Snapshot of upstream SQLite 3.25.0
[sqlcipher.git] / tool / sqldiff.c
blob509470a15615c529f43a734917afc0bc53878d02
1 /*
2 ** 2015-04-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This is a utility program that computes the differences in content
14 ** between two SQLite databases.
16 ** To compile, simply link against SQLite.
18 ** See the showHelp() routine below for a brief description of how to
19 ** run the utility.
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <stdarg.h>
24 #include <ctype.h>
25 #include <string.h>
26 #include <assert.h>
27 #include "sqlite3.h"
30 ** All global variables are gathered into the "g" singleton.
32 struct GlobalVars {
33 const char *zArgv0; /* Name of program */
34 int bSchemaOnly; /* Only show schema differences */
35 int bSchemaPK; /* Use the schema-defined PK, not the true PK */
36 int bHandleVtab; /* Handle fts3, fts4, fts5 and rtree vtabs */
37 unsigned fDebug; /* Debug flags */
38 sqlite3 *db; /* The database connection */
39 } g;
42 ** Allowed values for g.fDebug
44 #define DEBUG_COLUMN_NAMES 0x000001
45 #define DEBUG_DIFF_SQL 0x000002
48 ** Dynamic string object
50 typedef struct Str Str;
51 struct Str {
52 char *z; /* Text of the string */
53 int nAlloc; /* Bytes allocated in z[] */
54 int nUsed; /* Bytes actually used in z[] */
58 ** Initialize a Str object
60 static void strInit(Str *p){
61 p->z = 0;
62 p->nAlloc = 0;
63 p->nUsed = 0;
67 ** Print an error resulting from faulting command-line arguments and
68 ** abort the program.
70 static void cmdlineError(const char *zFormat, ...){
71 va_list ap;
72 fprintf(stderr, "%s: ", g.zArgv0);
73 va_start(ap, zFormat);
74 vfprintf(stderr, zFormat, ap);
75 va_end(ap);
76 fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0);
77 exit(1);
81 ** Print an error message for an error that occurs at runtime, then
82 ** abort the program.
84 static void runtimeError(const char *zFormat, ...){
85 va_list ap;
86 fprintf(stderr, "%s: ", g.zArgv0);
87 va_start(ap, zFormat);
88 vfprintf(stderr, zFormat, ap);
89 va_end(ap);
90 fprintf(stderr, "\n");
91 exit(1);
95 ** Free all memory held by a Str object
97 static void strFree(Str *p){
98 sqlite3_free(p->z);
99 strInit(p);
103 ** Add formatted text to the end of a Str object
105 static void strPrintf(Str *p, const char *zFormat, ...){
106 int nNew;
107 for(;;){
108 if( p->z ){
109 va_list ap;
110 va_start(ap, zFormat);
111 sqlite3_vsnprintf(p->nAlloc-p->nUsed, p->z+p->nUsed, zFormat, ap);
112 va_end(ap);
113 nNew = (int)strlen(p->z + p->nUsed);
114 }else{
115 nNew = p->nAlloc;
117 if( p->nUsed+nNew < p->nAlloc-1 ){
118 p->nUsed += nNew;
119 break;
121 p->nAlloc = p->nAlloc*2 + 1000;
122 p->z = sqlite3_realloc(p->z, p->nAlloc);
123 if( p->z==0 ) runtimeError("out of memory");
129 /* Safely quote an SQL identifier. Use the minimum amount of transformation
130 ** necessary to allow the string to be used with %s.
132 ** Space to hold the returned string is obtained from sqlite3_malloc(). The
133 ** caller is responsible for ensuring this space is freed when no longer
134 ** needed.
136 static char *safeId(const char *zId){
137 int i, x;
138 char c;
139 if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
140 for(i=x=0; (c = zId[i])!=0; i++){
141 if( !isalpha(c) && c!='_' ){
142 if( i>0 && isdigit(c) ){
143 x++;
144 }else{
145 return sqlite3_mprintf("\"%w\"", zId);
149 if( x || !sqlite3_keyword_check(zId,i) ){
150 return sqlite3_mprintf("%s", zId);
152 return sqlite3_mprintf("\"%w\"", zId);
156 ** Prepare a new SQL statement. Print an error and abort if anything
157 ** goes wrong.
159 static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){
160 char *zSql;
161 int rc;
162 sqlite3_stmt *pStmt;
164 zSql = sqlite3_vmprintf(zFormat, ap);
165 if( zSql==0 ) runtimeError("out of memory");
166 rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0);
167 if( rc ){
168 runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db),
169 zSql);
171 sqlite3_free(zSql);
172 return pStmt;
174 static sqlite3_stmt *db_prepare(const char *zFormat, ...){
175 va_list ap;
176 sqlite3_stmt *pStmt;
177 va_start(ap, zFormat);
178 pStmt = db_vprepare(zFormat, ap);
179 va_end(ap);
180 return pStmt;
184 ** Free a list of strings
186 static void namelistFree(char **az){
187 if( az ){
188 int i;
189 for(i=0; az[i]; i++) sqlite3_free(az[i]);
190 sqlite3_free(az);
195 ** Return a list of column names for the table zDb.zTab. Space to
196 ** hold the list is obtained from sqlite3_malloc() and should released
197 ** using namelistFree() when no longer needed.
199 ** Primary key columns are listed first, followed by data columns.
200 ** The number of columns in the primary key is returned in *pnPkey.
202 ** Normally, the "primary key" in the previous sentence is the true
203 ** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables
204 ** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if
205 ** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is
206 ** used in all cases. In that case, entries that have NULL values in
207 ** any of their primary key fields will be excluded from the analysis.
209 ** If the primary key for a table is the rowid but rowid is inaccessible,
210 ** then this routine returns a NULL pointer.
212 ** Examples:
213 ** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c));
214 ** *pnPKey = 1;
215 ** az = { "rowid", "a", "b", "c", 0 } // Normal case
216 ** az = { "c", "a", "b", 0 } // g.bSchemaPK==1
218 ** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b));
219 ** *pnPKey = 1;
220 ** az = { "b", "a", "c", 0 }
222 ** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z));
223 ** *pnPKey = 1 // Normal case
224 ** az = { "rowid", "x", "y", "z", 0 } // Normal case
225 ** *pnPKey = 2 // g.bSchemaPK==1
226 ** az = { "y", "x", "z", 0 } // g.bSchemaPK==1
228 ** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID;
229 ** *pnPKey = 2
230 ** az = { "y", "z", "x", 0 }
232 ** CREATE TABLE t5(rowid,_rowid_,oid);
233 ** az = 0 // The rowid is not accessible
235 static char **columnNames(
236 const char *zDb, /* Database ("main" or "aux") to query */
237 const char *zTab, /* Name of table to return details of */
238 int *pnPKey, /* OUT: Number of PK columns */
239 int *pbRowid /* OUT: True if PK is an implicit rowid */
241 char **az = 0; /* List of column names to be returned */
242 int naz = 0; /* Number of entries in az[] */
243 sqlite3_stmt *pStmt; /* SQL statement being run */
244 char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */
245 int truePk = 0; /* PRAGMA table_info indentifies the PK to use */
246 int nPK = 0; /* Number of PRIMARY KEY columns */
247 int i, j; /* Loop counters */
249 if( g.bSchemaPK==0 ){
250 /* Normal case: Figure out what the true primary key is for the table.
251 ** * For WITHOUT ROWID tables, the true primary key is the same as
252 ** the schema PRIMARY KEY, which is guaranteed to be present.
253 ** * For rowid tables with an INTEGER PRIMARY KEY, the true primary
254 ** key is the INTEGER PRIMARY KEY.
255 ** * For all other rowid tables, the rowid is the true primary key.
257 pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab);
258 while( SQLITE_ROW==sqlite3_step(pStmt) ){
259 if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){
260 zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
261 break;
264 sqlite3_finalize(pStmt);
265 if( zPkIdxName ){
266 int nKey = 0;
267 int nCol = 0;
268 truePk = 0;
269 pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName);
270 while( SQLITE_ROW==sqlite3_step(pStmt) ){
271 nCol++;
272 if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; }
273 if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1;
275 if( nCol==nKey ) truePk = 1;
276 if( truePk ){
277 nPK = nKey;
278 }else{
279 nPK = 1;
281 sqlite3_finalize(pStmt);
282 sqlite3_free(zPkIdxName);
283 }else{
284 truePk = 1;
285 nPK = 1;
287 pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
288 }else{
289 /* The g.bSchemaPK==1 case: Use whatever primary key is declared
290 ** in the schema. The "rowid" will still be used as the primary key
291 ** if the table definition does not contain a PRIMARY KEY.
