Snapshot of upstream SQLite 3.32.2
[sqlcipher.git] / src / vdbeapi.c
blobb9ac9fa797b1eae564fac896a18501a7b5fca9e8
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
56 #ifndef SQLITE_OMIT_TRACE
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 sqlite3_int64 iElapse;
64 assert( p->startTime>0 );
65 assert( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0 );
66 assert( db->init.busy==0 );
67 assert( p->zSql!=0 );
68 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
69 iElapse = (iNow - p->startTime)*1000000;
70 #ifndef SQLITE_OMIT_DEPRECATED
71 if( db->xProfile ){
72 db->xProfile(db->pProfileArg, p->zSql, iElapse);
74 #endif
75 if( db->mTrace & SQLITE_TRACE_PROFILE ){
76 db->xTrace(SQLITE_TRACE_PROFILE, db->pTraceArg, p, (void*)&iElapse);
78 p->startTime = 0;
81 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
82 ** is needed, and it invokes the callback if it is needed.
84 # define checkProfileCallback(DB,P) \
85 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
86 #else
87 # define checkProfileCallback(DB,P) /*no-op*/
88 #endif
91 ** The following routine destroys a virtual machine that is created by
92 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
93 ** success/failure code that describes the result of executing the virtual
94 ** machine.
96 ** This routine sets the error code and string returned by
97 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
99 int sqlite3_finalize(sqlite3_stmt *pStmt){
100 int rc;
101 if( pStmt==0 ){
102 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
103 ** pointer is a harmless no-op. */
104 rc = SQLITE_OK;
105 }else{
106 Vdbe *v = (Vdbe*)pStmt;
107 sqlite3 *db = v->db;
108 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
109 sqlite3_mutex_enter(db->mutex);
110 checkProfileCallback(db, v);
111 rc = sqlite3VdbeFinalize(v);
112 rc = sqlite3ApiExit(db, rc);
113 sqlite3LeaveMutexAndCloseZombie(db);
115 return rc;
119 ** Terminate the current execution of an SQL statement and reset it
120 ** back to its starting state so that it can be reused. A success code from
121 ** the prior execution is returned.
123 ** This routine sets the error code and string returned by
124 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
126 int sqlite3_reset(sqlite3_stmt *pStmt){
127 int rc;
128 if( pStmt==0 ){
129 rc = SQLITE_OK;
130 }else{
131 Vdbe *v = (Vdbe*)pStmt;
132 sqlite3 *db = v->db;
133 sqlite3_mutex_enter(db->mutex);
134 checkProfileCallback(db, v);
135 rc = sqlite3VdbeReset(v);
136 sqlite3VdbeRewind(v);
137 assert( (rc & (db->errMask))==rc );
138 rc = sqlite3ApiExit(db, rc);
139 sqlite3_mutex_leave(db->mutex);
141 return rc;
145 ** Set all the parameters in the compiled SQL statement to NULL.
147 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
148 int i;
149 int rc = SQLITE_OK;
150 Vdbe *p = (Vdbe*)pStmt;
151 #if SQLITE_THREADSAFE
152 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
153 #endif
154 sqlite3_mutex_enter(mutex);
155 for(i=0; i<p->nVar; i++){
156 sqlite3VdbeMemRelease(&p->aVar[i]);
157 p->aVar[i].flags = MEM_Null;
159 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
160 if( p->expmask ){
161 p->expired = 1;
163 sqlite3_mutex_leave(mutex);
164 return rc;
168 /**************************** sqlite3_value_ *******************************
169 ** The following routines extract information from a Mem or sqlite3_value
170 ** structure.
172 const void *sqlite3_value_blob(sqlite3_value *pVal){
173 Mem *p = (Mem*)pVal;
174 if( p->flags & (MEM_Blob|MEM_Str) ){
175 if( ExpandBlob(p)!=SQLITE_OK ){
176 assert( p->flags==MEM_Null && p->z==0 );
177 return 0;
179 p->flags |= MEM_Blob;
180 return p->n ? p->z : 0;
181 }else{
182 return sqlite3_value_text(pVal);
185 int sqlite3_value_bytes(sqlite3_value *pVal){
186 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
188 int sqlite3_value_bytes16(sqlite3_value *pVal){
189 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
191 double sqlite3_value_double(sqlite3_value *pVal){
192 return sqlite3VdbeRealValue((Mem*)pVal);
194 int sqlite3_value_int(sqlite3_value *pVal){
195 return (int)sqlite3VdbeIntValue((Mem*)pVal);
197 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
198 return sqlite3VdbeIntValue((Mem*)pVal);
200 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
201 Mem *pMem = (Mem*)pVal;
202 return ((pMem->flags & MEM_Subtype) ? pMem->eSubtype : 0);
204 void *sqlite3_value_pointer(sqlite3_value *pVal, const char *zPType){
205 Mem *p = (Mem*)pVal;
206 if( (p->flags&(MEM_TypeMask|MEM_Term|MEM_Subtype)) ==
207 (MEM_Null|MEM_Term|MEM_Subtype)
208 && zPType!=0
209 && p->eSubtype=='p'
210 && strcmp(p->u.zPType, zPType)==0
212 return (void*)p->z;
213 }else{
214 return 0;
217 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
218 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
220 #ifndef SQLITE_OMIT_UTF16
221 const void *sqlite3_value_text16(sqlite3_value* pVal){
222 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
224 const void *sqlite3_value_text16be(sqlite3_value *pVal){
225 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
227 const void *sqlite3_value_text16le(sqlite3_value *pVal){
228 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
230 #endif /* SQLITE_OMIT_UTF16 */
231 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
232 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
233 ** point number string BLOB NULL
235 int sqlite3_value_type(sqlite3_value* pVal){
236 static const u8 aType[] = {
237 SQLITE_BLOB, /* 0x00 (not possible) */
238 SQLITE_NULL, /* 0x01 NULL */
239 SQLITE_TEXT, /* 0x02 TEXT */
240 SQLITE_NULL, /* 0x03 (not possible) */
241 SQLITE_INTEGER, /* 0x04 INTEGER */
242 SQLITE_NULL, /* 0x05 (not possible) */
243 SQLITE_INTEGER, /* 0x06 INTEGER + TEXT */
244 SQLITE_NULL, /* 0x07 (not possible) */
245 SQLITE_FLOAT, /* 0x08 FLOAT */
246 SQLITE_NULL, /* 0x09 (not possible) */
247 SQLITE_FLOAT, /* 0x0a FLOAT + TEXT */
248 SQLITE_NULL, /* 0x0b (not possible) */
249 SQLITE_INTEGER, /* 0x0c (not possible) */
250 SQLITE_NULL, /* 0x0d (not possible) */
251 SQLITE_INTEGER, /* 0x0e (not possible) */
252 SQLITE_NULL, /* 0x0f (not possible) */
253 SQLITE_BLOB, /* 0x10 BLOB */
254 SQLITE_NULL, /* 0x11 (not possible) */
255 SQLITE_TEXT, /* 0x12 (not possible) */
256 SQLITE_NULL, /* 0x13 (not possible) */
257 SQLITE_INTEGER, /* 0x14 INTEGER + BLOB */
258 SQLITE_NULL, /* 0x15 (not possible) */
259 SQLITE_INTEGER, /* 0x16 (not possible) */
260 SQLITE_NULL, /* 0x17 (not possible) */
261 SQLITE_FLOAT, /* 0x18 FLOAT + BLOB */
262 SQLITE_NULL, /* 0x19 (not possible) */
263 SQLITE_FLOAT, /* 0x1a (not possible) */
264 SQLITE_NULL, /* 0x1b (not possible) */
265 SQLITE_INTEGER, /* 0x1c (not possible) */
266 SQLITE_NULL, /* 0x1d (not possible) */
267 SQLITE_INTEGER, /* 0x1e (not possible) */
268 SQLITE_NULL, /* 0x1f (not possible) */
269 SQLITE_FLOAT, /* 0x20 INTREAL */
270 SQLITE_NULL, /* 0x21 (not possible) */
271 SQLITE_TEXT, /* 0x22 INTREAL + TEXT */
272 SQLITE_NULL, /* 0x23 (not possible) */
273 SQLITE_FLOAT, /* 0x24 (not possible) */
274 SQLITE_NULL, /* 0x25 (not possible) */
275 SQLITE_FLOAT, /* 0x26 (not possible) */
276 SQLITE_NULL, /* 0x27 (not possible) */
277 SQLITE_FLOAT, /* 0x28 (not possible) */
278 SQLITE_NULL, /* 0x29 (not possible) */
279 SQLITE_FLOAT, /* 0x2a (not possible) */
280 SQLITE_NULL, /* 0x2b (not possible) */
281 SQLITE_FLOAT, /* 0x2c (not possible) */
282 SQLITE_NULL, /* 0x2d (not possible) */
283 SQLITE_FLOAT, /* 0x2e (not possible) */
284 SQLITE_NULL, /* 0x2f (not possible) */
285 SQLITE_BLOB, /* 0x30 (not possible) */
286 SQLITE_NULL, /* 0x31 (not possible) */
287 SQLITE_TEXT, /* 0x32 (not possible) */
288 SQLITE_NULL, /* 0x33 (not possible) */
289 SQLITE_FLOAT, /* 0x34 (not possible) */
290 SQLITE_NULL, /* 0x35 (not possible) */
291 SQLITE_FLOAT, /* 0x36 (not possible) */
292 SQLITE_NULL, /* 0x37 (not possible) */
293 SQLITE_FLOAT, /* 0x38 (not possible) */
294 SQLITE_NULL, /* 0x39 (not possible) */
295 SQLITE_FLOAT, /* 0x3a (not possible) */
296 SQLITE_NULL, /* 0x3b (not possible) */
297 SQLITE_FLOAT, /* 0x3c (not possible) */
298 SQLITE_NULL, /* 0x3d (not possible) */
299 SQLITE_FLOAT, /* 0x3e (not possible) */
300 SQLITE_NULL, /* 0x3f (not possible) */
