type==P4_SUBPROGRAM ){
648 int nByte = (p->nSub+1)*sizeof(SubProgram*);
649 int j;
650 for(j=0; j<p->nSub; j++){
651 if( p->apSub[j]==pRet->p4.pProgram ) break;
653 if( j==p->nSub ){
654 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
655 if( !p->apSub ){
656 pRet = 0;
657 }else{
658 p->apSub[p->nSub++] = pRet->p4.pProgram;
664 return pRet;
668 ** Check if the program stored in the VM associated with pParse may
669 ** throw an ABORT exception (causing the statement, but not entire transaction
670 ** to be rolled back). This condition is true if the main program or any
671 ** sub-programs contains any of the following:
673 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
674 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
675 ** * OP_Destroy
676 ** * OP_VUpdate
677 ** * OP_VCreate
678 ** * OP_VRename
679 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
680 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
681 ** (for CREATE TABLE AS SELECT ...)
683 ** Then check that the value of Parse.mayAbort is true if an
684 ** ABORT may be thrown, or false otherwise. Return true if it does
685 ** match, or false otherwise. This function is intended to be used as
686 ** part of an assert statement in the compiler. Similar to:
688 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
690 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
691 int hasAbort = 0;
692 int hasFkCounter = 0;
693 int hasCreateTable = 0;
694 int hasCreateIndex = 0;
695 int hasInitCoroutine = 0;
696 Op *pOp;
697 VdbeOpIter sIter;
698 memset(&sIter, 0, sizeof(sIter));
699 sIter.v = v;
701 while( (pOp = opIterNext(&sIter))!=0 ){
702 int opcode = pOp->opcode;
703 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
704 || opcode==OP_VDestroy
705 || opcode==OP_VCreate
706 || (opcode==OP_ParseSchema && pOp->p4.z==0)
707 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
708 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
710 hasAbort = 1;
711 break;
713 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
714 if( mayAbort ){
715 /* hasCreateIndex may also be set for some DELETE statements that use
716 ** OP_Clear. So this routine may end up returning true in the case
717 ** where a "DELETE FROM tbl" has a statement-journal but does not
718 ** require one. This is not so bad - it is an inefficiency, not a bug. */
719 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
720 if( opcode==OP_Clear ) hasCreateIndex = 1;
722 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
723 #ifndef SQLITE_OMIT_FOREIGN_KEY
724 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
725 hasFkCounter = 1;
727 #endif
729 sqlite3DbFree(v->db, sIter.apSub);
731 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
732 ** If malloc failed, then the while() loop above may not have iterated
733 ** through all opcodes and hasAbort may be set incorrectly. Return
734 ** true for this case to prevent the assert() in the callers frame
735 ** from failing. */
736 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
737 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
740 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
742 #ifdef SQLITE_DEBUG
744 ** Increment the nWrite counter in the VDBE if the cursor is not an
745 ** ephemeral cursor, or if the cursor argument is NULL.
747 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
748 if( pC==0
749 || (pC->eCurType!=CURTYPE_SORTER
750 && pC->eCurType!=CURTYPE_PSEUDO
751 && !pC->isEphemeral)
753 p->nWrite++;
756 #endif
758 #ifdef SQLITE_DEBUG
760 ** Assert if an Abort at this point in time might result in a corrupt
761 ** database.
763 void sqlite3VdbeAssertAbortable(Vdbe *p){
764 assert( p->nWrite==0 || p->usesStmtJournal );
766 #endif
769 ** This routine is called after all opcodes have been inserted. It loops
770 ** through all the opcodes and fixes up some details.
772 ** (1) For each jump instruction with a negative P2 value (a label)
773 ** resolve the P2 value to an actual address.
775 ** (2) Compute the maximum number of arguments used by any SQL function
776 ** and store that value in *pMaxFuncArgs.
778 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
779 ** indicate what the prepared statement actually does.
781 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
783 ** (5) Reclaim the memory allocated for storing labels.
785 ** This routine will only function correctly if the mkopcodeh.tcl generator
786 ** script numbers the opcodes correctly. Changes to this routine must be
787 ** coordinated with changes to mkopcodeh.tcl.
789 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
790 int nMaxArgs = *pMaxFuncArgs;
791 Op *pOp;
792 Parse *pParse = p->pParse;
793 int *aLabel = pParse->aLabel;
794 p->readOnly = 1;
795 p->bIsReader = 0;
796 pOp = &p->aOp[p->nOp-1];
797 while(1){
799 /* Only JUMP opcodes and the short list of special opcodes in the switch
800 ** below need to be considered. The mkopcodeh.tcl generator script groups
801 ** all these opcodes together near the front of the opcode list. Skip
802 ** any opcode that does not need processing by virtual of the fact that
803 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
805 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
806 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
807 ** cases from this switch! */
808 switch( pOp->opcode ){
809 case OP_Transaction: {
810 if( pOp->p2!=0 ) p->readOnly = 0;
811 /* fall thru */
813 case OP_AutoCommit:
814 case OP_Savepoint: {
815 p->bIsReader = 1;
816 break;
818 #ifndef SQLITE_OMIT_WAL
819 case OP_Checkpoint:
820 #endif
821 case OP_Vacuum:
822 case OP_JournalMode: {
823 p->readOnly = 0;
824 p->bIsReader = 1;
825 break;
827 case OP_Next:
828 case OP_SorterNext: {
829 pOp->p4.xAdvance = sqlite3BtreeNext;
830 pOp->p4type = P4_ADVANCE;
831 /* The code generator never codes any of these opcodes as a jump
832 ** to a label. They are always coded as a jump backwards to a
833 ** known address */
834 assert( pOp->p2>=0 );
835 break;
837 case OP_Prev: {
838 pOp->p4.xAdvance = sqlite3BtreePrevious;
839 pOp->p4type = P4_ADVANCE;
840 /* The code generator never codes any of these opcodes as a jump
841 ** to a label. They are always coded as a jump backwards to a
842 ** known address */
843 assert( pOp->p2>=0 );
844 break;
846 #ifndef SQLITE_OMIT_VIRTUALTABLE
847 case OP_VUpdate: {
848 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
849 break;
851 case OP_VFilter: {
852 int n;
853 assert( (pOp - p->aOp) >= 3 );
854 assert( pOp[-1].opcode==OP_Integer );
855 n = pOp[-1].p1;
856 if( n>nMaxArgs ) nMaxArgs = n;
857 /* Fall through into the default case */
859 #endif
860 default: {
861 if( pOp->p2<0 ){
862 /* The mkopcodeh.tcl script has so arranged things that the only
863 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
864 ** have non-negative values for P2. */
865 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
866 assert( ADDR(pOp->p2)<-pParse->nLabel );
867 pOp->p2 = aLabel[ADDR(pOp->p2)];
869 break;
872 /* The mkopcodeh.tcl script has so arranged things that the only
873 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
874 ** have non-negative values for P2. */
875 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
877 if( pOp==p->aOp ) break;
878 pOp--;
880 sqlite3DbFree(p->db, pParse->aLabel);
881 pParse->aLabel = 0;
882 pParse->nLabel = 0;
883 *pMaxFuncArgs = nMaxArgs;
884 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
888 ** Return the address of the next instruction to be inserted.
890 int sqlite3VdbeCurrentAddr(Vdbe *p){
891 assert( p->magic==VDBE_MAGIC_INIT );
892 return p->nOp;
896 ** Verify that at least N opcode slots are available in p without
897 ** having to malloc for more space (except when compiled using
898 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
899 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
900 ** fail due to a OOM fault and hence that the return value from
901 ** sqlite3VdbeAddOpList() will always be non-NULL.
903 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
904 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
905 assert( p->nOp + N <= p->nOpAlloc );
907 #endif
910 ** Verify that the VM passed as the only argument does not contain
911 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
912 ** by code in pragma.c to ensure that the implementation of certain
913 ** pragmas comports with the flags specified in the mkpragmatab.tcl
914 ** script.
916 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
917 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
918 int i;
919 for(i=0; i<p->nOp; i++){
920 assert( p->aOp[i].opcode!=OP_ResultRow );
923 #endif
926 ** Generate code (a single OP_Abortable opcode) that will
927 ** verify that the VDBE program can safely call Abort in the current
928 ** context.
930 #if defined(SQLITE_DEBUG)
931 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
932 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
934 #endif
937 ** This function returns a pointer to the array of opcodes associated with
938 ** the Vdbe passed as the first argument. It is the callers responsibility
939 ** to arrange for the returned array to be eventually freed using the
940 ** vdbeFreeOpArray() function.
942 ** Before returning, *pnOp is set to the number of entries in the returned
943 ** array. Also, *pnMaxArg is set to the larger of its current value and
944 ** the number of entries in the Vdbe.apArg[] array required to execute the
945 ** returned program.
947 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
948 VdbeOp *aOp = p->aOp;
949 assert( aOp && !p->db->mallocFailed );
951 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
952 assert( DbMaskAllZero(p->btreeMask) );
954 resolveP2Values(p, pnMaxArg);
955 *pnOp = p->nOp;
956 p->aOp = 0;
957 return aOp;
961 ** Add a whole list of operations to the operation stack. Return a
962 ** pointer to the first operation inserted.
964 ** Non-zero P2 arguments to jump instructions are automatically adjusted
965 ** so that the jump target is relative to the first operation inserted.
967 VdbeOp *sqlite3VdbeAddOpList(
968 Vdbe *p, /* Add opcodes to the prepared statement */
969 int nOp, /* Number of opcodes to add */
970 VdbeOpList const *aOp, /* The opcodes to be added */
971 int iLineno /* Source-file line number of first opcode */
973 int i;
974 VdbeOp *pOut, *pFirst;
975 assert( nOp>0 );
976 assert( p->magic==VDBE_MAGIC_INIT );
977 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
978 return 0;
980 pFirst = pOut = &p->aOp[p->nOp];
981 for(i=0; i<nOp; i++, aOp++, pOut++){
982 pOut->opcode = aOp->opcode;
983 pOut->p1 = aOp->p1;
984 pOut->p2 = aOp->p2;
985 assert( aOp->p2>=0 );
986 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
987 pOut->p2 += p->nOp;
989 pOut->p3 = aOp->p3;
990 pOut->p4type = P4_NOTUSED;
991 pOut->p4.p = 0;
992 pOut->p5 = 0;
993 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
994 pOut->zComment = 0;
995 #endif
996 #ifdef SQLITE_VDBE_COVERAGE
997 pOut->iSrcLine = iLineno+i;
998 #else
999 (void)iLineno;
1000 #endif
1001 #ifdef SQLITE_DEBUG
1002 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1003 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1005 #endif
1007 p->nOp += nOp;
1008 return pFirst;
1011 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1013 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1015 void sqlite3VdbeScanStatus(
1016 Vdbe *p, /* VM to add scanstatus() to */
1017 int addrExplain, /* Address of OP_Explain (or 0) */
1018 int addrLoop, /* Address of loop counter */
1019 int addrVisit, /* Address of rows visited counter */
1020 LogEst nEst, /* Estimated number of output rows */
1021 const char *zName /* Name of table or index being scanned */
1023 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1024 ScanStatus *aNew;
1025 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1026 if( aNew ){
1027 ScanStatus *pNew = &aNew[p->nScan++];
1028 pNew->addrExplain = addrExplain;
1029 pNew->addrLoop = addrLoop;
1030 pNew->addrVisit = addrVisit;
1031 pNew->nEst = nEst;
1032 pNew->zName = sqlite3DbStrDup(p->db, zName);
1033 p->aScan = aNew;
1036 #endif
1040 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1041 ** for a specific instruction.
1043 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1044 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1046 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1047 sqlite3VdbeGetOp(p,addr)->p1 = val;
1049 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1050 sqlite3VdbeGetOp(p,addr)->p2 = val;
1052 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1053 sqlite3VdbeGetOp(p,addr)->p3 = val;
1055 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1056 assert( p->nOp>0 || p->db->mallocFailed );
1057 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1061 ** Change the P2 operand of instruction addr so that it points to
1062 ** the address of the next instruction to be coded.
1064 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1065 sqlite3VdbeChangeP2(p, addr, p->nOp);
1069 ** Change the P2 operand of the jump instruction at addr so that
1070 ** the jump lands on the next opcode. Or if the jump instruction was
1071 ** the previous opcode (and is thus a no-op) then simply back up
1072 ** the next instruction counter by one slot so that the jump is
1073 ** overwritten by the next inserted opcode.
1075 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1076 ** strives to omit useless byte-code like this:
1078 ** 7 Once 0 8 0
1079 ** 8 ...
1081 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1082 if( addr==p->nOp-1 ){
1083 assert( p->aOp[addr].opcode==OP_Once
1084 || p->aOp[addr].opcode==OP_If
1085 || p->aOp[addr].opcode==OP_FkIfZero );
1086 assert( p->aOp[addr].p4type==0 );
1087 #ifdef SQLITE_VDBE_COVERAGE
1088 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1089 #endif
1090 p->nOp--;
1091 }else{
1092 sqlite3VdbeChangeP2(p, addr, p->nOp);
1098 ** If the input FuncDef structure is ephemeral, then free it. If
1099 ** the FuncDef is not ephermal, then do nothing.
1101 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1102 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1103 sqlite3DbFreeNN(db, pDef);
1108 ** Delete a P4 value if necessary.
1110 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1111 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1112 sqlite3DbFreeNN(db, p);
1114 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1115 freeEphemeralFunction(db, p->pFunc);
1116 sqlite3DbFreeNN(db, p);
1118 static void freeP4(sqlite3 *db, int p4type, void *p4){
1119 assert( db );
1120 switch( p4type ){
1121 case P4_FUNCCTX: {
1122 freeP4FuncCtx(db, (sqlite3_context*)p4);
1123 break;
1125 case P4_REAL:
1126 case P4_INT64:
1127 case P4_DYNAMIC:
1128 case P4_DYNBLOB:
1129 case P4_INTARRAY: {
1130 sqlite3DbFree(db, p4);
1131 break;
1133 case P4_KEYINFO: {
1134 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1135 break;
1137 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1138 case P4_EXPR: {
1139 sqlite3ExprDelete(db, (Expr*)p4);
1140 break;
1142 #endif
1143 case P4_FUNCDEF: {
1144 freeEphemeralFunction(db, (FuncDef*)p4);
1145 break;
1147 case P4_MEM: {
1148 if( db->pnBytesFreed==0 ){
1149 sqlite3ValueFree((sqlite3_value*)p4);
1150 }else{
1151 freeP4Mem(db, (Mem*)p4);
1153 break;
1155 case P4_VTAB : {
1156 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1157 break;
1163 ** Free the space allocated for aOp and any p4 values allocated for the
1164 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1165 ** nOp entries.
1167 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1168 if( aOp ){
1169 Op *pOp;
1170 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1171 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1172 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1173 sqlite3DbFree(db, pOp->zComment);
1174 #endif
1176 sqlite3DbFreeNN(db, aOp);
1181 ** Link the SubProgram object passed as the second argument into the linked
1182 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1183 ** objects when the VM is no longer required.
1185 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1186 p->pNext = pVdbe->pProgram;
1187 pVdbe->pProgram = p;
1191 ** Return true if the given Vdbe has any SubPrograms.
1193 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1194 return pVdbe->pProgram!=0;
1198 ** Change the opcode at addr into OP_Noop
1200 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1201 VdbeOp *pOp;
1202 if( p->db->mallocFailed ) return 0;
1203 assert( addr>=0 && addr<p->nOp );
1204 pOp = &p->aOp[addr];
1205 freeP4(p->db, pOp->p4type, pOp->p4.p);
1206 pOp->p4type = P4_NOTUSED;
1207 pOp->p4.z = 0;
1208 pOp->opcode = OP_Noop;
1209 return 1;
1213 ** If the last opcode is "op" and it is not a jump destination,
1214 ** then remove it. Return true if and only if an opcode was removed.
1216 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1217 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1218 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1219 }else{
1220 return 0;
1224 #ifdef SQLITE_DEBUG
1226 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1227 ** registers, except any identified by mask, are no longer in use.
1229 void sqlite3VdbeReleaseRegisters(
1230 Parse *pParse, /* Parsing context */
1231 int iFirst, /* Index of first register to be released */
1232 int N, /* Number of registers to release */
1233 u32 mask, /* Mask of registers to NOT release */
1234 int bUndefine /* If true, mark registers as undefined */
1236 if( N==0 ) return;
1237 assert( pParse->pVdbe );
1238 assert( iFirst>=1 );
1239 assert( iFirst+N-1<=pParse->nMem );
1240 if( N<=31 && mask!=0 ){
1241 while( N>0 && (mask&1)!=0 ){
1242 mask >>= 1;
1243 iFirst++;
1244 N--;
1246 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1247 mask &= ~MASKBIT32(N-1);
1248 N--;
1251 if( N>0 ){
1252 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1253 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1256 #endif /* SQLITE_DEBUG */
1260 ** Change the value of the P4 operand for a specific instruction.
1261 ** This routine is useful when a large program is loaded from a
1262 ** static array using sqlite3VdbeAddOpList but we want to make a
1263 ** few minor changes to the program.
1265 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1266 ** the string is made into memory obtained from sqlite3_malloc().
1267 ** A value of n==0 means copy bytes of zP4 up to and including the
1268 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1270 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1271 ** to a string or structure that is guaranteed to exist for the lifetime of
1272 ** the Vdbe. In these cases we can just copy the pointer.
1274 ** If addr<0 then change P4 on the most recently inserted instruction.
1276 static void SQLITE_NOINLINE vdbeChangeP4Full(
1277 Vdbe *p,
1278 Op *pOp,
1279 const char *zP4,
1280 int n
1282 if( pOp->p4type ){
1283 freeP4(p->db, pOp->p4type, pOp->p4.p);
1284 pOp->p4type = 0;
1285 pOp->p4.p = 0;
1287 if( n<0 ){
1288 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1289 }else{
1290 if( n==0 ) n = sqlite3Strlen30(zP4);
1291 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1292 pOp->p4type = P4_DYNAMIC;
1295 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1296 Op *pOp;
1297 sqlite3 *db;
1298 assert( p!=0 );
1299 db = p->db;
1300 assert( p->magic==VDBE_MAGIC_INIT );
1301 assert( p->aOp!=0 || db->mallocFailed );
1302 if( db->mallocFailed ){
1303 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1304 return;
1306 assert( p->nOp>0 );
1307 assert( addr<p->nOp );
1308 if( addr<0 ){
1309 addr = p->nOp - 1;
1311 pOp = &p->aOp[addr];
1312 if( n>=0 || pOp->p4type ){
1313 vdbeChangeP4Full(p, pOp, zP4, n);
1314 return;
1316 if( n==P4_INT32 ){
1317 /* Note: this cast is safe, because the origin data point was an int
1318 ** that was cast to a (const char *). */
1319 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1320 pOp->p4type = P4_INT32;
1321 }else if( zP4!=0 ){
1322 assert( n<0 );
1323 pOp->p4.p = (void*)zP4;
1324 pOp->p4type = (signed char)n;
1325 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1330 ** Change the P4 operand of the most recently coded instruction
1331 ** to the value defined by the arguments. This is a high-speed
1332 ** version of sqlite3VdbeChangeP4().
1334 ** The P4 operand must not have been previously defined. And the new
1335 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1336 ** those cases.
1338 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1339 VdbeOp *pOp;
1340 assert( n!=P4_INT32 && n!=P4_VTAB );
1341 assert( n<=0 );
1342 if( p->db->mallocFailed ){
1343 freeP4(p->db, n, pP4);
1344 }else{
1345 assert( pP4!=0 );
1346 assert( p->nOp>0 );
1347 pOp = &p->aOp[p->nOp-1];
1348 assert( pOp->p4type==P4_NOTUSED );
1349 pOp->p4type = n;
1350 pOp->p4.p = pP4;
1355 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1356 ** index given.
1358 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1359 Vdbe *v = pParse->pVdbe;
1360 KeyInfo *pKeyInfo;
1361 assert( v!=0 );
1362 assert( pIdx!=0 );
1363 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1364 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1367 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1369 ** Change the comment on the most recently coded instruction. Or
1370 ** insert a No-op and add the comment to that new instruction. This
1371 ** makes the code easier to read during debugging. None of this happens
1372 ** in a production build.
1374 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1375 assert( p->nOp>0 || p->aOp==0 );
1376 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1377 || p->pParse->nErr>0 );
1378 if( p->nOp ){
1379 assert( p->aOp );
1380 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1381 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1384 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1385 va_list ap;
1386 if( p ){
1387 va_start(ap, zFormat);
1388 vdbeVComment(p, zFormat, ap);
1389 va_end(ap);
1392 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1393 va_list ap;
1394 if( p ){
1395 sqlite3VdbeAddOp0(p, OP_Noop);
1396 va_start(ap, zFormat);
1397 vdbeVComment(p, zFormat, ap);
1398 va_end(ap);
1401 #endif /* NDEBUG */
1403 #ifdef SQLITE_VDBE_COVERAGE
1405 ** Set the value if the iSrcLine field for the previously coded instruction.
1407 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1408 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1410 #endif /* SQLITE_VDBE_COVERAGE */
1413 ** Return the opcode for a given address. If the address is -1, then
1414 ** return the most recently inserted opcode.
1416 ** If a memory allocation error has occurred prior to the calling of this
1417 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1418 ** is readable but not writable, though it is cast to a writable value.
1419 ** The return of a dummy opcode allows the call to continue functioning
1420 ** after an OOM fault without having to check to see if the return from
1421 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1422 ** dummy will never be written to. This is verified by code inspection and
1423 ** by running with Valgrind.
1425 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1426 /* C89 specifies that the constant "dummy" will be initialized to all
1427 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1428 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1429 assert( p->magic==VDBE_MAGIC_INIT );
1430 if( addr<0 ){
1431 addr = p->nOp - 1;
1433 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1434 if( p->db->mallocFailed ){
1435 return (VdbeOp*)&dummy;
1436 }else{
1437 return &p->aOp[addr];
1441 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1443 ** Return an integer value for one of the parameters to the opcode pOp
1444 ** determined by character c.
1446 static int translateP(char c, const Op *pOp){
1447 if( c=='1' ) return pOp->p1;
1448 if( c=='2' ) return pOp->p2;
1449 if( c=='3' ) return pOp->p3;
1450 if( c=='4' ) return pOp->p4.i;
1451 return pOp->p5;
1455 ** Compute a string for the "comment" field of a VDBE opcode listing.
1457 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1458 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1459 ** absence of other comments, this synopsis becomes the comment on the opcode.
1460 ** Some translation occurs:
1462 ** "PX" -> "r[X]"
1463 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1464 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1465 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1467 char *sqlite3VdbeDisplayComment(
1468 sqlite3 *db, /* Optional - Oom error reporting only */
1469 const Op *pOp, /* The opcode to be commented */
1470 const char *zP4 /* Previously obtained value for P4 */
1472 const char *zOpName;
1473 const char *zSynopsis;
1474 int nOpName;
1475 int ii;
1476 char zAlt[50];
1477 StrAccum x;
1479 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1480 zOpName = sqlite3OpcodeName(pOp->opcode);
1481 nOpName = sqlite3Strlen30(zOpName);
1482 if( zOpName[nOpName+1] ){
1483 int seenCom = 0;
1484 char c;
1485 zSynopsis = zOpName += nOpName + 1;
1486 if( strncmp(zSynopsis,"IF ",3)==0 ){
1487 if( pOp->p5 & SQLITE_STOREP2 ){
1488 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1489 }else{
1490 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1492 zSynopsis = zAlt;
1494 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1495 if( c=='P' ){
1496 c = zSynopsis[++ii];
1497 if( c=='4' ){
1498 sqlite3_str_appendall(&x, zP4);
1499 }else if( c=='X' ){
1500 sqlite3_str_appendall(&x, pOp->zComment);
1501 seenCom = 1;
1502 }else{
1503 int v1 = translateP(c, pOp);
1504 int v2;
1505 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1506 ii += 3;
1507 v2 = translateP(zSynopsis[ii], pOp);
1508 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1509 ii += 2;
1510 v2++;
1512 if( v2<2 ){
1513 sqlite3_str_appendf(&x, "%d", v1);
1514 }else{
1515 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1517 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1518 sqlite3_context *pCtx = pOp->p4.pCtx;
1519 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1520 sqlite3_str_appendf(&x, "%d", v1);
1521 }else if( pCtx->argc>1 ){
1522 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1523 }else{
1524 assert( x.nChar>2 );
1525 x.nChar -= 2;
1526 ii++;
1528 ii += 3;
1529 }else{
1530 sqlite3_str_appendf(&x, "%d", v1);
1531 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1532 ii += 4;
1536 }else{
1537 sqlite3_str_appendchar(&x, 1, c);
1540 if( !seenCom && pOp->zComment ){
1541 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1543 }else if( pOp->zComment ){
1544 sqlite3_str_appendall(&x, pOp->zComment);
1546 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1547 sqlite3OomFault(db);
1549 return sqlite3StrAccumFinish(&x);
1551 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1553 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1555 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1556 ** that can be displayed in the P4 column of EXPLAIN output.
1558 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1559 const char *zOp = 0;
1560 switch( pExpr->op ){
1561 case TK_STRING:
1562 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1563 break;
1564 case TK_INTEGER:
1565 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1566 break;
1567 case TK_NULL:
1568 sqlite3_str_appendf(p, "NULL");
1569 break;
1570 case TK_REGISTER: {
1571 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1572 break;
1574 case TK_COLUMN: {
1575 if( pExpr->iColumn<0 ){
1576 sqlite3_str_appendf(p, "rowid");
1577 }else{
1578 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1580 break;
1582 case TK_LT: zOp = "LT"; break;
1583 case TK_LE: zOp = "LE"; break;
1584 case TK_GT: zOp = "GT"; break;
1585 case TK_GE: zOp = "GE"; break;
1586 case TK_NE: zOp = "NE"; break;
1587 case TK_EQ: zOp = "EQ"; break;
1588 case TK_IS: zOp = "IS"; break;
1589 case TK_ISNOT: zOp = "ISNOT"; break;
1590 case TK_AND: zOp = "AND"; break;
1591 case TK_OR: zOp = "OR"; break;
1592 case TK_PLUS: zOp = "ADD"; break;
1593 case TK_STAR: zOp = "MUL"; break;
1594 case TK_MINUS: zOp = "SUB"; break;
1595 case TK_REM: zOp = "REM"; break;
1596 case TK_BITAND: zOp = "BITAND"; break;
1597 case TK_BITOR: zOp = "BITOR"; break;
1598 case TK_SLASH: zOp = "DIV"; break;
1599 case TK_LSHIFT: zOp = "LSHIFT"; break;
1600 case TK_RSHIFT: zOp = "RSHIFT"; break;
1601 case TK_CONCAT: zOp = "CONCAT"; break;
1602 case TK_UMINUS: zOp = "MINUS"; break;
1603 case TK_UPLUS: zOp = "PLUS"; break;
1604 case TK_BITNOT: zOp = "BITNOT"; break;
1605 case TK_NOT: zOp = "NOT"; break;
1606 case TK_ISNULL: zOp = "ISNULL"; break;
1607 case TK_NOTNULL: zOp = "NOTNULL"; break;
1609 default:
1610 sqlite3_str_appendf(p, "%s", "expr");
1611 break;
1614 if( zOp ){
1615 sqlite3_str_appendf(p, "%s(", zOp);
1616 displayP4Expr(p, pExpr->pLeft);
1617 if( pExpr->pRight ){
1618 sqlite3_str_append(p, ",", 1);
1619 displayP4Expr(p, pExpr->pRight);
1621 sqlite3_str_append(p, ")", 1);
1624 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1627 #if VDBE_DISPLAY_P4
1629 ** Compute a string that describes the P4 parameter for an opcode.
1630 ** Use zTemp for any required temporary buffer space.
1632 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1633 char *zP4 = 0;
1634 StrAccum x;
1636 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1637 switch( pOp->p4type ){
1638 case P4_KEYINFO: {
1639 int j;
1640 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1641 assert( pKeyInfo->aSortFlags!=0 );
1642 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1643 for(j=0; j<pKeyInfo->nKeyField; j++){
1644 CollSeq *pColl = pKeyInfo->aColl[j];
1645 const char *zColl = pColl ? pColl->zName : "";
1646 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1647 sqlite3_str_appendf(&x, ",%s%s%s",
1648 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1649 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1650 zColl);
1652 sqlite3_str_append(&x, ")", 1);
1653 break;
1655 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1656 case P4_EXPR: {
1657 displayP4Expr(&x, pOp->p4.pExpr);
1658 break;
1660 #endif
1661 case P4_COLLSEQ: {
1662 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1663 CollSeq *pColl = pOp->p4.pColl;
1664 assert( pColl->enc>=0 && pColl->enc<4 );
1665 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1666 encnames[pColl->enc]);
1667 break;
1669 case P4_FUNCDEF: {
1670 FuncDef *pDef = pOp->p4.pFunc;
1671 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1672 break;
1674 case P4_FUNCCTX: {
1675 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1676 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1677 break;
1679 case P4_INT64: {
1680 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1681 break;
1683 case P4_INT32: {
1684 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1685 break;
1687 case P4_REAL: {
1688 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1689 break;
1691 case P4_MEM: {
1692 Mem *pMem = pOp->p4.pMem;
1693 if( pMem->flags & MEM_Str ){
1694 zP4 = pMem->z;
1695 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1696 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1697 }else if( pMem->flags & MEM_Real ){
1698 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1699 }else if( pMem->flags & MEM_Null ){
1700 zP4 = "NULL";
1701 }else{
1702 assert( pMem->flags & MEM_Blob );
1703 zP4 = "(blob)";
1705 break;
1707 #ifndef SQLITE_OMIT_VIRTUALTABLE
1708 case P4_VTAB: {
1709 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1710 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1711 break;
1713 #endif
1714 case P4_INTARRAY: {
1715 int i;
1716 int *ai = pOp->p4.ai;
1717 int n = ai[0]; /* The first element of an INTARRAY is always the
1718 ** count of the number of elements to follow */
1719 for(i=1; i<=n; i++){
1720 sqlite3_str_appendf(&x, "%c%d", (i==1 ? '[' : ','), ai[i]);
1722 sqlite3_str_append(&x, "]", 1);
1723 break;
1725 case P4_SUBPROGRAM: {
1726 zP4 = "program";
1727 break;
1729 case P4_DYNBLOB:
1730 case P4_ADVANCE: {
1731 break;
1733 case P4_TABLE: {
1734 zP4 = pOp->p4.pTab->zName;
1735 break;
1737 default: {
1738 zP4 = pOp->p4.z;
1741 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1742 if( (x.accError & SQLITE_NOMEM)!=0 ){
1743 sqlite3OomFault(db);
1745 return sqlite3StrAccumFinish(&x);
1747 #endif /* VDBE_DISPLAY_P4 */
1750 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1752 ** The prepared statements need to know in advance the complete set of
1753 ** attached databases that will be use. A mask of these databases
1754 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1755 ** p->btreeMask of databases that will require a lock.
1757 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1758 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1759 assert( i<(int)sizeof(p->btreeMask)*8 );
1760 DbMaskSet(p->btreeMask, i);
1761 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1762 DbMaskSet(p->lockMask, i);
1766 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1768 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1769 ** this routine obtains the mutex associated with each BtShared structure
1770 ** that may be accessed by the VM passed as an argument. In doing so it also
1771 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1772 ** that the correct busy-handler callback is invoked if required.
1774 ** If SQLite is not threadsafe but does support shared-cache mode, then
1775 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1776 ** of all of BtShared structures accessible via the database handle
1777 ** associated with the VM.
1779 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1780 ** function is a no-op.
1782 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1783 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1784 ** corresponding to btrees that use shared cache. Then the runtime of
1785 ** this routine is N*N. But as N is rarely more than 1, this should not
1786 ** be a problem.
1788 void sqlite3VdbeEnter(Vdbe *p){
1789 int i;
1790 sqlite3 *db;
1791 Db *aDb;
1792 int nDb;
1793 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1794 db = p->db;
1795 aDb = db->aDb;
1796 nDb = db->nDb;
1797 for(i=0; i<nDb; i++){
1798 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1799 sqlite3BtreeEnter(aDb[i].pBt);
1803 #endif
1805 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1807 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1809 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1810 int i;
1811 sqlite3 *db;
1812 Db *aDb;
1813 int nDb;
1814 db = p->db;
1815 aDb = db->aDb;
1816 nDb = db->nDb;
1817 for(i=0; i<nDb; i++){
1818 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1819 sqlite3BtreeLeave(aDb[i].pBt);
1823 void sqlite3VdbeLeave(Vdbe *p){
1824 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1825 vdbeLeave(p);
1827 #endif
1829 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1831 ** Print a single opcode. This routine is used for debugging only.
1833 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1834 char *zP4;
1835 char *zCom;
1836 sqlite3 dummyDb;
1837 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1838 if( pOut==0 ) pOut = stdout;
1839 sqlite3BeginBenignMalloc();
1840 dummyDb.mallocFailed = 1;
1841 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1842 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1843 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1844 #else
1845 zCom = 0;
1846 #endif
1847 /* NB: The sqlite3OpcodeName() function is implemented by code created
1848 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1849 ** information from the vdbe.c source text */
1850 fprintf(pOut, zFormat1, pc,
1851 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1852 zP4 ? zP4 : "", pOp->p5,
1853 zCom ? zCom : ""
1855 fflush(pOut);
1856 sqlite3_free(zP4);
1857 sqlite3_free(zCom);
1858 sqlite3EndBenignMalloc();
1860 #endif
1863 ** Initialize an array of N Mem element.
1865 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1866 while( (N--)>0 ){
1867 p->db = db;
1868 p->flags = flags;
1869 p->szMalloc = 0;
1870 #ifdef SQLITE_DEBUG
1871 p->pScopyFrom = 0;
1872 #endif
1873 p++;
1878 ** Release an array of N Mem elements
1880 static void releaseMemArray(Mem *p, int N){
1881 if( p && N ){
1882 Mem *pEnd = &p[N];
1883 sqlite3 *db = p->db;
1884 if( db->pnBytesFreed ){
1886 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1887 }while( (++p)<pEnd );
1888 return;
1891 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1892 assert( sqlite3VdbeCheckMemInvariants(p) );
1894 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1895 ** that takes advantage of the fact that the memory cell value is
1896 ** being set to NULL after releasing any dynamic resources.
1898 ** The justification for duplicating code is that according to
1899 ** callgrind, this causes a certain test case to hit the CPU 4.7
1900 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1901 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1902 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1903 ** with no indexes using a single prepared INSERT statement, bind()
1904 ** and reset(). Inserts are grouped into a transaction.
1906 testcase( p->flags & MEM_Agg );
1907 testcase( p->flags & MEM_Dyn );
1908 testcase( p->xDel==sqlite3VdbeFrameMemDel );
1909 if( p->flags&(MEM_Agg|MEM_Dyn) ){
1910 sqlite3VdbeMemRelease(p);
1911 }else if( p->szMalloc ){
1912 sqlite3DbFreeNN(db, p->zMalloc);
1913 p->szMalloc = 0;
1916 p->flags = MEM_Undefined;
1917 }while( (++p)<pEnd );
1921 #ifdef SQLITE_DEBUG
1923 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
1924 ** and false if something is wrong.
1926 ** This routine is intended for use inside of assert() statements only.
1928 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1929 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1930 return 1;
1932 #endif
1936 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1937 ** that deletes the Frame object that is attached to it as a blob.
1939 ** This routine does not delete the Frame right away. It merely adds the
1940 ** frame to a list of frames to be deleted when the Vdbe halts.
1942 void sqlite3VdbeFrameMemDel(void *pArg){
1943 VdbeFrame *pFrame = (VdbeFrame*)pArg;
1944 assert( sqlite3VdbeFrameIsValid(pFrame) );
1945 pFrame->pParent = pFrame->v->pDelFrame;
1946 pFrame->v->pDelFrame = pFrame;
1949 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1951 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1952 ** QUERY PLAN output.
1954 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
1955 ** more opcodes to be displayed.
1957 int sqlite3VdbeNextOpcode(
1958 Vdbe *p, /* The statement being explained */
1959 Mem *pSub, /* Storage for keeping track of subprogram nesting */
1960 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
1961 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
1962 int *piAddr, /* OUT: Write index into (*paOp)[] here */
1963 Op **paOp /* OUT: Write the opcode array here */
1965 int nRow; /* Stop when row count reaches this */
1966 int nSub = 0; /* Number of sub-vdbes seen so far */
1967 SubProgram **apSub = 0; /* Array of sub-vdbes */
1968 int i; /* Next instruction address */
1969 int rc = SQLITE_OK; /* Result code */
1970 Op *aOp = 0; /* Opcode array */
1971 int iPc; /* Rowid. Copy of value in *piPc */
1973 /* When the number of output rows reaches nRow, that means the
1974 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1975 ** nRow is the sum of the number of rows in the main program, plus
1976 ** the sum of the number of rows in all trigger subprograms encountered
1977 ** so far. The nRow value will increase as new trigger subprograms are
1978 ** encountered, but p->pc will eventually catch up to nRow.
1980 nRow = p->nOp;
1981 if( pSub!=0 ){
1982 if( pSub->flags&MEM_Blob ){
1983 /* pSub is initiallly NULL. It is initialized to a BLOB by
1984 ** the P4_SUBPROGRAM processing logic below */
1985 nSub = pSub->n/sizeof(Vdbe*);
1986 apSub = (SubProgram **)pSub->z;
1988 for(i=0; i<nSub; i++){
1989 nRow += apSub[i]->nOp;
1992 iPc = *piPc;
1993 while(1){ /* Loop exits via break */
1994 i = iPc++;
1995 if( i>=nRow ){
1996 p->rc = SQLITE_OK;
1997 rc = SQLITE_DONE;
1998 break;
2000 if( i<p->nOp ){
2001 /* The rowid is small enough that we are still in the
2002 ** main program. */
2003 aOp = p->aOp;
2004 }else{
2005 /* We are currently listing subprograms. Figure out which one and
2006 ** pick up the appropriate opcode. */
2007 int j;
2008 i -= p->nOp;
2009 assert( apSub!=0 );
2010 assert( nSub>0 );
2011 for(j=0; i>=apSub[j]->nOp; j++){
2012 i -= apSub[j]->nOp;
2013 assert( i<apSub[j]->nOp || j+1<nSub );
2015 aOp = apSub[j]->aOp;
2018 /* When an OP_Program opcode is encounter (the only opcode that has
2019 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2020 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2021 ** has not already been seen.
2023 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2024 int nByte = (nSub+1)*sizeof(SubProgram*);
2025 int j;
2026 for(j=0; j<nSub; j++){
2027 if( apSub[j]==aOp[i].p4.pProgram ) break;
2029 if( j==nSub ){
2030 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2031 if( p->rc!=SQLITE_OK ){
2032 rc = SQLITE_ERROR;
2033 break;
2035 apSub = (SubProgram **)pSub->z;
2036 apSub[nSub++] = aOp[i].p4.pProgram;
2037 MemSetTypeFlag(pSub, MEM_Blob);
2038 pSub->n = nSub*sizeof(SubProgram*);
2039 nRow += aOp[i].p4.pProgram->nOp;
2042 if( eMode==0 ) break;
2043 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2044 if( eMode==2 ){
2045 Op *pOp = aOp + i;
2046 if( pOp->opcode==OP_OpenRead ) break;
2047 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2048 if( pOp->opcode==OP_ReopenIdx ) break;
2049 }else
2050 #endif
2052 assert( eMode==1 );
2053 if( aOp[i].opcode==OP_Explain ) break;
2054 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2057 *piPc = iPc;
2058 *piAddr = i;
2059 *paOp = aOp;
2060 return rc;
2062 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2066 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2067 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2069 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2070 int i;
2071 Mem *aMem = VdbeFrameMem(p);
2072 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2073 assert( sqlite3VdbeFrameIsValid(p) );
2074 for(i=0; i<p->nChildCsr; i++){
2075 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2077 releaseMemArray(aMem, p->nChildMem);
2078 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2079 sqlite3DbFree(p->v->db, p);
2082 #ifndef SQLITE_OMIT_EXPLAIN
2084 ** Give a listing of the program in the virtual machine.
2086 ** The interface is the same as sqlite3VdbeExec(). But instead of
2087 ** running the code, it invokes the callback once for each instruction.
2088 ** This feature is used to implement "EXPLAIN".
2090 ** When p->explain==1, each instruction is listed. When
2091 ** p->explain==2, only OP_Explain instructions are listed and these
2092 ** are shown in a different format. p->explain==2 is used to implement
2093 ** EXPLAIN QUERY PLAN.
2094 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2095 ** are also shown, so that the boundaries between the main program and
2096 ** each trigger are clear.
2098 ** When p->explain==1, first the main program is listed, then each of
2099 ** the trigger subprograms are listed one by one.
2101 int sqlite3VdbeList(
2102 Vdbe *p /* The VDBE */
2104 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2105 sqlite3 *db = p->db; /* The database connection */
2106 int i; /* Loop counter */
2107 int rc = SQLITE_OK; /* Return code */
2108 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2109 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2110 Op *aOp; /* Array of opcodes */
2111 Op *pOp; /* Current opcode */
2113 assert( p->explain );
2114 assert( p->magic==VDBE_MAGIC_RUN );
2115 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2117 /* Even though this opcode does not use dynamic strings for
2118 ** the result, result columns may become dynamic if the user calls
2119 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2121 releaseMemArray(pMem, 8);
2122 p->pResultSet = 0;
2124 if( p->rc==SQLITE_NOMEM ){
2125 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2126 ** sqlite3_column_text16() failed. */
2127 sqlite3OomFault(db);
2128 return SQLITE_ERROR;
2131 if( bListSubprogs ){
2132 /* The first 8 memory cells are used for the result set. So we will
2133 ** commandeer the 9th cell to use as storage for an array of pointers
2134 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2135 ** cells. */
2136 assert( p->nMem>9 );
2137 pSub = &p->aMem[9];
2138 }else{
2139 pSub = 0;
2142 /* Figure out which opcode is next to display */
2143 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2145 if( rc==SQLITE_OK ){
2146 pOp = aOp + i;
2147 if( AtomicLoad(&db->u1.isInterrupted) ){
2148 p->rc = SQLITE_INTERRUPT;
2149 rc = SQLITE_ERROR;
2150 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2151 }else{
2152 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2153 if( p->explain==2 ){
2154 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2155 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2156 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2157 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2158 p->nResColumn = 4;
2159 }else{
2160 sqlite3VdbeMemSetInt64(pMem+0, i);
2161 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2162 -1, SQLITE_UTF8, SQLITE_STATIC);
2163 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2164 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2165 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2166 /* pMem+5 for p4 is done last */
2167 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2168 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2170 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2171 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2173 #else
2174 sqlite3VdbeMemSetNull(pMem+7);
2175 #endif
2176 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2177 p->nResColumn = 8;
2179 p->pResultSet = pMem;
2180 if( db->mallocFailed ){
2181 p->rc = SQLITE_NOMEM;
2182 rc = SQLITE_ERROR;
2183 }else{
2184 p->rc = SQLITE_OK;
2185 rc = SQLITE_ROW;
2189 return rc;
2191 #endif /* SQLITE_OMIT_EXPLAIN */
2193 #ifdef SQLITE_DEBUG
2195 ** Print the SQL that was used to generate a VDBE program.
2197 void sqlite3VdbePrintSql(Vdbe *p){
2198 const char *z = 0;
2199 if( p->zSql ){
2200 z = p->zSql;
2201 }else if( p->nOp>=1 ){
2202 const VdbeOp *pOp = &p->aOp[0];
2203 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2204 z = pOp->p4.z;
2205 while( sqlite3Isspace(*z) ) z++;
2208 if( z ) printf("SQL: [%s]\n", z);
2210 #endif
2212 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2214 ** Print an IOTRACE message showing SQL content.
2216 void sqlite3VdbeIOTraceSql(Vdbe *p){
2217 int nOp = p->nOp;
2218 VdbeOp *pOp;
2219 if( sqlite3IoTrace==0 ) return;
2220 if( nOp<1 ) return;
2221 pOp = &p->aOp[0];
2222 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2223 int i, j;
2224 char z[1000];
2225 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2226 for(i=0; sqlite3Isspace(z[i]); i++){}
2227 for(j=0; z[i]; i++){
2228 if( sqlite3Isspace(z[i]) ){
2229 if( z[i-1]!=' ' ){
2230 z[j++] = ' ';
2232 }else{
2233 z[j++] = z[i];
2236 z[j] = 0;
2237 sqlite3IoTrace("SQL %s\n", z);
2240 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2242 /* An instance of this object describes bulk memory available for use
2243 ** by subcomponents of a prepared statement. Space is allocated out
2244 ** of a ReusableSpace object by the allocSpace() routine below.
2246 struct ReusableSpace {
2247 u8 *pSpace; /* Available memory */
2248 sqlite3_int64 nFree; /* Bytes of available memory */
2249 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2252 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2253 ** from the ReusableSpace object. Return a pointer to the allocated
2254 ** memory on success. If insufficient memory is available in the
2255 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2256 ** value by the amount needed and return NULL.
2258 ** If pBuf is not initially NULL, that means that the memory has already
2259 ** been allocated by a prior call to this routine, so just return a copy
2260 ** of pBuf and leave ReusableSpace unchanged.
2262 ** This allocator is employed to repurpose unused slots at the end of the
2263 ** opcode array of prepared state for other memory needs of the prepared
2264 ** statement.
2266 static void *allocSpace(
2267 struct ReusableSpace *p, /* Bulk memory available for allocation */
2268 void *pBuf, /* Pointer to a prior allocation */
2269 sqlite3_int64 nByte /* Bytes of memory needed */
2271 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2272 if( pBuf==0 ){
2273 nByte = ROUND8(nByte);
2274 if( nByte <= p->nFree ){
2275 p->nFree -= nByte;
2276 pBuf = &p->pSpace[p->nFree];
2277 }else{
2278 p->nNeeded += nByte;
2281 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2282 return pBuf;
2286 ** Rewind the VDBE back to the beginning in preparation for
2287 ** running it.
2289 void sqlite3VdbeRewind(Vdbe *p){
2290 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2291 int i;
2292 #endif
2293 assert( p!=0 );
2294 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
2296 /* There should be at least one opcode.
2298 assert( p->nOp>0 );
2300 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2301 p->magic = VDBE_MAGIC_RUN;
2303 #ifdef SQLITE_DEBUG
2304 for(i=0; i<p->nMem; i++){
2305 assert( p->aMem[i].db==p->db );
2307 #endif
2308 p->pc = -1;
2309 p->rc = SQLITE_OK;
2310 p->errorAction = OE_Abort;
2311 p->nChange = 0;
2312 p->cacheCtr = 1;
2313 p->minWriteFileFormat = 255;
2314 p->iStatement = 0;
2315 p->nFkConstraint = 0;
2316 #ifdef VDBE_PROFILE
2317 for(i=0; i<p->nOp; i++){
2318 p->aOp[i].cnt = 0;
2319 p->aOp[i].cycles = 0;
2321 #endif
2325 ** Prepare a virtual machine for execution for the first time after
2326 ** creating the virtual machine. This involves things such
2327 ** as allocating registers and initializing the program counter.
2328 ** After the VDBE has be prepped, it can be executed by one or more
2329 ** calls to sqlite3VdbeExec().
2331 ** This function may be called exactly once on each virtual machine.
2332 ** After this routine is called the VM has been "packaged" and is ready
2333 ** to run. After this routine is called, further calls to
2334 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2335 ** the Vdbe from the Parse object that helped generate it so that the
2336 ** the Vdbe becomes an independent entity and the Parse object can be
2337 ** destroyed.
2339 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2340 ** to its initial state after it has been run.
2342 void sqlite3VdbeMakeReady(
2343 Vdbe *p, /* The VDBE */
2344 Parse *pParse /* Parsing context */
2346 sqlite3 *db; /* The database connection */
2347 int nVar; /* Number of parameters */
2348 int nMem; /* Number of VM memory registers */
2349 int nCursor; /* Number of cursors required */
2350 int nArg; /* Number of arguments in subprograms */
2351 int n; /* Loop counter */
2352 struct ReusableSpace x; /* Reusable bulk memory */
2354 assert( p!=0 );
2355 assert( p->nOp>0 );
2356 assert( pParse!=0 );
2357 assert( p->magic==VDBE_MAGIC_INIT );
2358 assert( pParse==p->pParse );
2359 db = p->db;
2360 assert( db->mallocFailed==0 );
2361 nVar = pParse->nVar;
2362 nMem = pParse->nMem;
2363 nCursor = pParse->nTab;
2364 nArg = pParse->nMaxArg;
2366 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2367 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2368 ** space at the end of aMem[] for cursors 1 and greater.
2369 ** See also: allocateCursor().
2371 nMem += nCursor;
2372 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2374 /* Figure out how much reusable memory is available at the end of the
2375 ** opcode array. This extra memory will be reallocated for other elements
2376 ** of the prepared statement.
2378 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2379 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2380 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2381 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2382 assert( x.nFree>=0 );
2383 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2385 resolveP2Values(p, &nArg);
2386 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2387 if( pParse->explain ){
2388 static const char * const azColName[] = {
2389 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2390 "id", "parent", "notused", "detail"
2392 int iFirst, mx, i;
2393 if( nMem<10 ) nMem = 10;
2394 p->explain = pParse->explain;
2395 if( pParse->explain==2 ){
2396 sqlite3VdbeSetNumCols(p, 4);
2397 iFirst = 8;
2398 mx = 12;
2399 }else{
2400 sqlite3VdbeSetNumCols(p, 8);
2401 iFirst = 0;
2402 mx = 8;
2404 for(i=iFirst; i<mx; i++){
2405 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2406 azColName[i], SQLITE_STATIC);
2409 p->expired = 0;
2411 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2412 ** passes. On the first pass, we try to reuse unused memory at the
2413 ** end of the opcode array. If we are unable to satisfy all memory
2414 ** requirements by reusing the opcode array tail, then the second
2415 ** pass will fill in the remainder using a fresh memory allocation.
2417 ** This two-pass approach that reuses as much memory as possible from
2418 ** the leftover memory at the end of the opcode array. This can significantly
2419 ** reduce the amount of memory held by a prepared statement.
2421 x.nNeeded = 0;
2422 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2423 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2424 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2425 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2426 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2427 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2428 #endif
2429 if( x.nNeeded ){
2430 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2431 x.nFree = x.nNeeded;
2432 if( !db->mallocFailed ){
2433 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2434 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2435 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2436 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2437 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2438 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2439 #endif
2443 p->pVList = pParse->pVList;
2444 pParse->pVList = 0;
2445 if( db->mallocFailed ){
2446 p->nVar = 0;
2447 p->nCursor = 0;
2448 p->nMem = 0;
2449 }else{
2450 p->nCursor = nCursor;
2451 p->nVar = (ynVar)nVar;
2452 initMemArray(p->aVar, nVar, db, MEM_Null);
2453 p->nMem = nMem;
2454 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2455 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2457 memset(p->anExec, 0, p->nOp*sizeof(i64));
2458 #endif
2460 sqlite3VdbeRewind(p);
2464 ** Close a VDBE cursor and release all the resources that cursor
2465 ** happens to hold.
2467 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2468 if( pCx==0 ){
2469 return;
2471 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2472 switch( pCx->eCurType ){
2473 case CURTYPE_SORTER: {
2474 sqlite3VdbeSorterClose(p->db, pCx);
2475 break;
2477 case CURTYPE_BTREE: {
2478 if( pCx->isEphemeral ){
2479 if( pCx->pBtx ) sqlite3BtreeClose(pCx->pBtx);
2480 /* The pCx->pCursor will be close automatically, if it exists, by
2481 ** the call above. */
2482 }else{
2483 assert( pCx->uc.pCursor!=0 );
2484 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2486 break;
2488 #ifndef SQLITE_OMIT_VIRTUALTABLE
2489 case CURTYPE_VTAB: {
2490 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2491 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2492 assert( pVCur->pVtab->nRef>0 );
2493 pVCur->pVtab->nRef--;
2494 pModule->xClose(pVCur);
2495 break;
2497 #endif
2502 ** Close all cursors in the current frame.
2504 static void closeCursorsInFrame(Vdbe *p){
2505 if( p->apCsr ){
2506 int i;
2507 for(i=0; i<p->nCursor; i++){
2508 VdbeCursor *pC = p->apCsr[i];
2509 if( pC ){
2510 sqlite3VdbeFreeCursor(p, pC);
2511 p->apCsr[i] = 0;
2518 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2519 ** is used, for example, when a trigger sub-program is halted to restore
2520 ** control to the main program.
2522 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2523 Vdbe *v = pFrame->v;
2524 closeCursorsInFrame(v);
2525 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2526 v->anExec = pFrame->anExec;
2527 #endif
2528 v->aOp = pFrame->aOp;
2529 v->nOp = pFrame->nOp;
2530 v->aMem = pFrame->aMem;
2531 v->nMem = pFrame->nMem;
2532 v->apCsr = pFrame->apCsr;
2533 v->nCursor = pFrame->nCursor;
2534 v->db->lastRowid = pFrame->lastRowid;
2535 v->nChange = pFrame->nChange;
2536 v->db->nChange = pFrame->nDbChange;
2537 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2538 v->pAuxData = pFrame->pAuxData;
2539 pFrame->pAuxData = 0;
2540 return pFrame->pc;
2544 ** Close all cursors.
2546 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2547 ** cell array. This is necessary as the memory cell array may contain
2548 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2549 ** open cursors.
2551 static void closeAllCursors(Vdbe *p){
2552 if( p->pFrame ){
2553 VdbeFrame *pFrame;
2554 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2555 sqlite3VdbeFrameRestore(pFrame);
2556 p->pFrame = 0;
2557 p->nFrame = 0;
2559 assert( p->nFrame==0 );
2560 closeCursorsInFrame(p);
2561 if( p->aMem ){
2562 releaseMemArray(p->aMem, p->nMem);
2564 while( p->pDelFrame ){
2565 VdbeFrame *pDel = p->pDelFrame;
2566 p->pDelFrame = pDel->pParent;
2567 sqlite3VdbeFrameDelete(pDel);
2570 /* Delete any auxdata allocations made by the VM */
2571 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2572 assert( p->pAuxData==0 );
2576 ** Set the number of result columns that will be returned by this SQL
2577 ** statement. This is now set at compile time, rather than during
2578 ** execution of the vdbe program so that sqlite3_column_count() can
2579 ** be called on an SQL statement before sqlite3_step().
2581 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2582 int n;
2583 sqlite3 *db = p->db;
2585 if( p->nResColumn ){
2586 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2587 sqlite3DbFree(db, p->aColName);
2589 n = nResColumn*COLNAME_N;
2590 p->nResColumn = (u16)nResColumn;
2591 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2592 if( p->aColName==0 ) return;
2593 initMemArray(p->aColName, n, db, MEM_Null);
2597 ** Set the name of the idx'th column to be returned by the SQL statement.
2598 ** zName must be a pointer to a nul terminated string.
2600 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2602 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2603 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2604 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2606 int sqlite3VdbeSetColName(
2607 Vdbe *p, /* Vdbe being configured */
2608 int idx, /* Index of column zName applies to */
2609 int var, /* One of the COLNAME_* constants */
2610 const char *zName, /* Pointer to buffer containing name */
2611 void (*xDel)(void*) /* Memory management strategy for zName */
2613 int rc;
2614 Mem *pColName;
2615 assert( idx<p->nResColumn );
2616 assert( var<COLNAME_N );
2617 if( p->db->mallocFailed ){
2618 assert( !zName || xDel!=SQLITE_DYNAMIC );
2619 return SQLITE_NOMEM_BKPT;
2621 assert( p->aColName!=0 );
2622 pColName = &(p->aColName[idx+var*p->nResColumn]);
2623 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2624 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2625 return rc;
2629 ** A read or write transaction may or may not be active on database handle
2630 ** db. If a transaction is active, commit it. If there is a
2631 ** write-transaction spanning more than one database file, this routine
2632 ** takes care of the master journal trickery.
2634 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2635 int i;
2636 int nTrans = 0; /* Number of databases with an active write-transaction
2637 ** that are candidates for a two-phase commit using a
2638 ** master-journal */
2639 int rc = SQLITE_OK;
2640 int needXcommit = 0;
2642 #ifdef SQLITE_OMIT_VIRTUALTABLE
2643 /* With this option, sqlite3VtabSync() is defined to be simply
2644 ** SQLITE_OK so p is not used.
2646 UNUSED_PARAMETER(p);
2647 #endif
2649 /* Before doing anything else, call the xSync() callback for any
2650 ** virtual module tables written in this transaction. This has to
2651 ** be done before determining whether a master journal file is
2652 ** required, as an xSync() callback may add an attached database
2653 ** to the transaction.
2655 rc = sqlite3VtabSync(db, p);
2657 /* This loop determines (a) if the commit hook should be invoked and
2658 ** (b) how many database files have open write transactions, not
2659 ** including the temp database. (b) is important because if more than
2660 ** one database file has an open write transaction, a master journal
2661 ** file is required for an atomic commit.
2663 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2664 Btree *pBt = db->aDb[i].pBt;
2665 if( sqlite3BtreeIsInTrans(pBt) ){
2666 /* Whether or not a database might need a master journal depends upon
2667 ** its journal mode (among other things). This matrix determines which
2668 ** journal modes use a master journal and which do not */
2669 static const u8 aMJNeeded[] = {
2670 /* DELETE */ 1,
2671 /* PERSIST */ 1,
2672 /* OFF */ 0,
2673 /* TRUNCATE */ 1,
2674 /* MEMORY */ 0,
2675 /* WAL */ 0
2677 Pager *pPager; /* Pager associated with pBt */
2678 needXcommit = 1;
2679 sqlite3BtreeEnter(pBt);
2680 pPager = sqlite3BtreePager(pBt);
2681 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2682 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2683 && sqlite3PagerIsMemdb(pPager)==0
2685 assert( i!=1 );
2686 nTrans++;
2688 rc = sqlite3PagerExclusiveLock(pPager);
2689 sqlite3BtreeLeave(pBt);
2692 if( rc!=SQLITE_OK ){
2693 return rc;
2696 /* If there are any write-transactions at all, invoke the commit hook */
2697 if( needXcommit && db->xCommitCallback ){
2698 rc = db->xCommitCallback(db->pCommitArg);
2699 if( rc ){
2700 return SQLITE_CONSTRAINT_COMMITHOOK;
2704 /* The simple case - no more than one database file (not counting the
2705 ** TEMP database) has a transaction active. There is no need for the
2706 ** master-journal.
2708 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2709 ** string, it means the main database is :memory: or a temp file. In
2710 ** that case we do not support atomic multi-file commits, so use the
2711 ** simple case then too.
2713 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2714 || nTrans<=1
2716 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2717 Btree *pBt = db->aDb[i].pBt;
2718 if( pBt ){
2719 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2723 /* Do the commit only if all databases successfully complete phase 1.
2724 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2725 ** IO error while deleting or truncating a journal file. It is unlikely,
2726 ** but could happen. In this case abandon processing and return the error.
2728 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2729 Btree *pBt = db->aDb[i].pBt;
2730 if( pBt ){
2731 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2734 if( rc==SQLITE_OK ){
2735 sqlite3VtabCommit(db);
2739 /* The complex case - There is a multi-file write-transaction active.
2740 ** This requires a master journal file to ensure the transaction is
2741 ** committed atomically.
2743 #ifndef SQLITE_OMIT_DISKIO
2744 else{
2745 sqlite3_vfs *pVfs = db->pVfs;
2746 char *zMaster = 0; /* File-name for the master journal */
2747 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2748 sqlite3_file *pMaster = 0;
2749 i64 offset = 0;
2750 int res;
2751 int retryCount = 0;
2752 int nMainFile;
2754 /* Select a master journal file name */
2755 nMainFile = sqlite3Strlen30(zMainFile);
2756 zMaster = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2757 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
2758 zMaster += 4;
2759 do {
2760 u32 iRandom;
2761 if( retryCount ){
2762 if( retryCount>100 ){
2763 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2764 sqlite3OsDelete(pVfs, zMaster, 0);
2765 break;
2766 }else if( retryCount==1 ){
2767 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2770 retryCount++;
2771 sqlite3_randomness(sizeof(iRandom), &iRandom);
2772 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
2773 (iRandom>>8)&0xffffff, iRandom&0xff);
2774 /* The antipenultimate character of the master journal name must
2775 ** be "9" to avoid name collisions when using 8+3 filenames. */
2776 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
2777 sqlite3FileSuffix3(zMainFile, zMaster);
2778 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2779 }while( rc==SQLITE_OK && res );
2780 if( rc==SQLITE_OK ){
2781 /* Open the master journal. */
2782 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2783 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2784 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2787 if( rc!=SQLITE_OK ){
2788 sqlite3DbFree(db, zMaster-4);
2789 return rc;
2792 /* Write the name of each database file in the transaction into the new
2793 ** master journal file. If an error occurs at this point close
2794 ** and delete the master journal file. All the individual journal files
2795 ** still have 'null' as the master journal pointer, so they will roll
2796 ** back independently if a failure occurs.
2798 for(i=0; i<db->nDb; i++){
2799 Btree *pBt = db->aDb[i].pBt;
2800 if( sqlite3BtreeIsInTrans(pBt) ){
2801 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2802 if( zFile==0 ){
2803 continue; /* Ignore TEMP and :memory: databases */
2805 assert( zFile[0]!=0 );
2806 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2807 offset += sqlite3Strlen30(zFile)+1;
2808 if( rc!=SQLITE_OK ){
2809 sqlite3OsCloseFree(pMaster);
2810 sqlite3OsDelete(pVfs, zMaster, 0);
2811 sqlite3DbFree(db, zMaster-4);
2812 return rc;
2817 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2818 ** flag is set this is not required.
2820 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2821 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2823 sqlite3OsCloseFree(pMaster);
2824 sqlite3OsDelete(pVfs, zMaster, 0);
2825 sqlite3DbFree(db, zMaster-4);
2826 return rc;
2829 /* Sync all the db files involved in the transaction. The same call
2830 ** sets the master journal pointer in each individual journal. If
2831 ** an error occurs here, do not delete the master journal file.
2833 ** If the error occurs during the first call to
2834 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2835 ** master journal file will be orphaned. But we cannot delete it,
2836 ** in case the master journal file name was written into the journal
2837 ** file before the failure occurred.
2839 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2840 Btree *pBt = db->aDb[i].pBt;
2841 if( pBt ){
2842 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
2845 sqlite3OsCloseFree(pMaster);
2846 assert( rc!=SQLITE_BUSY );
2847 if( rc!=SQLITE_OK ){
2848 sqlite3DbFree(db, zMaster-4);
2849 return rc;
2852 /* Delete the master journal file. This commits the transaction. After
2853 ** doing this the directory is synced again before any individual
2854 ** transaction files are deleted.
2856 rc = sqlite3OsDelete(pVfs, zMaster, 1);
2857 sqlite3DbFree(db, zMaster-4);
2858 zMaster = 0;
2859 if( rc ){
2860 return rc;
2863 /* All files and directories have already been synced, so the following
2864 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2865 ** deleting or truncating journals. If something goes wrong while
2866 ** this is happening we don't really care. The integrity of the
2867 ** transaction is already guaranteed, but some stray 'cold' journals
2868 ** may be lying around. Returning an error code won't help matters.
2870 disable_simulated_io_errors();
2871 sqlite3BeginBenignMalloc();
2872 for(i=0; i<db->nDb; i++){
2873 Btree *pBt = db->aDb[i].pBt;
2874 if( pBt ){
2875 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2878 sqlite3EndBenignMalloc();
2879 enable_simulated_io_errors();
2881 sqlite3VtabCommit(db);
2883 #endif
2885 return rc;
2889 ** This routine checks that the sqlite3.nVdbeActive count variable
2890 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2891 ** currently active. An assertion fails if the two counts do not match.
2892 ** This is an internal self-check only - it is not an essential processing
2893 ** step.
2895 ** This is a no-op if NDEBUG is defined.
2897 #ifndef NDEBUG
2898 static void checkActiveVdbeCnt(sqlite3 *db){
2899 Vdbe *p;
2900 int cnt = 0;
2901 int nWrite = 0;
2902 int nRead = 0;
2903 p = db->pVdbe;
2904 while( p ){
2905 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2906 cnt++;
2907 if( p->readOnly==0 ) nWrite++;
2908 if( p->bIsReader ) nRead++;
2910 p = p->pNext;
2912 assert( cnt==db->nVdbeActive );
2913 assert( nWrite==db->nVdbeWrite );
2914 assert( nRead==db->nVdbeRead );
2916 #else
2917 #define checkActiveVdbeCnt(x)
2918 #endif
2921 ** If the Vdbe passed as the first argument opened a statement-transaction,
2922 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2923 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2924 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2925 ** statement transaction is committed.
2927 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2928 ** Otherwise SQLITE_OK.
2930 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2931 sqlite3 *const db = p->db;
2932 int rc = SQLITE_OK;
2933 int i;
2934 const int iSavepoint = p->iStatement-1;
2936 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2937 assert( db->nStatement>0 );
2938 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2940 for(i=0; i<db->nDb; i++){
2941 int rc2 = SQLITE_OK;
2942 Btree *pBt = db->aDb[i].pBt;
2943 if( pBt ){
2944 if( eOp==SAVEPOINT_ROLLBACK ){
2945 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2947 if( rc2==SQLITE_OK ){
2948 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2950 if( rc==SQLITE_OK ){
2951 rc = rc2;
2955 db->nStatement--;
2956 p->iStatement = 0;
2958 if( rc==SQLITE_OK ){
2959 if( eOp==SAVEPOINT_ROLLBACK ){
2960 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2962 if( rc==SQLITE_OK ){
2963 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2967 /* If the statement transaction is being rolled back, also restore the
2968 ** database handles deferred constraint counter to the value it had when
2969 ** the statement transaction was opened. */
2970 if( eOp==SAVEPOINT_ROLLBACK ){
2971 db->nDeferredCons = p->nStmtDefCons;
2972 db->nDeferredImmCons = p->nStmtDefImmCons;
2974 return rc;
2976 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2977 if( p->db->nStatement && p->iStatement ){
2978 return vdbeCloseStatement(p, eOp);
2980 return SQLITE_OK;
2985 ** This function is called when a transaction opened by the database
2986 ** handle associated with the VM passed as an argument is about to be
2987 ** committed. If there are outstanding deferred foreign key constraint
2988 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2990 ** If there are outstanding FK violations and this function returns
2991 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2992 ** and write an error message to it. Then return SQLITE_ERROR.
2994 #ifndef SQLITE_OMIT_FOREIGN_KEY
2995 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2996 sqlite3 *db = p->db;
2997 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2998 || (!deferred && p->nFkConstraint>0)
3000 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3001 p->errorAction = OE_Abort;
3002 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3003 return SQLITE_ERROR;
3005 return SQLITE_OK;
3007 #endif
3010 ** This routine is called the when a VDBE tries to halt. If the VDBE
3011 ** has made changes and is in autocommit mode, then commit those
3012 ** changes. If a rollback is needed, then do the rollback.
3014 ** This routine is the only way to move the state of a VM from
3015 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
3016 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3018 ** Return an error code. If the commit could not complete because of
3019 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3020 ** means the close did not happen and needs to be repeated.
3022 int sqlite3VdbeHalt(Vdbe *p){
3023 int rc; /* Used to store transient return codes */
3024 sqlite3 *db = p->db;
3026 /* This function contains the logic that determines if a statement or
3027 ** transaction will be committed or rolled back as a result of the
3028 ** execution of this virtual machine.
3030 ** If any of the following errors occur:
3032 ** SQLITE_NOMEM
3033 ** SQLITE_IOERR
3034 ** SQLITE_FULL
3035 ** SQLITE_INTERRUPT
3037 ** Then the internal cache might have been left in an inconsistent
3038 ** state. We need to rollback the statement transaction, if there is
3039 ** one, or the complete transaction if there is no statement transaction.
3042 if( p->magic!=VDBE_MAGIC_RUN ){
3043 return SQLITE_OK;
3045 if( db->mallocFailed ){
3046 p->rc = SQLITE_NOMEM_BKPT;
3048 closeAllCursors(p);
3049 checkActiveVdbeCnt(db);
3051 /* No commit or rollback needed if the program never started or if the
3052 ** SQL statement does not read or write a database file. */
3053 if( p->pc>=0 && p->bIsReader ){
3054 int mrc; /* Primary error code from p->rc */
3055 int eStatementOp = 0;
3056 int isSpecialError; /* Set to true if a 'special' error */
3058 /* Lock all btrees used by the statement */
3059 sqlite3VdbeEnter(p);
3061 /* Check for one of the special errors */
3062 mrc = p->rc & 0xff;
3063 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3064 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3065 if( isSpecialError ){
3066 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3067 ** no rollback is necessary. Otherwise, at least a savepoint
3068 ** transaction must be rolled back to restore the database to a
3069 ** consistent state.
3071 ** Even if the statement is read-only, it is important to perform
3072 ** a statement or transaction rollback operation. If the error
3073 ** occurred while writing to the journal, sub-journal or database
3074 ** file as part of an effort to free up cache space (see function
3075 ** pagerStress() in pager.c), the rollback is required to restore
3076 ** the pager to a consistent state.
3078 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3079 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3080 eStatementOp = SAVEPOINT_ROLLBACK;
3081 }else{
3082 /* We are forced to roll back the active transaction. Before doing
3083 ** so, abort any other statements this handle currently has active.
3085 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3086 sqlite3CloseSavepoints(db);
3087 db->autoCommit = 1;
3088 p->nChange = 0;
3093 /* Check for immediate foreign key violations. */
3094 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3095 sqlite3VdbeCheckFk(p, 0);
3098 /* If the auto-commit flag is set and this is the only active writer
3099 ** VM, then we do either a commit or rollback of the current transaction.
3101 ** Note: This block also runs if one of the special errors handled
3102 ** above has occurred.
3104 if( !sqlite3VtabInSync(db)
3105 && db->autoCommit
3106 && db->nVdbeWrite==(p->readOnly==0)
3108 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3109 rc = sqlite3VdbeCheckFk(p, 1);
3110 if( rc!=SQLITE_OK ){
3111 if( NEVER(p->readOnly) ){
3112 sqlite3VdbeLeave(p);
3113 return SQLITE_ERROR;
3115 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3116 }else{
3117 /* The auto-commit flag is true, the vdbe program was successful
3118 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3119 ** key constraints to hold up the transaction. This means a commit
3120 ** is required. */
3121 rc = vdbeCommit(db, p);
3123 if( rc==SQLITE_BUSY && p->readOnly ){
3124 sqlite3VdbeLeave(p);
3125 return SQLITE_BUSY;
3126 }else if( rc!=SQLITE_OK ){
3127 p->rc = rc;
3128 sqlite3RollbackAll(db, SQLITE_OK);
3129 p->nChange = 0;
3130 }else{
3131 db->nDeferredCons = 0;
3132 db->nDeferredImmCons = 0;
3133 db->flags &= ~(u64)SQLITE_DeferFKs;
3134 sqlite3CommitInternalChanges(db);
3136 }else{
3137 sqlite3RollbackAll(db, SQLITE_OK);
3138 p->nChange = 0;
3140 db->nStatement = 0;
3141 }else if( eStatementOp==0 ){
3142 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3143 eStatementOp = SAVEPOINT_RELEASE;
3144 }else if( p->errorAction==OE_Abort ){
3145 eStatementOp = SAVEPOINT_ROLLBACK;
3146 }else{
3147 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3148 sqlite3CloseSavepoints(db);
3149 db->autoCommit = 1;
3150 p->nChange = 0;
3154 /* If eStatementOp is non-zero, then a statement transaction needs to
3155 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3156 ** do so. If this operation returns an error, and the current statement
3157 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3158 ** current statement error code.
3160 if( eStatementOp ){
3161 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3162 if( rc ){
3163 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3164 p->rc = rc;
3165 sqlite3DbFree(db, p->zErrMsg);
3166 p->zErrMsg = 0;
3168 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3169 sqlite3CloseSavepoints(db);
3170 db->autoCommit = 1;
3171 p->nChange = 0;
3175 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3176 ** has been rolled back, update the database connection change-counter.
3178 if( p->changeCntOn ){
3179 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3180 sqlite3VdbeSetChanges(db, p->nChange);
3181 }else{
3182 sqlite3VdbeSetChanges(db, 0);
3184 p->nChange = 0;
3187 /* Release the locks */
3188 sqlite3VdbeLeave(p);
3191 /* We have successfully halted and closed the VM. Record this fact. */
3192 if( p->pc>=0 ){
3193 db->nVdbeActive--;
3194 if( !p->readOnly ) db->nVdbeWrite--;
3195 if( p->bIsReader ) db->nVdbeRead--;
3196 assert( db->nVdbeActive>=db->nVdbeRead );
3197 assert( db->nVdbeRead>=db->nVdbeWrite );
3198 assert( db->nVdbeWrite>=0 );
3200 p->magic = VDBE_MAGIC_HALT;
3201 checkActiveVdbeCnt(db);
3202 if( db->mallocFailed ){
3203 p->rc = SQLITE_NOMEM_BKPT;
3206 /* If the auto-commit flag is set to true, then any locks that were held
3207 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3208 ** to invoke any required unlock-notify callbacks.
3210 if( db->autoCommit ){
3211 sqlite3ConnectionUnlocked(db);
3214 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3215 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3220 ** Each VDBE holds the result of the most recent sqlite3_step() call
3221 ** in p->rc. This routine sets that result back to SQLITE_OK.
3223 void sqlite3VdbeResetStepResult(Vdbe *p){
3224 p->rc = SQLITE_OK;
3228 ** Copy the error code and error message belonging to the VDBE passed
3229 ** as the first argument to its database handle (so that they will be
3230 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3232 ** This function does not clear the VDBE error code or message, just
3233 ** copies them to the database handle.
3235 int sqlite3VdbeTransferError(Vdbe *p){
3236 sqlite3 *db = p->db;
3237 int rc = p->rc;
3238 if( p->zErrMsg ){
3239 db->bBenignMalloc++;
3240 sqlite3BeginBenignMalloc();
3241 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3242 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3243 sqlite3EndBenignMalloc();
3244 db->bBenignMalloc--;
3245 }else if( db->pErr ){
3246 sqlite3ValueSetNull(db->pErr);
3248 db->errCode = rc;
3249 return rc;
3252 #ifdef SQLITE_ENABLE_SQLLOG
3254 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3255 ** invoke it.
3257 static void vdbeInvokeSqllog(Vdbe *v){
3258 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3259 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3260 assert( v->db->init.busy==0 );
3261 if( zExpanded ){
3262 sqlite3GlobalConfig.xSqllog(
3263 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3265 sqlite3DbFree(v->db, zExpanded);
3269 #else
3270 # define vdbeInvokeSqllog(x)
3271 #endif
3274 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3275 ** Write any error messages into *pzErrMsg. Return the result code.
3277 ** After this routine is run, the VDBE should be ready to be executed
3278 ** again.
3280 ** To look at it another way, this routine resets the state of the
3281 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3282 ** VDBE_MAGIC_INIT.
3284 int sqlite3VdbeReset(Vdbe *p){
3285 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3286 int i;
3287 #endif
3289 sqlite3 *db;
3290 db = p->db;
3292 /* If the VM did not run to completion or if it encountered an
3293 ** error, then it might not have been halted properly. So halt
3294 ** it now.
3296 sqlite3VdbeHalt(p);
3298 /* If the VDBE has been run even partially, then transfer the error code
3299 ** and error message from the VDBE into the main database structure. But
3300 ** if the VDBE has just been set to run but has not actually executed any
3301 ** instructions yet, leave the main database error information unchanged.
3303 if( p->pc>=0 ){
3304 vdbeInvokeSqllog(p);
3305 sqlite3VdbeTransferError(p);
3306 if( p->runOnlyOnce ) p->expired = 1;
3307 }else if( p->rc && p->expired ){
3308 /* The expired flag was set on the VDBE before the first call
3309 ** to sqlite3_step(). For consistency (since sqlite3_step() was
3310 ** called), set the database error in this case as well.
3312 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3315 /* Reset register contents and reclaim error message memory.
3317 #ifdef SQLITE_DEBUG
3318 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3319 ** Vdbe.aMem[] arrays have already been cleaned up. */
3320 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3321 if( p->aMem ){
3322 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3324 #endif
3325 sqlite3DbFree(db, p->zErrMsg);
3326 p->zErrMsg = 0;
3327 p->pResultSet = 0;
3328 #ifdef SQLITE_DEBUG
3329 p->nWrite = 0;
3330 #endif
3332 /* Save profiling information from this VDBE run.
3334 #ifdef VDBE_PROFILE
3336 FILE *out = fopen("vdbe_profile.out", "a");
3337 if( out ){
3338 fprintf(out, "---- ");
3339 for(i=0; i<p->nOp; i++){
3340 fprintf(out, "%02x", p->aOp[i].opcode);
3342 fprintf(out, "\n");
3343 if( p->zSql ){
3344 char c, pc = 0;
3345 fprintf(out, "-- ");
3346 for(i=0; (c = p->zSql[i])!=0; i++){
3347 if( pc=='\n' ) fprintf(out, "-- ");
3348 putc(c, out);
3349 pc = c;
3351 if( pc!='\n' ) fprintf(out, "\n");
3353 for(i=0; i<p->nOp; i++){
3354 char zHdr[100];
3355 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3356 p->aOp[i].cnt,
3357 p->aOp[i].cycles,
3358 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3360 fprintf(out, "%s", zHdr);
3361 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3363 fclose(out);
3366 #endif
3367 p->magic = VDBE_MAGIC_RESET;
3368 return p->rc & db->errMask;
3372 ** Clean up and delete a VDBE after execution. Return an integer which is
3373 ** the result code. Write any error message text into *pzErrMsg.
3375 int sqlite3VdbeFinalize(Vdbe *p){
3376 int rc = SQLITE_OK;
3377 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
3378 rc = sqlite3VdbeReset(p);
3379 assert( (rc & p->db->errMask)==rc );
3381 sqlite3VdbeDelete(p);
3382 return rc;
3386 ** If parameter iOp is less than zero, then invoke the destructor for
3387 ** all auxiliary data pointers currently cached by the VM passed as
3388 ** the first argument.
3390 ** Or, if iOp is greater than or equal to zero, then the destructor is
3391 ** only invoked for those auxiliary data pointers created by the user
3392 ** function invoked by the OP_Function opcode at instruction iOp of
3393 ** VM pVdbe, and only then if:
3395 ** * the associated function parameter is the 32nd or later (counting
3396 ** from left to right), or
3398 ** * the corresponding bit in argument mask is clear (where the first
3399 ** function parameter corresponds to bit 0 etc.).
3401 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3402 while( *pp ){
3403 AuxData *pAux = *pp;
3404 if( (iOp<0)
3405 || (pAux->iAuxOp==iOp
3406 && pAux->iAuxArg>=0
3407 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3409 testcase( pAux->iAuxArg==31 );
3410 if( pAux->xDeleteAux ){
3411 pAux->xDeleteAux(pAux->pAux);
3413 *pp = pAux->pNextAux;
3414 sqlite3DbFree(db, pAux);
3415 }else{
3416 pp= &pAux->pNextAux;
3422 ** Free all memory associated with the Vdbe passed as the second argument,
3423 ** except for object itself, which is preserved.
3425 ** The difference between this function and sqlite3VdbeDelete() is that
3426 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3427 ** the database connection and frees the object itself.
3429 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3430 SubProgram *pSub, *pNext;
3431 assert( p->db==0 || p->db==db );
3432 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3433 for(pSub=p->pProgram; pSub; pSub=pNext){
3434 pNext = pSub->pNext;
3435 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3436 sqlite3DbFree(db, pSub);
3438 if( p->magic!=VDBE_MAGIC_INIT ){
3439 releaseMemArray(p->aVar, p->nVar);
3440 sqlite3DbFree(db, p->pVList);
3441 sqlite3DbFree(db, p->pFree);
3443 vdbeFreeOpArray(db, p->aOp, p->nOp);
3444 sqlite3DbFree(db, p->aColName);
3445 sqlite3DbFree(db, p->zSql);
3446 #ifdef SQLITE_ENABLE_NORMALIZE
3447 sqlite3DbFree(db, p->zNormSql);
3449 DblquoteStr *pThis, *pNext;
3450 for(pThis=p->pDblStr; pThis; pThis=pNext){
3451 pNext = pThis->pNextStr;
3452 sqlite3DbFree(db, pThis);
3455 #endif
3456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3458 int i;
3459 for(i=0; i<p->nScan; i++){
3460 sqlite3DbFree(db, p->aScan[i].zName);
3462 sqlite3DbFree(db, p->aScan);
3464 #endif
3468 ** Delete an entire VDBE.
3470 void sqlite3VdbeDelete(Vdbe *p){
3471 sqlite3 *db;
3473 assert( p!=0 );
3474 db = p->db;
3475 assert( sqlite3_mutex_held(db->mutex) );
3476 sqlite3VdbeClearObject(db, p);
3477 if( p->pPrev ){
3478 p->pPrev->pNext = p->pNext;
3479 }else{
3480 assert( db->pVdbe==p );
3481 db->pVdbe = p->pNext;
3483 if( p->pNext ){
3484 p->pNext->pPrev = p->pPrev;
3486 p->magic = VDBE_MAGIC_DEAD;
3487 p->db = 0;
3488 sqlite3DbFreeNN(db, p);
3492 ** The cursor "p" has a pending seek operation that has not yet been
3493 ** carried out. Seek the cursor now. If an error occurs, return
3494 ** the appropriate error code.
3496 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3497 int res, rc;
3498 #ifdef SQLITE_TEST
3499 extern int sqlite3_search_count;
3500 #endif
3501 assert( p->deferredMoveto );
3502 assert( p->isTable );
3503 assert( p->eCurType==CURTYPE_BTREE );
3504 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3505 if( rc ) return rc;
3506 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3507 #ifdef SQLITE_TEST
3508 sqlite3_search_count++;
3509 #endif
3510 p->deferredMoveto = 0;
3511 p->cacheStatus = CACHE_STALE;
3512 return SQLITE_OK;
3516 ** Something has moved cursor "p" out of place. Maybe the row it was
3517 ** pointed to was deleted out from under it. Or maybe the btree was
3518 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3519 ** is supposed to be pointing. If the row was deleted out from under the
3520 ** cursor, set the cursor to point to a NULL row.
3522 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3523 int isDifferentRow, rc;
3524 assert( p->eCurType==CURTYPE_BTREE );
3525 assert( p->uc.pCursor!=0 );
3526 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3527 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3528 p->cacheStatus = CACHE_STALE;
3529 if( isDifferentRow ) p->nullRow = 1;
3530 return rc;
3534 ** Check to ensure that the cursor is valid. Restore the cursor
3535 ** if need be. Return any I/O error from the restore operation.
3537 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3538 assert( p->eCurType==CURTYPE_BTREE );
3539 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3540 return handleMovedCursor(p);
3542 return SQLITE_OK;
3546 ** Make sure the cursor p is ready to read or write the row to which it
3547 ** was last positioned. Return an error code if an OOM fault or I/O error
3548 ** prevents us from positioning the cursor to its correct position.
3550 ** If a MoveTo operation is pending on the given cursor, then do that
3551 ** MoveTo now. If no move is pending, check to see if the row has been
3552 ** deleted out from under the cursor and if it has, mark the row as
3553 ** a NULL row.
3555 ** If the cursor is already pointing to the correct row and that row has
3556 ** not been deleted out from under the cursor, then this routine is a no-op.
3558 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3559 VdbeCursor *p = *pp;
3560 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3561 if( p->deferredMoveto ){
3562 int iMap;
3563 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3564 *pp = p->pAltCursor;
3565 *piCol = iMap - 1;
3566 return SQLITE_OK;
3568 return sqlite3VdbeFinishMoveto(p);
3570 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3571 return handleMovedCursor(p);
3573 return SQLITE_OK;
3577 ** The following functions:
3579 ** sqlite3VdbeSerialType()
3580 ** sqlite3VdbeSerialTypeLen()
3581 ** sqlite3VdbeSerialLen()
3582 ** sqlite3VdbeSerialPut()
3583 ** sqlite3VdbeSerialGet()
3585 ** encapsulate the code that serializes values for storage in SQLite
3586 ** data and index records. Each serialized value consists of a
3587 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3588 ** integer, stored as a varint.
3590 ** In an SQLite index record, the serial type is stored directly before
3591 ** the blob of data that it corresponds to. In a table record, all serial
3592 ** types are stored at the start of the record, and the blobs of data at
3593 ** the end. Hence these functions allow the caller to handle the
3594 ** serial-type and data blob separately.
3596 ** The following table describes the various storage classes for data:
3598 ** serial type bytes of data type
3599 ** -------------- --------------- ---------------
3600 ** 0 0 NULL
3601 ** 1 1 signed integer
3602 ** 2 2 signed integer
3603 ** 3 3 signed integer
3604 ** 4 4 signed integer
3605 ** 5 6 signed integer
3606 ** 6 8 signed integer
3607 ** 7 8 IEEE float
3608 ** 8 0 Integer constant 0
3609 ** 9 0 Integer constant 1
3610 ** 10,11 reserved for expansion
3611 ** N>=12 and even (N-12)/2 BLOB
3612 ** N>=13 and odd (N-13)/2 text
3614 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3615 ** of SQLite will not understand those serial types.
3618 #if 0 /* Inlined into the OP_MakeRecord opcode */
3620 ** Return the serial-type for the value stored in pMem.
3622 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3624 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3625 ** opcode in the byte-code engine. But by moving this routine in-line, we
3626 ** can omit some redundant tests and make that opcode a lot faster. So
3627 ** this routine is now only used by the STAT3 logic and STAT3 support has
3628 ** ended. The code is kept here for historical reference only.
3630 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3631 int flags = pMem->flags;
3632 u32 n;
3634 assert( pLen!=0 );
3635 if( flags&MEM_Null ){
3636 *pLen = 0;
3637 return 0;
3639 if( flags&(MEM_Int|MEM_IntReal) ){
3640 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3641 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3642 i64 i = pMem->u.i;
3643 u64 u;
3644 testcase( flags & MEM_Int );
3645 testcase( flags & MEM_IntReal );
3646 if( i<0 ){
3647 u = ~i;
3648 }else{
3649 u = i;
3651 if( u<=127 ){
3652 if( (i&1)==i && file_format>=4 ){
3653 *pLen = 0;
3654 return 8+(u32)u;
3655 }else{
3656 *pLen = 1;
3657 return 1;
3660 if( u<=32767 ){ *pLen = 2; return 2; }
3661 if( u<=8388607 ){ *pLen = 3; return 3; }
3662 if( u<=2147483647 ){ *pLen = 4; return 4; }
3663 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3664 *pLen = 8;
3665 if( flags&MEM_IntReal ){
3666 /* If the value is IntReal and is going to take up 8 bytes to store
3667 ** as an integer, then we might as well make it an 8-byte floating
3668 ** point value */
3669 pMem->u.r = (double)pMem->u.i;
3670 pMem->flags &= ~MEM_IntReal;
3671 pMem->flags |= MEM_Real;
3672 return 7;
3674 return 6;
3676 if( flags&MEM_Real ){
3677 *pLen = 8;
3678 return 7;
3680 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3681 assert( pMem->n>=0 );
3682 n = (u32)pMem->n;
3683 if( flags & MEM_Zero ){
3684 n += pMem->u.nZero;
3686 *pLen = n;
3687 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3689 #endif /* inlined into OP_MakeRecord */
3692 ** The sizes for serial types less than 128
3694 static const u8 sqlite3SmallTypeSizes[] = {
3695 /* 0 1 2 3 4 5 6 7 8 9 */
3696 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3697 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3698 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3699 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3700 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3701 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3702 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3703 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3704 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3705 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3706 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3707 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3708 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3712 ** Return the length of the data corresponding to the supplied serial-type.
3714 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3715 if( serial_type>=128 ){
3716 return (serial_type-12)/2;
3717 }else{
3718 assert( serial_type<12
3719 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3720 return sqlite3SmallTypeSizes[serial_type];
3723 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3724 assert( serial_type<128 );
3725 return sqlite3SmallTypeSizes[serial_type];
3729 ** If we are on an architecture with mixed-endian floating
3730 ** points (ex: ARM7) then swap the lower 4 bytes with the
3731 ** upper 4 bytes. Return the result.
3733 ** For most architectures, this is a no-op.
3735 ** (later): It is reported to me that the mixed-endian problem
3736 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3737 ** that early versions of GCC stored the two words of a 64-bit
3738 ** float in the wrong order. And that error has been propagated
3739 ** ever since. The blame is not necessarily with GCC, though.
3740 ** GCC might have just copying the problem from a prior compiler.
3741 ** I am also told that newer versions of GCC that follow a different
3742 ** ABI get the byte order right.
3744 ** Developers using SQLite on an ARM7 should compile and run their
3745 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3746 ** enabled, some asserts below will ensure that the byte order of
3747 ** floating point values is correct.
3749 ** (2007-08-30) Frank van Vugt has studied this problem closely
3750 ** and has send his findings to the SQLite developers. Frank
3751 ** writes that some Linux kernels offer floating point hardware
3752 ** emulation that uses only 32-bit mantissas instead of a full
3753 ** 48-bits as required by the IEEE standard. (This is the
3754 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3755 ** byte swapping becomes very complicated. To avoid problems,
3756 ** the necessary byte swapping is carried out using a 64-bit integer
3757 ** rather than a 64-bit float. Frank assures us that the code here
3758 ** works for him. We, the developers, have no way to independently
3759 ** verify this, but Frank seems to know what he is talking about
3760 ** so we trust him.
3762 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3763 static u64 floatSwap(u64 in){
3764 union {
3765 u64 r;
3766 u32 i[2];
3767 } u;
3768 u32 t;
3770 u.r = in;
3771 t = u.i[0];
3772 u.i[0] = u.i[1];
3773 u.i[1] = t;
3774 return u.r;
3776 # define swapMixedEndianFloat(X) X = floatSwap(X)
3777 #else
3778 # define swapMixedEndianFloat(X)
3779 #endif
3782 ** Write the serialized data blob for the value stored in pMem into
3783 ** buf. It is assumed that the caller has allocated sufficient space.
3784 ** Return the number of bytes written.
3786 ** nBuf is the amount of space left in buf[]. The caller is responsible
3787 ** for allocating enough space to buf[] to hold the entire field, exclusive
3788 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3790 ** Return the number of bytes actually written into buf[]. The number
3791 ** of bytes in the zero-filled tail is included in the return value only
3792 ** if those bytes were zeroed in buf[].
3794 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3795 u32 len;
3797 /* Integer and Real */
3798 if( serial_type<=7 && serial_type>0 ){
3799 u64 v;
3800 u32 i;
3801 if( serial_type==7 ){
3802 assert( sizeof(v)==sizeof(pMem->u.r) );
3803 memcpy(&v, &pMem->u.r, sizeof(v));
3804 swapMixedEndianFloat(v);
3805 }else{
3806 v = pMem->u.i;
3808 len = i = sqlite3SmallTypeSizes[serial_type];
3809 assert( i>0 );
3811 buf[--i] = (u8)(v&0xFF);
3812 v >>= 8;
3813 }while( i );
3814 return len;
3817 /* String or blob */
3818 if( serial_type>=12 ){
3819 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3820 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3821 len = pMem->n;
3822 if( len>0 ) memcpy(buf, pMem->z, len);
3823 return len;
3826 /* NULL or constants 0 or 1 */
3827 return 0;
3830 /* Input "x" is a sequence of unsigned characters that represent a
3831 ** big-endian integer. Return the equivalent native integer
3833 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3834 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3835 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3836 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3837 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3840 ** Deserialize the data blob pointed to by buf as serial type serial_type
3841 ** and store the result in pMem. Return the number of bytes read.
3843 ** This function is implemented as two separate routines for performance.
3844 ** The few cases that require local variables are broken out into a separate
3845 ** routine so that in most cases the overhead of moving the stack pointer
3846 ** is avoided.
3848 static u32 serialGet(
3849 const unsigned char *buf, /* Buffer to deserialize from */
3850 u32 serial_type, /* Serial type to deserialize */
3851 Mem *pMem /* Memory cell to write value into */
3853 u64 x = FOUR_BYTE_UINT(buf);
3854 u32 y = FOUR_BYTE_UINT(buf+4);
3855 x = (x<<32) + y;
3856 if( serial_type==6 ){
3857 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3858 ** twos-complement integer. */
3859 pMem->u.i = *(i64*)&x;
3860 pMem->flags = MEM_Int;
3861 testcase( pMem->u.i<0 );
3862 }else{
3863 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3864 ** floating point number. */
3865 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3866 /* Verify that integers and floating point values use the same
3867 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3868 ** defined that 64-bit floating point values really are mixed
3869 ** endian.
3871 static const u64 t1 = ((u64)0x3ff00000)<<32;
3872 static const double r1 = 1.0;
3873 u64 t2 = t1;
3874 swapMixedEndianFloat(t2);
3875 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3876 #endif
3877 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3878 swapMixedEndianFloat(x);
3879 memcpy(&pMem->u.r, &x, sizeof(x));
3880 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3882 return 8;
3884 u32 sqlite3VdbeSerialGet(
3885 const unsigned char *buf, /* Buffer to deserialize from */
3886 u32 serial_type, /* Serial type to deserialize */
3887 Mem *pMem /* Memory cell to write value into */
3889 switch( serial_type ){
3890 case 10: { /* Internal use only: NULL with virtual table
3891 ** UPDATE no-change flag set */
3892 pMem->flags = MEM_Null|MEM_Zero;
3893 pMem->n = 0;
3894 pMem->u.nZero = 0;
3895 break;
3897 case 11: /* Reserved for future use */
3898 case 0: { /* Null */
3899 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3900 pMem->flags = MEM_Null;
3901 break;
3903 case 1: {
3904 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3905 ** integer. */
3906 pMem->u.i = ONE_BYTE_INT(buf);
3907 pMem->flags = MEM_Int;
3908 testcase( pMem->u.i<0 );
3909 return 1;
3911 case 2: { /* 2-byte signed integer */
3912 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3913 ** twos-complement integer. */
3914 pMem->u.i = TWO_BYTE_INT(buf);
3915 pMem->flags = MEM_Int;
3916 testcase( pMem->u.i<0 );
3917 return 2;
3919 case 3: { /* 3-byte signed integer */
3920 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3921 ** twos-complement integer. */
3922 pMem->u.i = THREE_BYTE_INT(buf);
3923 pMem->flags = MEM_Int;
3924 testcase( pMem->u.i<0 );
3925 return 3;
3927 case 4: { /* 4-byte signed integer */
3928 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3929 ** twos-complement integer. */
3930 pMem->u.i = FOUR_BYTE_INT(buf);
3931 #ifdef __HP_cc
3932 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3933 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3934 #endif
3935 pMem->flags = MEM_Int;
3936 testcase( pMem->u.i<0 );
3937 return 4;
3939 case 5: { /* 6-byte signed integer */
3940 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3941 ** twos-complement integer. */
3942 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3943 pMem->flags = MEM_Int;
3944 testcase( pMem->u.i<0 );
3945 return 6;
3947 case 6: /* 8-byte signed integer */
3948 case 7: { /* IEEE floating point */
3949 /* These use local variables, so do them in a separate routine
3950 ** to avoid having to move the frame pointer in the common case */
3951 return serialGet(buf,serial_type,pMem);
3953 case 8: /* Integer 0 */
3954 case 9: { /* Integer 1 */
3955 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3956 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3957 pMem->u.i = serial_type-8;
3958 pMem->flags = MEM_Int;
3959 return 0;
3961 default: {
3962 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3963 ** length.
3964 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3965 ** (N-13)/2 bytes in length. */
3966 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3967 pMem->z = (char *)buf;
3968 pMem->n = (serial_type-12)/2;
3969 pMem->flags = aFlag[serial_type&1];
3970 return pMem->n;
3973 return 0;
3976 ** This routine is used to allocate sufficient space for an UnpackedRecord
3977 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3978 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3980 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3981 ** the unaligned buffer passed via the second and third arguments (presumably
3982 ** stack space). If the former, then *ppFree is set to a pointer that should
3983 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3984 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3985 ** before returning.
3987 ** If an OOM error occurs, NULL is returned.
3989 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3990 KeyInfo *pKeyInfo /* Description of the record */
3992 UnpackedRecord *p; /* Unpacked record to return */
3993 int nByte; /* Number of bytes required for *p */
3994 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3995 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3996 if( !p ) return 0;
3997 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3998 assert( pKeyInfo->aSortFlags!=0 );
3999 p->pKeyInfo = pKeyInfo;
4000 p->nField = pKeyInfo->nKeyField + 1;
4001 return p;
4005 ** Given the nKey-byte encoding of a record in pKey[], populate the
4006 ** UnpackedRecord structure indicated by the fourth argument with the
4007 ** contents of the decoded record.
4009 void sqlite3VdbeRecordUnpack(
4010 KeyInfo *pKeyInfo, /* Information about the record format */
4011 int nKey, /* Size of the binary record */
4012 const void *pKey, /* The binary record */
4013 UnpackedRecord *p /* Populate this structure before returning. */
4015 const unsigned char *aKey = (const unsigned char *)pKey;
4016 u32 d;
4017 u32 idx; /* Offset in aKey[] to read from */
4018 u16 u; /* Unsigned loop counter */
4019 u32 szHdr;
4020 Mem *pMem = p->aMem;
4022 p->default_rc = 0;
4023 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4024 idx = getVarint32(aKey, szHdr);
4025 d = szHdr;
4026 u = 0;
4027 while( idx<szHdr && d<=(u32)nKey ){
4028 u32 serial_type;
4030 idx += getVarint32(&aKey[idx], serial_type);
4031 pMem->enc = pKeyInfo->enc;
4032 pMem->db = pKeyInfo->db;
4033 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4034 pMem->szMalloc = 0;
4035 pMem->z = 0;
4036 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4037 pMem++;
4038 if( (++u)>=p->nField ) break;
4040 if( d>(u32)nKey && u ){
4041 assert( CORRUPT_DB );
4042 /* In a corrupt record entry, the last pMem might have been set up using
4043 ** uninitialized memory. Overwrite its value with NULL, to prevent
4044 ** warnings from MSAN. */
4045 sqlite3VdbeMemSetNull(pMem-1);
4047 assert( u<=pKeyInfo->nKeyField + 1 );
4048 p->nField = u;
4051 #ifdef SQLITE_DEBUG
4053 ** This function compares two index or table record keys in the same way
4054 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4055 ** this function deserializes and compares values using the
4056 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4057 ** in assert() statements to ensure that the optimized code in
4058 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4060 ** Return true if the result of comparison is equivalent to desiredResult.
4061 ** Return false if there is a disagreement.
4063 static int vdbeRecordCompareDebug(
4064 int nKey1, const void *pKey1, /* Left key */
4065 const UnpackedRecord *pPKey2, /* Right key */
4066 int desiredResult /* Correct answer */
4068 u32 d1; /* Offset into aKey[] of next data element */
4069 u32 idx1; /* Offset into aKey[] of next header element */
4070 u32 szHdr1; /* Number of bytes in header */
4071 int i = 0;
4072 int rc = 0;
4073 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4074 KeyInfo *pKeyInfo;
4075 Mem mem1;
4077 pKeyInfo = pPKey2->pKeyInfo;
4078 if( pKeyInfo->db==0 ) return 1;
4079 mem1.enc = pKeyInfo->enc;
4080 mem1.db = pKeyInfo->db;
4081 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4082 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4084 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4085 ** We could initialize it, as shown here, to silence those complaints.
4086 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4087 ** the unnecessary initialization has a measurable negative performance
4088 ** impact, since this routine is a very high runner. And so, we choose
4089 ** to ignore the compiler warnings and leave this variable uninitialized.
4091 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4093 idx1 = getVarint32(aKey1, szHdr1);
4094 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4095 d1 = szHdr1;
4096 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4097 assert( pKeyInfo->aSortFlags!=0 );
4098 assert( pKeyInfo->nKeyField>0 );
4099 assert( idx1<=szHdr1 || CORRUPT_DB );
4101 u32 serial_type1;
4103 /* Read the serial types for the next element in each key. */
4104 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4106 /* Verify that there is enough key space remaining to avoid
4107 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4108 ** always be greater than or equal to the amount of required key space.
4109 ** Use that approximation to avoid the more expensive call to
4110 ** sqlite3VdbeSerialTypeLen() in the common case.
4112 if( d1+(u64)serial_type1+2>(u64)nKey1
4113 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4115 break;
4118 /* Extract the values to be compared.
4120 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4122 /* Do the comparison
4124 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4125 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4126 if( rc!=0 ){
4127 assert( mem1.szMalloc==0 ); /* See comment below */
4128 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4129 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4131 rc = -rc;
4133 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4134 rc = -rc; /* Invert the result for DESC sort order. */
4136 goto debugCompareEnd;
4138 i++;
4139 }while( idx1<szHdr1 && i<pPKey2->nField );
4141 /* No memory allocation is ever used on mem1. Prove this using
4142 ** the following assert(). If the assert() fails, it indicates a
4143 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4145 assert( mem1.szMalloc==0 );
4147 /* rc==0 here means that one of the keys ran out of fields and
4148 ** all the fields up to that point were equal. Return the default_rc
4149 ** value. */
4150 rc = pPKey2->default_rc;
4152 debugCompareEnd:
4153 if( desiredResult==0 && rc==0 ) return 1;
4154 if( desiredResult<0 && rc<0 ) return 1;
4155 if( desiredResult>0 && rc>0 ) return 1;
4156 if( CORRUPT_DB ) return 1;
4157 if( pKeyInfo->db->mallocFailed ) return 1;
4158 return 0;
4160 #endif
4162 #ifdef SQLITE_DEBUG
4164 ** Count the number of fields (a.k.a. columns) in the record given by
4165 ** pKey,nKey. The verify that this count is less than or equal to the
4166 ** limit given by pKeyInfo->nAllField.
4168 ** If this constraint is not satisfied, it means that the high-speed
4169 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4170 ** not work correctly. If this assert() ever fires, it probably means
4171 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4172 ** incorrectly.
4174 static void vdbeAssertFieldCountWithinLimits(
4175 int nKey, const void *pKey, /* The record to verify */
4176 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4178 int nField = 0;
4179 u32 szHdr;
4180 u32 idx;
4181 u32 notUsed;
4182 const unsigned char *aKey = (const unsigned char*)pKey;
4184 if( CORRUPT_DB ) return;
4185 idx = getVarint32(aKey, szHdr);
4186 assert( nKey>=0 );
4187 assert( szHdr<=(u32)nKey );
4188 while( idx<szHdr ){
4189 idx += getVarint32(aKey+idx, notUsed);
4190 nField++;
4192 assert( nField <= pKeyInfo->nAllField );
4194 #else
4195 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4196 #endif
4199 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4200 ** using the collation sequence pColl. As usual, return a negative , zero
4201 ** or positive value if *pMem1 is less than, equal to or greater than
4202 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4204 static int vdbeCompareMemString(
4205 const Mem *pMem1,
4206 const Mem *pMem2,
4207 const CollSeq *pColl,
4208 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4210 if( pMem1->enc==pColl->enc ){
4211 /* The strings are already in the correct encoding. Call the
4212 ** comparison function directly */
4213 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4214 }else{
4215 int rc;
4216 const void *v1, *v2;
4217 Mem c1;
4218 Mem c2;
4219 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4220 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4221 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4222 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4223 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4224 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4225 if( (v1==0 || v2==0) ){
4226 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4227 rc = 0;
4228 }else{
4229 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4231 sqlite3VdbeMemRelease(&c1);
4232 sqlite3VdbeMemRelease(&c2);
4233 return rc;
4238 ** The input pBlob is guaranteed to be a Blob that is not marked
4239 ** with MEM_Zero. Return true if it could be a zero-blob.
4241 static int isAllZero(const char *z, int n){
4242 int i;
4243 for(i=0; i<n; i++){
4244 if( z[i] ) return 0;
4246 return 1;
4250 ** Compare two blobs. Return negative, zero, or positive if the first
4251 ** is less than, equal to, or greater than the second, respectively.
4252 ** If one blob is a prefix of the other, then the shorter is the lessor.
4254 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4255 int c;
4256 int n1 = pB1->n;
4257 int n2 = pB2->n;
4259 /* It is possible to have a Blob value that has some non-zero content
4260 ** followed by zero content. But that only comes up for Blobs formed
4261 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4262 ** sqlite3MemCompare(). */
4263 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4264 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4266 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4267 if( pB1->flags & pB2->flags & MEM_Zero ){
4268 return pB1->u.nZero - pB2->u.nZero;
4269 }else if( pB1->flags & MEM_Zero ){
4270 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4271 return pB1->u.nZero - n2;
4272 }else{
4273 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4274 return n1 - pB2->u.nZero;
4277 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4278 if( c ) return c;
4279 return n1 - n2;
4283 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4284 ** number. Return negative, zero, or positive if the first (i64) is less than,
4285 ** equal to, or greater than the second (double).
4287 static int sqlite3IntFloatCompare(i64 i, double r){
4288 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4289 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4290 if( x<r ) return -1;
4291 if( x>r ) return +1;
4292 return 0;
4293 }else{
4294 i64 y;
4295 double s;
4296 if( r<-9223372036854775808.0 ) return +1;
4297 if( r>=9223372036854775808.0 ) return -1;
4298 y = (i64)r;
4299 if( i<y ) return -1;
4300 if( i>y ) return +1;
4301 s = (double)i;
4302 if( s<r ) return -1;
4303 if( s>r ) return +1;
4304 return 0;
4309 ** Compare the values contained by the two memory cells, returning
4310 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4311 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4312 ** and reals) sorted numerically, followed by text ordered by the collating
4313 ** sequence pColl and finally blob's ordered by memcmp().
4315 ** Two NULL values are considered equal by this function.
4317 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4318 int f1, f2;
4319 int combined_flags;
4321 f1 = pMem1->flags;
4322 f2 = pMem2->flags;
4323 combined_flags = f1|f2;
4324 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4326 /* If one value is NULL, it is less than the other. If both values
4327 ** are NULL, return 0.
4329 if( combined_flags&MEM_Null ){
4330 return (f2&MEM_Null) - (f1&MEM_Null);
4333 /* At least one of the two values is a number
4335 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4336 testcase( combined_flags & MEM_Int );
4337 testcase( combined_flags & MEM_Real );
4338 testcase( combined_flags & MEM_IntReal );
4339 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4340 testcase( f1 & f2 & MEM_Int );
4341 testcase( f1 & f2 & MEM_IntReal );
4342 if( pMem1->u.i < pMem2->u.i ) return -1;
4343 if( pMem1->u.i > pMem2->u.i ) return +1;
4344 return 0;
4346 if( (f1 & f2 & MEM_Real)!=0 ){
4347 if( pMem1->u.r < pMem2->u.r ) return -1;
4348 if( pMem1->u.r > pMem2->u.r ) return +1;
4349 return 0;
4351 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4352 testcase( f1 & MEM_Int );
4353 testcase( f1 & MEM_IntReal );
4354 if( (f2&MEM_Real)!=0 ){
4355 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4356 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4357 if( pMem1->u.i < pMem2->u.i ) return -1;
4358 if( pMem1->u.i > pMem2->u.i ) return +1;
4359 return 0;
4360 }else{
4361 return -1;
4364 if( (f1&MEM_Real)!=0 ){
4365 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4366 testcase( f2 & MEM_Int );
4367 testcase( f2 & MEM_IntReal );
4368 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4369 }else{
4370 return -1;
4373 return +1;
4376 /* If one value is a string and the other is a blob, the string is less.
4377 ** If both are strings, compare using the collating functions.
4379 if( combined_flags&MEM_Str ){
4380 if( (f1 & MEM_Str)==0 ){
4381 return 1;
4383 if( (f2 & MEM_Str)==0 ){
4384 return -1;
4387 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4388 assert( pMem1->enc==SQLITE_UTF8 ||
4389 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4391 /* The collation sequence must be defined at this point, even if
4392 ** the user deletes the collation sequence after the vdbe program is
4393 ** compiled (this was not always the case).
4395 assert( !pColl || pColl->xCmp );
4397 if( pColl ){
4398 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4400 /* If a NULL pointer was passed as the collate function, fall through
4401 ** to the blob case and use memcmp(). */
4404 /* Both values must be blobs. Compare using memcmp(). */
4405 return sqlite3BlobCompare(pMem1, pMem2);
4410 ** The first argument passed to this function is a serial-type that
4411 ** corresponds to an integer - all values between 1 and 9 inclusive
4412 ** except 7. The second points to a buffer containing an integer value
4413 ** serialized according to serial_type. This function deserializes
4414 ** and returns the value.
4416 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4417 u32 y;
4418 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4419 switch( serial_type ){
4420 case 0:
4421 case 1:
4422 testcase( aKey[0]&0x80 );
4423 return ONE_BYTE_INT(aKey);
4424 case 2:
4425 testcase( aKey[0]&0x80 );
4426 return TWO_BYTE_INT(aKey);
4427 case 3:
4428 testcase( aKey[0]&0x80 );
4429 return THREE_BYTE_INT(aKey);
4430 case 4: {
4431 testcase( aKey[0]&0x80 );
4432 y = FOUR_BYTE_UINT(aKey);
4433 return (i64)*(int*)&y;
4435 case 5: {
4436 testcase( aKey[0]&0x80 );
4437 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4439 case 6: {
4440 u64 x = FOUR_BYTE_UINT(aKey);
4441 testcase( aKey[0]&0x80 );
4442 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4443 return (i64)*(i64*)&x;
4447 return (serial_type - 8);
4451 ** This function compares the two table rows or index records
4452 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4453 ** or positive integer if key1 is less than, equal to or
4454 ** greater than key2. The {nKey1, pKey1} key must be a blob
4455 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4456 ** key must be a parsed key such as obtained from
4457 ** sqlite3VdbeParseRecord.
4459 ** If argument bSkip is non-zero, it is assumed that the caller has already
4460 ** determined that the first fields of the keys are equal.
4462 ** Key1 and Key2 do not have to contain the same number of fields. If all
4463 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4464 ** returned.
4466 ** If database corruption is discovered, set pPKey2->errCode to
4467 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4468 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4469 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4471 int sqlite3VdbeRecordCompareWithSkip(
4472 int nKey1, const void *pKey1, /* Left key */
4473 UnpackedRecord *pPKey2, /* Right key */
4474 int bSkip /* If true, skip the first field */
4476 u32 d1; /* Offset into aKey[] of next data element */
4477 int i; /* Index of next field to compare */
4478 u32 szHdr1; /* Size of record header in bytes */
4479 u32 idx1; /* Offset of first type in header */
4480 int rc = 0; /* Return value */
4481 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4482 KeyInfo *pKeyInfo;
4483 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4484 Mem mem1;
4486 /* If bSkip is true, then the caller has already determined that the first
4487 ** two elements in the keys are equal. Fix the various stack variables so
4488 ** that this routine begins comparing at the second field. */
4489 if( bSkip ){
4490 u32 s1;
4491 idx1 = 1 + getVarint32(&aKey1[1], s1);
4492 szHdr1 = aKey1[0];
4493 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4494 i = 1;
4495 pRhs++;
4496 }else{
4497 idx1 = getVarint32(aKey1, szHdr1);
4498 d1 = szHdr1;
4499 i = 0;
4501 if( d1>(unsigned)nKey1 ){
4502 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4503 return 0; /* Corruption */
4506 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4507 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4508 || CORRUPT_DB );
4509 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4510 assert( pPKey2->pKeyInfo->nKeyField>0 );
4511 assert( idx1<=szHdr1 || CORRUPT_DB );
4513 u32 serial_type;
4515 /* RHS is an integer */
4516 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4517 testcase( pRhs->flags & MEM_Int );
4518 testcase( pRhs->flags & MEM_IntReal );
4519 serial_type = aKey1[idx1];
4520 testcase( serial_type==12 );
4521 if( serial_type>=10 ){
4522 rc = +1;
4523 }else if( serial_type==0 ){
4524 rc = -1;
4525 }else if( serial_type==7 ){
4526 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4527 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4528 }else{
4529 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4530 i64 rhs = pRhs->u.i;
4531 if( lhs<rhs ){
4532 rc = -1;
4533 }else if( lhs>rhs ){
4534 rc = +1;
4539 /* RHS is real */
4540 else if( pRhs->flags & MEM_Real ){
4541 serial_type = aKey1[idx1];
4542 if( serial_type>=10 ){
4543 /* Serial types 12 or greater are strings and blobs (greater than
4544 ** numbers). Types 10 and 11 are currently "reserved for future
4545 ** use", so it doesn't really matter what the results of comparing
4546 ** them to numberic values are. */
4547 rc = +1;
4548 }else if( serial_type==0 ){
4549 rc = -1;
4550 }else{
4551 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4552 if( serial_type==7 ){
4553 if( mem1.u.r<pRhs->u.r ){
4554 rc = -1;
4555 }else if( mem1.u.r>pRhs->u.r ){
4556 rc = +1;
4558 }else{
4559 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4564 /* RHS is a string */
4565 else if( pRhs->flags & MEM_Str ){
4566 getVarint32NR(&aKey1[idx1], serial_type);
4567 testcase( serial_type==12 );
4568 if( serial_type<12 ){
4569 rc = -1;
4570 }else if( !(serial_type & 0x01) ){
4571 rc = +1;
4572 }else{
4573 mem1.n = (serial_type - 12) / 2;
4574 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4575 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4576 if( (d1+mem1.n) > (unsigned)nKey1
4577 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4579 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4580 return 0; /* Corruption */
4581 }else if( pKeyInfo->aColl[i] ){
4582 mem1.enc = pKeyInfo->enc;
4583 mem1.db = pKeyInfo->db;
4584 mem1.flags = MEM_Str;
4585 mem1.z = (char*)&aKey1[d1];
4586 rc = vdbeCompareMemString(
4587 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4589 }else{
4590 int nCmp = MIN(mem1.n, pRhs->n);
4591 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4592 if( rc==0 ) rc = mem1.n - pRhs->n;
4597 /* RHS is a blob */
4598 else if( pRhs->flags & MEM_Blob ){
4599 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4600 getVarint32NR(&aKey1[idx1], serial_type);
4601 testcase( serial_type==12 );
4602 if( serial_type<12 || (serial_type & 0x01) ){
4603 rc = -1;
4604 }else{
4605 int nStr = (serial_type - 12) / 2;
4606 testcase( (d1+nStr)==(unsigned)nKey1 );
4607 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4608 if( (d1+nStr) > (unsigned)nKey1 ){
4609 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4610 return 0; /* Corruption */
4611 }else if( pRhs->flags & MEM_Zero ){
4612 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4613 rc = 1;
4614 }else{
4615 rc = nStr - pRhs->u.nZero;
4617 }else{
4618 int nCmp = MIN(nStr, pRhs->n);
4619 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4620 if( rc==0 ) rc = nStr - pRhs->n;
4625 /* RHS is null */
4626 else{
4627 serial_type = aKey1[idx1];
4628 rc = (serial_type!=0);
4631 if( rc!=0 ){
4632 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4633 if( sortFlags ){
4634 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4635 || ((sortFlags & KEYINFO_ORDER_DESC)
4636 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4638 rc = -rc;
4641 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4642 assert( mem1.szMalloc==0 ); /* See comment below */
4643 return rc;
4646 i++;
4647 if( i==pPKey2->nField ) break;
4648 pRhs++;
4649 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4650 idx1 += sqlite3VarintLen(serial_type);
4651 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4653 /* No memory allocation is ever used on mem1. Prove this using
4654 ** the following assert(). If the assert() fails, it indicates a
4655 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4656 assert( mem1.szMalloc==0 );
4658 /* rc==0 here means that one or both of the keys ran out of fields and
4659 ** all the fields up to that point were equal. Return the default_rc
4660 ** value. */
4661 assert( CORRUPT_DB
4662 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4663 || pPKey2->pKeyInfo->db->mallocFailed
4665 pPKey2->eqSeen = 1;
4666 return pPKey2->default_rc;
4668 int sqlite3VdbeRecordCompare(
4669 int nKey1, const void *pKey1, /* Left key */
4670 UnpackedRecord *pPKey2 /* Right key */
4672 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4677 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4678 ** that (a) the first field of pPKey2 is an integer, and (b) the
4679 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4680 ** byte (i.e. is less than 128).
4682 ** To avoid concerns about buffer overreads, this routine is only used
4683 ** on schemas where the maximum valid header size is 63 bytes or less.
4685 static int vdbeRecordCompareInt(
4686 int nKey1, const void *pKey1, /* Left key */
4687 UnpackedRecord *pPKey2 /* Right key */
4689 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4690 int serial_type = ((const u8*)pKey1)[1];
4691 int res;
4692 u32 y;
4693 u64 x;
4694 i64 v;
4695 i64 lhs;
4697 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4698 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4699 switch( serial_type ){
4700 case 1: { /* 1-byte signed integer */
4701 lhs = ONE_BYTE_INT(aKey);
4702 testcase( lhs<0 );
4703 break;
4705 case 2: { /* 2-byte signed integer */
4706 lhs = TWO_BYTE_INT(aKey);
4707 testcase( lhs<0 );
4708 break;
4710 case 3: { /* 3-byte signed integer */
4711 lhs = THREE_BYTE_INT(aKey);
4712 testcase( lhs<0 );
4713 break;
4715 case 4: { /* 4-byte signed integer */
4716 y = FOUR_BYTE_UINT(aKey);
4717 lhs = (i64)*(int*)&y;
4718 testcase( lhs<0 );
4719 break;
4721 case 5: { /* 6-byte signed integer */
4722 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4723 testcase( lhs<0 );
4724 break;
4726 case 6: { /* 8-byte signed integer */
4727 x = FOUR_BYTE_UINT(aKey);
4728 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4729 lhs = *(i64*)&x;
4730 testcase( lhs<0 );
4731 break;
4733 case 8:
4734 lhs = 0;
4735 break;
4736 case 9:
4737 lhs = 1;
4738 break;
4740 /* This case could be removed without changing the results of running
4741 ** this code. Including it causes gcc to generate a faster switch
4742 ** statement (since the range of switch targets now starts at zero and
4743 ** is contiguous) but does not cause any duplicate code to be generated
4744 ** (as gcc is clever enough to combine the two like cases). Other
4745 ** compilers might be similar. */
4746 case 0: case 7:
4747 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4749 default:
4750 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4753 v = pPKey2->aMem[0].u.i;
4754 if( v>lhs ){
4755 res = pPKey2->r1;
4756 }else if( v<lhs ){
4757 res = pPKey2->r2;
4758 }else if( pPKey2->nField>1 ){
4759 /* The first fields of the two keys are equal. Compare the trailing
4760 ** fields. */
4761 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4762 }else{
4763 /* The first fields of the two keys are equal and there are no trailing
4764 ** fields. Return pPKey2->default_rc in this case. */
4765 res = pPKey2->default_rc;
4766 pPKey2->eqSeen = 1;
4769 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4770 return res;
4774 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4775 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4776 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4777 ** at the start of (pKey1/nKey1) fits in a single byte.
4779 static int vdbeRecordCompareString(
4780 int nKey1, const void *pKey1, /* Left key */
4781 UnpackedRecord *pPKey2 /* Right key */
4783 const u8 *aKey1 = (const u8*)pKey1;
4784 int serial_type;
4785 int res;
4787 assert( pPKey2->aMem[0].flags & MEM_Str );
4788 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4789 serial_type = (u8)(aKey1[1]);
4790 if( serial_type >= 0x80 ){
4791 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4793 if( serial_type<12 ){
4794 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4795 }else if( !(serial_type & 0x01) ){
4796 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4797 }else{
4798 int nCmp;
4799 int nStr;
4800 int szHdr = aKey1[0];
4802 nStr = (serial_type-12) / 2;
4803 if( (szHdr + nStr) > nKey1 ){
4804 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4805 return 0; /* Corruption */
4807 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4808 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4810 if( res>0 ){
4811 res = pPKey2->r2;
4812 }else if( res<0 ){
4813 res = pPKey2->r1;
4814 }else{
4815 res = nStr - pPKey2->aMem[0].n;
4816 if( res==0 ){
4817 if( pPKey2->nField>1 ){
4818 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4819 }else{
4820 res = pPKey2->default_rc;
4821 pPKey2->eqSeen = 1;
4823 }else if( res>0 ){
4824 res = pPKey2->r2;
4825 }else{
4826 res = pPKey2->r1;
4831 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4832 || CORRUPT_DB
4833 || pPKey2->pKeyInfo->db->mallocFailed
4835 return res;
4839 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4840 ** suitable for comparing serialized records to the unpacked record passed
4841 ** as the only argument.
4843 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4844 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4845 ** that the size-of-header varint that occurs at the start of each record
4846 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4847 ** also assumes that it is safe to overread a buffer by at least the
4848 ** maximum possible legal header size plus 8 bytes. Because there is
4849 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4850 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4851 ** limit the size of the header to 64 bytes in cases where the first field
4852 ** is an integer.
4854 ** The easiest way to enforce this limit is to consider only records with
4855 ** 13 fields or less. If the first field is an integer, the maximum legal
4856 ** header size is (12*5 + 1 + 1) bytes. */
4857 if( p->pKeyInfo->nAllField<=13 ){
4858 int flags = p->aMem[0].flags;
4859 if( p->pKeyInfo->aSortFlags[0] ){
4860 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4861 return sqlite3VdbeRecordCompare;
4863 p->r1 = 1;
4864 p->r2 = -1;
4865 }else{
4866 p->r1 = -1;
4867 p->r2 = 1;
4869 if( (flags & MEM_Int) ){
4870 return vdbeRecordCompareInt;
4872 testcase( flags & MEM_Real );
4873 testcase( flags & MEM_Null );
4874 testcase( flags & MEM_Blob );
4875 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4876 && p->pKeyInfo->aColl[0]==0
4878 assert( flags & MEM_Str );
4879 return vdbeRecordCompareString;
4883 return sqlite3VdbeRecordCompare;
4887 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4888 ** Read the rowid (the last field in the record) and store it in *rowid.
4889 ** Return SQLITE_OK if everything works, or an error code otherwise.
4891 ** pCur might be pointing to text obtained from a corrupt database file.
4892 ** So the content cannot be trusted. Do appropriate checks on the content.
4894 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4895 i64 nCellKey = 0;
4896 int rc;
4897 u32 szHdr; /* Size of the header */
4898 u32 typeRowid; /* Serial type of the rowid */
4899 u32 lenRowid; /* Size of the rowid */
4900 Mem m, v;
4902 /* Get the size of the index entry. Only indices entries of less
4903 ** than 2GiB are support - anything large must be database corruption.
4904 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4905 ** this code can safely assume that nCellKey is 32-bits
4907 assert( sqlite3BtreeCursorIsValid(pCur) );
4908 nCellKey = sqlite3BtreePayloadSize(pCur);
4909 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4911 /* Read in the complete content of the index entry */
4912 sqlite3VdbeMemInit(&m, db, 0);
4913 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4914 if( rc ){
4915 return rc;
4918 /* The index entry must begin with a header size */
4919 getVarint32NR((u8*)m.z, szHdr);
4920 testcase( szHdr==3 );
4921 testcase( szHdr==m.n );
4922 testcase( szHdr>0x7fffffff );
4923 assert( m.n>=0 );
4924 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4925 goto idx_rowid_corruption;
4928 /* The last field of the index should be an integer - the ROWID.
4929 ** Verify that the last entry really is an integer. */
4930 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4931 testcase( typeRowid==1 );
4932 testcase( typeRowid==2 );
4933 testcase( typeRowid==3 );
4934 testcase( typeRowid==4 );
4935 testcase( typeRowid==5 );
4936 testcase( typeRowid==6 );
4937 testcase( typeRowid==8 );
4938 testcase( typeRowid==9 );
4939 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4940 goto idx_rowid_corruption;
4942 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4943 testcase( (u32)m.n==szHdr+lenRowid );
4944 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4945 goto idx_rowid_corruption;
4948 /* Fetch the integer off the end of the index record */
4949 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4950 *rowid = v.u.i;
4951 sqlite3VdbeMemRelease(&m);
4952 return SQLITE_OK;
4954 /* Jump here if database corruption is detected after m has been
4955 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4956 idx_rowid_corruption:
4957 testcase( m.szMalloc!=0 );
4958 sqlite3VdbeMemRelease(&m);
4959 return SQLITE_CORRUPT_BKPT;
4963 ** Compare the key of the index entry that cursor pC is pointing to against
4964 ** the key string in pUnpacked. Write into *pRes a number
4965 ** that is negative, zero, or positive if pC is less than, equal to,
4966 ** or greater than pUnpacked. Return SQLITE_OK on success.
4968 ** pUnpacked is either created without a rowid or is truncated so that it
4969 ** omits the rowid at the end. The rowid at the end of the index entry
4970 ** is ignored as well. Hence, this routine only compares the prefixes
4971 ** of the keys prior to the final rowid, not the entire key.
4973 int sqlite3VdbeIdxKeyCompare(
4974 sqlite3 *db, /* Database connection */
4975 VdbeCursor *pC, /* The cursor to compare against */
4976 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4977 int *res /* Write the comparison result here */
4979 i64 nCellKey = 0;
4980 int rc;
4981 BtCursor *pCur;
4982 Mem m;
4984 assert( pC->eCurType==CURTYPE_BTREE );
4985 pCur = pC->uc.pCursor;
4986 assert( sqlite3BtreeCursorIsValid(pCur) );
4987 nCellKey = sqlite3BtreePayloadSize(pCur);
4988 /* nCellKey will always be between 0 and 0xffffffff because of the way
4989 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4990 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4991 *res = 0;
4992 return SQLITE_CORRUPT_BKPT;
4994 sqlite3VdbeMemInit(&m, db, 0);
4995 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4996 if( rc ){
4997 return rc;
4999 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5000 sqlite3VdbeMemRelease(&m);
5001 return SQLITE_OK;
5005 ** This routine sets the value to be returned by subsequent calls to
5006 ** sqlite3_changes() on the database handle 'db'.
5008 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
5009 assert( sqlite3_mutex_held(db->mutex) );
5010 db->nChange = nChange;
5011 db->nTotalChange += nChange;
5015 ** Set a flag in the vdbe to update the change counter when it is finalised
5016 ** or reset.
5018 void sqlite3VdbeCountChanges(Vdbe *v){
5019 v->changeCntOn = 1;
5023 ** Mark every prepared statement associated with a database connection
5024 ** as expired.
5026 ** An expired statement means that recompilation of the statement is
5027 ** recommend. Statements expire when things happen that make their
5028 ** programs obsolete. Removing user-defined functions or collating
5029 ** sequences, or changing an authorization function are the types of
5030 ** things that make prepared statements obsolete.
5032 ** If iCode is 1, then expiration is advisory. The statement should
5033 ** be reprepared before being restarted, but if it is already running
5034 ** it is allowed to run to completion.
5036 ** Internally, this function just sets the Vdbe.expired flag on all
5037 ** prepared statements. The flag is set to 1 for an immediate expiration
5038 ** and set to 2 for an advisory expiration.
5040 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5041 Vdbe *p;
5042 for(p = db->pVdbe; p; p=p->pNext){
5043 p->expired = iCode+1;
5048 ** Return the database associated with the Vdbe.
5050 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5051 return v->db;
5055 ** Return the SQLITE_PREPARE flags for a Vdbe.
5057 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5058 return v->prepFlags;
5062 ** Return a pointer to an sqlite3_value structure containing the value bound
5063 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5064 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5065 ** constants) to the value before returning it.
5067 ** The returned value must be freed by the caller using sqlite3ValueFree().
5069 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5070 assert( iVar>0 );
5071 if( v ){
5072 Mem *pMem = &v->aVar[iVar-1];
5073 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5074 if( 0==(pMem->flags & MEM_Null) ){
5075 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5076 if( pRet ){
5077 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5078 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5080 return pRet;
5083 return 0;
5087 ** Configure SQL variable iVar so that binding a new value to it signals
5088 ** to sqlite3_reoptimize() that re-preparing the statement may result
5089 ** in a better query plan.
5091 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5092 assert( iVar>0 );
5093 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5094 if( iVar>=32 ){
5095 v->expmask |= 0x80000000;
5096 }else{
5097 v->expmask |= ((u32)1 << (iVar-1));
5102 ** Cause a function to throw an error if it was call from OP_PureFunc
5103 ** rather than OP_Function.
5105 ** OP_PureFunc means that the function must be deterministic, and should
5106 ** throw an error if it is given inputs that would make it non-deterministic.
5107 ** This routine is invoked by date/time functions that use non-deterministic
5108 ** features such as 'now'.
5110 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5111 const VdbeOp *pOp;
5112 #ifdef SQLITE_ENABLE_STAT4
5113 if( pCtx->pVdbe==0 ) return 1;
5114 #endif
5115 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5116 if( pOp->opcode==OP_PureFunc ){
5117 const char *zContext;
5118 char *zMsg;
5119 if( pOp->p5 & NC_IsCheck ){
5120 zContext = "a CHECK constraint";
5121 }else if( pOp->p5 & NC_GenCol ){
5122 zContext = "a generated column";
5123 }else{
5124 zContext = "an index";
5126 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5127 pCtx->pFunc->zName, zContext);
5128 sqlite3_result_error(pCtx, zMsg, -1);
5129 sqlite3_free(zMsg);
5130 return 0;
5132 return 1;
5135 #ifndef SQLITE_OMIT_VIRTUALTABLE
5137 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5138 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5139 ** in memory obtained from sqlite3DbMalloc).
5141 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5142 if( pVtab->zErrMsg ){
5143 sqlite3 *db = p->db;
5144 sqlite3DbFree(db, p->zErrMsg);
5145 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5146 sqlite3_free(pVtab->zErrMsg);
5147 pVtab->zErrMsg = 0;
5150 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5152 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5155 ** If the second argument is not NULL, release any allocations associated
5156 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5157 ** structure itself, using sqlite3DbFree().
5159 ** This function is used to free UnpackedRecord structures allocated by
5160 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5162 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5163 if( p ){
5164 int i;
5165 for(i=0; i<nField; i++){
5166 Mem *pMem = &p->aMem[i];
5167 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5169 sqlite3DbFreeNN(db, p);
5172 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5174 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5176 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5177 ** then cursor passed as the second argument should point to the row about
5178 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5179 ** the required value will be read from the row the cursor points to.
5181 void sqlite3VdbePreUpdateHook(
5182 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5183 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5184 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5185 const char *zDb, /* Database name */
5186 Table *pTab, /* Modified table */
5187 i64 iKey1, /* Initial key value */
5188 int iReg /* Register for new.* record */
5190 sqlite3 *db = v->db;
5191 i64 iKey2;
5192 PreUpdate preupdate;
5193 const char *zTbl = pTab->zName;
5194 static const u8 fakeSortOrder = 0;
5196 assert( db->pPreUpdate==0 );
5197 memset(&preupdate, 0, sizeof(PreUpdate));
5198 if( HasRowid(pTab)==0 ){
5199 iKey1 = iKey2 = 0;
5200 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5201 }else{
5202 if( op==SQLITE_UPDATE ){
5203 iKey2 = v->aMem[iReg].u.i;
5204 }else{
5205 iKey2 = iKey1;
5209 assert( pCsr->nField==pTab->nCol
5210 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5213 preupdate.v = v;
5214 preupdate.pCsr = pCsr;
5215 preupdate.op = op;
5216 preupdate.iNewReg = iReg;
5217 preupdate.keyinfo.db = db;
5218 preupdate.keyinfo.enc = ENC(db);
5219 preupdate.keyinfo.nKeyField = pTab->nCol;
5220 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5221 preupdate.iKey1 = iKey1;
5222 preupdate.iKey2 = iKey2;
5223 preupdate.pTab = pTab;
5225 db->pPreUpdate = &preupdate;
5226 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5227 db->pPreUpdate = 0;
5228 sqlite3DbFree(db, preupdate.aRecord);
5229 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5230 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5231 if( preupdate.aNew ){
5232 int i;
5233 for(i=0; i<pCsr->nField; i++){
5234 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5236 sqlite3DbFreeNN(db, preupdate.aNew);
5239 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */