Snapshot of upstream SQLite 3.32.2
[sqlcipher.git] / src / dbstat.c
blobbddde79ced9d47fbf4634fa657760e1e09dbaa25
1 /*
2 ** 2010 July 12
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains an implementation of the "dbstat" virtual table.
15 ** The dbstat virtual table is used to extract low-level storage
16 ** information from an SQLite database in order to implement the
17 ** "sqlite3_analyzer" utility. See the ../tool/spaceanal.tcl script
18 ** for an example implementation.
20 ** Additional information is available on the "dbstat.html" page of the
21 ** official SQLite documentation.
24 #include "sqliteInt.h" /* Requires access to internal data structures */
25 #if (defined(SQLITE_ENABLE_DBSTAT_VTAB) || defined(SQLITE_TEST)) \
26 && !defined(SQLITE_OMIT_VIRTUALTABLE)
29 ** Page paths:
30 **
31 ** The value of the 'path' column describes the path taken from the
32 ** root-node of the b-tree structure to each page. The value of the
33 ** root-node path is '/'.
35 ** The value of the path for the left-most child page of the root of
36 ** a b-tree is '/000/'. (Btrees store content ordered from left to right
37 ** so the pages to the left have smaller keys than the pages to the right.)
38 ** The next to left-most child of the root page is
39 ** '/001', and so on, each sibling page identified by a 3-digit hex
40 ** value. The children of the 451st left-most sibling have paths such
41 ** as '/1c2/000/, '/1c2/001/' etc.
43 ** Overflow pages are specified by appending a '+' character and a
44 ** six-digit hexadecimal value to the path to the cell they are linked
45 ** from. For example, the three overflow pages in a chain linked from
46 ** the left-most cell of the 450th child of the root page are identified
47 ** by the paths:
49 ** '/1c2/000+000000' // First page in overflow chain
50 ** '/1c2/000+000001' // Second page in overflow chain
51 ** '/1c2/000+000002' // Third page in overflow chain
53 ** If the paths are sorted using the BINARY collation sequence, then
54 ** the overflow pages associated with a cell will appear earlier in the
55 ** sort-order than its child page:
57 ** '/1c2/000/' // Left-most child of 451st child of root
59 static const char zDbstatSchema[] =
60 "CREATE TABLE x("
61 " name TEXT," /* 0 Name of table or index */
62 " path TEXT," /* 1 Path to page from root (NULL for agg) */
63 " pageno INTEGER," /* 2 Page number (page count for aggregates) */
64 " pagetype TEXT," /* 3 'internal', 'leaf', 'overflow', or NULL */
65 " ncell INTEGER," /* 4 Cells on page (0 for overflow) */
66 " payload INTEGER," /* 5 Bytes of payload on this page */
67 " unused INTEGER," /* 6 Bytes of unused space on this page */
68 " mx_payload INTEGER," /* 7 Largest payload size of all cells */
69 " pgoffset INTEGER," /* 8 Offset of page in file (NULL for agg) */
70 " pgsize INTEGER," /* 9 Size of the page (sum for aggregate) */
71 " schema TEXT HIDDEN," /* 10 Database schema being analyzed */
72 " aggregate BOOLEAN HIDDEN" /* 11 aggregate info for each table */
73 ")"
76 /* Forward reference to data structured used in this module */
77 typedef struct StatTable StatTable;
78 typedef struct StatCursor StatCursor;
79 typedef struct StatPage StatPage;
80 typedef struct StatCell StatCell;
82 /* Size information for a single cell within a btree page */
83 struct StatCell {
84 int nLocal; /* Bytes of local payload */