302 #ifdef SQLITE_DEBUG
304 int eType = SQLITE_BLOB;
305 if( pVal->flags & MEM_Null ){
306 eType = SQLITE_NULL;
307 }else if( pVal->flags & (MEM_Real|MEM_IntReal) ){
308 eType = SQLITE_FLOAT;
309 }else if( pVal->flags & MEM_Int ){
310 eType = SQLITE_INTEGER;
311 }else if( pVal->flags & MEM_Str ){
312 eType = SQLITE_TEXT;
314 assert( eType == aType[pVal->flags&MEM_AffMask] );
316 #endif
317 return aType[pVal->flags&MEM_AffMask];
320 /* Return true if a parameter to xUpdate represents an unchanged column */
321 int sqlite3_value_nochange(sqlite3_value *pVal){
322 return (pVal->flags&(MEM_Null|MEM_Zero))==(MEM_Null|MEM_Zero);
325 /* Return true if a parameter value originated from an sqlite3_bind() */
326 int sqlite3_value_frombind(sqlite3_value *pVal){
327 return (pVal->flags&MEM_FromBind)!=0;
330 /* Make a copy of an sqlite3_value object
332 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
333 sqlite3_value *pNew;
334 if( pOrig==0 ) return 0;
335 pNew = sqlite3_malloc( sizeof(*pNew) );
336 if( pNew==0 ) return 0;
337 memset(pNew, 0, sizeof(*pNew));
338 memcpy(pNew, pOrig, MEMCELLSIZE);
339 pNew->flags &= ~MEM_Dyn;
340 pNew->db = 0;
341 if( pNew->flags&(MEM_Str|MEM_Blob) ){
342 pNew->flags &= ~(MEM_Static|MEM_Dyn);
343 pNew->flags |= MEM_Ephem;
344 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
345 sqlite3ValueFree(pNew);
346 pNew = 0;
349 return pNew;
352 /* Destroy an sqlite3_value object previously obtained from
353 ** sqlite3_value_dup().
355 void sqlite3_value_free(sqlite3_value *pOld){
356 sqlite3ValueFree(pOld);
360 /**************************** sqlite3_result_ *******************************
361 ** The following routines are used by user-defined functions to specify
362 ** the function result.
364 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
365 ** result as a string or blob but if the string or blob is too large, it
366 ** then sets the error code to SQLITE_TOOBIG
368 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
369 ** on value P is not going to be used and need to be destroyed.
371 static void setResultStrOrError(
372 sqlite3_context *pCtx, /* Function context */
373 const char *z, /* String pointer */
374 int n, /* Bytes in string, or negative */
375 u8 enc, /* Encoding of z. 0 for BLOBs */
376 void (*xDel)(void*) /* Destructor function */
378 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
379 sqlite3_result_error_toobig(pCtx);
382 static int invokeValueDestructor(
383 const void *p, /* Value to destroy */
384 void (*xDel)(void*), /* The destructor */
385 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
387 assert( xDel!=SQLITE_DYNAMIC );
388 if( xDel==0 ){
389 /* noop */
390 }else if( xDel==SQLITE_TRANSIENT ){
391 /* noop */
392 }else{
393 xDel((void*)p);
395 if( pCtx ) sqlite3_result_error_toobig(pCtx);
396 return SQLITE_TOOBIG;
398 void sqlite3_result_blob(
399 sqlite3_context *pCtx,
400 const void *z,
401 int n,
402 void (*xDel)(void *)
404 assert( n>=0 );
405 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
406 setResultStrOrError(pCtx, z, n, 0, xDel);
408 void sqlite3_result_blob64(
409 sqlite3_context *pCtx,
410 const void *z,
411 sqlite3_uint64 n,
412 void (*xDel)(void *)
414 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
415 assert( xDel!=SQLITE_DYNAMIC );
416 if( n>0x7fffffff ){
417 (void)invokeValueDestructor(z, xDel, pCtx);
418 }else{
419 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
422 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
423 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
424 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
426 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
427 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
428 pCtx->isError = SQLITE_ERROR;
429 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
431 #ifndef SQLITE_OMIT_UTF16
432 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
433 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
434 pCtx->isError = SQLITE_ERROR;
435 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
437 #endif
438 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
439 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
440 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
442 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
443 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
444 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
446 void sqlite3_result_null(sqlite3_context *pCtx){
447 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
448 sqlite3VdbeMemSetNull(pCtx->pOut);
450 void sqlite3_result_pointer(
451 sqlite3_context *pCtx,
452 void *pPtr,
453 const char *zPType,
454 void (*xDestructor)(void*)
456 Mem *pOut = pCtx->pOut;
457 assert( sqlite3_mutex_held(pOut->db->mutex) );
458 sqlite3VdbeMemRelease(pOut);
459 pOut->flags = MEM_Null;
460 sqlite3VdbeMemSetPointer(pOut, pPtr, zPType, xDestructor);
462 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
463 Mem *pOut = pCtx->pOut;
464 assert( sqlite3_mutex_held(pOut->db->mutex) );
465 pOut->eSubtype = eSubtype & 0xff;
466 pOut->flags |= MEM_Subtype;
468 void sqlite3_result_text(
469 sqlite3_context *pCtx,
470 const char *z,
471 int n,
472 void (*xDel)(void *)
474 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
475 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
477 void sqlite3_result_text64(
478 sqlite3_context *pCtx,
479 const char *z,
480 sqlite3_uint64 n,
481 void (*xDel)(void *),
482 unsigned char enc
484 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
485 assert( xDel!=SQLITE_DYNAMIC );
486 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
487 if( n>0x7fffffff ){
488 (void)invokeValueDestructor(z, xDel, pCtx);
489 }else{
490 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
493 #ifndef SQLITE_OMIT_UTF16
494 void sqlite3_result_text16(
495 sqlite3_context *pCtx,
496 const void *z,
497 int n,
498 void (*xDel)(void *)
500 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
501 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
503 void sqlite3_result_text16be(
504 sqlite3_context *pCtx,
505 const void *z,
506 int n,
507 void (*xDel)(void *)
509 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
510 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
512 void sqlite3_result_text16le(
513 sqlite3_context *pCtx,
514 const void *z,
515 int n,
516 void (*xDel)(void *)
518 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
519 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
521 #endif /* SQLITE_OMIT_UTF16 */
522 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
523 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
524 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
526 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
527 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
528 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
530 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
531 Mem *pOut = pCtx->pOut;
532 assert( sqlite3_mutex_held(pOut->db->mutex) );
533 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
534 return SQLITE_TOOBIG;
536 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
537 return SQLITE_OK;
539 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
540 pCtx->isError = errCode ? errCode : -1;
541 #ifdef SQLITE_DEBUG
542 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
543 #endif
544 if( pCtx->pOut->flags & MEM_Null ){
545 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
546 SQLITE_UTF8, SQLITE_STATIC);
550 /* Force an SQLITE_TOOBIG error. */
551 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
552 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
553 pCtx->isError = SQLITE_TOOBIG;
554 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
555 SQLITE_UTF8, SQLITE_STATIC);
558 /* An SQLITE_NOMEM error. */
559 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
560 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
561 sqlite3VdbeMemSetNull(pCtx->pOut);
562 pCtx->isError = SQLITE_NOMEM_BKPT;
563 sqlite3OomFault(pCtx->pOut->db);
566 #ifndef SQLITE_UNTESTABLE
567 /* Force the INT64 value currently stored as the result to be
568 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
569 ** test-control.