293 nPK = 0;
294 pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
295 while( SQLITE_ROW==sqlite3_step(pStmt) ){
296 if( sqlite3_column_int(pStmt,5)>0 ) nPK++;
298 sqlite3_reset(pStmt);
299 if( nPK==0 ) nPK = 1;
300 truePk = 1;
302 *pnPKey = nPK;
303 naz = nPK;
304 az = sqlite3_malloc( sizeof(char*)*(nPK+1) );
305 if( az==0 ) runtimeError("out of memory");
306 memset(az, 0, sizeof(char*)*(nPK+1));
307 while( SQLITE_ROW==sqlite3_step(pStmt) ){
308 int iPKey;
309 if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){
310 az[iPKey-1] = safeId((char*)sqlite3_column_text(pStmt,1));
311 }else{
312 az = sqlite3_realloc(az, sizeof(char*)*(naz+2) );
313 if( az==0 ) runtimeError("out of memory");
314 az[naz++] = safeId((char*)sqlite3_column_text(pStmt,1));
317 sqlite3_finalize(pStmt);
318 if( az ) az[naz] = 0;
320 /* If it is non-NULL, set *pbRowid to indicate whether or not the PK of
321 ** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */
322 if( pbRowid ) *pbRowid = (az[0]==0);
324 /* If this table has an implicit rowid for a PK, figure out how to refer
325 ** to it. There are three options - "rowid", "_rowid_" and "oid". Any
326 ** of these will work, unless the table has an explicit column of the
327 ** same name. */
328 if( az[0]==0 ){
329 const char *azRowid[] = { "rowid", "_rowid_", "oid" };
330 for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){
331 for(j=1; j<naz; j++){
332 if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break;
334 if( j>=naz ){
335 az[0] = sqlite3_mprintf("%s", azRowid[i]);
336 break;
339 if( az[0]==0 ){
340 for(i=1; i<naz; i++) sqlite3_free(az[i]);
341 sqlite3_free(az);
342 az = 0;
345 return az;
349 ** Print the sqlite3_value X as an SQL literal.
351 static void printQuoted(FILE *out, sqlite3_value *X){
352 switch( sqlite3_value_type(X) ){
353 case SQLITE_FLOAT: {
354 double r1;
355 char zBuf[50];
356 r1 = sqlite3_value_double(X);
357 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
358 fprintf(out, "%s", zBuf);
359 break;
361 case SQLITE_INTEGER: {
362 fprintf(out, "%lld", sqlite3_value_int64(X));
363 break;
365 case SQLITE_BLOB: {
366 const unsigned char *zBlob = sqlite3_value_blob(X);
367 int nBlob = sqlite3_value_bytes(X);
368 if( zBlob ){
369 int i;
370 fprintf(out, "x'");
371 for(i=0; i<nBlob; i++){
372 fprintf(out, "%02x", zBlob[i]);
374 fprintf(out, "'");
375 }else{
376 /* Could be an OOM, could be a zero-byte blob */
377 fprintf(out, "X''");
379 break;
381 case SQLITE_TEXT: {
382 const unsigned char *zArg = sqlite3_value_text(X);
383 int i, j;
385 if( zArg==0 ){
386 fprintf(out, "NULL");
387 }else{
388 fprintf(out, "'");
389 for(i=j=0; zArg[i]; i++){
390 if( zArg[i]=='\'' ){
391 fprintf(out, "%.*s'", i-j+1, &zArg[j]);
392 j = i+1;
395 fprintf(out, "%s'", &zArg[j]);
397 break;
399 case SQLITE_NULL: {
400 fprintf(out, "NULL");
401 break;
407 ** Output SQL that will recreate the aux.zTab table.
409 static void dump_table(const char *zTab, FILE *out){
410 char *zId = safeId(zTab); /* Name of the table */
411 char **az = 0; /* List of columns */
412 int nPk; /* Number of true primary key columns */
413 int nCol; /* Number of data columns */
414 int i; /* Loop counter */
415 sqlite3_stmt *pStmt; /* SQL statement */
416 const char *zSep; /* Separator string */
417 Str ins; /* Beginning of the INSERT statement */
419 pStmt = db_prepare("SELECT sql FROM aux.sqlite_master WHERE name=%Q", zTab);
420 if( SQLITE_ROW==sqlite3_step(pStmt) ){
421 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
423 sqlite3_finalize(pStmt);
424 if( !g.bSchemaOnly ){
425 az = columnNames("aux", zTab, &nPk, 0);
426 strInit(&ins);
427 if( az==0 ){
428 pStmt = db_prepare("SELECT * FROM aux.%s", zId);
429 strPrintf(&ins,"INSERT INTO %s VALUES", zId);
430 }else{
431 Str sql;
432 strInit(&sql);
433 zSep = "SELECT";
434 for(i=0; az[i]; i++){
435 strPrintf(&sql, "%s %s", zSep, az[i]);
436 zSep = ",";
438 strPrintf(&sql," FROM aux.%s", zId);
439 zSep = " ORDER BY";
440 for(i=1; i<=nPk; i++){
441 strPrintf(&sql, "%s %d", zSep, i);
442 zSep = ",";
444 pStmt = db_prepare("%s", sql.z);
445 strFree(&sql);
446 strPrintf(&ins, "INSERT INTO %s", zId);
447 zSep = "(";
448 for(i=0; az[i]; i++){
449 strPrintf(&ins, "%s%s", zSep, az[i]);
450 zSep = ",";
452 strPrintf(&ins,") VALUES");
453 namelistFree(az);
455 nCol = sqlite3_column_count(pStmt);
456 while( SQLITE_ROW==sqlite3_step(pStmt) ){
457 fprintf(out, "%s",ins.z);
458 zSep = "(";
459 for(i=0; i<nCol; i++){
460 fprintf(out, "%s",zSep);
461 printQuoted(out, sqlite3_column_value(pStmt,i));
462 zSep = ",";
464 fprintf(out, ");\n");
466 sqlite3_finalize(pStmt);
467 strFree(&ins);
468 } /* endif !g.bSchemaOnly */
469 pStmt = db_prepare("SELECT sql FROM aux.sqlite_master"
470 " WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL",
471 zTab);
472 while( SQLITE_ROW==sqlite3_step(pStmt) ){
473 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
475 sqlite3_finalize(pStmt);
480 ** Compute all differences for a single table.
482 static void diff_one_table(const char *zTab, FILE *out){
483 char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
484 char **az = 0; /* Columns in main */
485 char **az2 = 0; /* Columns in aux */
486 int nPk; /* Primary key columns in main */
487 int nPk2; /* Primary key columns in aux */
488 int n = 0; /* Number of columns in main */
489 int n2; /* Number of columns in aux */
490 int nQ; /* Number of output columns in the diff query */
491 int i; /* Loop counter */
492 const char *zSep; /* Separator string */
493 Str sql; /* Comparison query */
494 sqlite3_stmt *pStmt; /* Query statement to do the diff */
496 strInit(&sql);
497 if( g.fDebug==DEBUG_COLUMN_NAMES ){
498 /* Simply run columnNames() on all tables of the origin
499 ** database and show the results. This is used for testing
500 ** and debugging of the columnNames() function.
502 az = columnNames("aux",zTab, &nPk, 0);
503 if( az==0 ){
504 printf("Rowid not accessible for %s\n", zId);
505 }else{
506 printf("%s:", zId);
507 for(i=0; az[i]; i++){
508 printf(" %s", az[i]);
509 if( i+1==nPk ) printf(" *");
511 printf("\n");
513 goto end_diff_one_table;
517 if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
518 if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
519 /* Table missing from second database. */
520 fprintf(out, "DROP TABLE %s;\n", zId);
522 goto end_diff_one_table;
525 if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
526 /* Table missing from source */
527 dump_table(zTab, out);
528 goto end_diff_one_table;
531 az = columnNames("main", zTab, &nPk, 0);
532 az2 = columnNames("aux", zTab, &nPk2, 0);
533 if( az && az2 ){
534 for(n=0; az[n] && az2[n]; n++){
535 if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
538 if( az==0
539 || az2==0
540 || nPk!=nPk2
541 || az[n]
543 /* Schema mismatch */
544 fprintf(out, "DROP TABLE %s; -- due to schema mismatch\n", zId);
545 dump_table(zTab, out);
546 goto end_diff_one_table;
549 /* Build the comparison query */
550 for(n2=n; az2[n2]; n2++){
551 fprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, safeId(az2[n2]));
553 nQ = nPk2+1+2*(n2-nPk2);
554 if( n2>nPk2 ){
555 zSep = "SELECT ";
556 for(i=0; i<nPk; i++){
557 strPrintf(&sql, "%sB.%s", zSep, az[i]);
558 zSep = ", ";
560 strPrintf(&sql, ", 1%s -- changed row\n", nPk==n ? "" : ",");
561 while( az[i] ){
562 strPrintf(&sql, " A.%s IS NOT B.%s, B.%s%s\n",
563 az[i], az2[i], az2[i], az2[i+1]==0 ? "" : ",");
564 i++;
566 while( az2[i] ){
567 strPrintf(&sql, " B.%s IS NOT NULL, B.%s%s\n",
568 az2[i], az2[i], az2[i+1]==0 ? "" : ",");
569 i++;
571 strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId);
572 zSep = " WHERE";
573 for(i=0; i<nPk; i++){
574 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
575 zSep = " AND";
577 zSep = "\n AND (";
578 while( az[i] ){
579 strPrintf(&sql, "%sA.%s IS NOT B.%s%s\n",
580 zSep, az[i], az2[i], az2[i+1]==0 ? ")" : "");
581 zSep = " OR ";
582 i++;
584 while( az2[i] ){
585 strPrintf(&sql, "%sB.%s IS NOT NULL%s\n",
586 zSep, az2[i], az2[i+1]==0 ? ")" : "");
587 zSep = " OR ";
588 i++;
590 strPrintf(&sql, " UNION ALL\n");
592 zSep = "SELECT ";
593 for(i=0; i<nPk; i++){
594 strPrintf(&sql, "%sA.%s", zSep, az[i]);
595 zSep = ", ";
597 strPrintf(&sql, ", 2%s -- deleted row\n", nPk==n ? "" : ",");
598 while( az2[i] ){
599 strPrintf(&sql, " NULL, NULL%s\n", i==n2-1 ? "" : ",");
600 i++;
602 strPrintf(&sql, " FROM main.%s A\n", zId);
603 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
604 zSep = " WHERE";
605 for(i=0; i<nPk; i++){
606 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
607 zSep = " AND";
609 strPrintf(&sql, ")\n");
610 zSep = " UNION ALL\nSELECT ";
611 for(i=0; i<nPk; i++){
612 strPrintf(&sql, "%sB.%s", zSep, az[i]);
613 zSep = ", ";
615 strPrintf(&sql, ", 3%s -- inserted row\n", nPk==n ? "" : ",");
616 while( az2[i] ){
617 strPrintf(&sql, " 1, B.%s%s\n", az2[i], az2[i+1]==0 ? "" : ",");
618 i++;
620 strPrintf(&sql, " FROM aux.%s B\n", zId);
621 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
622 zSep = " WHERE";
623 for(i=0; i<nPk; i++){
624 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
625 zSep = " AND";
627 strPrintf(&sql, ")\n ORDER BY");
628 zSep = " ";
629 for(i=1; i<=nPk; i++){
630 strPrintf(&sql, "%s%d", zSep, i);
631 zSep = ", ";
633 strPrintf(&sql, ";\n");
635 if( g.fDebug & DEBUG_DIFF_SQL ){
636 printf("SQL for %s:\n%s\n", zId, sql.z);
637 goto end_diff_one_table;
640 /* Drop indexes that are missing in the destination */
641 pStmt = db_prepare(
642 "SELECT name FROM main.sqlite_master"
643 " WHERE type='index' AND tbl_name=%Q"
644 " AND sql IS NOT NULL"
645 " AND sql NOT IN (SELECT sql FROM aux.sqlite_master"
646 " WHERE type='index' AND tbl_name=%Q"
647 " AND sql IS NOT NULL)",
648 zTab, zTab);
649 while( SQLITE_ROW==sqlite3_step(pStmt) ){
650 char *z = safeId((const char*)sqlite3_column_text(pStmt,0));
651 fprintf(out, "DROP INDEX %s;\n", z);
652 sqlite3_free(z);
654 sqlite3_finalize(pStmt);
656 /* Run the query and output differences */
657 if( !g.bSchemaOnly ){
658 pStmt = db_prepare("%s", sql.z);
659 while( SQLITE_ROW==sqlite3_step(pStmt) ){
660 int iType = sqlite3_column_int(pStmt, nPk);
661 if( iType==1 || iType==2 ){
662 if( iType==1 ){ /* Change the content of a row */
663 fprintf(out, "UPDATE %s", zId);
664 zSep = " SET";
665 for(i=nPk+1; i<nQ; i+=2){
666 if( sqlite3_column_int(pStmt,i)==0 ) continue;
667 fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]);
668 zSep = ",";
669 printQuoted(out, sqlite3_column_value(pStmt,i+1));
671 }else{ /* Delete a row */
672 fprintf(out, "DELETE FROM %s", zId);
674 zSep = " WHERE";
675 for(i=0; i<nPk; i++){
676 fprintf(out, "%s %s=", zSep, az2[i]);
677 printQuoted(out, sqlite3_column_value(pStmt,i));
678 zSep = " AND";
680 fprintf(out, ";\n");
681 }else{ /* Insert a row */
682 fprintf(out, "INSERT INTO %s(%s", zId, az2[0]);
683 for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]);
684 fprintf(out, ") VALUES");
685 zSep = "(";
686 for(i=0; i<nPk2; i++){
687 fprintf(out, "%s", zSep);
688 zSep = ",";
689 printQuoted(out, sqlite3_column_value(pStmt,i));
691 for(i=nPk2+2; i<nQ; i+=2){
692 fprintf(out, ",");
693 printQuoted(out, sqlite3_column_value(pStmt,i));
695 fprintf(out, ");\n");
698 sqlite3_finalize(pStmt);
699 } /* endif !g.bSchemaOnly */
701 /* Create indexes that are missing in the source */
702 pStmt = db_prepare(
703 "SELECT sql FROM aux.sqlite_master"
704 " WHERE type='index' AND tbl_name=%Q"
705 " AND sql IS NOT NULL"
706 " AND sql NOT IN (SELECT sql FROM main.sqlite_master"
707 " WHERE type='index' AND tbl_name=%Q"
708 " AND sql IS NOT NULL)",
709 zTab, zTab);
710 while( SQLITE_ROW==sqlite3_step(pStmt) ){
711 fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
713 sqlite3_finalize(pStmt);
715 end_diff_one_table:
716 strFree(&sql);
717 sqlite3_free(zId);
718 namelistFree(az);
719 namelistFree(az2);
720 return;
724 ** Check that table zTab exists and has the same schema in both the "main"
725 ** and "aux" databases currently opened by the global db handle. If they
726 ** do not, output an error message on stderr and exit(1). Otherwise, if
727 ** the schemas do match, return control to the caller.
729 static void checkSchemasMatch(const char *zTab){
730 sqlite3_stmt *pStmt = db_prepare(
731 "SELECT A.sql=B.sql FROM main.sqlite_master A, aux.sqlite_master B"
732 " WHERE A.name=%Q AND B.name=%Q", zTab, zTab
734 if( SQLITE_ROW==sqlite3_step(pStmt) ){
735 if( sqlite3_column_int(pStmt,0)==0 ){
736 runtimeError("schema changes for table %s", safeId(zTab));
738 }else{
739 runtimeError("table %s missing from one or both databases", safeId(zTab));
741 sqlite3_finalize(pStmt);
744 /**************************************************************************
745 ** The following code is copied from fossil. It is used to generate the
746 ** fossil delta blobs sometimes used in RBU update records.
749 typedef unsigned short u16;
750 typedef unsigned int u32;
751 typedef unsigned char u8;
754 ** The width of a hash window in bytes. The algorithm only works if this
755 ** is a power of 2.
757 #define NHASH 16
760 ** The current state of the rolling hash.
762 ** z[] holds the values that have been hashed. z[] is a circular buffer.
763 ** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of
764 ** the window.
766 ** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted
767 ** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1.
768 ** (Each index for z[] should be module NHASH, of course. The %NHASH operator
769 ** is omitted in the prior expression for brevity.)
771 typedef struct hash hash;
772 struct hash {
773 u16 a, b; /* Hash values */
774 u16 i; /* Start of the hash window */
775 char z[NHASH]; /* The values that have been hashed */
779 ** Initialize the rolling hash using the first NHASH characters of z[]
781 static void hash_init(hash *pHash, const char *z){
782 u16 a, b, i;
783 a = b = 0;
784 for(i=0; i<NHASH; i++){
785 a += z[i];
786 b += (NHASH-i)*z[i];
787 pHash->z[i] = z[i];
789 pHash->a = a & 0xffff;
790 pHash->b = b & 0xffff;
791 pHash->i = 0;
795 ** Advance the rolling hash by a single character "c"
797 static void hash_next(hash *pHash, int c){
798 u16 old = pHash->z[pHash->i];
799 pHash->z[pHash->i] = (char)c;
800 pHash->i = (pHash->i+1)&(NHASH-1);
801 pHash->a = pHash->a - old + (char)c;
802 pHash->b = pHash->b - NHASH*old + pHash->a;
806 ** Return a 32-bit hash value
808 static u32 hash_32bit(hash *pHash){
809 return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16);
813 ** Write an base-64 integer into the given buffer.
815 static void putInt(unsigned int v, char **pz){
816 static const char zDigits[] =
817 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~";
818 /* 123456789 123456789 123456789 123456789 123456789 123456789 123 */
819 int i, j;
820 char zBuf[20];
821 if( v==0 ){
822 *(*pz)++ = '0';
823 return;
825 for(i=0; v>0; i++, v>>=6){
826 zBuf[i] = zDigits[v&0x3f];
828 for(j=i-1; j>=0; j--){
829 *(*pz)++ = zBuf[j];
834 ** Return the number digits in the base-64 representation of a positive integer
836 static int digit_count(int v){
837 unsigned int i, x;
838 for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){}
839 return i;
843 ** Compute a 32-bit checksum on the N-byte buffer. Return the result.
845 static unsigned int checksum(const char *zIn, size_t N){
846 const unsigned char *z = (const unsigned char *)zIn;
847 unsigned sum0 = 0;
848 unsigned sum1 = 0;
849 unsigned sum2 = 0;
850 unsigned sum3 = 0;
851 while(N >= 16){
852 sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
853 sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
854 sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
855 sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
856 z += 16;
857 N -= 16;
859 while(N >= 4){
860 sum0 += z[0];
861 sum1 += z[1];
862 sum2 += z[2];
863 sum3 += z[3];
864 z += 4;
865 N -= 4;
867 sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
868 switch(N){
869 case 3: sum3 += (z[2] << 8);
870 case 2: sum3 += (z[1] << 16);
871 case 1: sum3 += (z[0] << 24);
872 default: ;
874 return sum3;
878 ** Create a new delta.
880 ** The delta is written into a preallocated buffer, zDelta, which
881 ** should be at least 60 bytes longer than the target file, zOut.
882 ** The delta string will be NUL-terminated, but it might also contain
883 ** embedded NUL characters if either the zSrc or zOut files are
884 ** binary. This function returns the length of the delta string
885 ** in bytes, excluding the final NUL terminator character.
887 ** Output Format:
889 ** The delta begins with a base64 number followed by a newline. This
890 ** number is the number of bytes in the TARGET file. Thus, given a
891 ** delta file z, a program can compute the size of the output file
892 ** simply by reading the first line and decoding the base-64 number
893 ** found there. The delta_output_size() routine does exactly this.
895 ** After the initial size number, the delta consists of a series of
896 ** literal text segments and commands to copy from the SOURCE file.
897 ** A copy command looks like this:
899 ** NNN@MMM,
901 ** where NNN is the number of bytes to be copied and MMM is the offset
902 ** into the source file of the first byte (both base-64). If NNN is 0
903 ** it means copy the rest of the input file. Literal text is like this:
905 ** NNN:TTTTT
907 ** where NNN is the number of bytes of text (base-64) and TTTTT is the text.
909 ** The last term is of the form
911 ** NNN;
913 ** In this case, NNN is a 32-bit bigendian checksum of the output file
914 ** that can be used to verify that the delta applied correctly. All
915 ** numbers are in base-64.
917 ** Pure text files generate a pure text delta. Binary files generate a
918 ** delta that may contain some binary data.
920 ** Algorithm:
922 ** The encoder first builds a hash table to help it find matching
923 ** patterns in the source file. 16-byte chunks of the source file
924 ** sampled at evenly spaced intervals are used to populate the hash
925 ** table.
927 ** Next we begin scanning the target file using a sliding 16-byte
928 ** window. The hash of the 16-byte window in the target is used to
929 ** search for a matching section in the source file. When a match
930 ** is found, a copy command is added to the delta. An effort is
931 ** made to extend the matching section to regions that come before
932 ** and after the 16-byte hash window. A copy command is only issued
933 ** if the result would use less space that just quoting the text
934 ** literally. Literal text is added to the delta for sections that
935 ** do not match or which can not be encoded efficiently using copy
936 ** commands.
938 static int rbuDeltaCreate(
939 const char *zSrc, /* The source or pattern file */
940 unsigned int lenSrc, /* Length of the source file */
941 const char *zOut, /* The target file */
942 unsigned int lenOut, /* Length of the target file */
943 char *zDelta /* Write the delta into this buffer */
945 unsigned int i, base;
946 char *zOrigDelta = zDelta;
947 hash h;
948 int nHash; /* Number of hash table entries */
949 int *landmark; /* Primary hash table */
950 int *collide; /* Collision chain */
951 int lastRead = -1; /* Last byte of zSrc read by a COPY command */
953 /* Add the target file size to the beginning of the delta
955 putInt(lenOut, &zDelta);
956 *(zDelta++) = '\n';
958 /* If the source file is very small, it means that we have no
959 ** chance of ever doing a copy command. Just output a single
960 ** literal segment for the entire target and exit.
962 if( lenSrc<=NHASH ){
963 putInt(lenOut, &zDelta);
964 *(zDelta++) = ':';
965 memcpy(zDelta, zOut, lenOut);
966 zDelta += lenOut;
967 putInt(checksum(zOut, lenOut), &zDelta);
968 *(zDelta++) = ';';
969 return (int)(zDelta - zOrigDelta);
972 /* Compute the hash table used to locate matching sections in the
973 ** source file.
975 nHash = lenSrc/NHASH;
976 collide = sqlite3_malloc( nHash*2*sizeof(int) );
977 landmark = &collide[nHash];
978 memset(landmark, -1, nHash*sizeof(int));
979 memset(collide, -1, nHash*sizeof(int));
980 for(i=0; i<lenSrc-NHASH; i+=NHASH){
981 int hv;
982 hash_init(&h, &zSrc[i]);
983 hv = hash_32bit(&h) % nHash;
984 collide[i/NHASH] = landmark[hv];
985 landmark[hv] = i/NHASH;
988 /* Begin scanning the target file and generating copy commands and
989 ** literal sections of the delta.
991 base = 0; /* We have already generated everything before zOut[base] */
992 while( base+NHASH<lenOut ){
993 int iSrc, iBlock;
994 int bestCnt, bestOfst=0, bestLitsz=0;
995 hash_init(&h, &zOut[base]);
996 i = 0; /* Trying to match a landmark against zOut[base+i] */
997 bestCnt = 0;
998 while( 1 ){
999 int hv;
1000 int limit = 250;
1002 hv = hash_32bit(&h) % nHash;
1003 iBlock = landmark[hv];
1004 while( iBlock>=0 && (limit--)>0 ){
1006 ** The hash window has identified a potential match against
1007 ** landmark block iBlock. But we need to investigate further.
1009 ** Look for a region in zOut that matches zSrc. Anchor the search
1010 ** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to
1011 ** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen].
1013 ** Set cnt equal to the length of the match and set ofst so that
1014 ** zSrc[ofst] is the first element of the match. litsz is the number
1015 ** of characters between zOut[base] and the beginning of the match.
1016 ** sz will be the overhead (in bytes) needed to encode the copy
1017 ** command. Only generate copy command if the overhead of the
1018 ** copy command is less than the amount of literal text to be copied.
1020 int cnt, ofst, litsz;
1021 int j, k, x, y;
1022 int sz;
1024 /* Beginning at iSrc, match forwards as far as we can. j counts
1025 ** the number of characters that match */
1026 iSrc = iBlock*NHASH;
1027 for(
1028 j=0, x=iSrc, y=base+i;
1029 (unsigned int)x<lenSrc && (unsigned int)y<lenOut;
1030 j++, x++, y++
1032 if( zSrc[x]!=zOut[y] ) break;
1034 j--;
1036 /* Beginning at iSrc-1, match backwards as far as we can. k counts
1037 ** the number of characters that match */
1038 for(k=1; k<iSrc && (unsigned int)k<=i; k++){
1039 if( zSrc[iSrc-k]!=zOut[base+i-k] ) break;
1041 k--;
1043 /* Compute the offset and size of the matching region */
1044 ofst = iSrc-k;
1045 cnt = j+k+1;
1046 litsz = i-k; /* Number of bytes of literal text before the copy */
1047 /* sz will hold the number of bytes needed to encode the "insert"
1048 ** command and the copy command, not counting the "insert" text */
1049 sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3;
1050 if( cnt>=sz && cnt>bestCnt ){
1051 /* Remember this match only if it is the best so far and it
1052 ** does not increase the file size */
1053 bestCnt = cnt;
1054 bestOfst = iSrc-k;
1055 bestLitsz = litsz;
1058 /* Check the next matching block */
1059 iBlock = collide[iBlock];
1062 /* We have a copy command that does not cause the delta to be larger
1063 ** than a literal insert. So add the copy command to the delta.
1065 if( bestCnt>0 ){
1066 if( bestLitsz>0 ){
1067 /* Add an insert command before the copy */
1068 putInt(bestLitsz,&zDelta);
1069 *(zDelta++) = ':';
1070 memcpy(zDelta, &zOut[base], bestLitsz);
1071 zDelta += bestLitsz;
1072 base += bestLitsz;
1074 base += bestCnt;
1075 putInt(bestCnt, &zDelta);
1076 *(zDelta++) = '@';
1077 putInt(bestOfst, &zDelta);
1078 *(zDelta++) = ',';
1079 if( bestOfst + bestCnt -1 > lastRead ){
1080 lastRead = bestOfst + bestCnt - 1;
1082 bestCnt = 0;
1083 break;
1086 /* If we reach this point, it means no match is found so far */
1087 if( base+i+NHASH>=lenOut ){
1088 /* We have reached the end of the file and have not found any
1089 ** matches. Do an "insert" for everything that does not match */
1090 putInt(lenOut-base, &zDelta);
1091 *(zDelta++) = ':';
1092 memcpy(zDelta, &zOut[base], lenOut-base);
1093 zDelta += lenOut-base;
1094 base = lenOut;
1095 break;
1098 /* Advance the hash by one character. Keep looking for a match */
1099 hash_next(&h, zOut[base+i+NHASH]);
1100 i++;
1103 /* Output a final "insert" record to get all the text at the end of
1104 ** the file that does not match anything in the source file.
1106 if( base<lenOut ){
1107 putInt(lenOut-base, &zDelta);
1108 *(zDelta++) = ':';
1109 memcpy(zDelta, &zOut[base], lenOut-base);
1110 zDelta += lenOut-base;
1112 /* Output the final checksum record. */
1113 putInt(checksum(zOut, lenOut), &zDelta);
1114 *(zDelta++) = ';';
1115 sqlite3_free(collide);
1116 return (int)(zDelta - zOrigDelta);
1120 ** End of code copied from fossil.
1121 **************************************************************************/
1123 static void strPrintfArray(
1124 Str *pStr, /* String object to append to */
1125 const char *zSep, /* Separator string */
1126 const char *zFmt, /* Format for each entry */
1127 char **az, int n /* Array of strings & its size (or -1) */
1129 int i;
1130 for(i=0; az[i] && (i<n || n<0); i++){
1131 if( i!=0 ) strPrintf(pStr, "%s", zSep);
1132 strPrintf(pStr, zFmt, az[i], az[i], az[i]);
1136 static void getRbudiffQuery(
1137 const char *zTab,
1138 char **azCol,
1139 int nPK,
1140 int bOtaRowid,
1141 Str *pSql
1143 int i;
1145 /* First the newly inserted rows: **/
1146 strPrintf(pSql, "SELECT ");
1147 strPrintfArray(pSql, ", ", "%s", azCol, -1);
1148 strPrintf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */
1149 strPrintfArray(pSql, ", ", "NULL", azCol, -1);
1150 strPrintf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab);
1151 strPrintf(pSql, " SELECT 1 FROM ", zTab);
1152 strPrintf(pSql, " main.%Q AS o WHERE ", zTab);
1153 strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
1154 strPrintf(pSql, "\n) AND ");
1155 strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
1157 /* Deleted rows: */
1158 strPrintf(pSql, "\nUNION ALL\nSELECT ");
1159 strPrintfArray(pSql, ", ", "%s", azCol, nPK);
1160 if( azCol[nPK] ){
1161 strPrintf(pSql, ", ");
1162 strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1);
1164 strPrintf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */
1165 strPrintfArray(pSql, ", ", "NULL", azCol, -1);
1166 strPrintf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab);
1167 strPrintf(pSql, " SELECT 1 FROM ", zTab);
1168 strPrintf(pSql, " aux.%Q AS o WHERE ", zTab);
1169 strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
1170 strPrintf(pSql, "\n) AND ");
1171 strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
1173 /* Updated rows. If all table columns are part of the primary key, there
1174 ** can be no updates. In this case this part of the compound SELECT can
1175 ** be omitted altogether. */
1176 if( azCol[nPK] ){
1177 strPrintf(pSql, "\nUNION ALL\nSELECT ");
1178 strPrintfArray(pSql, ", ", "n.%s", azCol, nPK);
1179 strPrintf(pSql, ",\n");
1180 strPrintfArray(pSql, " ,\n",
1181 " CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1
1184 if( bOtaRowid==0 ){
1185 strPrintf(pSql, ", '");
1186 strPrintfArray(pSql, "", ".", azCol, nPK);
1187 strPrintf(pSql, "' ||\n");
1188 }else{
1189 strPrintf(pSql, ",\n");
1191 strPrintfArray(pSql, " ||\n",
1192 " CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1
1194 strPrintf(pSql, "\nAS ota_control, ");
1195 strPrintfArray(pSql, ", ", "NULL", azCol, nPK);
1196 strPrintf(pSql, ",\n");
1197 strPrintfArray(pSql, " ,\n",
1198 " CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1
1201 strPrintf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ", zTab, zTab);
1202 strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
1203 strPrintf(pSql, " AND ota_control LIKE '%%x%%'");
1206 /* Now add an ORDER BY clause to sort everything by PK. */
1207 strPrintf(pSql, "\nORDER BY ");
1208 for(i=1; i<=nPK; i++) strPrintf(pSql, "%s%d", ((i>1)?", ":""), i);
1211 static void rbudiff_one_table(const char *zTab, FILE *out){
1212 int bOtaRowid; /* True to use an ota_rowid column */
1213 int nPK; /* Number of primary key columns in table */
1214 char **azCol; /* NULL terminated array of col names */
1215 int i;
1216 int nCol;
1217 Str ct = {0, 0, 0}; /* The "CREATE TABLE data_xxx" statement */
1218 Str sql = {0, 0, 0}; /* Query to find differences */
1219 Str insert = {0, 0, 0}; /* First part of output INSERT statement */
1220 sqlite3_stmt *pStmt = 0;
1221 int nRow = 0; /* Total rows in data_xxx table */
1223 /* --rbu mode must use real primary keys. */
1224 g.bSchemaPK = 1;
1226 /* Check that the schemas of the two tables match. Exit early otherwise. */
1227 checkSchemasMatch(zTab);
1229 /* Grab the column names and PK details for the table(s). If no usable PK
1230 ** columns are found, bail out early. */
1231 azCol = columnNames("main", zTab, &nPK, &bOtaRowid);
1232 if( azCol==0 ){
1233 runtimeError("table %s has no usable PK columns", zTab);
1235 for(nCol=0; azCol[nCol]; nCol++);
1237 /* Build and output the CREATE TABLE statement for the data_xxx table */
1238 strPrintf(&ct, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab);
1239 if( bOtaRowid ) strPrintf(&ct, "rbu_rowid, ");
1240 strPrintfArray(&ct, ", ", "%s", &azCol[bOtaRowid], -1);
1241 strPrintf(&ct, ", rbu_control);");
1243 /* Get the SQL for the query to retrieve data from the two databases */
1244 getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, &sql);
1246 /* Build the first part of the INSERT statement output for each row
1247 ** in the data_xxx table. */
1248 strPrintf(&insert, "INSERT INTO 'data_%q' (", zTab);
1249 if( bOtaRowid ) strPrintf(&insert, "rbu_rowid, ");
1250 strPrintfArray(&insert, ", ", "%s", &azCol[bOtaRowid], -1);
1251 strPrintf(&insert, ", rbu_control) VALUES(");
1253 pStmt = db_prepare("%s", sql.z);
1255 while( sqlite3_step(pStmt)==SQLITE_ROW ){
1257 /* If this is the first row output, print out the CREATE TABLE
1258 ** statement first. And then set ct.z to NULL so that it is not
1259 ** printed again. */
1260 if( ct.z ){
1261 fprintf(out, "%s\n", ct.z);
1262 strFree(&ct);
1265 /* Output the first part of the INSERT statement */
1266 fprintf(out, "%s", insert.z);
1267 nRow++;
1269 if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){
1270 for(i=0; i<=nCol; i++){
1271 if( i>0 ) fprintf(out, ", ");
1272 printQuoted(out, sqlite3_column_value(pStmt, i));
1274 }else{
1275 char *zOtaControl;
1276 int nOtaControl = sqlite3_column_bytes(pStmt, nCol);
1278 zOtaControl = (char*)sqlite3_malloc(nOtaControl+1);
1279 memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1);
1281 for(i=0; i<nCol; i++){
1282 int bDone = 0;
1283 if( i>=nPK
1284 && sqlite3_column_type(pStmt, i)==SQLITE_BLOB
1285 && sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB
1287 const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i);
1288 int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i);
1289 const char *aFinal = sqlite3_column_blob(pStmt, i);
1290 int nFinal = sqlite3_column_bytes(pStmt, i);
1291 char *aDelta;
1292 int nDelta;
1294 aDelta = sqlite3_malloc(nFinal + 60);
1295 nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta);
1296 if( nDelta<nFinal ){
1297 int j;
1298 fprintf(out, "x'");
1299 for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]);
1300 fprintf(out, "'");
1301 zOtaControl[i-bOtaRowid] = 'f';
1302 bDone = 1;
1304 sqlite3_free(aDelta);
1307 if( bDone==0 ){
1308 printQuoted(out, sqlite3_column_value(pStmt, i));
1310 fprintf(out, ", ");
1312 fprintf(out, "'%s'", zOtaControl);
1313 sqlite3_free(zOtaControl);
1316 /* And the closing bracket of the insert statement */
1317 fprintf(out, ");\n");
1320 sqlite3_finalize(pStmt);
1321 if( nRow>0 ){
1322 Str cnt = {0, 0, 0};
1323 strPrintf(&cnt, "INSERT INTO rbu_count VALUES('data_%q', %d);", zTab, nRow);
1324 fprintf(out, "%s\n", cnt.z);
1325 strFree(&cnt);
1328 strFree(&ct);
1329 strFree(&sql);
1330 strFree(&insert);
1334 ** Display a summary of differences between two versions of the same
1335 ** table table.
1337 ** * Number of rows changed
1338 ** * Number of rows added
1339 ** * Number of rows deleted
1340 ** * Number of identical rows
1342 static void summarize_one_table(const char *zTab, FILE *out){
1343 char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
1344 char **az = 0; /* Columns in main */
1345 char **az2 = 0; /* Columns in aux */
1346 int nPk; /* Primary key columns in main */
1347 int nPk2; /* Primary key columns in aux */
1348 int n = 0; /* Number of columns in main */
1349 int n2; /* Number of columns in aux */
1350 int i; /* Loop counter */
1351 const char *zSep; /* Separator string */
1352 Str sql; /* Comparison query */
1353 sqlite3_stmt *pStmt; /* Query statement to do the diff */
1354 sqlite3_int64 nUpdate; /* Number of updated rows */
1355 sqlite3_int64 nUnchanged; /* Number of unmodified rows */
1356 sqlite3_int64 nDelete; /* Number of deleted rows */
1357 sqlite3_int64 nInsert; /* Number of inserted rows */
1359 strInit(&sql);
1360 if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
1361 if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
1362 /* Table missing from second database. */
1363 fprintf(out, "%s: missing from second database\n", zTab);
1365 goto end_summarize_one_table;
1368 if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
1369 /* Table missing from source */
1370 fprintf(out, "%s: missing from first database\n", zTab);
1371 goto end_summarize_one_table;
1374 az = columnNames("main", zTab, &nPk, 0);
1375 az2 = columnNames("aux", zTab, &nPk2, 0);
1376 if( az && az2 ){
1377 for(n=0; az[n]; n++){
1378 if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
1381 if( az==0
1382 || az2==0
1383 || nPk!=nPk2
1384 || az[n]
1386 /* Schema mismatch */
1387 fprintf(out, "%s: incompatible schema\n", zTab);
1388 goto end_summarize_one_table;
1391 /* Build the comparison query */
1392 for(n2=n; az[n2]; n2++){}
1393 strPrintf(&sql, "SELECT 1, count(*)");
1394 if( n2==nPk2 ){
1395 strPrintf(&sql, ", 0\n");
1396 }else{
1397 zSep = ", sum(";
1398 for(i=nPk; az[i]; i++){
1399 strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]);
1400 zSep = " OR ";
1402 strPrintf(&sql, ")\n");
1404 strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId);
1405 zSep = " WHERE";
1406 for(i=0; i<nPk; i++){
1407 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
1408 zSep = " AND";
1410 strPrintf(&sql, " UNION ALL\n");
1411 strPrintf(&sql, "SELECT 2, count(*), 0\n");
1412 strPrintf(&sql, " FROM main.%s A\n", zId);
1413 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId);
1414 zSep = "WHERE";
1415 for(i=0; i<nPk; i++){
1416 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
1417 zSep = " AND";
1419 strPrintf(&sql, ")\n");
1420 strPrintf(&sql, " UNION ALL\n");
1421 strPrintf(&sql, "SELECT 3, count(*), 0\n");
1422 strPrintf(&sql, " FROM aux.%s B\n", zId);
1423 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId);
1424 zSep = "WHERE";
1425 for(i=0; i<nPk; i++){
1426 strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]);
1427 zSep = " AND";
1429 strPrintf(&sql, ")\n ORDER BY 1;\n");
1431 if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){
1432 printf("SQL for %s:\n%s\n", zId, sql.z);
1433 goto end_summarize_one_table;
1436 /* Run the query and output difference summary */
1437 pStmt = db_prepare("%s", sql.z);
1438 nUpdate = 0;
1439 nInsert = 0;
1440 nDelete = 0;
1441 nUnchanged = 0;
1442 while( SQLITE_ROW==sqlite3_step(pStmt) ){
1443 switch( sqlite3_column_int(pStmt,0) ){
1444 case 1:
1445 nUpdate = sqlite3_column_int64(pStmt,2);
1446 nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate;
1447 break;
1448 case 2:
1449 nDelete = sqlite3_column_int64(pStmt,1);
1450 break;
1451 case 3:
1452 nInsert = sqlite3_column_int64(pStmt,1);
1453 break;
1456 sqlite3_finalize(pStmt);
1457 fprintf(out, "%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n",
1458 zTab, nUpdate, nInsert, nDelete, nUnchanged);
1460 end_summarize_one_table:
1461 strFree(&sql);
1462 sqlite3_free(zId);
1463 namelistFree(az);
1464 namelistFree(az2);
1465 return;
1469 ** Write a 64-bit signed integer as a varint onto out
1471 static void putsVarint(FILE *out, sqlite3_uint64 v){
1472 int i, n;
1473 unsigned char p[12];
1474 if( v & (((sqlite3_uint64)0xff000000)<<32) ){
1475 p[8] = (unsigned char)v;
1476 v >>= 8;
1477 for(i=7; i>=0; i--){
1478 p[i] = (unsigned char)((v & 0x7f) | 0x80);
1479 v >>= 7;
1481 fwrite(p, 8, 1, out);
1482 }else{
1483 n = 9;
1485 p[n--] = (unsigned char)((v & 0x7f) | 0x80);
1486 v >>= 7;
1487 }while( v!=0 );
1488 p[9] &= 0x7f;
1489 fwrite(p+n+1, 9-n, 1, out);
1494 ** Write an SQLite value onto out.
1496 static void putValue(FILE *out, sqlite3_value *pVal){
1497 int iDType = sqlite3_value_type(pVal);
1498 sqlite3_int64 iX;
1499 double rX;
1500 sqlite3_uint64 uX;
1501 int j;
1503 putc(iDType, out);
1504 switch( iDType ){
1505 case SQLITE_INTEGER:
1506 iX = sqlite3_value_int64(pVal);
1507 memcpy(&uX, &iX, 8);
1508 for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
1509 break;
1510 case SQLITE_FLOAT:
1511 rX = sqlite3_value_double(pVal);
1512 memcpy(&uX, &rX, 8);
1513 for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
1514 break;
1515 case SQLITE_TEXT:
1516 iX = sqlite3_value_bytes(pVal);
1517 putsVarint(out, (sqlite3_uint64)iX);
1518 fwrite(sqlite3_value_text(pVal),1,(size_t)iX,out);
1519 break;
1520 case SQLITE_BLOB:
1521 iX = sqlite3_value_bytes(pVal);
1522 putsVarint(out, (sqlite3_uint64)iX);
1523 fwrite(sqlite3_value_blob(pVal),1,(size_t)iX,out);
1524 break;
1525 case SQLITE_NULL:
1526 break;
1531 ** Generate a CHANGESET for all differences from main.zTab to aux.zTab.
1533 static void changeset_one_table(const char *zTab, FILE *out){
1534 sqlite3_stmt *pStmt; /* SQL statment */
1535 char *zId = safeId(zTab); /* Escaped name of the table */
1536 char **azCol = 0; /* List of escaped column names */
1537 int nCol = 0; /* Number of columns */
1538 int *aiFlg = 0; /* 0 if column is not part of PK */
1539 int *aiPk = 0; /* Column numbers for each PK column */
1540 int nPk = 0; /* Number of PRIMARY KEY columns */
1541 Str sql; /* SQL for the diff query */
1542 int i, k; /* Loop counters */
1543 const char *zSep; /* List separator */
1545 /* Check that the schemas of the two tables match. Exit early otherwise. */
1546 checkSchemasMatch(zTab);
1548 pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab);
1549 while( SQLITE_ROW==sqlite3_step(pStmt) ){
1550 nCol++;
1551 azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol);
1552 if( azCol==0 ) runtimeError("out of memory");
1553 aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol);
1554 if( aiFlg==0 ) runtimeError("out of memory");
1555 azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1));
1556 aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5);
1557 if( i>0 ){
1558 if( i>nPk ){
1559 nPk = i;
1560 aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk);
1561 if( aiPk==0 ) runtimeError("out of memory");
1563 aiPk[i-1] = nCol-1;
1566 sqlite3_finalize(pStmt);
1567 if( nPk==0 ) goto end_changeset_one_table;
1568 strInit(&sql);
1569 if( nCol>nPk ){
1570 strPrintf(&sql, "SELECT %d", SQLITE_UPDATE);
1571 for(i=0; i<nCol; i++){
1572 if( aiFlg[i] ){
1573 strPrintf(&sql, ",\n A.%s", azCol[i]);
1574 }else{
1575 strPrintf(&sql, ",\n A.%s IS NOT B.%s, A.%s, B.%s",
1576 azCol[i], azCol[i], azCol[i], azCol[i]);
1579 strPrintf(&sql,"\n FROM main.%s A, aux.%s B\n", zId, zId);
1580 zSep = " WHERE";
1581 for(i=0; i<nPk; i++){
1582 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
1583 zSep = " AND";
1585 zSep = "\n AND (";
1586 for(i=0; i<nCol; i++){
1587 if( aiFlg[i] ) continue;
1588 strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]);
1589 zSep = " OR\n ";
1591 strPrintf(&sql,")\n UNION ALL\n");
1593 strPrintf(&sql, "SELECT %d", SQLITE_DELETE);
1594 for(i=0; i<nCol; i++){
1595 if( aiFlg[i] ){
1596 strPrintf(&sql, ",\n A.%s", azCol[i]);
1597 }else{
1598 strPrintf(&sql, ",\n 1, A.%s, NULL", azCol[i]);
1601 strPrintf(&sql, "\n FROM main.%s A\n", zId);
1602 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
1603 zSep = " WHERE";
1604 for(i=0; i<nPk; i++){
1605 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
1606 zSep = " AND";
1608 strPrintf(&sql, ")\n UNION ALL\n");
1609 strPrintf(&sql, "SELECT %d", SQLITE_INSERT);
1610 for(i=0; i<nCol; i++){
1611 if( aiFlg[i] ){
1612 strPrintf(&sql, ",\n B.%s", azCol[i]);
1613 }else{
1614 strPrintf(&sql, ",\n 1, NULL, B.%s", azCol[i]);
1617 strPrintf(&sql, "\n FROM aux.%s B\n", zId);
1618 strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
1619 zSep = " WHERE";
1620 for(i=0; i<nPk; i++){
1621 strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
1622 zSep = " AND";
1624 strPrintf(&sql, ")\n");
1625 strPrintf(&sql, " ORDER BY");
1626 zSep = " ";
1627 for(i=0; i<nPk; i++){
1628 strPrintf(&sql, "%s %d", zSep, aiPk[i]+2);
1629 zSep = ",";
1631 strPrintf(&sql, ";\n");
1633 if( g.fDebug & DEBUG_DIFF_SQL ){
1634 printf("SQL for %s:\n%s\n", zId, sql.z);
1635 goto end_changeset_one_table;
1638 putc('T', out);
1639 putsVarint(out, (sqlite3_uint64)nCol);
1640 for(i=0; i<nCol; i++) putc(aiFlg[i], out);
1641 fwrite(zTab, 1, strlen(zTab), out);
1642 putc(0, out);
1644 pStmt = db_prepare("%s", sql.z);
1645 while( SQLITE_ROW==sqlite3_step(pStmt) ){
1646 int iType = sqlite3_column_int(pStmt,0);
1647 putc(iType, out);
1648 putc(0, out);
1649 switch( sqlite3_column_int(pStmt,0) ){
1650 case SQLITE_UPDATE: {
1651 for(k=1, i=0; i<nCol; i++){
1652 if( aiFlg[i] ){
1653 putValue(out, sqlite3_column_value(pStmt,k));
1654 k++;
1655 }else if( sqlite3_column_int(pStmt,k) ){
1656 putValue(out, sqlite3_column_value(pStmt,k+1));
1657 k += 3;
1658 }else{
1659 putc(0, out);
1660 k += 3;
1663 for(k=1, i=0; i<nCol; i++){
1664 if( aiFlg[i] ){
1665 putc(0, out);
1666 k++;
1667 }else if( sqlite3_column_int(pStmt,k) ){
1668 putValue(out, sqlite3_column_value(pStmt,k+2));
1669 k += 3;
1670 }else{
1671 putc(0, out);
1672 k += 3;
1675 break;
1677 case SQLITE_INSERT: {
1678 for(k=1, i=0; i<nCol; i++){
1679 if( aiFlg[i] ){
1680 putValue(out, sqlite3_column_value(pStmt,k));
1681 k++;
1682 }else{
1683 putValue(out, sqlite3_column_value(pStmt,k+2));
1684 k += 3;
1687 break;
1689 case SQLITE_DELETE: {
1690 for(k=1, i=0; i<nCol; i++){
1691 if( aiFlg[i] ){
1692 putValue(out, sqlite3_column_value(pStmt,k));
1693 k++;
1694 }else{
1695 putValue(out, sqlite3_column_value(pStmt,k+1));
1696 k += 3;
1699 break;
1703 sqlite3_finalize(pStmt);
1705 end_changeset_one_table:
1706 while( nCol>0 ) sqlite3_free(azCol[--nCol]);
1707 sqlite3_free(azCol);
1708 sqlite3_free(aiPk);
1709 sqlite3_free(zId);
1713 ** Extract the next SQL keyword or quoted string from buffer zIn and copy it
1714 ** (or a prefix of it if it will not fit) into buffer zBuf, size nBuf bytes.
1715 ** Return a pointer to the character within zIn immediately following
1716 ** the token or quoted string just extracted.
1718 const char *gobble_token(const char *zIn, char *zBuf, int nBuf){
1719 const char *p = zIn;
1720 char *pOut = zBuf;
1721 char *pEnd = &pOut[nBuf-1];
1722 char q = 0; /* quote character, if any */
1724 if( p==0 ) return 0;
1725 while( *p==' ' ) p++;
1726 switch( *p ){
1727 case '"': q = '"'; break;
1728 case '\'': q = '\''; break;
1729 case '`': q = '`'; break;
1730 case '[': q = ']'; break;
1733 if( q ){
1734 p++;
1735 while( *p && pOut<pEnd ){
1736 if( *p==q ){
1737 p++;
1738 if( *p!=q ) break;
1740 if( pOut<pEnd ) *pOut++ = *p;
1741 p++;
1743 }else{
1744 while( *p && *p!=' ' && *p!='(' ){
1745 if( pOut<pEnd ) *pOut++ = *p;
1746 p++;
1750 *pOut = '\0';
1751 return p;
1755 ** This function is the implementation of SQL scalar function "module_name":
1757 ** module_name(SQL)
1759 ** The only argument should be an SQL statement of the type that may appear
1760 ** in the sqlite_master table. If the statement is a "CREATE VIRTUAL TABLE"
1761 ** statement, then the value returned is the name of the module that it
1762 ** uses. Otherwise, if the statement is not a CVT, NULL is returned.
1764 static void module_name_func(
1765 sqlite3_context *pCtx,
1766 int nVal, sqlite3_value **apVal
1768 const char *zSql;
1769 char zToken[32];
1771 assert( nVal==1 );
1772 zSql = (const char*)sqlite3_value_text(apVal[0]);
1774 zSql = gobble_token(zSql, zToken, sizeof(zToken));
1775 if( zSql==0 || sqlite3_stricmp(zToken, "create") ) return;
1776 zSql = gobble_token(zSql, zToken, sizeof(zToken));
1777 if( zSql==0 || sqlite3_stricmp(zToken, "virtual") ) return;
1778 zSql = gobble_token(zSql, zToken, sizeof(zToken));
1779 if( zSql==0 || sqlite3_stricmp(zToken, "table") ) return;
1780 zSql = gobble_token(zSql, zToken, sizeof(zToken));
1781 if( zSql==0 ) return;
1782 zSql = gobble_token(zSql, zToken, sizeof(zToken));
1783 if( zSql==0 || sqlite3_stricmp(zToken, "using") ) return;
1784 zSql = gobble_token(zSql, zToken, sizeof(zToken));
1786 sqlite3_result_text(pCtx, zToken, -1, SQLITE_TRANSIENT);
1790 ** Return the text of an SQL statement that itself returns the list of
1791 ** tables to process within the database.
1793 const char *all_tables_sql(){
1794 if( g.bHandleVtab ){
1795 int rc;
1797 rc = sqlite3_exec(g.db,
1798 "CREATE TEMP TABLE tblmap(module COLLATE nocase, postfix);"
1799 "INSERT INTO temp.tblmap VALUES"
1800 "('fts3', '_content'), ('fts3', '_segments'), ('fts3', '_segdir'),"
1802 "('fts4', '_content'), ('fts4', '_segments'), ('fts4', '_segdir'),"
1803 "('fts4', '_docsize'), ('fts4', '_stat'),"
1805 "('fts5', '_data'), ('fts5', '_idx'), ('fts5', '_content'),"
1806 "('fts5', '_docsize'), ('fts5', '_config'),"
1808 "('rtree', '_node'), ('rtree', '_rowid'), ('rtree', '_parent');"
1809 , 0, 0, 0
1811 assert( rc==SQLITE_OK );
1813 rc = sqlite3_create_function(
1814 g.db, "module_name", 1, SQLITE_UTF8, 0, module_name_func, 0, 0
1816 assert( rc==SQLITE_OK );
1818 return
1819 "SELECT name FROM main.sqlite_master\n"
1820 " WHERE type='table' AND (\n"
1821 " module_name(sql) IS NULL OR \n"
1822 " module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
1823 " ) AND name NOT IN (\n"
1824 " SELECT a.name || b.postfix \n"
1825 "FROM main.sqlite_master AS a, temp.tblmap AS b \n"
1826 "WHERE module_name(a.sql) = b.module\n"
1827 " )\n"
1828 "UNION \n"
1829 "SELECT name FROM aux.sqlite_master\n"
1830 " WHERE type='table' AND (\n"
1831 " module_name(sql) IS NULL OR \n"
1832 " module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
1833 " ) AND name NOT IN (\n"
1834 " SELECT a.name || b.postfix \n"
1835 "FROM aux.sqlite_master AS a, temp.tblmap AS b \n"
1836 "WHERE module_name(a.sql) = b.module\n"
1837 " )\n"
1838 " ORDER BY name";
1839 }else{
1840 return
1841 "SELECT name FROM main.sqlite_master\n"
1842 " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
1843 " UNION\n"
1844 "SELECT name FROM aux.sqlite_master\n"
1845 " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
1846 " ORDER BY name";
1851 ** Print sketchy documentation for this utility program
1853 static void showHelp(void){
1854 printf("Usage: %s [options] DB1 DB2\n", g.zArgv0);
1855 printf(
1856 "Output SQL text that would transform DB1 into DB2.\n"
1857 "Options:\n"
1858 " --changeset FILE Write a CHANGESET into FILE\n"
1859 " -L|--lib LIBRARY Load an SQLite extension library\n"
1860 " --primarykey Use schema-defined PRIMARY KEYs\n"
1861 " --rbu Output SQL to create/populate RBU table(s)\n"
1862 " --schema Show only differences in the schema\n"
1863 " --summary Show only a summary of the differences\n"
1864 " --table TAB Show only differences in table TAB\n"
1865 " --transaction Show SQL output inside a transaction\n"
1866 " --vtab Handle fts3, fts4, fts5 and rtree tables\n"
1870 int main(int argc, char **argv){
1871 const char *zDb1 = 0;
1872 const char *zDb2 = 0;
1873 int i;
1874 int rc;
1875 char *zErrMsg = 0;
1876 char *zSql;
1877 sqlite3_stmt *pStmt;
1878 char *zTab = 0;
1879 FILE *out = stdout;
1880 void (*xDiff)(const char*,FILE*) = diff_one_table;
1881 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1882 int nExt = 0;
1883 char **azExt = 0;
1884 #endif
1885 int useTransaction = 0;
1886 int neverUseTransaction = 0;
1888 g.zArgv0 = argv[0];
1889 sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
1890 for(i=1; i<argc; i++){
1891 const char *z = argv[i];
1892 if( z[0]=='-' ){
1893 z++;
1894 if( z[0]=='-' ) z++;
1895 if( strcmp(z,"changeset")==0 ){
1896 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
1897 out = fopen(argv[++i], "wb");
1898 if( out==0 ) cmdlineError("cannot open: %s", argv[i]);
1899 xDiff = changeset_one_table;
1900 neverUseTransaction = 1;
1901 }else
1902 if( strcmp(z,"debug")==0 ){
1903 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
1904 g.fDebug = strtol(argv[++i], 0, 0);
1905 }else
1906 if( strcmp(z,"help")==0 ){
1907 showHelp();
1908 return 0;
1909 }else
1910 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1911 if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){
1912 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
1913 azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1));
1914 if( azExt==0 ) cmdlineError("out of memory");
1915 azExt[nExt++] = argv[++i];
1916 }else
1917 #endif
1918 if( strcmp(z,"primarykey")==0 ){
1919 g.bSchemaPK = 1;
1920 }else
1921 if( strcmp(z,"rbu")==0 ){
1922 xDiff = rbudiff_one_table;
1923 }else
1924 if( strcmp(z,"schema")==0 ){
1925 g.bSchemaOnly = 1;
1926 }else
1927 if( strcmp(z,"summary")==0 ){
1928 xDiff = summarize_one_table;
1929 }else
1930 if( strcmp(z,"table")==0 ){
1931 if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
1932 zTab = argv[++i];
1933 }else
1934 if( strcmp(z,"transaction")==0 ){
1935 useTransaction = 1;
1936 }else
1937 if( strcmp(z,"vtab")==0 ){
1938 g.bHandleVtab = 1;
1939 }else
1941 cmdlineError("unknown option: %s", argv[i]);
1943 }else if( zDb1==0 ){
1944 zDb1 = argv[i];
1945 }else if( zDb2==0 ){
1946 zDb2 = argv[i];
1947 }else{
1948 cmdlineError("unknown argument: %s", argv[i]);
1951 if( zDb2==0 ){
1952 cmdlineError("two database arguments required");
1954 rc = sqlite3_open(zDb1, &g.db);
1955 if( rc ){
1956 cmdlineError("cannot open database file \"%s\"", zDb1);
1958 rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_master", 0, 0, &zErrMsg);
1959 if( rc || zErrMsg ){
1960 cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1);
1962 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1963 sqlite3_enable_load_extension(g.db, 1);
1964 for(i=0; i<nExt; i++){
1965 rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg);
1966 if( rc || zErrMsg ){
1967 cmdlineError("error loading %s: %s", azExt[i], zErrMsg);
1970 free(azExt);
1971 #endif
1972 zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2);
1973 rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg);
1974 if( rc || zErrMsg ){
1975 cmdlineError("cannot attach database \"%s\"", zDb2);
1977 rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_master", 0, 0, &zErrMsg);
1978 if( rc || zErrMsg ){
1979 cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2);
1982 if( neverUseTransaction ) useTransaction = 0;
1983 if( useTransaction ) fprintf(out, "BEGIN TRANSACTION;\n");
1984 if( xDiff==rbudiff_one_table ){
1985 fprintf(out, "CREATE TABLE IF NOT EXISTS rbu_count"
1986 "(tbl TEXT PRIMARY KEY COLLATE NOCASE, cnt INTEGER) "
1987 "WITHOUT ROWID;\n"
1990 if( zTab ){
1991 xDiff(zTab, out);
1992 }else{
1993 /* Handle tables one by one */
1994 pStmt = db_prepare("%s", all_tables_sql() );
1995 while( SQLITE_ROW==sqlite3_step(pStmt) ){
1996 xDiff((const char*)sqlite3_column_text(pStmt,0), out);
1998 sqlite3_finalize(pStmt);
2000 if( useTransaction ) printf("COMMIT;\n");
2002 /* TBD: Handle trigger differences */
2003 /* TBD: Handle view differences */
2004 sqlite3_close(g.db);
2005 return 0;