85 u32 iChildPg; /* Child node (or 0 if this is a leaf) */
86 int nOvfl; /* Entries in aOvfl[] */
87 u32 *aOvfl; /* Array of overflow page numbers */
88 int nLastOvfl; /* Bytes of payload on final overflow page */
89 int iOvfl; /* Iterates through aOvfl[] */
92 /* Size information for a single btree page */
93 struct StatPage {
94 u32 iPgno; /* Page number */
95 DbPage *pPg; /* Page content */
96 int iCell; /* Current cell */
98 char *zPath; /* Path to this page */
100 /* Variables populated by statDecodePage(): */
101 u8 flags; /* Copy of flags byte */
102 int nCell; /* Number of cells on page */
103 int nUnused; /* Number of unused bytes on page */
104 StatCell *aCell; /* Array of parsed cells */
105 u32 iRightChildPg; /* Right-child page number (or 0) */
106 int nMxPayload; /* Largest payload of any cell on the page */
109 /* The cursor for scanning the dbstat virtual table */
110 struct StatCursor {
111 sqlite3_vtab_cursor base; /* base class. MUST BE FIRST! */
112 sqlite3_stmt *pStmt; /* Iterates through set of root pages */
113 u8 isEof; /* After pStmt has returned SQLITE_DONE */
114 u8 isAgg; /* Aggregate results for each table */
115 int iDb; /* Schema used for this query */
117 StatPage aPage[32]; /* Pages in path to current page */
118 int iPage; /* Current entry in aPage[] */
120 /* Values to return. */
121 u32 iPageno; /* Value of 'pageno' column */
122 char *zName; /* Value of 'name' column */
123 char *zPath; /* Value of 'path' column */
124 char *zPagetype; /* Value of 'pagetype' column */
125 int nPage; /* Number of pages in current btree */
126 int nCell; /* Value of 'ncell' column */
127 int nMxPayload; /* Value of 'mx_payload' column */
128 i64 nUnused; /* Value of 'unused' column */
129 i64 nPayload; /* Value of 'payload' column */
130 i64 iOffset; /* Value of 'pgOffset' column */
131 i64 szPage; /* Value of 'pgSize' column */
134 /* An instance of the DBSTAT virtual table */
135 struct StatTable {
136 sqlite3_vtab base; /* base class. MUST BE FIRST! */
137 sqlite3 *db; /* Database connection that owns this vtab */
138 int iDb; /* Index of database to analyze */
141 #ifndef get2byte
142 # define get2byte(x) ((x)[0]<<8 | (x)[1])
143 #endif
146 ** Connect to or create a new DBSTAT virtual table.
148 static int statConnect(
149 sqlite3 *db,
150 void *pAux,
151 int argc, const char *const*argv,
152 sqlite3_vtab **ppVtab,
153 char **pzErr
155 StatTable *pTab = 0;
156 int rc = SQLITE_OK;
157 int iDb;
159 if( argc>=4 ){
160 Token nm;
161 sqlite3TokenInit(&nm, (char*)argv[3]);
162 iDb = sqlite3FindDb(db, &nm);
163 if( iDb<0 ){
164 *pzErr = sqlite3_mprintf("no such database: %s", argv[3]);
165 return SQLITE_ERROR;
167 }else{
168 iDb = 0;
170 sqlite3_vtab_config(db, SQLITE_VTAB_DIRECTONLY);
171 rc = sqlite3_declare_vtab(db, zDbstatSchema);
172 if( rc==SQLITE_OK ){
173 pTab = (StatTable *)sqlite3_malloc64(sizeof(StatTable));
174 if( pTab==0 ) rc = SQLITE_NOMEM_BKPT;
177 assert( rc==SQLITE_OK || pTab==0 );
178 if( rc==SQLITE_OK ){
179 memset(pTab, 0, sizeof(StatTable));
180 pTab->db = db;
181 pTab->iDb = iDb;
184 *ppVtab = (sqlite3_vtab*)pTab;
185 return rc;
189 ** Disconnect from or destroy the DBSTAT virtual table.
191 static int statDisconnect(sqlite3_vtab *pVtab){
192 sqlite3_free(pVtab);
193 return SQLITE_OK;
197 ** Compute the best query strategy and return the result in idxNum.
199 ** idxNum-Bit Meaning
200 ** ---------- ----------------------------------------------
201 ** 0x01 There is a schema=? term in the WHERE clause
202 ** 0x02 There is a name=? term in the WHERE clause
203 ** 0x04 There is an aggregate=? term in the WHERE clause
204 ** 0x08 Output should be ordered by name and path
206 static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
207 int i;
208 int iSchema = -1;
209 int iName = -1;
210 int iAgg = -1;
212 /* Look for a valid schema=? constraint. If found, change the idxNum to
213 ** 1 and request the value of that constraint be sent to xFilter. And
214 ** lower the cost estimate to encourage the constrained version to be
215 ** used.
217 for(i=0; i<pIdxInfo->nConstraint; i++){
218 if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
219 if( pIdxInfo->aConstraint[i].usable==0 ){
220 /* Force DBSTAT table should always be the right-most table in a join */
221 return SQLITE_CONSTRAINT;
223 switch( pIdxInfo->aConstraint[i].iColumn ){
224 case 0: { /* name */
225 iName = i;
226 break;
228 case 10: { /* schema */
229 iSchema = i;
230 break;
232 case 11: { /* aggregate */
233 iAgg = i;
234 break;
238 i = 0;
239 if( iSchema>=0 ){
240 pIdxInfo->aConstraintUsage[iSchema].argvIndex = ++i;
241 pIdxInfo->aConstraintUsage[iSchema].omit = 1;
242 pIdxInfo->idxNum |= 0x01;
244 if( iName>=0 ){
245 pIdxInfo->aConstraintUsage[iName].argvIndex = ++i;
246 pIdxInfo->idxNum |= 0x02;
248 if( iAgg>=0 ){
249 pIdxInfo->aConstraintUsage[iAgg].argvIndex = ++i;
250 pIdxInfo->idxNum |= 0x04;
252 pIdxInfo->estimatedCost = 1.0;
254 /* Records are always returned in ascending order of (name, path).
255 ** If this will satisfy the client, set the orderByConsumed flag so that
256 ** SQLite does not do an external sort.
258 if( ( pIdxInfo->nOrderBy==1
259 && pIdxInfo->aOrderBy[0].iColumn==0
260 && pIdxInfo->aOrderBy[0].desc==0
261 ) ||
262 ( pIdxInfo->nOrderBy==2
263 && pIdxInfo->aOrderBy[0].iColumn==0
264 && pIdxInfo->aOrderBy[0].desc==0
265 && pIdxInfo->aOrderBy[1].iColumn==1
266 && pIdxInfo->aOrderBy[1].desc==0
269 pIdxInfo->orderByConsumed = 1;
270 pIdxInfo->idxNum |= 0x08;
273 return SQLITE_OK;
277 ** Open a new DBSTAT cursor.
279 static int statOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
280 StatTable *pTab = (StatTable *)pVTab;
281 StatCursor *pCsr;
283 pCsr = (StatCursor *)sqlite3_malloc64(sizeof(StatCursor));
284 if( pCsr==0 ){
285 return SQLITE_NOMEM_BKPT;
286 }else{
287 memset(pCsr, 0, sizeof(StatCursor));
288 pCsr->base.pVtab = pVTab;
289 pCsr->iDb = pTab->iDb;
292 *ppCursor = (sqlite3_vtab_cursor *)pCsr;
293 return SQLITE_OK;
296 static void statClearCells(StatPage *p){
297 int i;
298 if( p->aCell ){
299 for(i=0; i<p->nCell; i++){
300 sqlite3_free(p->aCell[i].aOvfl);
302 sqlite3_free(p->aCell);
304 p->nCell = 0;
305 p->aCell = 0;
308 static void statClearPage(StatPage *p){
309 statClearCells(p);
310 sqlite3PagerUnref(p->pPg);
311 sqlite3_free(p->zPath);
312 memset(p, 0, sizeof(StatPage));
315 static void statResetCsr(StatCursor *pCsr){
316 int i;
317 sqlite3_reset(pCsr->pStmt);
318 for(i=0; i<ArraySize(pCsr->aPage); i++){
319 statClearPage(&pCsr->aPage[i]);
321 pCsr->iPage = 0;
322 sqlite3_free(pCsr->zPath);
323 pCsr->zPath = 0;
324 pCsr->isEof = 0;
327 /* Resize the space-used counters inside of the cursor */
328 static void statResetCounts(StatCursor *pCsr){
329 pCsr->nCell = 0;
330 pCsr->nMxPayload = 0;
331 pCsr->nUnused = 0;
332 pCsr->nPayload = 0;
333 pCsr->szPage = 0;
334 pCsr->nPage = 0;
338 ** Close a DBSTAT cursor.
340 static int statClose(sqlite3_vtab_cursor *pCursor){
341 StatCursor *pCsr = (StatCursor *)pCursor;
342 statResetCsr(pCsr);
343 sqlite3_finalize(pCsr->pStmt);
344 sqlite3_free(pCsr);
345 return SQLITE_OK;
349 ** For a single cell on a btree page, compute the number of bytes of
350 ** content (payload) stored on that page. That is to say, compute the
351 ** number of bytes of content not found on overflow pages.
353 static int getLocalPayload(
354 int nUsable, /* Usable bytes per page */
355 u8 flags, /* Page flags */
356 int nTotal /* Total record (payload) size */
358 int nLocal;
359 int nMinLocal;
360 int nMaxLocal;
362 if( flags==0x0D ){ /* Table leaf node */
363 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
364 nMaxLocal = nUsable - 35;
365 }else{ /* Index interior and leaf nodes */
366 nMinLocal = (nUsable - 12) * 32 / 255 - 23;
367 nMaxLocal = (nUsable - 12) * 64 / 255 - 23;
370 nLocal = nMinLocal + (nTotal - nMinLocal) % (nUsable - 4);
371 if( nLocal>nMaxLocal ) nLocal = nMinLocal;
372 return nLocal;
375 /* Populate the StatPage object with information about the all
376 ** cells found on the page currently under analysis.
378 static int statDecodePage(Btree *pBt, StatPage *p){
379 int nUnused;
380 int iOff;
381 int nHdr;
382 int isLeaf;
383 int szPage;
385 u8 *aData = sqlite3PagerGetData(p->pPg);
386 u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];
388 p->flags = aHdr[0];
389 if( p->flags==0x0A || p->flags==0x0D ){
390 isLeaf = 1;
391 nHdr = 8;
392 }else if( p->flags==0x05 || p->flags==0x02 ){
393 isLeaf = 0;
394 nHdr = 12;
395 }else{
396 goto statPageIsCorrupt;
398 if( p->iPgno==1 ) nHdr += 100;
399 p->nCell = get2byte(&aHdr[3]);
400 p->nMxPayload = 0;
401 szPage = sqlite3BtreeGetPageSize(pBt);
403 nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
404 nUnused += (int)aHdr[7];
405 iOff = get2byte(&aHdr[1]);
406 while( iOff ){
407 int iNext;
408 if( iOff>=szPage ) goto statPageIsCorrupt;
409 nUnused += get2byte(&aData[iOff+2]);
410 iNext = get2byte(&aData[iOff]);
411 if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt;
412 iOff = iNext;
414 p->nUnused = nUnused;
415 p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);
417 if( p->nCell ){
418 int i; /* Used to iterate through cells */
419 int nUsable; /* Usable bytes per page */
421 sqlite3BtreeEnter(pBt);
422 nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
423 sqlite3BtreeLeave(pBt);
424 p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
425 if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
426 memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));
428 for(i=0; i<p->nCell; i++){
429 StatCell *pCell = &p->aCell[i];
431 iOff = get2byte(&aData[nHdr+i*2]);
432 if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt;
433 if( !isLeaf ){
434 pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
435 iOff += 4;
437 if( p->flags==0x05 ){
438 /* A table interior node. nPayload==0. */
439 }else{
440 u32 nPayload; /* Bytes of payload total (local+overflow) */
441 int nLocal; /* Bytes of payload stored locally */
442 iOff += getVarint32(&aData[iOff], nPayload);
443 if( p->flags==0x0D ){
444 u64 dummy;
445 iOff += sqlite3GetVarint(&aData[iOff], &dummy);
447 if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
448 nLocal = getLocalPayload(nUsable, p->flags, nPayload);
449 if( nLocal<0 ) goto statPageIsCorrupt;
450 pCell->nLocal = nLocal;
451 assert( nPayload>=(u32)nLocal );
452 assert( nLocal<=(nUsable-35) );
453 if( nPayload>(u32)nLocal ){
454 int j;
455 int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);
456 if( iOff+nLocal>nUsable || nPayload>0x7fffffff ){
457 goto statPageIsCorrupt;
459 pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
460 pCell->nOvfl = nOvfl;
461 pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
462 if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
463 pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
464 for(j=1; j<nOvfl; j++){
465 int rc;
466 u32 iPrev = pCell->aOvfl[j-1];
467 DbPage *pPg = 0;
468 rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0);
469 if( rc!=SQLITE_OK ){
470 assert( pPg==0 );
471 return rc;
473 pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
474 sqlite3PagerUnref(pPg);
481 return SQLITE_OK;
483 statPageIsCorrupt:
484 p->flags = 0;
485 statClearCells(p);
486 return SQLITE_OK;
490 ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
491 ** the current value of pCsr->iPageno.
493 static void statSizeAndOffset(StatCursor *pCsr){
494 StatTable *pTab = (StatTable *)((sqlite3_vtab_cursor *)pCsr)->pVtab;
495 Btree *pBt = pTab->db->aDb[pTab->iDb].pBt;
496 Pager *pPager = sqlite3BtreePager(pBt);
497 sqlite3_file *fd;
498 sqlite3_int64 x[2];
500 /* If connected to a ZIPVFS backend, find the page size and
501 ** offset from ZIPVFS.
503 fd = sqlite3PagerFile(pPager);
504 x[0] = pCsr->iPageno;
505 if( sqlite3OsFileControl(fd, 230440, &x)==SQLITE_OK ){
506 pCsr->iOffset = x[0];
507 pCsr->szPage += x[1];
508 }else{
509 /* Not ZIPVFS: The default page size and offset */
510 pCsr->szPage += sqlite3BtreeGetPageSize(pBt);
511 pCsr->iOffset = (i64)pCsr->szPage * (pCsr->iPageno - 1);
516 ** Move a DBSTAT cursor to the next entry. Normally, the next
517 ** entry will be the next page, but in aggregated mode (pCsr->isAgg!=0),
518 ** the next entry is the next btree.
520 static int statNext(sqlite3_vtab_cursor *pCursor){
521 int rc;
522 int nPayload;
523 char *z;
524 StatCursor *pCsr = (StatCursor *)pCursor;
525 StatTable *pTab = (StatTable *)pCursor->pVtab;
526 Btree *pBt = pTab->db->aDb[pCsr->iDb].pBt;
527 Pager *pPager = sqlite3BtreePager(pBt);
529 sqlite3_free(pCsr->zPath);
530 pCsr->zPath = 0;
532 statNextRestart:
533 if( pCsr->aPage[0].pPg==0 ){
534 /* Start measuring space on the next btree */
535 statResetCounts(pCsr);
536 rc = sqlite3_step(pCsr->pStmt);
537 if( rc==SQLITE_ROW ){
538 int nPage;
539 u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
540 sqlite3PagerPagecount(pPager, &nPage);
541 if( nPage==0 ){
542 pCsr->isEof = 1;
543 return sqlite3_reset(pCsr->pStmt);
545 rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg, 0);
546 pCsr->aPage[0].iPgno = iRoot;
547 pCsr->aPage[0].iCell = 0;
548 if( !pCsr->isAgg ){
549 pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
550 if( z==0 ) rc = SQLITE_NOMEM_BKPT;
552 pCsr->iPage = 0;
553 pCsr->nPage = 1;
554 }else{
555 pCsr->isEof = 1;
556 return sqlite3_reset(pCsr->pStmt);
558 }else{
559 /* Continue analyzing the btree previously started */
560 StatPage *p = &pCsr->aPage[pCsr->iPage];
561 if( !pCsr->isAgg ) statResetCounts(pCsr);
562 while( p->iCell<p->nCell ){
563 StatCell *pCell = &p->aCell[p->iCell];
564 while( pCell->iOvfl<pCell->nOvfl ){
565 int nUsable, iOvfl;
566 sqlite3BtreeEnter(pBt);
567 nUsable = sqlite3BtreeGetPageSize(pBt) -
568 sqlite3BtreeGetReserveNoMutex(pBt);
569 sqlite3BtreeLeave(pBt);
570 pCsr->nPage++;
571 statSizeAndOffset(pCsr);
572 if( pCell->iOvfl<pCell->nOvfl-1 ){
573 pCsr->nPayload += nUsable - 4;
574 }else{
575 pCsr->nPayload += pCell->nLastOvfl;
576 pCsr->nUnused += nUsable - 4 - pCell->nLastOvfl;
578 iOvfl = pCell->iOvfl;
579 pCell->iOvfl++;
580 if( !pCsr->isAgg ){
581 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
582 pCsr->iPageno = pCell->aOvfl[iOvfl];
583 pCsr->zPagetype = "overflow";
584 pCsr->zPath = z = sqlite3_mprintf(
585 "%s%.3x+%.6x", p->zPath, p->iCell, iOvfl
587 return z==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK;
590 if( p->iRightChildPg ) break;
591 p->iCell++;
594 if( !p->iRightChildPg || p->iCell>p->nCell ){
595 statClearPage(p);
596 if( pCsr->iPage>0 ){
597 pCsr->iPage--;
598 }else if( pCsr->isAgg ){
599 /* label-statNext-done: When computing aggregate space usage over
600 ** an entire btree, this is the exit point from this function */
601 return SQLITE_OK;
603 goto statNextRestart; /* Tail recursion */
605 pCsr->iPage++;
606 if( pCsr->iPage>=ArraySize(pCsr->aPage) ){
607 statResetCsr(pCsr);
608 return SQLITE_CORRUPT_BKPT;
610 assert( p==&pCsr->aPage[pCsr->iPage-1] );
612 if( p->iCell==p->nCell ){
613 p[1].iPgno = p->iRightChildPg;
614 }else{
615 p[1].iPgno = p->aCell[p->iCell].iChildPg;
617 rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg, 0);
618 pCsr->nPage++;
619 p[1].iCell = 0;
620 if( !pCsr->isAgg ){
621 p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
622 if( z==0 ) rc = SQLITE_NOMEM_BKPT;
624 p->iCell++;
628 /* Populate the StatCursor fields with the values to be returned
629 ** by the xColumn() and xRowid() methods.
631 if( rc==SQLITE_OK ){
632 int i;
633 StatPage *p = &pCsr->aPage[pCsr->iPage];
634 pCsr->zName = (char *)sqlite3_column_text(pCsr->pStmt, 0);
635 pCsr->iPageno = p->iPgno;
637 rc = statDecodePage(pBt, p);
638 if( rc==SQLITE_OK ){
639 statSizeAndOffset(pCsr);
641 switch( p->flags ){
642 case 0x05: /* table internal */
643 case 0x02: /* index internal */
644 pCsr->zPagetype = "internal";
645 break;
646 case 0x0D: /* table leaf */
647 case 0x0A: /* index leaf */
648 pCsr->zPagetype = "leaf";
649 break;
650 default:
651 pCsr->zPagetype = "corrupted";
652 break;
654 pCsr->nCell += p->nCell;
655 pCsr->nUnused += p->nUnused;
656 if( p->nMxPayload>pCsr->nMxPayload ) pCsr->nMxPayload = p->nMxPayload;
657 if( !pCsr->isAgg ){
658 pCsr->zPath = z = sqlite3_mprintf("%s", p->zPath);
659 if( z==0 ) rc = SQLITE_NOMEM_BKPT;
661 nPayload = 0;
662 for(i=0; i<p->nCell; i++){
663 nPayload += p->aCell[i].nLocal;
665 pCsr->nPayload += nPayload;
667 /* If computing aggregate space usage by btree, continue with the
668 ** next page. The loop will exit via the return at label-statNext-done
670 if( pCsr->isAgg ) goto statNextRestart;
674 return rc;
677 static int statEof(sqlite3_vtab_cursor *pCursor){
678 StatCursor *pCsr = (StatCursor *)pCursor;
679 return pCsr->isEof;
682 /* Initialize a cursor according to the query plan idxNum using the
683 ** arguments in argv[0]. See statBestIndex() for a description of the
684 ** meaning of the bits in idxNum.
686 static int statFilter(
687 sqlite3_vtab_cursor *pCursor,
688 int idxNum, const char *idxStr,
689 int argc, sqlite3_value **argv
691 StatCursor *pCsr = (StatCursor *)pCursor;
692 StatTable *pTab = (StatTable*)(pCursor->pVtab);
693 sqlite3_str *pSql; /* Query of btrees to analyze */
694 char *zSql; /* String value of pSql */
695 int iArg = 0; /* Count of argv[] parameters used so far */
696 int rc = SQLITE_OK; /* Result of this operation */
697 const char *zName = 0; /* Only provide analysis of this table */
699 statResetCsr(pCsr);
700 sqlite3_finalize(pCsr->pStmt);
701 pCsr->pStmt = 0;
702 if( idxNum & 0x01 ){
703 /* schema=? constraint is present. Get its value */
704 const char *zDbase = (const char*)sqlite3_value_text(argv[iArg++]);
705 pCsr->iDb = sqlite3FindDbName(pTab->db, zDbase);
706 if( pCsr->iDb<0 ){
707 pCsr->iDb = 0;
708 pCsr->isEof = 1;
709 return SQLITE_OK;
711 }else{
712 pCsr->iDb = pTab->iDb;
714 if( idxNum & 0x02 ){
715 /* name=? constraint is present */
716 zName = (const char*)sqlite3_value_text(argv[iArg++]);
718 if( idxNum & 0x04 ){
719 /* aggregate=? constraint is present */
720 pCsr->isAgg = sqlite3_value_double(argv[iArg++])!=0.0;
721 }else{
722 pCsr->isAgg = 0;
724 pSql = sqlite3_str_new(pTab->db);
725 sqlite3_str_appendf(pSql,
726 "SELECT * FROM ("
727 "SELECT 'sqlite_master' AS name,1 AS rootpage,'table' AS type"
728 " UNION ALL "
729 "SELECT name,rootpage,type"
730 " FROM \"%w\".sqlite_master WHERE rootpage!=0)",
731 pTab->db->aDb[pCsr->iDb].zDbSName);
732 if( zName ){
733 sqlite3_str_appendf(pSql, "WHERE name=%Q", zName);
735 if( idxNum & 0x08 ){
736 sqlite3_str_appendf(pSql, " ORDER BY name");
738 zSql = sqlite3_str_finish(pSql);
739 if( zSql==0 ){
740 return SQLITE_NOMEM_BKPT;
741 }else{
742 rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pCsr->pStmt, 0);
743 sqlite3_free(zSql);
746 if( rc==SQLITE_OK ){
747 rc = statNext(pCursor);
749 return rc;
752 static int statColumn(
753 sqlite3_vtab_cursor *pCursor,
754 sqlite3_context *ctx,
755 int i
757 StatCursor *pCsr = (StatCursor *)pCursor;
758 switch( i ){
759 case 0: /* name */
760 sqlite3_result_text(ctx, pCsr->zName, -1, SQLITE_TRANSIENT);
761 break;
762 case 1: /* path */
763 if( !pCsr->isAgg ){
764 sqlite3_result_text(ctx, pCsr->zPath, -1, SQLITE_TRANSIENT);
766 break;
767 case 2: /* pageno */
768 if( pCsr->isAgg ){
769 sqlite3_result_int64(ctx, pCsr->nPage);
770 }else{
771 sqlite3_result_int64(ctx, pCsr->iPageno);
773 break;
774 case 3: /* pagetype */
775 if( !pCsr->isAgg ){
776 sqlite3_result_text(ctx, pCsr->zPagetype, -1, SQLITE_STATIC);
778 break;
779 case 4: /* ncell */
780 sqlite3_result_int(ctx, pCsr->nCell);
781 break;
782 case 5: /* payload */
783 sqlite3_result_int(ctx, pCsr->nPayload);
784 break;
785 case 6: /* unused */
786 sqlite3_result_int(ctx, pCsr->nUnused);
787 break;
788 case 7: /* mx_payload */
789 sqlite3_result_int(ctx, pCsr->nMxPayload);
790 break;
791 case 8: /* pgoffset */
792 if( !pCsr->isAgg ){
793 sqlite3_result_int64(ctx, pCsr->iOffset);
795 break;
796 case 9: /* pgsize */
797 sqlite3_result_int(ctx, pCsr->szPage);
798 break;
799 case 10: { /* schema */
800 sqlite3 *db = sqlite3_context_db_handle(ctx);
801 int iDb = pCsr->iDb;
802 sqlite3_result_text(ctx, db->aDb[iDb].zDbSName, -1, SQLITE_STATIC);
803 break;
805 default: { /* aggregate */
806 sqlite3_result_int(ctx, pCsr->isAgg);
807 break;
810 return SQLITE_OK;
813 static int statRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
814 StatCursor *pCsr = (StatCursor *)pCursor;
815 *pRowid = pCsr->iPageno;
816 return SQLITE_OK;
820 ** Invoke this routine to register the "dbstat" virtual table module
822 int sqlite3DbstatRegister(sqlite3 *db){
823 static sqlite3_module dbstat_module = {
824 0, /* iVersion */
825 statConnect, /* xCreate */
826 statConnect, /* xConnect */
827 statBestIndex, /* xBestIndex */
828 statDisconnect, /* xDisconnect */
829 statDisconnect, /* xDestroy */
830 statOpen, /* xOpen - open a cursor */
831 statClose, /* xClose - close a cursor */
832 statFilter, /* xFilter - configure scan constraints */
833 statNext, /* xNext - advance a cursor */
834 statEof, /* xEof - check for end of scan */
835 statColumn, /* xColumn - read data */
836 statRowid, /* xRowid - read data */
837 0, /* xUpdate */
838 0, /* xBegin */
839 0, /* xSync */
840 0, /* xCommit */
841 0, /* xRollback */
842 0, /* xFindMethod */
843 0, /* xRename */
844 0, /* xSavepoint */
845 0, /* xRelease */
846 0, /* xRollbackTo */
847 0 /* xShadowName */
849 return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
851 #elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
852 int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
853 #endif /* SQLITE_ENABLE_DBSTAT_VTAB */