571 void sqlite3ResultIntReal(sqlite3_context *pCtx){
572 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
573 if( pCtx->pOut->flags & MEM_Int ){
574 pCtx->pOut->flags &= ~MEM_Int;
575 pCtx->pOut->flags |= MEM_IntReal;
578 #endif
582 ** This function is called after a transaction has been committed. It
583 ** invokes callbacks registered with sqlite3_wal_hook() as required.
585 static int doWalCallbacks(sqlite3 *db){
586 int rc = SQLITE_OK;
587 #ifndef SQLITE_OMIT_WAL
588 int i;
589 for(i=0; i<db->nDb; i++){
590 Btree *pBt = db->aDb[i].pBt;
591 if( pBt ){
592 int nEntry;
593 sqlite3BtreeEnter(pBt);
594 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
595 sqlite3BtreeLeave(pBt);
596 if( nEntry>0 && db->xWalCallback && rc==SQLITE_OK ){
597 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zDbSName, nEntry);
601 #endif
602 return rc;
607 ** Execute the statement pStmt, either until a row of data is ready, the
608 ** statement is completely executed or an error occurs.
610 ** This routine implements the bulk of the logic behind the sqlite_step()
611 ** API. The only thing omitted is the automatic recompile if a
612 ** schema change has occurred. That detail is handled by the
613 ** outer sqlite3_step() wrapper procedure.
615 static int sqlite3Step(Vdbe *p){
616 sqlite3 *db;
617 int rc;
619 assert(p);
620 if( p->magic!=VDBE_MAGIC_RUN ){
621 /* We used to require that sqlite3_reset() be called before retrying
622 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
623 ** with version 3.7.0, we changed this so that sqlite3_reset() would
624 ** be called automatically instead of throwing the SQLITE_MISUSE error.
625 ** This "automatic-reset" change is not technically an incompatibility,
626 ** since any application that receives an SQLITE_MISUSE is broken by
627 ** definition.
629 ** Nevertheless, some published applications that were originally written
630 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
631 ** returns, and those were broken by the automatic-reset change. As a
632 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
633 ** legacy behavior of returning SQLITE_MISUSE for cases where the
634 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
635 ** or SQLITE_BUSY error.
637 #ifdef SQLITE_OMIT_AUTORESET
638 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
639 sqlite3_reset((sqlite3_stmt*)p);
640 }else{
641 return SQLITE_MISUSE_BKPT;
643 #else
644 sqlite3_reset((sqlite3_stmt*)p);
645 #endif
648 /* Check that malloc() has not failed. If it has, return early. */
649 db = p->db;
650 if( db->mallocFailed ){
651 p->rc = SQLITE_NOMEM;
652 return SQLITE_NOMEM_BKPT;
655 if( p->pc<0 && p->expired ){
656 p->rc = SQLITE_SCHEMA;
657 rc = SQLITE_ERROR;
658 goto end_of_step;
660 if( p->pc<0 ){
661 /* If there are no other statements currently running, then
662 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
663 ** from interrupting a statement that has not yet started.
665 if( db->nVdbeActive==0 ){
666 AtomicStore(&db->u1.isInterrupted, 0);
669 assert( db->nVdbeWrite>0 || db->autoCommit==0
670 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
673 #ifndef SQLITE_OMIT_TRACE
674 if( (db->mTrace & (SQLITE_TRACE_PROFILE|SQLITE_TRACE_XPROFILE))!=0
675 && !db->init.busy && p->zSql ){
676 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
677 }else{
678 assert( p->startTime==0 );
680 #endif
682 db->nVdbeActive++;
683 if( p->readOnly==0 ) db->nVdbeWrite++;
684 if( p->bIsReader ) db->nVdbeRead++;
685 p->pc = 0;
687 #ifdef SQLITE_DEBUG
688 p->rcApp = SQLITE_OK;
689 #endif
690 #ifndef SQLITE_OMIT_EXPLAIN
691 if( p->explain ){
692 rc = sqlite3VdbeList(p);
693 }else
694 #endif /* SQLITE_OMIT_EXPLAIN */
696 db->nVdbeExec++;
697 rc = sqlite3VdbeExec(p);
698 db->nVdbeExec--;
701 if( rc!=SQLITE_ROW ){
702 #ifndef SQLITE_OMIT_TRACE
703 /* If the statement completed successfully, invoke the profile callback */
704 checkProfileCallback(db, p);
705 #endif
707 if( rc==SQLITE_DONE && db->autoCommit ){
708 assert( p->rc==SQLITE_OK );
709 p->rc = doWalCallbacks(db);
710 if( p->rc!=SQLITE_OK ){
711 rc = SQLITE_ERROR;
716 db->errCode = rc;
717 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
718 p->rc = SQLITE_NOMEM_BKPT;
720 end_of_step:
721 /* At this point local variable rc holds the value that should be
722 ** returned if this statement was compiled using the legacy
723 ** sqlite3_prepare() interface. According to the docs, this can only
724 ** be one of the values in the first assert() below. Variable p->rc
725 ** contains the value that would be returned if sqlite3_finalize()
726 ** were called on statement p.
728 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
729 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
731 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
732 if( rc!=SQLITE_ROW
733 && rc!=SQLITE_DONE
734 && (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0
736 /* If this statement was prepared using saved SQL and an
737 ** error has occurred, then return the error code in p->rc to the
738 ** caller. Set the error code in the database handle to the same value.
740 rc = sqlite3VdbeTransferError(p);
742 return (rc&db->errMask);
746 ** This is the top-level implementation of sqlite3_step(). Call
747 ** sqlite3Step() to do most of the work. If a schema error occurs,
748 ** call sqlite3Reprepare() and try again.
750 int sqlite3_step(sqlite3_stmt *pStmt){
751 int rc = SQLITE_OK; /* Result from sqlite3Step() */
752 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
753 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
754 sqlite3 *db; /* The database connection */
756 if( vdbeSafetyNotNull(v) ){
757 return SQLITE_MISUSE_BKPT;
759 db = v->db;
760 sqlite3_mutex_enter(db->mutex);
761 v->doingRerun = 0;
762 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
763 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
764 int savedPc = v->pc;
765 rc = sqlite3Reprepare(v);
766 if( rc!=SQLITE_OK ){
767 /* This case occurs after failing to recompile an sql statement.
768 ** The error message from the SQL compiler has already been loaded
769 ** into the database handle. This block copies the error message
770 ** from the database handle into the statement and sets the statement
771 ** program counter to 0 to ensure that when the statement is
772 ** finalized or reset the parser error message is available via
773 ** sqlite3_errmsg() and sqlite3_errcode().
775 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
776 sqlite3DbFree(db, v->zErrMsg);
777 if( !db->mallocFailed ){
778 v->zErrMsg = sqlite3DbStrDup(db, zErr);
779 v->rc = rc = sqlite3ApiExit(db, rc);
780 } else {
781 v->zErrMsg = 0;
782 v->rc = rc = SQLITE_NOMEM_BKPT;
784 break;
786 sqlite3_reset(pStmt);
787 if( savedPc>=0 ) v->doingRerun = 1;
788 assert( v->expired==0 );
790 sqlite3_mutex_leave(db->mutex);
791 return rc;
796 ** Extract the user data from a sqlite3_context structure and return a
797 ** pointer to it.
799 void *sqlite3_user_data(sqlite3_context *p){
800 assert( p && p->pFunc );
801 return p->pFunc->pUserData;
805 ** Extract the user data from a sqlite3_context structure and return a
806 ** pointer to it.
808 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
809 ** returns a copy of the pointer to the database connection (the 1st
810 ** parameter) of the sqlite3_create_function() and
811 ** sqlite3_create_function16() routines that originally registered the
812 ** application defined function.
814 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
815 assert( p && p->pOut );
816 return p->pOut->db;
820 ** If this routine is invoked from within an xColumn method of a virtual
821 ** table, then it returns true if and only if the the call is during an
822 ** UPDATE operation and the value of the column will not be modified
823 ** by the UPDATE.
825 ** If this routine is called from any context other than within the
826 ** xColumn method of a virtual table, then the return value is meaningless
827 ** and arbitrary.
829 ** Virtual table implements might use this routine to optimize their
830 ** performance by substituting a NULL result, or some other light-weight
831 ** value, as a signal to the xUpdate routine that the column is unchanged.
833 int sqlite3_vtab_nochange(sqlite3_context *p){
834 assert( p );
835 return sqlite3_value_nochange(p->pOut);
839 ** Return the current time for a statement. If the current time
840 ** is requested more than once within the same run of a single prepared
841 ** statement, the exact same time is returned for each invocation regardless
842 ** of the amount of time that elapses between invocations. In other words,
843 ** the time returned is always the time of the first call.
845 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
846 int rc;
847 #ifndef SQLITE_ENABLE_STAT4
848 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
849 assert( p->pVdbe!=0 );
850 #else
851 sqlite3_int64 iTime = 0;
852 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
853 #endif
854 if( *piTime==0 ){
855 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
856 if( rc ) *piTime = 0;
858 return *piTime;
862 ** Create a new aggregate context for p and return a pointer to
863 ** its pMem->z element.
865 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
866 Mem *pMem = p->pMem;
867 assert( (pMem->flags & MEM_Agg)==0 );
868 if( nByte<=0 ){
869 sqlite3VdbeMemSetNull(pMem);
870 pMem->z = 0;
871 }else{
872 sqlite3VdbeMemClearAndResize(pMem, nByte);
873 pMem->flags = MEM_Agg;
874 pMem->u.pDef = p->pFunc;
875 if( pMem->z ){
876 memset(pMem->z, 0, nByte);
879 return (void*)pMem->z;
883 ** Allocate or return the aggregate context for a user function. A new
884 ** context is allocated on the first call. Subsequent calls return the
885 ** same context that was returned on prior calls.
887 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
888 assert( p && p->pFunc && p->pFunc->xFinalize );
889 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
890 testcase( nByte<0 );
891 if( (p->pMem->flags & MEM_Agg)==0 ){
892 return createAggContext(p, nByte);
893 }else{
894 return (void*)p->pMem->z;
899 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
900 ** the user-function defined by pCtx.
902 ** The left-most argument is 0.
904 ** Undocumented behavior: If iArg is negative then access a cache of
905 ** auxiliary data pointers that is available to all functions within a
906 ** single prepared statement. The iArg values must match.
908 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
909 AuxData *pAuxData;
911 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
912 #if SQLITE_ENABLE_STAT4
913 if( pCtx->pVdbe==0 ) return 0;
914 #else
915 assert( pCtx->pVdbe!=0 );
916 #endif
917 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
918 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
919 return pAuxData->pAux;
922 return 0;
926 ** Set the auxiliary data pointer and delete function, for the iArg'th
927 ** argument to the user-function defined by pCtx. Any previous value is
928 ** deleted by calling the delete function specified when it was set.
930 ** The left-most argument is 0.
932 ** Undocumented behavior: If iArg is negative then make the data available
933 ** to all functions within the current prepared statement using iArg as an
934 ** access code.
936 void sqlite3_set_auxdata(
937 sqlite3_context *pCtx,
938 int iArg,
939 void *pAux,
940 void (*xDelete)(void*)
942 AuxData *pAuxData;
943 Vdbe *pVdbe = pCtx->pVdbe;
945 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
946 #ifdef SQLITE_ENABLE_STAT4
947 if( pVdbe==0 ) goto failed;
948 #else
949 assert( pVdbe!=0 );
950 #endif
952 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNextAux){
953 if( pAuxData->iAuxArg==iArg && (pAuxData->iAuxOp==pCtx->iOp || iArg<0) ){
954 break;
957 if( pAuxData==0 ){
958 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
959 if( !pAuxData ) goto failed;
960 pAuxData->iAuxOp = pCtx->iOp;
961 pAuxData->iAuxArg = iArg;
962 pAuxData->pNextAux = pVdbe->pAuxData;
963 pVdbe->pAuxData = pAuxData;
964 if( pCtx->isError==0 ) pCtx->isError = -1;
965 }else if( pAuxData->xDeleteAux ){
966 pAuxData->xDeleteAux(pAuxData->pAux);
969 pAuxData->pAux = pAux;
970 pAuxData->xDeleteAux = xDelete;
971 return;
973 failed:
974 if( xDelete ){
975 xDelete(pAux);
979 #ifndef SQLITE_OMIT_DEPRECATED
981 ** Return the number of times the Step function of an aggregate has been
982 ** called.
984 ** This function is deprecated. Do not use it for new code. It is
985 ** provide only to avoid breaking legacy code. New aggregate function
986 ** implementations should keep their own counts within their aggregate
987 ** context.
989 int sqlite3_aggregate_count(sqlite3_context *p){
990 assert( p && p->pMem && p->pFunc && p->pFunc->xFinalize );
991 return p->pMem->n;
993 #endif
996 ** Return the number of columns in the result set for the statement pStmt.
998 int sqlite3_column_count(sqlite3_stmt *pStmt){
999 Vdbe *pVm = (Vdbe *)pStmt;
1000 return pVm ? pVm->nResColumn : 0;
1004 ** Return the number of values available from the current row of the
1005 ** currently executing statement pStmt.
1007 int sqlite3_data_count(sqlite3_stmt *pStmt){
1008 Vdbe *pVm = (Vdbe *)pStmt;
1009 if( pVm==0 || pVm->pResultSet==0 ) return 0;
1010 return pVm->nResColumn;
1014 ** Return a pointer to static memory containing an SQL NULL value.
1016 static const Mem *columnNullValue(void){
1017 /* Even though the Mem structure contains an element
1018 ** of type i64, on certain architectures (x86) with certain compiler
1019 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1020 ** instead of an 8-byte one. This all works fine, except that when
1021 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1022 ** that a Mem structure is located on an 8-byte boundary. To prevent
1023 ** these assert()s from failing, when building with SQLITE_DEBUG defined
1024 ** using gcc, we force nullMem to be 8-byte aligned using the magical
1025 ** __attribute__((aligned(8))) macro. */
1026 static const Mem nullMem
1027 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1028 __attribute__((aligned(8)))
1029 #endif
1031 /* .u = */ {0},
1032 /* .flags = */ (u16)MEM_Null,
1033 /* .enc = */ (u8)0,
1034 /* .eSubtype = */ (u8)0,
1035 /* .n = */ (int)0,
1036 /* .z = */ (char*)0,
1037 /* .zMalloc = */ (char*)0,
1038 /* .szMalloc = */ (int)0,
1039 /* .uTemp = */ (u32)0,
1040 /* .db = */ (sqlite3*)0,
1041 /* .xDel = */ (void(*)(void*))0,
1042 #ifdef SQLITE_DEBUG
1043 /* .pScopyFrom = */ (Mem*)0,
1044 /* .mScopyFlags= */ 0,
1045 #endif
1047 return &nullMem;
1051 ** Check to see if column iCol of the given statement is valid. If
1052 ** it is, return a pointer to the Mem for the value of that column.
1053 ** If iCol is not valid, return a pointer to a Mem which has a value
1054 ** of NULL.
1056 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
1057 Vdbe *pVm;
1058 Mem *pOut;
1060 pVm = (Vdbe *)pStmt;
1061 if( pVm==0 ) return (Mem*)columnNullValue();
1062 assert( pVm->db );
1063 sqlite3_mutex_enter(pVm->db->mutex);
1064 if( pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
1065 pOut = &pVm->pResultSet[i];
1066 }else{
1067 sqlite3Error(pVm->db, SQLITE_RANGE);
1068 pOut = (Mem*)columnNullValue();
1070 return pOut;
1074 ** This function is called after invoking an sqlite3_value_XXX function on a
1075 ** column value (i.e. a value returned by evaluating an SQL expression in the
1076 ** select list of a SELECT statement) that may cause a malloc() failure. If
1077 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1078 ** code of statement pStmt set to SQLITE_NOMEM.
1080 ** Specifically, this is called from within:
1082 ** sqlite3_column_int()
1083 ** sqlite3_column_int64()
1084 ** sqlite3_column_text()
1085 ** sqlite3_column_text16()
1086 ** sqlite3_column_real()
1087 ** sqlite3_column_bytes()
1088 ** sqlite3_column_bytes16()
1089 ** sqiite3_column_blob()
1091 static void columnMallocFailure(sqlite3_stmt *pStmt)
1093 /* If malloc() failed during an encoding conversion within an
1094 ** sqlite3_column_XXX API, then set the return code of the statement to
1095 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1096 ** and _finalize() will return NOMEM.
1098 Vdbe *p = (Vdbe *)pStmt;
1099 if( p ){
1100 assert( p->db!=0 );
1101 assert( sqlite3_mutex_held(p->db->mutex) );
1102 p->rc = sqlite3ApiExit(p->db, p->rc);
1103 sqlite3_mutex_leave(p->db->mutex);
1107 /**************************** sqlite3_column_ *******************************
1108 ** The following routines are used to access elements of the current row
1109 ** in the result set.
1111 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
1112 const void *val;
1113 val = sqlite3_value_blob( columnMem(pStmt,i) );
1114 /* Even though there is no encoding conversion, value_blob() might
1115 ** need to call malloc() to expand the result of a zeroblob()
1116 ** expression.
1118 columnMallocFailure(pStmt);
1119 return val;
1121 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1122 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1123 columnMallocFailure(pStmt);
1124 return val;
1126 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1127 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1128 columnMallocFailure(pStmt);
1129 return val;
1131 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1132 double val = sqlite3_value_double( columnMem(pStmt,i) );
1133 columnMallocFailure(pStmt);
1134 return val;
1136 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1137 int val = sqlite3_value_int( columnMem(pStmt,i) );
1138 columnMallocFailure(pStmt);
1139 return val;
1141 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1142 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1143 columnMallocFailure(pStmt);
1144 return val;
1146 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1147 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1148 columnMallocFailure(pStmt);
1149 return val;
1151 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1152 Mem *pOut = columnMem(pStmt, i);
1153 if( pOut->flags&MEM_Static ){
1154 pOut->flags &= ~MEM_Static;
1155 pOut->flags |= MEM_Ephem;
1157 columnMallocFailure(pStmt);
1158 return (sqlite3_value *)pOut;
1160 #ifndef SQLITE_OMIT_UTF16
1161 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1162 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1163 columnMallocFailure(pStmt);
1164 return val;
1166 #endif /* SQLITE_OMIT_UTF16 */
1167 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1168 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1169 columnMallocFailure(pStmt);
1170 return iType;
1174 ** Convert the N-th element of pStmt->pColName[] into a string using
1175 ** xFunc() then return that string. If N is out of range, return 0.
1177 ** There are up to 5 names for each column. useType determines which
1178 ** name is returned. Here are the names:
1180 ** 0 The column name as it should be displayed for output
1181 ** 1 The datatype name for the column
1182 ** 2 The name of the database that the column derives from
1183 ** 3 The name of the table that the column derives from
1184 ** 4 The name of the table column that the result column derives from
1186 ** If the result is not a simple column reference (if it is an expression
1187 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1189 static const void *columnName(
1190 sqlite3_stmt *pStmt, /* The statement */
1191 int N, /* Which column to get the name for */
1192 int useUtf16, /* True to return the name as UTF16 */
1193 int useType /* What type of name */
1195 const void *ret;
1196 Vdbe *p;
1197 int n;
1198 sqlite3 *db;
1199 #ifdef SQLITE_ENABLE_API_ARMOR
1200 if( pStmt==0 ){
1201 (void)SQLITE_MISUSE_BKPT;
1202 return 0;
1204 #endif
1205 ret = 0;
1206 p = (Vdbe *)pStmt;
1207 db = p->db;
1208 assert( db!=0 );
1209 n = sqlite3_column_count(pStmt);
1210 if( N<n && N>=0 ){
1211 N += useType*n;
1212 sqlite3_mutex_enter(db->mutex);
1213 assert( db->mallocFailed==0 );
1214 #ifndef SQLITE_OMIT_UTF16
1215 if( useUtf16 ){
1216 ret = sqlite3_value_text16((sqlite3_value*)&p->aColName[N]);
1217 }else
1218 #endif
1220 ret = sqlite3_value_text((sqlite3_value*)&p->aColName[N]);
1222 /* A malloc may have failed inside of the _text() call. If this
1223 ** is the case, clear the mallocFailed flag and return NULL.
1225 if( db->mallocFailed ){
1226 sqlite3OomClear(db);
1227 ret = 0;
1229 sqlite3_mutex_leave(db->mutex);
1231 return ret;
1235 ** Return the name of the Nth column of the result set returned by SQL
1236 ** statement pStmt.
1238 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1239 return columnName(pStmt, N, 0, COLNAME_NAME);
1241 #ifndef SQLITE_OMIT_UTF16
1242 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1243 return columnName(pStmt, N, 1, COLNAME_NAME);
1245 #endif
1248 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1249 ** not define OMIT_DECLTYPE.
1251 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1252 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1253 and SQLITE_ENABLE_COLUMN_METADATA"
1254 #endif
1256 #ifndef SQLITE_OMIT_DECLTYPE
1258 ** Return the column declaration type (if applicable) of the 'i'th column
1259 ** of the result set of SQL statement pStmt.
1261 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1262 return columnName(pStmt, N, 0, COLNAME_DECLTYPE);
1264 #ifndef SQLITE_OMIT_UTF16
1265 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1266 return columnName(pStmt, N, 1, COLNAME_DECLTYPE);
1268 #endif /* SQLITE_OMIT_UTF16 */
1269 #endif /* SQLITE_OMIT_DECLTYPE */
1271 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1273 ** Return the name of the database from which a result column derives.
1274 ** NULL is returned if the result column is an expression or constant or
1275 ** anything else which is not an unambiguous reference to a database column.
1277 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1278 return columnName(pStmt, N, 0, COLNAME_DATABASE);
1280 #ifndef SQLITE_OMIT_UTF16
1281 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1282 return columnName(pStmt, N, 1, COLNAME_DATABASE);
1284 #endif /* SQLITE_OMIT_UTF16 */
1287 ** Return the name of the table from which a result column derives.
1288 ** NULL is returned if the result column is an expression or constant or
1289 ** anything else which is not an unambiguous reference to a database column.
1291 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1292 return columnName(pStmt, N, 0, COLNAME_TABLE);
1294 #ifndef SQLITE_OMIT_UTF16
1295 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1296 return columnName(pStmt, N, 1, COLNAME_TABLE);
1298 #endif /* SQLITE_OMIT_UTF16 */
1301 ** Return the name of the table column from which a result column derives.
1302 ** NULL is returned if the result column is an expression or constant or
1303 ** anything else which is not an unambiguous reference to a database column.
1305 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1306 return columnName(pStmt, N, 0, COLNAME_COLUMN);
1308 #ifndef SQLITE_OMIT_UTF16
1309 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1310 return columnName(pStmt, N, 1, COLNAME_COLUMN);
1312 #endif /* SQLITE_OMIT_UTF16 */
1313 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1316 /******************************* sqlite3_bind_ ***************************
1318 ** Routines used to attach values to wildcards in a compiled SQL statement.
1321 ** Unbind the value bound to variable i in virtual machine p. This is the
1322 ** the same as binding a NULL value to the column. If the "i" parameter is
1323 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1325 ** A successful evaluation of this routine acquires the mutex on p.
1326 ** the mutex is released if any kind of error occurs.
1328 ** The error code stored in database p->db is overwritten with the return
1329 ** value in any case.
1331 static int vdbeUnbind(Vdbe *p, int i){
1332 Mem *pVar;
1333 if( vdbeSafetyNotNull(p) ){
1334 return SQLITE_MISUSE_BKPT;
1336 sqlite3_mutex_enter(p->db->mutex);
1337 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1338 sqlite3Error(p->db, SQLITE_MISUSE);
1339 sqlite3_mutex_leave(p->db->mutex);
1340 sqlite3_log(SQLITE_MISUSE,
1341 "bind on a busy prepared statement: [%s]", p->zSql);
1342 return SQLITE_MISUSE_BKPT;
1344 if( i<1 || i>p->nVar ){
1345 sqlite3Error(p->db, SQLITE_RANGE);
1346 sqlite3_mutex_leave(p->db->mutex);
1347 return SQLITE_RANGE;
1349 i--;
1350 pVar = &p->aVar[i];
1351 sqlite3VdbeMemRelease(pVar);
1352 pVar->flags = MEM_Null;
1353 p->db->errCode = SQLITE_OK;
1355 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1356 ** binding a new value to this variable invalidates the current query plan.
1358 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1359 ** parameter in the WHERE clause might influence the choice of query plan
1360 ** for a statement, then the statement will be automatically recompiled,
1361 ** as if there had been a schema change, on the first sqlite3_step() call
1362 ** following any change to the bindings of that parameter.
1364 assert( (p->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || p->expmask==0 );
1365 if( p->expmask!=0 && (p->expmask & (i>=31 ? 0x80000000 : (u32)1<<i))!=0 ){
1366 p->expired = 1;
1368 return SQLITE_OK;
1372 ** Bind a text or BLOB value.
1374 static int bindText(
1375 sqlite3_stmt *pStmt, /* The statement to bind against */
1376 int i, /* Index of the parameter to bind */
1377 const void *zData, /* Pointer to the data to be bound */
1378 int nData, /* Number of bytes of data to be bound */
1379 void (*xDel)(void*), /* Destructor for the data */
1380 u8 encoding /* Encoding for the data */
1382 Vdbe *p = (Vdbe *)pStmt;
1383 Mem *pVar;
1384 int rc;
1386 rc = vdbeUnbind(p, i);
1387 if( rc==SQLITE_OK ){
1388 if( zData!=0 ){
1389 pVar = &p->aVar[i-1];
1390 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1391 if( rc==SQLITE_OK && encoding!=0 ){
1392 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1394 if( rc ){
1395 sqlite3Error(p->db, rc);
1396 rc = sqlite3ApiExit(p->db, rc);
1399 sqlite3_mutex_leave(p->db->mutex);
1400 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1401 xDel((void*)zData);
1403 return rc;
1408 ** Bind a blob value to an SQL statement variable.
1410 int sqlite3_bind_blob(
1411 sqlite3_stmt *pStmt,
1412 int i,
1413 const void *zData,
1414 int nData,
1415 void (*xDel)(void*)
1417 #ifdef SQLITE_ENABLE_API_ARMOR
1418 if( nData<0 ) return SQLITE_MISUSE_BKPT;
1419 #endif
1420 return bindText(pStmt, i, zData, nData, xDel, 0);
1422 int sqlite3_bind_blob64(
1423 sqlite3_stmt *pStmt,
1424 int i,
1425 const void *zData,
1426 sqlite3_uint64 nData,
1427 void (*xDel)(void*)
1429 assert( xDel!=SQLITE_DYNAMIC );
1430 if( nData>0x7fffffff ){
1431 return invokeValueDestructor(zData, xDel, 0);
1432 }else{
1433 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1436 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1437 int rc;
1438 Vdbe *p = (Vdbe *)pStmt;
1439 rc = vdbeUnbind(p, i);
1440 if( rc==SQLITE_OK ){
1441 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1442 sqlite3_mutex_leave(p->db->mutex);
1444 return rc;
1446 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1447 return sqlite3_bind_int64(p, i, (i64)iValue);
1449 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1450 int rc;
1451 Vdbe *p = (Vdbe *)pStmt;
1452 rc = vdbeUnbind(p, i);
1453 if( rc==SQLITE_OK ){
1454 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1455 sqlite3_mutex_leave(p->db->mutex);
1457 return rc;
1459 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1460 int rc;
1461 Vdbe *p = (Vdbe*)pStmt;
1462 rc = vdbeUnbind(p, i);
1463 if( rc==SQLITE_OK ){
1464 sqlite3_mutex_leave(p->db->mutex);
1466 return rc;
1468 int sqlite3_bind_pointer(
1469 sqlite3_stmt *pStmt,
1470 int i,
1471 void *pPtr,
1472 const char *zPTtype,
1473 void (*xDestructor)(void*)
1475 int rc;
1476 Vdbe *p = (Vdbe*)pStmt;
1477 rc = vdbeUnbind(p, i);
1478 if( rc==SQLITE_OK ){
1479 sqlite3VdbeMemSetPointer(&p->aVar[i-1], pPtr, zPTtype, xDestructor);
1480 sqlite3_mutex_leave(p->db->mutex);
1481 }else if( xDestructor ){
1482 xDestructor(pPtr);
1484 return rc;
1486 int sqlite3_bind_text(
1487 sqlite3_stmt *pStmt,
1488 int i,
1489 const char *zData,
1490 int nData,
1491 void (*xDel)(void*)
1493 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1495 int sqlite3_bind_text64(
1496 sqlite3_stmt *pStmt,
1497 int i,
1498 const char *zData,
1499 sqlite3_uint64 nData,
1500 void (*xDel)(void*),
1501 unsigned char enc
1503 assert( xDel!=SQLITE_DYNAMIC );
1504 if( nData>0x7fffffff ){
1505 return invokeValueDestructor(zData, xDel, 0);
1506 }else{
1507 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1508 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1511 #ifndef SQLITE_OMIT_UTF16
1512 int sqlite3_bind_text16(
1513 sqlite3_stmt *pStmt,
1514 int i,
1515 const void *zData,
1516 int nData,
1517 void (*xDel)(void*)
1519 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1521 #endif /* SQLITE_OMIT_UTF16 */
1522 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1523 int rc;
1524 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1525 case SQLITE_INTEGER: {
1526 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1527 break;
1529 case SQLITE_FLOAT: {
1530 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1531 break;
1533 case SQLITE_BLOB: {
1534 if( pValue->flags & MEM_Zero ){
1535 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1536 }else{
1537 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1539 break;
1541 case SQLITE_TEXT: {
1542 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1543 pValue->enc);
1544 break;
1546 default: {
1547 rc = sqlite3_bind_null(pStmt, i);
1548 break;
1551 return rc;
1553 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1554 int rc;
1555 Vdbe *p = (Vdbe *)pStmt;
1556 rc = vdbeUnbind(p, i);
1557 if( rc==SQLITE_OK ){
1558 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1559 sqlite3_mutex_leave(p->db->mutex);
1561 return rc;
1563 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1564 int rc;
1565 Vdbe *p = (Vdbe *)pStmt;
1566 sqlite3_mutex_enter(p->db->mutex);
1567 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1568 rc = SQLITE_TOOBIG;
1569 }else{
1570 assert( (n & 0x7FFFFFFF)==n );
1571 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1573 rc = sqlite3ApiExit(p->db, rc);
1574 sqlite3_mutex_leave(p->db->mutex);
1575 return rc;
1579 ** Return the number of wildcards that can be potentially bound to.
1580 ** This routine is added to support DBD::SQLite.
1582 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1583 Vdbe *p = (Vdbe*)pStmt;
1584 return p ? p->nVar : 0;
1588 ** Return the name of a wildcard parameter. Return NULL if the index
1589 ** is out of range or if the wildcard is unnamed.
1591 ** The result is always UTF-8.
1593 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1594 Vdbe *p = (Vdbe*)pStmt;
1595 if( p==0 ) return 0;
1596 return sqlite3VListNumToName(p->pVList, i);
1600 ** Given a wildcard parameter name, return the index of the variable
1601 ** with that name. If there is no variable with the given name,
1602 ** return 0.
1604 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1605 if( p==0 || zName==0 ) return 0;
1606 return sqlite3VListNameToNum(p->pVList, zName, nName);
1608 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1609 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1613 ** Transfer all bindings from the first statement over to the second.
1615 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1616 Vdbe *pFrom = (Vdbe*)pFromStmt;
1617 Vdbe *pTo = (Vdbe*)pToStmt;
1618 int i;
1619 assert( pTo->db==pFrom->db );
1620 assert( pTo->nVar==pFrom->nVar );
1621 sqlite3_mutex_enter(pTo->db->mutex);
1622 for(i=0; i<pFrom->nVar; i++){
1623 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1625 sqlite3_mutex_leave(pTo->db->mutex);
1626 return SQLITE_OK;
1629 #ifndef SQLITE_OMIT_DEPRECATED
1631 ** Deprecated external interface. Internal/core SQLite code
1632 ** should call sqlite3TransferBindings.
1634 ** It is misuse to call this routine with statements from different
1635 ** database connections. But as this is a deprecated interface, we
1636 ** will not bother to check for that condition.
1638 ** If the two statements contain a different number of bindings, then
1639 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1640 ** SQLITE_OK is returned.
1642 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1643 Vdbe *pFrom = (Vdbe*)pFromStmt;
1644 Vdbe *pTo = (Vdbe*)pToStmt;
1645 if( pFrom->nVar!=pTo->nVar ){
1646 return SQLITE_ERROR;
1648 assert( (pTo->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pTo->expmask==0 );
1649 if( pTo->expmask ){
1650 pTo->expired = 1;
1652 assert( (pFrom->prepFlags & SQLITE_PREPARE_SAVESQL)!=0 || pFrom->expmask==0 );
1653 if( pFrom->expmask ){
1654 pFrom->expired = 1;
1656 return sqlite3TransferBindings(pFromStmt, pToStmt);
1658 #endif
1661 ** Return the sqlite3* database handle to which the prepared statement given
1662 ** in the argument belongs. This is the same database handle that was
1663 ** the first argument to the sqlite3_prepare() that was used to create
1664 ** the statement in the first place.
1666 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1667 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1671 ** Return true if the prepared statement is guaranteed to not modify the
1672 ** database.
1674 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1675 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1679 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1680 ** statement is an EXPLAIN QUERY PLAN
1682 int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt){
1683 return pStmt ? ((Vdbe*)pStmt)->explain : 0;
1687 ** Return true if the prepared statement is in need of being reset.
1689 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1690 Vdbe *v = (Vdbe*)pStmt;
1691 return v!=0 && v->magic==VDBE_MAGIC_RUN && v->pc>=0;
1695 ** Return a pointer to the next prepared statement after pStmt associated
1696 ** with database connection pDb. If pStmt is NULL, return the first
1697 ** prepared statement for the database connection. Return NULL if there
1698 ** are no more.
1700 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1701 sqlite3_stmt *pNext;
1702 #ifdef SQLITE_ENABLE_API_ARMOR
1703 if( !sqlite3SafetyCheckOk(pDb) ){
1704 (void)SQLITE_MISUSE_BKPT;
1705 return 0;
1707 #endif
1708 sqlite3_mutex_enter(pDb->mutex);
1709 if( pStmt==0 ){
1710 pNext = (sqlite3_stmt*)pDb->pVdbe;
1711 }else{
1712 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1714 sqlite3_mutex_leave(pDb->mutex);
1715 return pNext;
1719 ** Return the value of a status counter for a prepared statement
1721 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1722 Vdbe *pVdbe = (Vdbe*)pStmt;
1723 u32 v;
1724 #ifdef SQLITE_ENABLE_API_ARMOR
1725 if( !pStmt
1726 || (op!=SQLITE_STMTSTATUS_MEMUSED && (op<0||op>=ArraySize(pVdbe->aCounter)))
1728 (void)SQLITE_MISUSE_BKPT;
1729 return 0;
1731 #endif
1732 if( op==SQLITE_STMTSTATUS_MEMUSED ){
1733 sqlite3 *db = pVdbe->db;
1734 sqlite3_mutex_enter(db->mutex);
1735 v = 0;
1736 db->pnBytesFreed = (int*)&v;
1737 sqlite3VdbeClearObject(db, pVdbe);
1738 sqlite3DbFree(db, pVdbe);
1739 db->pnBytesFreed = 0;
1740 sqlite3_mutex_leave(db->mutex);
1741 }else{
1742 v = pVdbe->aCounter[op];
1743 if( resetFlag ) pVdbe->aCounter[op] = 0;
1745 return (int)v;
1749 ** Return the SQL associated with a prepared statement
1751 const char *sqlite3_sql(sqlite3_stmt *pStmt){
1752 Vdbe *p = (Vdbe *)pStmt;
1753 return p ? p->zSql : 0;
1757 ** Return the SQL associated with a prepared statement with
1758 ** bound parameters expanded. Space to hold the returned string is
1759 ** obtained from sqlite3_malloc(). The caller is responsible for
1760 ** freeing the returned string by passing it to sqlite3_free().
1762 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
1763 ** expanded bound parameters.
1765 char *sqlite3_expanded_sql(sqlite3_stmt *pStmt){
1766 #ifdef SQLITE_OMIT_TRACE
1767 return 0;
1768 #else
1769 char *z = 0;
1770 const char *zSql = sqlite3_sql(pStmt);
1771 if( zSql ){
1772 Vdbe *p = (Vdbe *)pStmt;
1773 sqlite3_mutex_enter(p->db->mutex);
1774 z = sqlite3VdbeExpandSql(p, zSql);
1775 sqlite3_mutex_leave(p->db->mutex);
1777 return z;
1778 #endif
1781 #ifdef SQLITE_ENABLE_NORMALIZE
1783 ** Return the normalized SQL associated with a prepared statement.
1785 const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
1786 Vdbe *p = (Vdbe *)pStmt;
1787 if( p==0 ) return 0;
1788 if( p->zNormSql==0 && ALWAYS(p->zSql!=0) ){
1789 sqlite3_mutex_enter(p->db->mutex);
1790 p->zNormSql = sqlite3Normalize(p, p->zSql);
1791 sqlite3_mutex_leave(p->db->mutex);
1793 return p->zNormSql;
1795 #endif /* SQLITE_ENABLE_NORMALIZE */
1797 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1799 ** Allocate and populate an UnpackedRecord structure based on the serialized
1800 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
1801 ** if successful, or a NULL pointer if an OOM error is encountered.
1803 static UnpackedRecord *vdbeUnpackRecord(
1804 KeyInfo *pKeyInfo,
1805 int nKey,
1806 const void *pKey
1808 UnpackedRecord *pRet; /* Return value */
1810 pRet = sqlite3VdbeAllocUnpackedRecord(pKeyInfo);
1811 if( pRet ){
1812 memset(pRet->aMem, 0, sizeof(Mem)*(pKeyInfo->nKeyField+1));
1813 sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, pRet);
1815 return pRet;
1819 ** This function is called from within a pre-update callback to retrieve
1820 ** a field of the row currently being updated or deleted.
1822 int sqlite3_preupdate_old(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1823 PreUpdate *p = db->pPreUpdate;
1824 Mem *pMem;
1825 int rc = SQLITE_OK;
1827 /* Test that this call is being made from within an SQLITE_DELETE or
1828 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
1829 if( !p || p->op==SQLITE_INSERT ){
1830 rc = SQLITE_MISUSE_BKPT;
1831 goto preupdate_old_out;
1833 if( p->pPk ){
1834 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1836 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1837 rc = SQLITE_RANGE;
1838 goto preupdate_old_out;
1841 /* If the old.* record has not yet been loaded into memory, do so now. */
1842 if( p->pUnpacked==0 ){
1843 u32 nRec;
1844 u8 *aRec;
1846 nRec = sqlite3BtreePayloadSize(p->pCsr->uc.pCursor);
1847 aRec = sqlite3DbMallocRaw(db, nRec);
1848 if( !aRec ) goto preupdate_old_out;
1849 rc = sqlite3BtreePayload(p->pCsr->uc.pCursor, 0, nRec, aRec);
1850 if( rc==SQLITE_OK ){
1851 p->pUnpacked = vdbeUnpackRecord(&p->keyinfo, nRec, aRec);
1852 if( !p->pUnpacked ) rc = SQLITE_NOMEM;
1854 if( rc!=SQLITE_OK ){
1855 sqlite3DbFree(db, aRec);
1856 goto preupdate_old_out;
1858 p->aRecord = aRec;
1861 pMem = *ppValue = &p->pUnpacked->aMem[iIdx];
1862 if( iIdx==p->pTab->iPKey ){
1863 sqlite3VdbeMemSetInt64(pMem, p->iKey1);
1864 }else if( iIdx>=p->pUnpacked->nField ){
1865 *ppValue = (sqlite3_value *)columnNullValue();
1866 }else if( p->pTab->aCol[iIdx].affinity==SQLITE_AFF_REAL ){
1867 if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1868 testcase( pMem->flags & MEM_Int );
1869 testcase( pMem->flags & MEM_IntReal );
1870 sqlite3VdbeMemRealify(pMem);
1874 preupdate_old_out:
1875 sqlite3Error(db, rc);
1876 return sqlite3ApiExit(db, rc);
1878 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1880 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1882 ** This function is called from within a pre-update callback to retrieve
1883 ** the number of columns in the row being updated, deleted or inserted.
1885 int sqlite3_preupdate_count(sqlite3 *db){
1886 PreUpdate *p = db->pPreUpdate;
1887 return (p ? p->keyinfo.nKeyField : 0);
1889 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1891 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1893 ** This function is designed to be called from within a pre-update callback
1894 ** only. It returns zero if the change that caused the callback was made
1895 ** immediately by a user SQL statement. Or, if the change was made by a
1896 ** trigger program, it returns the number of trigger programs currently
1897 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
1898 ** top-level trigger etc.).
1900 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
1901 ** or SET DEFAULT action is considered a trigger.
1903 int sqlite3_preupdate_depth(sqlite3 *db){
1904 PreUpdate *p = db->pPreUpdate;
1905 return (p ? p->v->nFrame : 0);
1907 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1909 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1911 ** This function is called from within a pre-update callback to retrieve
1912 ** a field of the row currently being updated or inserted.
1914 int sqlite3_preupdate_new(sqlite3 *db, int iIdx, sqlite3_value **ppValue){
1915 PreUpdate *p = db->pPreUpdate;
1916 int rc = SQLITE_OK;
1917 Mem *pMem;
1919 if( !p || p->op==SQLITE_DELETE ){
1920 rc = SQLITE_MISUSE_BKPT;
1921 goto preupdate_new_out;
1923 if( p->pPk && p->op!=SQLITE_UPDATE ){
1924 iIdx = sqlite3TableColumnToIndex(p->pPk, iIdx);
1926 if( iIdx>=p->pCsr->nField || iIdx<0 ){
1927 rc = SQLITE_RANGE;
1928 goto preupdate_new_out;
1931 if( p->op==SQLITE_INSERT ){
1932 /* For an INSERT, memory cell p->iNewReg contains the serialized record
1933 ** that is being inserted. Deserialize it. */
1934 UnpackedRecord *pUnpack = p->pNewUnpacked;
1935 if( !pUnpack ){
1936 Mem *pData = &p->v->aMem[p->iNewReg];
1937 rc = ExpandBlob(pData);
1938 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1939 pUnpack = vdbeUnpackRecord(&p->keyinfo, pData->n, pData->z);
1940 if( !pUnpack ){
1941 rc = SQLITE_NOMEM;
1942 goto preupdate_new_out;
1944 p->pNewUnpacked = pUnpack;
1946 pMem = &pUnpack->aMem[iIdx];
1947 if( iIdx==p->pTab->iPKey ){
1948 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1949 }else if( iIdx>=pUnpack->nField ){
1950 pMem = (sqlite3_value *)columnNullValue();
1952 }else{
1953 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
1954 ** value. Make a copy of the cell contents and return a pointer to it.
1955 ** It is not safe to return a pointer to the memory cell itself as the
1956 ** caller may modify the value text encoding.
1958 assert( p->op==SQLITE_UPDATE );
1959 if( !p->aNew ){
1960 p->aNew = (Mem *)sqlite3DbMallocZero(db, sizeof(Mem) * p->pCsr->nField);
1961 if( !p->aNew ){
1962 rc = SQLITE_NOMEM;
1963 goto preupdate_new_out;
1966 assert( iIdx>=0 && iIdx<p->pCsr->nField );
1967 pMem = &p->aNew[iIdx];
1968 if( pMem->flags==0 ){
1969 if( iIdx==p->pTab->iPKey ){
1970 sqlite3VdbeMemSetInt64(pMem, p->iKey2);
1971 }else{
1972 rc = sqlite3VdbeMemCopy(pMem, &p->v->aMem[p->iNewReg+1+iIdx]);
1973 if( rc!=SQLITE_OK ) goto preupdate_new_out;
1977 *ppValue = pMem;
1979 preupdate_new_out:
1980 sqlite3Error(db, rc);
1981 return sqlite3ApiExit(db, rc);
1983 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1985 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1987 ** Return status data for a single loop within query pStmt.
1989 int sqlite3_stmt_scanstatus(
1990 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1991 int idx, /* Index of loop to report on */
1992 int iScanStatusOp, /* Which metric to return */
1993 void *pOut /* OUT: Write the answer here */
1995 Vdbe *p = (Vdbe*)pStmt;
1996 ScanStatus *pScan;
1997 if( idx<0 || idx>=p->nScan ) return 1;
1998 pScan = &p->aScan[idx];
1999 switch( iScanStatusOp ){
2000 case SQLITE_SCANSTAT_NLOOP: {
2001 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
2002 break;
2004 case SQLITE_SCANSTAT_NVISIT: {
2005 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
2006 break;
2008 case SQLITE_SCANSTAT_EST: {
2009 double r = 1.0;
2010 LogEst x = pScan->nEst;
2011 while( x<100 ){
2012 x += 10;
2013 r *= 0.5;
2015 *(double*)pOut = r*sqlite3LogEstToInt(x);
2016 break;
2018 case SQLITE_SCANSTAT_NAME: {
2019 *(const char**)pOut = pScan->zName;
2020 break;
2022 case SQLITE_SCANSTAT_EXPLAIN: {
2023 if( pScan->addrExplain ){
2024 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
2025 }else{
2026 *(const char**)pOut = 0;
2028 break;
2030 case SQLITE_SCANSTAT_SELECTID: {
2031 if( pScan->addrExplain ){
2032 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
2033 }else{
2034 *(int*)pOut = -1;
2036 break;
2038 default: {
2039 return 1;
2042 return 0;
2046 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2048 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
2049 Vdbe *p = (Vdbe*)pStmt;
2050 memset(p->anExec, 0, p->nOp * sizeof(i64));
2052 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */